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1 Limits and convergence
1.1 Definition of limit

Definition. We say that the sequence 𝑎𝑛 → 𝑎 as 𝑛 → ∞ if given 𝜀 > 0, ∃𝑁 such that
|𝑎𝑛 − 𝑎| < 𝜀 for all 𝑛 ≥ 𝑁. Note that this 𝑁 is actually a function of 𝜀; we may need to choose
a very large 𝑁 if the 𝜀 provided is very small, for instance.

Definition. An increasing sequence is a sequence for which 𝑎𝑛 ≤ 𝑎𝑛+1, and a decreasing
sequence is a sequence for which 𝑎𝑛 ≥ 𝑎𝑛+1. Such increasing and decreasing sequences
are called monotone. A strictly increasing sequence or a strictly decreasing sequence simply
strengthens the inequalities to not include the equality case.

1.2 Fundamental axiom of the real numbers
If we have some increasing sequence 𝑎𝑛 ∈ ℝ, where ∃𝐴 ∈ ℝ such that ∀𝑛 ≥ 1, 𝑎𝑛 ≤ 𝐴, then ∃𝑎 ∈ ℝ
such that 𝑎𝑛 → 𝑎 as 𝑛 → ∞. This is also known as the ‘least upper bound’ axiom or property. This
axiom applies equivalently to decreasing sequences of real numbers bounded below. We can also
rephrase the axiom to state that every non-empty set of real numbers that is bounded above has a
supremum.

Definition. We say that the supremum sup 𝑆 of a non-empty, bounded above set 𝑆 is 𝐾 if
(i) 𝑥 ≤ 𝐾 for all 𝑥 ∈ 𝑆
(ii) given 𝜀 > 0, ∃𝑥 ∈ 𝑆 such that 𝑥 > 𝐾 − 𝜀

Note that the supremum (and hence the infimum) is unique.

1.3 Properties of limits

Lemma. The following properties about real sequences hold.
(i) The limit is unique. That is, if 𝑎𝑛 → 𝑎 and 𝑎𝑛 → 𝑏, then 𝑎 = 𝑏.
(ii) If 𝑎𝑛 → 𝑎 as 𝑛 → ∞ and 𝑛1 < 𝑛2 < …, then 𝑎𝑛𝑗 → 𝑎 as 𝑗 → ∞. In other words,

subsequences converge to the same limit.
(iii) If 𝑎𝑛 = 𝑐 for all 𝑛, then 𝑎𝑛 → 𝑐 as 𝑛 → ∞.
(iv) If 𝑎𝑛 → 𝑎 and 𝑏𝑛 → 𝑏, then 𝑎𝑛 + 𝑏𝑛 → 𝑎 + 𝑏.
(v) If 𝑎𝑛 → 𝑎 and 𝑏𝑛 → 𝑏, then 𝑎𝑛𝑏𝑛 → 𝑎𝑏.
(vi) If 𝑎𝑛 → 𝑎, 𝑎𝑛 ≠ 0 for all 𝑛, and 𝑎 ≠ 0, then 1

𝑎𝑛
→ 1

𝑎
.

(vii) If 𝑎𝑛 → 𝑎, and 𝑎𝑛 ≤ 𝐴 for all 𝑛, then 𝑎 ≤ 𝐴.

Proof. We prove the some of these statements here.

(i) Given 𝜀 > 0, ∃𝑛1 such that |𝑎𝑛 − 𝑎| < 𝜀 for all 𝑛 ≥ 𝑛1, and ∃𝑛2 such that |𝑎𝑛 − 𝑏| < 𝜀 for all
𝑛 ≥ 𝑛2. So let𝑁 = max(𝑛1, 𝑛2), so both inequalities hold. Then for all 𝑛 ≥ 𝑁, using the triangle
inequality, |𝑎 − 𝑏| ≤ |𝑎𝑛 − 𝑎| + |𝑎𝑛 − 𝑏| < 2𝜀. So 𝑎 = 𝑏.
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(ii) Given 𝜀 > 0, ∃𝑁 such that |𝑎𝑛 − 𝑎| < 𝜀 for all 𝑛 ≥ 𝑁. Since 𝑛𝑗 ≥ 𝑗 (by induction), ||𝑎𝑛𝑗 − 𝑎|| < 𝜀
for all 𝑗 ≥ 𝑁.

(v) |𝑎𝑛𝑏𝑛 − 𝑎𝑏| ≤ |𝑎𝑛𝑏𝑛 − 𝑎𝑛𝑏| + |𝑎𝑛𝑏 − 𝑎𝑏| = |𝑎𝑛||𝑏𝑛 − 𝑏| + |𝑏||𝑎𝑛 − 𝑎|.
If 𝑎𝑛 → 𝑎, then given 𝜀 > 0, ∃𝑁1 such that |𝑎𝑛 − 𝑎| < 𝜀 for all 𝑛 ≥ 𝑁1. (∗)
If 𝑏𝑛 → 𝑏, then given 𝜀 > 0, ∃𝑁2 such that |𝑏𝑛 − 𝑏| < 𝜀 for all 𝑛 ≥ 𝑁2.
Using (∗), if 𝑛 ≥ 𝑁1(1) (i.e. 𝜀 = 1), |𝑎𝑛 − 𝑎| < 1, so |𝑎𝑛| ≤ |𝑎| + 1.
Therefore |𝑎𝑛𝑏𝑛 − 𝑎𝑏| ≤ 𝜀(|𝑎| + 1 + |𝑏|) for all 𝑛 ≥ 𝑁3(𝜀) = max{𝑁1(1), 𝑁1(𝜀), 𝑁2(𝜀)}.

1.4 Harmonic series

Lemma. The sequence 1
𝑛
tends to zero as 𝑛 → ∞.

Proof. We know that 1
𝑛
is a decreasing sequence, and it is bounded below by zero. Hence it converges

to a limit 𝑎. We will prove now that 𝑎 = 0. 1
2𝑛

= 1
2
⋅ 1
𝑛
, and by property (v) above, 1

2𝑛
tends to 1

2
⋅ 𝑎.

But 1
2𝑛
is a subsequence of 1

𝑛
, and so by property (ii) it converges to 𝑎. So by property (i), 1

2
⋅ 𝑎 = 𝑎

hence 𝑎 = 0.

1.5 Limits in the complex plane
Remark. The definition of the limit of a sequence makes perfect sense for 𝑎𝑛 ∈ ℂ.

Definition. 𝑎𝑛 → 𝑎 if given 𝜀 > 0, ∃𝑁 such that ∀𝑛 ≥ 𝑁, |𝑎𝑛 − 𝑎| < 𝜀.

From this definition, it is easy to check that properties (i)–(vi) hold for complex numbers.

However, property (vii) makes no sense in the world of the complex numbers since they do not have
an ordering.

1.6 The Bolzano–Weierstrass theorem

Theorem. If 𝑥𝑛 is a sequence of real numbers, and there exists some 𝑘 such that |𝑥𝑛| ≤ 𝑘 for
all 𝑛, then we can find 𝑛1 < 𝑛2 < 𝑛3 < 𝑛4 < … and 𝑥 ∈ ℝ such that 𝑥𝑛𝑗 → 𝑥 as 𝑗 → ∞. In
other words, any bounded sequence has a convergent subsequence.

Remark. This theorem does not state anything about the uniqueness of such a subsequence; indeed,
there could exist many subsequences that have possibly different limits. For example, 𝑥𝑛 = (−1)𝑛
gives 𝑥2𝑛+1 → −1 and 𝑥2𝑛 → 1.

Proof. Let [𝑎1, 𝑏1] be the range of the sequence, i.e. [−𝑘, 𝑘]. Then let the midpoint 𝑐1 =
𝑎1+𝑏1

2
. Con-

sider the following alternatives:

5



(i) 𝑥𝑛 ∈ [𝑎1, 𝑐] for infinitely many values of 𝑛.
(ii) 𝑥𝑛 ∈ [𝑐, 𝑏1] for infinitely many values of 𝑛.

Note that cases 1 and 2 could hold at the same time. If case 1 holds, we set 𝑎2 = 𝑎1 and 𝑏2 = 𝑐. If
case 1 fails, then case 2 must hold, so we can set 𝑎2 = 𝑐 and 𝑏2 = 𝑏1. We have now constructed a
subsequence whose range is half as large as the original sequence, and it contains infinitely many
values of 𝑥𝑛.
We can proceed inductively to construct sequences 𝑎𝑛, 𝑏𝑛 such that 𝑥𝑚 ∈ [𝑎𝑛, 𝑏𝑛] for infinitely many
values of 𝑚. This is known as a ‘bisection method’. By construction, 𝑎𝑛−1 ≤ 𝑎𝑛 ≤ 𝑏𝑛 ≤ 𝑏𝑛−1. Since
we are dividing by two each time,

𝑏𝑛 − 𝑎𝑛 =
1
2(𝑏𝑛−1 − 𝑎𝑛−1) (∗)

Note that 𝑎𝑛 is a bounded, increasing sequence; and 𝑏𝑛 is a bounded, decreasing sequence. By the
Fundamental Axiom of the Real Numbers, 𝑎𝑛 and 𝑏𝑛 converge to limits 𝑎 ∈ [𝑎1, 𝑏1] and 𝑏 ∈ [𝑎1, 𝑏1].
Using (∗), 𝑏 − 𝑎 = 𝑏−𝑎

2
⟹ 𝑏 = 𝑎.

Since 𝑥𝑚 ∈ [𝑎𝑛, 𝑏𝑛] for infinitely many values of𝑚, having chosen 𝑛𝑗 such that 𝑥𝑛𝑗 ∈ [𝑎𝑗 , 𝑏𝑗], there
is 𝑛𝑗+1 > 𝑛𝑗 such that 𝑥𝑛𝑗+1 ∈ [𝑎𝑗+1, 𝑏𝑗+1]. Informally, this works because we have an unlimited
supply of such 𝑥 values. Hence

𝑎𝑗 ≤ 𝑥𝑛𝑗 ≤ 𝑏𝑗
So this 𝑥𝑛𝑗 → 𝑎, so we have constructed a convergent subsequence.

1.7 Cauchy sequences

Definition. A sequence 𝑎𝑛 is called a Cauchy sequence if given 𝜀 > 0 there exists 𝑁 > 0
such that |𝑎𝑛 − 𝑎𝑚| < 𝜀 for all 𝑛,𝑚 ≥ 𝑁. Informally, the terms of the sequence grow ever
closer together such that there are infinitely many consecutive terms within a small region.

Lemma. If a sequence converges, it is a Cauchy sequence.

Proof. If 𝑎𝑛 → 𝑎, given 𝜀 > 0 then ∃𝑁 such that ∀𝑛 ≥ 𝑁, |𝑎𝑛 − 𝑎| < 𝜀. Then take 𝑚, 𝑛 ≥ 𝑁, and we
have

|𝑎𝑛 − 𝑎𝑚| ≤ |𝑎𝑛 − 𝑎| + |𝑎𝑚 − 𝑎| < 2𝜀

Theorem. Every Cauchy sequence converges.

Proof. First, we note that if 𝑎𝑛 is a Cauchy sequence then it is bounded. Let us take 𝜀 = 1, so𝑁 = 𝑁(1)
in the Cauchy property. Then

|𝑎𝑛 − 𝑎𝑚| < 1
for all𝑚, 𝑛 ≥ 𝑁(1). So by the triangle inequality,

|𝑎𝑚| ≤ |𝑎𝑚 − 𝑎𝑁 | + |𝑎𝑁 | < 1 + |𝑎𝑁 |
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So the sequence after this point is bounded by 1+|𝑎𝑁 |. The remaining terms in the sequence are only
finitely many, so we can compute the maximum of all of those terms along with 1 + |𝑎𝑁 | to produce
a bound 𝑘 for all 𝑛.
By the Bolzano–Weierstrass Theorem, this sequence 𝑎𝑛 has a convergent subsequence 𝑎𝑛𝑗 → 𝑎. We
want to prove that 𝑎𝑛 → 𝑎. Given 𝜀 > 0, there exists 𝑗0 such that ||𝑎𝑛𝑗 − 𝑎|| < 𝜀 for all 𝑗 ≥ 𝑗0. Also,
∃𝑁(𝜀) such that |𝑎𝑚 − 𝑎𝑛| < 𝜀 for all 𝑚, 𝑛 ≥ 𝑁(𝜀). Combining these, we can take a 𝑗 such that
𝑛𝑗 ≥ max{𝑁(𝜀), 𝑛𝑗0 }. Then, if 𝑛 ≥ 𝑁(𝜀), using the triangle inequality,

|𝑎𝑛 − 𝑎| ≤ ||𝑎𝑛 − 𝑎𝑛𝑗 || + ||𝑎𝑛𝑗 − 𝑎|| < 2𝜀

Therefore, on ℝ, a sequence is convergent if and only if it is a Cauchy sequence. This is sometimes
referred to as the general principle of convergence, however this is a relatively old-fashioned name.
This property is very useful, since we don’t need to know what the limit actually is.

2 Series
2.1 Definition
Let 𝑎𝑛 be a real or complex sequence. We say that∑

∞
𝑗=1 𝑎𝑗 converges to 𝑠 if the sequence of partial

sums 𝑠𝑁 converges to 𝑠 as 𝑁 → ∞, i.e.

𝑠𝑁 =
𝑁
∑
𝑗=1

𝑎𝑗 → 𝑠

If the sequence of partial sums does not converge, then we say that the series diverges. Note that any
problemon series can be turned into a problemon sequences, by considering their partial sums.

Lemma. (i) If∑∞
𝑗=1 𝑎𝑗 and∑

∞
𝑗=1 𝑏𝑗 converge, then so does∑

∞
𝑗=1(𝜆𝑎𝑗+𝜇𝑏𝑗), where 𝜆, 𝜇 ∈

ℂ.
(ii) Suppose ∃𝑁 such that 𝑎𝑗 = 𝑏𝑗 for all 𝑗 ≥ 𝑁. Then either ∑∞

𝑗=1 𝑎𝑗 and ∑
∞
𝑗=1 𝑏𝑗 both

converge, or they both diverge. In other words, the initial terms do not matter for con-
sidering convergence (but the sum will change).

Proof. (i) We have

𝑠𝑁 =
𝑁
∑
𝑗=1

(𝜆𝑎𝑗 + 𝜇𝑏𝑗)

=
𝑁
∑
𝑗=1

𝜆𝑎𝑗 +
𝑁
∑
𝑗=1

𝜇𝑏𝑗

= 𝜆𝑐𝑁 + 𝜇𝑑𝑁
∴ 𝑠𝑁 → 𝜆𝑐 + 𝜇𝑑
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(ii) For any 𝑛 ≥ 𝑁, we have

𝑠𝑁 =
𝑛
∑
𝑗=1

𝑎𝑗 =
𝑁−1
∑
𝑗=1

𝑎𝑗 +
𝑁
∑
𝑗=𝑛

𝑎𝑗

𝑑𝑁 =
𝑛
∑
𝑗=1

𝑏𝑗 =
𝑁−1
∑
𝑗=1

𝑏𝑗 +
𝑁
∑
𝑗=𝑛

𝑏𝑗

Taking the difference, we get

𝑠𝑁 − 𝑑𝑁 =
𝑁−1
∑
𝑗=1

𝑎𝑗 −
𝑁−1
∑
𝑗=1

𝑏𝑗

which is finite. So 𝑠𝑁 converges if and only if 𝑑𝑁 also converges.

2.2 Geometric series
Let 𝑎𝑛 = 𝑥𝑛−1, where 𝑛 ≥ 1. Then

𝑠𝑛 =
𝑛
∑
𝑗=1

𝑎𝑗 = 1 + 𝑥 + 𝑥2 +⋯+ 𝑥𝑛−1

Then

𝑠𝑛 = {
1−𝑥𝑛

1−𝑥
if 𝑥 ≠ 1

𝑛 if 𝑥 = 1
This can be shown by observing that

𝑥𝑠𝑛 = 𝑥 + 𝑥2 +⋯+ 𝑥𝑛 = 𝑠𝑛 − 1 + 𝑥𝑛 ⟹ 𝑠𝑛(1 − 𝑥) = 1 − 𝑥𝑛

If |𝑥| < 1, then 𝑥𝑛 → 0 as 𝑥 → ∞. So 𝑠𝑛 →
1

1−𝑥
. If 𝑥 > 1, then 𝑥𝑛 → ∞ and so 𝑠𝑛 → ∞. If 𝑥 < −1,

𝑠𝑛 oscillates. For completeness, if 𝑥 = −1, 𝑠𝑛 oscillates between 0 and 1.
Note that the statement 𝑠𝑛 → ∞ means that given 𝑎 ∈ ℝ, ∃𝑁 such that 𝑠𝑛 > 𝑎 for all 𝑛 ≥ 𝑁, and
a similar statement holds for negative infinity (swapping the inequality). If 𝑠𝑛 does not converge or
tend to ±∞, we say that 𝑠𝑛 oscillates.
Thus the geometric series converges if and only if |𝑥| < 1. Note that to prove that 𝑥𝑛 → 0 if |𝑥| < 1, we
can consider the case 0 < 𝑥 < 1 and write 1/𝑥 = 1+𝛿 for some positive 𝛿. Then 𝑥𝑛 = 1

(1+𝛿)𝑛
≤ 1

1+𝛿𝑛
from the binomial expansion, and this tends to zero as required.

Lemma. If∑∞
𝑗=1 𝑎𝑗 converges, then lim𝑗→∞ 𝑎𝑗 = 0.

Proof. Given 𝑠𝑛 = ∑𝑛
𝑗=1 𝑎𝑗 , we have 𝑎𝑛 = 𝑠𝑛 − 𝑠𝑛−1. If 𝑠𝑛 → 𝑎, then 𝑎𝑛 → 0 since 𝑠𝑛−1 also tends to

𝑎.
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Remark. The converse is not true. For example, the harmonic series diverges, but the terms approach
zero. Consider

𝑠2𝑛 = 𝑠𝑛 +
1

𝑛 + 1 +
1

𝑛 + 2 +⋯+ 1
2𝑛

> 𝑠𝑛 +
1
2𝑛 +

1
2𝑛 +⋯+ 1

2𝑛
= 𝑠𝑛 +

1
2

So as 𝑛 → ∞, if the sequence is convergent then the sequences 𝑠𝑛 and 𝑠2𝑛 tend to the same limit, but
they clearly do not.

3 Convergence tests
3.1 Comparison test
In this section, we will let 𝑎𝑛 ∈ ℝ, 𝑎𝑛 ≥ 0. In other words, all series contain only non-negative real
terms.

Theorem. Suppose 0 ≤ 𝑏𝑛 ≤ 𝑎𝑛 for all 𝑛. If∑
∞
𝑗=1 𝑎𝑗 converges, then∑

∞
𝑗=1 𝑏𝑗 converges.

Proof. Let 𝑠𝑁 be the𝑁th partial sum over the 𝑎𝑛, and let 𝑑𝑁 be the𝑁th partial sum over the 𝑏𝑛. Since
𝑏𝑛 ≤ 𝑎𝑛, 𝑑𝑁 ≤ 𝑠𝑁 . But 𝑠𝑁 → 𝑠, so 𝑑𝑁 ≤ 𝑠𝑁 ≤ 𝑠. So 𝑑𝑁 is an increasing sequence that is bounded
above by 𝑠, so it converges.

For example, let us analyse the behaviour of the sum of the sequence 1
𝑛2
. Note that

1
𝑛2 <

1
𝑛(𝑛 − 1) =

1
𝑛 − 1 −

1
𝑛

for 𝑛 ≥ 2. By the comparison test, it is sufficient to show that the series on the right hand side
converges, in order to show that the original series converges.

𝑁
∑
𝑗=2

𝑎𝑗 = 1 − 1
𝑁 → 1

as required. So the original series tends to some value less than or equal to 2.

3.2 Cauchy’s root test

Theorem. Suppose we have a sequence of non-negative terms 𝑎𝑛. Suppose that 𝑎1/𝑛𝑛 → 𝑎 as
𝑛 → ∞. Then if 𝑎 < 1, the series∑𝑎𝑛 converges. If 𝑎 > 1, the series∑𝑎𝑛 diverges.

Remark. Nothing can be said if 𝑎 = 1. There is an example later of this fact.
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Proof. If 𝑎 < 1, let us choose an 𝑟 such that 𝑎 < 𝑟 < 1. By the definition of the limit, ∃𝑁 such that
∀𝑛 ≥ 𝑁, 𝑎1/𝑛𝑛 < 𝑟. This implies that 𝑎𝑛 < 𝑟𝑛. The geometric series∑𝑟𝑛 converges. By comparison,
the series 𝑎𝑛 converges.
If 𝑎 > 1, for all 𝑛 ≥ 𝑁, 𝑎1/𝑛𝑛 > 1 which implies 𝑎𝑛 > 1, thus∑𝑎𝑛 diverges, since 𝑎𝑛 does not tend to
zero.

3.3 D’Alembert’s ratio test

Theorem. Suppose 𝑎𝑛 > 0, and 𝑎𝑛+1
𝑎𝑛

→ ℓ. If ℓ < 1, then the series∑𝑎𝑛 converges. If ℓ > 1,
then the series∑𝑎𝑛 diverges.

Remark. Like before, no conclusion can be drawn if ℓ = 1.

Proof. Suppose ℓ < 1. We can choose ℓ < 𝑟 < 1, ∃𝑁 such that ∀𝑛 ≥ 𝑁, 𝑎𝑛+1
𝑎𝑛

< 𝑟. Therefore
𝑎𝑛 < 𝑟𝑛−𝑁𝑎𝑁 . Hence, 𝑎𝑛 < 𝑘𝑟𝑛 where 𝑘 is independent of 𝑛. Applying the comparison test, the
series∑𝑎𝑛 must converge.
If ℓ > 1, we can choose ℓ > 𝑟 > 1. Then ∃𝑁 such that ∀𝑛 ≥ 𝑁, 𝑎𝑛+1

𝑎𝑛
> 𝑟. As before, 𝑎𝑛 > 𝑟𝑛−𝑁𝑎𝑁 .

But the 𝑟𝑛−𝑁 diverges, so the original series diverges.

Example. Consider∑∞
1

𝑛
2𝑛
. We have

𝑎𝑛+1
𝑎𝑛

= (𝑛 + 1)/2𝑛+1
𝑛/2𝑛 → 1

2

So we have convergence, by the ratio test. Now, consider∑∞
1

1
𝑛
and∑∞

1
1
𝑛2
. In both cases, the ratio

test gives limit 1. So the ratio test is inconclusive if the limit is 1. Since 𝑛1/𝑛 → 1, the root test is also
inconclusive when the limit is 1. To check this limit, we can write

𝑛1/𝑛 = 1 + 𝛿𝑛; 𝛿𝑛 > 0

𝑛 = (1 + 𝛿𝑛)𝑛 >
𝑛(𝑛 − 1)

2 𝛿2𝑛
using the binomial expansion.

⟹ 𝛿2𝑛 <
2

𝑛 − 1 ⟹ 𝛿𝑛 → 0

The root test is a good candidate for series that contain powers of 𝑛, for example
∞
∑
1
[ 𝑛 + 1
3𝑛 + 5]

𝑛

In this instance, for example, we have convergence.

3.4 Cauchy’s condensation test
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Theorem. Let 𝑎𝑛 be a decreasing sequence of positive terms. Then∑
∞
1 𝑎𝑛 converges if and

only if∑∞
1 2𝑛𝑎2𝑛 converges.

Proof. First, note that if 𝑎𝑛 is decreasing, then

𝑎2𝑘 ≤
(∗)

𝑎2𝑘−1+𝑖 ≤
(†)

𝑎2𝑘−1 ; 1 ≤ 𝑖 ≤ 2𝑘−1; 𝑘 ≥ 1

Now let us assume that∑𝑎𝑛 converges to 𝐴 ∈ ℝ. Then, by (∗),

2𝑛−1𝑎2𝑛 = 𝑎2𝑛 + 𝑎2𝑛 +⋯+ 𝑎2𝑛
≤ 𝑎2𝑛−1+1 + 𝑎2𝑛−1+2 +⋯+ 𝑎2𝑛

=
2𝑛

∑
𝑚=2𝑛−1+1

𝑎𝑚

Thus,
𝑁
∑
𝑛=1

2𝑛−1𝑎2𝑛 ≤
𝑁
∑
𝑛=1

2𝑛

∑
𝑚=2𝑛−1+1

𝑎𝑚 =
2𝑁

∑
𝑛=2

𝑎𝑚

Therefore,
𝑁
∑
𝑛=1

2𝑛𝑎2𝑛 ≤ 2
2𝑁

∑
𝑛=2

𝑎𝑚 ≤ 2(𝐴 − 𝑎1)

Thus ∑𝑁
𝑛=1 2𝑛𝑎2𝑛 converges, since it is increasing and bounded above. For the converse, we will

assume that∑2𝑛𝑎2𝑛 converges to 𝐵. Using (†),
2𝑛

∑
𝑚=2𝑛−1

𝑎𝑚 = 𝑎2𝑛−1 + 𝑎2𝑛−1+1 +⋯+ 𝑎2𝑛

≤ 𝑎2𝑛−1 + 𝑎2𝑛−1 +⋯+ 𝑎2𝑛−1
= 2𝑛−1𝑎2𝑛−1

So we have
2𝑁

∑
𝑚=2

𝑎𝑚 =
𝑁
∑
𝑛=1

2𝑛

∑
𝑚=2𝑛−1+1

𝑎𝑚 ≤
𝑁
∑
𝑛=1

2𝑛−1𝑎2𝑛−1 ≤
1
2𝐵

Therefore,∑𝑁
𝑚=1 𝑎𝑚 is a bounded, increasing sequence and hence converges.

Let us consider an example of this test. Consider the series definition of the Riemann zeta func-
tion

𝜁(𝑘) =
∞
∑
𝑛=1

1
𝑛𝑘

For what 𝑘 ∈ ℝ, 𝑘 > 0 does this series converge? This is equivalent to asking if the following series
converges.

∞
∑
𝑛=1

2𝑛 [ 12𝑛 ]
𝑘
=

∞
∑
𝑛=1

(21−𝑘)𝑛

Hence it converges if and only if 21−𝑘 < 1 ⟺ 𝑘 > 1.
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3.5 Alternating series
An alternating series is a series where the sign on each term switches between positive and negat-
ive.

Theorem (Alternating Series Test). If 𝑎𝑛 decreases and tends to zero as 𝑢 → ∞, then the
alternating series

∞
∑
1
(−1)𝑛+1𝑎𝑛

converges.

Proof. Let us consider the partial sum

𝑠𝑛 = 𝑎1 − 𝑎2 + 𝑎3 − 𝑎4 +⋯+ (−1)𝑛+1𝑎𝑛

In particular,
𝑠2𝑛 = (𝑎1 − 𝑎2) + (𝑎3 − 𝑎4) +⋯ + (𝑎2𝑛−1 − 𝑎2𝑛)

Since the sequence is decreasing, each parenthesised block is positive. Then 𝑠2𝑛 ≥ 𝑠2𝑛−2. We can
also write the partial sum as

𝑠2𝑛 = 𝑎1 − (𝑎2 − 𝑎3) − (𝑎4 − 𝑎5) −⋯ − (𝑎2𝑛−2 − 𝑎2𝑛−1) − 𝑎2𝑛

Each parenthesised block here is negative. So 𝑠2𝑛 ≤ 𝑎1. So 𝑠2𝑛 is increasing and bounded above, so
it must converge. Now, note that

𝑠2𝑛+1 = 𝑠2𝑛 + 𝑎2𝑛+1 → 𝑠2𝑛

since 𝑎2𝑛+1 → 0. So 𝑠2𝑛+1 also converges, in fact to the same limit. Hence 𝑠𝑛 converges to this same
limit.

4 Absolute convergence
4.1 Absolute convergence

Definition. Let 𝑎𝑛 ∈ ℂ. Then if ∑∞
𝑛=1 |𝑎𝑛| converges, then the series is called absolutely

convergent.

Remark. Since |𝑎𝑛| ≥ 0, we can use the previous tests to check for absolute convergence.

Theorem. Let 𝑎𝑛 ∈ ℂ. If this series is absolutely convergent, it is convergent.

Proof. Suppose first that 𝑎𝑛 is a sequence of real numbers. Then let

𝑣𝑛 = {𝑎𝑛 if 𝑎𝑛 ≥ 0
0 if 𝑎𝑛 < 0 ; 𝑤𝑛 = {0 if 𝑎𝑛 ≥ 0

−𝑎𝑛 if 𝑎𝑛 < 0
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Hence,
𝑣𝑛 =

|𝑎𝑛| + 𝑎𝑛
2 ; 𝑤𝑛 =

|𝑎𝑛| − 𝑎𝑛
2

Clearly, 𝑣𝑛, 𝑤𝑛 ≥ 0, and 𝑎𝑛 = 𝑣𝑛 −𝑤𝑛, and |𝑎𝑛| = 𝑣𝑛 +𝑤𝑛. If∑|𝑎𝑛| converges, then by comparison
∑𝑣𝑛 and∑𝑤𝑛 also converge, and hence∑𝑎𝑛 converges. Now, let us consider the case where 𝑎𝑛 is
complex. Thenwe canwrite 𝑎𝑛 = 𝑥𝑛+𝑖𝑦𝑛where 𝑥𝑛, 𝑦𝑛 are real sequences. Note that |𝑥𝑛|, |𝑦𝑛| ≤ |𝑎𝑛|.
So by comparison 𝑥𝑛 and 𝑦𝑛 converge, so 𝑎𝑛 converges.

Here are some examples.

(i) The alternating harmonic series∑ (−1)𝑛

𝑛
is convergent, but not absolutely convergent.

(ii) ∑ 𝑧𝑛

2𝑛
is absolutely convergent when |𝑧| < |2|, because it reduces to a real geometric series. If

|𝑧| ≥ 2, then |𝑎𝑛| ≥ 1, so we do not have absolute convergence.

4.2 Conditional convergence and rearrangement
If the series is convergent but not absolutely convergent, it is called conditionally convergent. The
sum to which a series converges depends on the order in which the terms are added.

Definition. Let 𝜎 be a bijection of the positive integers to itself, then

𝑎′𝑛 = 𝑎𝜎(𝑛)

is a rearrangement of 𝑎𝑛.

Theorem. If ∑∞
1 𝑎𝑛 is absolutely convergent, then every rearrangement of this series con-

verges to the same value.

Proof. First, let us consider the real case. Let∑𝑎′𝑛 be a rearrangement of∑𝑎𝑛. Let 𝑠𝑛 = ∑𝑛
1 𝑎𝑛, and

𝑡𝑛 = ∑𝑛
1 𝑎′𝑛. Let 𝑠𝑛 converge to 𝑠. Suppose first that 𝑎𝑛 ≥ 0. Then given any 𝑛 ∈ ℕ, we can find some

𝑞 ∈ ℕ such that 𝑠𝑞 contains every term of 𝑡𝑛. Since the 𝑎𝑛 ≥ 0,

𝑡𝑛 ≤ 𝑠𝑞 ≤ 𝑠

As 𝑛 → ∞, the 𝑡𝑛 is an increasing sequence bounded above, so it must tend to a limit 𝑡, where 𝑡 ≤ 𝑠.
Note, however, that this argument is symmetric; we can equally derive that 𝑠 ≤ 𝑡. Therefore 𝑠 = 𝑡.
Now, let us drop the condition that 𝑎𝑛 ≥ 0. We can now consider 𝑣𝑛, 𝑤𝑛 from above:

𝑣𝑛 =
|𝑎𝑛| + 𝑎𝑛

2 ; 𝑤𝑛 =
|𝑎𝑛| − 𝑎𝑛

2
Since∑|𝑎𝑛| converges, both∑𝑣𝑛,∑𝑤𝑛 converge. Since all 𝑣𝑛, 𝑤𝑛 ≥ 0, we can deduce that∑𝑣𝑛 =
∑𝑣′𝑛 and∑𝑤′

𝑛 = ∑𝑤𝑛. The claim follows since 𝑎𝑛 = 𝑣𝑛 − 𝑤𝑛.

For the case 𝑎𝑛 ∈ ℂ, we can write 𝑎𝑛 = 𝑥𝑛 + 𝑖𝑦𝑛, noting that |𝑥𝑛|, |𝑦𝑛| ≥ |𝑎𝑛|. By comparison, the
series ∑𝑥𝑛,∑ 𝑦𝑛 are absolutely convergent, and by the previous case, ∑𝑥𝑛 = ∑𝑥′𝑛 and ∑𝑦′𝑛 =
∑𝑦′𝑛. Since 𝑎′𝑛 = 𝑥′𝑛 + 𝑦′𝑛,∑𝑎𝑛 = ∑𝑎′𝑛 as required.

13



5 Continuity
5.1 Definitions
Let 𝐸 ⊆ ℂ be a non-empty set, and 𝑓∶ 𝐸 → ℂ be any function, and let 𝑎 ∈ 𝐸. Certainly, this includes
the case in which 𝑓 is a real-valued function and 𝐸 ⊆ ℝ.

Definition. 𝑓 is continuous at 𝑎 if for every sequence 𝑧𝑛 ∈ 𝐸 that converges to 𝑎, we have
𝑓(𝑧𝑛) → 𝑓(𝑎).

We can use an alternative definition:

Definition (𝜀-𝛿 definition). 𝑓 is continuous at 𝑎 if given 𝜀 > 0, ∃𝛿 > 0 such that for every
𝑧 ∈ 𝐸, if |𝑧 − 𝑎| < 𝛿, then |𝑓(𝑧) − 𝑓(𝑎)| < 𝜀.

We will immediately prove that both definitions are equivalent. First, let us prove that the 𝜀-𝛿 defin-
ition implies the first definition.

Proof. We know that given 𝜀 > 0, ∃𝛿 > 0 such that for all 𝑧 ∈ 𝐸, |𝑧 − 𝑎| < 𝛿 implies |𝑓(𝑧) − 𝑓(𝑎)| < 𝜀.
Let 𝑧𝑛 → 𝑎, then by the definition of the limit of the sequence then there exists 𝑛0 such that for all
𝑛 ≥ 𝑛0 we have |𝑧𝑛 − 𝑎| < 𝛿. But this implies that |𝑓(𝑧𝑛) − 𝑓(𝑎)| < 𝜀, i.e. 𝑓(𝑧𝑛) → 𝑓(𝑎).

We now prove the converse, that the first definition implies the second.

Proof. We know that for every sequence 𝑧𝑛 ∈ 𝐸 that converges to 𝑎, 𝑓(𝑧𝑛) → 𝑓(𝑎). Suppose 𝑓 is not
continuous at 𝑎, according to the 𝜀-𝛿 definition. Then there exists some 𝜀 such that for all 𝛿 > 0, there
exists 𝑧 ∈ 𝐸 such that |𝑧 − 𝑎| < 𝛿 but |𝑓(𝑧) − 𝑓(𝑎)| ≥ 𝜀. So, let us construct a sequence of 𝛿 values to
substitute into this definition. Let 𝛿 = 1/𝑛. Then the 𝑧𝑛 given by this 𝛿 is such that |𝑧𝑛 − 𝑎| < 1/𝑛 and
|𝑓(𝑧𝑛) − 𝑓(𝑎)| ≥ 𝜀. Clearly, 𝑧𝑛 → 𝑎, but 𝑓(𝑧𝑛) does not tend to 𝑓(𝑎) because the difference between
the two is always greater than 𝜀. This is a contradiction, since we assumed that 𝑓 is continuous by
the first definition. So 𝑓 is continuous by the 𝜀-𝛿 definition.

5.2 Making continuous functions
Wecan create newcontinuous functions fromold ones bymanipulating them in anumber ofways.

Proposition. Let 𝑔, 𝑓∶ 𝐸 → ℂ be continuous functions at a point 𝑎 ∈ 𝐸. Then all of the
functions

• 𝑓(𝑧) + 𝑔(𝑧)
• 𝑓(𝑧)𝑔(𝑧)
• 𝜆𝑓(𝑧) for some constant 𝜆

are all continuous. In addition, if 𝑓(𝑧) ≠ 0 everywhere in 𝐸, then 1
𝑓
is a continuous function

at 𝑎.

Proof. Using the first definition, this is obvious using the fact that limits of sequences behave analog-
ously.
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Trivially, the function 𝑓(𝑧) = 𝑧 is continuous. From this, we can derive that every polynomial is
continuous at every point in ℂ. Note that we say that 𝑓 is continuous on the entire set 𝐸 if it is
continuous at every point 𝑎 ∈ 𝐸.

5.3 Composition of continuous functions

Theorem. Let 𝑓∶ 𝐴 → ℂ and 𝑔∶ 𝐵 → ℂ where 𝐴, 𝐵 ⊆ ℂ be two functions that can be
composed, i.e. 𝑓(𝐴) ⊆ 𝐵. If 𝑓 is continuous at 𝑎 ∈ 𝐴 and 𝑔 is continuous at 𝑓(𝑎) ∈ 𝐵, then
𝑔 ∘ 𝑓∶ 𝐴 → ℂ is continuous at 𝑎.

Proof. Take any sequence 𝑧𝑛 → 𝑎. By assumption, 𝑓(𝑧𝑛) → 𝑓(𝑎). Now, let us define a new sequence
𝑤𝑛 = 𝑓(𝑧𝑛). Then 𝑤𝑛 ∈ 𝐵 and 𝑤𝑛 → 𝑓(𝑎). Thus, 𝑔(𝑓(𝑧𝑛)) = 𝑔(𝑤𝑛) → 𝑔(𝑓(𝑎)) by continuity, as
required.

Consider the function 𝑓∶ ℝ → ℝ defined by

𝑓(𝑥) = {sin (
1
𝑥
) 𝑥 ≠ 0

0 𝑥 = 0
This is assuming the knowledge of sin(𝑥) being a continuous function ℝ → ℝ, which we will prove
later. So 𝑓(𝑥) is certainly continuous at every point on ℝ excluding 0, since it is the composition of
two continuous functions. We can prove it is discontinuous at 𝑥 = 0 by providing a sequence, for
example

1
𝑥𝑛

= (2𝑛 + 1
2)𝜋

Then 𝑥𝑛 → 0, and 𝑓(𝑥𝑛) = 1. But 𝑓(0) ≠ 1, so it is discontinuous. Let us modify the example as
follows.

𝑓(𝑥) = {𝑥 sin (
1
𝑥
) 𝑥 ≠ 0

0 𝑥 = 0
We can prove that this sequence is continuous at 0. For an arbitrary sequence 𝑥𝑛 → 0, then |𝑓(𝑥𝑛)| ≤
|𝑥𝑛| because |sin𝑥| ≤ 1. So 𝑓(𝑥𝑛) is bounded by 𝑥𝑛, which tends to zero, so 𝑓(𝑥𝑛) tends to zero as
required. Now for a final example, let

𝑓(𝑥) = {1 𝑥 ∈ ℚ
0 𝑥 ∉ ℚ

This is discontinuous at every point. If 𝑥 ∈ ℚ, take a sequence 𝑥𝑛 → 𝑥 with all 𝑥𝑛 irrational, then
𝑓(𝑥𝑛) = 0 but 𝑓(𝑥) = 1. Similarly, if 𝑥 ∉ ℚ, take a sequence 𝑥𝑛 → 𝑥 with all 𝑥𝑛 rational, then
𝑓(𝑥𝑛) = 1 but 𝑓(𝑥) = 0.

6 Limit of a function
6.1 Definition
Let 𝑓∶ 𝐸 ⊆ ℂ → ℂ. We would like to define what is meant by lim𝑧→𝑎 𝑓(𝑧), even when 𝑎 ∉ 𝐸.
Further, if we have a set with an isolated point, for example 𝐸 = {0} ∪ [1, 2], it does not make sense
to talk about limits tending to 0 since there are no points in 𝐸 close to 0.
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Definition. Let 𝐸 ⊆ ℂ, 𝑎 ∈ ℂ. 𝑎 is a limit point of 𝐸 if for any 𝛿 > 0, there exists 𝑧 ∈ 𝐸 such
that 0 < |𝑧 − 𝑎| < 𝛿.

First, note that 𝑎 is a limit point if and only if there exists a sequence 𝑧𝑛 ∈ 𝐸 such that 𝑧𝑛 → 𝑎, but
notably 𝑧𝑛 ≠ 𝑎 for all 𝑛.

Definition. Let 𝑓∶ 𝐸 ⊆ ℂ → ℂ, and let 𝑎 ∈ ℂ be a limit point of 𝐸. We say that 𝑓 → ℓ
as 𝑧 → 𝑎, if given 𝜀 > 0 there exists 𝛿 > 0 such that whenever 0 < |𝑧 − 𝑎| < 𝛿 and 𝑧 ∈ 𝐸,
|𝑓(𝑧) − ℓ| < 𝜀. Equivalently, 𝑓(𝑧𝑛) → ℓ for every sequence 𝑧𝑛 ∈ 𝐸, such that 𝑧𝑛 → 𝑎 but
𝑧𝑛 ≠ 𝑎.

Therefore if 𝑎 ∈ 𝐸 is a limit point, then lim𝑧→𝑎 𝑓(𝑧) = 𝑓(𝑎) if and only if 𝑓 is continuous at 𝑎. If
𝑎 ∈ 𝐸 is isolated (not a limit point) then 𝑓 at 𝑎 is trivially continuous, since there are no points near
𝑎 but 𝑎 itself.

6.2 Properties
The limit of a function has very similar properties when compared to the limit of a sequence.

(i) It is unique. 𝑓(𝑧) → 𝐴, 𝑓(𝑧) → 𝐵 implies 𝐴 = 𝐵.
(ii) 𝑓(𝑧) → 𝐴, 𝑔(𝑧) → 𝐵 implies

(a) 𝑓(𝑧) + 𝑔(𝑧) → 𝐴 + 𝐵
(b) 𝑓(𝑧) ⋅ 𝑔(𝑧) → 𝐴𝐵

(c) If 𝐵 ≠ 0, 𝑓(𝑧)
𝑔(𝑧)

→ 𝐴
𝐵

6.3 Intermediate value theorem

Theorem. Let 𝑓∶ [𝑎, 𝑏] → ℝ be a continuous function where 𝑓(𝑎) ≠ 𝑓(𝑏). Then 𝑓 takes all
values in the interval [𝑓(𝑎), 𝑓(𝑏)].

Proof. Without loss of generality, let us assume 𝑓(𝑎) < 𝑓(𝑏). Let us take an 𝜂 such that 𝑓(𝑎) < 𝜂 <
𝑓(𝑏). We want to prove that there exists some value 𝑐 ∈ [𝑎, 𝑏]with 𝑓(𝑐) = 𝜂. Let 𝑠 be the set of points
defined by

𝑠 = {𝑥 ∈ [𝑎, 𝑏]∶ 𝑓(𝑥) < 𝜂}
𝑎 ∈ 𝑠 therefore the set 𝑠 is non-empty. The set is also clearly bounded above by 𝑏. So there is a
supremum of this set, say sup 𝑠 = 𝑐 where 𝑐 ≤ 𝑏. This point 𝑐 can be visualised as the last point at
which 𝑦 = 𝑓(𝑥) crosses the line 𝑦 = 𝑐. We intend to show that the function at this rightmost point is
𝜂.

By the definition of the supremum, given 𝑛 there exists 𝑥𝑛 ∈ 𝑠 such that 𝑐 − 1
𝑛
< 𝑥𝑛 ≤ 𝑐. So the

sequence 𝑥𝑛 tends to 𝑐. We know that 𝑓(𝑥𝑛) < 𝜂 for all 𝑥𝑛 by definition of the set 𝑠. By the continuity
of 𝑓, 𝑓(𝑥𝑛) → 𝑓(𝑐). Thus,

𝑓(𝑐) ≤ 𝜂 (∗)
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Now, let us consider the fact that 𝑐 ≠ 𝑏. If 𝑐 = 𝑏, then𝑓(𝑏) ≤ 𝜂which is a contradiction since 𝜂 < 𝑓(𝑏).
So for a large 𝑛, we can ensure that 𝑐 + 1

𝑛
∈ [𝑎, 𝑏]. So by continuity of the function, 𝑓(𝑐 + 1

𝑛
) → 𝑓(𝑐).

But since 𝑐 + 1
𝑛
> 𝑐, then necessarily 𝑓(𝑐 + 1

𝑛
) ≥ 𝜂 because 𝑐 is the supremum of 𝑠. Thus

𝑓(𝑐) ≥ 𝜂

Combining this with (∗) we get 𝑓(𝑐) = 𝜂.

This theorem is very useful for finding zeroes and fixed points. For example, we can prove the exist-
ence of the 𝑁th root of a positive real number 𝑦. Let

𝑓(𝑥) = 𝑥𝑁

Then 𝑓 is certainly continuous on the interval [0, 1 + 𝑦], since

0 = 𝑓(0) < 𝑦 < (1 + 𝑦)𝑁 = 𝑓(1 + 𝑦)

By the intermediate value theorem, there exists a point 𝑐 ∈ (0, 1 + 𝑦) such that 𝑓(𝑐) = 𝑐𝑁 = 𝑦. So 𝑐
is a positive 𝑁th root of 𝑦. We can also prove the uniqueness of such a point. Suppose 𝑑𝑁 = 𝑦 with
𝑑 > 0 and 𝑑 ≠ 𝑐. Without loss of generality, suppose 𝑑 < 𝑐. Then 𝑑𝑁 < 𝑐𝑁 so 𝑑𝑁 ≠ 𝑦, which is a
contradiction.

6.4 Bounds of a continuous function

Theorem. Let 𝑓∶ [𝑎, 𝑏] → ℝ be continuous. Then the function is bounded, i.e. there exists
𝑘 ∈ ℝ such that |𝑓(𝑥)| ≤ 𝑘 for every point 𝑥 ∈ [𝑎, 𝑏].

Proof. Suppose that such a function 𝑓 is not bounded. Then in particular, given any integer 𝑛 ≥ 1,
there exists 𝑥𝑛 ∈ [𝑎, 𝑏] such that |𝑓(𝑥𝑛)| > 𝑛. By the Bolzano–Weierstrass theorem, the sequence 𝑥𝑛,
which is bounded by 𝑎 ≤ 𝑥𝑛 ≤ 𝑏, has a convergent subsequence 𝑥𝑛𝑗 → 𝑥, such that 𝑥 ∈ [𝑎, 𝑏]. Then
by continuity of 𝑓, 𝑓(𝑥𝑛𝑗 ) → 𝑓(𝑥). But ||𝑓(𝑥𝑛𝑗 )|| > 𝑛𝑗 →∞. This is a contradiction.

We can actually improve this statement.

Theorem. Suppose 𝑓∶ [𝑎, 𝑏] → ℝ is a continuous function. Then there exist 𝑥1, 𝑥2 ∈ [𝑎, 𝑏]
such that

𝑓(𝑥1) ≤ 𝑓(𝑥) ≤ 𝑓(𝑥2)
for all 𝑥 ∈ [𝑎, 𝑏]. In other words, a continuous function on a closed bounded interval is
bounded and attains its bounds.

Proof. Let𝐴 = {𝑓(𝑥)∶ 𝑥 ∈ [𝑎, 𝑏]} be the image of [𝑎, 𝑏] under 𝑓. By the above theorem,𝐴 is bounded.
It is also non-empty, hence it has a supremum𝑀 = sup𝐴 (and analogously an infimum inf𝐴, whose
proof is almost identical). Then by the definition of the supremum, given an integer 𝑛 ≥ 1 there
exists 𝑥𝑛 ∈ [𝑎, 𝑏] such that𝑀 − 1

𝑛
< 𝑓(𝑥𝑛) ≤ 𝑀. By the Bolzano–Weierstrass theorem, there exists

a convergent subsequence 𝑥𝑛𝑗 → 𝑥 ∈ [𝑎, 𝑏]. Since 𝑓(𝑥𝑛𝑗 ) → 𝑀, then by continuity, 𝑓(𝑥) = 𝑀.

Here is an alternative proof of the same theorem.
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Proof. As before, let𝐴 be the image of𝑓, and𝑀 be the supremumof𝐴. Suppose there is no𝑥2 ∈ [𝑎, 𝑏]
such that 𝑓(𝑥2) = 𝑀. Then let 𝑔(𝑥) = 1

𝑀−𝑓(𝑥)
for 𝑥 ∈ [𝑎, 𝑏]. Since there exists no 𝑥 such that

𝑀 = 𝑓(𝑥), 𝑔(𝑥) is continuous since we are never dividing by zero. So 𝑔 is bounded. So by the previous
theorem, there is some 𝑘 > 0 such that 𝑔(𝑥) ≤ 𝑘 for all 𝑥 ∈ [𝑎, 𝑏]. This means that 𝑓(𝑥) ≤ 𝑀 − 1

𝑘
on

[𝑎, 𝑏] for this 𝑘, but this cannot happen since𝑀 is the supremum.

Note that these theorems are certainly false if the interval is not closed: consider the counterexample
(0, 1] and the function 𝑥 ↦ 𝑥−1.

6.5 Inverse functions

Definition. 𝑓 is increasing for 𝑥 ∈ [𝑎, 𝑏] if 𝑓(𝑥1) ≤ 𝑓(𝑥2) for all 𝑥1 ≤ 𝑥2 ∈ [𝑎, 𝑏]. If
𝑓(𝑥1) < 𝑓(𝑥2) then the function is strictly increasing. A function may be called decreasing or
strictly decreasing analogously.

Definition. A function 𝑓 is called monotone if it is either increasing or decreasing.

Theorem. Let 𝑓∶ [𝑎, 𝑏] → ℝ be continuous and strictly increasing for 𝑥 ∈ [𝑎, 𝑏]. Let 𝑐 =
𝑓(𝑎), 𝑑 = 𝑓(𝑏). Then 𝑓∶ [𝑎, 𝑏] → [𝑐, 𝑑] is bijective, and the inverse 𝑔 ≔ 𝑓−1 ∶ [𝑐, 𝑑] → [𝑎, 𝑏]
is continuous and strictly increasing.

A similar theorem holds for strictly decreasing functions.

Proof. Let 𝑐 < 𝑘 < 𝑑. From the intermediate value theorem, there exists ℎ such that 𝑓(ℎ) = 𝑘. This
ℎmust be unique since the function is strictly increasing. Then we can define 𝑔(𝑘) = ℎ, giving us an
inverse 𝑔∶ [𝑐, 𝑑] → [𝑎, 𝑏] for 𝑓.
First, note that 𝑔 is strictly increasing. Indeed, for 𝑦1 < 𝑦2 then 𝑦1 = 𝑓(𝑥1), 𝑦2 = 𝑓(𝑥2). This means
that if 𝑥2 ≥ 𝑥1, then since 𝑓 is increasing 𝑦2 ≤ 𝑦1 which is a contradiction.
Now, note that 𝑔 is continuous. Indeed, given 𝜀 > 0, we can let 𝑘1 = 𝑓(ℎ − 𝜀) and 𝑘2 = 𝑓(ℎ + 𝜀). If
𝑓 is strictly increasing, then 𝑘1 < 𝑘 < 𝑘2. Then ℎ − 𝜀 < 𝑔(𝑦) < ℎ + 𝜀. So let 𝛿 = min(𝑘2 − 𝑘, 𝑘 − 𝑘1)
where 𝑘 ∈ (𝑐, 𝑑), establishing continuity as claimed.

7 Differentiability
7.1 Definitions
Let 𝑓∶ 𝐸 ⊆ ℂ → ℂ. Mostly we will take 𝐸 to be an interval in the real numbers, or a disc in the
complex plane.

Definition. Let 𝑥 ∈ 𝐸 be a point such that there exists a sequence 𝑥𝑛 ∈ 𝐸 with 𝑥𝑛 ≠ 𝑥, but
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𝑥𝑛 → 𝑥, i.e. 𝑥 is a limit point. 𝑓 is said to be differentiable at 𝑥 with derivative 𝑓′(𝑥) if

lim
𝑦→𝑥

𝑓(𝑦) − 𝑓(𝑥)
𝑦 − 𝑥 = 𝑓′(𝑥)

If 𝑓 is differentiable at each point in 𝐸, we say that 𝑓 is differentiable on 𝐸.
Remark. One interpretation of the definition is to write it in the form

𝜀(ℎ) ≔ 𝑓(𝑥 + ℎ) − 𝑓(𝑥) − ℎ𝑓′(𝑥); lim
ℎ→0

𝜀(ℎ)
ℎ = 0

so 𝜀 is 𝑜(ℎ). Hence,
𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ𝑓′(𝑥) + 𝜀(ℎ)

We could have made an alternative definition for differentiability. 𝑓 is differentiable at 𝑥 if there
exists 𝐴 and 𝜀 such that

𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ𝐴 + 𝜀(ℎ) where lim
ℎ→0

𝜀(ℎ)
ℎ = 0

If such an 𝐴 exists, then it is unique, since 𝐴 is the limit

𝐴 = lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ

We could have alternatively written the definition as

𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ𝑓′(𝑥) + ℎ𝜀𝑓(ℎ) where lim
ℎ→0

𝜀𝑓(ℎ) = 0

or perhaps
𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)𝑓′(𝑎) + (𝑥 − 𝑎)𝜀𝑓(𝑥) where lim

𝑥→𝑎
𝜀𝑓(𝑥) = 0

Note further that if 𝑓 is differentiable at 𝑥, 𝑓 is certainly continuous at 𝑥. This follows from the fact
that 𝜀(ℎ) → 0, and hence 𝑓(𝑥 + ℎ) → 𝑓(𝑥) as ℎ → 0.
As an example, let us consider 𝑓(𝑥) = |𝑥| for 𝑓∶ ℝ → ℝ. Is the function at the point 𝑥 = 0 dif-
ferentiable? If 𝑥 > 0, we have 𝑓′(𝑥) = 1, but if 𝑥 < 0, we have 𝑓′(𝑥) = −1. These results can be
checked directly using the definitions above. But we have produced two sequences for ℎ → 0 which
give different values, so the derivative is not defined here.

7.2 Differentiation of sums and products

Proposition. (i) If 𝑓(𝑥) = 𝑐 for all 𝑥 ∈ 𝐸, then 𝑓 is differentiable with 𝑓′(𝑥) = 0.
(ii) If 𝑓 and 𝑔 are differentiable at 𝑥, then so is 𝑓 + 𝑔, where (𝑓 + 𝑔)′(𝑥) = 𝑓′(𝑥) + 𝑔′(𝑥).
(iii) If 𝑓 and 𝑔 are differentiable at 𝑥, then so is 𝑓𝑔, where (𝑓𝑔)′(𝑥) = 𝑓′(𝑥)𝑔(𝑥) + 𝑔′(𝑥)𝑓(𝑥).
(iv) If 𝑓 is differentiable at 𝑥 and 𝑓(𝑥) ≠ 0, then so is 1

𝑓
, where ( 1

𝑓
)′(𝑥) = −𝑓′(𝑥)

(𝑓(𝑥))2
.

Proof. (i) limℎ→0
𝑐−𝑐
ℎ

= 0 as required.

19



(ii) Since all relevant limits are well-defined,

lim
ℎ→0

𝑓(𝑥 + ℎ) + 𝑔(𝑥 + ℎ) − 𝑓(𝑥) − 𝑔(𝑥)
ℎ = lim

ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ +lim

ℎ→0

𝑔(𝑥 + ℎ) − 𝑔(𝑥)
ℎ = 𝑓′(𝑥)+𝑔′(𝑥)

(iii) Let 𝜙(𝑥) = 𝑓(𝑥)𝑔(𝑥). Then, since 𝑓 is continuous at 𝑥,

lim
ℎ→0

𝜙(𝑥 + ℎ) − 𝜙(𝑥)
ℎ = lim

ℎ→0

𝑓(𝑥 + ℎ)𝑔(𝑥 + ℎ) − 𝑓(𝑥)𝑔(𝑥)
ℎ

= lim
ℎ→0

𝑓(𝑥 + ℎ)𝑔(𝑥 + ℎ) − 𝑔(𝑥)
ℎ + 𝑔(𝑥)𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ

= lim
ℎ→0

𝑓(𝑥)𝑔(𝑥 + ℎ) − 𝑔(𝑥)
ℎ + 𝑔(𝑥)𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
= 𝑓(𝑥)𝑔′(𝑥) + 𝑔(𝑥)𝑓′(𝑥)

(iv) Let 𝜙(𝑥) = 1
𝑓(𝑥)

. Then,

lim
ℎ→0

𝜙(𝑥 + ℎ) − 𝜙(𝑥)
ℎ = lim

ℎ→0

1
𝑓(𝑥+ℎ)

− 1
𝑓(𝑥)

ℎ

= lim
ℎ→0

𝑓(𝑥) − 𝑓(𝑥 + ℎ)
ℎ𝑓(𝑥)𝑓(𝑥 + ℎ)

= −𝑓′(𝑥)
𝑓(𝑥)𝑓(𝑥)

Remark. From (iii) and (iv), we can immediately find the quotient rule,

(𝑓(𝑥)𝑔(𝑥) )
′
= 𝑔(𝑥)𝑓′(𝑥) − 𝑓(𝑥)𝑔′(𝑥)

(𝑔(𝑥))2

7.3 Differentiating polynomial terms
As an example of the differentiability properties we saw last lecture, we can find the derivative of
𝑓(𝑥) = 𝑥𝑛 for 𝑛 ∈ ℤ, 𝑛 > 0. If 𝑛 = 1, clearly 𝑓′(𝑥) = 1. We can show inductively that 𝑓′(𝑥) = 𝑛𝑥𝑛−1.
Indeed,

(𝑥𝑛)′ = 𝑥 ⋅ (𝑥𝑛−1)′ + (𝑥)′ ⋅ 𝑥𝑛−1
= (𝑛 − 1)𝑥𝑛−1 + 𝑥𝑛−1
= 𝑛𝑥𝑛−1

We can now take 𝑓(𝑥) = 𝑥−𝑛. Using the reciprocal law,

𝑓′(𝑥) = −(𝑥𝑛)′
(𝑥𝑛)2

= −𝑛𝑥𝑛−1
𝑥2𝑛

= −𝑛𝑥−𝑛−1
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7.4 Chain rule

Theorem. Let 𝑓∶ 𝑈 → ℂ be such that 𝑓(𝑥) ∈ 𝑉 for all 𝑥 ∈ 𝑈 . If 𝑓 is differentiable at 𝑎 ∈ 𝑈 ,
and 𝑔∶ 𝑉 → ℂ is differentiable at 𝑓(𝑎) ∈ 𝑉 , then 𝑔 ∘ 𝑓 is differentiable at 𝑎 with

𝑔𝑓′(𝑎) = 𝑓′(𝑎)𝑔′(𝑓(𝑎))

Proof. We know that we can write

𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)𝑓′(𝑎) + 𝜀𝑓(𝑥)(𝑥 − 𝑎)

where lim𝑥→𝑎 𝜀𝑓(𝑥) = 0. Further,

𝑔(𝑦) = 𝑔(𝑏) + (𝑦 − 𝑏)𝑔′(𝑏) + 𝜀𝑔(𝑦)(𝑦 − 𝑏)

where lim𝑦→𝑏 𝜀𝑔(𝑦) = 0, and 𝑏 = 𝑓(𝑎). We will set 𝜀𝑓(𝑎) = 0 and 𝜀𝑔(𝑏) = 0, so they are continuous at
𝑥 = 𝑎 and 𝑦 = 𝑏, so that everything is well-defined when we begin to compose the functions. Now,
𝑦 = 𝑓(𝑥), so

𝑔(𝑓(𝑥)) = 𝑔(𝑏) + (𝑓(𝑥) − 𝑏)𝑔′(𝑏) + 𝜀𝑔(𝑓(𝑥))(𝑓(𝑥) − 𝑏)
= 𝑔(𝑓(𝑎)) + [(𝑥 − 𝑎)𝑓′(𝑎) + 𝜀𝑓(𝑥)(𝑥 − 𝑎)] [𝑔′(𝑏) + 𝜀𝑔(𝑓(𝑥))]
= 𝑔(𝑓(𝑎)) + (𝑥 − 𝑎)𝑓′(𝑎)𝑔′(𝑏) + (𝑥 − 𝑎) [𝜀𝑓(𝑥)𝑔′(𝑏) + 𝜀𝑔(𝑓(𝑥)) (𝑓′(𝑎) + 𝜀𝑓(𝑥))]⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

𝜎(𝑥)

Now, we just need to show that lim𝑥→𝑎 𝜎(𝑥) = 0 in order to prove the theorem. Clearly

𝜎(𝑥) = 𝜀𝑓(𝑥)⏟
→0

𝑔′(𝑏) + 𝜀𝑔(𝑓(𝑥))⏟⎵⏟⎵⏟
→0

(𝑓′(𝑎) + 𝜀𝑓(𝑥))

Hence 𝜎(𝑥) → 0 as required.

7.5 Rolle’s theorem

Theorem. Let 𝑓∶ [𝑎, 𝑏] → ℝ be a continuous function on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏).
If 𝑓(𝑎) = 𝑓(𝑏), then there exists 𝑐 ∈ (𝑎, 𝑏) such that 𝑓′(𝑐) = 0.

Proof. Let 𝑀 be the maximum point and 𝑚 be the minimum point of the function. Recall that in
Lecture 8 we proved that any function achieves its bounds. Let 𝑘 = 𝑓(𝑎). If𝑀 = 𝑚 = 𝑘, then 𝑓must
be a constant, and clearly 𝑓′(𝑐) = 0 for every value 𝑐 ∈ (𝑎, 𝑏). Otherwise, either 𝑀 > 𝑘 or 𝑚 < 𝑘.
Suppose𝑀 > 𝑘 (the proof is very similar if𝑚 < 𝑘). Then there exists some value 𝑐 ∈ (𝑎, 𝑏) such that
𝑓(𝑐) = 𝑀. We would like to show that 𝑓′(𝑐) = 0, so let us suppose that 𝑓′(𝑐) ≠ 0. If 𝑓′(𝑐) > 0, then
there are values 𝑑 > 𝑐 where 𝑓(𝑑) > 𝑓(𝑐). Indeed,

𝑓(ℎ + 𝑐) − 𝑓(𝑐) = ℎ [𝑓′(𝑐) + 𝜀(ℎ)]

For a small, positive ℎ, this value is positive. This contradicts the fact that𝑀 is the maximum. Simil-
arly, if 𝑓′(𝑐) < 0 there are values 𝑑 < 𝑐 with 𝑓(𝑑) > 𝑓(𝑐). Hence 𝑓′(𝑐) = 0.
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7.6 Mean value theorem
We can make a small change to Rolle’s theorem and obtain the mean value theorem.

Theorem. Let 𝑓∶ [𝑎, 𝑏] → ℝ be a continuous function on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏).
Then there exists 𝑐 ∈ (𝑎, 𝑏) such that

𝑓(𝑏) − 𝑓(𝑎) = 𝑓′(𝑐)(𝑏 − 𝑎)

Proof. Let 𝜙 be a function defined by 𝜙(𝑥) = 𝑓(𝑥) − 𝑘𝑥, choosing a 𝑘 such that 𝜙(𝑎) = 𝜙(𝑏). We can
find that

𝑓(𝑏) − 𝑏𝑘 = 𝑓(𝑎) − 𝑎𝑘 ⟹ 𝑘 = 𝑓(𝑏) − 𝑓(𝑎)
𝑏 − 𝑎

By Rolle’s theorem, there exists 𝑐 ∈ (𝑎, 𝑏) such that 𝜙′(𝑐) = 0. Now, note that 𝑓′(𝑥) = 𝜙′(𝑥) + 𝑘,
hence there exists 𝑐 such that 𝑓′(𝑐) = 𝑘.

Remark. We will often rewrite the mean value theorem as follows.

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ𝑓′(𝑎 + 𝜃ℎ)

where 𝜃 ∈ (0, 1). Note, however, that 𝜃 is a function of ℎ, so if we begin to shrink ℎ then 𝜃 may
change.

7.7 Properties of a function from its derivative
Wecan deduce certain facts about a function by observing the properties its derivative exhibits. These
results are mostly trivial corollaries to the mean value theorem, proven in the last lecture.

Corollary. Let 𝑓∶ [𝑎, 𝑏] → ℝ be continuous, and differentiable on (𝑎, 𝑏). Then we have
(i) If 𝑓′(𝑥) > 0 for all 𝑥 ∈ (𝑎, 𝑏), then 𝑓 is strictly increasing on [𝑎, 𝑏];
(ii) If 𝑓′(𝑥) ≥ 0 for all 𝑥 ∈ (𝑎, 𝑏), then 𝑓 is increasing on [𝑎, 𝑏];
(iii) If 𝑓′(𝑥) = 0 for all 𝑥 ∈ (𝑎, 𝑏), then 𝑓 is constant on [𝑎, 𝑏].

Part (iii) of this corollary is essentially solving the most simple differential equation; we are show-
ing that the only possible solutions to this equation are the constant functions. Note that similar
statements about decreasing functions hold.

Proof. (i) We have 𝑓(𝑦)−𝑓(𝑥) = 𝑓′(𝑐)(𝑦−𝑥) for some 𝑐 ∈ (𝑥, 𝑦). If 𝑓′(𝑐) > 0, then 𝑓(𝑦)−𝑓(𝑥) > 0.
(ii) Analogously to before, 𝑓(𝑦) − 𝑓(𝑥) = 𝑓′(𝑐)(𝑦 − 𝑥) for some 𝑐 ∈ (𝑥, 𝑦). If 𝑓′(𝑐) ≥ 0, then

𝑓(𝑦) − 𝑓(𝑥) ≥ 0.
(iii) By the mean value theorem on [𝑎, 𝑥], if 𝑓′(𝑐) = 0, then 𝑓(𝑥) − 𝑓(𝑎) = 0.
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7.8 Inverse function theorem

Theorem. Let 𝑓∶ [𝑎, 𝑏] → ℝ be a continuous function on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏),
with 𝑓′(𝑥) > 0 everywhere on (𝑎, 𝑏). Let 𝑓(𝑎) = 𝑐, 𝑓(𝑏) = 𝑑. Then the function 𝑓∶ [𝑎, 𝑏] →
[𝑐, 𝑑] is bijective, and 𝑓−1 ∶ [𝑐, 𝑑] → [𝑎, 𝑏] is differentiable on (𝑐, 𝑑) with

(𝑓−1)′ (𝑥) = 1
𝑓′ (𝑓−1(𝑥))

Note, in lecture 8 it was proven that a continuous strictly increasing function has a continuous in-
verse. This strengthens that claim to include the differentiability property if the original function
was differentiable.

Proof. We know from lecture 8 that there exists 𝑔∶ [𝑐, 𝑑] → [𝑎, 𝑏] which is a strictly increasing con-
tinuous function, which is the inverse of 𝑓. We must now show that 𝑔 is differentiable and that its
derivative has the required form as stated in the claim. Now, let 𝑦 = 𝑓(𝑥). Given 𝑘 ≠ 0, let ℎ be given
by

𝑦 + 𝑘 = 𝑓(𝑥 + ℎ)
Alternatively, written in terms of 𝑔,

𝑥 + ℎ = 𝑔(𝑦 + 𝑘)
So clearly ℎ ≠ 0. Since 𝑔 is continuous, if 𝑘 → 0 then ℎ → 0. Then

𝑔(𝑦 + 𝑘) − 𝑔(𝑦)
𝑘 = 𝑥 + ℎ − 𝑥

𝑓(𝑥 + ℎ) − 𝑦

= ℎ
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

∴ lim
𝑘→0

𝑔(𝑦 + 𝑘) − 𝑔(𝑦)
𝑘 = lim

ℎ→0
ℎ

𝑓(𝑥 + ℎ) − 𝑓(𝑥)
= 1
𝑓′(𝑥)

as required.

7.9 Derivative of rational powers
First, let 𝑔(𝑥) = 𝑥1/𝑞 for some positive integer 𝑞. We can find that 𝑓(𝑥) = 𝑥𝑞 has the derivative
𝑓′(𝑥) = 𝑞𝑥𝑞−1. By the inverse function theorem, 𝑔′(𝑥) = 1

𝑞
𝑥1/𝑞−1. Now, if 𝑔(𝑥) = 𝑥𝑝/𝑞, where 𝑝

is an integer and 𝑞 is a positive integer, then by the chain rule 𝑔′(𝑥) = 𝑝
𝑞
𝑥𝑝/𝑞−1 which matches the

expected result.

7.10 Mean value theorem applied to limits
Suppose 𝑓, 𝑔∶ [𝑎, 𝑏] → ℝ are continuous, and differentiable on (𝑎, 𝑏). Suppose further that 𝑔(𝑎) ≠
𝑔(𝑏). The mean value theorem can be applied to both functions, and will give two points 𝑠, 𝑡 ∈ (𝑎, 𝑏)
such that

𝑓(𝑏) − 𝑓(𝑎)
𝑔(𝑏) − 𝑔(𝑎) =

(𝑏 − 𝑎)𝑓′(𝑠)
(𝑏 − 𝑎)𝑔′(𝑡) =

𝑓′(𝑠)
𝑔′(𝑡)
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This gives us a way to simplify a limit of the form of the left hand side (as 𝑏 → 𝑎) by instead consider-
ing the right hand side. We can apply Cauchy’s mean value theorem, seen in the next lecture.

7.11 Cauchy’s mean value theorem

Theorem. If 𝑓, 𝑔∶ [𝑎, 𝑏] → ℝ are continuous, and differentiable on (𝑎, 𝑏), there exists 𝑡 ∈
(𝑎, 𝑏) such that

(𝑓(𝑏) − 𝑓(𝑎))𝑔′(𝑡) = 𝑓′(𝑡)(𝑔(𝑏) − 𝑔(𝑎))

We can recover the normal mean value theorem from Cauchy’s generalisation by taking 𝑔(𝑥) =
𝑥.

Proof. Let

𝜙(𝑥) =
|
|
|
|

1 1 1
𝑓(𝑎) 𝑓(𝑥) 𝑓(𝑏)
𝑔(𝑎) 𝑔(𝑥) 𝑔(𝑏)

|
|
|
|

Certainly 𝜙(𝑥) is continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏), by using previous results. Also,
𝜙(𝑎) = 𝜙(𝑏) = 0 by observing the linear dependence of the columns. By Rolle’s theorem, there exists
𝑡 ∈ (𝑎, 𝑏) such that 𝜙′(𝑡) = 0. We can expand 𝜙′(𝑡) and this will show the required result.

𝜙′(𝑥) = 𝑓′(𝑥)𝑔(𝑏) − 𝑔′(𝑥)𝑓(𝑏) + 𝑓(𝑎)𝑔′(𝑥) − 𝑔(𝑎)𝑓′(𝑥) = 𝑓′(𝑥)[𝑔(𝑏) − 𝑔(𝑎)] + 𝑔′(𝑥)[𝑓(𝑎) − 𝑓(𝑏)]

Example (l’Hôpital’s rule). The derivation of l’Hôpital’s rule is on an example sheet, so here we will
consider only a special case of it, using Cauchy’s mean value theorem.

ℓ = lim
𝑥→0

𝑒𝑥 − 1
sin𝑥

We can write
ℓ = lim

𝑥→0
𝑒𝑥 − 𝑒0

sin𝑥 − sin 0 =
𝑒𝑡
cos 𝑡

for some 𝑡 ∈ (0, 𝑥). So as 𝑥 → 0, 𝑡 → 0 and hence
𝑒𝑡
cos 𝑡 → 1

8 Taylor’s theorem
8.1 Lagrange’s and Cauchy’s remainders

Theorem (Taylor’s Theorem with Lagrange’s Remainder). Suppose 𝑓 and its derivatives up
to order 𝑛 − 1 are continuous in [𝑎, 𝑎 + ℎ], and 𝑓(𝑛) exists for 𝑥 ∈ (𝑎, 𝑎 + ℎ). Then

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ𝑓′(𝑎) + ℎ2
2! 𝑓

″(𝑎) +⋯ + ℎ𝑛−1
(𝑛 − 1)!𝑓

(𝑛−1)(𝑎) + ℎ𝑛
𝑛! 𝑓

(𝑛)(𝑎 + 𝜃ℎ)

where 𝜃 ∈ (0, 1).
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Note that for 𝑛 = 1, this is exactly the mean value theorem, so this can be seen as an 𝑛th order
extension of the mean value theorem. We commonly write 𝑅𝑛 for the final error term

ℎ𝑛

𝑛!
𝑓(𝑛)(𝑎+𝜃ℎ).

This is known as Lagrange’s form of the remainder.

Proof. For 0 ≤ 𝑡 ≤ ℎ, we define

𝜙(𝑡) = 𝑓(𝑎 + 𝑡) − 𝑓(𝑎) − 𝑡𝑓′(𝑎) −⋯ − 𝑡𝑛−1
(𝑛 − 1)!𝑓

(𝑛−1)(𝑎) − 𝑡𝑛
𝑛!𝐵

where we choose 𝐵 suitably such that 𝜙(ℎ) = 0. (Recall that in the proof of the mean value theorem,
we used 𝑓(𝑥) − 𝑘𝑥 and picked 𝑘 suitably such that this allowed the use of Rolle’s theorem. This is
entirely analogous, but generalised to the 𝑛th derivative). Note that

𝜙(0) = 𝜙′(0) = ⋯ = 𝜙(𝑛−1)(0) = 0

We can use Rolle’s theorem inductively 𝑛 times. Since 𝜙(0) = 𝜙(ℎ) = 0, there is a point 0 < ℎ1 < ℎ
such that 𝜙′(ℎ1) = 0. Since 𝜙′(0) = 𝜙′(ℎ1) = 0, there is a point 0 < ℎ2 < ℎ1 such that 𝜙″(ℎ2) = 0.
This continues until we find a point 0 < ℎ𝑛 < ℎ such that 𝜙(𝑛)(ℎ𝑛) = 0. Hence ℎ𝑛 = 𝜃ℎ for some
0 < 𝜃 < 1. Now, 𝜙(𝑛)(𝑡) = 𝑓(𝑛)(𝑎 + 𝑡) − 𝐵. We can see now that 𝐵 = 𝑓(𝑛)(𝑎 + 𝜃ℎ), which gives the
required result.

We can prove an alternative version of Taylor’s theorem with a different error term.

Theorem (Taylor’s Theorem with Cauchy’s Remainder). Suppose (equivalently to before) 𝑓
and its derivatives up to order𝑛−1 are continuous in [𝑎, 𝑎+ℎ], and𝑓(𝑛) exists for𝑥 ∈ (𝑎, 𝑎+ℎ).
Then

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ𝑓′(𝑎) + ℎ2
2! 𝑓

″(𝑎) +⋯ + ℎ𝑛−1
(𝑛 − 1)!𝑓

(𝑛−1)(𝑎) + 𝑅𝑛

where
𝑅𝑛 =

(1 − 𝜃)𝑛−1ℎ𝑛𝑓(𝑛)(𝑎 + 𝜃ℎ)
(𝑛 − 1)!

for 𝜃 ∈ (0, 1).

Proof. For simplicity, in this proof we let 𝑎 = 0, although the same argument applies when 𝑎 ≠ 0.
Let us define

𝐹(𝑡) = 𝑓(ℎ) − 𝑓(𝑡) − (ℎ − 𝑡)𝑓′(𝑡) −⋯ − (ℎ − 𝑡)𝑛−1𝑓(𝑛−1)(𝑡)
(𝑛 − 1)!

for 𝑡 ∈ [0, ℎ]. Then

𝐹′(𝑡) = −𝑓′(𝑡) + 𝑓′(𝑡) − (ℎ − 𝑡)𝑓″(𝑡) + (ℎ − 𝑡)𝑓″(𝑡) − 1
2(ℎ − 𝑡)2𝑓‴(𝑡) + 1

2(ℎ − 𝑡)2𝑓‴(𝑡)

−⋯ − (ℎ − 𝑡)𝑛−1
(𝑛 − 1)! 𝑓

(𝑛)(𝑡)

= −(ℎ − 𝑡)𝑛−1
(𝑛 − 1)! 𝑓

(𝑛)(𝑡)

Let
𝜙(𝑡) = 𝐹(𝑡) − [ℎ − 𝑡

ℎ ]
𝑝
𝐹(0)
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where 𝑝 ∈ ℕ and 1 ≤ 𝑝 ≤ 𝑛. Then
𝜙(0) = 𝜙(ℎ) = 0

By Rolle’s theorem, there exists 𝜃 ∈ (0, 1) such that

𝜙′(𝜃ℎ) = 0

We can compute 𝜙′ to find

𝜙′(𝜃ℎ) = 𝐹′(𝜃ℎ) + 𝑝(1 − 𝜃)𝑝−1
ℎ 𝐹(0) = 0

Substituting everything back into 𝐹 gives

0 = −ℎ𝑛−1(1 − 𝜃)𝑛−1
(𝑛 − 1)! 𝑓(𝑛)(𝜃ℎ) + 𝑝(1 − 𝜃)𝑝−1

ℎ [𝑓(ℎ) − 𝑓(0) − ℎ′(0) −⋯ − ℎ𝑛−1
(𝑛 − 1)!𝑓

(𝑛−1)(0)]

Hence

𝑓(ℎ) = 𝑓(0) + ℎ𝑓′(0) + ℎ2
2! 𝑓

″(0) +⋯ + ℎ𝑛−1
(𝑛 − 1)!𝑓

(𝑛−1)(0) + ℎ𝑛(1 − 𝜃)𝑛−1𝑓(𝑛)(𝜃ℎ)
(𝑛 − 1)! ⋅ 𝑝(1 − 𝜃)𝑝−1⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

𝑅𝑛

By letting 𝑝 = 𝑛, we get Lagrange’s remainder. If 𝑝 = 1, we get Cauchy’s remainder.

8.2 Bounding error terms
Recall that Lagrange’s remainder is

𝑅𝑛 =
ℎ𝑛
𝑛! 𝑓

(𝑛)(𝑎 + 𝜃ℎ)

and Cauchy’s remainder is

𝑅𝑛 =
(1 − 𝜃)𝑛−1ℎ𝑛𝑓(𝑛)(𝑎 + 𝜃ℎ)

(𝑛 − 1)!
and that we can write

𝑓(ℎ) = 𝑃𝑛−1(ℎ) + 𝑅𝑛
where 𝑃𝑛−1 is the Taylor polynomial to (𝑛−1)th order. To get a Taylor series for a function 𝑓, we need
to prove that the 𝑅𝑛 tend to zero as 𝑛 → ∞. In general, this requires estimates for the 𝑅𝑛 and it could
take a lot of effort to prove whether this limit is zero or not. Note also that the theorems deducing
the remainder terms work equally well in an interval [𝑎 + ℎ, 𝑎] where ℎ < 0.

8.3 Binomial series

Proposition. Let
𝑓(𝑥) = (1 + 𝑥)𝑟

for some 𝑟 ∈ ℚ. If |𝑥| < 1, then

𝑓(𝑥) = 1 + (𝑟1)𝑥 +⋯+ (𝑟𝑛)𝑥
𝑛 +…

26



where
(𝑟𝑛) =

𝑟(𝑟 − 1)⋯ (𝑟 − 𝑛 + 1)
𝑛!

Proof. Clearly,
𝑓(𝑛)(𝑥) = 𝑟(𝑟 − 1)⋯ (𝑟 − 𝑛 + 1)(1 + 𝑥)𝑟−𝑛

These coefficients correspond exactly with that of the Taylor polynomial. If 𝑟 ∈ ℕ, then 𝑓(𝑟+1)(𝑥) ≡ 0,
so clearly the 𝑅𝑛 are zero as 𝑛 → ∞. In general, using Lagrange’s form of the remainder,

𝑅𝑛 =
𝑥𝑛
𝑛! 𝑓

(𝑛)(𝜃𝑥) = (𝑟𝑛)
𝑥𝑛

(1 + 𝜃𝑥)𝑛−𝑟

Note that in principle, 𝜃 depends both on 𝑥 and 𝑛. For 0 < 𝑥 < 1, (1 + 𝜃𝑥)𝑛−𝑟 > 1 for 𝑛 > 𝑟. Now
observe that the series given by

∑(𝑟𝑛)𝑥
𝑛

is absolutely convergent for |𝑥| < 1. Indeed, we can apply the ratio test and find that

|||
𝑎𝑛+1
𝑎𝑛

||| =
|||
(𝑟 − 𝑛)𝑥
𝑛 + 1

|||

which tends to |𝑥| as 𝑛 → ∞. In particular therefore, the terms (𝑟
𝑛
)𝑥𝑛 tend to zero for |𝑥| < 1. Hence

for 𝑛 > 𝑟 and 0 < 𝑥 < 1, we have
|𝑅𝑛| ≤

|||(
𝑟
𝑛)𝑥

𝑛||| → 0

So the claim is proven in the range 0 ≤ 𝑥 < 1. If 𝑥 < 0, then the step when we compare (1 + 𝜃𝑥)𝑛−𝑟
with 1 breaks down. Let us instead use the Cauchy form of the remainder to bypass this step.

𝑅𝑛 =
(1 − 𝜃)𝑛−1𝑥𝑛𝑓(𝑛)(𝜃𝑥)

(𝑛 − 1)! = (1 − 𝜃)𝑛−1𝑟(𝑟 − 1)⋯ (𝑟 − 𝑛 + 1)(1 + 𝜃𝑥)𝑟−𝑛𝑥𝑛
(𝑛 − 1)!

By regrouping terms, we get

𝑅𝑛 =
𝑟(𝑟 − 1)⋯ (𝑟 − 𝑛 + 1)

(𝑛 − 1)! ⋅ (1 − 𝜃)𝑛−1
(1 + 𝜃𝑥)𝑛−𝑟 𝑥

𝑛 = 𝑟(𝑟 − 1
𝑛 − 1)𝑥

𝑛(1 + 𝜃𝑥)𝑟−1
⎛
⎜⎜
⎝

1 − 𝜃
1 + 𝜃𝑥⏟⎵⏟⎵⏟

<1

⎞
⎟⎟
⎠

𝑛−1

Hence
|𝑅𝑛| ≤

|||𝑟(
𝑟 − 1
𝑛 − 1)𝑥

𝑛|||(1 + 𝜃𝑥)𝑟−1

This will then tend to zero, after a bitmore effort; we can bound the (1+𝜃𝑥)𝑟−1 term by themaximum
of 1 and (1 + 𝑥)𝑟−1, which is independent of 𝑛, and then the result will follow.
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9 Power series
9.1 Complex differentiation
The complex derivative and the real derivative have the same core properties, for instance linearity,
the product rule and the chain rule. However, the complex derivative is significantly more restrictive
than the real derivative, since we can approach a point in any number of directions. If we can find a
function that is complex differentiable with this restriction, we actually get a whole array of features
for free. As an example of this restriction, consider the function 𝑓(𝑧) = 𝑧. This function is actually
nowhere differentiable. If it were differentiable, then any sequence tending to 𝑧would yield the same
limit when substituted into the definition of the derivative. Consider first the sequence

𝑧𝑛 = 𝑧 + 1
𝑛 → 𝑧

Then
𝑓(𝑧𝑛) − 𝑓(𝑧)

𝑧𝑛 − 𝑧 =
𝑧 + 1

𝑛
− 𝑧

𝑧 + 1
𝑛
− 𝑧

= 1

Now consider the sequence
𝑧𝑛 = 𝑧 + 𝑖

𝑛 → 𝑧

Then
𝑓(𝑧𝑛) − 𝑓(𝑧)

𝑧𝑛 − 𝑧 =
𝑧 − 𝑖

𝑛
− 𝑧

𝑧 + 𝑖
𝑛
− 𝑧

= −1

Hence 𝑓(𝑧) is nowhere differentiable. On the other hand, the real function 𝑓(𝑥, 𝑦) = (𝑥, −𝑦) is clearly
real differentiable, since it is linear; but in the complex world the function 𝑧 ↦ 𝑧 is not linear.

9.2 Definition of power series
A power series is a series of the form

∞
∑
𝑛=0

𝑎𝑛𝑧𝑛

where 𝑧 ∈ ℂ, and the 𝑎𝑛 is a given sequence of complex numbers. We can also take a power series
of the form

∞
∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛

but for simplicity we will take 𝑧0 = 0 in all of the analysis we will conduct on power series.

9.3 Radius of convergence

Lemma. If the series
∞
∑
𝑛=0

𝑎𝑛𝑧𝑛1

28



converges for some point 𝑧1, and |𝑧| < |𝑧1|, then the series
∞
∑
𝑛=0

𝑎𝑛𝑧𝑛

also converges absolutely.

Proof. Since∑∞
𝑛=0 𝑎𝑛𝑧𝑛1 converges, 𝑎𝑛𝑧𝑛1 → 0. Thus the sequence 𝑎𝑛𝑧𝑛1 is bounded by some 𝑘 > 0,

i.e. for all 𝑛, |𝑎𝑛𝑧𝑛1 | < 𝑘. Then
|𝑎𝑛𝑧𝑛| ≤ 𝑘|||

𝑧
𝑧1
|||
𝑛

Since the geometric series∑∞
0
|||
𝑧
𝑧1
|||
𝑛
converges, the lemma follows by comparison.

Using this lemma, we can find that there exists a radius inside which any given power series con-
verges absolutely. This radius might be zero, and it might be infinite.

Theorem. Any power series either
(i) converges absolutely for all 𝑧, or
(ii) converges absolutely for all 𝑧 where |𝑧| < 𝑅 and diverges for all 𝑧 where |𝑧| > 𝑅, or
(iii) converges for 𝑧 = 0 only.

The circle |𝑧| = 𝑅 is called the circle of convergence, and 𝑅 is called the radius of convergence. Note
that this theorem does not make any claim about the behaviour on the circle of convergence, just the
behaviour inside it.

Proof. Let

𝑆 = {𝑥 ∈ ℝ∶ 𝑥 ≥ 0,
∞
∑
0
𝑎𝑛𝑥𝑛 converges}

Clearly, 0 ∈ 𝑆. By the above lemma, if 𝑥1 ∈ 𝑆, then [0, 𝑥1] ⊆ 𝑆. If 𝑆 = [0,∞), then we have case (i)
above due to the lemma.

If 𝑆 ≠ [0,∞), there exists a supremum 0 ≤ 𝑅 = sup 𝑆 < ∞.

We must now just deal with case (ii), which is 𝑅 > 0. For all 𝑧1 with |𝑧1| < 𝑅 there exists 𝑅0 such
that |𝑧1| < 𝑅0 < 𝑅, and absolute convergence follows using the lemma. If |𝑧1| > 𝑅, there exists 𝑅0
such that |𝑧1| > 𝑅0 > 𝑅. If the series with 𝑧1 converges, then by the lemma the same would be true
for 𝑅0. But 𝑅0 does not converge, so this is a contradiction.

Lemma. If
|||
𝑎𝑛+1
𝑎𝑛

||| → ℓ

as 𝑛 → ∞, then 𝑅 = 1
ℓ
.
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Proof. By the ratio test, we have absolute convergence if

|||
𝑎𝑛+1
𝑎𝑛

𝑧𝑛+1
𝑧𝑛

||| < 1

So we have absolute convergence if |𝑧| < 1
ℓ
and divergence if |𝑧| > 1

ℓ
as required.

Lemma. If
||𝑎1/𝑛𝑛 || → ℓ

as 𝑛 → ∞, then 𝑅 = 1
ℓ
.

This can be shown similarly using the root test.

Example. (i) Consider the series ∑∞
0

𝑧𝑛

𝑛!
. Using the ratio test, the series converges absolutely

everywhere.

(ii) The geometric series∑∞
0 𝑧𝑛 gives 𝑅 = 1 by the ratio test. In this case, |𝑧| = 1 gives divergence.

(iii) The series∑∞
0 𝑛!𝑧𝑛 has 𝑅 = 0, which again can be seen using the ratio test.

(iv) Consider∑∞
1

𝑧𝑛

𝑛
. This also has 𝑅 = 1 by the ratio test. Note that the series diverges for 𝑧 = 1

since we get the harmonic series. However, it converges when 𝑧 = −1 by the alternating series
test. To work out the behaviour at other points on the circle of convergence, we could consider
the series ∑∞

1
𝑧𝑛

𝑛
(1 − 𝑧), which converges exactly when the original series does. The partial

sums are

𝑆𝑁 =
𝑁
∑
1
[𝑧𝑛 − 𝑧𝑛+1

𝑛 ]

=
𝑁
∑
1

𝑧𝑛
𝑛 −

𝑁
∑
1

𝑧𝑛+1
𝑛

=
𝑁
∑
1

𝑧𝑛
𝑛 −

𝑁+1
∑
2

𝑧𝑛
𝑛 − 1

= 𝑧 − 𝑧𝑁+1

𝑁 + 1 +
𝑁+1
∑
2

−𝑧𝑛
𝑛(𝑛 − 1)

If |𝑧| = 1, then the term 𝑧𝑁+1

𝑁+1
will vanish as 𝑁 → ∞. If 𝑧 ≠ 1, the term∑𝑁+1

2
−𝑧𝑛

𝑛(𝑛−1)
converges

as 𝑁 → ∞. So 𝑆𝑁 does indeed converge for |𝑧| = 1, 𝑧 ≠ 1.

(v) Now, consider∑∞
1

𝑧𝑛

𝑛2
. This has 𝑅 = 1 by the ratio test, but it converges for all 𝑧 with |𝑧| = 1.

(vi) If we have∑∞
0 𝑛𝑧𝑛, we have 𝑅 = 1, but diverges for all |𝑧| = 1.

In conclusion, we cannot determine the behaviour at the boundary in the general case. Inside the
radius of convergence, power series will behave as if they were simply polynomials.
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9.4 Infinite differentiability

Theorem. Let 𝑓(𝑧) = ∑∞
0 𝑎𝑛𝑧𝑛 have a radius of convergence 𝑅. Then 𝑓 is complex differen-

tiable at all points with |𝑧| < 𝑅, with

𝑓′(𝑧) =
∞
∑
1
𝑛𝑎𝑛𝑧𝑛−1

with the same radius of convergence as the original series.

This proof comprises the entire subsection. This whole subsection is non-examinable, but included
for completeness. First, we will state two lemmas.

Lemma. If∑∞
0 𝑎𝑛𝑧𝑛 has radius of convergence 𝑅, then both series

∞
∑
1
𝑛𝑎𝑛𝑧𝑛−1

and
∞
∑
2
𝑛(𝑛 − 1)𝑎𝑛𝑧𝑛−2

also have radius of convergence 𝑅.

Proof. Let 𝑅0 be such that 0 < |𝑧| < 𝑅0 < 𝑅. Since 𝑎0𝑅𝑛0 → 0, the sequence 𝑎0𝑅𝑛0 is bounded. In
other words there exists a 𝑘 such that |𝑎𝑛𝑅𝑛0 | ≤ 𝑘 for all 𝑛 ≥ 0. Thus,

||𝑎𝑛𝑛𝑧𝑛−1|| =
𝑛
|𝑧| |𝑎𝑛𝑅

𝑛
0 |
|||
𝑧
𝑅0

|||
𝑛
≤ 𝑘𝑛
|𝑧|
|||
𝑧
𝑅0

|||
𝑛

But
∑𝑛|||

𝑧
𝑅0

|||
𝑛

converges by the ratio test, since the ratio is

𝑛 + 1
𝑛

|||
𝑧
𝑅0

|||
𝑛+1|||

𝑅0
𝑧
|||
𝑛
= 𝑛 + 1

𝑛
|||
𝑧
𝑅0

||| →
|||
𝑧
𝑅0

||| < 1

Hence, the original series∑∞
1 𝑛𝑎𝑛𝑧𝑛−1 is absolutely bounded above by a convergent series, and there-

fore is absolutely convergent. So it is known that the radius of convergence of this derivative series
is at least 𝑅. Now, if |𝑧| > 𝑅, the series diverges since |𝑎𝑛𝑧𝑛| is unbounded, and hence |𝑛𝑎𝑛𝑧𝑛| is also
unbounded. The same proof applies to the series for the second derivative.

We will need this ‘second derivative’ condition in order to talk about the remainder term after the
first derivative, which is related to the second derivative.
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Lemma. First, for all 2 ≤ 𝑟 ≤ 𝑛.

(𝑛𝑟) ≤ 𝑛(𝑛 − 1)(𝑛 − 2
𝑟 − 2)

Further, for all 𝑧 ∈ ℂ, ℎ ∈ ℂ,

||(𝑧 + ℎ)𝑛 − 𝑧𝑛 − 𝑛ℎ𝑧𝑛−1|| ≤ 𝑛(𝑛 − 1)(|𝑧| + |ℎ|)𝑛−2|ℎ|2

Proof. For the first part, we can expand the definitions to get

(𝑛
𝑟
)

(𝑛−2
𝑟−2

)
= 𝑛(𝑛 − 1)

𝑟(𝑟 − 1) ≤ 𝑛(𝑛 − 1)

as required. For the second part, we can apply the binomial expansion to cancel the other two terms,
and we get

(𝑧 + ℎ)𝑛 − 𝑧𝑛 − 𝑛ℎ𝑧𝑛−1 = (
𝑛
∑
𝑟=0

(𝑛𝑟)𝑧
𝑛−𝑟ℎ𝑟) − 𝑧𝑛 − 𝑛ℎ𝑧𝑛−1

=
𝑛
∑
𝑟=2

(𝑛𝑟)𝑧
𝑛−𝑟ℎ𝑟

∴ ||(𝑧 + ℎ)𝑛 − 𝑧𝑛 − 𝑛ℎ𝑧𝑛−1|| =
||||

𝑛
∑
𝑟=2

(𝑛𝑟)𝑧
𝑛−𝑟ℎ𝑟

||||

≤
𝑛
∑
𝑟=2

|||(
𝑛
𝑟)𝑧

𝑛−𝑟ℎ𝑟|||

=
𝑛
∑
𝑟=2

(𝑛𝑟)|𝑧|
𝑛−𝑟|ℎ|𝑟

≤ 𝑛(𝑛 − 1) [
𝑛
∑
𝑟=2

(𝑛 − 2
𝑟 − 2)|𝑧|

𝑛−𝑟|ℎ|𝑟−2]
⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟

(|𝑧|+|ℎ|)𝑛−2

|ℎ|2

= 𝑛(𝑛 − 1)(|𝑧| + |ℎ|)𝑛−2|ℎ|2

as required.

Now, we can prove the original theorem.

Proof. By the first lemma, we may define 𝑓′(𝑧) to be

𝑓′(𝑧) =
∞
∑
1
𝑛𝑎𝑛𝑧𝑛−1
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We now just need to prove that

lim
ℎ→0

𝐼 = 0; 𝐼 = 𝑓(𝑧 + ℎ) − 𝑓(𝑧) − ℎ𝑓′(𝑧)
ℎ

We can substitute the expressions we have found for each power series:

𝐼 =
∑∞

0 𝑎𝑛(𝑧 + ℎ)𝑛 −∑∞
0 𝑎𝑛𝑧𝑛 − ℎ∑∞

1 𝑛𝑎𝑛𝑧𝑛−1
ℎ

= 1
ℎ

∞
∑
0
[𝑎𝑛(𝑧 + ℎ)𝑛 − 𝑎𝑛𝑧𝑛 − ℎ𝑛𝑎𝑛𝑧𝑛−1]

= 1
ℎ

∞
∑
0
𝑎𝑛 [(𝑧 + ℎ)𝑛 − 𝑧𝑛 − ℎ𝑛𝑧𝑛−1]

|𝐼| = 1
|ℎ|

||||
lim
𝑁→∞

𝑁
∑
0
𝑎𝑛 [(𝑧 + ℎ)𝑛 − 𝑧𝑛 − ℎ𝑛𝑧𝑛−1]

||||

Since the modulus function is continuous,

|𝐼| = 1
|ℎ| lim𝑁→∞

||||

𝑁
∑
0
𝑎𝑛 [(𝑧 + ℎ)𝑛 − 𝑧𝑛 − ℎ𝑛𝑧𝑛−1]

||||

≤ 1
|ℎ| lim𝑁→∞

𝑁
∑
0
||𝑎𝑛 [(𝑧 + ℎ)𝑛 − 𝑧𝑛 − ℎ𝑛𝑧𝑛−1]||

= 1
|ℎ|

∞
∑
0
|𝑎𝑛| ⋅ ||(𝑧 + ℎ)𝑛 − 𝑧𝑛 − ℎ𝑛𝑧𝑛−1||

By the second part of the second lemma above,

|𝐼| ≤ 1
|ℎ|

∞
∑
0
|𝑎𝑛| ⋅ 𝑛(𝑛 − 1)(|𝑧| + |ℎ|)𝑛−2|ℎ|2

= |ℎ|
∞
∑
0
|𝑎𝑛| ⋅ 𝑛(𝑛 − 1)(|𝑧| + |ℎ|)𝑛−2

For |ℎ| small enough, (|𝑧| + |ℎ|) < 𝑅. Therefore, by the first lemma above,
∞
∑
0
|𝑎𝑛| ⋅ 𝑛(𝑛 − 1)(|𝑧| + |ℎ|)𝑛−2

converges to some 𝐴(ℎ). But 𝐴(ℎ) is monotonically decreasing, so

|𝐼| ≤ |ℎ|𝐴(ℎ) ≤ |ℎ|𝐴(𝑟)

for some 𝑟 such that |𝑧| + 𝑟 < 𝑅. We can now let ℎ → 0, giving

|𝐼| → 0

as required.
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9.5 Defining standard functions
We can now use this differentiability property to cleanly define the standard exponential, logarithmic
and trigonometric functions. Let 𝑒∶ ℂ → ℂ be defined by

𝑒(𝑧) =
∞
∑
0

𝑧𝑛
𝑛!

We have already seen that it has infinite radius of convergence. Straight from the above theorem, 𝑒
is infinitely differentiable everywhere, and it is its own derivative. Note that if a function 𝐹 ∶ ℂ → ℂ
has 𝐹′(𝑧) = 0 for all 𝑧 ∈ ℂ, then 𝐹 is constant. Indeed, consider 𝑔(𝑡) = 𝐹(𝑡𝑧) = 𝑢(𝑡) + 𝑖𝑣(𝑡) where
𝑡, 𝑢, 𝑣 ∈ ℝ. Then by the chain rule, 𝑔′(𝑡) = 𝐹′(𝑡𝑧)𝑧 = 0 and hence 𝑢′(𝑡) + 𝑖𝑣′(𝑡) = 0, giving 𝑢′(𝑡) = 0
and 𝑣′(𝑡) = 0 everywhere. We can now apply the real-valued case, showing that 𝑢 and 𝑣 (and hence
𝐹) are constant everywhere. Now, let 𝑎, 𝑏 ∈ ℂ, and consider

𝐹(𝑧) = 𝑒(𝑎 + 𝑏 − 𝑧)𝑒(𝑧)

Then
𝐹′(𝑧) = −𝑒(𝑎 + 𝑏 − 𝑧)𝑒(𝑧) + 𝑒(𝑎 + 𝑏 − 𝑧)𝑒(𝑧) = 0

Hence 𝑒(𝑎 + 𝑏 − 𝑧)𝑒(𝑧) is constant for all 𝑧, hence

𝑒(𝑎 + 𝑏 − 𝑧)𝑒(𝑧) = 𝑒(𝑎 + 𝑏 − 0)𝑒(0) = 𝑒(𝑎 + 𝑏)

Since 𝑧 is arbitrary, we can set 𝑧 = 𝑏 to recover the familiar relation

𝑒(𝑎 + 𝑏 − 𝑏)𝑒(𝑏) = 𝑒(𝑎 + 𝑏) ⟹ 𝑒(𝑎)𝑒(𝑏) = 𝑒(𝑎 + 𝑏)

9.6 Exponential and logarithmic functions
Last lecture, we covered the power series form of the exponential function 𝑒∶ ℂ → ℂ. Note that if
we input a real number, the output is also real. Hence, 𝑒∶ ℝ → ℝ. This restricted definition of the
function has the following properties.

Theorem. (i) 𝑒∶ ℝ → ℝ is everywhere differentiable, and 𝑒′(𝑥) = 𝑒(𝑥).
(ii) 𝑒(𝑥 + 𝑦) = 𝑒(𝑥)𝑒(𝑦).
(iii) 𝑒(𝑥) > 0.
(iv) 𝑒 is strictly increasing.
(v) 𝑒(𝑥) → ∞ as 𝑥 → ∞, and 𝑒(𝑥) → 0 as 𝑥 → −∞.
(vi) 𝑒∶ ℝ → (0,∞) is a bijection.

Proof. The first two properties follow from the last lecture.

(iii) Clearly, 𝑒(𝑥) > 0 for all 𝑥 ≥ 0 by considering the power series, which contains only positive
terms for 𝑥 > 0, and also 𝑒(0) = 1. Also, 𝑒(0) = 𝑒(𝑥 − 𝑥) = 𝑒(𝑥)𝑒(−𝑥), hence for all negative 𝑥,
𝑒(𝑥) > 0.

(iv) Since 𝑒′(𝑥) = 𝑒(𝑥), 𝑒′(𝑥) = 𝑒(𝑥) > 0 everywhere.
(v) By considering partial sums, if 𝑥 > 0 we have 𝑒(𝑥) > 1 + 𝑥, so if 𝑥 → ∞, 𝑒(𝑥) → ∞. When

𝑥 → −∞, 𝑒(𝑥) = 1
𝑒(𝑥)

→ 0.
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(vi) Injectivity follows from being strictly increasing. For surjectivity, we need to show that given
any 𝑦 ∈ (0,∞) there exists some 𝑥 such that 𝑒(𝑥) = 𝑦. Due to property (v) above, we can
certainly find real numbers 𝑎 and 𝑏 such that 𝑒(𝑎) < 𝑦 < 𝑒(𝑏). By the intermediate value
theorem, there exists 𝑥 ∈ ℝ such that 𝑒(𝑥) = 𝑦.

Remark. We have essentially proven that 𝑒∶ (ℝ,+) → ((0,∞), ×) is a group isomorphism. This is
exactly the same as showing that it is a bijection. Since 𝑒 is a function, there exists an inverse function
ℓ∶ ((0,∞), ×) → (ℝ,+).

Theorem. (i) ℓ∶ (0,∞) → ℝ is a bijection, and ℓ(𝑒(𝑥)) = 𝑥 for all 𝑥 ∈ ℝ, and 𝑒(ℓ(𝑥)) = 𝑥
for all 𝑥 ∈ (0,∞).

(ii) ℓ is differentiable and its derivative is ℓ′(𝑡) = 1
𝑡
.

(iii) ℓ(𝑥𝑦) = ℓ(𝑥) + ℓ(𝑦).

Proof. (i) This first property is obvious from the definition.

(ii) By the inverse function theorem, ℓ is differentiable everywhere and ℓ′(𝑡) = 1
𝑡
as required.

(iii) From IA Groups, if 𝑒 is an isomorphism, so is its inverse.

9.7 Real numbered exponents
We will now define for 𝛼 ∈ ℝ and 𝑥 > 0 the function

𝑟𝛼(𝑥) = 𝑒(𝛼ℓ(𝑥))

This can be taken as the definition of 𝑥 raised to the power 𝛼.

Theorem. Suppose 𝑥, 𝑦 > 0 and 𝛼, 𝛽 ∈ ℝ. Then
(i) 𝑟𝛼(𝑥𝑦) = 𝑟𝛼(𝑥)𝑟𝛼(𝑦)
(ii) 𝑟𝛼+𝛽(𝑥) = 𝑟𝛼(𝑥)𝑟𝛽(𝑥)
(iii) 𝑟𝛼(𝑟𝛽(𝑥)) = 𝑟𝛼𝛽(𝑥)
(iv) 𝑟1(𝑥) = 𝑥, and 𝑟0(𝑥) = 1

Proof. (i) 𝑟𝛼(𝑥𝑦) = 𝑒(𝛼ℓ(𝑥𝑦)) = 𝑒(𝛼ℓ(𝑥) + 𝛼ℓ(𝑦)) = 𝑒(𝛼ℓ(𝑥))𝑒(𝛼ℓ(𝑦)) = 𝑟𝛼(𝑥)𝑟𝛼(𝑦)
(ii) 𝑟𝛼+𝛽(𝑥) = 𝑒((𝛼 + 𝛽)ℓ(𝑥)) = 𝑒(𝛼ℓ(𝑥) + 𝛽ℓ(𝑥)) = 𝑒(𝛼ℓ(𝑥))𝑒(𝛽ℓ(𝑥)) = 𝑟𝛼(𝑥)𝑟𝛽(𝑥)
(iii) 𝑟𝛼(𝑟𝛽(𝑥)) = 𝑒(𝛼ℓ[𝑒(𝛽ℓ(𝑥))]) = 𝑒(𝛼𝛽ℓ(𝑥)) = 𝑟𝛼𝛽(𝑥)
(iv) 𝑟1(𝑥) = 𝑒(ℓ(𝑥)) = 𝑥, and 𝑟0(𝑥) = 𝑒(0ℓ(𝑥)) = 𝑒(0) = 1

Suppose we want to compute 𝑟𝑛(𝑥), where 𝑛 ∈ ℤ. Then 𝑟𝑛(𝑥) = 𝑟1+⋯+1(𝑥) = 𝑥⋯𝑥, so we have
agreement between 𝑟𝑛(𝑥) and our previous definition of 𝑥𝑛. Similarly, since 𝑟1(𝑥)𝑟−1(𝑥) = 1, we have
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𝑟−1(𝑥) =
1
𝑥
. Further, 𝑟 1

𝑞
(𝑥) = 𝑥

1
𝑞 . Therefore, 𝑟 𝑝

𝑞
(𝑥) = 𝑥

𝑝
𝑞 . So this definition is simply a more general

definition for exponentiation by a real number.

Fromnow, wewill let exp(𝑥) ≡ 𝑒(𝑥), log(𝑥) ≡ ℓ(𝑥), and 𝑥𝛼 ≡ 𝑟𝛼(𝑥). In fact, exp(𝑥) = 𝑒𝑥 for a suitable
number 𝑒, since 𝑒(𝑥) = 𝑒(𝑥 log(𝑒)) = 𝑟𝑥(𝑒) = 𝑒𝑥 where 𝑒 ≔ 𝑒(1) = ∑∞

0
1
𝑛!
.

Finally, we can compute the derivative of 𝑥𝛼 using the chain rule.

(𝑥𝛼)′ = (𝑒𝛼 log𝑥)′ = 𝑒𝛼 log𝑥𝛼1𝑥 = 𝛼𝑥𝛼𝑥−1 = 𝛼𝑥𝛼−1

as expected. Further, if 𝑓(𝑥) = 𝑎𝑥, we can find

𝑓′(𝑥) = (𝑒𝑥 log𝑎)′ = 𝑒𝑥 log𝑎 log 𝑎 = 𝑎𝑥 log 𝑎

9.8 Trigonometric functions
We define

cos 𝑧 = 1 − 𝑧2
2! +

𝑧4
4! −

𝑧6
6! +⋯ =

∞
∑
0

(−1)𝑘𝑧2𝑘
(2𝑘)!

sin 𝑧 = 𝑧 − 𝑧3
3! +

𝑧5
5! −

𝑧7
7! +⋯ =

∞
∑
0

(−1)𝑘𝑧2𝑘+1
(2𝑘 + 1)!

Both power series have infinite radius of convergence, by the ratio test (the same proof from the ex-
ponential function can be used here). Hence cos 𝑧 and sin 𝑧 are differentiable, and d

d𝑧
cos 𝑧 = − sin 𝑧

and d
d𝑧
sin 𝑧 = cos 𝑧 as expected, by termwise differentiation. Further, we can deduce that

𝑒𝑖𝑧 =
∞
∑
0

(𝑖𝑧)𝑛
𝑛! =

∞
∑
0

(𝑖𝑧)2𝑘
(2𝑘)! +

∞
∑
0

(𝑖𝑧)2𝑘+1
(2𝑘 + 1)!

Note that
(𝑖𝑧)2𝑘 = (−1)𝑘𝑧2𝑘; (𝑖𝑧)2𝑘+1 = 𝑖(−1)𝑘𝑧2𝑘+1

Hence,
𝑒𝑖𝑧 = cos 𝑧 + 𝑖 sin 𝑧

Similarly,
𝑒−𝑖𝑧 = cos 𝑧 − 𝑖 sin 𝑧

We can then write
cos 𝑧 = 1

2(𝑒
𝑖𝑧 + 𝑒−𝑖𝑧); sin 𝑧 = 1

2𝑖 (𝑒
𝑖𝑧 − 𝑒−𝑖𝑧)

Many common trigonometric identities follow from this, such as the identity cos2 𝑧+sin2 𝑧 ≡ 1. How-
ever, we have not deduced the period of the functions. Now, restricted to the real case, sin𝑥, cos𝑥 ∈
ℝ, and the identity cos2 𝑧 + sin2 𝑧 ≡ 1 gives that |sin𝑥| ≤ 1 and |cos𝑥| ≤ 1 for all real 𝑥.

9.9 Circle constants
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Proposition. There is a smallest positive number 𝜋 such that

cos 𝜋2 = 0

and we have√2 < 𝜋
2
< √3.

Proof. If 0 < 𝑥 < 2,
sin𝑥 = (𝑥 − 𝑥3

3! ) + (𝑥
5

5! −
𝑥7
7! ) +⋯

For this range of values, each parenthesised block is positive, so sin𝑥 > 0. So in this range,

d
d𝑥 cos𝑥 < 0

Hence, cos𝑥 is a strictly decreasing function on this interval. Now,

cos√2 = 1 − √2
2

2! + (√2
4

4! − √2
6

6! ) +⋯ > 0

since each bracketed block is positive.

cos√3 = 1 − √3
2

2! + √3
4

4! − (√3
6

6! − √3
8

8! ) +⋯ < 0

since all the bracketed terms are positive, and being subtracted from a negative number. By the
intermediate value theorem, the existence of such a 𝜋 follows.

Corollary. We have that sin 𝜋
2
= 1.

Proof. We know that cos2 𝜋
2
+ sin2 𝜋

2
= 1, and sin 𝜋

2
> 0, so the result follows.

Theorem. The following standard properties about the periodicity of trigonometric func-
tions hold.
(i) sin(𝑧 + 𝜋

2
) = cos 𝑧, and cos(𝑧 + 𝜋

2
) = − sin 𝑧

(ii) sin(𝑧 + 𝜋) = − sin 𝑧, and cos(𝑧 + 𝜋) = − cos 𝑧
(iii) sin(𝑧 + 2𝜋) = sin 𝑧, and cos(𝑧 + 2𝜋) = cos 𝑧

The proofs are immediate from the angle addition formulae. This then implies that

𝑒𝑖𝑧+2𝜋𝑖 = 𝑒𝑖𝑧

Hence 𝑒𝑧 is periodic with period 2𝜋𝑖.
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10 Integration
10.1 Geometry of trigonometric functions
Recall that given any two vectors x and y in ℝ2, we can define the dot (scalar) product by

x ⋅ y = (𝑥1, 𝑥2) ⋅ (𝑦1, 𝑦2) = 𝑥1𝑦1 + 𝑥2𝑦2

By the Cauchy–Schwarz inequality, we have

|x ⋅ y| ≤ ‖x‖‖y‖

where we define the Euclidean norm in the normal way. Thus, for x ≠ 0, y ≠ 0, we have

−1 ≤ x ⋅ y
‖x‖‖y‖ ≤ 1

We now define the angle between two vectors x and y as exactly the unique number 𝜃 ∈ [0, 𝜋] such
that

cos 𝜃 = x ⋅ y
‖x‖‖y‖

10.2 Hyperbolic functions
We define the functions cosh and sinh as follows.

cosh 𝑧 = 1
2(𝑒

𝑧 + 𝑒−𝑧)

sinh 𝑧 = 1
2(𝑒

𝑧 − 𝑒−𝑧)

Hence
cosh 𝑧 = cos(𝑖𝑧); sinh 𝑧 = −𝑖 sin(𝑖𝑧)

We can then show that
d
d𝑧 cosh 𝑧 = sinh 𝑧; d

d𝑧 sinh 𝑧 = cosh 𝑧

and further,
cosh2 𝑧 − sinh2 𝑧 ≡ 1

10.3 Defining the Riemann integral

Definition. A dissection or partition𝒟 of [𝑎, 𝑏] is a finite subset of [𝑎, 𝑏] containing the end
points 𝑎 and 𝑏. We write

𝒟 = {𝑥0, 𝑥1,… , 𝑥𝑛}
with 𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏.

Definition. We define the upper sum of a bounded function 𝑓 associated with a partition𝒟
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by

𝑆(𝑓,𝒟) =
𝑛
∑
𝑗=1

(𝑥𝑗 − 𝑥𝑗−1) sup
𝑥∈[𝑥𝑗−1,𝑥𝑗]

𝑓(𝑥)

The lower sum is defined similarly,

𝑠(𝑓,𝒟) =
𝑛
∑
𝑗=1

(𝑥𝑗 − 𝑥𝑗−1) inf
𝑥∈[𝑥𝑗−1,𝑥𝑗]

𝑓(𝑥)

Clearly then 𝑆 ≥ 𝑠 for all𝒟.

Lemma. If𝒟 and𝒟′ are dissections with𝒟′ ⊇ 𝒟 (𝒟′ is a refinement of𝒟), then

𝑆(𝑓,𝒟) ≥
(i)
𝑆(𝑓,𝒟′) ≥

(ii)
𝑠(𝑓,𝒟′) ≥

(iii)
𝑠(𝑓,𝒟)

Proof. Inequality (ii) is obvious, we have already shown this to be true. Now, suppose𝒟′ contains a
single extra point 𝑦 compared to𝒟, where 𝑦 ∈ (𝑥𝑟−1, 𝑥𝑟). Clearly,

sup
𝑥∈[𝑥𝑟−1,𝑦]

𝑓(𝑥), sup
𝑥∈[𝑦,𝑥𝑟]

𝑓(𝑥) ≤ sup
𝑥∈[𝑥𝑟−1,𝑥𝑟]

Then
(𝑥𝑟 − 𝑥𝑟−1) sup

𝑥∈[𝑥𝑟−1,𝑥𝑟]
𝑓(𝑥) ≥ (𝑦 − 𝑥𝑟−1) sup

𝑥∈[𝑟𝑟−1,𝑦]
𝑓(𝑥) + (𝑥𝑟 − 𝑦) sup

𝑥∈[𝑦,𝑟]
𝑓(𝑥)

Hence,
𝑆(𝑓,𝒟) ≥ 𝑆(𝑓,𝒟′)

The same proof holds for inequality (iii), and inductively we can show that this works for any amount
of extra points.

Lemma. If𝒟1, 𝒟2 are arbitrary dissections, then

𝑆(𝑓,𝒟1) ≥ 𝑆(𝑓,𝒟1 ∪ 𝒟2) ≥ 𝑠(𝑓,𝒟1 ∪ 𝒟2) ≥ 𝑠(𝑓,𝒟2)

In particular, 𝑆(𝑓,𝒟1) ≥ 𝑠(𝑓,𝒟2).

Proof. Let𝒟′ = 𝒟1 ∪ 𝒟2, which is a refinement of both𝒟1 and𝒟2, and apply the previous lemma.

Definition. The upper integral of 𝑓 is

𝐼⋆(𝑓) = inf
𝒟
𝑆(𝑓,𝒟)

Note that such an integral always exists, since the upper sums are always bounded below by
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an arbitrary lower sum. Hence the infimum does indeed exist and is finite. Similarly,

𝐼⋆(𝑓) = sup
𝒟

𝑠(𝑓,𝒟)

Then by the lemmas above, 𝐼⋆(𝑓) ≥ 𝐼⋆(𝑓), since 𝑆(𝑓,𝒟2) ≥ 𝑠(𝑓,𝒟1) for arbitrary dissections𝒟1 and
𝒟2.

Definition. A bounded function 𝑓∶ [𝑎, 𝑏] → ℝ is (Riemann) integrable if 𝐼⋆(𝑓) = 𝐼⋆(𝑓). If
this equality holds, we write

∫
𝑏

𝑎
𝑓(𝑥) d𝑥 = 𝐼⋆(𝑓) = 𝐼⋆(𝑓) = ∫

𝑏

𝑎
𝑓

10.4 Determining integrability

Theorem. A function 𝑓∶ [𝑎, 𝑏] → ℝ is Riemann integrable if and only if given 𝜀 > 0, there
exists𝒟 such that

𝑆(𝑓,𝒟) − 𝑠(𝑓,𝒟) < 𝜀

Proof. For every dissection 𝒟, we have that 0 ≤ 𝐼⋆(𝑓) − 𝐼⋆(𝑓) ≤ 𝑆(𝑓,𝒟) − 𝑠(𝑓,𝒟). If the given
condition holds, 0 ≤ 𝐼⋆(𝑓) − 𝐼⋆(𝑓) ≤ 𝑆(𝑓,𝒟) − 𝑠(𝑓,𝒟) < 𝜀 for all 𝜀 > 0. This immediately implies
that 𝑓 is Riemann integrable since the upper integral and the lower integral match. Conversely, if 𝑓
is integrable, by the definition of the supremum and infimum, there are partitions 𝒟1 and 𝒟2 such
that

∫
𝑏

𝑎
𝑓 − 𝜀

2 = 𝐼⋆(𝑓) −
𝜀
2 < 𝑠(𝑓,𝒟1)

Also,

∫
𝑏

𝑎
𝑓 + 𝜀

2 = 𝐼⋆(𝑓) + 𝜀
2 > 𝑆(𝑓,𝒟2)

From last lecture, we can use the fact that𝒟1 ∪ 𝒟2 is a refinement of both𝒟1 and𝒟2 to show that

𝑆(𝑓,𝒟1 ∪ 𝒟2) − 𝑠(𝑓,𝒟1 ∪ 𝒟2) ≤ 𝑆(𝑓,𝒟2) − 𝑠(𝑓,𝒟1)

Now,

𝑆(𝑓,𝒟2) − 𝑠(𝑓,𝒟1) < ∫
𝑏

𝑎
𝑓 + 𝜀

2 −∫
𝑏

𝑎
𝑓 + 𝜀

2 = 𝜀

as required.

10.5 Monotonic and continuous functions
We can use this theorem to show that monotonic and continuous functions are integrable. Note that
monotonic and continuous functions (defined on a closed interval) are always bounded.
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Theorem. Suppose a function 𝑓∶ [𝑎, 𝑏] → ℝ is monotonic. Then 𝑓 is integrable.

Proof. Suppose 𝑓 is increasing. Then

sup
𝑥∈[𝑥𝑗−1−𝑥𝑗]

𝑓(𝑥) = 𝑓(𝑥𝑗)

and similarly
inf

𝑥∈[𝑥𝑗−1−𝑥𝑗]
𝑓(𝑥) = 𝑓(𝑥𝑗−1)

Thus,

𝑆(𝑓,𝒟) − 𝑠(𝑓,𝒟) =
𝑛
∑
𝑗=1

(𝑥𝑗 − 𝑥𝑗−1) [𝑓(𝑥𝑗) − 𝑓(𝑥𝑗−1)]

Let us choose the dissection

𝒟 = {𝑎, 𝑎 + 𝑏 − 𝑎
𝑛 , 𝑎 + 2𝑏 − 𝑎

𝑛 +⋯+ 𝑏}

giving
𝑥𝑗 = 𝑎 + 𝑗𝑏 − 𝑎

𝑛
for 0 ≤ 𝑗 ≤ 𝑛. In this case,

𝑆(𝑓,𝒟) − 𝑠(𝑓,𝒟) = 𝑏 − 𝑎
𝑛

𝑛
∑
𝑗=1

[𝑓(𝑥𝑗) − 𝑓(𝑥𝑗−1)] =
𝑏 − 𝑎
𝑛 [𝑓(𝑏) − 𝑓(𝑎)] → 0

so then using the above theorem, 𝑓 is integrable.

To prove an analogous result for continuous function, wemust first prove the following lemma.

Lemma (UniformContinuity). Suppose a function 𝑓∶ [𝑎, 𝑏] → ℝ is continuous. Then given
𝜀 > 0, ∃𝛿 > 0 such that if |𝑥 − 𝑦| < 𝛿, we have |𝑓(𝑥) − 𝑓(𝑦)| < 𝜀.

Note that in this lemma, we are saying that there exists such a 𝛿 that works for every pair of points
within 𝛿. The definition of continuity only provides a 𝛿 that depends on 𝑥, so this is stronger than
the definition of continuity, and this property does not hold for all continuous functions.

Proof. Suppose there does not exist such a 𝛿. Then there exists some 𝜀 > 0 such that for all 𝛿 > 0
there exist 𝑥, 𝑦 ∈ [𝑎, 𝑏] such that |𝑥 − 𝑦| < 𝛿 but |𝑓(𝑥) − 𝑓(𝑦)| ≥ 𝜀. Let 𝛿 = 1

𝑛
. For this choice, we can

find sequences 𝑥𝑛 and 𝑦𝑛 with |𝑥𝑛 − 𝑦𝑛| <
1
𝑛
but |𝑓(𝑥𝑛) − 𝑓(𝑦𝑛)| ≥ 𝜀. By the Bolzano–Weierstrass

theorem, since we are working in a closed bounded interval, the 𝑥𝑛 and 𝑦𝑛 have convergent sub-
sequences that tend to 𝑐 and 𝑑. Then by the triangle inequality,

||𝑦𝑛𝑘 − 𝑐|| ≤ ||𝑦𝑛𝑘 − 𝑥𝑛𝑘 || + ||𝑥𝑛𝑘 − 𝑐|| → 0

So 𝑐 = 𝑑. But ||𝑓(𝑥𝑛𝑘) − 𝑓(𝑦𝑛𝑘)|| ≥ 𝜀, and by continuity as 𝑘 → ∞, |𝑓(𝑐) − 𝑓(𝑐)| ≥ 𝜀 which is a
contradiction.
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Theorem. Suppose a function 𝑓∶ [𝑎, 𝑏] → ℝ is continuous. Then 𝑓 is integrable.

Proof. We know that given 𝜀 > 0, there exists 𝛿 > 0 such that |𝑥 − 𝑦| < 𝛿 ⟹ |𝑓(𝑥) − 𝑓(𝑦)| < 𝜀. So
now, let

𝒟 = {𝑎, 𝑎 + 𝑏 − 𝑎
𝑛 , 𝑎 + 2𝑏 − 𝑎

𝑛 +⋯+ 𝑏}

where 𝑛 is chosen large enough such that 𝑏−𝑎
𝑛

< 𝛿. Then, for any 𝑥, 𝑦 ∈ [𝑥𝑗−1, 𝑥𝑗], we have that
|𝑓(𝑥) − 𝑓(𝑦)| < 𝜀. We can now write

max
𝑥∈[𝑥𝑗−1,𝑥𝑗]

𝑓(𝑥) − min
𝑥∈[𝑥𝑗−1,𝑥𝑗]

𝑓(𝑥) = 𝑓(𝑝) − 𝑓(𝑞) < 𝜀

Therefore, the upper sums and lower sums differ by at most (𝑏 − 𝑎)𝜀. Hence, 𝑓 is integrable.

10.6 Complicated integrable functions
In principle,many functions that are not continuous ormonotonic can be integratedusing theRiemann
integral. For example, the function 𝑓∶ [0, 1] → ℝ defined by

𝑓(𝑥) = {
1
𝑞

𝑥 = 𝑝
𝑞
∈ (0, 1] in its lowest form

0 otherwise

is Riemann integrable. We know that 𝑠(𝑓,𝒟) = 0 for all𝒟, since any interval will contain irrational
numbers. We will show that given 𝜀 > 0, there exists 𝒟 such that 𝑆(𝑓,𝒟) < 𝜀. If this is true, then
this function 𝑓 really is Riemann integrable, with ∫𝑓 = 0. We will choose 𝑁 ∈ ℕ such that 1

𝑁
< 𝜀

2
.

Then
𝑆 = {𝑥 ∈ [0, 1]∶ 𝑓(𝑥) ≥ 1

𝑁 } = {𝑝𝑞 ∶ 1 ≤ 𝑞 ≤ 𝑁, 1 ≤ 𝑝 ≤ 𝑞}

This set 𝑆 is a finite set, hence

𝑆 = {0, 𝑡1,… , 𝑡𝑅}; 0 < 𝑡1 < ⋯ < 𝑡𝑅 = 1

Consider a dissection𝒟 such that

(1) Each 𝑡𝑘 is in some interval [𝑥𝑗−1, 𝑥𝑗], and

(2) For all 𝑘, the unique interval containing 𝑡𝑘 has length at most
𝜀
2𝑅
.

Such a dissection can certainly be constructed. Then, in any interval that does not contain a 𝑡𝑘, 𝑓
in this interval is less than 1

𝑁
. In any interval that does contain a 𝑡𝑘, 𝑓 ≥ 1

𝑁
but 𝑓 < 1 everywhere.

Since there are 𝑅 such intervals, each of which with length 𝜀
2𝑅
, we have

𝑆(𝑓,𝒟) ≤ 1
𝑁 + 𝜀

2 < 𝜀
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10.7 Properties of Riemann integral
Consider functions 𝑓 and 𝑔 which are bounded and integrable on [𝑎, 𝑏].
(1) If 𝑓 ≤ 𝑔 on [𝑎, 𝑏], then ∫𝑓 ≤ ∫𝑔.
(2) 𝑓 + 𝑔 is integrable on [𝑎, 𝑏], and ∫(𝑓 + 𝑔) = ∫𝑓 + ∫𝑔.
(3) For any constant 𝑘, 𝑘𝑓 is integrable, and ∫𝑘𝑓 = 𝑘∫𝑓.
(4) |𝑓| is integrable, and |∫ 𝑓| ≤ ∫ |𝑓|.
(5) 𝑓𝑔 is integrable.

Proof. We will see proofs for some of these properties.

(1) If 𝑓 ≤ 𝑔, then
∫𝑓 = 𝐼⋆(𝑓) ≤ 𝑆(𝑓,𝒟) ≤ 𝑆(𝑔,𝒟)

Hence,
∫𝑓 = 𝐼⋆(𝑓) ≤ 𝐼⋆(𝑔) = ∫𝑔

(2) We have
sup

[𝑥𝑗−1,𝑥𝑗]
(𝑓 + 𝑔) ≤ sup

[𝑥𝑗−1,𝑥𝑗]
𝑓 + sup

[𝑥𝑗−1,𝑥𝑗]
𝑔

Therefore,
𝑆(𝑓 + 𝑔,𝒟) ≤ 𝑆(𝑓,𝒟) + 𝑆(𝑔,𝒟)

Now, consider two dissections𝒟1, 𝒟2. Now,

𝐼⋆(𝑓 + 𝑔) ≤ 𝑆(𝑓 + 𝑔,𝒟1 ∪ 𝒟2) ≤ 𝑆(𝑓,𝒟1 ∪ 𝒟2) + 𝑆(𝑔,𝒟1 ∪ 𝒟2) ≤ 𝑆(𝑓,𝒟1) + 𝑆(𝑔,𝒟2)

We can then fix𝒟1 and take the infimum over𝒟2 to get

𝐼⋆(𝑓 + 𝑔) ≤ 𝑆(𝑓,𝒟1) + 𝐼⋆(𝑔)

Taking the infimum over𝒟1 gives

𝐼⋆(𝑓 + 𝑔) ≤ 𝐼⋆(𝑓) + 𝐼⋆(𝑔) = ∫𝑓 +∫𝑔

A completely similar argument will show that

𝐼⋆(𝑓 + 𝑔) ≥ ∫𝑓 +∫𝑔

Combining this, 𝑓 + 𝑔 must be integrable, since 𝐼⋆(𝑓 + 𝑔) ≥ 𝐼⋆(𝑓 + 𝑔). This integral is then
exactly ∫𝑓 + ∫𝑔.

(4) Consider first 𝑓+(𝑥) = max(𝑓(𝑥), 0). We want to show that 𝑓+ is integrable. We can check that

sup
[𝑥𝑗−1,𝑥𝑗]

𝑓+ − inf
[𝑥𝑗−1,𝑥𝑗]

𝑓+ ≤ sup
[𝑥𝑗−1,𝑥𝑗]

𝑓 − sup
[𝑥𝑗−1,𝑥𝑗]

𝑓
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We know that given 𝜀 > 0, there exists𝒟 such that

𝑆(𝑓,𝒟) − 𝑠(𝑓,𝒟) < 𝜀

Hence,
𝑆(𝑓+, 𝒟) − 𝑠(𝑓+, 𝒟) ≤ 𝑆(𝑓,𝒟) − 𝑠(𝑓,𝒟) < 𝜀

Therefore 𝑓+ is integrable. But |𝑓| = 2𝑓+ − 𝑓, hence |𝑓| is integrable by properties (2) and (3).
Since −|𝑓| ≤ 𝑓 ≤ |𝑓|, we can use monotonicity from (1) to find that

|||∫𝑓||| ≤ ∫ |𝑓|

as claimed.

(5) Let 𝑓 be integrable and positive. Then we can check that

sup
[𝑥𝑗−1,𝑥𝑗]

𝑓2 =

⎛
⎜
⎜
⎜
⎝

sup
[𝑥𝑗−1,𝑥𝑗]

𝑓
⏟⎵⎵⏟⎵⎵⏟

𝑀𝑗

⎞
⎟
⎟
⎟
⎠

2

; inf
[𝑥𝑗−1,𝑥𝑗]

𝑓2 =
⎛
⎜
⎜
⎜
⎝

inf
[𝑥𝑗−1,𝑥𝑗]

𝑓
⏟⎵⎵⏟⎵⎵⏟

𝑚𝑗

⎞
⎟
⎟
⎟
⎠

2

Then,

𝑆(𝑓2, 𝒟) − 𝑠(𝑓2, 𝒟) =
𝑛
∑
𝑗=1

(𝑥𝑗 − 𝑥𝑗−1)(𝑀2
𝑗 −𝑚2

𝑗 )

=
𝑛
∑
𝑗=1

(𝑥𝑗 − 𝑥𝑗−1)(𝑀𝑗 −𝑚𝑗)(𝑀𝑗 +𝑚𝑗)

The function 𝑓 is bounded by some constant 𝑘, therefore the bracket (𝑀𝑗 +𝑚𝑗) is bounded by
2𝑘, which gives

𝑆(𝑓2, 𝒟) − 𝑠(𝑓2, 𝒟) ≤ 2𝑘(𝑆(𝑓,𝒟) − 𝑠(𝑓,𝒟))
So 𝑓2 is integrable. Now, considering any 𝑓, |𝑓| ≥ 0 is a non-negative integrable function. Since
𝑓2 = ||𝑓2||, we deduce that 𝑓2 is integrable for any integrable 𝑓. Finally, for 𝑓𝑔, note that

4𝑓𝑔 = (𝑓 + 𝑔)2 − (𝑓 − 𝑔)2

The right hand side is integrable, so the left hand side is integrable.

11 Fundamental theorem of calculus
11.1 Breaking an interval
Let 𝑓 be integrable on [𝑎, 𝑏]. If 𝑎 < 𝑐 < 𝑏, then 𝑓 is integrable over [𝑎, 𝑐] and [𝑐, 𝑏], with

∫
𝑏

𝑎
𝑓 = ∫

𝑐

𝑎
𝑓 +∫

𝑏

𝑐
𝑓

Conversely, if 𝑓 is integrable on [𝑎, 𝑐] and [𝑐, 𝑏], then 𝑓 is integrable over [𝑎, 𝑏] and the same equality
holds for the combination of the integrals.
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Proof. We first make two observations. First, if 𝒟1 is a dissection of [𝑎, 𝑐] and 𝒟2 is a dissection of
[𝑐, 𝑏], then𝒟 = 𝒟1 ∪ 𝒟2 is a dissection of [𝑎, 𝑏], and

𝑆(𝑓,𝒟1 ∪ 𝒟2) = 𝑆(𝑓|||[𝑎,𝑐]
, 𝒟1) + 𝑆(𝑓|||[𝑐,𝑏]

, 𝒟2) (∗)

Also, if𝒟 is a dissection of [𝑎, 𝑏], then

𝑆(𝑓,𝒟) ≥ 𝑆(𝑓,𝒟 ∪ {𝑐}) = 𝑆(𝑓|||[𝑎,𝑐]
, 𝒟1) + 𝑆(𝑓|||[𝑐,𝑏]

, 𝒟2) (†)

Now,

(∗) ⟹ 𝐼⋆(𝑓) ≤ 𝐼⋆(𝑓|||[𝑎,𝑐]
) + 𝐼⋆(𝑓|||[𝑐,𝑏]

)

Further,

(†) ⟹ 𝐼⋆(𝑓) ≥ 𝐼⋆(𝑓|||[𝑎,𝑐]
) + 𝐼⋆(𝑓|||[𝑐,𝑏]

)

Hence,

𝐼⋆(𝑓) = 𝐼⋆(𝑓|||[𝑎,𝑐]
) + 𝐼⋆(𝑓|||[𝑐,𝑏]

)

This argument also applies for the lower integral, therefore

0 ≤ 𝐼⋆(𝑓) − 𝐼⋆(𝑓) = 𝐼⋆(𝑓|||[𝑎,𝑐]
) − 𝐼⋆(𝑓

|||[𝑎,𝑐]
)

⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
𝐴

+ 𝐼⋆(𝑓|||[𝑐,𝑏]
) + 𝐼⋆(𝑓

|||[𝑐,𝑏]
)

⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
𝐵

Note that 𝐴, 𝐵 ≥ 0. If 𝑓 is integrable on [𝑎, 𝑐] and [𝑐, 𝑏], then 𝐴 = 𝐵 = 0, hence 𝐼⋆(𝑓) = 𝐼⋆(𝑓) and it
is integrable on [𝑎, 𝑏]. If 𝑓 is integrable on [𝑎, 𝑏], then we know 𝐼⋆(𝑓) = 𝐼⋆(𝑓), so 𝐴 = 𝐵 = 0 so 𝑓 is
integrable on [𝑎, 𝑐] and [𝑐, 𝑏].

Note that we take the following convention:

∫
𝑏

𝑎
𝑓 = −∫

𝑎

𝑏
𝑓

and if 𝑎 = 𝑏, then this value is zero. With this convention, if 𝑓 is bounded with |𝑓| ≤ 𝑘, then

||||
∫

𝑏

𝑎
𝑓
||||
≤ 𝑘|𝑏 − 𝑎|

11.2 Fundamental theorem of calculus
Suppose a function 𝑓∶ [𝑎, 𝑏] → ℝ is bounded and integrable. Then since it is integrable on any
sub-interval, we can define

𝐹(𝑥) = ∫
𝑥

𝑎
𝑓(𝑡) d𝑡

for 𝑥 ∈ [𝑎, 𝑏].
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Theorem. 𝐹 is continuous.

Proof. We know that

𝐹(𝑥 + ℎ) − 𝐹(𝑥) = ∫
𝑥+ℎ

𝑥
𝑓(𝑡) d𝑡

We want this quantity to vanish as ℎ → 0. We find, given that 𝑓 is bounded by 𝑘,

|𝐹(𝑥 + ℎ) − 𝐹(𝑥)| =
||||
∫

𝑥+ℎ

𝑥
𝑓(𝑡) d𝑡

||||
≤ 𝑘|ℎ|

So the result follows as ℎ → 0.

Theorem. If in addition 𝑓 is continuous at 𝑥, then 𝐹 is differentiable, with 𝐹′(𝑥) = 𝑓(𝑥).

Proof. Consider
|||
𝐹(𝑥 + ℎ) − 𝐹(𝑥)

ℎ − 𝑓(𝑥)|||
If this tends to zero, then the theorem holds.

|||
𝐹(𝑥 + ℎ) − 𝐹(𝑥)

ℎ − 𝑓(𝑥)||| =
1
|ℎ|

||||
∫

𝑥+ℎ

𝑥
𝑓(𝑡) d𝑡 − ℎ𝑓(𝑥)

||||
= 1
|ℎ|

||||
∫

𝑥+ℎ

𝑥
[𝑓(𝑡) − 𝑓(𝑥)] d𝑡

||||

Since 𝑓 is continuous at 𝑥, given 𝜀 > 0, ∃𝛿 > 0 such that |𝑡 − 𝑥|−𝛿 ⟹ |𝑓(𝑡) − 𝑓(𝑥)| < 𝜀. If |ℎ| < 𝛿,
then the integrand is bounded by 𝜀. Hence,

|||
𝐹(𝑥 + ℎ) − 𝐹(𝑥)

ℎ − 𝑓(𝑥)||| ≤
1
|ℎ| |ℎ𝜀| = 𝜀

So we can make this value as small as we like. So the theorem holds.

For example, consider the function

𝑓(𝑥) = {−1 𝑥 ∈ [−1, 0]
1 𝑥 ∈ (0, 1]

This is a bounded, integrable function, with

𝐹(𝑥) = −1 + |𝑥|

Note that this 𝐹 is not differentiable at 𝑥 = 0.

Corollary. If 𝑓 = 𝑔′ is a continuous function on [𝑎, 𝑏], then

∫
𝑥

𝑎
𝑓(𝑡) d𝑡 = 𝑔(𝑥) − 𝑔(𝑎)

is a differentiable function on [𝑎, 𝑏].
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Proof. From above, 𝐹 − 𝑔 has zero derivative in [𝑎, 𝑏], hence 𝐹 − 𝑔 is constant. Since 𝐹(𝑎) = 0, we
get 𝐹(𝑥) = 𝑔(𝑥) − 𝑔(𝑎).

Note that every continuous function𝑓 has an ‘indefinite’ integral (or ‘antiderivative’)written∫𝑓(𝑥) d𝑥,
which is determined uniquely up to the addition of a constant. Note further that we have now essen-
tially solved the differential equation

{ 𝑦′(𝑥) = 𝑓(𝑥)
𝑦(𝑎) = 𝑦0

and shown that there is a unique solution to this ordinary differential equation.

12 Integration techniques
12.1 Integration by parts
We can use the fundamental theorem of calculus to deduce familiar integration techniques, such as
integration by parts, and integration by substitution.

Corollary. Suppose 𝑓′, 𝑔′ exist and are continuous on [𝑎, 𝑏]. Then

∫
𝑏

𝑎
𝑓′𝑔 = 𝑓𝑔|||

𝑏

𝑎
−∫

𝑏

𝑎
𝑓𝑔′

Proof. By the product rule, we have
(𝑓𝑔)′ = 𝑓′𝑔 + 𝑓𝑔′

Then by the fundamental theorem of calculus,

∫
𝑏

𝑎
(𝑓𝑔)′ = 𝑓𝑔|||

𝑏

𝑎
= ∫

𝑏

𝑎
𝑓′𝑔 +∫

𝑏

𝑎
𝑓𝑔′

and the result follows.

12.2 Integration by substitution

Corollary. Let 𝑔∶ [𝛼, 𝛽] → [𝑎, 𝑏] with 𝑔(𝛼) = 𝑎, 𝑔(𝛽) = 𝑏 and let 𝑔′ exist and be continuous
on [𝛼, 𝛽]. Let 𝑓∶ [𝑎, 𝑏] → ℝ be continuous. Then

∫
𝑏

𝑎
𝑓(𝑥) d𝑥 = ∫

𝛽

𝛼
𝑓(𝑔(𝑡))𝑔′(𝑡) d𝑡

Proof. Let 𝐹(𝑥) = ∫𝑥
𝑎 𝑓(𝑡) d𝑡. Then let ℎ(𝑡) = 𝐹(𝑔(𝑡)). This is well defined since 𝑔 takes values in
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[𝑎, 𝑏]. Then,

∫
𝛽

𝛼
𝑓(𝑔(𝑡))𝑔′(𝑡) d𝑡 = ∫

𝛽

𝛼
𝐹′(𝑔(𝑡))𝑔′(𝑡) d𝑡

= ∫
𝛽

𝛼
ℎ′(𝑡) d𝑡

= ℎ(𝛽) − ℎ(𝛼)
= 𝐹(𝑏) − 𝐹(𝑎)
= 𝐹(𝑏)

= ∫
𝑏

𝑎
𝑓(𝑥) d𝑥

13 Integrals in Taylor’s theorem
13.1 Integral remainder form of Taylor’s theorem

Theorem. Let 𝑓 such that 𝑓(𝑛)(𝑥) is continuous for 𝑥 ∈ [0, ℎ]. Then

𝑓(ℎ) = 𝑓(0) +⋯+ ℎ𝑛−1𝑓(𝑛−1)(0)
(𝑛 − 1)! + 𝑅𝑛

where

𝑅𝑛 =
ℎ𝑛

(𝑛 − 1)! ∫
1

0
(1 − 𝑡)𝑛−1𝑓(𝑛)(𝑡ℎ) d𝑡

Note that for this formulation of Taylor’s theorem, we require continuity of 𝑓(𝑛)(𝑥), whereas with the
previous remainders, the 𝑛th derivative need not be continuous.

Proof. First, by substituting 𝑢 = 𝑡ℎ, we can see that it is sufficient to show

𝑅𝑛 =
1

(𝑛 − 1)! ∫
ℎ

0
(ℎ − 𝑢)𝑛−1𝑓(𝑛)(𝑢) d𝑢

Now, integrating by parts, we have

𝑅𝑛 =
−ℎ𝑛−1𝑓(𝑛−1)(0)

(𝑛 − 1)! + 1
(𝑛 − 2)! ∫

ℎ

0
(ℎ − 𝑢)𝑛−2𝑓(𝑛−1)(𝑢) d𝑢

= −ℎ𝑛−1𝑓(𝑛−1)(0)
(𝑛 − 1)! + 𝑅𝑛−1

Hence,

𝑅𝑛 = −ℎ
𝑛−1𝑓(𝑛−1)(0)
(𝑛 − 1)! − ℎ𝑛−2𝑓(𝑛−2)(0)

(𝑛 − 2)! −⋯ − ∫
ℎ

0
𝑓′(𝑢) d𝑢

⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝑓(ℎ)−𝑓(0)

which is exactly all the other terms in the Taylor polynomial as required.
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13.2 Mean value theorem for integrals

Theorem. Let 𝑓, 𝑔∶ [𝑎, 𝑏] → ℝ be continuous with 𝑔(𝑥) ≠ 0 for all 𝑥 ∈ (𝑎, 𝑏). Then

∃𝑐 ∈ (𝑎, 𝑏) s.t. ∫
𝑏

𝑎
𝑓(𝑥)𝑔(𝑥) d𝑥 = 𝑓(𝑐)∫

𝑏

𝑎
𝑔(𝑥) d𝑥

Note that if we let 𝑔(𝑥) = 1, we get

∫
𝑏

𝑎
𝑓(𝑥) d𝑥 = 𝑓(𝑐)(𝑏 − 𝑎)

Proof. We will use Cauchy’s mean value theorem to get this result. Let

𝐹(𝑥) = ∫
𝑥

𝑎
𝑓𝑔; 𝐺(𝑥) = ∫

𝑥

𝑎
𝑔

Then there exists an intermediate point 𝑐 such that

(𝐹(𝑏) − 𝐹(𝑎))𝐺′(𝑐) = 𝐹′(𝑐)(𝐺(𝑏) − 𝐺(𝑎))

By the fundamental theorem of calculus,

(∫
𝑏

𝑎
𝑓𝑔)𝑔(𝑐) = 𝑓(𝑐)𝑔(𝑐)(∫

𝑏

𝑎
𝑔)

Now, since 𝑔 ≠ 0 everywhere,

∫
𝑏

𝑎
𝑓𝑔 = 𝑓(𝑐)∫

𝑏

𝑎
𝑔

13.3 DerivingLagrange’s andCauchy’s remainders forTaylor’s theorem
We can use this new mean value theorem to recover the other forms of the remainders in Taylor’s
theorem. We have

𝑅𝑛 =
ℎ𝑛

(𝑛 − 1)! ∫
1

0
(1 − 𝑡)𝑛−1𝑓(𝑛)(𝑡ℎ) d𝑡

and we want to show that this is equal to

ℎ𝑛
𝑛! 𝑓

(𝑛)(𝑎 + 𝜃ℎ); (1 − 𝜃)𝑛−1ℎ𝑛𝑓(𝑛)(𝑎 + 𝜃ℎ)
(𝑛 − 1)!

First, let us apply the above mean value theorem with 𝑔 ≡ 1 and the entire integrand in 𝑅𝑛 as 𝑓.
Then

𝑅𝑛 =
ℎ𝑛

(𝑛 − 1)! ∫
1

0
(1 − 𝑡)𝑛−1𝑓(𝑛)(𝑡ℎ) d𝑡 = ℎ𝑛

(𝑛 − 1)! (1 − 𝜃)𝑛−1𝑓(𝑛)(𝜃ℎ)
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as required for Cauchy’s remainder. To find Lagrange’s remainder, we need to use the above mean
value theoremwith 𝑔 = (1−𝑡)𝑛−1, which is positive everywhere in (0, 1), and𝑓 = 𝑓(𝑛)(𝑡ℎ). Then

𝑅𝑛 =
ℎ𝑛

(𝑛 − 1)!𝑓
(𝑛)(𝜃ℎ)∫

1

0
(1 − 𝑡)𝑛−1 d𝑡

This integral is simple to find by inspection:

𝑅𝑛 =
ℎ𝑛

(𝑛 − 1)!𝑓
(𝑛)(𝜃ℎ) 1𝑛 = ℎ𝑛

𝑛! 𝑓
(𝑛)(𝜃ℎ)

as required.

14 Uses of integration
14.1 Improper integration

Definition. Suppose 𝑓∶ [𝑎,∞) → ℝ is integrable (and therefore bounded) on every interval
of the form [𝑎, 𝑅], and further, as 𝑅 → ∞, we have ∫𝑅

𝑎 𝑓 → ℓ.
Then we say that the integral ∫∞

𝑎 𝑓 exists (or converges), and its value is ℓ. If this integral
does not tend to a limit, we say that ∫∞

𝑎 𝑓 diverges.

We can similarly define the integral ∫𝑎
−∞ 𝑓. If ∫∞

𝑎 𝑓 = ℓ1 and ∫
𝑎
−∞ 𝑓 = ℓ2, we can write

∫
∞

−∞
𝑓 = ℓ1 + ℓ2

Note that this last condition is not the same as saying that lim𝑅→∞ ∫𝑅
−𝑅 𝑓 exists. For this two-sided

improper integral to exist, we need the stronger condition that the one-sided improper integrals exist
on either side. For example, consider 𝑓(𝑥) = 𝑥. Clearly ∫𝑅

−𝑅 𝑓 = 0, but this function is not improper
integrable. For example, consider

∫
∞

1

d𝑥
𝑥𝑘

This converges if and only if 𝑘 > 1. Indeed, if 𝑘 ≠ 1,

∫
𝑅

1

d𝑥
𝑥𝑘 = 𝑥1−𝑘

1 − 𝑘
|||

𝑅

1
= 𝑅1−𝑘 − 1

1 − 𝑘

which is clearly finite in the limit if and only if 𝑘 > 1. If 𝑘 = 1, then we can find

∫
𝑅

1

d𝑥
𝑥 = log𝑅 → ∞

as expected. Note the following observations.

(1) 1
√𝑥

is continuous (and bounded) on [𝛿, 1] for all 𝛿 > 0, and

∫
1

𝛿

d𝑥
√𝑥

= 2√𝑥|||
1

𝛿
= 2 − 2√𝛿
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So as 𝛿 → 0, this integral tends to 2. This integral is defined, even though the value of the
function at zero is unbounded. So we commonly write

∫
1

0

d𝑥
√𝑥

= 2

(2) Similarly, we write

∫
1

0

d𝑥
𝑥 = lim

𝛿→0
∫

1

𝛿

d𝑥
𝑥 = lim

𝛿→0
log𝑥|||

1

𝛿
= lim

𝛿→0
(log 1 − log 𝛿)

Since this limit does not exist, the integral ∫1
0

d𝑥
𝑥
does not exist.

(3) If 𝑓 ≥ 0 and 𝑔 ≥ 0 for 𝑥 ≥ 𝑎, and 𝑓(𝑥) ≤ 𝑘𝑔(𝑥), where 𝑘 is a constant for 𝑥 ≥ 𝑎, then

∫
∞

𝑎
𝑔 converges ⟹ ∫

∞

𝑎
𝑓 converges, and ∫

∞

𝑎
𝑓 ≤ ∫

∞

𝑎
𝑔

This is similar to the comparison test for series. First, note that ∫𝑅
𝑎 𝑓 ≤ 𝑘∫𝑅

𝑎 𝑔. Further, ∫𝑅
𝑎 𝑓

is an increasing function of 𝑅 since 𝑓 ≥ 0, and bounded above, since ∫∞
𝑎 𝑔 converges. Let

ℓ = sup
𝑅≥𝑎

∫
𝑅

𝑎
𝑓 < ∞

Then we want to show that lim𝑅→∞ ∫𝑅
𝑎 𝑓 = ℓ. Given 𝜀 > 0, by the definition of the supremum

∃𝑅0 such that

∫
𝑅0

𝑎
𝑓 ≥ ℓ − 𝜀

Thus for all 𝑅 ≥ 𝑅0 we have

∫
𝑅

𝑎
𝑓 ≥ ∫

𝑅0

𝑎
𝑓 ≥ ℓ − 𝜀

Hence,

0 ≤ ℓ −∫
𝑅

𝑎
𝑓 ≤ 𝜀

As an example, consider the integral

∫
∞

0
exp(−𝑥

2

2 ) d𝑥

Now, for 𝑥 ≥ 1, we can bound the integrand by exp(−𝑥
2
), and the integral of this bound is

clearly bounded. Hence the original integral converges.

(4) If∑𝑎𝑛 converges, then 𝑎𝑛 → 0. However, with improper integrals, this is not necessarily the
case. Consider a convergent series 𝑎𝑛, where 0 < 𝑎𝑛 < 1 for all 𝑛. Then define the function 𝑓
defined by

𝑓(𝑛 + 𝑟) = {1 if 𝑟 < 𝑎𝑛
0 otherwise
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where the input 𝑥 is split into the integer part 𝑛 and the remainder 𝑟. This function is essentially
a sequence of rectangles of height 1 and width 𝑎𝑛, spaced so that each rectangle starts at an
integer value of 𝑥. Clearly, we have

∫
𝑛

0
𝑓 =

𝑛
∑
0
𝑎𝑛

where 𝑛 is an integer. So the integral converges, but the integrand does not tend to zero.

14.2 Integral test for series convergence

Theorem. Let 𝑓(𝑥) be a positive decreasing function for 𝑥 ≥ 1. Then,
(1) The integral ∫∞

1 𝑓(𝑥) d𝑥 and the series∑∞
1 𝑓(𝑥) both converge or diverge. (Note that

such a function is always Riemann integrable on a closed interval since it is bounded
and decreasing.)

(2) As 𝑛 → ∞,∑𝑛
𝑟=1 𝑓(𝑟) − ∫𝑛

1 𝑓(𝑥) d𝑥 tends to a limit ℓ such that 0 ≤ ℓ ≤ 𝑓(1).

Proof. If 𝑛 − 1 ≤ 𝑥 ≤ 𝑛, then
𝑓(𝑛 − 1) ≥ 𝑓(𝑥) ≥ 𝑓(𝑛)

Hence,

𝑓(𝑛 − 1) ≥ ∫
𝑛

𝑛−1
𝑓(𝑥) d𝑥 ≥ 𝑓(𝑛)

Adding up such integrals, we get
𝑛−1
∑
1
𝑓(𝑟) ≥ ∫

𝑛

1
𝑓(𝑥) d𝑥 ≥

𝑛
∑
2
𝑓(𝑟)

Then the first claim is obvious. For the second claim, let

𝜙(𝑛) =
𝑛
∑
1
𝑓(𝑟) −∫

𝑛

1
𝑓(𝑥) d𝑥

Then, using the inequalities established above,

𝜙(𝑛) − 𝜙(𝑛 − 1) = 𝑓(𝑛) −∫
𝑛

𝑛−1
𝑓(𝑥) d𝑥 ≤ 0

So 𝜙 is a decreasing sequence. Further,
0 ≤ 𝜙(𝑛) ≤ 𝑓(1)

𝜙 is bounded, so it converges to some limit ℓ.

Example. First, consider the sum∑∞
1

1
𝑛𝑘
. By the integral test, this converges if and only if 𝑘 > 1.

As a more complicated example, consider∑∞
2

1
𝑛 log𝑛

. Let 𝑓(𝑥) = 1
𝑥 log𝑥

, and

∫
𝑅

2

d𝑥
𝑥 log𝑥 = log(log𝑥)|||

𝑅

2

which diverges, so by the integral test the series diverges.
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Corollary (Euler–Mascheroni Constant). As 𝑛 → ∞,

𝑛
∑
1

1
𝑛 −∫

𝑛

1

1
𝑛 = 1 + 1

2 +⋯+ 1
𝑛 − log𝑛 → 𝛾

where 𝛾 ∈ [0, 1]. This is known as the Euler–Mascheroni constant. It is unknown whether 𝛾
is irrational.

14.3 Piecewise continuous functions

Definition. A function 𝑓∶ [𝑎, 𝑏] → ℝ is piecewise continuous if there is a dissection𝒟 such
that 𝑓 is continuous on all intervals defined by this dissection, and that the one-sided limits

lim
𝑥→𝑥+𝑗−1

𝑓(𝑥); lim
𝑥→𝑥−𝑗−1

𝑓(𝑥)

exist.

We can extend the class of Riemann integrable functions to include piecewise continuous functions
as well. This is true since we use this dissection to construct the upper and lower sums. The one-
sided limits are here to ensure that the function is bounded near these discontinuities. We might
now ask how large the discontinuity set is allowed to be in order for 𝑓 to still be Riemann integrable.
As we have seen from examples before, it is possible to have a function which has countably many
discontinuity points, but is still Riemann integrable.
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