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I. Numbers and Sets

Lectured in Michaelmas 2020 by Prof. I. B. Leader
This course gives an introduction to university level maths. We begin by presenting some
basic rules, called axioms. Then, we carefully prove logical statements that follow from these
axioms. We build upon our previous results iteratively until we have proven some important
theorems. Almost every other course in an undergraduate maths course will follow this
pattern, and this course acts as a prototypical example.

In the first part of the course, we rigorously define the natural numbers, integers, rationals,
and reals. Using the axioms, we can prove facts about things like prime numbers, modular
arithmetic, and limits. In the second half of the course, we establish the notion of a set, and
define what concepts like functions are. At the end, we use the rules of sets to prove that
there are different sizes of infinity.
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I. Numbers and Sets

1. Proofs
1.1. Motivation for proof
Definition (Proof). A proof is a logical argument that establishes a conclusion.

Clearly there are some things missing from this definition; we have not yet defined a ‘logical
argument’ or a ‘conclusion’; however we have to start somewhere, and assuming under-
standing of logic is a good place to start. There is a 3rd year course called ‘Logic and Set
Theory’ that rigorously defines this.

There are two main reasons to want to prove things.

(i) To be sure that they are true; and

(ii) to understand why they are true.

For the first point, it is easy to make a contrived example that shows why we need to prove
statements even though they appear to be true for small 𝑛, for example: ‘all positive integers
𝑛 are not equal to 100 trillion’. Understanding the reasoning behind why a statement is true
is also very important; an example of this is at the end of this lecture.

1.2. Proofs and non-proofs
Claim. For any positive integer 𝑛, 𝑛3 − 𝑛 is a multiple of 3.

Proof. Given some positive integer 𝑛, we have

𝑛3 − 𝑛 = (𝑛 − 1)𝑛(𝑛 + 1)

One of 𝑛 − 1, 𝑛, 𝑛 + 1must be a multiple of 3 as they are 3 consecutive integers.

Therefore, (𝑛 − 1)𝑛(𝑛 + 1)must be a multiple of 3.

There are a couple of things to note about this proof.

• The phrase ‘given a positive integer’ is important; we need to knowwhere this variable
𝑛 came from.

• We used the fact that three consecutive numbers contain a multiple of 3 here, but this
was not proven. We must prove this fact elsewhere, or we cannot use it in this course!

• It is important to write proofs legibly and linearly down the page; don’t just write a
long line of symbols.

Claim. For any positive integer 𝑛, if 𝑛2 is even then 𝑛 is even.
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1. Proofs

Proof. Given a positive integer 𝑛 that is even, we have 𝑛 = 2𝑘 for some integer 𝑘.

Thus 𝑛2 = (2𝑘)2 = 4𝑘2 = 2(2𝑘2),

so 𝑛2 is even.

Note. This is a false proof. We proved that 𝐵 ⟹ 𝐴, but we want 𝐴 ⟹ 𝐵. Our result
wasn’t false, but it didn’t show what we set out to prove. The words ‘for some integer 𝑘’ are
important: we must specify which set 𝑘 belongs to. Our proof would be incorrect if we did
not state this, as it would be unclear that 2(2𝑘2) is an even number.

Claim. For any positive integer 𝑛, if 𝑛2 is a multiple of 9 then 𝑛 is a multiple of 9.

Proof. Given a positive integer 𝑛 that is a multiple of 9, we have 𝑛 = 9𝑘 for some integer 𝑘.

Therefore, 𝑛2 = (9𝑘)2 = 81𝑘2 = 9(9𝑘2),

so 𝑛2 is a multiple of 9.

Note. Not only does this fall for the same trap as the previous proof, but the original claim
is false (e.g. 𝑛 = 6)! It’s entirely irrelevant that the claim is true for some positive integers,
because even one counterexample disproves the claim.

Let’s return now to the previous incorrect example: ‘if 𝑛2 even then 𝑛 even for all positive
integers 𝑛’.

Proof. Suppose that 𝑛 is odd.

We have 𝑛 = 2𝑘 + 1 for some integer 𝑘.

Therefore, 𝑛2 = (2𝑘 + 1)2 = 4𝑘2 + 4𝑘 + 1 = 2(2𝑘2 + 2𝑘) + 1

𝑛2 is odd #

Therefore 𝑛 is even.

• We prove things to show why something is true. We can see why this claim was true
here—it’s really a statement about the properties of odd numbers, not the properties
of even numbers.

• We started by saying that we need something tangible to work with: just stating that
‘𝑛2 is even’ is really hard to work with because square roots just get messy and don’t
yield any result. So we had to choose a clever first step.

• The symbol # shows that we have a contradiction.

This was a kind of proof by contradiction. Essentially, 𝐴 ⟹ 𝐵 is the same as saying
¬𝐵 ⟹ ¬𝐴. This is because:

• 𝐴 ⟹ 𝐵 means that there is no case such that 𝐴 is false and 𝐵 is true.
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I. Numbers and Sets

• ¬𝐵 ⟹ ¬𝐴means that there is no case such that¬𝐵 is false and¬𝐴 is true. In other
words, there is no case such that 𝐵 is true and 𝐴 is false. This is equivalent to the case
with 𝐴 ⟹ 𝐵.

Claim. The solution to the real equation 𝑥2 − 5𝑥 + 6 = 0 is 𝑥 = 2 or 𝑥 = 3.
Note. This is really two assertions:

(i) 𝑥 = 2 ∨ 𝑥 = 3 ⟹ 𝑥2 − 5𝑥 + 6 = 0, and
(ii) 𝑥2 − 5𝑥 + 6 = 0 ⟹ 𝑥 = 2 ∨ 𝑥 = 3

We can denote this using a two-way implication symbol ⟺ :

𝑥 = 2 ∨ 𝑥 = 3 ⟺ 𝑥2 − 5𝑥 + 6 = 0

Proof. Weprove case i by expressing the left hand side as a product of factors: (𝑥−3)(𝑥−2) =
0. The other case may be proven using factorisation.

We can do another kind of proof using ⟺ symbols a lot. However, we need to be absolutely
sure that each step really is a bi-implication.

Alternative Proof. For any real 𝑥:

𝑥2 − 5𝑥 + 6 = 0 ⟺ (𝑥 − 2)(𝑥 − 3) = 0
⟺ 𝑥 − 2 = 0 ∨ 𝑥 − 3 = 0
⟺ 𝑥 = 2 ∨ 𝑥 = 3

Claim. Every positive real is at least 1.

Proof. Let 𝑥 be the smallest positive real. We want to prove 𝑥 = 1, so we prove this by
contradiction.

Case 1: if 𝑥 < 1 then 𝑥2 < 𝑥 #
Case 2: if 𝑥 > 1 then√𝑥 < 𝑥 #
Therefore 𝑥 = 1

Note. The assertion that there exists a smallest positive real is not justified. This means that
the proof is invalid in its entirety. It is important that every line in a proof must be justified.

10



2. Elementary number theory

2. Elementary number theory
2.1. The natural numbers
Each line in a proofmust be justified. So, in number theory, what are you allowed to assume?
We must begin with a set of axioms. We define that the natural numbers are a set denoted
ℕ, that contains an element denoted 1, with an operation +1 satisfying:

(i) ∀𝑛 ∈ ℕ, 𝑛 + 1 ≠ 1

(ii) ∀𝑚, 𝑛 ∈ ℕ,𝑚 ≠ 𝑛 ⟹ 𝑚+ 1 ≠ 𝑛 + 1 (together with the previous rule, this captures
the idea that all numbers in ℕ are distinct)

(iii) For any property 𝑝(𝑛), if 𝑝(1) is true and 𝑝(𝑛) ⟹ 𝑝(𝑛+1) ∀𝑛 ∈ ℕ, then 𝑝(𝑛) ∀𝑛 ∈ ℕ
(induction axiom).

This list of rules is known as the Peano axioms. Note that we did not include 0 in this set.
You can show that the list of natural numbers is complete and has no extras (like the rational
number 3.5) by specifying 𝑝(𝑛) = ‘𝑛 is on the list of natural numbers’.

Note that while numbers are defined as, for example, 1+1+1+1, we are free to usewhatever
names we like, e.g. 4 or 3735928559.

We may also define our own operations, such as +2, which is defined to be +1 + 1. In fact,
we can define the operation +𝑘 for any 𝑘 ∈ ℕ by stating:

(𝑛 + 𝑘) + 1 = 𝑛 + (𝑘 + 1) (∀𝑛, 𝑘 ∈ ℕ)

and using induction to construct the +𝑘 operator for all 𝑘. We can similarly construct mul-
tiplication and exponentiation operators for all natural numbers, although this is omitted
here. We can also prove properties on these operators such as associativity, commutativity
and distributivity.

We can also define the < operator as follows: 𝑎 < 𝑏 ⟺ ∃𝑘 ∈ ℕ s.t. 𝑎 + 𝑘 = 𝑏. Of course,
we can also prove several properties using this rule, such as transitivity, and the fact that
𝑎 ≮ 𝑎, which are omitted here.

2.2. Strong induction
The induction axiom states that if we know

• 𝑝(1) is true, and

• 𝑝(𝑛) ⟹ 𝑝(𝑛 + 1) for any 𝑛 ∈ ℕ

then we can conclude that 𝑝(𝑛) is true for all 𝑛 ∈ ℕ. We can in fact prove a stronger state-
ment using this axiom, known as ‘strong induction’.

Claim. If we know that
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I. Numbers and Sets

• 𝑝(1) is true, and

• the fact that 𝑝(𝑘) is true for all 𝑘 < 𝑛 implies that 𝑝(𝑛) is true

then 𝑝(𝑛) is true for all 𝑛 ∈ ℕ.

Proof. Consider the predicate 𝑞(𝑛) defined as: ‘𝑝(𝑘) is true for all 𝑘 < 𝑛’. Given that 𝑝(1) is
true, 𝑞(1) is trivially true since there are no 𝑘 below 1. Since 𝑞(𝑛) ⟹ 𝑞(𝑛+ 1), we can use
the induction axiom, showing that 𝑞(𝑛) is true for all 𝑛, so 𝑝(𝑛) is true for all 𝑛.

This provides a very useful alternative way of looking at induction. Instead of just consider-
ing a process from 𝑛 to 𝑛 + 1, we can inject an inductive viewpoint into any proof. When
proving something on the natural numbers, we can always assume that the hypothesis is
true for smaller 𝑛 than what we are currently using. This allows us to write very powerful
proofs because in the general case we are allowed to refer back to other smaller cases—but
not just 𝑛 − 1, any 𝑘 less than 𝑛.

We may rewrite the principle of strong induction in the following ways:

(i) If 𝑝(𝑛) is false for some 𝑛, there must be some𝑚 where 𝑝(𝑚) is false and 𝑝(𝑘) is true
for all 𝑘 < 𝑚. In other words, if a counterexample exists, there must exist a minimal
counterexample.

(ii) If 𝑝(𝑛) is true for some 𝑛, then there is a smallest 𝑛 where 𝑝(𝑛). In other words, if
an example exists, there must exist a minimal example. This is known as the ‘well-
ordering principle’.

2.3. The integers and rationals

The integersℤ consist of the set of natural numbersℕ, their additive inverses, and an identity
element denoted 0. In other words, (ℤ, +) is the group generated by ℕ and the addition
operator: ℤ = ⟨ℕ⟩. We define operations in a familiar way, for example 𝑎 < 𝑏 ⟺ ∃𝑐 ∈
ℕ s.t. 𝑎 + 𝑐 = 𝑏.

The rational numbersℚ consist of all expressions denoted 𝑎
𝑏
where 𝑎, 𝑏 ∈ ℤwith 𝑏 ≠ 0; with

𝑎
𝑏
regarded as the same as 𝑐

𝑑
if and only if 𝑎𝑑 = 𝑏𝑐. We define, for example,

𝑎
𝑏 +

𝑐
𝑑 = 𝑎𝑑 + 𝑏𝑐

𝑏𝑑

Note that is important to verify with each operation that it does not matter how you write a
given rational number. For example, 1

2
+ 1

2
= 2

4
+ 3

6
. This means that operations such as 𝑎

𝑏
↦

𝑎3

𝑏2
cannot exist because then it would depend on how you write the rational number.
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2. Elementary number theory

2.4. Primes
Proposition. Every 𝑛 ≥ 2 is expressible as a product of primes.

Proof. We use induction on an integer 𝑛, starting at 2, a trivial case. Given 𝑛 > 2, we have
two cases:

• 𝑛 is prime. Therefore, 𝑛 is a product of primes as required.
• 𝑛 is composite. We know that 𝑛 can be split into two factors, denoted here as 𝑎, 𝑏.
Using (strong) induction, we know that because both 𝑎 and 𝑏 are smaller than 𝑛, they
are expressible as a product of primes. We simply multiply these products together to
express 𝑛 as a product of primes.

Proposition. There are infinitely many primes.

Proof. Assume there exists a largest prime. Then, the list of primes is 𝑝1, 𝑝2⋯𝑝𝑘. Let 𝑛 =
𝑝1𝑝2⋯𝑝𝑘 +1. Then 𝑛 has no prime factor. This is a contradiction immediately because we
know that every number greater than two has a factorisation, but this doesn’t.

We want to prove that prime factorisation is unique (up to the ordering). We need that
𝑝 ∣ 𝑎𝑏 ⟹ 𝑝 ∣ 𝑎 ∨ 𝑝 ∣ 𝑏. However, this is hard to answer—𝑝 is defined in terms of what
divides it, not what it divides. This is the reverse of its definition, so we need to prove it in a
more round-about way.

2.5. Highest common factors
For 𝑎, 𝑏 ∈ ℕ, a number 𝑐 ∈ ℕ is defined to be the highest common factor if:

• 𝑐 ∣ 𝑎 and 𝑐 ∣ 𝑏, and
• For all other factors 𝑑 (𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏), we have that 𝑑 ∣ 𝑐.

The second point implies that it is the highest common factor, but it is actually slightly
stronger. Note that, for example, if a pair’s common factors were 1, 2, 3, 4, 6 then the num-
bers would not have a highest common factor, because 4 does not divide 6.

2.6. The division algorithm
The division algorithm allows us to write any number 𝑛 ∈ ℕ as a multiple 𝑞 ∈ ℕ of 𝑘 ∈ ℕ
with some remainder 𝑟 ∈ ℕ such that 0 ≤ 𝑟 < 𝑘; this can be shortened to 𝑛 = 𝑞𝑘 + 𝑟. We
begin by writing 1 in this form: 1 = 0𝑘 + 1. Inductively, 𝑛 can be written as:

𝑛 = (𝑛 − 1) + 1 = 𝑞0𝑘 + 𝑟0 + 1

where 𝑞0 and 𝑟0 are the results of 𝑞 and 𝑟 for 𝑛 − 1. Note that we have two cases:
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I. Numbers and Sets

• If 𝑟0 + 1 < 𝑘: the result is simply 𝑛 = 𝑞0𝑘 + (𝑟0 + 1)

• Else (𝑟0 + 1 = 𝑘): the result is 𝑛 = (𝑞0 + 1)𝑘 + 0

2.7. Euclid’s algorithm

We can find the highest common factor of two natural numbers 𝑎 and 𝑏 (without loss of
generality, we assume that 𝑎 ≤ 𝑏). This process is known as Euclid’s algorithm.

• Write 𝑎 as some multiple 𝑞1 of 𝑏, with remainder 𝑟1.

• Write 𝑏 as some multiple 𝑞2 of 𝑟1, with remainder 𝑟2.

• Write 𝑟1 as some multiple 𝑞3 of 𝑟2, with remainder 𝑟3.

• Continue until 𝑟𝑛+1 = 0. Then, 𝑟𝑛 is the highest common factor of 𝑎 and 𝑏. We know
that the algorithm terminates because 𝑟𝑘 < 𝑟𝑘−1 so it will terminate in at most 𝑏 steps.

We now prove that the algorithm works.

Proof. Weneed to prove that it is a common factor and then that it divides all other common
factors.

• On the last line of the algorithm, we have 𝑟𝑛−1 = 𝑞𝑛+1𝑟𝑛 + 0, so we know that 𝑟𝑛 ∣ 𝑟𝑛−1.
On the second last line, we have 𝑟𝑛−2 = 𝑞𝑛𝑟𝑛−1 + 𝑟𝑛, but 𝑟𝑛 divides 𝑟𝑛−1, so 𝑟𝑛 must
divide 𝑟𝑛−2. We can continue this logic up to the start of the algorithm, where we can
see that 𝑟𝑛 ∣ 𝑎 and 𝑟𝑛 ∣ 𝑏. So 𝑟𝑛 is a common factor of 𝑎 and 𝑏.

• Given some other common factor 𝑑 ≠ 𝑟𝑛, we can look at the first line of the algorithm
to see that 𝑑 ∣ 𝑟1. Using this, we can use the next line to see that 𝑑 ∣ 𝑟2. Continuing to
the last line, we have 𝑑 ∣ 𝑟𝑛.

So 𝑟𝑛 is the highest common factor of 𝑎 and 𝑏. Therefore, the highest common factor exists
and is unique for any natural numbers 𝑎 and 𝑏.

Consider running Euclid’s algorithm on the numbers 87 and 52.

87 = 1 ⋅ 52 + 35
52 = 1 ⋅ 35 + 17
35 = 2 ⋅ 17 + 1
17 = 17 ⋅ 1 + 0

1 is the highest common factor of 87 and 52. Now, we can write 1 as a linear combination
of 87 and 52 by looking at each line of this algorithm in the reverse direction (ignoring the
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2. Elementary number theory

bottom line).

1 = 35 − 2 ⋅ 17
= 35 − 2 ⋅ (52 − 1 ⋅ 35)
= −2 ⋅ 52 + 3 ⋅ 35
= −2 ⋅ 52 + 3 ⋅ (87 − 1 ⋅ 52)
= 3 ⋅ 87 − 5 ⋅ 52

Each two lines of this equation represents one line on Euclid’s algorithm. We end up with
a linear combination of the two input numbers. We can prove that this linear combination
exists in the general case.

Theorem. Let 𝑎, 𝑏 ∈ ℕ. Then there exist some 𝑥, 𝑦 ∈ ℤ such that 𝑥𝑎 + 𝑦𝑏 = HCF(𝑎, 𝑏).

Proof. Run Euclid’s algorithm on 𝑎 and 𝑏, and let the output be 𝑟𝑛. Then we have 𝑟𝑛 =
𝑥𝑟𝑛−1 + 𝑦𝑟𝑛−2 for some 𝑥, 𝑦 ∈ ℤ. So, 𝑟𝑛 can be written as a linear combination of 𝑟𝑛−1 and
𝑟𝑛−2. Also, from the previous line we know that 𝑟𝑛−1 = 𝑥𝑟𝑛−2 +𝑦𝑟𝑛−3 for some other 𝑥 and 𝑦.
So we can rewrite 𝑟𝑛 as a linear combination of 𝑟𝑛−2 and 𝑟𝑛−3. Inductively, we can rewrite 𝑟𝑛
as a linear combination of 𝑎 and 𝑏 by moving up the lines of the algorithm.

We can also make an alternate proof without using Euclid’s algorithm. Note that this al-
gorithm does not show how to generate this linear combination, it just shows that one ex-
ists.

Alternate Proof. Let ℎ be the least positive linear combination of 𝑎 and 𝑏. We want to prove
that ℎ = HCF(𝑎, 𝑏).

• Assume that there exists some common factor 𝑑 of 𝑎 and 𝑏, so that 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏.
Then for some 𝑥 and 𝑦, 𝑑 ∣ (𝑥𝑎 + 𝑦𝑏). So 𝑑 ∣ ℎ.

• Suppose ℎ does not divide 𝑎. Then 𝑎 = 𝑞ℎ + 𝑟 where 𝑞 is the quotient and 𝑟 is the
remainder (𝑟 ≠ 0). Then 𝑟 = 𝑎 − 𝑞ℎ = 𝑎 − 𝑞(𝑥𝑎 + 𝑦𝑏) for some integers 𝑥 and 𝑦. So
𝑟 is a linear combination of 𝑎 and 𝑏. But this is a contradiction because we said that ℎ
was the smallest one. So ℎ divides 𝑎.

Therefore ℎ is the highest common factor.

2.8. Linear Diophantine equations
Suppose 𝑎, 𝑏 and 𝑐 are natural numbers. When can we solve 𝑎𝑥 + 𝑏𝑦 = 𝑐 for 𝑥, 𝑦 ∈ ℤ?
Well, by looking at the previous theorem, we might guess that 𝑐 must be some multiple of
the highest common factor of 𝑎 and 𝑏. This can be proven in the general case.
Corollary (Bézout’s Theorem). Let 𝑎, 𝑏, 𝑐 ∈ ℕ. Then 𝑎𝑥 + 𝑏𝑦 = 𝑐 where 𝑥, 𝑦 ∈ ℤ has a
solution if and only if HCF(𝑎, 𝑏) ∣ 𝑐.

15



I. Numbers and Sets

Proof. Let ℎ = HCF(𝑎, 𝑏). We must prove this bi-implication in both directions.

• First, let us assume that 𝑎𝑥 + 𝑏𝑦 = 𝑐 has a solution for some integers 𝑥 and 𝑦. Since
ℎ ∣ 𝑎 and ℎ ∣ 𝑏 then ℎ ∣ (𝑎𝑥 + 𝑏𝑦) so ℎ ∣ 𝑐.

• Conversely, we know that ℎ = 𝑎𝑥 + 𝑏𝑦 for some 𝑥 and 𝑦 by the above theorem. We
can multiply both sides by the integer 𝑐/ℎ (this is an integer because ℎ ∣ 𝑐). Then we
have an expression for 𝑐 as a linear combination of 𝑎 and 𝑏 as required.

2.9. The fundamental theorem of arithmetic
Lemma. Let 𝑝 be a prime, let 𝑎, 𝑏 ∈ ℕ. Then 𝑝 ∣ 𝑎𝑏 implies 𝑝 ∣ 𝑎 or 𝑝 ∣ 𝑏.

Proof. Let 𝑝 ∣ 𝑎𝑏. Then we have two cases, either 𝑝 divides 𝑎 or it does not divide 𝑎. If it
does, our statement is trivially true. Otherwise, we want to prove that 𝑝 divides 𝑏.

Now HCF(𝑝, 𝑎) = 1 as 𝑝 is a prime, and it does not divide 𝑎. So 1 can be written as some
linear combination of 𝑝 and 𝑎: 𝑝𝑥 + 𝑎𝑦 = 1 for some 𝑥, 𝑦 ∈ ℤ.

Now we can multiply both sides by 𝑏, giving 𝑝𝑏𝑥 + 𝑎𝑏𝑦 = 𝑏. Since 𝑝 divides 𝑎𝑏, 𝑝 must
divide the left hand side. So 𝑝 divides 𝑏.

Note thatwe startedwith a kind of ‘negative’ statement: ‘𝑝 does not divide 𝑎’; this told us that
we cannot do something (namely, factorise it). We turned it into a ‘positive’ statement: ‘𝑝𝑥+
𝑎𝑦 = 1’; this allows us to rearrange to find out information about these variables. Converting
‘negative’ statements to ‘positive’ statements is a useful tool in making proofs.

Theorem (the fundamental theorem of arithmetic). Every 𝑛 ∈ ℕ is uniquely expressible as
a product of primes.

Proof. Note that we have already proven that a prime factorisation is possible in Section 3.4;
we just need to prove uniqueness of a factorisation (at least, down to its order). We will use
induction on some integer 𝑛 that we wish to factorise. Clearly the theorem is true for 𝑛 = 1
(assuming empty products are valid) and 𝑛 = 2.

So given that 𝑛 > 2 we suppose that there exist two possible factorisations:

𝑛 = 𝑝1𝑝2⋯𝑝𝑘 = 𝑞1𝑞2⋯𝑞𝑙

We want to prove that 𝑘 = 𝑙 and that (after reordering) 𝑝𝑖 = 𝑞𝑖 for all valid 𝑖.

We know that 𝑝1 ∣ 𝑛, so 𝑝1 ∣ (𝑞1⋯𝑞𝑙). So there must exist some 𝑖 where 𝑝1 ∣ 𝑞𝑖. But since 𝑞𝑖
is prime, 𝑝1 = 𝑞𝑖. Let us reorder the list such that 𝑞𝑖 is moved to the front, so that 𝑝1 = 𝑞1.

𝑛 = 𝑝1𝑝2⋯𝑝𝑘 = 𝑝1𝑞2⋯𝑞𝑙
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Now, we divide the entire equation by 𝑝1 to give
𝑛
𝑝1

= 𝑝2⋯𝑝𝑘 = 𝑞2⋯𝑞𝑙

The integer 𝑛
𝑝1
is smaller than 𝑛, so we can use induction to assume that its factorisation is

unique. Therefore
[𝑝2, 𝑝3⋯𝑝𝑘] = [𝑞2, 𝑞3⋯𝑞𝑙]

So the prime factorisation of 𝑛 is unique.

The common factors of two numbers𝑚 = 𝑝𝑎11 ⋯𝑝𝑎𝑘𝑘 and 𝑛 = 𝑝𝑏11 ⋯𝑝𝑏𝑘𝑘 where 𝑎 and 𝑏 are
zero or above is given by 𝑝𝑐11 ⋯𝑝𝑐𝑘𝑘 where 𝑐𝑖 ≤ min(𝑎𝑖, 𝑏𝑖) So the highest common factor is
given by 𝑐𝑖 = min(𝑎𝑖, 𝑏𝑖).
The common multiples of those two numbers is given by 𝑑𝑖 ≥ max(𝑎𝑖, 𝑏𝑖). So analogously
the lowest common multiple is given by 𝑑𝑖 = max(𝑎𝑖, 𝑏𝑖).
We have the interesting property that HCF(𝑚, 𝑛)LCM(𝑚, 𝑛) = 𝑚𝑛. This is true because any
term 𝑝𝑖 is given by 𝑝min(𝑎𝑖 ,𝑏𝑖)𝑖 𝑝max(𝑎𝑖 ,𝑏𝑖)𝑖 = 𝑝𝑎𝑖+𝑏𝑖𝑖 .
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3. Modular arithmetic
3.1. Introduction
In modular arithmetic, we need to prove that things like addition and multiplication are
valid. In order to do this, we need to show that if 𝑎 ≡ 𝑎′ mod 𝑛 and 𝑏 ≡ 𝑏′ mod 𝑛 then,
for example, 𝑎𝑏 ≡ 𝑎′𝑏′. We can prove these statements trivially bywriting 𝑎′ = 𝑎+𝑘𝑛where
𝑘 is some integer, then evaluating the left and right hand sides in ℤ.
Many rules of arithmetic are inherited from ℤ; for example, addition is commutative. This
is easy to realise: to prove that 𝑎 + 𝑏 = 𝑏 + 𝑎 in ℤ𝑛 it is sufficient to prove the statement is
true in the whole of ℤ.
As another example, we can transform the unique prime factorisation lemma into ℤ𝑝. In ℤ𝑝
where 𝑝 is prime,

𝑎𝑏 = 0 ⟹ (𝑎 = 0) ∨ (𝑏 = 0)
In general, ℤ𝑝 where 𝑝 is prime is a very well behaved and convenient-to-use subset of
ℤ.

3.2. Inverses
For any 𝑎, 𝑏 ∈ ℤ𝑛, 𝑏 is an inverse of 𝑎 if 𝑎𝑏 = 1. Note that unlike in group theory, it is not
necessarily the case that all elements will have inverses. For example, in ℤ10, the elements
3 and 7 are inverses, but 4 has no inverse. Note that:

• Invertible integers are cancellable. For example, 𝑎𝑏 = 𝑎𝑐 ⟹ 𝑏 = 𝑐 if 𝑎 is invertible
(by left-multiplying by its inverse).

• In general, you cannot simply cancel an integermultiple in the realm ofmodular arith-
metic. For example 4 ⋅ 5 = 2 ⋅ 5 does not imply 4 = 2.

• Invertible numbers are also called ‘units’.

3.3. Invertibility
Proposition. Let 𝑛 ≥ 2. Then every 𝑎 ≢ 0 (𝑛) is invertiblemodulo 𝑛 if and only if (𝑎, 𝑛) = 1.
Note that the parenthesis notation means the highest common factor of the parameters. In
particular, if 𝑛 is prime, then all 1 ≤ 𝑎 < 𝑛 are invertible.

Proof. This first proof uses Euclid’s algorithm. If 𝑎 and 𝑛 satisfy (𝑎, 𝑛) = 1 then 𝑎𝑥+𝑛𝑦 = 1
for some 𝑥, 𝑦 ∈ ℤ. So 𝑎𝑥 = 1 − 𝑛𝑦, so 𝑎𝑥 ≡ 1 (𝑛). So 𝑥 is the inverse of 𝑎.

Proof. This alternate proof only works for 𝑛 = 𝑝 where 𝑝 is a prime; our whole proof lies
entirely within ℤ𝑝. Consider 0𝑎, 1𝑎, 2𝑎,⋯ , (𝑝 − 1)𝑎. Take two numbers 𝑖, 𝑗 between 0 and
𝑝−1, then consider the condition 𝑖𝑎 = 𝑗𝑎. This implies that (𝑖 − 𝑗)𝑎 = 0, but 𝑎 ≠ 0, so 𝑖 = 𝑗.
So this list 0𝑎, 1𝑎,⋯ contains all distinct elements, all of whichmust be between 0 and 𝑝−1.
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Therefore, by the pigeonhole principle, one of these elements must be equal to 1. Therefore
there exists an inverse for 𝑎.

3.4. Euler’s totient function
Definition. Let 𝜑(𝑛) be the amount of natural numbers less than or equal to 𝑛 that are
coprime to 𝑛.
Here are some examples.

• If 𝑝 is prime, then 𝜑(𝑝) = 𝑝 − 1 since all naturals less than 𝑝 are coprime to it.
• 𝜑(𝑝2) = 𝑝2 − 𝑝 because there are 𝑝 numbers in this range who shares the common
factor 𝑝 with 𝑝2, specifically the numbers 𝑝, 2𝑝, 3𝑝,⋯ , (𝑝 − 1)𝑝, 𝑝2.

• If 𝑎, 𝑏 are coprime, 𝜑(𝑎𝑏) = 𝑎𝑏−𝑎−𝑏+1. There are 𝑎𝑏 numbers in total to pick from.
There are 𝑎multiples of 𝑏 and 𝑏multiples of 𝑎, and since we discounted 𝑎𝑏 itself twice
we need to count it again. Note that 𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏).

3.5. Fermat’s little theorem and Fermat–Euler theorem
Theorem. Let 𝑝 be a prime. Then in ℤ𝑝, 𝑎 ≠ 0 ⟹ 𝑎𝑝−1 = 1.
This is actually a special case of the following theorem:

Theorem (Fermat–Euler Theorem). Let 𝑛 ≥ 2. Then in ℤ𝑛, any unit 𝑎 satisfies 𝑎𝜑(𝑛) = 1.

Proof. Let the set of units ℤ𝑛 ⊃ 𝑋 = {𝑥1, 𝑥2,⋯ , 𝑥𝜑(𝑛)}. Consider multiplying each unit by
𝑎. We have 𝑌 = {𝑎𝑥1, 𝑎𝑥2,⋯ , 𝑎𝑥𝜑(𝑛)}. Since 𝑎 is invertible, this set is comprised of distinct
elements. Further, since they are all products of units, they are all units. So 𝑌 is a list of 𝜑(𝑛)
distinct units, so this list must be equal to 𝑋 . Now, since the lists are the same, the product
of all their elements must be the same. So∏𝑋 = ∏𝑌 = 𝑎𝜑(𝑛)∏𝑋 . We can cancel the
factor of∏𝑋 because it is a product of invertibles, leaving 1 = 𝑎𝜑(𝑛) as required.

If alternatively we wanted to prove this just for 𝑝 prime, then we could replace 𝜑(𝑛) with
𝑝 − 1, and∏𝑋 with (𝑝 − 1)!.

3.6. Square roots of one
Lemma. Let 𝑝 be prime. Then in ℤ𝑝, 𝑥2 = 1 has solutions 1 and −1 only.
Note. In ℤ8, for example, we have 12 = 32 = 52 = 72 = 1, so obviously this does not hold in
the general case.

Proof. 𝑥2 = 1 implies that (𝑥 − 1)(𝑥 + 1) = 0. Because of the 𝑝 ∣ 𝑎𝑏 ⟹ (𝑝 ∣ 𝑎) ∨ (𝑝 ∣ 𝑏)
lemma, we know that (𝑥 − 1) = 0 or (𝑥 + 1) = 0, so −1 and 1 are the only solutions.
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3.7. Square roots of negative one

Theorem (Wilson’s Theorem). Let 𝑝 be prime. Then (𝑝 − 1)! ≡ −1 (𝑝).

Proof. Since this is obviously true for 𝑝 = 2, we will suppose that 𝑝 > 2. In ℤ𝑝, let us
consider the list 1, 2, 3⋯ (𝑝 − 1). We can pair each 𝑎 with its inverse 𝑎−1 for all 𝑎 ≠ 𝑎−1.
Note that 𝑎 = 𝑎−1 ⟺ 𝑎2 = 1 so in this case 𝑎 = 1 or 𝑎 = −1. So let us now multiply each
element together, to get

(𝑝 − 1)! = (𝑎𝑎−1)(𝑏𝑏−1)⋯1 ⋅ −1 = (1) ⋅ (1)⋯1 ⋅ −1 = −1

Proposition. Let 𝑝 > 2 be prime. Then −1 is a square number modulo 𝑝 if and only if
𝑝 ≡ 1 (4).

Proof. If 𝑝 > 2 then 𝑝 is odd. There are therefore two cases, either 𝑝 ≡ 1 or 𝑝 ≡ 3modulo
4. Each case is proven individually.

• (𝑝 = 4𝑘 + 3) Suppose that 𝑥2 = −1 in ℤ𝑝. The only thing we know about powers in
modular arithmetic is Fermat’s Little Theorem, so we will have to use this. So, 𝑥𝑝−1 =
𝑥4𝑘+2 = 1. Therefore, (𝑥2)2𝑘+1 = 1. But we know that 𝑥2 = −1, and we raise this −1
to an odd power, which is −1. So this is a contradiction.

• (𝑝 = 4𝑘 + 1) By Wilson’s Theorem, we know that (4𝑘)! = −1. We intend to show that
this is a square number in the world of ℤ𝑝. We will compare the termwise expansion
of (4𝑘)! and [(2𝑘)!]2 on consecutive lines.

(4𝑘)! = 1 ⋅ 2 ⋅ 3⋯ (2𝑘) ⋅ (2𝑘 + 1) ⋅ (2𝑘 + 2) ⋯ (4𝑘 − 1) ⋅ (4𝑘)
[(2𝑘)!]2 = 1 ⋅ 2 ⋅ 3⋯ (2𝑘) ⋅ 1 ⋅ 2 ⋯ (2𝑘 − 1) ⋅ (2𝑘)

By writing each term as an equivalent negative:

= 1 ⋅ 2 ⋅ 3⋯ (2𝑘) ⋅ (−4𝑘) ⋅ (−4𝑘 + 1)⋯ (−2𝑘 − 2) ⋅ (−2𝑘 − 1)

Extracting out the negatives:

= 1 ⋅ 2 ⋅ 3⋯ (2𝑘) ⋅ (4𝑘) ⋅ (4𝑘 − 1) ⋯ (2𝑘 + 2) ⋅ (2𝑘 + 1) ⋅ (−1)2𝑘

which is equal to the first line by rearranging. So [(2𝑘)!]2 = (4𝑘)! = −1. So −1 is a
square number modulo 𝑝.
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3.8. Solving congruence equations
Let us try to solve the equation 7𝑥 ≡ 4 (30). We take a two-phase approach: first, we will
find a single solution, and then we will find all of the other solutions.

Since 7 and 30 are coprime, we can use Euclid’s algorithm to find a way of expressing 1 in
terms of 7 and 30, in particular 13 ⋅ 7 − 3 ⋅ 30 = 1. This allows us to solve 7𝑦 ≡ 1 (30),
by setting 𝑦 = 13. Then, of course, we can multiply both sides by 4: 7𝑦 ⋅ 4 ≡ 4 (30), so
𝑥 = 𝑦 ⋅ 4 = 13 ⋅ 4 = 22.
We can now find other solutions (apart from trivially adding 30𝑘). Suppose that there exists
some other solution 𝑥′, i.e. 7𝑥′ ≡ 4 (30). Then 7𝑥 ≡ 7𝑥′ (30). As 7 is invertible modulo 30,
we can simply multiply by the inverse of 7 to give 𝑥 ≡ 𝑥′ (30). So 𝑥 is unique modulo 30.
Alternatively, we could solve the equation without any of this working out by noticing that 7
is invertible! However, this is not very likely to happen in the general case, since it requires
that the coefficient of 𝑥 is coprime to the modulus.
Now, let’s try a different equation, 10𝑥 = 12 (34). Since 10 is not invertible, we can’t do
quite the same thing as above. We can’t also just divide the whole thing by 2, there isn’t a
rule for that in general. We can, however, move into ℤ and manipulate the expression there.
10𝑥 = 12 + 34𝑦 for some 𝑦 ∈ ℤ, so we can divide the equation by 2 to get 5𝑥 = 6 + 17𝑦, so
5𝑥 = 6 (17) and we can solve from there.

3.9. Chinese remainder theorem
Is there a solution for the simultaneous congruences

𝑥 ≡ 6 (17); 𝑥 ≡ 2 (19)

17 and 19 are coprime, so congruence mod 17 and congruence mod 19 are independent of
each other. How about

𝑥 ≡ 6 (34); 𝑥 ≡ 11 (36)
In this instance, there is obviously no solution; should 𝑥 be even or odd? We can see that,
the smallest amount we can adjust 𝑥 by in one equation while retaining congruence in the
other equation is HCF(34, 36), which is 2.
Theorem. Let 𝑢, 𝑣 be coprime. Then for any 𝑎, 𝑏, there exists a value 𝑥 such that

𝑥 ≡ 𝑎 (𝑢); 𝑥 ≡ 𝑏 (𝑣)

and that this value is unique modulo 𝑢𝑣.

Proof. We first prove existence of such an 𝑥. By Euclid’s Algorithm, we have 𝑠𝑢 + 𝑡𝑣 = 1 for
some integers 𝑠, 𝑡. Note that therefore:

𝑠𝑢 ≡ 0 (𝑢); 𝑡𝑣 ≡ 0 (𝑣); 𝑠𝑢 ≡ 1 (𝑣); 𝑡𝑣 ≡ 1 (𝑢);
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Therefore we can make a linear combination of 𝑠𝑢 and 𝑡𝑣 that is the required size in each
congruence, specifically

𝑥 = (𝑠𝑢)𝑏 + (𝑡𝑣)𝑎
Nowwe prove that this value 𝑥 is uniquemodulo 𝑢𝑣. Suppose there was some other solution
𝑥′. Also, 𝑥′ ≡ 𝑥 (𝑢) and 𝑥′ ≡ 𝑥 (𝑣). So we have 𝑢 ∣ (𝑥′ − 𝑥) and 𝑣 ∣ (𝑥′ − 𝑥) but as 𝑢 and 𝑏
are coprime we have 𝑢𝑣 ∣ (𝑥′ − 𝑥). So 𝑥 is unique modulo 𝑢𝑣.

3.10. RSA encryption
A practical use of number theory is RSA encryption, which is an asymmetric encryption
protocol that allows encryption by using a public and private key pair. We will begin by first
choosing two large distinct primes 𝑝 and 𝑞. By large, we mean primes that are hundreds of
digits long; in practice, these primes are between around 512 bits and 2048 bits long when
represented in binary. Let 𝑛 = 𝑝𝑞, and pick a ‘coding exponent’ 𝑒. Our message that we
want to send must be an element of ℤ𝑛, so if it is not representable in this form we must
break it apart into several smaller messages, or perhaps use RSA to share some kind of small
symmetric key for another encryption algorithm. Let this message be 𝑥, so 𝑥 < 𝑛.
To encode 𝑥, we raise it to the power 𝑒 in ℤ𝑛. To efficiently compute large powers of 𝑥, we
can use a repeated squaring technique. For example, we can find 𝑥, 𝑥2, 𝑥4, 𝑥8, 𝑥16 through
repeated squaring, and then for example we can calculate 𝑥19 = 𝑥16𝑥2𝑥1.
To decode 𝑥𝑒, we ideally want some number 𝑑 such that (𝑥𝑒)𝑑 = 𝑥. By the Fermat–Euler
Theorem, we have 𝑥𝜑(𝑛) = 1, so clearly 𝑥𝑘𝜑(𝑛)+1 = 𝑥. In other words, we want 𝑒𝑑 ≡ 1
mod 𝜑(𝑛). By running Euclid’s algorithm on 𝑒 and 𝜑(𝑛), we can find such a 𝑑. Note that
this requires 𝑒 and 𝜑(𝑛) to be coprime; in practice we would choose 𝑒 after we have chosen
𝑛 such that this is the case.
Now, we can see that to encode a message, all you need is 𝑛 and 𝑒. However, to decode, you
need to also know 𝑑, which means you need to know 𝜑(𝑛) = 𝜑(𝑝𝑞) = 𝑝𝑞 − 𝑝− 𝑞+ 1which
requires that you know the original 𝑝 and 𝑞. If we pick sufficiently large 𝑝 and 𝑞, our 𝑛 will
be so big as to be almost impossible to factorise in any decent length of time. So we can
publish 𝑛 and 𝑒 as our public key, and anyone may use these numbers to encrypt a message
that then only we can decode.
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4. The reals
4.1. Motivation for the reals
Why do we need the real numbers in the first place? Well, we introduce new sets of num-
bers when there are equations that we cannot solve using our current number system. For
example, the equation 𝑥+2 = 0 is not solvable inℕ, so we constructedℤ. Thenwe could not
solve equations like 2𝑥 = 3, so we created the rationals, ℚ. Now, we cannot solve equations
such as 𝑥2 = 2, so we must create a new set of numbers that contains this solution.

Proposition. There does not exist a 𝑞 ∈ ℚ such that 𝑞2 = 2. Note that in this proposition
we make no assumption that 𝑞2 = 2 is solvable, or that a solution if one exists does not lie
within ℚ; we simply state that confined to the realm of ℚ the equation is unsolvable.

Proof 1. Suppose that such a 𝑞 ∈ ℚ exists, such that 𝑞2 = 2. Without loss of generality, we
will assume that 𝑞 > 0 because (−𝑞)2 = 𝑞2. So let 𝑞 be written as 𝑎/𝑏 where 𝑎, 𝑏 ∈ ℕ. Then
𝑎2/𝑏2 = 2, so 𝑎2 = 2𝑏2. If we factorise each side as a product of primes, the exponent of the
prime 2 on the left hand side must be even, but on the right hand side it must be odd. This
contradicts the unique factorisation of natural numbers. So such a 𝑞 does not exist.

Proof 2. Suppose that there exists some 𝑞 ∈ ℚ written similarly to above as 𝑎/𝑏. Note that
for any 𝑐, 𝑑 ∈ ℤ, 𝑐𝑞 + 𝑑 is of the form 𝑒/𝑏 for some integer 𝑒. Therefore, if 𝑐𝑞 + 𝑑 > 0 then
𝑐𝑞 + 𝑑 ≥ 1/𝑏.
Now, note that 0 < (𝑞−1) < 1, so for a suitably large 𝑛, we have 0 < (𝑞−1)𝑛 < 1/𝑏. However,
(𝑞 − 1)𝑛 is of the form 𝑐𝑞 + 𝑑 because 𝑞2 = 1 so we can eliminate all exponents. This is a
contradiction so such a 𝑞 does not exist.

We can see from the proofs above that ℚ has a ‘gap’ at √2. How can we express this fact
without mentioning ℝ? We can’t just say plainly that √2 ∉ ℚ because as far as we know
from ℚ, there is no reason to assume that such a number called √2 even exists! We need
to find a way to express the concept of √2 in the language of ℚ. One way to do this is by
creating sone set 𝑆 = {𝑞 ∈ ℚ ∶ 𝑞2 < 2}. Then we can write down some upper bounds for
this set. For example, 2 is a trivial upper bound, as is 1.5, and as is 1.42. In fact, we can
continue making smaller and smaller upper bounds. We can see therefore that there exists
no least upper bound in ℚ.

4.2. Axioms of the reals
We define the reals as follows: the reals are a set writtenℝwith elements 0 and 1 with 0 ≠ 1;
with operations + and ⋅; and an ordering <; such that:
(i) + is commutative, associative, has identity 0, and there are inverses for all elements;

(ii) ⋅ is commutative, associative, has identity 1, and there are inverses for all nonzero
elements;
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I. Numbers and Sets

(iii) ⋅ is distributive over +;
(iv) for all 𝑎 and 𝑏 in ℝ, exactly one of 𝑎 < 𝑏, 𝑎 = 𝑏 and 𝑎 > 𝑏 are true, and that 𝑎 < 𝑏 and

𝑏 < 𝑐 implies 𝑎 < 𝑐;
(v) for all 𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎 < 𝑏 implies 𝑎 + 𝑐 < 𝑏 + 𝑐, and 𝑎 < 𝑏 implies 𝑎𝑐 < 𝑏𝑐 when 𝑐 > 0;

and

(vi) for any set 𝑆 of reals that is non-empty and bounded above, 𝑆 has a least upper bound.
There are some notable immediate remarks about the definitions of the reals.

• We can contain the rationals inside the reals: ℚ ⊂ ℝ
• The least upper bound axiom is false in ℚ, which is why it’s so important in ℝ.
• Why did we specify ‘non-empty’ and ‘bounded above’ in the least upper bound axiom?
Of course, if a set is not bounded above, then it has no upper bound, so clearly it can
have no least upper bound. If a set is empty, then every real is an upper bound for this
set, and as there is no least real number, there is no least upper bound.

• It is possible to construct ℝ out ofℚ, and check that the above axioms hold. However,
this is a rare example where the construction of ℝ is complicated and irrelevant, so it
is not covered here.

The reals do not contain infinitely big or infinitesimally small elements.

Proposition (the axiom of Archimedes). ℕ is not bounded above in ℝ.

Proof. If therewere some upper bound 𝑐 = supℕ, then 𝑐−1 is clearly not an upper bound for
ℕ. So there exists some natural number 𝑛 such that 𝑛 > 𝑐−1. But then clearly 𝑛+1 ∈ ℕ > 𝑐
contradicting the existence of this upper bound.

Corollary. For each 𝑡 ∈ ℝ > 0, ∃𝑛 ∈ ℕ such that 1
𝑛
< 𝑡.

Proof. We have some 𝑛 ∈ ℕ with 𝑛 > 1
𝑡
by the above proposition. So 1

𝑛
< 𝑡.

4.3. Examples of sets and least upper bounds
Note that a commonway towrite ‘least upper bound’ is theword supremum, denoted sup 𝑆.
(i) Let 𝑆 = {𝑥 ∈ ℝ ∶ 0 ≤ 𝑥 ≤ 1} = [0, 1]. The least upper bound of 𝑆 is 1, because:

• 1 is an upper bound for 𝑆; ∀𝑥 ∈ 𝑆, 𝑥 ≤ 1; and
• Every upper bound 𝑦must have 𝑦 ≥ 1 because 1 ∈ 𝑆.

(ii) Let 𝑆 = {𝑥 ∈ ℝ ∶ 0 < 𝑥 < 1} = (0, 1). sup 𝑆 = 1 because:
• 1 is an upper bound for 𝑆; ∀𝑥 ∈ 𝑆, 𝑥 ≤ 1; and
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• No upper bound 𝑐 has 𝑐 < 1. Indeed, certainly 𝑐 > 0 (𝑐 > 1
2
since 1

2
∈ 𝑆). So if

𝑐 < 1, then 0 < 𝑐 < 1, so the number 1+𝑐
2
∈ 𝑆 and is larger than 𝑐, so it is not an

upper bound.

(iii) Let 𝑆 = {1 − 1
𝑛
∶ 𝑛 ∈ ℕ}. sup 𝑆 = 1 because:

• 1 is clearly an upper bound.

• Let us suppose 𝑐 < 1 is an upper bound. Then ∀𝑛 ∈ ℕ, 1 − 1
𝑛
< 𝑐 so 1 − 𝑐 < 1

𝑛
.

From the corollary of the Axiom of Archimedes above, this is a contradiction.

Remark. If 𝑆 has a greatest element, then this element is the supremumof the set: sup 𝑆 ∈ 𝑆.
But if 𝑆 does not have a greatest element, then sup 𝑆 ∉ 𝑆. Also, we do not need any kind
of ‘greatest lower bound’ axiom—if 𝑆 is a non-empty, bounded below set of reals, then the
set {−𝑥 ∶ 𝑥 ∈ 𝑆} is non-empty and bounded above, and so has a least upper bound, so 𝑆
has a greatest lower bound equivalent to its additive inverse. This is commonly called the
‘infimum’, or inf 𝑆.

Theorem. ∃𝑥 ∈ ℝ with 𝑥2 = 2.

Proof. Let 𝑆 be the set of all real numbers such that 𝑥2 < 2. Of course, it is non-empty (try
𝑥 = 0) and bounded above (try 𝑥 = 2). So let 𝑐 = sup 𝑆; we want to show that 𝑐2 = 2. We
prove this by eliminating all alternatives; clearly either 𝑐2 < 2, 𝑐2 = 2 or 𝑐2 > 2.

• (𝑐2 < 2) We want to prove that (𝑐 + 𝑡)2 < 2 for some small 𝑡. For 0 < 𝑡 < 1, we have
(𝑐 + 𝑡)2 = 𝑐2 + 2𝑐𝑡 + 𝑡2 ≤ 𝑐2 + 5𝑡, since 𝑐 is at most 2, and 𝑡2 is at most 𝑡. So this value
is less than 2 for some suitably small 𝑡, contradicting the least upper bound—we have
just shown that (𝑐 + 𝑡) ∈ 𝑆.

• (𝑐2 > 2) We want to prove that (𝑐 − 𝑡)2 > 2 for some small 𝑡. For 0 < 𝑡 < 1, we have
(𝑐−𝑡)2 = 𝑐2−2𝑐𝑡+𝑡2 ≥ 𝑐2−4𝑡, since 𝑐 is at most 2, and 𝑡2 is at least zero. So this value
is greater than 2 for some suitably small 𝑡, contradicting the least upper bound—we
have just created a lower upper bound.

So 𝑐2 = 2.

This same kind of proofworks for a lot of real values, for example 𝑛√𝑥 for𝑛 ∈ ℕ, 𝑥 ∈ ℝ, 𝑥 < 0.
Reals that are not rational are called irrational. This is a negative statement however, so it is
better in proofs to suppose that something is rational, and then show a contradiction.

Also, the rationals are ‘dense’; for any 𝑎, 𝑏 ∈ ℝ, there is another rational between them. We
may assume without loss of generality that they are both non-negative and that 𝑎 < 𝑏. Then
pick some 𝑛 ∈ ℕ with 1

𝑛
< 𝑏 − 𝑎. Among the list 0

𝑛
, 1
𝑛
, 2
𝑛
,…, there is a final one that is

less than or equal to 𝑎, which we will denote 𝑞
𝑛
(otherwise 𝑎 is an upper bound to this list,

contradicting the axiom of Archimedes). So 𝑎 < 𝑞+1
𝑛

< 𝑏 as required.
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The irrationals are also dense; for any reals 𝑎 and 𝑏 with the same conditions above, these
exists some irrational 𝑐 with 𝑎 < 𝑐 < 𝑏. We know that there exists a rational 𝑐 with 𝑎√2 <
𝑐 < 𝑏√2, so 𝑎 < 𝑐

√2
< 𝑏.

4.4. Sequences and limits
How can we ascribe meaning to expressions like this?

1 + 1
2 +

1
4 +

1
8 +…

Certainly, we have a concept of addition, and we can keep adding as many terms as we like,
but there is no implicit definition of an infinite sum from the aforementioned axioms.

A definition that makes sense would involve partial sums 𝑥𝑛 of this infinite series. How-
ever, we could not just say that the partial sums get progressively closer to a value, because
then trivially something like 1

2
, 2
3
, 3
4
, 4
5
,… tends to 107, even though they’re clearly getting

closer.

A more accurate definition would be to state that we can get arbitrarily close (within some
given 𝜀) to a ‘limit value’ 𝑐 by taking some amount of terms 𝑛 of this series: 𝑐−𝜀 < 𝑥𝑛 < 𝑐+𝜀.
But this is still wrong: the sequence 1

2
, 10, 2

3
, 10, 3

4
, 10, 4

5
, 10,… could then tend to 1 even

though every other term is 10.

The best definition would state that the sequence of partial sums would staywithin 𝜀 of 𝑐 for
all 𝑥𝑘where 𝑘 ≥ 𝑛 for some𝑛 ∈ ℕ. In less formalwords, for any 𝜀 > 0, 𝑥𝑛will eventually stay
within 𝜀 of 𝑐. Equivalently, ∀𝜀 > 0, ∃𝑁 ∈ ℕ such that ∀𝑛 > 𝑁 we have |𝑥𝑛 − 𝑐| < 𝜀.

(i) Consider the sequence 1
2
, 1
2
+ 1

4
, 1
2
+ 1

4
+ 1

8
,…. This is 𝑥1, 𝑥2, 𝑥3,…where 𝑥𝑛 = 1− 1

2𝑛
(inductively on 𝑛). We want to show that 𝑥𝑛 tends to 1. Given some 𝜀 > 0, we choose
some 𝑁 ∈ ℕ with 𝑁 > 1

𝜀
. Then, for every 𝑛 ≥ 𝑁, |𝑥𝑛 − 1| = 1

2𝑛
≤ 1

𝑛
≤ 1

𝑁
< 𝜀.

(ii) Consider the constant sequence 𝑐, 𝑐, 𝑐, 𝑐,…. Wewant to show that 𝑥𝑛 → 𝑐. Given some
𝜀 > 0, we have |𝑥𝑛 − 𝑐| < 𝜀 for all 𝑛; 𝑁 = 1 is the time after which the sequence stays
within 𝜀 of 𝑐.

(iii) Consider now 𝑥𝑛 = (−1)𝑛, i.e. −1, 1, −1, 1,…. We want to show that this does not
tend to a limit. Suppose 𝑥𝑛 → 𝑐 as 𝑛 → ∞. We may choose some 𝜀 that acts as
a counterexample—for example, 𝜀 = 1. So ∃𝑁 ∈ ℕ such that ∀𝑛 ≥ 𝑛 we have
|𝑥𝑛 − 𝑐| < 1. In particular, |1 − 𝑐| < 1 and |−1 − 𝑐| < 1 so |1 − (−1)| < 2, by the
triangle inequality. This is a contradiction.

(iv) The sequence 𝑥𝑛 given by

𝑥𝑛 = {
1
𝑛

𝑛 odd
0 𝑛 even
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should tend to zero. Given some 𝜀 > 0, we will choose 𝑁 ∈ ℕ with 1
𝑁
< 𝜀. Then for

all 𝑛 ≥ 𝑁, either 𝑥𝑛 =
1
𝑛
or 0. In either case, |𝑥𝑛 − 0| ≤ 1

𝑛
≤ 1

𝑁
< 𝜀.

We can denote the entirety of a sequence 𝑥1, 𝑥2,… as

(𝑥𝑛) or (𝑥𝑛)∞𝑛=1

For example, ((−1)𝑛)∞𝑛=1 is divergent. This isn’t saying that it goes to infinity, just that it
doesn’t converge. Note also that if 𝑥𝑛 → 𝑐 and 𝑥𝑛 → 𝑑, then 𝑐 = 𝑑. Suppose that 𝑐 ≠ 𝑑.
Then pick 𝜀 = |𝑐−𝑑|

2
. Then ∃𝑁 ∈ ℕ with |𝑥𝑛 − 𝑐| < 𝜀, and ∃𝑀 ∈ ℕ with |𝑥𝑛 − 𝑑| < 𝜀. After

the point max(𝑁,𝑀), the points must be within 𝜀 of both 𝑐 and 𝑑, but as 𝑐 and 𝑑 are 2𝜀 apart
this is a contradiction (by the triangle inequality).

4.5. Series
A sequence given in the form 𝑥1, 𝑥1 + 𝑥2, 𝑥1 + 𝑥2 + 𝑥3,… is called a series. They are often
written∑∞

𝑛=1 𝑥𝑛. The 𝑘th term of the sequence, given by∑𝑘
𝑛=1 𝑥𝑛, is called the 𝑘th partial

sum. If the series converges to some value 𝑐, then we can write∑∞
𝑛=1 𝑥𝑛 = 𝑐. Note that we

cannot use this notation to denote the limit until we know that the limit actually exists. This
is just the same as with sequences, where we cannot write lim𝑛→∞ 𝑥𝑛 until we know that
the limit exists.

Limits behave as we would expect. For example, if 𝑥𝑛 ≤ 𝑑 for all 𝑛, and 𝑥𝑛 → 𝑐, then 𝑐 ≤ 𝑑.
Suppose 𝑐 > 𝑑. Then we will choose 𝜀 = |𝑐−𝑑|

2
. Then there are no points 𝑥𝑛 within this

bound of 𝑐 #.
Proposition. If 𝑥𝑛 → 𝑐 and 𝑦𝑛 → 𝑑, then 𝑥𝑛 + 𝑦𝑛 → 𝑐 + 𝑑.

Proof. Given some 𝜀 > 0, let 𝜁 = 1
2
𝜀. Then, after some term 𝑥𝑁 , |𝑥𝑛 − 𝑐| < 𝜁, and after

some term 𝑦𝑀 , |𝑦𝑚 − 𝑑| < 𝜁. So for every 𝑛 ≥ max(𝑀,𝑁), by the triangle inequality,
|(𝑥𝑛 + 𝑦𝑛) − (𝑐 + 𝑑)| < 2𝜁 = 𝜀 as required.

This is commonly known as an 𝜀/2 argument. Also, if we had instead not taken any 𝜁 value
and just stuck with 𝜀, it would still be a good proof because we could just have divided 𝜀 at
the beginning—it’s not expected that you completely rewrite the proof to add in this divi-
sion.

4.6. Testing convergence of a sequence
A sequence 𝑥1, 𝑥2,… is called ‘increasing’ if 𝑥𝑛+1 ≥ 𝑥𝑛 for all 𝑛.
Theorem. If 𝑥1, 𝑥2,… is increasing and bounded above, it converges to a limit.

This is a very important theorem that we will refer back to time and time again.
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Note. If we were in ℚ, this would not necessarily hold. For example, consider the decimal
expansion of√2.

1, 1.4, 1.41, 1.414, 1.4142,…
They don’t converge to a limit in ℚ. So our proof will have to be more rigorous than just
‘they have to tend to somewhere below the upper bound’; we must use a property thatℝ has
that ℚ does not have, i.e. the least upper bound axiom.

Proof. Let 𝑐 = sup{𝑥1, 𝑥2,… }. We want to prove that 𝑥𝑛 → 𝑐. Given some 𝜀 > 0, there exists
some 𝑛 such that 𝑥𝑛 > 𝑐−𝜀 (else, 𝑐− 𝜀would be a smaller upper bound#). As the sequence
is increasing, all 𝑥𝑘 where 𝑘 > 𝑛 are at least 𝑥𝑛. So |𝑥𝑘 − 𝑐| < 𝜀 as required.

Of course, a decreasing sequence works in an identical way; if it is bounded below then it
converges. More compactly, a boundedmonotone sequence is convergent (wheremonotone
means either increasing or decreasing).

Proposition. The harmonic series
∞
∑
𝑛=1

1
𝑛

diverges; the solution to the Basel problem
∞
∑
𝑛=1

1
𝑛2

converges.

There is no closed form for the 𝑛th term of either of these sequences, which is one reason
that series are often more challenging to work with than regular sequences.

Proof. Since the harmonic series is difficult to deal with, we will compare it to a sequence
that we understand easier. Therefore, we show that the first sequence diverges using a com-
parison test with powers of 2, one of the simplest series.

1 + 1
2 +

1
3 +

1
4 +

1
5 +

1
6 +

1
7 +

1
8 +

1
9 +⋯

≥ 1 + 1
2 +

1
4 +

1
4⏟

1
2

+ 1
8 +

1
8 +

1
8 +

1
8⏟⎵⎵⎵⏟⎵⎵⎵⏟

1
2

+ 1
16 +⋯

By inspection, we can see that the harmonic series is larger than the sum of an infinite
amount of 1

2
, so surely it must diverge. More rigorously:

1
3 +

1
4 ≥

1
2

1
5 +

1
6 +

1
7 +

1
8 ≥

1
2

1
2𝑛 + 1 +

1
2𝑛 + 2 +⋯+ 1

2𝑛+1 ≥
2𝑛
2𝑛+1 =

1
2
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So the partial sums of the series are unbounded, so the series diverges. For the sum of recip-
rocals of squares, we want to do a similar thing because again the only simple sequence we
have to work with is the powers of 2.

1 + 1
22 +

1
32 +

1
42 +

1
52 +

1
62 +

1
72 +

1
82 +

1
92 +⋯

≤ 1 + 1
22 +

1
22⏟⎵⏟⎵⏟

2
22

+ 1
42 +

1
42 +

1
42 +

1
42⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

4
42

+ 1
82 +

1
82 +⋯

The bottom sequence simplifies to just the sequence 1 + 1
2
+ 1

4
+ 1

8
+⋯ → 2, and the upper

sequence is bounded above by the lower sequence. More rigorously:

1
22 +

1
32 ≤

2
22 =

1
2

1
42 +

1
52 +

1
62 +

1
72 ≤

4
42 =

1
4

1
(2𝑛)2 +

1
(2𝑛 + 1)2 +⋯+ 1

(2𝑛+1 − 1)2 ≤
2𝑛
(2𝑛)2 =

1
2𝑛

So the partial sums are bounded, and hence the series converges by the above theorem.

In fact,∑∞
𝑛=1

1
𝑛2
= 𝜋2

6
. This is proved in the Linear Analysis course in Part II.

4.7. Decimal expansions
What should 0.𝑎1𝑎2𝑎3… mean (where each 𝑎 is a digit from 0 to 9)? It should be the limit
of 0.𝑎1, 0.𝑎1𝑎2, 0.𝑎1𝑎2𝑎3 and so on. We will define it by

0.𝑎1𝑎2𝑎3⋯ ≔
∞
∑
𝑛=1

𝑎𝑛
10

This clearly converges as the partial sums are increasing and bounded above by 1, so infinite
decimal expansions are valid. Conversely, given some 𝑥 ∈ ℝ with 0 < 𝑥 < 1, we can
certainly write it as a (potentially infinite) decimal. We will start by choosing the greatest 𝑎1
from 0 to 9 such that 𝑎1

10
≤ 𝑥. Thus 0 < 𝑥 − 𝑎1

10
< 1

10
. Now, we can pick the greatest 𝑎2 in the

set such that 𝑎1
10
+ 𝑎2

100
≤ 𝑥. Therefore, 0 ≤ 𝑥− 𝑎1

10
− 𝑎2

100
< 1

100
. Continue inductively, and then

we obtain a decimal expansion 0.𝑎1𝑎2𝑎3… such that 0 ≤ 𝑥 −∑𝑘
𝑛=1

𝑎𝑛
10𝑛

< 1
10𝑘

for any given
𝑘. By the definition of convergence, the sequence given for 𝑎 tends to 𝑥 as required.

Note, if 0.𝑎1𝑎2… and 0.𝑏1𝑏2… are different decimal expansions of the same number, then
there exists some𝑁 ∈ ℕ such that 𝑎𝑛 = 𝑏𝑛 for all 𝑛 < 𝑁 and 𝑎𝑁 = 𝑏𝑁−1 and 𝑎𝑛 = 9, 𝑏𝑛 = 0
for all 𝑛 > 𝑁 (or vice versa). For example, 0.99999… is equivalent to 1.00000…

29



I. Numbers and Sets

4.8. The number 𝑒
We define

𝑒 = 1 + 1
1! +

1
2! +

1
3! +

1
4! + …

The partial sums are increasing and bounded above by the powers of two after the first term,
so it converges.

4.9. Algebraic and transcendental numbers
A real 𝑥 is called algebraic if it is a root of a nonzero polynomial with integer coefficients.
Otherwise, it is called transcendental. For example, any rational 𝑝

𝑞
is algebraic as it is the

root of 𝑞𝑥 − 𝑝 = 0. As another example, √2 + 1 is algebraic as it is a root of the equation
𝑥2 − 2𝑥 − 1 = 0. The logical next question to ask is whether all reals are algebraic.

Proposition. 𝑒 is not rational.

Proof. Suppose that 𝑒 is rational, let it be written 𝑝
𝑞
, where 𝑞 > 1 (if 𝑞 = 1, rewrite it as 2𝑝

2𝑞
).

Multiplying up by 𝑞! (easier than just 𝑞 because then we can compare factorials) gives

∞
∑
𝑛=0

𝑞!
𝑛! ∈ ℤ

We know that∑𝑞
𝑛=0

𝑞!
𝑛!
∈ ℤ. The next terms are:

𝑞!
(𝑞 + 1)! =

1
𝑞 + 1

𝑞!
(𝑞 + 2)! =

1
(𝑞 + 1)(𝑞 + 2) ≤

1
(𝑞 + 1)2

𝑞!
(𝑞 + 3)! =

1
(𝑞 + 1)(𝑞 + 2)(𝑞 + 3) ≤

1
(𝑞 + 1)3

𝑞!
(𝑞 + 𝑛)! ≤

1
(𝑞 + 1)𝑛

So the next partial sums are bounded above by the geometric series.

∞
∑

𝑛=𝑞+1

𝑞!
𝑛! ≤

1
𝑞 < 1

So the whole series multiplied by 𝑞! is a whole number plus a fractional part, which is not
an integer #.
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Ideally now we’d have a proof that 𝑒 is transcendental. However, even though the terms of 𝑒
tend to zero quickly, they don’t tend to zero quite quickly enough for us to be able to prove it
using what we know now. We instead prove that there exists some transcendental number
using a different example, one whose terms tend to zero very quickly indeed.

Theorem. Liouville’s constant 𝑐 = ∑∞
𝑛=1

1
10𝑛!

is transcendental. As a decimal expansion:

𝑐 = 0.1100010000000000000000010…

This is a long proof, the hardest in this course. We will cherry-pick some important results
about polynomials in order to make this proof, without a proper introduction to features of
polynomials.

• For any polynomial 𝑃, ∃𝑘 ∈ ℝ such that |𝑃(𝑥) − 𝑃(𝑦)| ≤ 𝑘|𝑥 − 𝑦| for all 0 ≤ 𝑥, 𝑦 ≤ 1.
Indeed, say 𝑃(𝑥) = 𝑎𝑑𝑥𝑑 +⋯+ 𝑎0, then

𝑃(𝑥) − 𝑃(𝑦) = 𝑎𝑑(𝑥𝑑 − 𝑦𝑑) + 𝑎𝑑−1(𝑥𝑑−1 − 𝑦𝑑−1) +⋯ + 𝑎1(𝑥 − 𝑦)
= (𝑥 − 𝑦)[𝑎𝑑(𝑥𝑑−1 + 𝑥𝑑−2𝑦 +⋯+ 𝑦𝑑−1) +⋯ + 𝑎1]

|𝑃(𝑥) − 𝑃(𝑦)| ≤ |𝑥 − 𝑦|[(|𝑎𝑑| + |𝑎𝑑−1| + ⋯ + |𝑎1|)𝑑]

because 𝑥 and 𝑦 are between 0 and 1.

• A nonzero polynomial of degree 𝑑 has at most 𝑑 roots. Given some polynomial 𝑃 of
degree 𝑑:

– If 𝑃 has no roots, we are trivially done.

– If 𝑃 has some root 𝑎, then 𝑃 can be written as (𝑥 − 𝑎)𝑄(𝑥). Inductively, 𝑄(𝑥) has
at most 𝑑 − 1 roots, so 𝑃 has at most 𝑑 roots.

Now we can prove the above theorem.

Proof. Wewill write 𝑐𝑛 = ∑𝑛
𝑘=0

1
10𝑘!

, such that 𝑐𝑛 → 𝑐. Suppose that some polynomial 𝑃 has
𝑐 as a root. Then ∃𝑘 such that |𝑃(𝑥) − 𝑃(𝑦)| ≤ 𝑘|𝑥 − 𝑦|when 0 ≤ 𝑥, 𝑦 ≤ 1. Let 𝑃 have degree
𝑑, such that

𝑃(𝑥) = 𝑎𝑑𝑥𝑑 +⋯+ 𝑎0
Now, |𝑐 − 𝑐𝑛| = ∑∞

𝑘=𝑛+1
1

10𝑘!
≤ 2

10(𝑛+1)!
. This is a trivial upper bound, of course better upper

bounds exist.

Also, 𝑐𝑛 =
𝑎

10𝑛!
for some 𝑎 ∈ ℤ. So 𝑃(𝑐𝑛) =

𝑏
10𝑑𝑛!

for some 𝑏 ∈ ℤ (since 𝑃( 𝑠
𝑡
) = 𝑞

𝑡𝑑
for some

integer 𝑞, where 𝑠
𝑡
∈ ℚ).

For 𝑛 large enough, 𝑐𝑛 is not a root, because 𝑃 only has finitely many roots. So

|𝑃(𝑐) − 𝑃(𝑐𝑛)| = |𝑃(𝑐𝑛)| ≤
1

10𝑑𝑛!
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Therefore 1
10𝑑𝑛! ≤ 𝑘 2

10(𝑛+1)!
which is a contradiction if 𝑛 is large enough.

Here are some remarks about this proof.

• This same proof shows that any real 𝑥 such that ∀𝑛∃𝑝
𝑞
∈ ℚ with 0 < |||𝑥 −

𝑝
𝑞
||| <

1
𝑞𝑛

is
transcendental. Informally, 𝑥 has very good rational approximations.

• Such 𝑥 are often called Liouville numbers; the proof works for all Liouville numbers.
• This proof does not show that 𝑒 is transcendental (even though it is), because the terms
do not go to zero fast enough.

• We now know that there exist some transcendental numbers. Another proof of exist-
ence of transcendental numbers will be seen in a later lecture.

4.10. Complex numbers
Some polynomials have no real roots, for example 𝑥2 + 1. We’ll try to ‘force’ an 𝑥 with the
property 𝑥2 = −1. Note that for example we could not force an 𝑥 into existence with the
property 𝑥2 = 2, 𝑥3 = 3; how do we know introducing 𝑖 will not lead to a contradiction? We
will define ℂ to consist of the plane ℝ2, i.e. pairs of real numbers, with operations + and ⋅
which satisfy:

• (𝑎, 𝑏) + (𝑐, 𝑑) = (𝑎 + 𝑐, 𝑏 + 𝑑)
• (𝑎, 𝑏) ⋅ (𝑐, 𝑑) = (𝑎𝑐 − 𝑏𝑑, 𝑎𝑑 + 𝑏𝑐)

We can view ℝ as being contained within ℂ by identifying the real number 𝑎 with (𝑎, 0).
Note that the rules of arithmetic of the reals are inherited inside the first element of the
complex plane, so there is no contradiction here. Then let 𝑖 = (0, 1). Trivially then, any
point (𝑎, 𝑏) in the complex numbers may be written as 𝑎 + 𝑏𝑖 where 𝑎, 𝑏 ∈ ℝ. And, of
course, 𝑖2 = −1.
All of the basic rules like associativity and distributivity work in the complex plane. There
are multiplicative inverses: given 𝑎+ 𝑏𝑖, we know that (𝑎 + 𝑏𝑖)(𝑎 − 𝑏𝑖) = 𝑎2 + 𝑏2 so 𝑎−𝑏𝑖

𝑎2+𝑏2
is

the inverse (provided the point is nonzero). This kind of structure with familiar properties
is known as a field, for example ℂ, ℝ, ℚ, ℤ𝑝 where 𝑝 is prime. The fundamental theorem
of algebra states that any nonzero polynomial with complex coefficients has a complex root;
this is proven in the IB course Complex Analysis.
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5. Sets
5.1. Sets and subsets
A set is any* collection of mathematical objects. (∀𝑥, 𝑥 ∈ 𝐴 ⟺ 𝑥 ∈ 𝐵) ⟺ (𝐴 = 𝐵).
In words, two sets which have the same members are considered to be the same; order of
members is not important in a set. There is no ‘multiple membership’ of a set, {𝑎, 𝑎} =
{𝑎}.

Given a set 𝐴 and a property 𝑝(𝑥), we can form {𝑥 ∈ 𝐴 ∶ 𝑝(𝑥)}; the subset of all members of
𝐴 with property 𝑝. This is sometimes called the ‘subset selection’ rule or axiom. We can say
that 𝐵 is a subset of 𝐴 if ∀𝑥, 𝑥 ∈ 𝐵 ⟹ 𝑥 ∈ 𝐴, written 𝐵 ⊆ 𝐴. Further, 𝐴 = 𝐵 ⟺ 𝐴 ⊆
𝐵, 𝐵 ⊆ 𝐴.

5.2. Composing sets
Given sets 𝐴 and 𝐵, we can form their union 𝐴∪𝐵 = {𝑥 ∶ 𝑥 ∈ 𝐴∨𝑥 ∈ 𝐵}. We can also form
their intersection 𝐴 ∩ 𝐵 = {𝑥 ∶ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵}. If 𝐴 ∩ 𝐵 = ∅, we say 𝐴 and 𝐵 are disjoint.
Note that we could consider 𝐴 ∩ 𝐵 as a special case of subset selection; the subset of 𝐴 with
the property that the element is in 𝐵. Therefore, 𝐴 ∩ 𝐵 ⊆ 𝐴, and 𝐴 ∩ 𝐵 ⊆ 𝐵. We define the
set difference 𝐴 ∖ 𝐵 = {𝑥 ∈ 𝐴 ∶ 𝑥 ∉ 𝐵}.

Note that ∩ and ∪ are commutative and associative. Also, ∪ is distributive over ∩, and ∩ is
distributive over ∪. For example, let us prove that 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶).

• (LHS ⊆ RHS) Given 𝑥 ∈ 𝐴 ∩ (𝐵 ∪ 𝐶), we have 𝑥 ∈ 𝐴 and also either 𝑥 ∈ 𝐵 or 𝑥 ∈ 𝐶.
If 𝑥 ∈ 𝐵 then 𝑥 ∈ 𝐴 ∩ 𝐵 so 𝑥 ∈ (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶); and vice versa for 𝐶.

• (RHS⊆ LHS) Given 𝑥 ∈ (𝐴∩𝐵)∪ (𝐴∩𝐶), either 𝑥 ∈ 𝐴∩𝐵 or 𝑥 ∈ 𝐴∩𝐶. If 𝑥 ∈ 𝐴∩𝐵
then 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵 ∪ 𝐶 as required; and vice versa for the other case.

As the union is associative, we can have bigger unions of more sets. For example, if we let
𝐴𝑛 = {𝑛2, 𝑛3} for each 𝑛 ∈ ℕ, the infinite union

𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪⋯ =
∞

⋃
𝑛=1

𝐴𝑛 = ⋃
𝑛∈ℕ

𝐴𝑛 = {𝑥 ∈ 𝑁 ∶ 𝑥 is a square or a cube}

When we use the 𝑛 ∈ ℕ on the large union symbol, we call ℕ the ‘index set’. Note that
the infinite union is not defined as a limit of finite unions; it is simply defined using set
comprehension. In general, given a set 𝐼, and sets 𝐴𝑖, 𝑖 ∈ 𝐼, we can form

⋃
𝑖∈𝐼

𝐴𝑖 = {𝑥 ∶ ∃𝑖 ∈ 𝐼, 𝑥 ∈ 𝐴𝑖}

and

⋂
𝑖∈𝐼

𝐴𝑖 = {𝑥 ∶ ∀𝑖 ∈ 𝐼, 𝑥 ∈ 𝐴𝑖}
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Note that we cannot form an intersection when 𝐼 = ∅, as will be explained later.
For any 𝑎, 𝑏, we can form the ordered pair (𝑎, 𝑏), where equality is checked component-wise.
For sets 𝐴, 𝐵, we can form their product 𝐴 × 𝐵 = {(𝑎, 𝑏) ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. For example,
ℝ2 = ℝ × ℝ can be viewed as a plane. We can form other sizes of tuples similarly.

For any set 𝑋 , we can form the power set 𝒫(𝑋) consisting of all subsets of 𝑋 .

𝒫(𝑋) = {𝑌 ∶ 𝑌 ⊆ 𝑋}

For example:
𝒫({1, 2}) = {∅, {1}, {2}, {1, 2}}

5.3. Russell’s paradox
For a set 𝐴, we can always form the set {𝑥 ∈ 𝐴 ∶ 𝑝(𝑥)} for any property 𝑝. We cannot,
however, form the set {𝑥 ∶ 𝑝(𝑥)}. Suppose we could form such a set, then we could form
the set 𝑋 = {𝑥 ∶ 𝑥 ∉ 𝑥}. Now, is 𝑋 ∈ 𝑋? If this is true, then it fails the defining property
𝑥 ∉ 𝑥. If this is false, then the defining property is true, so it must be in the set. This is a
contradiction in both cases.

Similarly, there is no ‘universal’ set ℰ, meaning ∀𝑥, 𝑥 ∈ ℰ. Otherwise we could form the 𝑋
above by {𝑥 ∈ ℰ ∶ 𝑝(𝑥)}. To guarantee that a given set exists, we need to obtain it in some
way from known sets.

5.4. Finite sets
We will write ℕ0 = ℕ ∪ {0}. For 𝑛 ∈ ℕ0, we can say that a set 𝐴 has size 𝑛 if we can write
𝐴 = {𝑎1, 𝑎2,⋯ , 𝑎𝑛}where the 𝑎𝑖 are distinct. A set is called finite if it has a size 𝑛 ∈ ℕ0.

Note that a set cannot have size 𝑛 and size 𝑚 for 𝑛 ≠ 𝑚. Suppose that 𝐴 has size 𝑛 and
size𝑚 where 𝑛,𝑚 > 0. Then, removing an element, we obtain a set that has size 𝑛 − 1 and
𝑚 − 1. By induction on the larger of 𝑛 and 𝑚, we will eventually reach a size of both zero
and nonzero which is a contradiction.

Proposition. A set of size 𝑛 has exactly 2𝑛 subsets.

Proof 1. Wemay assume that our set is simply {1, 2,⋯ , 𝑛} by relabelling. When constructing
a subset 𝑆 from this set, there are 𝑛 independent binary choices for whether a given element
should be within this subset, since for example either 1 ∈ 𝑆 or 1 ∉ 𝑆 must be true. So there
are 2𝑛 distinct choices of subset you can make.

Proof 2. We will prove this inductively on 𝑛, noting that 𝑛 = 0 is trivial. For any subset
𝑇 ⊆ {1, 2,⋯𝑛 − 1}, how many 𝑆 ⊆ {1,⋯ , 𝑛} have 𝑆 ∩ {1, 2,⋯𝑛 − 1} = 𝑇? Exactly two: 𝑇
and 𝑇 ∪ {𝑛}. So there are two choices for how to extend this subset to the new element 𝑛. So
the number of subsets is 2 ⋅ 2𝑛−1 = 2𝑛.
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In some sense Proof 2 is a more ‘formal’ version of Proof 1, using induction rather than
intuition. We sometimes say that if 𝐴 has size 𝑛, then |𝐴| = 𝑛, and that 𝐴 is an 𝑛-set.

5.5. Binomial coefficients
For 𝑛 ∈ ℕ0 and 0 ≤ 𝑘 ≤ 𝑛, we can write (𝑛

𝑘
) for the number of subsets of an 𝑛-set that are of

size 𝑘.
(𝑛𝑘) = |{𝑆 ⊆ {1, 2,… , 𝑛} ∶ |𝑆| = 𝑘}|

For example, there are six 2-sets in a 4-set. There is a formula for this, but generally this
definition is a lot easier to use. Note that (𝑛

0
) = 1, (𝑛

𝑛
) = 1, and (𝑛

1
) = 𝑛 where 𝑛 > 0.

Note that (𝑛
0
) + (𝑛

1
) + ⋯ + (𝑛

𝑛
) = 2𝑛 as each side counts the number of subsets in an 𝑛-set.

Also:

(i) (𝑛
𝑘
) = ( 𝑛

𝑛−𝑘
) (∀𝑛 ∈ 𝑁0, 0 ≤ 𝑘 ≤ 𝑛). Indeed, specifying which 𝑘 members to pick for a

subset is equivalent to specifying which 𝑛 − 𝑘members not to pick.

(ii) (𝑛
𝑘
) = (𝑛−1

𝑘−1
)+(𝑛−1

𝑘
) (∀𝑛 ∈ ℕ, 0 < 𝑘 < 𝑛). Indeed, the number of 𝑘-subsets of {1, 2,… , 𝑛}

without 𝑛 is (𝑛−1
𝑘
). The number of 𝑘-subsets of {1, 2,… , 𝑛} that do contain 𝑛 is (𝑛−1

𝑘−1
) as

wemust pick the remaining 𝑘−1 elements of this new subset. So in total, (𝑛−1
𝑘−1

)+(𝑛−1
𝑘
)

encapsulates both possibilities.

This last point illustrates that Pascal’s Triangle will give all the binomial coefficients since
it perfectly encapsulates the relationship between a given element of the triangle with two
elements from the previous row. The exact proof follows from the other known properties
of the binomial coefficients.

5.6. Computing binomial coefficients
Proposition.

(𝑛𝑘) =
𝑛(𝑛 − 1)(𝑛 − 2)⋯ (𝑛 − 𝑘 + 1)

𝑘(𝑘 − 1)(𝑘 − 2)⋯ (1)

Proof. The number of ways to name a 𝑘-set is 𝑛(𝑛 − 1)(𝑛 − 2)⋯ (𝑛 − 𝑘 + 1) because there
are 𝑛 ways to choose a first element, 𝑛 − 1 ways to choose a second element, and so on. We
have overcounted the 𝑘-sets, though—there are 𝑘(𝑘 − 1)(𝑘 − 2)⋯ (1) ways to name a given
𝑘-set because you have 𝑘 choices for the first element, 𝑘 − 1 choices for the second element,
and so on. Hence the number of 𝑘-sets in {1, 2,… , 𝑛} is the required result.

Note that we can also write
(𝑛𝑘) =

𝑛!
𝑘!(𝑛 − 𝑘)!

35



I. Numbers and Sets

but this is a very unwieldy formula to use especially by hand, so will be rarely used. Further,
we can make asymptotic approximations using this formula, for example (𝑛

3
) ∼ 𝑛3

6
for large

𝑛.

5.7. Binomial theorem
Theorem. For all 𝑎, 𝑏 ∈ ℝ, 𝑛 ∈ ℕ, we have

(𝑎 + 𝑏)𝑛 = (𝑛0)𝑎
𝑛 + (𝑛1)𝑎

𝑛−1𝑏 + (𝑛2)𝑎
𝑛−2𝑏2 +⋯+ (𝑛𝑛)𝑏

𝑛

Proof. When we expand (𝑎 + 𝑏)𝑛 = (𝑎 + 𝑏)(𝑎 + 𝑏)… (𝑎 + 𝑏), we obtain terms of the form
𝑎𝑘𝑏𝑛−𝑘. To get a single term of this form, we must choose 𝑘 brackets for which to take the
𝑎 value in the expansion, and the other 𝑛 − 𝑘 brackets will take the 𝑏 value. The number of
terms of the form 𝑎𝑘𝑏𝑛−𝑘 for a fixed 𝑘 is therefore the amount of ways of choosing 𝑘 brackets
out of a total of 𝑛, which is (𝑛

𝑘
). So

(𝑎 + 𝑏)𝑛 =
𝑛
∑
𝑘=0

(𝑛𝑘)𝑎
𝑘𝑏𝑛−𝑘 =

𝑛
∑
𝑘=0

( 𝑛
𝑛 − 𝑘)𝑎

𝑘𝑏𝑛−𝑘

For example, we can tell that (1 + 𝑥)𝑛 reduces to

1 + 𝑛𝑥 + 1
2𝑛(𝑛 − 1)𝑥2 + 1

3!𝑛(𝑛 − 1)(𝑛 − 2)𝑥3 +⋯+ 𝑛𝑥𝑛−1 + 𝑥𝑛

So when 𝑥 is small, a good approximation to (1 + 𝑥)𝑛 is 1 + 𝑛𝑥.

5.8. Inclusion-exclusion theorem
Given two finite sets 𝐴, 𝐵, we have

|𝐴 ∪ 𝐵| = |𝐴| + |𝐵| − |𝐴 ∩ 𝐵|

For three sets, we have

|𝐴 ∪ 𝐵 ∪ 𝐶| = |𝐴| + |𝐵| + |𝐶| − |𝐴 ∩ 𝐵| − |𝐵 ∩ 𝐶| − |𝐶 ∩ 𝐴| + |𝐴 ∩ 𝐵 ∩ 𝐶|

Theorem. Let 𝑆1,… , 𝑆𝑛 be finite sets. Then,

|||| ⋃𝑆∈𝑆𝑛
𝑆
||||
= ∑

|𝐴|=1
|𝑆𝐴| − ∑

|𝐴|=2
|𝑆𝐴| + ∑

|𝐴|=3
|𝑆𝐴| − ⋯
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where
𝑆𝐴 =⋂

𝑖∈𝐴
𝑆 𝑖

and
∑
|𝐴|=𝑘

is a sum taken over all 𝐴 ⊆ {1, 2,… , 𝑛} of size 𝑘.

Proof. Let 𝑥 be an element of the left hand side. We wish to prove that 𝑥 is counted exactly
once on the right hand side. Without loss of generality, let us rename the sets that 𝑥 belongs
to as 𝑆1, 𝑆2,… , 𝑆𝑘.
Then the number of sets 𝐴 with |𝐴| = 1 such that 𝑥 ∈ 𝑆𝐴 is 𝑘. The number of sets 𝐴 with
|𝐴| = 2 such that 𝑥 ∈ 𝑆𝑎 is (𝑘2), since we must choose two of the sets 𝑆1,… , 𝑆𝑘, so there are
(𝑘
2
) ways to do this. So in general, the amount of 𝐴 with |𝐴| = 𝑟 with 𝑥 ∈ 𝑆𝐴 is just (𝑘𝑟).

So the number of times 𝑥 is counted on the right hand side is

𝑘 − (𝑘2) + (𝑘3) −⋯+ (−1)𝑘+1(𝑘𝑘)

But (1 + (−1))𝑘 by the binomial expansion is

1 − (𝑘1) + (𝑘2) − (𝑘3) +⋯+ (−1)𝑘(𝑘𝑘)

So the number of times 𝑥 is counted on the right hand side is 1−(1+(−1))𝑘 = 1−0 = 1.
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6. Functions
6.1. Definition
For sets 𝐴 and 𝐵, a function 𝑓 from 𝐴 to 𝐵 is a rule that assigns to each 𝑥 ∈ 𝐴 a unique value
𝑓(𝑥) ∈ 𝐵. More precisely, a function from𝐴 to 𝐵 is a set 𝑓 ⊆ 𝐴×𝐵 such that for every 𝑥 ∈ 𝐴,
there is a unique 𝑦 ∈ 𝐵 with (𝑥, 𝑦) ∈ 𝑓. Of course therefore, if (𝑥, 𝑦) ∈ 𝑓 then we can write
𝑓(𝑥) = 𝑦. Here are some examples.

(i) 𝑓∶ ℝ → ℝ given by 𝑓(𝑥) = 𝑥2, or using an alternative notation, 𝑥 ↦ 𝑥2 is a function.

(ii) A non-example is 𝑓∶ ℝ → ℝ given by 𝑓(𝑥) = 1
𝑥
since it is undefined at 𝑥 = 0.

(iii) Another non-example is 𝑓∶ ℝ → ℝ given by 𝑓(𝑥) = ±√|𝑥| since it does not define a
unique value in the output space for a given input, such as 𝑥 = 2.

(iv) 𝑓∶ ℝ → ℝ given by

𝑓(𝑥) = {1 𝑥 ∈ ℚ
0 otherwise

is a function since it clearly satisfies the second definition. Note that even though we
don’t know if 𝑒+𝜋 is rational or not, the function is still well defined since it produces
a unique solution for 𝑓(𝑒 + 𝜋), we just don’t know which output value it gives.

(v) 𝐴 = {1, 2, 3, 4, 5}, 𝐵 = {1, 2, 3, 4}, and 𝑓∶ 𝐴 → 𝐵 is given by

𝑓(1) = 1
𝑓(2) = 4
𝑓(3) = 3
𝑓(4) = 3
𝑓(5) = 4

(vi) 𝐴 = {1, 2, 3}, 𝑓∶ 𝐴 → 𝐴 is given by

𝑓(1) = 1
𝑓(2) = 3
𝑓(3) = 2

(vii) 𝐴 = {1, 2, 3, 4}, 𝑓∶ 𝐴 → 𝐴 is given by

𝑓(1) = 1
𝑓(2) = 3
𝑓(3) = 3
𝑓(4) = 4
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(viii) 𝐴 = {1, 2, 3, 4}, 𝐵 = {1, 2, 3}, 𝑓∶ 𝐴 → 𝐵 is given by

𝑓(1) = 3
𝑓(2) = 3
𝑓(3) = 2
𝑓(4) = 1

6.2. Injection, surjection and bijection
Definition. A function 𝑓∶ 𝐴 → 𝐵 is

• injective, if ∀𝑎, 𝑎′ ∈ 𝐴, we have 𝑎 ≠ 𝑎′ ⟹ 𝑓(𝑎) ≠ 𝑓(𝑎′), or equivalently, 𝑓(𝑎) =
𝑓(𝑎′) ⟹ 𝑎 = 𝑎′, or in words, ‘different points stay different’ (e.g. example 6 above).

• surjective, if ∀𝑏 ∈ 𝐵, ∃𝑎 ∈ 𝐴 such that 𝑓(𝑎) = 𝑏, or in words, ‘everything in 𝐵 is hit’
(e.g. examples 6 and 8).

• bijective, if it is injective and surjective, or inwords, ‘everything in𝐵 is hit exactly once’,
or ‘𝑓 pairs up elements of 𝐴 and elements of 𝐵’ (e.g. example 6, or 𝑓∶ ℝ → ℝ given
by 𝑓(𝑥) = 𝑥3).

Definition. For a function 𝑓∶ 𝐴 → 𝐵, 𝐴 is the domain, 𝐵 is the range, and {𝑏 ∈ 𝐵 ∶ ∃𝑎 ∈
𝐴 s.t. 𝑓(𝑎) = 𝑏} is the image.
We must always provide the domain and range of a function; a function’s properties depend
on this. For example, is the function 𝑓 defined by 𝑓(𝑥) = 𝑓2 injective? If 𝑓∶ ℕ → ℕ, then it
is injective, but if 𝑓∶ ℤ → ℤ, then it is not.
There are a number of properties that hold specifically for finite sets 𝐴, 𝐵:
(i) There is no surjection 𝐴 → 𝐵 if |𝐵| > |𝐴|.
(ii) There is no injection 𝐴 → 𝐵 if |𝐴| > |𝐵|.
(iii) For a function 𝑓∶ 𝐴 → 𝐴, 𝑓 injective ⟺ 𝑓 surjective. Hence, if 𝑓 is either injective

or surjective, it is bijective.

(iv) There is no bijection from 𝐴 to any proper subset of 𝐴.
As counterexamples for infinite sets:

(i) We define 𝑓0∶ ℕ → ℕ by 𝑓0(𝑥) = 𝑥 + 1. Then, 𝑓0 is injective but not surjective.
(ii) We define 𝑓1∶ ℕ → ℕ by 𝑓0(𝑥) = 𝑥 − 1, or 1 if 𝑥 = 1. Then, 𝑓0 is surjective but not

injective.

(iii) We define 𝑔∶ ℕ → ℕ∖{1} by 𝑔(𝑥) = 𝑥+1. Then, 𝑔 is bijective betweenℕ and a proper
subset of ℕ.

We provide some more examples of functions.
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(i) For any set 𝑋 we have 1𝑋 ∶ 𝑋 → 𝑋 defined by 1𝑋(𝑥) = 𝑥. This is known as the identity
function on 𝑋 .

(ii) For any set 𝑋 , and 𝐴 ⊂ 𝑋 , we have an indicator function (or characteristic function)
𝜒𝐴∶ 𝑋 → {0, 1} defined by

𝜒𝐴(𝑥) = {0 𝑥 ∉ 𝐴
1 𝑥 ∈ 𝐴

(iii) A sequence of reals 𝑥1, 𝑥2,… is a function 𝑓∶ ℕ → ℝ defined by 𝑓(𝑛) = 𝑥𝑛.
(iv) The operation + on ℕ is a function ℕ2 → ℕ.
(v) A set 𝑋 has size 𝑛 ⟺ there is a bijection between 𝑋 and {1, 2,… , 𝑛}.

6.3. Composition of functions
Given 𝑓∶ 𝐴 → 𝐵 and 𝑔∶ 𝐵 → 𝐶, we define the composition 𝑔 ∘ 𝑓∶ 𝐴 → 𝐶, given by
(𝑔 ∘ 𝑓)(𝑎) = 𝑔(𝑓(𝑎)). For example, if 𝑓∶ ℝ → ℝ, 𝑓(𝑥) = 2𝑥, 𝑔∶ ℝ → ℝ, 𝑔(𝑥) = 𝑥 + 1, then
(𝑓 ∘ 𝑔)(𝑥) = 2(𝑥 + 1), and (𝑔 ∘ 𝑓)(𝑥) = 2𝑥 + 1.
In general, the operation ∘ is not commutative, as we can see from this example. However,
∘ is associative. Given 𝑓∶ 𝐴 → 𝐵, 𝑔∶ 𝐵 → 𝐶, ℎ∶ 𝐶 → 𝐷, we have ℎ ∘ (𝑔 ∘ 𝑓) = (ℎ ∘ 𝑔) ∘ 𝑓.
Indeed, for any input 𝑥 ∈ 𝐴,

(ℎ ∘ (𝑔 ∘ 𝑓))(𝑥) = ℎ((𝑔 ∘ 𝑓)(𝑥)) = ℎ(𝑔(𝑓(𝑥))) = (ℎ ∘ 𝑔)(𝑓(𝑥)) = ((ℎ ∘ 𝑔) ∘ 𝑓)(𝑥)

Thus (ℎ ∘ (𝑔 ∘ 𝑓))(𝑥) = ((ℎ ∘ 𝑔) ∘ 𝑓)(𝑥) for every 𝑥 ∈ 𝐴, so ℎ ∘ (𝑔 ∘ 𝑓) = (ℎ ∘ 𝑔) ∘ 𝑓.

6.4. Invertibility
We say that a function 𝑓∶ 𝐴 → 𝐵 is invertible if there exists some 𝑔∶ 𝐵 → 𝐴 such that
𝑔 ∘ 𝑓 = 1𝐴 and 𝑓 ∘ 𝑔 = 1𝐵. For example 𝑓∶ ℝ → ℝ given by 𝑓(𝑥) = 2𝑥 + 1 has inverse
𝑔∶ ℝ → ℝ given by 𝑔(𝑥) = 𝑥−1

2
. We can prove that this is correct by showing for all real

numbers that (𝑔 ∘ 𝑓)(𝑥) = 𝑥 and vice versa as required.
As an example, consider 𝑓0∶ ℕ → ℕ given by 𝑓0(𝑥) = 𝑥 + 1, and 𝑓1∶ ℕ → ℕ given by
𝑓1(𝑥) = 𝑥 − 1 if 𝑥 ≠ 1 and 1 if 𝑥 = 1. 𝑓1 ∘ 𝑓0 = 1ℕ but 𝑓0 ∘ 𝑓1 ≠ 1ℕ because they disagree at 1.
So we must check inverses both ways.

In fact, 𝑓∶ 𝐴 → 𝐵 is invertible if and only if it is a bijection.
• (forward implication) Let 𝑔 be the inverse of 𝑓. It is surjective because ∀𝑏 ∈ 𝐵, we have
𝑏 = 𝑓(𝑔(𝑏)). It is injective because given two elements 𝑎, 𝑎′ such that 𝑓(𝑎) = 𝑓(𝑎′),
we have 𝑔(𝑓(𝑎)) = 𝑔(𝑓(𝑎′)) = 𝑎 = 𝑎′ as required. So it is bijective.

• (backward implication) Suppose 𝑓 is bijective. Let 𝑔(𝑏) be the unique point 𝑎 ∈ 𝐴
with 𝑓(𝑎) = 𝑏 for all 𝑏 ∈ 𝐵. Then this 𝑔 is the inverse of 𝑓.
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6.5. Relations
A relation on a set 𝑋 is a subset of 𝑅 ⊆ 𝑋 × 𝑋 . We usually write 𝑎𝑅𝑏 to denote (𝑎, 𝑏) ∈ 𝑅.
Here are some examples.

(i) On ℕ, 𝑎𝑅𝑏 if 𝑎 ≡ 𝑏 (5). For example, 2𝑅12 but not 2𝑅11.
(ii) On ℕ, 𝑎𝑅𝑏 if 𝑎 ∣ 𝑏.
(iii) On ℕ, 𝑎𝑅𝑏 if 𝑎 ≠ 𝑏.
(iv) On ℕ, 𝑎𝑅𝑏 if 𝑎 = 𝑏 ± 1.
(v) On ℕ, 𝑎𝑅𝑏 if |𝑎 − 𝑏| ≤ 2.
(vi) On ℕ, 𝑎𝑅𝑏 if either 𝑎, 𝑏 ≤ 6 or 𝑎, 𝑏 > 6.
A relation may have a number of important properties:

• (reflexive) If ∀𝑥 ∈ 𝑋 , 𝑥𝑅𝑥, e.g. examples 1, 2, 5, 6.
• (symmetric) If ∀𝑥, 𝑦 ∈ 𝑋 , 𝑥𝑅𝑦 ⟹ 𝑦𝑅𝑥, e.g. examples 1, 3, 4, 5, 6.
• (transitive) If ∀𝑥, 𝑦, 𝑧 ∈ 𝑋 , 𝑥𝑅𝑦, 𝑦𝑅𝑧 ⟹ 𝑥𝑅𝑧, e.g. examples 1, 2, 6.

An equivalence relation is a relation that is reflexive, symmetric and transitive. Examples 1,
6 above are equivalence relations. Here are some more examples.

(i) On ℕ, 𝑥𝑅𝑦 if 𝑥 = 𝑦.
(ii) Considering a partition of set 𝑋 into subsets 𝐶1, 𝐶2,… , 𝑖 ∈ 𝐼 where the 𝐶𝑖 are non-

empty and disjoint, and their union is 𝑋 . Then consider the relation 𝑎𝑅𝑏 if ∃𝑖 such
that 𝑎 ∈ 𝐶𝑖 and 𝑏 ∈ 𝐶𝑖. 𝑎𝑅𝑏 is an equivalence relation. In fact, all equivalence
relations can be considered to be in this form; we will prove this shortly.

For an equivalence relation 𝑅 on a set 𝑋 , and 𝑥 ∈ 𝑋 , we define the equivalence class [𝑥] =
{𝑦 ∈ 𝑋 ∶ 𝑦𝑅𝑥}. In the first example 1 above, [2] = {𝑦 ∈ ℕ ∶ 𝑦 ≡ 2 (5)}.

6.6. Equivalence classes as partitions
Proposition. Let 𝑅 be an equivalence relation on a set 𝑋 . Then the equivalence classes of
𝑅 partition 𝑋 .

Proof. Each equivalence class [𝑥] is non-empty, since 𝑥 = 𝑥. Further,

⋃
𝑥∈𝑋

= 𝑋

since 𝑥 ∈ [𝑥] for all 𝑥 ∈ 𝑋 . Now we must show that the classes are disjoint, or are equal.
Given 𝑥, 𝑦 with [𝑥] ∩ [𝑦] ≠ ∅, we need to show that [𝑥] = [𝑦]. Choose some 𝑧 such that
𝑧 ∈ [𝑥] ∩ [𝑦]. Then, 𝑧𝑅𝑥 and 𝑧𝑅𝑦, so 𝑥𝑅𝑦. Thus for any 𝑡, 𝑡𝑅𝑥 ⟹ 𝑡𝑅𝑦 due to transitivity,
and 𝑡𝑅𝑦 ⟹ 𝑡𝑅𝑥 for the same reason. So [𝑥] = [𝑦].
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As an example, does there exist an equivalence relation on ℕwith three equivalence classes,
two of which are infinite, and one of which is finite? Yes—we can break up ℕ into three
parts, for example positive numbers, negative numbers and zero. This defines an equival-
ence relation.

6.7. Quotients
Given an equivalence relation 𝑅 on a set 𝑋 , the quotient of 𝑋 by 𝑅 is

𝑋/𝑅 = {[𝑥] ∶ 𝑥 ∈ 𝑋}

The map 𝑞∶ 𝑋 → 𝑋/𝑅 given by 𝑥 ↦ [𝑥] is called the ‘quotient map’ or ‘projection map’. As
an example, on ℤ×ℕ, let us define (𝑎, 𝑏)𝑅(𝑐, 𝑑) to be true if 𝑎𝑑 = 𝑏𝑐. This is an equivalence
relation that demonstrates equivalence of rational numbers, where 𝑎, 𝑐 are the numerators
and 𝑏, 𝑑 are denominators. Here, ℤ×ℕ/𝑅 is a copy ofℚ, associating [(𝑎, 𝑏)]with 𝑎/𝑏. Then,
𝑞∶ ℤ × ℕ → ℚ would map (𝑎, 𝑏) to 𝑎/𝑏.
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7. Countability
7.1. Basic properties
We have a notion of ‘size’ for finite sets. Is there such an analogous notion for infinite sets?
We will say that a set 𝑋 is countable if 𝑋 is finite, or it bijects with ℕ. Equivalently, we can
list out the elements of the set, and each element will appear in the list. Here are some
examples.

(i) Clearly any finite set is countable.

(ii) ℕ is countable.

(iii) ℤ is countable, let us construct the list of numbers

0, 1, −1, 2, −2, 3, −3, 4, −4,…

Itmakes sense now to consider two sets to have the same size if they bijectwith each other.

Proposition. A set 𝑋 is countable if and only if it injects into ℕ.

Proof. The forward implication is trivial: if 𝑋 is finite, then there must be an injection in
to ℕ, and if it bijects with ℕ then that bijection is a valid injection. This encompasses both
cases of countable sets.

Now let us consider the reverse implication. Wemay assume 𝑋 is infinite, since if 𝑋 is finite
then by definition 𝑋 is countable. We know that 𝑋 injects onto ℕ under some injective
function 𝑓, so 𝑋 bijects with Im𝑓. So it is enough to show that the image Im𝑓 is countable.
We will now set 𝑎1 to be the least element of Im𝑓, and 𝑎2 to be the least element not equal to
𝑎1, and so on. In general, 𝑎𝑛 = min(Im𝑓∖ {𝑎𝑖 ∶ 0 ≤ 𝑖 < 𝑛}). Then Im𝑓 is the set {𝑎1, 𝑎2,… }.
There are no extra elements that we have not covered, since each 𝑎 ∈ 𝑋 is 𝑎𝑛 for some 𝑛,
because 𝑎 = 𝑎𝑛, 𝑛 ≤ 𝑎. So we have listed elements of Im𝑓, so Im𝑓 is countable, so 𝑋 is
countable.

Thus, we can view countability as being ‘at most as large as ℕ’. For instance, any subset of a
countable set is also countable.

Remark. In ℝ, let
𝑋 = {12,

2
3 ,
3
4 ,… } ∪ {1}

Then 𝑋 is countable, as we can list it as

1, 12 ,
2
3 ,
3
4 ,…

But if we counted from ‘least element’ to ‘most element’, we would never reach the element
1 in countable time. Note further that if we find it difficult to construct a list for a set, it does
not mean it is uncountable, it could just mean that we haven’t found the right list yet.
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7.2. Products of countable sets
Theorem. ℕ × ℕ is countable.

Proof 1. We will define 𝑎1 = (1, 1), and inductively define

𝑎𝑛 = {(𝑝 − 1, 𝑞 + 1) if 𝑝 > 1
(𝑞 + 1, 1) if 𝑝 = 1

where 𝑎𝑛−1 = (𝑝, 𝑞). Therefore, we are essentially moving across antidiagonals of the plane.
This does hit every point (𝑥, 𝑦) ∈ ℕ×ℕ, for example by induction on 𝑥+𝑦, so we have listed
all elements of ℕ × ℕ.

Proof 2. If we can define an injective functionℕ×ℕ → ℕ, then it is countable. For example,
let 𝑓 = 2𝑥3𝑦. 𝑓 is injective, so ℕ × ℕ is countable.

7.3. Countable unions of countable sets
Proof 2 is also a way to show the following theorem:

Theorem. Let 𝐴1, 𝐴2, 𝐴3,… be countable sets. Then 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ … is countable. Less
formally, ‘a countable union of countable sets is countable’.

Proof. For each 𝑖, 𝐴𝑖 is countable, so we can list 𝐴𝑖 as 𝑎𝑖1, 𝑎𝑖2, 𝑎𝑖3,… which may or may not
terminate. We can then define

𝑓∶ ⋃
𝑛∈ℕ

𝐴𝑛 → ℕ; 𝑓(𝑥) = 2𝑖3𝑗

where 𝑥 = 𝑎𝑖𝑗 . If 𝑥 is in more than one set, just take the least 𝑖 that is valid. Then 𝑓 is an
injection so the union is countable.

Here are some examples of using this theorem by partitioning sets as a countable union of
countable subsets.

(i) ℚ is countable, since it is a countable union of countable sets:

ℚ = ℤ ∪ 1
2ℤ ∪

1
3ℤ ∪…

Each 1
𝑛
ℤ is countable, since they biject with ℤ which is a countable set. It doesn’t

matter if we’ve counted an element in ℚ twice; the above theorem works even with
intersecting sets.
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(ii) The set 𝔸 of all algebraic numbers is countable. It is enough to show that the set of
integer polynomials is countable, since each polynomial has a finite amount of roots
and then 𝔸 is a countable union of finite sets. Now, to show that the set of integer
polynomials is countable, it is enough to show that for each degree 𝑑 it is countable,
since it is a countable union of all polynomials of degree 𝑑 (again using the above
theorem). To specify a polynomial of degree 𝑑 you must name its coefficients, so this
set injects into ℤ𝑑+1, so wemust just show that ℤ𝑑+1 is countable (not a bijection since
the first term of the polynomial must be nonzero). We know that ℤ𝑛 is countable
because we can inductively show that ℤ2, ℤ3, ℤ4,… are countable inductively.

7.4. Uncountable sets
Definition. A set is uncountable if there is no way to count the set.

Theorem. ℝ is uncountable.

Proof (Cantor’s Diagonal Argument). We will show that (0, 1) is uncountable, then clearly
ℝ is uncountable. Suppose (0, 1) is countable. Then given a sequence 𝑟1, 𝑟2,… in (0, 1), we
just need to find some number 𝑠 ∈ (0, 1) not contained within this sequence. For each 𝑟𝑛,
we have a decimal expansion 𝑟𝑛 = 0.𝑟𝑛1𝑟𝑛2𝑟𝑛3…. Let us now write all of these numbers in a
matrix-style form:

𝑟1 = 0.𝑟11𝑟12𝑟13…
𝑟2 = 0.𝑟21𝑟22𝑟23…
𝑟3 = 0.𝑟31𝑟32𝑟33…
⋮

We just need to construct some number 𝑠 that is not in this list. So, let us simply make sure
that for any given 𝑟 value, there is at least one digit that does not match. The easiest way to
construct such a number is

𝑠 = 0.𝑠1𝑠2𝑠3…

where 𝑠1 ≠ 𝑟11, 𝑠2 ≠ 𝑟22, 𝑠3 ≠ 𝑟33 and so on. We can pick any numbers we like according to
these constraints, but we should avoid picking digits 0 and 9 since 0.1000⋯ = 0.0999… for
example, which could cause unnecessary ambiguity. Then 𝑠 ≠ 𝑟1, 𝑠 ≠ 𝑟2,… since there is at
least one mismatched digit in the expansion for each 𝑟𝑖; they differ in decimal digit 𝑖. So ℝ
is uncountable.

This is another proof that transcendental numbers exist. ℝ is uncountable and 𝔸 is count-
able, so there exists a transcendental number. Indeed, ‘most’ numbers are transcendental,
i.e.ℝ∖𝔸 is uncountable (because ifℝ∖𝔸were countable, thenℝwould be (ℝ∖𝔸)∪𝔸which
is a finite union of countable sets #).

Theorem. The power set 𝒫(ℕ) is uncountable.
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Proof. Suppose the subsets of ℕ are listed as 𝑆1, 𝑆2, 𝑆3,… then we want to construct another
set 𝑆 that is not equal to any of the other sets 𝑆 𝑖. So for each set 𝑆 𝑖, we must ensure that 𝑆
and 𝑆 𝑖 differ for at least one value. An easy way to do this is to include the number 𝑖 in the
subset if 𝑆 𝑖 does not contain the number, and to exclude 𝑖 if 𝑖 ∈ 𝑆 𝑖. Then 𝑆 differs from 𝑆 𝑖 at
position 𝑖. This is the same logic as the diagonal argument above. We have:

𝑆 = {𝑛 ∈ ℕ ∶ 𝑛 ∉ 𝑆𝑛}

So 𝑆 is not on the list 𝑆1, 𝑆2, 𝑆3,… no matter what way we choose to list the elements, so
𝒫(ℕ) is uncountable.

Remark. Alternatively, we could just inject (0, 1) into𝒫(ℕ). For example, consider 𝑥 ∈ (0, 1)
represented as 0.𝑥1𝑥2𝑥3𝑥4… in binary where the 𝑥1, 𝑥2,… are zero or one (not ending with
an infinite amount of 1s). We can convert this 𝑥 into a subset of ℕ by considering the set
{𝑛 ∈ ℕ ∶ 𝑥𝑛 = 1}. Then the uncountability follows.

In fact, our proof of this theorem shows the following.

Theorem. For any set 𝑋 , there is no bijection from 𝑋 to the power set 𝒫(𝑋).

For example, ℝ does not biject with 𝒫(ℝ). The proof in fact will show that there is no sur-
jection from 𝑋 to its power set; i.e. the power set is ‘larger’ than 𝑋 .

Proof. Given any function 𝑓∶ 𝑋 → 𝒫(𝑋), we will show 𝑓 is not surjective. Let 𝑆 = {𝑥 ∈ 𝑋 ∶
𝑥 ∉ 𝑓(𝑥)}. Then 𝑆 does not belong to the image of 𝑓 because they differ at element 𝑥; for all
𝑥 we have 𝑆 ≠ 𝑓(𝑥).

Remark. Note that:

(i) This is similar in some sense to Russell’s paradox.

(ii) This theorem gives another proof that there is no universal set ℰ, since its power set
𝒫(ℰ) ⊆ ℰ. But of course, there is always a surjection from a set to a subset. This is a
contradiction.

Example. Let 𝐴𝑖, 𝑖 ∈ 𝐼 be a family of open, pairwise disjoint intervals. Must this family be
countable? Note that it is not as simple as just listing from left to right, for example consider

(12 , 1) , (
1
3 ,
1
2) , (

1
4 ,
1
3) ,… , (−1, 0)

Then the leftmost interval is (−1, 0), but there is no ‘next interval’ just after it. Also consider

(0, 12) , (
1
2 ,
2
3) , (

2
3 ,
3
4) ,… , (1, 2)

Thenwe can list the first infinitelymany intervals, but wewill never reach (1, 2). The answer
turns out to be true; the family is countable. Here are two important proofs.
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Proof 1. Each interval 𝐴𝑖 contains a rational number 𝑎𝑖. The rationals ℚ are countable. So
let us just list the 𝑎𝑖. The family is therefore countable.

Proof 2. {𝑖 ∈ 𝐼 ∶ 𝐴𝑖 has length ≤ 1} is certainly countable, since it injects into ℤ (here, as
all 𝐴𝑖 contain some integer). Further, {𝑖 ∈ 𝐼 ∶ 𝐴𝑖 has length ≤ 1

2
} is countable for the same

reason. Essentially, for all 𝑛, {𝑖 ∈ 𝐼 ∶ 𝐴𝑖 has length ≤ 1
𝑛
} is countable. We have written all

the intervals as a countable union (over 𝑛) of countable sets.

To summarise, if we want to show a set 𝑋 is uncountable:

(i) Run a diagonal argument; or

(ii) Inject an uncountable set into 𝑋
To show a set 𝑋 is countable:

(i) List all the elements (usually fiddly); or

(ii) Inject 𝑋 into ℕ (or another countable set); or

(iii) Express 𝑋 as a countable union of countable sets (usually the best); or

(iv) If 𝑋 is ‘in’ or ‘near’ ℝ, consider ℚ (see Proof 2 above).

7.5. Comparing sizes of sets
Intuitively, we might think that:

• ‘𝐴 bijects with 𝐵’ means ‘𝐴 has the same size as 𝐵’.
• ‘𝐴 injects into 𝐵’ means ‘𝐴 is at most as large as 𝐵’.
• ‘𝐴 surjects onto 𝐵’ means ‘𝐴 is at least as large as 𝐵’.

Of course, these analogies break down where 𝐵 is zero, since there are no functions from 𝐴
to 𝐵 in this case. For these to make sense, we require (for 𝐴, 𝐵 ≠ ∅) ‘𝐴 injects into 𝐵’ to be
true if and only if ‘𝐵 surjects onto 𝐴’, and vice versa.

• In the forward direction, we are given an injection 𝑓∶ 𝐴 → 𝐵. Pick some point 𝑎0 in
𝐴, and define a surjective function 𝑔∶ 𝐵 → 𝐴 given by

𝑏 ↦ {𝑎 if ∃! 𝑎 ∈ 𝐴, 𝑓(𝑎) = 𝑏
𝑎0 otherwise

Since the mapping 𝑓 is injective, the first case will always provide a unique value of 𝑎.
• Proving the converse, we are given a surjection 𝑔∶ 𝐵 → 𝐴. For each 𝑎 in 𝐴, we have
some 𝑎′ ∈ 𝐵 with 𝑔(𝑎′) = 𝑎 since 𝑔 is a surjection. Let 𝑓(𝑎) = 𝑎′ for each 𝑎 ∈ 𝐴, and
𝑓 is injective.
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7.6. Schröder–Bernstein theorem
Further, we must also have that if ‘𝐴 is at most as large as 𝐵’ and ‘𝐵 is at most as large as 𝐴’,
then they must be the same size. Otherwise this size intuition would not make sense.

Theorem (Schröder–Bernstein Theorem). If 𝑓∶ 𝐴 → 𝐵 and 𝑔∶ 𝐵 → 𝐴 are injections, then
there exists a bijection ℎ∶ 𝐴 → 𝐵.

Proof. For 𝑎 ∈ 𝐴, we will write 𝑔−1(𝑎) to denote the unique 𝑏 ∈ 𝐵 such that 𝑔(𝑏) = 𝑎, if
such a 𝑏 exists (and similarly for 𝑓−1(𝑏)). The ‘ancestor sequence’ of 𝑎 ∈ 𝐴 is

𝑔−1(𝑎), 𝑓−1𝑔−1(𝑎), 𝑔−1𝑓−1𝑔−1(𝑎),…

which may terminate. So for any ancestor, after undergoing the relevant function 𝑓 or 𝑔
repeatedly, we will end up at 𝑎. There are three possible behaviours:

• Let 𝐴0 be the subset of 𝐴 such that the ancestor sequence stops at even time, i.e. the
last ancestor is in 𝐴;

• Let 𝐴1 be the subset of 𝐴 such that the ancestor sequence stops at odd time, i.e. the
last ancestor is in 𝐵; and

• Let 𝐴∞ be the subset of 𝐴 such that the ancestor sequence does not terminate.

We specify 0 to be even, i.e. if 𝑎 ∈ 𝐴 has no ancestor 𝑔−1(𝑎), then 𝑎 ∈ 𝐴0. We define similar
subsets of 𝐵: 𝐵0, 𝐵1, 𝐵∞. Now:

• 𝑓∶ 𝐴 → 𝐵 is a bijection between 𝐴0 and 𝐵1. Clearly if some element 𝑎 has an even
number of ancestors, the ancestors of 𝑓(𝑎) are exactly 𝑎 and all of its ancestors, i.e. an
odd number. It is surjective because every element in 𝐵1 has an inverse 𝑓−1(𝑏) ∈ 𝐴0
by construction.

• 𝑔∶ 𝐵 → 𝐴 is a bijection between 𝐵0 and 𝐴1 due to the same argument.

• 𝑓 (or 𝑔, both functions work for this proof) bijects 𝐴∞ and 𝐵∞. It is surjective because
for every element 𝑏 ∈ 𝐵, it has some ancestor 𝑓−1(𝑏) ∈ 𝐴∞.

So the function ℎ∶ 𝐴 → 𝐵 is given by

ℎ(𝑎) =
⎧
⎨
⎩

𝑓(𝑎) if 𝑎 ∈ 𝐴0
𝑔−1(𝑎) if 𝑎 ∈ 𝐴1
𝑓(𝑎) if 𝑎 ∈ 𝐴∞

is a bijection.

Let us consider an example of this theorem in action. Do [0, 1] and [0, 1] ∪ [2, 3] biject? All
we need is to find an injection both ways.

• Let 𝑓∶ [0, 1] → [0, 1] ∪ [2, 3] be the identity map 𝑓(𝑥) = 𝑥.
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• Let 𝑔∶ [0, 1] ∪ [2, 3] → [0, 1] be given by 𝑔(𝑥) = 𝑥/3.
It would also be nice to have that, for any sets 𝐴 and 𝐵, either 𝐴 injects into 𝐵 or 𝐵 injects
into 𝐴. Then we can create a total ordering, rather than a partial ordering; we can compare
any two sets. This is proven to be true in the Part II course Logic and Set Theory.

7.7. Arbitrarily large sets
We have the sets

ℕ,𝒫(ℕ), 𝒫(𝒫(ℕ)),… ,𝒫𝑘(ℕ),…
Does every set 𝑋 inject into one of those? It seems like this might be true, but the set

𝑋 = ℕ ∪ 𝒫(ℕ) ∪ 𝒫(𝒫(ℕ)) ∪ …

is a counterexample. Let us continue further with this approach.

𝑋 ′ = 𝑋 ∪ 𝒫(𝑋) ∪ 𝒫(𝒫(𝑋)) ∪ …

𝑋″ = 𝑋 ′ ∪ 𝒫(𝑋 ′) ∪ 𝒫(𝒫(𝑋 ′)) ∪ …
and so on. Now, does every set inject into one of these sets? No, consider

𝑌 = 𝑋 ∪ 𝑋 ′ ∪ 𝑋″ ∪ 𝑋‴ ∪…

We can keep going forever. So we can’t construct a set that all sets inject into.

7.8. What happens next?
This is the end of the Numbers and Sets course. Here are a few of the courses that feed from
this course.

• Factorisation is taken further in the IB Groups, Rings and Modules course.

• Fermat’s Little Theorem, squaresmodulo 𝑝 etc. are taken further in II Number Theory.
• The analysis chapter is extended by IA Analysis.

• Countability and sizes of sets are taken further in the II Logic and Set Theory course.
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II. Differential Equations

Lectured in Michaelmas 2020 by Dr. J. R. Taylor
A differential equation is an equation involving one or more unknown functions and their
derivatives. These equations arise in many fields of study, such as physics and biology. In
this course, we explore many different ways to solve some common types of differential
equations.

In many cases, it is not possible to solve differential equations, so it is important to clas-
sify various cases that we can solve, and explore them in depth. Heuristically, a differential
equation is often easier to solve if it involves fewer variables, and if the derivatives involved
have a lower order. First, we will study differential equations in only one variable: the ‘or-
dinary’ differential equations. Towards the end of the course, we study ‘partial’ differential
equations, which can involve more than one variable.
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1. Differentiation

1. Differentiation
1.1. Basic definitions
Definition (Differential Equation). A differential equation (DE) is an equation involving
derivatives of a function or several functions.

Definition (Limit, informally). If lim
𝑥→𝑥0

𝑓(𝑥) = 𝐴, then 𝑓(𝑥) can be made arbitrarily close
to 𝐴 by making 𝑥 sufficiently close to 𝑥0.
Note that the definition of the limit does not specify behaviour of𝑓(𝑥) at𝑥 = 𝑥0; it is perfectly
possible that 𝑓(𝑥0) is undefined, or that it is some number not equal to 𝐴. Examples of this
behaviour would be 1/𝑥 (undefined at 0), or the Dirac 𝛿 function (infinite at 0).
Definition (One-Sided Limit). A left limit is notated lim

𝑥→𝑥−0
. It requires that the value 𝐴

represented by the limit is computed by setting 𝑥 to values smaller than 𝑥0. Analogously, a
right limit is notated lim

𝑥→𝑥+0
. In calculating this limit, 𝑥must be greater than 𝑥0.

0 0.5 1 1.5 2
0

2

4

6

ℎ

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

𝑥

𝑓(
𝑥)

Definition (Derivative). We can use the definitions of limits to define the derivative of a
function 𝑓(𝑥) with respect to its argument (in this case, 𝑥):

d𝑓
d𝑥 = lim

ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ (1.1)

Pictorially, we can see that the definition of the derivative is basically the slope of the line
between two points that approach arbitrarily close to each other. In this example, 𝑥 is 0.5,
and ℎ is 1.
Note that for the derivative to exist at a point 𝑥, we require that

lim
ℎ→0−

𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ = lim

ℎ→0+
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ

This excludes, for example, the derivative of |𝑥| at 𝑥 = 0, as this would have two conflicting
answers (−1 and 1).
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There are multiple ways of representing derivatives of functions. Here, we show the deriv-
ative of 𝑓(𝑥) in multiple notation systems:

• d𝑓
d𝑥 : Leibniz notation

• 𝑓′(𝑥): Lagrange notation

• ̇𝑓(𝑥): Newton notation

For sufficiently smooth functions (meaning that the derivative is valid at each step), we can
define derivatives recursively:

d
d𝑥 (

d𝑓
d𝑥) =

d2𝑓
d𝑥2

= 𝑓″(𝑥) = ̈𝑓(𝑥)

1.2. Rules for differentiation
Definition (Chain Rule). Consider a function 𝑓(𝑥) = 𝐹(𝑔(𝑥)). The derivative of 𝑓(𝑥) can
be written

d𝑓
d𝑥 = 𝐹′(𝑔(𝑥)) ⋅ 𝑔′(𝑥) = d𝐹

d𝑔
d𝑔
d𝑥 (1.2)

Definition (Product Rule). Consider a function 𝑓(𝑥) = 𝑢(𝑥)𝑣(𝑥). The derivative of 𝑓(𝑥)
can be written

d𝑓
d𝑥 = 𝑢′(𝑥)𝑣(𝑥) + 𝑢(𝑥)𝑣′(𝑥) = 𝑢′𝑣 + 𝑢𝑣′ (1.3)

Definition (Leibniz’ Rule). Consider a function 𝑓(𝑥) = 𝑢(𝑥)𝑣(𝑥). Recursive derivatives of
𝑓(𝑥) can be written

𝑓 = 𝑢𝑣 (1.4)
𝑓′ = 𝑢′𝑣 + 𝑢𝑣′
𝑓″ = 𝑢″𝑣 + 2𝑢′𝑣′ + 𝑢𝑣″
𝑓‴ = 𝑢‴𝑣 + 3𝑢″𝑣′ + 3𝑢′𝑣″ + 𝑢𝑣‴

This is analogous to Pascal’s triangle and the binomial expansion. The coefficients are

( 𝑛
𝑚 = 𝑛!

𝑚!(𝑛−𝑚)!
)

1.3. Order of magnitude
The goal of ‘order of magnitude’ functions is to compare the size of functions in the vicinity
of certain points.
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Definition (Little 𝑜). Given functions 𝑓(𝑥) and 𝑔(𝑥) such that

lim
𝑥→𝑥0

𝑓(𝑥)
𝑔(𝑥) = 0 (1.5)

we can say that 𝑓(𝑥) = 𝑜(𝑔(𝑥)) as 𝑥 → 𝑥0.
This is essentially saying that the function 𝑓(𝑥) is much ‘smaller’ than 𝑔(𝑥) as we approach
the point 𝑥0. For example, 𝑥2 = 𝑜(𝑥) as 𝑥 → 0, because 𝑥2 becomes vanishingly small
compared to 𝑥 near zero.
Definition (Big 𝑂: 𝑥0 finite). Assume we have two functions 𝑓(𝑥) and 𝑔(𝑥), and a finite
number 𝑥0 where we are comparing the functions. If we can find two positive constants𝑀
and 𝛿 such that

|𝑓(𝑥)| ≤ 𝑀|𝑔(𝑥)| (∀𝑥, |𝑥 − 𝑥0| < 𝛿) (1.6)

then 𝑓(𝑥) = 𝑂(𝑔(𝑥)) as 𝑥 → 𝑥0.
Informally, the function 𝑓 can be bounded by 𝑔 in a specific area around the point 𝑥0.
Unlike little 𝑜 notation, there is no requirement that 𝑓(𝑥) becomes vanishingly small com-
pared to 𝑔(𝑥), just that it is smaller. Therefore, 𝑥2 ≠ 𝑜(𝑥2) but 𝑥2 = 𝑂(𝑥2) (both as 𝑥 →
0).
Some examples:

• 𝑥2 = 𝑂(𝑥) as 𝑥 → 0. Take𝑀 = 1, 𝛿 = 1.
• 𝑥 ≠ 𝑂(𝑥2) as 𝑥 → 0. This is because for any value of 𝑥 smaller than 1/𝑀, the value of
𝑔(𝑥) is𝑀𝑥2 which is smaller than 𝑥.

• 𝑥2 = 𝑂(𝑥2) as 𝑥 → 0. Take𝑀 = 1, and choose an arbitrary 𝛿.
By convention, we usually pick the most restrictive𝑀 and 𝛿 possible.
Definition (Big𝑂: 𝑥0 infinite). Assume we have two functions 𝑓(𝑥) and 𝑔(𝑥), and we want
to compare the functions’ behaviours at infinity. If we can find two positive constants𝑀 and
𝑥1 such that

|𝑓(𝑥)| ≤ 𝑀|𝑔(𝑥)| (∀𝑥 > 𝑥1) (1.7)

then 𝑓(𝑥) = 𝑂(𝑔(𝑥)) as 𝑥 → ∞.

This is basically the same as the previous definition—but obviously we can’t pick a value
slightly less than infinity to test, so we just provide a lower bound on 𝑥 where the condition
holds true.

For example, 2𝑥3 + 4𝑥 + 12 = 𝑂(𝑥3) as 𝑥 → ∞. This is because the function is a cubic,
so can be bounded by a cubic as it shoots off to infinity. We can take, for example, 𝑀 = 3
and 𝑥1 = 3. Note that we can’t just pick𝑀 = 2 even though asymptotically the function is
close to 2𝑥3; there is a value added to the 2𝑥3 so we’d need to pick a slightly larger number
to guarantee that Equation (1.7) is satisfied.
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1.4. Equation of a tangent
We can use little 𝑜 notation to construct the equation of a tangent to a function 𝑓(𝑥) at a
given 𝑥 value, 𝑥0. This is the start of the formula for the Taylor series of 𝑓 at 𝑥0.
First, notice that 𝑜(𝑔(𝑥))/𝑔(𝑥) is zero, as 𝑜(𝑔(𝑥)) is vanishingly small compared to 𝑔(𝑥) near
the convergence point.

Using Equation (1.1), we can (informally) deduce:

d𝑓
d𝑥

|||𝑥=𝑥0
= 𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)

ℎ

= 𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)
ℎ + 𝑜(ℎ)

ℎ
∴ 𝑓(𝑥0 + ℎ) = 𝑓(𝑥0) +

d𝑓
d𝑥

|||𝑥=𝑥0
ℎ + 𝑜(ℎ)

If we now take 𝑥 = 𝑥0 + ℎ; 𝑦 = 𝑓(𝑥); 𝑦0 = 𝑓(𝑥0), we have

𝑦 = 𝑦0 +
d𝑓
d𝑥

|||𝑥=𝑥0
(𝑥 − 𝑥0) + 𝑜(ℎ)

This is the equation of the tangent to the curve at 𝑥0 if 𝑜(ℎ) = 0, and this is start of the
equation for the Taylor series.

1.5. Taylor series
Suppose that we want to approximate a function 𝑓(𝑥) using a polynomial of order 𝑛.

𝑓(𝑥) ≈ 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 +⋯+ 𝑎𝑛𝑥𝑛⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟
≡𝑝𝑛(𝑥)

By assuming that the equality holds, we may set 𝑥 = 0 to get the value of 𝑎0. By differentiat-
ing the left and right hand sides 𝑘 times, we can evaluate both sides at 𝑥 = 0 to get the value
of 𝑎𝑘. Therefore, term 𝑎𝑘 is equivalent to 𝑓(𝑘)(0)/𝑘!

𝑓(𝑥) ≈ 𝑝𝑛(𝑥) = 𝑓(0) + 𝑥𝑓′(0) + 𝑥2
2 𝑓

″(0) +⋯ + 𝑥𝑛
𝑛! 𝑓

(𝑛)(0)

Alternatively, repeating the process at 𝑥0, we get the formula for the Taylor polynomial of
degree 𝑛 of 𝑓(𝑥):

𝑓(𝑥) ≈ 𝑝𝑛(𝑥) = 𝑓(𝑥0) + (𝑥 − 𝑥0)𝑓′(𝑥0) +
(𝑥 − 𝑥0)2

2 𝑓″(𝑥0) +⋯ + (𝑥 − 𝑥0)𝑛
𝑛! 𝑓(𝑛)(𝑥0)

We can write
𝑓(𝑥) = 𝑝𝑛(𝑥) + 𝐸𝑛 (1.8)
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where 𝐸𝑛 is the error at term 𝑛. Recall that 𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ𝑓′(𝑥) + 𝑜(ℎ) as ℎ → 0. We
can generalise this, provided that the first 𝑛 derivatives of 𝑓(𝑥) exist.

𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ𝑓′(𝑥) + ℎ2
2 𝑓

″(𝑥) +⋯ + ℎ𝑛
𝑛! 𝑓

(𝑛)(𝑥) + 𝑜(ℎ𝑛) (1.9)

Comparing Equations (1.8) and (1.9), we see that:

𝐸𝑛 = 𝑜(ℎ𝑛)

Theorem (Taylor’s Theorem). 𝐸𝑛 = 𝑂(ℎ𝑛+1) as ℎ → 0 provided that 𝑓(𝑛+1)(𝑥) exists.
Note that the big 𝑂 notation in Taylor’s Theorem is a stronger statement than the little 𝑜
notation above. For example, ℎ𝑛+𝑎 = 𝑜(ℎ𝑛) as ℎ → 0 ∀𝑎 ∈ (0, 1) since limℎ→0

ℎ𝑛+𝑎
ℎ𝑛

=
limℎ→0 ℎ𝑎 = 0. However, ℎ𝑛+𝑎 ≠ 𝑂(ℎ𝑛+1) as ℎ → 0 for 𝑎 ∈ (0, 1) because we can’t bound
ℎ𝑛+𝑎 using ℎ𝑛+1 everywhere in the vicinity of 0.

1.6. L’Hôpital’s rule
Let 𝑓(𝑥) and 𝑔(𝑥) be differentiable functions at 𝑥 = 𝑥0, and that lim𝑥→𝑥0 𝑓(𝑥) = 𝑓(𝑥0) = 0
and similarly for 𝑔(𝑥). L’Hôpital’s Rule states that

lim
𝑥→𝑥0

𝑓(𝑥)
𝑔(𝑥) = lim

𝑥→𝑥0

𝑓′(𝑥)
𝑔′(𝑥) if 𝑔

′(𝑥0) ≠ 0

Proof. As 𝑥 → 𝑥0:

𝑓(𝑥) = 𝑓(𝑥0) + (𝑥 − 𝑥0)𝑓′(𝑥0) + 𝑜(𝑥 − 𝑥0)
𝑔(𝑥) = 𝑔(𝑥0) + (𝑥 − 𝑥0)𝑔′(𝑥0) + 𝑜(𝑥 − 𝑥0)

But we know that 𝑓(𝑥0) = 𝑔(𝑥0) = 0 therefore

𝑓(𝑥)
𝑔(𝑥) =

𝑓′(𝑥0) +
𝑜(𝑥−𝑥0)
𝑥−𝑥0

𝑔′(𝑥0) +
𝑜(𝑥−𝑥0)
𝑥−𝑥0

By the definition of little 𝑜, 𝑜(ℎ)/ℎ tends to zero, so

𝑓(𝑥)
𝑔(𝑥) =

𝑓′(𝑥)
𝑔′(𝑥)

Note that l’Hôpital’s rule can be applied recursively, using higher-order derivatives. For
example, consider 𝑓(𝑥) = 3 sin𝑥 − sin 3𝑥; 𝑔(𝑥) = 2𝑥 − sin 2𝑥. The limit approaches 3
as 𝑥 → 0.
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2. Integration
2.1. Definition of integration
We use a Riemann sum to approximate the area under a sufficiently well-behaved function
𝑓(𝑥) on the real numbers.

𝑁−1
∑
𝑛=0

𝑓(𝑥𝑛)Δ𝑥 (2.1)

where Δ𝑥 = (𝑏 − 𝑎)/𝑁, and 𝑥𝑛 = 𝑎 + 𝑛Δ𝑥. How close is (2.1) to the area under 𝑓(𝑥) for
large 𝑁? Consider a specific rectangle in the Riemann sum by fixing 𝑛. The area under the
curve in the 𝑛th rectangle and the area of the rectangle itself differ by a value we denote here
as 𝜀. By computing 𝜀’s order of magnitude, we can show how much the total error deviates
by.

Theorem (Mean Value Theorem). For a continuous function 𝑓(𝑥),

∫
𝑥𝑛+1

𝑥𝑛
𝑓(𝑥) d𝑥 = 𝑓(𝑥𝑐) ⋅ (𝑥𝑛+1 − 𝑥𝑛) (2.2)

for some 𝑥𝑐 ∈ (𝑥𝑛, 𝑛𝑛+1).
We use the Taylor Series of 𝑓(𝑥) at 𝑥𝑛 to compute a value for 𝑥𝑐.

𝑓(𝑥𝑐) = 𝑓(𝑥𝑛) + 𝑂(𝑥𝑐 − 𝑥𝑛)

as 𝑥𝑐 − 𝑥𝑛 → 0. Since 𝑥𝑛 < 𝑥𝑐 < 𝑥𝑛+1, which implies |𝑥𝑛+1 − 𝑥𝑛| > |𝑥𝑐 − 𝑥𝑛|, we can make
the statement that

𝑓(𝑥𝑐) = 𝑓(𝑥𝑛) + 𝑂(𝑥𝑛+1 − 𝑥𝑛)
as 𝑥𝑛+1 − 𝑥𝑛 → 0. Thus, by (2.2)

∫
𝑥𝑛+1

𝑥𝑛
𝑓(𝑥) d𝑥 = [𝑓(𝑥𝑛) + 𝑂(𝑥𝑛+1 − 𝑥𝑛)] (𝑥𝑛+1 − 𝑥𝑛)

By defining Δ𝑥 = 𝑥𝑛+1 − 𝑥𝑛, we have

∫
𝑥𝑛+1

𝑥𝑛
𝑓(𝑥) d𝑥 = Δ𝑥𝑓(𝑥𝑛) + 𝑂(Δ𝑥2) (2.3)

By rearranging, we can compute 𝜀:

𝜀 =
||||
∫

𝑥𝑛+1

𝑥𝑛
𝑓(𝑥) d𝑥 − Δ𝑥𝑓(𝑥𝑛)

||||
= 𝑂(Δ𝑥2)

Therefore it follows that

∫
𝑏

𝑎
𝑓(𝑥) d𝑥 = lim

Δ𝑥→0
[(

𝑁−1
∑
𝑛=0

𝑓(𝑥𝑛)Δ𝑥) + 𝑂(𝑁Δ𝑥2)]
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Note that 𝑂(𝑁Δ𝑥2) = 𝑂((𝑏−𝑎
𝑁
)2 ⋅ 𝑁) = 𝑂(1/𝑁), so

∫
𝑏

𝑎
𝑓(𝑥) d𝑥 = lim

𝑁→∞
[(

𝑁−1
∑
𝑛=0

𝑓(𝑥𝑛)Δ𝑥) + 𝑂(1/𝑁)]

Which gives our final result of

∫
𝑏

𝑎
𝑓(𝑥) d𝑥 = lim

𝑁→∞

𝑁−1
∑
𝑛=0

𝑓(𝑥𝑛)Δ𝑥 (2.4)

2.2. Fundamental theorem of calculus
Let 𝐹(𝑥) = ∫𝑥

𝑎 𝑓(𝑡) d𝑡. From the definition of the derivative, we have

d𝐹
d𝑥 = lim

ℎ→0
1
ℎ [𝐹(𝑥 + ℎ) − 𝐹(𝑥)]

= lim
ℎ→0

1
ℎ [∫

𝑥+ℎ

𝑎
𝑓(𝑡) d𝑡 −∫

𝑥

𝑎
𝑓(𝑡) d𝑡]

= lim
ℎ→0

1
ℎ ∫

𝑥+ℎ

𝑥
𝑓(𝑡) d𝑡

Using (2.4):

= lim
ℎ→0

1
ℎ [ℎ𝑓(𝑥) + 𝑂(ℎ2)]

= lim
ℎ→0

[𝑓(𝑥) + 𝑂(ℎ)]

= 𝑓(𝑥)

Therefore:
d
d𝑥 [∫

𝑥

𝑎
𝑓(𝑡) d𝑡] = 𝑓(𝑥) (2.5)

2.3. Integration techniques
Three particularly important methods of integration are:

• 𝑢-substitution,
• trigonometric substitutions, and

• integration by parts.

Of particular note is the trigonometric substitution method, since it can be difficult to work
out exactly which substitution will yield the result. A table is provided below.
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Identity Term in Integrand Substitution

cos2 𝜃 + sin2 𝜃 = 1 √1 − 𝑥2 𝑥 = sin 𝜃
1 + tan2 𝜃 = sec2 𝜃 1 + 𝑥2 𝑥 = tan 𝜃
cosh2 𝑢 − sinh2 𝑢 = 1 √𝑥2 − 1 𝑥 = cosh𝑢
cosh2 𝑢 − sinh2 𝑢 = 1 √𝑥2 + 1 𝑥 = sinh𝑢
1 − tanh2 𝑢 = sech2 𝑢 1 − 𝑥2 𝑥 = tanh𝑢
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3. Multivariate functions
3.1. Partial derivatives
We define the partial derivative of a two-valued function 𝑓(𝑥, 𝑦) with respect to 𝑥 (for ex-
ample) by:

𝜕𝑓
𝜕𝑥
|||𝑦
= lim

𝛿𝑥→0

𝑓(𝑥 + 𝛿𝑥, 𝑦) − 𝑓(𝑥, 𝑦)
𝛿𝑥 (3.1)

For example, if 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦3 + 𝑒𝑥𝑦2 , we have

𝜕𝑓
𝜕𝑥
|||𝑦
= 2𝑥 + 𝑦2𝑒𝑥𝑦2

𝜕2𝑓
𝜕𝑥2

|||𝑦
= 2 + 𝑦4𝑒𝑥𝑦2

We can also define ‘cross-derivatives’ by differentiating successively with respect to different
variables, for example

𝜕
𝜕𝑦 (

𝜕𝑓
𝜕𝑥
|||𝑦
)
||||𝑥
= 2𝑦𝑒𝑥𝑦2 + 2𝑥𝑦3𝑒𝑥𝑦2

The order of computation of cross-derivatives is irrelevant, provided that the required deriv-
atives all exist.

𝜕2𝑓
𝜕𝑥𝜕𝑦 = 𝜕

𝜕𝑥
𝜕𝑓
𝜕𝑦 = 𝜕

𝜕𝑦
𝜕𝑓
𝜕𝑥 = 𝜕2𝑓

𝜕𝑦𝜕𝑥 (3.2)

We use a subscript shorthand to denote partial differentiation. Where the point of evaluation
of the derivative is not stated, it is implied to be fixed. For example:

𝜕𝑓
𝜕𝑥
|||𝑦
= 𝜕𝑓
𝜕𝑥 = 𝑓𝑥

However, with a function 𝑓(𝑥, 𝑦, 𝑧):

𝜕𝑓
𝜕𝑥
|||𝑦𝑧

≠ 𝜕𝑓
𝜕𝑥
|||𝑦

because 𝑧 is not fixed.

3.2. Multivariate chain rule
In this section, all use of 𝑜 notation is defined to be where all required 𝛿 values approach 0.
We define the differential of a two-valued function 𝑓(𝑥, 𝑦) to be

𝛿𝑓 = 𝑓(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦) − 𝑓(𝑥, 𝑦) (3.3)
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We can evaluate this differential by rewriting (3.3) as

𝛿𝑓 = 𝑓(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦) − 𝑓(𝑥 + 𝛿𝑥, 𝑦) +
𝑓(𝑥 + 𝛿𝑥, 𝑦) − 𝑓(𝑥, 𝑦)

We can move from (𝑥, 𝑦) to (𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦) along the path (𝑥, 𝑦) → (𝑥 + 𝛿𝑥, 𝑦) → (𝑥 +
𝛿𝑥, 𝑦 + 𝛿𝑦). If we move in this way, then we only need to worry about derivatives in the
directions of our axes. From here on in the derivation, the first line will always represent
the path segment in the 𝑦 direction, and the second line will represent the path segment in
the 𝑥 direction.
Now that we’ve separated the differential into these two axes, we can use Taylor series, treat-
ing each line as a single-valued function, to expand each of these path segments along the
matching axis.

𝛿𝑓 = 𝑓(𝑥 + 𝛿𝑥, 𝑦) + 𝛿𝑦𝜕𝑓𝜕𝑦 (𝑥 + 𝛿𝑥, 𝑦) + 𝑜(𝛿𝑦) − 𝑓(𝑥 + 𝛿𝑥, 𝑦) +

𝑓(𝑥, 𝑦) + 𝛿𝑥𝜕𝑓𝜕𝑥(𝑥, 𝑦) + 𝑜(𝛿𝑥) − 𝑓(𝑥, 𝑦)

We can now cancel the beginning and ending points of each segment of the path, leav-
ing

𝛿𝑓 = 𝛿𝑦𝜕𝑓𝜕𝑦 (𝑥 + 𝛿𝑥, 𝑦) + 𝑜(𝛿𝑦)+

𝛿𝑥𝜕𝑓𝜕𝑥(𝑥, 𝑦) + 𝑜(𝛿𝑥)

We can reduce the remaining 𝑥+𝛿𝑥 term to simply an 𝑥 term by performing another Taylor
expansion.

𝛿𝑓 = 𝛿𝑦 [𝜕𝑓𝜕𝑦 (𝑥, 𝑦) + 𝛿𝑥𝜕
2𝑓
𝜕𝑦2 (𝑥, 𝑦) + 𝑜(𝛿𝑥)] + 𝑜(𝛿𝑦) +

𝛿𝑥𝜕𝑓𝜕𝑥(𝑥, 𝑦) + 𝑜(𝛿𝑥)

Expanding out this bracket leaves

𝛿𝑓 = 𝛿𝑦𝜕𝑓𝜕𝑦 (𝑥, 𝑦) + 𝛿𝑥𝛿𝑦𝜕
2𝑓
𝜕𝑦2 (𝑥, 𝑦) + 𝑜(𝛿𝑥𝛿𝑦) + 𝑜(𝛿𝑦) +

𝛿𝑥𝜕𝑓𝜕𝑥(𝑥, 𝑦) + 𝑜(𝛿𝑥)

We will now change the meanings of each line. Now, we will group terms by factors.

𝛿𝑓 = 𝛿𝑥𝜕𝑓𝜕𝑥(𝑥, 𝑦) + 𝑜(𝛿𝑥) +

𝛿𝑦𝜕𝑓𝜕𝑦 (𝑥, 𝑦) + 𝑜(𝛿𝑦) +

𝛿𝑥𝛿𝑦𝜕
2𝑓
𝜕𝑦2 (𝑥, 𝑦) + 𝑜(𝛿𝑥𝛿𝑦)
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Because 𝑜(ℎ) is significantly smaller than ℎ, we can eliminate all the 𝑜 terms.

𝛿𝑓 = 𝛿𝑥𝜕𝑓𝜕𝑥(𝑥, 𝑦) +

𝛿𝑦𝜕𝑓𝜕𝑦 (𝑥, 𝑦) +

𝛿𝑥𝛿𝑦𝜕
2𝑓
𝜕𝑦2 (𝑥, 𝑦)

Finally, we can eliminate the 𝛿𝑥𝛿𝑦 term because it is vanishingly small as they tend to
zero.

𝛿𝑓 = 𝛿𝑥𝜕𝑓𝜕𝑥(𝑥, 𝑦) + 𝛿𝑦𝜕𝑓𝜕𝑦 (𝑥, 𝑦) (3.4)

This is the differential form of the multivariate chain rule. We can take the result of this
equation in the limit to create the infinitesimal form:

d𝑓 = d𝑥 𝜕𝑓𝜕𝑥(𝑥, 𝑦) + d𝑦 𝜕𝑓𝜕𝑦 (𝑥, 𝑦) (3.5)

By integrating (3.5), we get

∫ d𝑓 = ∫ 𝜕𝑓
𝜕𝑥 d𝑥 +∫ 𝜕𝑓

𝜕𝑦 d𝑦

In definite integral form, we can write

𝑓(𝑥2 − 𝑥1, 𝑦2 − 𝑦1) = ∫
𝑥2

𝑥1

𝜕𝑓
𝜕𝑥(𝑥, 𝑦1) d𝑥 +∫

𝑦2

𝑦1

𝜕𝑓
𝜕𝑦 (𝑥2, 𝑦) d𝑦

= ∫
𝑦2

𝑦1

𝜕𝑓
𝜕𝑦 (𝑥1, 𝑦) d𝑦 +∫

𝑥2

𝑥1

𝜕𝑓
𝜕𝑥(𝑥, 𝑦2) d𝑥

≠ ∫
𝑥2

𝑥1

𝜕𝑓
𝜕𝑥(𝑥, 𝑦1) d𝑥 +∫

𝑦2

𝑦1

𝜕𝑓
𝜕𝑦 (𝑥1, 𝑦) d𝑦

Note that the first two examples of a right hand side go along the paths (𝑥1, 𝑦1) → (𝑥2, 𝑦1) →
(𝑥2, 𝑦2) and (𝑥1, 𝑦1) → (𝑥1, 𝑦2) → (𝑥2, 𝑦2) by performing the integrals. However, the last
example does not follow a path from (𝑥1, 𝑦1) to (𝑥2, 𝑦2), so it is invalid.

3.3. Change of variables
We can transform derivatives into different coordinate systems to make problems easier to
solve. For example, let 𝑓(𝑥, 𝑦) be some function with a Cartesian coordinate input. We can
rewrite it in terms of polar coordinates (𝑟, 𝜃). First, rewrite 𝑓 as:

𝑓(𝑥(𝑟, 𝜃), 𝑦(𝑟, 𝜃))
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then we can write the derivatives.

𝜕𝑓
𝜕𝑟 =

𝜕𝑓
𝜕𝑥

𝜕𝑥
𝜕𝑟 +

𝜕𝑓
𝜕𝑦

𝜕𝑦
𝜕𝑟

We can do similar evaluations for 𝜕𝑓
𝜕𝜃
, for example.

3.4. Implicit differentiation
Consider some surface defined by 𝑓(𝑥, 𝑦, 𝑧) = 𝑐. Then 𝑓 implicitly defines functions such
as 𝑧(𝑥, 𝑦) (provided the function is well-behaved). We can find, for example, 𝜕𝑧

𝜕𝑥
||𝑦 by using

the multivariate chain rule in three dimensions.

𝜕𝑓
𝜕𝑥
|||𝑦
= 𝜕𝑓

𝜕𝑥
|||𝑦𝑧

𝜕𝑥
𝜕𝑥
|||𝑦⏟

=1

+ 𝜕𝑓
𝜕𝑦
|||𝑥𝑧

𝜕𝑦
𝜕𝑥
|||𝑦⏟

=0

+ 𝜕𝑓
𝜕𝑧
|||𝑥𝑦

𝜕𝑧
𝜕𝑥
|||𝑦

Note that the 𝜕𝑦
𝜕𝑥

term is zero because we hold 𝑦 to be fixed. Simplifying, we get

𝜕𝑓
𝜕𝑥
|||𝑦
= 𝜕𝑓

𝜕𝑥
|||𝑦𝑧

+ 𝜕𝑓
𝜕𝑧
|||𝑥𝑦

𝜕𝑧
𝜕𝑥
|||𝑦

The left hand side is zero because on the surface 𝑧(𝑥, 𝑦), 𝑓 is always equivalent to 𝑐 so there
is never any 𝛿𝑓. The 𝜕𝑓

𝜕𝑥
||𝑦𝑧 term, however, is not zero in general because we are not go-

ing across the 𝑧(𝑥, 𝑦) surface—just parallel to the 𝑥 axis, because we fixed both 𝑦 and 𝑧.
Hence,

𝜕𝑧
𝜕𝑥
|||𝑦
=
− 𝜕𝑓

𝜕𝑥
||𝑦𝑧

𝜕𝑓
𝜕𝑧
||𝑥𝑦

The reciprocal rule for derivatives applies also to partial derivatives so long as the same vari-
ables are held fixed. For example, given the function 𝑓(𝑥(𝑟, 𝜃), 𝑦(𝑟, 𝜃)), we have

𝜕𝑟
𝜕𝑥
|||𝑦
= 1

𝜕𝑥
𝜕𝑟
||𝑦

But
𝜕𝑟
𝜕𝑥 ≠ 1

𝜕𝑥
𝜕𝑟

because the left hand side holds 𝑦 constant and the right hand side holds 𝜃 constant.
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3.5. Differentiating an integral with respect to a parameter
Consider a family of function 𝑓(𝑥; 𝛼) where 𝛼 is some parameter. We can say that 𝛼 para-
metrises 𝑓. An example of a parametrised function is the logarithm; 𝑓(𝑥; 𝛼) = log𝛼 𝑥. We
define

𝐼(𝛼) = ∫
𝑏(𝛼)

𝑎(𝛼)
𝑓(𝑥; 𝛼) d𝑥

So, what is d𝐼
d𝛼
? By definition, we have

d𝐼
d𝛼 = lim

𝛿𝛼→0
𝐼(𝛼 + 𝛿𝛼) − 𝐼(𝛼)

𝛿𝛼

= lim
𝛿𝛼→0

1
𝛿𝛼 [∫

𝑏(𝛼+𝛿𝛼)

𝑎(𝛼+𝛿𝛼)
𝑓(𝑥; 𝛼 + 𝛿𝛼) d𝑥 −∫

𝑏(𝛼)

𝑎(𝛼)
𝑓(𝑥; 𝛼) d𝑥]

= lim
𝛿𝛼→0

1
𝛿𝛼 [∫

𝑏(𝛼)

𝑎(𝛼)
𝑓(𝑥; 𝛼 + 𝛿𝛼) − 𝑓(𝑥; 𝛼) d𝑥 −∫

𝑎(𝛼+𝛿)

𝑎(𝛼)
𝑓(𝑥; 𝛼 + 𝛿𝛼) d𝑥 +∫

𝑏(𝛼+𝛿)

𝑏(𝛼)
𝑓(𝑥; 𝛼 + 𝛿𝛼) d𝑥]

= ∫
𝑏(𝛼)

𝑎(𝛼)
lim
𝛿𝛼→0

𝑓(𝑥; 𝛼 + 𝛿𝛼) − 𝑓(𝑥; 𝛼)
𝛿𝛼 d𝑥 − 𝑓(𝑎; 𝛼) lim

𝛿𝛼→0
𝑎(𝛼 + 𝛿𝛼) − 𝑎(𝛼)

𝛿𝛼 + 𝑓(𝑏; 𝛼) lim
𝛿𝛼→0

𝑏(𝛼 + 𝛿𝛼) − 𝑏(𝛼)
𝛿𝛼

Therefore:

d𝐼
d𝛼 = d

d𝛼 ∫
𝑏(𝛼)

𝑎(𝛼)
𝑓(𝑥; 𝛼) d𝑥 = ∫

𝑏(𝛼)

𝑎(𝛼)

𝜕𝑓
𝜕𝛼 d𝑥 + 𝑓(𝑏; 𝛼)d𝑏d𝛼 − 𝑓(𝑎; 𝛼)d𝑎d𝛼
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4. Linear ordinary differential equations
4.1. Eigenfunctions
Definition. The eigenfunction of an operator is a function that is unchanged by the action
of the operator (except for a multiplicative scaling).

From this definition, we can see that 𝑒𝜆𝑥 is the eigenfunction of the differential operator.
The eigenvalue of this function is 𝜆, as this is the scaling factor.
(i) Any linear homogeneous ODEwith constant coefficients has solutions in the form 𝑒𝜆𝑥.

For example, in the equation 5𝑦′ − 3𝑦 = 0 we can try a solution of the form 𝑦 = 𝐴𝑒𝜆𝑥,
and we get 5𝜆 − 3 = 0. This equation is known as the characteristic equation.

(ii) Any solution to a linear homogeneous ODE can be scaled to create more solutions. In
particular, 𝑦 = 0 is a solution.

(iii) An 𝑛th order linear ODE has 𝑛 linearly independent solutions. In the case of constant
coefficient equations, this follows from the Fundamental Theorem of Algebra. How-
ever, the proof of this is outside the scope of this course. This implies that the above
example has only one solution: 𝑦 = 𝐴𝑒3𝑥/5.

(iv) An 𝑛th order ODE requires 𝑛 initial/boundary conditions to create a particular solu-
tion.

4.2. Solving first order ODEs
To solve a differential equation, we can use the following technique to break it apart into
two smaller functions:

𝑦 = 𝑦𝑝 + 𝑦𝑐
The function 𝑦𝑝 is called the particular integral; it is simply any solution the original equa-
tion. Normally this does not have any arbitrary constants in it. The other function 𝑦𝑐 is
the complementary function. This is a solution to the equivalent homogeneous equation,
which is formed by setting the right hand side (the side without the dependent variable) to
zero. This is generally easier to solve using the exponential function.

By adding the two together, we get the general solution. Alternatively, once we have com-
puted the particular integral, we can simply substitute the equation 𝑦 = 𝑦𝑝 + 𝑦𝑐 into the
original differential equation to get a new equation in terms of 𝑦𝑐.
Note that we refer to terms that do not depend on the dependent variable as ‘forcing func-
tions’.

4.3. Constant forcing
If the equation is linear, has constant coefficients and a constant on the right hand side,
we can set 𝑦′𝑝 = 0. For example, in the equation 5𝑦′ − 3𝑦 = 10, we can set 𝑦′ = 0 to get

68
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𝑦𝑝 = −10/3.
Now we can insert this general solution into the differential equation. Note that all terms
with 𝑦𝑝, along with the right hand side, cancel out because it is a solution. This leaves 5𝑦′𝑐−
3𝑦 = 0. We can solve this normally (using methods such as trying 𝐴𝑒𝜆𝑥 or just directly
solving the characteristic equation) to give 𝑦𝑐 = 𝐴𝑒−3𝑥/5.
Combining the results, we get 𝑦 = 𝐴𝑒3𝑥/5 − 10/3.

4.4. Eigenfunction forcing
If the equation has a 𝑒𝑘𝑡 term as the only forcing function (where the independent vari-
able here is 𝑡), we can solve it in a similar way. Here is an example question involving this
concept.

In a sample of rock, isotope A decays into isotope B at a rate proportional to 𝑎,
the number of nuclei of A, while B decays into isotope C at a rate proportional
to 𝑏, the number of nuclei of B. Find 𝑏(𝑡).

We can formulate an equation as follows:

̇𝑎 = −𝑘𝑎𝑎 ⟹ 𝑎 = 𝑎0𝑒−𝑘𝑎𝑡
̇𝑏 = 𝑘𝑎𝑎 − 𝑘𝑏𝑏

∴ ̇𝑏 + 𝑘𝑏𝑏 = 𝑘𝑎𝑎0𝑒−𝑘𝑎𝑡

So we have a linear first order ODE with an eigenfunction as the forcing function. We can
guess that the particular integral is of the form 𝑏𝑝 = 𝜆𝑒−𝑘𝑎𝑡.

−𝑘𝑎𝜆𝑒−𝑘𝑎𝑡 + 𝑘𝑏𝜆𝑒−𝑘𝑎𝑡 = 𝑘𝑎𝑎0𝑒−𝑘𝑎𝑡
𝜆(𝑘𝑏 − 𝑘𝑎) = 𝑘𝑎𝑎0

∴ 𝜆 = 𝑘𝑎
𝑘𝑏 − 𝑘𝑎

𝑎0

We can form the complementary function by solving:

̇𝑏𝑐 + 𝑘𝑏𝑏𝑐 = 0
∴ 𝑏𝑐 = 𝐴𝑒−𝑘𝑏𝑡

So combining everything, we have

𝑏 = 𝑘𝑎
𝑘𝑏 − 𝑘𝑎

𝑎0𝑒−𝑘𝑎𝑡 + 𝐴𝑒−𝑘𝑏𝑡

In this instance, there is a special property that if 𝑏 = 0 at 𝑡 = 0, then we can divide 𝑏(𝑡)/𝑎(𝑡)
and completely eliminate 𝑎0, thus letting us calculate the age of a rock without knowing the
original amount of isotope A at all.
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4.5. Non-constant coefficients
If we have a differential equation in standard form, i.e.

𝑦′ + 𝑝(𝑥)𝑦 = 𝑓(𝑥)

we can multiply the equation by an integrating factor 𝜇 to solve it. Ideally, we want the
derivative of 𝜇 to be 𝜇𝑝(𝑥) so that the equation becomes

𝜇𝑦′ + 𝜇𝑝(𝑥)𝑦 = 𝜇𝑦′ + 𝜇′𝑦 = (𝜇𝑦)′ = 𝜇𝑓(𝑥)

So therefore 𝜇 = 𝑒∫𝑝(𝑥) d𝑥.
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5. Discrete equations

5. Discrete equations
A discrete equation (for our purposes) is an equation involving a function that is evaluated
at a discrete set of points.

5.1. Numerical integration
We can consider a discrete representation of 𝑦(𝑥); let 𝑥1 ↦ 𝑦1, 𝑥2 ↦ 𝑦2 etc. We can approx-
imate the derivative with

d𝑦
d𝑥

|||𝑥𝑛
≊ 𝑦𝑛+1 − 𝑦𝑛

ℎ
This is called the ‘Forward Euler’ approximation of the derivative. It isn’t the best, but it is
asymptotically equal. We can solve the differential equation 5𝑦′ − 3𝑦 = 0 as follows:

5𝑦𝑛+1 − 𝑦𝑛
ℎ − 3𝑦𝑛 = 0

This is known as a difference equation. We can transform this into a recurrence relation as
follows:

𝑦𝑛+1 = (1 + 3
5ℎ) 𝑦𝑛

We can apply this iteratively, to get

𝑦𝑛+1 = (1 + 3
5ℎ) 𝑦𝑛

= (1 + 3
5ℎ)

2
𝑦𝑛−1

= (1 + 3
5ℎ)

𝑛
𝑦0

So in the limit, this approaches the desired solution. Note that due to the approximation
we used for the derivative, for finite 𝑛 the solution we get will be less than the actual an-
swer.

5.2. Series solutions
Series solutions are a powerful tool for solving ordinary differential equations. We can ex-
press the solution in terms of an infinite power series, i.e. we let

𝑦(𝑥) =
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛

Let us try this on our original differential equation, 5𝑦′ − 3𝑦 = 0. We have:

𝑦(𝑥) =
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛 𝑦′(𝑥) =
∞
∑
𝑛=0

𝑛𝑎𝑛𝑥𝑛−1
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Multiplying by 𝑥 to eliminate the power of 𝑛 − 1, we have

𝑥𝑦(𝑥) =
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛+1 𝑥𝑦′(𝑥) =
∞
∑
𝑛=0

𝑛𝑎𝑛𝑥𝑛

Matching the limits of the sums and powers of 𝑥:

𝑥𝑦(𝑥) =
∞
∑
𝑛=1

𝑎𝑛−1𝑥𝑛 𝑥𝑦′(𝑥) =
∞
∑
𝑛=1

𝑛𝑎𝑛𝑥𝑛

We can now combine this into one equation.

5𝑦′ − 3𝑦 = 0 ⟹ 5
∞
∑
𝑛=1

𝑛𝑎𝑛𝑥𝑛 − 3
∞
∑
𝑛=1

𝑎𝑛−1𝑥𝑛 = 0 ⟹
∞
∑
𝑛=1

[5𝑛𝑎𝑥𝑛 − 3𝑎𝑛−1𝑥𝑛] = 0

Note that this holds for all 𝑥, so we can remove the sum and the 𝑥𝑛 term, and solve generic-
ally for 𝑎𝑛.

5𝑛𝑎𝑛 − 3𝑎𝑛−1 = 0

⟹ 𝑎𝑛 =
3
5𝑛𝑎𝑛−1

= (35)
2 1
𝑛(𝑛 − 1)𝑎𝑛−2

= (35)
𝑛 1
𝑛!𝑎0

We now have an explicit equation for 𝑦 as a power series.

5.3. Nonlinear first order ODEs
Let us consider the equation

𝑄(𝑥, 𝑦)d𝑦d𝑥 + 𝑃(𝑥, 𝑦) = 0

If it can be written in the form
𝑞(𝑦) d𝑦 = 𝑝(𝑥) d𝑥

then by integrating both sides we can find a solution. This is known as a separable equa-
tion.

Alternatively, if 𝑄(𝑥, 𝑦) d𝑦 + 𝑃(𝑥, 𝑦) d𝑥 is an exact differential of some multivariate function
𝑓(𝑥, 𝑦), then we call this an exact equation. Specifically, due to the multivariate chain rule,
we can get

d𝑓 = 𝜕𝑓
𝜕𝑥 d𝑥 +

𝜕𝑓
𝜕𝑦 d𝑦
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Sowewant𝑃(𝑥, 𝑦) = 𝜕𝑓
𝜕𝑥
and𝑄(𝑥, 𝑦) = 𝜕𝑓

𝜕𝑦
. We can exploit cross derivatives to checkwhether

this is truly is an exact equation without having to integrate both 𝑃 and 𝑄.
𝜕2𝑓
𝜕𝑦𝜕𝑥 = 𝜕2𝑓

𝜕𝑥𝜕𝑦
𝜕𝑃
𝜕𝑦 = 𝜕𝑄

𝜕𝑥

This is the key condition to check for an exact equation. More specifically, if 𝜕𝑃
𝜕𝑦

= 𝜕𝑄
𝜕𝑥

throughout a simply connected domain 𝒟, then 𝑃 d𝑥 + 𝑄 d𝑦 is an exact differential of a
single valued function 𝑓(𝑥, 𝑦) in 𝒟. A simply connected domain is essentially a domain
without holes.

We can find 𝑓 by integrating 𝑃 and 𝑄, since they are the partial derivatives of 𝑓. As an
example, let us solve

6𝑦(𝑦 − 𝑥)d𝑦d𝑥 + (2𝑥 − 3𝑦2) = 0

So here, 𝑃 = 2𝑥 − 3𝑦2 and 𝑄 = 6𝑦(𝑦 − 𝑥). We can check that indeed
𝜕𝑃
𝜕𝑦 = −6𝑦 𝜕𝑄

𝜕𝑥 = −6𝑦

So we have an exact equation as required. Now, we have
𝜕𝑓
𝜕𝑥
|||𝑦
= 𝑃 = 2𝑥 − 3𝑦2

⟹ 𝑓 = 𝑥2 − 3𝑥𝑦2 + ℎ(𝑦)
where ℎ is a constant with respect to 𝑥, so it must be some function of 𝑦. We can differen-
tiate our new definition for 𝑓 with respect to 𝑦, and substitute back into what we know for
𝑄.

𝜕𝑓
𝜕𝑦
|||𝑥
= −6𝑥𝑦 + dℎ

d𝑦
But also, from the definition of 𝑄,

𝜕𝑓
𝜕𝑦
|||𝑥
= 𝑄 = 6𝑦(𝑦 − 𝑥)

So by comparing the two things which we know are equal, we get dℎ
d𝑦

= 6𝑦2 so ℎ = 2𝑦3 + 𝑐.
We plug this back into our value for 𝑓, leaving

𝑓 = 𝑥2 − 3𝑥𝑦2 + 2𝑦3 + 𝑐
So our general solution is

𝑥2 − 3𝑥𝑦2 + 2𝑦3 = 𝑑
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6. Isoclines and solution curves
6.1. Solution curves
Nonlinear differential equations are not guaranteed to have closed form solutions. How-
ever, we can analyse the behaviour of such an equation without actually having to solve the
equation. In this lecture, we consider only equations of the form

d𝑦
d𝑡 = ̇𝑦 = 𝑓(𝑦, 𝑡)

Each initial condition to this function will generate a different solution curve. Note that
these curves may not cross. Suppose that two curves did cross at some point (𝑦, 𝑡). Then
d𝑦
d𝑡
||𝑦 would have two different values; the gradient of each curve would have to be different.

But 𝑦(𝑡) is a single-valued function, so the derivative is also single-valued. So the solution
curves can never cross.

Let us consider an example which we can, in fact, solve directly.

d𝑦
d𝑡 = ̇𝑦 = 𝑓(𝑡) = 𝑡(1 − 𝑦2)

This is separable, and we may solve the equation to give

𝑦 = 𝐴 − 𝑒−𝑡2

𝐴 + 𝑒−𝑡2

This general solution produces a family of solution curves parametrised by𝐴. Canwe sketch
and describe these solutions without using this explicit solution for 𝑦(𝑡)?

6.2. Isoclines
An isocline is a curve along which 𝑓 = ̇𝑦 is constant. To draw these isoclines, we need to
work out when 𝑓 takes certain values.

𝑓 = 0 for 𝑦 = ±1, 𝑡 = 0
𝑓 < 0 for 𝑦 > 1, 𝑦 < −1
𝑓 > 0 for − 1 < 𝑦 < 1

0 0.5 1 1.5 2−2

−1

0

1

2

𝑡

𝑦

Let us now draw some such isoclines on a
graph, here drawn in grey. On the outer-
most two lines, the value of 𝑓, and hence
the derivative, is −1. On the lines in the
centre, the value of 𝑓 is 1 and 0.5, both of
which are drawn so that it is easier to ima-
gine the infinite set of isoclines. The two ho-
rizontal lines at 1 and−1 have 𝑓 = 0. So any
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solution curve that passes through these iso-
clines must have this gradient at the mo-
ment it intersects the line. We can there-
fore visually interpolate what the gradient

should be in between these known points.

Two such solution curves are drawn on this graph; the one intersecting zero has𝐴 = 1 in the
solution for 𝑦, and the one above it has 𝐴 = −1. Note how, as they intersect the isoclines in
red, they have exactly the gradient defined by the isocline. Particularly, the lower solution
curve intersects the same isocline twice, and therefore has this exact gradient at two distinct
points—we observe these points as the intersection points between the solution curve and
the isocline.

Note also that the solutions 𝑦 = 1 and 𝑦 = −1 lie on these isoclines for all 𝑡. This is because
the isoclines specify that the function has zero gradient on such a straight line, so it makes
sense that the function and isocline coincide.

6.3. Fixed points and perturbation analysis
Points such that 𝑦 is fixed for all 𝑡 are called fixed points, or equilibrium points. In our
example above, 𝑦 = 1 and 𝑦 = −1 are examples of fixed points. Note that the solutions above
seemed to gravitate towards 𝑦 = 1 over time; we call such a fixed point ‘stable’ because any
slight perturbation from the value will return back to the fixed point over time. The same is
not, however, true for the−1 fixed point. It is considered ‘unstable’ as any small perturbation
will cause 𝑦 to drift further and further away from −1. We can analyse this more rigorously
using perturbation analysis.

Let 𝑦 = 𝑎 be a fixed point of ̇𝑦 = 𝑓(𝑦, 𝑡) such that 𝑓(𝑎, 𝑡) = 0. Then, consider some small
perturbation 𝜀 from this fixed point. Now, 𝑦 = 𝑎 + 𝜀(𝑡). By setting the initial value of 𝜀(0)
to some arbitrarily small amount, we want to see the behaviour of 𝜀(𝑡) as 𝑡 tends to infinity.
This way, if 𝜀(𝑡) goes to zero, then 𝑦 will tend towards the fixed point 𝑎, so the point is stable.
If 𝜀(𝑡) goes to any other value, then 𝑦 does not tend to 𝑎, so the point is unstable.

d𝑦
d𝑡 =

d𝜀
d𝑡 = 𝑓(𝑎 + 𝜀, 𝑡)

Expanding 𝑓(𝑎 + 𝜀, 𝑡) as a multivariate Taylor series around (𝑎, 𝑡), we have

= 𝑓(𝑎, 𝑡)⏟⏟⏟
= 0 by definition

+𝜀𝜕𝑓𝜕𝑦 (𝑎, 𝑡) + 𝑂(𝜀2)

as 𝜀 tends to zero. So for small 𝜀, we have

d𝜀
d𝑡 ≈ 𝜀𝜕𝑓𝜕𝑦 (𝑎, 𝑡)
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which is a linear ordinary differential equation for 𝜀 in terms of 𝑡, as 𝜕𝑓
𝜕𝑦
(𝑎, 𝑡) is an expression

purely in terms of 𝑎 and 𝑡. If (as 𝑡 → ∞) 𝜀 tends to zero then the point is stable, otherwise
𝜀 will tend to ±∞ and the point is considered unstable. This does not imply that 𝑦 itself
tends to ±∞, just that the 𝑂(𝑛2) term now becomes important because 𝜀 does not tend to
zero.

Note that if 𝜕𝑓
𝜕𝑦

= 0, then wewill need to consider the next term in the Taylor expansion, and
so on, to make sure that we have an equation that lets us compute 𝜀. In this case, however,
the equation for 𝜀 will be nonlinear, as we need to consider the 𝜀2 term, or the 𝜀3 term, or so
on.

In our example, we can deduce that 𝜕𝑓
𝜕𝑦

= −2𝑦𝑡, so we have:

• (𝑦 = 1)

̇𝜀 = −2(1)𝑡𝜀
= −2𝑡𝜀

∴ 𝜀 = 𝜀0𝑒−𝑡
2

lim
𝑡→∞

𝜀0𝑒−𝑡
2 = 0

so this point is stable.

• (𝑦 = 1)

̇𝜀 = −2(−1)𝑡𝜀
= 2𝑡𝜀

∴ 𝜀 = 𝜀0𝑒𝑡
2

lim
𝑡→∞

𝜀0𝑒𝑡
2 = ±∞

so this point is unstable.

6.4. Autonomous differential equations
A special case of this is that of autonomous equations, which are defined to be differential
equations of the form ̇𝑦 = 𝑓(𝑦). Specifically, the derivative of 𝑦 does not depend on 𝑡. There-
fore, near a fixed point 𝑦 = 𝑎, we have:

𝑦 = 𝑎 + 𝜀(𝑡)
∴

𝑑𝑜𝑡𝜀 = 𝜀d𝑓d𝑦 (𝑎) = 𝜀𝑘
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where 𝑘 is the constant value d𝑓
d𝑦
(𝑎). Note that we can use normal derivatives in place of

partial derivatives because 𝑓 depends only on 𝑦. So the solution is

𝜀 = 𝜀0𝑒𝑘𝑡

So, if 𝑘 = 𝑓′(𝑎) < 0 then the point is stable, and if 𝑘 = 𝑓′(𝑎) > 0 then the point is unstable.
This special case is useful, but it is probably only worthmemorising the general case to avoid
confusion, since it is simple to derive as needed.
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7. Phase portraits
7.1. Phase portraits

𝑎0 𝑏0

𝑐

̇𝑐

𝑎0 𝑏0

Another way to analyse solutions to a differ-
ential equation is using a geometrical rep-
resentation of the solution, called a phase
portrait. For example,

NaOH +HCl→ H2O +NaCl

where the amount of molecules of sodium
hydroxide is given by 𝑎(𝑡), the amount of
molecules of hydrochloric acid is given by
𝑏(𝑡), the amount of molecules of water is
given by 𝑐(𝑡), and the amount of molecules
of sodium chloride is given by 𝑑(𝑡). We can

model this using the equation d𝑐
d𝑡
= 𝜆𝑎𝑏. As atoms are conserved, we have 𝑎 = 𝑎0 − 𝑐 and

𝑏 = 𝑏0 = 𝑐. Then:
d𝑐
d𝑡 = 𝜆(𝑎0 − 𝑐)(𝑏0 − 𝑐)

This is an autonomous nonlinear first order ordinary differential equation. We can create
a phase portrait by mapping out d𝑐

d𝑡
as a function of 𝑐, as shown in the first diagram here,

which is known as a 2D phase portrait. The second diagram, known as a 1D phase portrait,
shows similar information but helps us see the behaviour of fixed points—essentially the
arrows point in the direction of motion of 𝑐; if ̇𝑐 is positive then the arrows point to the right,
if ̇𝑐 is negative they point to the left.

78



7. Phase portraits

0
𝜆

𝑦

̇𝑦

0 𝜆

Another example is a population model.
Let 𝑦(𝑡) denote the population. Let 𝛼𝑦 de-
note the birth rate, and 𝛽𝑦 be the death
rate. Then, we can model this using a lin-
ear model by:

d𝑦
d𝑡 = 𝛼𝑦 − 𝛽𝑦 ∴ 𝑦 = 𝑦0𝑒(𝛼−𝛽)𝑡

If𝛼 > 𝛽 thenwehave exponential growth; if
𝛼 < 𝛽 thenwe have exponential decay. This
is an unrealistic model, so we can use a non-
linear model to increase accuracy.

d𝑦
d𝑡 = (𝛼 − 𝛽)𝑦 − 𝛾𝑦2

When 𝑦 is sufficiently large, the 𝛾 term becomes more relevant; here, the 𝛾𝑦2 term models
the increased death rate at high populations. Equivalently, we can write

̇𝑦 = 𝑟𝑦 (1 − 𝑦
𝜆)

7.2. Fixed points in discrete equations
Consider a first order discrete (or difference) equation of the form

𝑥𝑛+1 = 𝑓(𝑥𝑛)

We define the fixed points of the equation to be any value of 𝑥𝑛 where 𝑥𝑛+1 = 𝑥𝑛 or equi-
valently 𝑓(𝑥𝑛) = 𝑥𝑛. We can analyse fixed points’ stability just like we can with differential
equations, by using perturbation analysis. Let 𝑥𝑓 denote a fixed point, and then we will
perturb this by a small quantity 𝜀.

𝑓(𝑥𝑓 + 𝜀) = 𝑓(𝑥𝑓)⏟
=𝑥𝑓

+𝜀 d𝑓d𝑥
|||𝑥𝑓

+ 𝑂(𝜀2)

If we let 𝑥𝑛 = 𝑥𝑓 + 𝜀, then

𝑥𝑛+1 ≈ 𝑓(𝑥𝑛) = 𝑓(𝑥𝑓 + 𝜀) = 𝑥𝑓 + 𝜀 d𝑓d𝑥
|||𝑥𝑓

𝑥𝑓 is stable if
|||
d𝑓
d𝑥
||𝑥𝑓

||| < 1, and unstable if this value is greater than 1. This is because if the
value is less than 1, 𝑥𝑛+1 is closer to 𝑥𝑓 than 𝑥𝑛 was.
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7.3. Logistic map
This is an extended example of analysis of discrete equations. Let 𝑥𝑛 be the population at
generation 𝑛. Then, we use the model

𝑥𝑛+1 − 𝑥𝑛
Δ𝑡 = 𝜆𝑥𝑛 − 𝛾𝑥2𝑛

We could contrast this with a nonlinear ordinary differential equation; the left hand side of
this equation is analogous to d𝑥

d𝑡
. Alternatively, grouping all 𝑥𝑛 terms on the right hand side,

we have
𝑥𝑛+1 = (𝜆Δ𝑡 + 1)𝑥𝑛 − 𝛾Δ𝑡𝑥2𝑛

We will actually use a slightly simplified model for this, by unifying the 𝛾 and 𝜆 terms as
follows:

𝑥𝑛+1 = 𝑟𝑥𝑛(1 − 𝑥𝑛) = 𝑓(𝑥𝑛)
This is known as the ‘logistic map’. We will analyse the fixed points of this equation by
solving 𝑓(𝑥𝑛) = 𝑥𝑛. We have two solutions, 𝑥𝑛 = 0 and 𝑥𝑛 = 1 − 1

𝑟
. We can analyse their

stability using perturbation analysis as before. By letting 𝑓(𝑥) = 𝑟𝑥(1 − 𝑥), thus removing
the 𝑛 index, we have

d𝑓
d𝑥 = 𝑟(1 − 2𝑥)

At 𝑥𝑛 = 0, d𝑓
d𝑥

= 𝑟. When 0 < 𝑟 < 1, the point is stable because the next point produced by
the perturbation analysis is closer to the fixed point. If 𝑟 > 1 then the point is unstable.

At 𝑥𝑛 = 1− 1
𝑟
, d𝑓
d𝑥

= 2− 𝑟. For 0 < 𝑟 < 1, the value of 𝑥𝑛 is greater than 1, so it is unphysical
so we discard it. For 𝑟 < 1 < 3, the point is stable. When 𝑟 > 3, the point is unstable.
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8. Higher order linear ODEs
8.1. Linear 2nd order ODEs with constant coefficients
The general form of an equation of this type is

𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = 𝑓(𝑥)

To solve equations like this, we are going to exploit two facts: the linearity of the differential
operator together with the principle of superposition. From the definition of the derivative,
we have

d
d𝑥(𝑦1 + 𝑦2) = 𝑦′1 + 𝑦′2

And similarly,
d2

d𝑥2
(𝑦1 + 𝑦2) = 𝑦″1 + 𝑦″2

For a linear differential operator 𝐷 built from a linear combination of derivatives, for ex-
ample

𝐷 = [𝑎 d2

d𝑥2
+ 𝑏 d

d𝑥 + 𝑐]

it then follows that
𝐷(𝑦1 + 𝑦2) = 𝐷(𝑦1) + 𝐷(𝑦2)

We will then solve the above general equation in three steps.

(i) Find the complementary functions 𝑦1 and 𝑦2 which satisfy the equivalent homogen-
eous equation 𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = 0.

(ii) Find a particular integral 𝑦𝑝 which solves the original equation.
(iii) If 𝑦1 and 𝑦2 are linearly independent, then 𝑦1 + 𝑦𝑝 and 𝑦2 + 𝑦𝑝 are each linearly

independent solutions, which follows from the fact that 𝐷(𝑦1) = 𝐷(𝑦2) = 0 and
𝐷(𝑦𝑝) = 𝑓(𝑥).

8.2. Eigenfunctions for 2nd order ODEs

𝑒𝜆𝑥 is the eigenfunction of d
d𝑥
, and it is also the eigenfunction of d2

d𝑥2
, but with eigenvalue

𝜆2. More generally, it is the eigenfunction of d𝑛

d𝑥𝑛
with eigenvalue 𝜆𝑛. In fact, 𝑒𝜆𝑥 is the

eigenfunction of any linear differential operator 𝐷. The equation 𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = 0 can be
written

[𝑎 d2

d𝑥2
+ 𝑏 d

d𝑥 + 𝑐]
⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

≡ 𝐷

𝑦 = 0

Therefore, solutions to this take the form

𝑦𝑐 = 𝐴𝑒𝜆𝑥
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and by substituting, we have
𝑎𝜆2 + 𝑏𝜆 + 𝑐 = 0

This is known as the characteristic (or auxiliary) equation. From the fundamental theorem
of algebra, this must have two real or complex solutions. Now, let 𝜆1, 𝜆2 be these roots.
In the case that 𝜆1 ≠ 𝜆2, 𝑦1 = 𝐴𝑒𝜆1𝑥; 𝑦2 = 𝐵𝑒𝜆2𝑥. In this case, the two are linearly inde-
pendent and complete; they form a basis of solution space. Therefore any other solution to
this differential equation can be written as a linear combination of 𝑦1 and 𝑦2. In general,
𝑦𝑐 = 𝐴𝑒𝜆1𝑥 + 𝐵𝑒𝜆2𝑥.

8.3. Detuning
In the case that 𝜆1 = 𝜆2, this is known as a degenerate case as we have repeated eigenvalues;
𝑦1 and 𝑦2 are linearly dependent and not complete. Let us take as an example the differential
equation 𝑦″ −4𝑦′ +4𝑦 = 0. We try 𝑦𝑐 = 𝑒2𝑥 as 𝜆 = 2 in this case. We will consider a slightly
modified (‘detuned’) equation to rectify the degeneracy.

𝑦″ − 4𝑦′ + (4 − 𝜀2)𝑦 = 0 where 𝜀 ≪ 1

Again we will try 𝑦𝑐 = 𝑒𝜆𝑥, giving

𝜆2 − 4𝜆 + (4 − 𝜀2) = 0

So we have 𝜆 = 2 ± 𝜀. The complementary function therefore is 𝑦𝑐 = 𝐴𝑒(2+𝜀)𝑥 + 𝐵𝑒(2−𝜀)𝑥 =
𝑒2𝑥 (𝐴𝑒𝜀𝑥 + 𝐵𝑒−𝜀𝑥). We will expand this in a Taylor series for small 𝜀, giving

𝑦𝑐 = 𝑒2𝑥 [(𝐴 + 𝐵) + 𝜀𝑥(𝐴 − 𝐵) + 𝑂(𝜀2)]

and by taking the limit, we have

lim
𝜀→0

𝑦𝑐 ≈ 𝑒2𝑥 [(𝐴 + 𝐵) + 𝜀𝑥(𝐴 − 𝐵)]

Now consider applying initial conditions to 𝑦𝑐 at 𝑥 = 0.

𝑦𝑐
|||𝑥=0

= 𝐶 𝑦′𝑐
|||𝑥=0

= 𝐷

and therefore
𝐶 = 𝐴 + 𝐵; 𝐷 = 2𝐶 + 𝜀(𝐴 − 𝐵)

hence
𝐴 + 𝐵 = 𝑂(1); 𝐴 − 𝐵 = 𝑂 (1𝜀 )

in order that 𝐷 is a constant. Now, let 𝛼 = 𝐴+ 𝐵; 𝛽 = 𝜀(𝐴 − 𝐵), so that we can get constants
of 𝑂(1)magnitude. Hence,

lim
𝜀→0

𝑦𝑐 = 𝑒2𝑥 [𝛼 + 𝛽𝑥]

In general, if 𝑦1(𝑥) is a degenerate complementary function for linear ODEs with constant
coefficients, then 𝑦2 = 𝑥𝑦1 is a linearly independent complementary function.
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8.4. Reduction of order
Consider a homogeneous second-order linear ODEwith non-constant coefficients. The gen-
eral form of such an equation is

𝑦″ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0 (8.1)

Our objective is to use one solution to this equation (here denoted 𝑦1) to find the other solu-
tion 𝑦2. The general idea is to look for a solution of the form

𝑦2(𝑥) = 𝑣(𝑥)𝑦1(𝑥) (8.2)

First, note that

𝑦′2 = 𝑣′𝑦1 + 𝑣𝑦′1
𝑦″2 = 𝑣″𝑦1 + 2𝑣′𝑦′1 + 𝑣𝑦″1

If 𝑦2 is a solution to (8.1), then

𝑦″2 + 𝑝(𝑥)𝑦′2 + 𝑞(𝑥)𝑦2 = 0

We can use (8.2) and collect terms, to get

𝑣 ⋅ (𝑦″1 + 𝑝𝑦′1 + 𝑞𝑦1)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
0 since 𝑦1 is a solution to (8.1)

+𝑣′ ⋅ (2𝑦′1 + 𝑝𝑦1) + 𝑣″ ⋅ 𝑦1 = 0

Hence
𝑣′ ⋅ (2𝑦′1 + 𝑝𝑦1) + 𝑣″ ⋅ 𝑦1 = 0

This is a first order differential equation for 𝑣′(𝑥). Let 𝑢 = 𝑣′. Then

𝑢′𝑦1 + 𝑢(2𝑦′1 + 𝑝𝑦1) = 0

This is a separable first order ODE for 𝑢(𝑥). So we can solve for 𝑢(𝑥) and deduce 𝑣(𝑥) by
integration.

8.5. Solution space
An 𝑛th order linear ODE written

𝑝(𝑥)𝑦(𝑛) + 𝑞(𝑥)𝑦(𝑛−1) +⋯+ 𝑟(𝑥)𝑦 = 𝑓(𝑥)

can be used to write 𝑦(𝑛)(𝑥) in terms of lower derivatives of 𝑦. For example, the oscillations
of a mass on a spring in a damped system can be modelled as

𝑚 ̈𝑦 = −𝑘𝑦 − 𝐿 ̇𝑦
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Therefore the state of the system can be described by an 𝑛-dimensional solution vector

Y(𝑥) ≡
⎛
⎜
⎜
⎝

𝑦(𝑥)
𝑦′(𝑥)
⋮

𝑦(𝑛−1)(𝑥)

⎞
⎟
⎟
⎠

(8.3)

For example, an undamped oscillator modelled by 𝑦″ + 4𝑦 = 0 has solutions

𝑦1 = cos 2𝑥; 𝑦2 = sin 2𝑥

and has derivatives
𝑦′1 = −2 sin 2𝑥; 𝑦′2 = 2 cos 2𝑥

and therefore two solution vectors are

Y1(𝑥) = (𝑦1𝑦′1
) = ( cos 2𝑥

−2 sin 2𝑥)

and
Y2(𝑥) = (𝑦2𝑦′2

) = ( sin 2𝑥2 cos 2𝑥)

𝑦

̇𝑦

We can plot the paths of these two solutions using a two-
dimensional phase portrait. In this case, both solutions follow
an elliptical path. Since Y1 and Y2 are linearly independent
for all 𝑥, any point in solution space (𝑦, 𝑦′) can be written as a
linear combination of these solutions.

Solutions 𝑦1, 𝑦2,⋯ , 𝑦𝑛 are linearly independent for anyODE if
their solution vectors Y1,Y2,⋯ ,Y𝑛 are linearly independent.
A set of 𝑛 linearly independent solution vectors forms a basis
for the solution space of an 𝑛th order ODE.

8.6. Initial conditions
Consider initial conditions for a second order homogeneous

ODE.
𝑦(0) = 𝑎, 𝑦′(0) = 𝑏

If the general solution is
𝑦(𝑥) = 𝐴𝑦1(𝑥) + 𝐵𝑦2(𝑥)

then we have the following linear system of equations

𝐴𝑦1(0) + 𝐵𝑦2(0) = 𝑎
𝐴𝑦′1(0) + 𝐵𝑦′2(0) = 𝑏
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which is a system of two equations for two unknowns. Or alternatively,

(𝑦1(0) 𝑦2(0)
𝑦′1(0) 𝑦′2(0)

)
⏟⎵⎵⎵⏟⎵⎵⎵⏟

≡𝑀

(𝐴𝐵) = (𝑎𝑏)

Unique solutions for 𝐴 and 𝐵 exist if det𝑀 ≠ 0.

8.7. The fundamental matrix and theWrońskian
The fundamental matrix is a matrix formed by placing solution vector Y𝑖 in the 𝑖th column.
The Wrońskian, denoted𝑊(𝑥), is the determinant of the fundamental matrix.

𝑊(𝑥) ≡
|
|
|
|

⋮ ⋮ ⋮
Y1 Y2 ⋯ Y𝑛
⋮ ⋮ ⋮

|
|
|
|
=

||||||

𝑦1 𝑦2 ⋯ 𝑦𝑛
𝑦′1 𝑦′2 ⋯ 𝑦′𝑛
⋮ ⋮ ⋱ ⋮

𝑦(𝑛−1)1 𝑦(𝑛−1)2 ⋯ 𝑦(𝑛−1)𝑛

||||||
For a second order ODE:

𝑊(𝑥) = |||
𝑦1 𝑦2
𝑦′1 𝑦′2

||| = 𝑦1𝑦′2 − 𝑦2𝑦′1 (8.4)

The solution vectors are linearly independent if𝑊(𝑥) ≠ 0. This is a convenient test for the
linear independence of two solution vectors. In our example above, we had

𝑊(𝑥) = |||
cos 2𝑥 sin 2𝑥

−2 sin 2𝑥 2 cos 2𝑥
||| = 2 cos2 2𝑥 + 2 sin2 2𝑥 = 2 ≠ 0

So the solution vectors are linearly independent for all 𝑥.
If Y1 and Y2 are linearly dependent, then 𝑊(𝑥) = 0. Suppose that a third solution 𝑦(𝑥) is
a linear combination of 𝑦1(𝑥) and 𝑦2(𝑥). Then the solution vectors Y,Y1,Y2 are a linearly
dependent set. Hence

|
|
|
|

𝑦 𝑦1 𝑦2
𝑦′ 𝑦′1 𝑦′2
𝑦″ 𝑦″1 𝑦″2

|
|
|
|
= 0

For 𝑦1 = cos 2𝑥 and 𝑦2 = sin 2𝑥, we can deduce the original differential equation that
produced these solutions by solving for 𝑦.

|
|
|
|

𝑦 cos 2𝑥 sin 2𝑥
𝑦′ −2 sin 2𝑥 2 cos 2𝑥
𝑦″ −4 cos 2𝑥 −4 sin 2𝑥

|
|
|
|
= 0

⟹ 𝑦(8 sin2 2𝑥 + 8 cos2 2𝑥)
−𝑦′(−4 cos 2𝑥 sin 2𝑥 + 4 cos 2𝑥 sin 2𝑥)

+𝑦″(2 cos2 2𝑥 + 2 sin2 2𝑥) = 0
⟹ 𝑦″ + 4𝑦 = 0

Note that if𝑊(𝑥) = 0, this does not necessarily imply linear dependence.
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8.8. Abel’s theorem
Consider a second order homogeneous ODE:

𝑦″ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0

Theorem (Abel’s Theorem). If 𝑝(𝑥) and 𝑞(𝑥) are continuous on an interval 𝐼, then the
Wrońskian𝑊(𝑥) is either zero or nonzero for all 𝑥 ∈ 𝐼.

Proof. Let 𝑦1, 𝑦2 be solutions to the equation. Then

𝑦2(𝑦″1 + 𝑝(𝑥)𝑦′1 + 𝑞(𝑥)𝑦1) = 0 (8.5)
𝑦1(𝑦″2 + 𝑝(𝑥)𝑦′2 + 𝑞(𝑥)𝑦2) = 0 (8.6)

Now, calculating (8.6) − (8.5), we get

(𝑦1𝑦″2 − 𝑦2𝑦″1) + 𝑝(𝑥)(𝑦1𝑦′2 − 𝑦2𝑦′1) = 0 (8.7)

As we are solving a second order equation,𝑊(𝑥) = 𝑦1𝑦′2 − 𝑦2𝑦′1 and therefore

d𝑊
d𝑥 = 𝑦1𝑦″2 + 𝑦′1𝑦′2 − 𝑦′2𝑦′1 − 𝑦2𝑦″1 = 𝑦1𝑦″2 − 𝑦2𝑦″1

Note that these are the coefficients in (8.7). We have therefore

𝑊 ′ + 𝑝𝑊 = 0 (8.8)

Then by separating variables:

d𝑊
𝑊 = −𝑝(𝑥) d𝑥

∫
𝑥

𝑥0

d𝑊
𝑊 = −∫

𝑥

𝑥0
𝑝(𝑢) d𝑢

𝑊(𝑥) = 𝑊(𝑥0)𝑒
−∫𝑥𝑥0 𝑝(𝑢)d𝑢

This last equation is known as Abel’s Identity, and is very important. Since 𝑝(𝑥) is continu-
ous on 𝐼 with 𝑥 ∈ 𝐼, it is bounded and therefore integrable. Therefore 𝑒−∫𝑥𝑥0 𝑝(𝑢)d𝑢 ≠ 0. It
follows that if𝑊(𝑥0) = 0 then𝑊(𝑥) = 0 for all 𝑥. Likewise, if𝑊(𝑥0) ≠ 0, then𝑊(𝑥) ≠ 0
for all 𝑥 (on the interval).

Corollary. If 𝑝(𝑥) = 0, then𝑊 = 𝑊0 which is a constant.

Note that we can use this to find 𝑊(𝑥) without actually solving the differential equation
itself. For example, Bessel’s Equation

𝑥2𝑦″ + 𝑥𝑦′ + (𝑥2 − 𝑛2)𝑦 = 0

86



8. Higher order linear ODEs

has no closed form solutions, but the Wrońskian can be calculated be rewriting it as

𝑦″ + 1
𝑥𝑦

′ + 𝑥2 − 𝑛2
𝑥2 𝑦 = 0

and by Abel’s Identity,

𝑊(𝑥) = 𝑊0𝑒
−∫𝑥𝑥0

1
𝑢d𝑢

= 𝑊0𝑒− ln𝑥

= 𝑊0
𝑥

We can find a second solution 𝑦2 given a solution 𝑦1 using a reduction of order method, but
we can also use Abel’s Identity.

𝑦1𝑦′2 − 𝑦2𝑦′1 = 𝑊0𝑒
−∫𝑥𝑥0 𝑝(𝑢)d𝑢

This is a first order ODE for 𝑦2 which we can now solve:

𝑦1𝑦′2 − 𝑦2𝑦′1
𝑦21

= 𝑊0
𝑦21

𝑒−∫𝑥𝑥0 𝑝(𝑢)d𝑢

The left hand side is exactly the quotient rule, giving

d
d𝑥

𝑦2
𝑦1

= 𝑊0
𝑦21

𝑒−∫𝑥𝑥0 𝑝(𝑢)d𝑢

which can be solved to give 𝑦2 as a function of 𝑦1 and𝑊 .

We can use Abel’s theorem in higher dimensions. Any linear 𝑛th order ODE can be writ-
ten

Y′ + 𝐴(𝑥)Y = 0

where 𝐴 is a matrix; this converts an 𝑛th order ODE into a system of 𝑛 first order ODEs.
This will be discussed later in the course. It can be shown that this generalisation of Abel’s
Identity

𝑊 ′ + tr(𝐴)𝑊 = 0

holds, and hence

𝑊 ′ = 𝑊0𝑒
−∫𝑥𝑥0 tr(𝐴)d𝑢

and Abel’s theorem holds. This is shown on example sheet 3, Question 7.
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8.9. Equidimensional equations
AnODE is equidimensional if the differential operator is unaffected by a multiplicative scal-
ing. For example, rescaling

𝑥 ↦ 𝑋 = 𝛼𝑥
where 𝛼 ∈ ℝ. The general form for a second order equidimensional equation is

𝑎𝑥2𝑦″ + 𝑏𝑥𝑦′ + 𝑐𝑦 = 𝑓(𝑥) (8.9)

where 𝑎, 𝑏, 𝑐 are constant. Note, d
d𝑋

= 1
𝛼

d
d𝑥
, and d2

d𝑋2 = 1
𝛼2

d
d𝑥2

, so plugging this into (8.9)
gives

𝑎𝑋2 d2𝑦
d𝑋2 + 𝑏𝑋 d𝑦

d𝑋 + 𝑐𝑦 = 𝑓 (𝑋𝛼 )

The left hand sidewas unaffected by this rescaling, so the equation is equidimensional.

There are two main methods for solving equidimensional equations.

(i) Note that 𝑦 = 𝑥𝑘 is an eigenfunction of the differential operator 𝑥 d
d𝑥
. Inspired by this,

to solve (8.9) we will look for solutions of the form 𝑦 = 𝑥𝑘, so we have

𝑎𝑘(𝑘 − 1) + 𝑏𝑘 + 𝑐 = 0

We can simply solve this quadratic for two roots 𝑘1 and 𝑘2. If 𝑘1 ≠ 𝑘2, then the com-
plementary function is

𝑦𝑐 = 𝐴𝑥𝑘1 + 𝐵𝑥𝑘2

(ii) If 𝑘1 = 𝑘2, then the substitution 𝑧 = ln𝑥 turns (8.9) into an equation with constant
coefficients.

𝑎d
2𝑦
d𝑧2

+ (𝑏 − 𝑎)d𝑦d𝑧 + 𝑐𝑦 = 𝑓(𝑒𝑧)

Because this has constant coefficients, our complementary functions will be of the
form 𝑦 = 𝑒𝜆𝑧, which can be solved as usual.

𝑦𝑐 = 𝐴𝑒𝜆1𝑧 + 𝐵𝑒𝜆2𝑧 = 𝐴𝑥𝜆1 + 𝐵𝑥𝜆2

which is the same form as above. In this form, it is easier to see that if the two solutions
𝜆1, 𝜆2 are the same, then

𝑦𝑐 = 𝐴𝑒𝜆1𝑧 + 𝐵𝑧𝑒𝜆1𝑧 = 𝐴𝑥𝑘1 + 𝐵𝑥𝑘1 ln𝑥
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9. Forced second order ODEs

9. Forced second order ODEs
Wewant to findmethods for finding the particular integral of forced secondorderODEs.

9.1. Guesswork
Here, 𝑓(𝑥) is the forcing term.

Form of 𝑓(𝑥) Form of 𝑦𝑝(𝑥)
𝑒𝑚𝑥 𝐴𝑒𝑚𝑥

sin(𝑘𝑥) or cos(𝑘𝑥) 𝐴 sin(𝑘𝑥) + 𝐵 cos(𝑘𝑥)
𝑥𝑛 or an 𝑛th degree polynomial 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 +⋯+ 𝑎0

In general:

(i) Insert our guess into the equation;

(ii) Equate coefficients of functions;

(iii) Solve for unknown coefficients.

9.2. Variation of parameters
This is a method for finding the particular integral 𝑦𝑝 given complementary functions 𝑦1, 𝑦2,
which are assumed to be linearly independent, with solution vectors

Y1 = (𝑦1𝑦′1
) ; Y2 = (𝑦2𝑦′2

)

Suppose that the solution vector for 𝑦𝑝 satisfies

Y𝑝 = (𝑦𝑝𝑦′𝑝
) = 𝑢(𝑥)Y1 + 𝑣(𝑥)Y2 (9.1)

This is not a linear combination of Y1 and Y2, but we can treat it as a linear combination at
a fixed 𝑥 point (just as a way to visualise it). We want to find equations for 𝑢(𝑥) and 𝑣(𝑥). By
comparing components of the vectors on the left and right, we have

𝑦𝑝 = 𝑢𝑦1 + 𝑣𝑦2 (a)
𝑦′𝑝 = 𝑢𝑦′1 + 𝑣𝑦′2 (b)

So therefore,
d
d𝑥(a) ⟹ 𝑦′𝑝 = 𝑢′𝑦1 + 𝑢𝑦′1 + 𝑣′𝑦2 + 𝑣𝑦′2 (c)

(c) − (b) ⟹ 𝑢′𝑦1 + 𝑣′𝑦2 = 0 (d)
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Now:
d
d𝑥(b) ⟹ 𝑦″𝑝 = 𝑢𝑦″1 + 𝑢′𝑦′1 + 𝑣′𝑦′2 + 𝑣𝑦″2 (e)

If 𝑦″𝑝 + 𝑝(𝑥)𝑦′𝑝 + 𝑞(𝑥)𝑦𝑝 = 𝑓(𝑥), then

(e) + 𝑝(b) + 𝑞(a) = 𝑓(𝑥)

But also, 𝑦1 and 𝑦2 satisfy the differential equation

𝑦″𝑐 + 𝑝𝑦′𝑐 + 𝑞𝑦𝑐 = 0 𝑦𝑐 ∈ {𝑦1, 𝑦2}

After we substitute in and cancel a lot of terms, we have

𝑢′𝑦′1 + 𝑣′𝑦′2 = 𝑓(𝑥) (f)

Combining (d) and (f), we can deduce 𝑢 and 𝑣.

(𝑦1 𝑦2
𝑦′1 𝑦′2

)
⏟⎵⏟⎵⏟

fundamental matrix

(𝑢
′

𝑣′) = (0𝑓)

So as long as 𝑦1 and 𝑦2 are linearly independent, i.e. theWrońskian is nonzero, we can write
an equation for 𝑢′ and 𝑣′.

(𝑢
′

𝑣′) =
1

𝑊(𝑥) (
𝑦′2 −𝑦2
𝑦′1 𝑦1

) (0𝑓)

or explicitly,

𝑢′ = −𝑦2𝑓
𝑊

𝑣′ = 𝑦1𝑓
𝑊

and therefore
𝑦𝑝 = 𝑦2∫

𝑥 𝑦1(𝑡)𝑓(𝑡)
𝑊(𝑡) d𝑡 − 𝑦1∫

𝑥 𝑦2(𝑡)𝑓(𝑡)
𝑊(𝑡) d𝑡

9.3. Forced oscillating systems: transients and damping
Many physical systems have a restoring force and damping (e.g. friction). For example, the
suspension of a car could be modelled with 𝑦(𝑡), where 𝑦 is the height of the wheel, given
by

𝑀 ̈𝑦 = 𝐹(𝑡) − 𝑘𝑦⏟
spring

− 𝐿 ̇𝑦⏟
damper

In standard form, we have
̈𝑦 + 𝐿

𝑀 ̇𝑦 + 𝑘
𝑀𝑦 = 𝐹(𝑡)

𝑀
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Let 𝜏 = √
𝑘
𝑀
𝑡. Then we can rewrite this equation using a single parameter:

𝑦″ + 2𝐾𝑦′ + 𝑦 = 𝑓(𝜏)

where 𝑦′ = d𝑦
d𝜏
, 𝐾 = 𝐿

2√𝑘𝑀
, 𝑓 = 𝐹

𝑘
. Our unforced system is described here by one parameter

𝐾.
In the case of the unforced response (also known as the free or natural response), we have
𝑓 = 0, so

𝑦″ + 2𝐾𝑦′ + 𝑦 = 0
Solving by the characteristic equation, we see

𝜆 = −𝐾 ± √𝐾2 − 1

There are a number of cases here.

(i) (𝐾 < 1) This produces a decaying oscillation, known as ‘underdamped’. 𝜆1, 𝜆2 are both
complex, and therefore

𝑦 = 𝑒−𝐾𝜏 [𝐴 sin(√1 − 𝐾2𝜏) + 𝐵 cos(√1 − 𝐾2𝜏)]

The period is 2𝜋
√1−𝐾2

. As 𝐾 tends to 1, the period tends to∞.

(ii) (𝐾 = 1) This is the degenerate case, 𝜆1 = 𝜆2 = −𝐾. We can use detuning to deduce

𝑦 = 𝑒−𝐾𝜏(𝐴 + 𝐵𝜏)

(iii) (𝐾 > 1) Here, we have two negative real roots 𝜆1, 𝜆2; this situation is known as ‘over-
damped’.

𝑦 = 𝐴𝑒𝜆1𝜏 + 𝐵𝑒𝜆2𝜏

Note that the unforced response decays in all cases.

9.4. Sinusoidal forcing
Let

̈𝑦 + 𝜇 ̇𝑦 + 𝜔20𝑦 = sin𝜔𝑡
Now let us guess 𝑦𝑝 = 𝐴 sin𝜔𝑡 + 𝐵 cos𝜔𝑡. Equating coefficients of sin𝜔𝑡 gives

−𝐴𝜔2 − 𝐵𝜇𝜔 + 𝜔20𝐴 = 1 (a)

and equating cos𝜔𝑡 gives
−𝐵𝜔2 + 𝐴𝜇𝜔 + 𝜔20𝐵 = 0 (b)
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Then:
(b) ⟹ 𝐴 = 𝐵𝜔

2 − 𝜔20
𝜇𝜔

(a) ⟹ 𝐴(𝜔20 − 𝜔2) = 1 + 𝐵𝜇𝜔
So

𝐴 = 𝜔20 − 𝜔2
(𝜔20 − 𝜔2)2 + 𝜇2𝜔2

𝐵 = −𝜇𝜔
(𝜔20 − 𝜔2)2 + 𝜇2𝜔2

Altogether, we have

𝑦𝑝 =
1

(𝜔20 − 𝜔2)2 + 𝜇2𝜔2
[(𝜔20 − 𝜔2) sin𝜔𝑡 − 𝜇𝜔 cos𝜔𝑡]

Drawing an example of this kind of particular integral (with the complementary function in
grey), we can see the following:

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

𝑡

𝑦

And adding both together to form a particular solution gives:

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

𝑡

𝑦

Let us make a few comments about these forced oscillations.

• The complementary function gives us the transient (short-term) response to the initial
conditions.

• The particular integral gives the long-term response to the forcing term.
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9. Forced second order ODEs

• In some sense, the system ‘forgets’ about the initial conditions over time due to the
damping term.

9.5. Resonance in undamped systems
What happens if 𝜔 = 𝜔0? If 𝜇 ≠ 0 (i.e. it is a damped system), then

lim
𝜔→𝜔0

𝑦𝑝 =
− cos𝜔0𝑡
𝜇𝜔0

This is a finite amplitude oscillation. Note that the amplitude increases with decreasing 𝜇,
so clearly this solution has a problem at 𝜇 = 0. To work with this, we’ll let

̈𝑦 + 𝜔20𝑦 = sin𝜔0𝑡

We will use detuning to get solutions for this equation. Consider instead

̈𝑦 + 𝜔20𝑦 = sin𝜔𝑡

where 𝜔 ≠ 𝜔0. We will guess that the particular integral is of the form 𝑦𝑝 = 𝐶 sin𝜔𝑡 since
by inspection there cannot be any cosine terms.

𝐶(−𝜔2 + 𝜔20) = 1

∴ 𝑦𝑝 =
1

𝜔20 − 𝜔2
sin𝜔𝑡

As the system is linear in 𝑦 and its derivatives, we can freely add some multiple of the com-
plementary function and it will remain a solution.

𝑦𝑝 =
1

𝜔20 − 𝜔2
sin𝜔𝑡 + 𝐴 sin𝜔0𝑡

Now let us pick 𝐴 = −1
𝜔2
0−𝜔2 , so

𝑦𝑝 =
sin𝜔𝑡 − sin𝜔0𝑡

𝜔20 − 𝜔2

Rewriting this using angle addition and subtraction identities:

𝑦𝑝 =
2

𝜔20 − 𝜔2
[cos (𝜔 + 𝜔0

2 𝑡) sin (𝜔 − 𝜔0
2 𝑡)]

For convenience, let Δ𝜔 ≡ 𝜔0 − 𝜔, and therefore 𝜔+𝜔0
2

= 𝑤0 −
1
2
Δ𝜔.

𝑦𝑝 =
−2

Δ𝜔(𝜔0 + 𝜔) [cos ((𝜔0 −
Δ𝜔
2 ) 𝑡) sin Δ𝜔𝑡2 ]
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In the following diagram, 𝑦𝑝 is drawn in grey, with the sine term acting as an envelope for
the higher-frequency cosine term. The phenomenon visible here is known as ‘beating’, as
an oscillator with a fundamental frequency slightly different to the forcing frequency will
begin oscillating then stop, and repeat this cycle.

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

𝑡

𝑦 𝑝

As we reduce Δ𝜔 to zero, we have

lim
Δ𝜔→0

sin (Δ𝜔2 𝑡) ≈ Δ𝜔
2 𝑡

So

lim
Δ𝜔→0

≈ −2
Δ𝜔(𝜔0 + 𝜔0)

cos(𝜔0𝑡) (
Δ𝜔
2 𝑡)

≈ −2𝑡
𝜔0

cos𝜔0𝑡

This is linear growth in amplitude over time. This increase is unbounded an in undamped
system. Note that 𝑦𝑝 takes the form of one of the complementary functions multiplied by
the independent variable.

9.6. Impulses and point forces
Consider a system that experiences a sudden force, for example a car’s suspension when
driving over a speed bump. Let us define 𝑦 to be the displacement from the undisturbed
height of the suspension. Let the car’s mass be𝑀. In a small finite window 𝜀 around some
time 𝑇, the excess force 𝐹 (the forcing term) on the system is greater than zero. As 𝜀 tends
to zero, the force becomes a sudden impulse. Let us model this using the equation

𝑀 ̈𝑦 = 𝐹(𝑡) − 𝑘𝑦 − 𝐿 ̇𝑦

We can see that before time 𝑇, 𝑦 = 0. After this point, there is some kind of oscillation. Note
that the value of 𝑦 is always continuous (otherwise this would violate many laws of physics),
but the derivative is not necessarily continuous at the point 𝑇. Let us integrate the equation
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9. Forced second order ODEs

above in time from 𝑇 − 𝜀 to 𝑇 + 𝜀.

lim
𝜀→0

⎡
⎢
⎢
⎢
⎣

𝑀[ ̇𝑦]𝑇+𝜀𝑇−𝜀 = ∫
𝑇+𝜀

𝑇−𝜀
𝐹(𝑡) d𝑡 − 𝑘 ∫

𝑇+𝜀

𝑇−𝜀
𝑦 d𝑡

⏟⎵⎵⏟⎵⎵⏟
0 if 𝑦 is finite

−𝐿 [𝑦]𝑇+𝜀𝑇−𝜀⏟⏟⏟
0 if 𝑦 is continuous

⎤
⎥
⎥
⎥
⎦

(9.2)

We now can define the impulse 𝐼 to be

𝐼 = lim
𝜀→0

∫
𝑇+𝜀

𝑇−𝜀
𝐹(𝑡) d𝑡

Hence
(9.2) ⟹ 𝐼 = lim

𝜀→0
𝑀[ ̇𝑦]𝑇+𝜀𝑇−𝜀

So if the impulse is nonzero, the velocity ̇𝑦 experiences a sudden change, so it is discon-
tinuous at 𝑇. The value of this sudden change in velocity depends on the integral of the
force.
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10. Impulse forcing
10.1. Dirac 𝛿 function
First let us consider a family of functions 𝐷(𝑡; 𝜀) defined by

lim
𝜀→0

𝐷(𝑡; 𝜀) = 0; ∀𝑡 ≠ 0

∫
∞

−∞
𝐷(𝑡; 𝜀) d𝑡 = 1

For example,

𝐷(𝑡; 𝜀) = 1
𝜀√𝜋

𝑒
−𝑡2
𝜀2

We can now define the Dirac delta function 𝛿(𝑡) = lim𝜀→0 𝐷(𝑡; 𝜀). It has a number of inter-
esting properties:

• 𝛿(𝑥) = 0 for all nonzero 𝑥

• ∫∞
−∞ 𝛿(𝑡) d𝑡 = 1

• (sampling property) For a continuous function 𝑔(𝑥):

∫
∞

−∞
𝑔(𝑥)𝛿(𝑥) d𝑥 = 𝑔(0)∫

∞

−∞
𝛿(𝑥) d𝑥 = 𝑔(0)

And more generally,

∫
𝑏

𝑎
𝑔(𝑥)𝛿(𝑥 − 𝑥0) d𝑥 = {𝑔(𝑥0) 𝑎 ≤ 𝑥0 ≤ 𝑏

0 otherwise

10.2. Heaviside step function
Exploiting the definition of the 𝛿 function, we will define the Heaviside step function 𝐻(𝑥)
by

𝐻(𝑥) ≡ ∫
𝑥

−∞
𝛿(𝑡) d𝑡

Here are some of its properties:

• 𝐻(𝑥) = 0 for 𝑥 < 0

• 𝐻(𝑥) = 1 for 𝑥 > 0

• 𝐻(0) is undefined
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10. Impulse forcing

10.3. Ramp function
We define the ramp function 𝑟(𝑥) by

𝑟(𝑥) ≡ ∫
𝑥

−∞
𝐻(𝑡) d𝑡

This function is shaped like a ramp:

𝑟(𝑥) = {0 𝑥 < 0
𝑥 𝑥 ≥ 0

These functions get ‘smoother’ the more times we integrate.

10.4. Delta function forcing
Consider a linear second order ODE of the form

𝑦″ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 𝛿(𝑥) (10.1)

The key principle is that the highest order derivative ‘inherits’ the level of discontinuity from
the forcing term, since if any other derivative were to contain the discontinuous function,
then the next higher derivative would only be more discontinuous. So, 𝑦″ behaves some-
what like 𝛿. Here, we will denote this 𝑦″ ∼ 𝛿—this is extremely non-standard notation,
however.

Now, since 𝛿(𝑥) = 0 for all nonzero 𝑥, then

𝑦″ + 𝑝𝑦′ + 𝑞𝑦 = 0 for 𝑥 < 0, 𝑥 > 0

We will essentially have two solutions for 𝑦; one for before the impulse and one after. We
need to combine these together somehow to create the resultant 𝑦 solution. But this leaves
four constants of integration, so surely we can’t solve it. Luckily, 𝑦 satisfies certain ‘jump
conditions’ (the analogous concept to initial conditions in this context):

• 𝑦(𝑥) is continuous at 𝑥 = 0 because 𝑦″ ∼ 𝛿 ⟹ 𝑦′ ∼ 𝐻 ⟹ 𝑦 ∼ 𝑟. More precisely:

lim
𝜀→0

[𝑦]𝑥=𝜀𝑥=−𝜀 = 0

• 𝑦′(𝑥) is has a jump of 1 at 𝑥 = 0 because 𝑦″ ∼ 𝛿 ⟹ 𝑦′ ∼ 𝐻. Again we can formulate
this intuition more precisely by integrating (10.1) around a small window 𝜀:

lim
𝜀→0

∫
𝜀

−𝜀
𝑦″ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 d𝑥 = lim

𝜀→0
∫

𝜀

−𝜀
𝛿(𝑥) d𝑥

lim
𝜀→0

[𝑦′]𝑥=𝜀𝑥=−𝜀 = 1
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As a more concrete example, let us solve

𝑦″ − 𝑦 = 3𝛿 (𝑥 − 𝜋
2 )

where
𝑥 = 0, 𝑥 = 𝜋 ⟹ 𝑦 = 0

First, let us solve the interval 0 ≤ 𝑥 < 𝜋
2
.

𝑦″ − 𝑦 = 0
𝑦 = 𝐴𝑒𝑥 + 𝐵𝑒−𝑥

or 𝑦 = 𝐴 sinh𝑥 + 𝐵 cosh𝑥 redefining 𝐴, 𝐵
(𝑦 = 0 at 𝑥 = 0) ⟹ 𝑦 = 𝐴 sinh𝑥

Similarly, between 𝜋
2
< 𝑥 ≤ 𝜋 (since the equation is invariant under the transformation

𝑥 ↦ 𝜋 − 𝑥):
𝑦 = 𝐶 sinh(𝜋 − 𝑥)

Now, we can apply two jump conditions to solve for these constants:

• Integrating the differential equation over a small region:

lim
𝜀→0

[𝑦]
𝑥=𝜋

2 +𝜀
𝑥=𝜋

2 −𝜀
= 3

Hence, taking the derivatives of our two solutions:

−𝐴 cosh 𝜋2 − 𝐶 cosh 𝜋2 = 3

• Since the 𝑦 term is continuous:

[𝑦]
𝑥=𝜋

2
𝑥=𝜋

2 −𝜀
= 0

𝐴 sinh 𝜋2 = 𝐶 sinh 𝜋2 ⟹ 𝐴 = 𝐶

Using both jump conditions, we have 𝐴 = 𝐶 = −3
2 cosh 𝜋

2
. So our general solution is

𝑦 = {
−3 sinh𝑥
2 cosh 𝜋

2
0 ≤ 𝑥 < 𝜋

2
−3 sinh(𝜋−𝑥)

2 cosh 𝜋
2

𝜋
2
< 𝑥 ≤ 𝜋

Note that often when working with limits as 𝜀 → 0, we simply elide the limit sign since it is
so ubiquitous.
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10. Impulse forcing

10.5. Heaviside function forcing
Consider

𝑦″ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 𝐻(𝑥 − 𝑥0) (10.2)

Now, 𝑦(𝑥) satisfies

𝑦″ + 𝑝𝑦′ + 𝑞𝑦 = 0 (𝑥 < 𝑥0) (10.3)
𝑦″ + 𝑝𝑦′ + 𝑞𝑦 = 1 (𝑥 > 𝑥0) (10.4)

Evaluating (10.2) on either side of 𝑥0, we have

[𝑦″]𝑥
+
0

𝑥−0 + 𝑝(𝑥0)[𝑦′]
𝑥+0
𝑥−0 + 𝑞(𝑥0)

𝑥+0
𝑥−0 = 1

If 𝑦″ ∼ 𝐻 then 𝑦′ ∼ 𝑟 and then 𝑦 ∼ ∫ 𝑟. Hence, 𝑦′ and 𝑦 are both continuous. So our jump
conditions are

• [𝑦′]𝑥
+
0

𝑥−0 = 0

• [𝑦]𝑥
+
0

𝑥−0 = 0
We can use the two initial or boundary conditions, along with the two jump conditions, to
find the four constants in the solutions to (10.3) and (10.4).
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11. Discrete equations and the method of Frobenius
11.1. Higher order discrete equations
The general form of an𝑚th order linear discrete equationwith constant coefficients is

𝑎𝑚𝑦𝑛+𝑚 + 𝑎𝑚−1𝑦𝑛+𝑚−1 +⋯+ 𝑎1𝑦𝑛+1 + 𝑎0𝑦𝑛 = 𝑓𝑛 (11.1)

To solve such an equation, we will exploit some principles used to solve higher order differ-
ential equations.

To apply eigenfunction properties, we will define a difference operator 𝐷[𝑦𝑛] = 𝑦𝑛+1. Then,
𝐷 has eigenfunction 𝑦𝑛 = 𝑘𝑛 for 𝑘 constant, since 𝐷[𝑘𝑛] = 𝑘𝑛+1 = 𝑘 ⋅ 𝑘𝑛 = 𝑘𝑦𝑛.

To apply linearity, notice that (11.1) is linear in 𝑦, so the general solution 𝑦𝑛 = 𝑦(𝑐)𝑛 + 𝑦(𝑝)𝑛
where 𝑦(𝑐) is the complementary function and 𝑦(𝑝) is the particular integral.

As an example, let us consider a second order difference equation

𝑎2𝑦𝑛+2 + 𝑎1𝑦𝑛+1 + 𝑎0𝑦𝑛 = 𝑓𝑛

We will first try to solve the homogeneous equation, letting 𝑓 = 0.

𝑎2𝑦𝑛+2 + 𝑎1𝑦𝑛+1 + 𝑎0𝑦𝑛 = 0

We will look for solutions of the form of the eigenfunction: 𝑦𝑛 = 𝑘𝑛.

𝑎2𝑘2 + 𝑎1𝑘 + 𝑎0 = 0

This quadratic may be solved to give 𝑘1 and 𝑘2. Then our complementary function is

𝑦(𝑐)𝑛 = {𝐴𝑘
𝑛
1 + 𝐵𝑘𝑛2 𝑘1 ≠ 𝑘2

𝐴𝑘𝑛 + 𝐵𝑛𝑘𝑛 𝑘1 = 𝑘2 = 𝑘

To solve the particular integral, let us consult this table:

Form of 𝑓𝑛 Form of 𝑦(𝑝)𝑛

𝑘𝑛 𝐴𝑘𝑛 if 𝑘 ≠ 𝑘1, 𝑘2
𝑘𝑛1 , 𝑘𝑛2 𝐴𝑛𝑘𝑛1 + 𝐵𝑛𝑘𝑛2
𝑛𝑝 𝐴𝑛𝑝 + 𝐵𝑛𝑝−1 +⋯+ 𝐶𝑛 + 𝐷

11.2. Fibonacci sequence
The Fibonacci sequence is given by

𝑦𝑛 = 𝑦𝑛−1 + 𝑦𝑛−2
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11. Discrete equations and the method of Frobenius

with initial conditions 𝑦0 = 𝑦1 = 1. In standard form, we have

𝑦𝑛+2 − 𝑦𝑛+1 − 𝑦𝑛 = 0

We will look for solutions of the form 𝑦 = 𝑘𝑛. Then

𝑘2 − 𝑘 − 1 = 0

So we have

𝑘1 = 𝜙 = 1 + √5
2 ; 𝑘2 = −𝜙−1 = 1 − √5

2
Solving for the initial conditions gives

𝑦𝑛 =
1
√5

𝜙 + 1
√5

𝜙−1 = 𝜙𝑛+1 − (−𝜙−1)𝑛+1

√5

So we can deduce that

lim
𝑛→∞

𝑦𝑛+1
𝑦𝑛

= lim
𝑛→∞

𝜙𝑛+2 − (−𝜙−1)𝑛+2
𝜙𝑛+1 − (−𝜙−1)𝑛+1 = 𝜙

11.3. Method of Frobenius
The Method of Frobenius is a way of computing series solutions to linear homogeneous
second order ODEs. The general form is

𝑝(𝑥)𝑦″ + 𝑞(𝑥)𝑦′ + 𝑟(𝑥)𝑦 = 0

We will seek a power series expansion about some point 𝑥 = 𝑥0. First, we must classify the
point 𝑥0:

• (ordinary point) 𝑥 = 𝑥0 is an ordinary point if the Taylor series of 𝑞/𝑝 and 𝑟/𝑝 converge
in some region around 𝑥0; i.e. 𝑞/𝑝 and 𝑟/𝑝 are analytic.

• (singular point) If 𝑥0 is not ordinary, it is singular. There are two types of singular
points:

– (regular singular point) If the original ODE can be written as

𝑃(𝑥)(𝑥 − 𝑥0)2𝑦″ + 𝑄(𝑥)(𝑥 − 𝑥0)𝑦′ + 𝑅(𝑥)𝑦 = 0

and 𝑄
𝑃
and 𝑅

𝑃
are analytic, then 𝑥 = 𝑥0 is a regular singular point. Note that

𝑄
𝑃
= (𝑥 − 𝑥0)

𝑞
𝑝
; 𝑅
𝑃
(𝑥 − 𝑥0)2

𝑟
𝑝
.

– (irregular singular point) Otherwise, 𝑥 = 𝑥0 is an irregular singular point.
Here are some examples.
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(i) (1 − 𝑥2)𝑦″ − 2𝑥𝑦′ + 2𝑦 = 0. We have 𝑞/𝑝 = −2𝑥
1−𝑥2

, so 𝑥 = ±1 are singular points. But
𝑄/𝑃 = 2𝑥

1+𝑥
which is regular at 𝑥 = 1; a similar argument holds for −1.

(ii) 𝑦″ sin𝑥 + 𝑦′ cos𝑥 + 2𝑦 = 0. We have 𝑞/𝑝 = cot𝑥, 𝑟/𝑝 = 2 csc𝑥. So where 𝑥 = 𝑛𝜋
where 𝑛 ∈ ℤ, we have regular singular points.

(iii) (1+√𝑥)𝑦″−2𝑥𝑦′+2𝑦 = 0. We have 𝑞/𝑝 = −2𝑥
1+√𝑥

. Around 𝑥 = 0, the second derivative
is undefined, so this is an irregular singular point.

11.4. Fuch’s theorem
Theorem. (i) If 𝑥0 is an ordinary point, then there are two linearly independent solu-

tions of the form

𝑦 =
∞
∑
𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛

This series is convergent in some region around 𝑥0.
(ii) If 𝑥0 is a regular singular point, then there is at least one solution of the form

𝑦 =
∞
∑
𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛+𝜎

where 𝜎 is real and 𝑎0 ≠ 0.
Example. Here is an example of case 1.

(1 − 𝑥2)𝑦″ − 2𝑥𝑦′ + 2𝑦 = 0 (11.2)

We will try to find series solutions about 𝑥0 = 0, an ordinary point. We will therefore try
solutions of the form

𝑦 =
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛

𝑦′ =
∞
∑
𝑛=1

𝑛𝑎𝑛𝑥𝑛−1

𝑦″ =
∞
∑
𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2

Now, to make all powers of 𝑥 at least 𝑛, we will multiply (11.2) by 𝑥2 for convenience.

(1 − 𝑥2)𝑥2𝑦″ − 2𝑥3𝑦′ + 2𝑥2𝑦 = 0

(1 − 𝑥2)𝑥2
∞
∑
𝑛=2

𝑛(𝑛 − 1)𝑎𝑛(𝑥 − 𝑥0)𝑛−2 − 2𝑥3
∞
∑
𝑛=1

𝑛𝑎𝑛(𝑥 − 𝑥0)𝑛−1 + 2𝑥2
∞
∑
𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛 = 0
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(1 − 𝑥2)
∞
∑
𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛 − 2𝑥2
∞
∑
𝑛=1

𝑛𝑎𝑛𝑥𝑛 + 2𝑥2
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛 = 0

∞
∑
𝑛=2

𝑎𝑛[𝑛(𝑛 − 1)(1 − 𝑥2)]𝑥𝑛 − 2
∞
∑
𝑛=1

𝑎𝑛(𝑛𝑥2)𝑥𝑛 + 2
∞
∑
𝑛=0

𝑎𝑛(𝑥2)𝑥𝑛 = 0

Now, for 𝑛 ≥ 2, equating the 𝑥𝑛 coefficients we have

𝑎𝑛[𝑛(𝑛 − 1)] − 𝑎𝑛−2[(𝑛 − 2)(𝑛 − 3)] − 2𝑎𝑛−2(𝑛 − 2) + 2𝑎𝑛−2 = 0

This is a discrete equation. Rewritten in a more standard form, we have

𝑛(𝑛 − 1)𝑎𝑛 = (𝑛2 − 3𝑛)𝑎𝑛−2

or
𝑎𝑛 =

𝑛 − 3
𝑛 − 1𝑎𝑛−2 (11.3)

This is known as the recurrence relation. The values of 𝑎0 and 𝑎1 are the unknown constants
to be found via initial or boundary conditions. Note that 𝑎3 = 0 from (11.3). Therefore, any
odd power of 𝑥 of higher order than 𝑥1 is zero. For even 𝑛, we have

𝑎𝑛 =
𝑛 − 3
𝑛 − 1𝑎𝑛−2

𝑎𝑛 =
𝑛 − 3
𝑛 − 1

𝑛 − 5
𝑛 − 3𝑎𝑛−4 =

𝑛 − 5
𝑛 − 1𝑎𝑛−4

𝑎𝑛 =
𝑛 − 5
𝑛 − 1

𝑛 − 7
𝑛 − 5𝑎𝑛−6 =

𝑛 − 7
𝑛 − 1𝑎𝑛−6

∴ 𝑎𝑛 =
−1
𝑛 − 1𝑎0

Therefore
𝑦 = 𝑎1𝑥 + 𝑎0 [1 − 𝑥2 − 𝑥4

3 − 𝑥6
5 − 𝑥8

7 −…]

Note that
ln(1 ± 𝑥) = ±𝑥 − 𝑥2

2 ± 𝑥3
3 −…

Therefore
ln(1 + 𝑥

1 − 𝑥) = ln(1 + 𝑥) − ln(1 − 𝑥) = 2𝑥 + 2𝑥
3

3 + 2𝑥
5

5 +…

Hence,
𝑦 = 𝑎1𝑥 + 𝑎0 [1 −

𝑥
2 ln (

1 + 𝑥
1 − 𝑥)]

Note the behaviour of this function near the singular points of the original differential equa-
tion.
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Example. Consider the following differential equation:

4𝑥𝑦″ + 2(1 − 𝑥2)𝑦′ − 𝑥𝑦 = 0 (11.4)

We want to find series solutions about 𝑥 = 0. In this case, 𝑞
𝑝
is undefined at 𝑥 = 0, so it is a

singular point, but it is regular. We will try solutions of the form

𝑦 =
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛+𝜎

𝑦′ =
∞
∑
𝑛=0

(𝑛 + 𝜎)𝑎𝑛𝑥𝑛+𝜎−1

𝑦″ =
∞
∑
𝑛=0

(𝑛 + 𝜎)(𝑛 + 𝜎 − 1)𝑎𝑛𝑥𝑛+𝜎−2

where 𝑎0 ≠ 0. For convenience we will multiply (11.4) by 𝑥:

4𝑥2𝑦″ + 2(1 − 𝑥2)𝑥𝑦′ − 𝑥2𝑦 = 0

4𝑥2
∞
∑
𝑛=0

(𝑛 + 𝜎)(𝑛 + 𝜎 − 1)𝑎𝑛𝑥𝑛+𝜎−2 + 2(1 − 𝑥2)𝑥
∞
∑
𝑛=0

(𝑛 + 𝜎)𝑎𝑛𝑥𝑛+𝜎−1 − 𝑥2
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛+𝜎

Hence,
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛+𝜎 [4(𝑛 + 𝜎)(𝑛 + 𝜎 − 1) + 2 (1 − 𝑥2) (𝑛 + 𝜎) − 𝑥2] = 0 (11.5)

We will equate coefficients of 𝑥𝑛+𝜎 for 𝑛 ≥ 2, since here all terms will make some contribu-
tion to the coefficient.

𝑎𝑛 [4(𝑛 + 𝜎)(𝑛 + 𝜎 − 1) + 2(𝑛 + 𝜎)] + 𝑎𝑛−2 [−2(𝑛 − 2 + 𝜎) − 1] = 0

Therefore,
2(𝑛 + 𝜎)(2𝑛 + 2𝜎 − 1)𝑎𝑛 = (2𝑛 + 2𝜎 − 3)𝑎𝑛−2 (11.6)

This is the recurrence relation, which we can use to compute the 𝑎𝑛. A general technique
to find 𝜎 is to equate the coefficients of the lowest power of 𝑥 in (11.5). By setting 𝑛 = 0, we
can equate coefficients of 𝑥𝜎, giving

𝑎0(4𝜎(𝜎 − 1)) + 𝑎02𝜎 = 0

But since 𝑎0 ≠ 0 in Fuch’s Theorem, we have

4𝜎(𝜎 − 1) + 2𝜎 = 0

So either 𝜎 = 0 or 𝜎 = 1
2
. We must consider these two cases individually.
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11. Discrete equations and the method of Frobenius

• (𝜎 = 0) Equate coefficients of the lowest powers of 𝑥 in (11.5).
– (𝑛 = 0) The coefficient of 𝑥0 gives

𝑎0[4(0)(−1)] + 𝑎0[2(0)] = 0

which is true for all 𝑎0. So 𝑎0 is an arbitrary constant.
– (𝑛 = 1) The coefficient of 𝑥1 gives

𝑎1[4(1)(0)] + 𝑎1[2(1)] = 0

so 𝑎1 = 0.
From the recurrence relation (11.6) which is valid for 𝑛 ≥ 2, plugging in 𝜎 = 0 gives

2𝑛(2𝑛 − 1)𝑎𝑛 = (2𝑛 − 3)𝑎𝑛−2 (11.7)

Since 𝑎1 = 0, clearly all 𝑎𝑘 = 0 for odd 𝑘. Therefore, using the recurrence relation
(11.7) we have

𝑦 = 𝑎0 (1 +
𝑥2
4 ⋅ 3 +

5𝑥4
8 ⋅ 7 ⋅ 4 ⋅ 3 + …)

• (𝜎 = 1
2
) This time we will start with the recurrence relation (11.6) with 𝜎 = 1

2
, rela-

belling 𝑎 to 𝑏 to avoid confusion.

(2𝑛 + 1)(2𝑛)𝑏𝑛 = (2𝑛 − 2)𝑏𝑛−2 (11.8)

Now let us analyse the coefficients of the lowest powers of 𝑥, substituting into (11.5).

– (𝑛 = 0) The coefficient of 𝑥
1
2 gives

𝑏0 [4 (
1
2) (

−1
2 )] + 𝑏0 [2 (

1
2)] = 0

which is true for all 𝑏0. So 𝑏0 is an arbitrary constant.

– (𝑛 = 1) The coefficient of 𝑥
3
2 gives

𝑏1 [4 (
3
2) (

1
2)] + 𝑏1 [2 (

3
2)] = 0

so 𝑏1 = 0.
As before, all 𝑏𝑘 = 0 where 𝑘 is odd. Therefore, using the recurrence relation (11.8),
we have

𝑦 = 𝑏0𝑥
1
2 [1 + 𝑥2

2 ⋅ 5 +
3𝑥4

2 ⋅ 5 ⋅ 4 ⋅ 9 + …]

So we have found two linearly independent solutions to the differential equation, given by
boundary conditions 𝑎0 and 𝑏0. Note that Fuch’s Theorem only specifies that there will be
at least one, but we have found two in this case.
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II. Differential Equations

11.5. Special cases of indicial equation
Before looking at some examples of the method of Frobenius, we will first look at special
cases of the indicial equation provided by Fuch’s theorem. Consider an expansion about the
point 𝑥 = 𝑥0. Let 𝜎1, 𝜎2 be the roots of this equation. There are two cases:

• (𝜎1 − 𝜎2 ∉ ℤ) We have two linearly independent solutions. So our solution is of the
form

𝑦 = (𝑥 − 𝑥0)𝜎1
∞
∑
𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛 + (𝑥 − 𝑥0)𝜎2
∞
∑
𝑛=0

𝑏𝑛(𝑥 − 𝑥0)𝑛

Note that the limit as 𝑥 → 𝑥0, 𝑦 ∼ (𝑥 − 𝑥0)min(𝜎1,𝜎2).
• (𝜎1 − 𝜎2 ∈ ℤ) There is one solution of the form

𝑦1 = (𝑥 − 𝑥0)𝜎2
∞
∑
𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛

The other solution is of the form

𝑦2 = (𝑥 − 𝑥0)𝜎1
∞
∑
𝑛=0

𝑏𝑛(𝑥 − 𝑥0)𝑛 + 𝑐𝑦1 ln(𝑥 − 𝑥0)

where 𝑐 may or may not equal zero. If the two solutions are linearly independent
without the 𝑐 term, then 𝑐 = 0. Else, without loss of generality, we can let 𝑐 = 1 since
we’re dealing with homogeneous equations.

• (𝜎1 = 𝜎2 = 𝜎) Here, 𝑐 ≠ 0. So our solutions are of the form

𝑦1 = (𝑥 − 𝑥0)𝜎
∞
∑
𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛

𝑦2 = (𝑥 − 𝑥0)𝜎
∞
∑
𝑛=0

𝑏𝑛(𝑥 − 𝑥0)𝑛 + 𝑦1 ln(𝑥 − 𝑥0)

Example. Let us solve the equation

𝑥2𝑦″ − 𝑥𝑦 = 0 (11.9)

where we want series solutions about 𝑥 = 0. Note that this is a regular singular point. We
will try solutions of the form

𝑦 =
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛+𝜎

Therefore, we have
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛+𝜎 [(𝑛 + 𝜎)(𝑛 + 𝜎 − 1) − 𝑥] = 0 (11.10)
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11. Discrete equations and the method of Frobenius

Equating coefficients of 𝑥𝑛+𝜎 for 𝑛 ≥ 1:

(𝑛 + 𝜎)(𝑛 + 𝜎 − 1)𝑎𝑛 = 𝑎𝑛−1 (11.11)

By equating the coefficients of the lowest powers of 𝑥 (here 𝑛 = 0, so we equate coefficients
of 𝑥𝜎), we get an indicial equation for 𝜎:

𝜎(𝜎 − 1)𝑎0 = 0

So either 𝜎 = 0 or 𝜎 = 1, since 𝑎0 ≠ 0. So the values of 𝜎 differ by an integer.

• (𝜎 = 1) (11.11) implies that

𝑎𝑛 =
𝑎𝑛−1

𝑛(𝑛 − 1) =
𝑎0

(𝑛 + 1)(𝑛!)2

So we have

𝑦1 = 𝑎0𝑥 (1 +
𝑥
2 +

𝑥2
12 +

𝑥3
144 +…)

• (𝜎 = 0) (11.11) now gives
𝑛(𝑛 − 1)𝑏𝑛 = 𝑏𝑛−1

Normally we could find 𝑏1 in terms of 𝑏0 using this relation, but this just reduces to
0𝑏1 = 0, so we can’t deduce it here. When 𝑛 = 1, we can equate coefficients of 𝑥 in
(11.10) (relabelling 𝑎 to 𝑏) to get

𝑏1(1)(1 − 1) = 0

So 𝑏1 is arbitrary. Then of course we can find 𝑏2 and so on in terms of smaller 𝑏𝑖 values.
It turns out that

𝑏𝑖 = 𝑎𝑖−1

And therefore 𝑦2(𝑥) is linearly dependent on the previous 𝑦1(𝑥). So we now need to
use that logarithmic term to achieve linear independence, so 𝑦 here is of the form

𝑦2 = 𝑦1 ln𝑥 +
∞
∑
𝑥=0

𝑏𝑛𝑥𝑛

Why do we have specifically a logarithmic term? We can try the reduction of order
method to find the other solution given the existence of 𝑦1. Let 𝑦2(𝑥) = 𝑣(𝑥)𝑦1(𝑥) for
some function 𝑣. Then we have

𝑥2(𝑣″𝑦1 + 2𝑣′𝑦′1) = 0
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II. Differential Equations

Let 𝑢 = 𝑣′, then

𝑢′𝑦1 + 2𝑢𝑦1 = 0
𝑢′
𝑢 = −2𝑦

′
1
𝑦1

ln𝑢 = ln(𝑦−21 ) + ln𝐵

𝑢 = 𝑣′ = 𝐵
𝑦21

𝑣′ = 𝐵
𝑎20𝑥2

(1 + 𝑥
2 +

𝑥2
12 +

𝑥3
144 +…)

−2

Note that the constant of integration gives a constant multiple of 𝑦1, and since the
equation is homogeneous the constant does notmatter. Wewill expand this nowusing
the binomial theorem, continually redefining constants since they are arbitrary, to give

𝑣′ = 𝐵
𝑎20

( 1𝑥2 −
1
𝑥 +

∞
∑
𝑛=0

𝐵𝑛𝑥𝑛)

for some constants 𝐵𝑛. Then integrating with respect to 𝑥,

𝑣 = −𝐵
𝑎20

1
𝑥 −

𝐵
𝑎20

ln𝑥 +
∞
∑
𝑛=1

𝐶𝑛𝑥𝑛

𝑦2 = 𝑣𝑦1 =
−𝐵
𝑎0

− 𝐵
2𝑎0

𝑥 +
∞
∑
𝑛=2

𝐷𝑛𝑥𝑛 + 𝐶𝑦1 ln𝑥

=
∞
∑
𝑛=0

𝑏𝑛𝑥𝑛 + 𝑐𝑦1 ln𝑥

So the appearance of ln𝑥 is natural here.
Example. Let us revisit (11.2).

(1 − 𝑥2)𝑦″ − 2𝑥𝑦′ + 2𝑦 = 0

Instead of expanding around𝑥 = 0, let us nowconsider expanding around𝑥 = −1, a singular
point. We will redefine the independent variable, let

𝑧 = 1 + 𝑥 ⟹ 𝑧(2 − 𝑧)𝑦″ − 2(𝑧 − 1)𝑦′ + 2𝑦 = 0

Now we will expand around 𝑧 = 0. We know that 𝑧 = 0 is a regular singular point, so we
will try solutions of the form

𝑦 =
∞
∑
𝑛=0

𝑎𝑛𝑧𝑛+𝜎; 𝑎0 ≠ 0
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11. Discrete equations and the method of Frobenius

We have
∞
∑
𝑛=0

𝑎𝑛𝑧𝑛+𝜎−1 [(𝑛 + 𝜎)(𝑛 + 𝜎 − 1)(2 − 𝑧) − 2(𝑛 + 𝜎)(𝑧 − 1) + 2𝑧] = 0

As before, we will equate the coefficients of the lowest power of 𝑧 (for 𝑛 = 0, these are the
coefficients of 𝑧𝜎−1) to get the indicial equation and recursion relation.

2𝜎(𝜎 − 1)𝑎0 + 2𝜎𝑎0 = 0 ⟹ 𝜎2 = 0

So 𝜎 = 0 is a repeated root. Note that we need a term of the form 𝑦1 ln(𝑥 − 𝑥0) in this
problem. We will not complete this example here.
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12. Multivariate calculus
12.1. Gradient vector
Consider a function 𝑓(𝑥, 𝑦), and some small displacement ds. We want to find the rate of
change of 𝑓 in this direction. Recall that the multivariate chain rule tells us that a change
in 𝑓, given a change in 𝑥 and 𝑦, is given by

d𝑓 = 𝜕𝑓
𝜕𝑥 d𝑥 +

𝜕𝑓
𝜕𝑦 d𝑦

= (d𝑥 , d𝑦) ⋅ (𝜕𝑓𝜕𝑥 ,
𝜕𝑓
𝜕𝑦 )

= ds ⋅ ∇𝑓

where ds = (d𝑥 , d𝑦); ∇𝑓 = (𝜕𝑓
𝜕𝑥
, 𝜕𝑓
𝜕𝑦
). We call ∇𝑓 the ‘gradient vector’, in this case in

Cartesian coordinates. If we let ds = d𝑠 ̂s where | ̂s| = 1, then we can write

d𝑓 = d𝑠 ( ̂s ⋅ ∇𝑓)

We define the directional derivative by

d𝑓
d𝑠 = ̂s ⋅ ∇𝑓

This is the rate of change of 𝑓 in the direction given by ̂s.

(i) The magnitude of the gradient vector ∇𝑓 is the maximum rate of change of 𝑓(𝑥, 𝑦).

|∇𝑓| = max
∀𝜃

(d𝑓d𝑠 )

(ii) The direction of ∇𝑓 is the direction in which 𝑓 increases most rapidly.

|||
d𝑓
d𝑠
||| = |∇𝑓| cos 𝜃

where 𝜃 is the angle between∇𝑓 and ̂s, which follows from the definition of the direc-
tional derivative.

(iii) If ds (and ̂s) are parallel to contours of 𝑓, then

d𝑓
d𝑠 = ̂s ⋅ ∇𝑓 = 0

Hence the gradient vector is perpendicular to contours of 𝑓, and |∇𝑓| is the slope in
the ‘uphill’ direction.

110



12. Multivariate calculus

12.2. Stationary points
In general, there is always at least one direction in which the directional derivative is zero,
since we can just choose a direction perpendicular to the gradient vector, or equivalently
parallel to contours of𝑓. At stationary points, d𝑓

d𝑠
= 0 for all directions, so∇𝑓 = 0. Stationary

points may have multiple types:

• Minimum points, where the function is a minimum point in both directions;

• Maximum points, where the function is a maximum point in both directions; and

• Saddle points, where the function is aminimumpoint in one direction but amaximum
point in another direction.

Note:

• Near minima and maxima, the contours of 𝑓 are elliptical.
• Near a saddle, the contours of 𝑓 are hyperbolic.
• Contours of 𝑓 can only cross at saddle points.

12.3. Taylor series for multivariate functions
Let us expand a function 𝑓(𝑥, 𝑦) around a point s0, and evaluate it at some point s0 + 𝛿s,
where 𝛿s = 𝛿𝑠 ̂s. The Taylor series expansion in the direction of ̂s is

𝑓(𝑠0 + 𝛿𝑠) = 𝑓(𝑠0) + 𝛿𝑠 d𝑓d𝑠
|||𝑠0

+ 1
2(𝛿𝑠)

2 d2𝑓
d𝑠2

|||𝑠0
+…

Further, by the definition of the directional derivative,

d
d𝑠 = ̂s ⋅ ∇

Hence
𝛿𝑠 dd𝑠 = 𝛿s ⋅ ∇

Now we can rewrite this Taylor series as follows:

𝑓(𝑠0 + 𝛿𝑠) = 𝑓(𝑠0) + (𝛿𝑠)( ̂s ⋅ ∇) 𝑓|||𝑠0
+ 1
2(𝛿𝑠)

2( ̂s ⋅ ∇)( ̂s ⋅ ∇) 𝑓|||𝑠0
+…

𝑓(𝑠0 + 𝛿𝑠) = 𝑓(𝑠0) + (𝛿s ⋅ ∇) 𝑓|||𝑠0⏟⎵⎵⏟⎵⎵⏟
(1)

+ 1
2(𝛿s ⋅ ∇)(𝛿s ⋅ ∇) 𝑓

|||𝑠0⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
(2)

+…

Expressing this in Cartesian coordinates:

s0 = (𝑥0, 𝑦0); 𝛿s = (𝛿𝑥, 𝛿𝑦); 𝑥 = 𝑥0 + 𝛿𝑥; 𝑦 = 𝑦0 + 𝛿𝑦

111



II. Differential Equations

Therefore,
(1) = 𝛿𝑥𝜕𝑓𝜕𝑥(𝑥0, 𝑦0) + 𝛿𝑦𝜕𝑓𝜕𝑦 (𝑥0, 𝑦0)

(2) = 1
2 (𝛿𝑥

𝜕
𝜕𝑥 + 𝛿𝑦 + 𝜕

𝜕𝑦) (𝛿𝑥
𝜕
𝜕𝑥 + 𝛿𝑦 + 𝜕

𝜕𝑦) 𝑓
|||𝑥0,𝑦0

= 1
2 (𝛿𝑥

2𝑓𝑥𝑥 + 𝛿𝑥𝛿𝑦𝑓𝑦𝑥 + 𝛿𝑦𝛿𝑥𝑓𝑥𝑦 + 𝛿𝑦2𝑓𝑦𝑦)
|||𝑥0,𝑦0

= 1
2 (𝛿𝑥 𝛿𝑦) (𝑓𝑥𝑥 𝑓𝑥𝑦

𝑓𝑦𝑥 𝑓𝑦𝑦
) |||𝑥0,𝑦0

(𝛿𝑥𝛿𝑦)

The matrix
𝐻 = (𝑓𝑥𝑥 𝑓𝑥𝑦

𝑓𝑦𝑥 𝑓𝑦𝑦
) = ∇(∇𝑓)

as used in the second derivative above, is called the Hessian matrix.

Putting this together, in 2D Cartesian Coordinates, we have

𝑓(𝑥, 𝑦) = 𝑓(𝑥0, 𝑦0) + (𝑥 − 𝑥0) 𝑓𝑥
|||𝑥0,𝑦0

+ (𝑦 − 𝑦0) 𝑓𝑦
|||𝑥0,𝑦0

+ 1
2 [(𝑥 − 𝑥0)2 𝑓𝑥𝑥

|||𝑥0,𝑦0
+ (𝑦 − 𝑦0)2 𝑓𝑦𝑦

|||𝑥0,𝑦0
+ 2(𝑥 − 𝑥0)(𝑦 − 𝑦0) 𝑓𝑥𝑦

|||𝑥0,𝑦0
] +…

And in the general coordinate-independent form:

𝑓(x) = 𝑓(x0) + 𝛿x ⋅ ∇𝑓(x0) +
1
2𝛿x ⋅ [∇(∇𝑓)]

|||𝑥0
⋅ 𝛿x⊺ +…

12.4. Classifying stationary points
Since ∇𝑓 = 0 defines a stationary point, the Taylor series expansion around a stationary
point x = x𝑠 is

𝑓(x) ≈ 𝑓(x𝑠) +
1
2𝛿x ⋅ 𝐻

|||x𝑠
⋅ 𝛿x⊺

So the nature of the stationary point depends on the Hessian matrix𝐻. Consider a function
in 𝑛-dimensional space

𝑓 = 𝑓(𝑥1, 𝑥2,… , 𝑥𝑛)
Then the 𝑛-dimensional Hessian matrix is given by

𝐻 =
⎛
⎜
⎜
⎝

𝑓𝑥1𝑥1 𝑓𝑥1𝑥2 ⋯ 𝑓𝑥1𝑥𝑛
𝑓𝑥2𝑥1 𝑓𝑥2𝑥2 ⋯ 𝑓𝑥2𝑥𝑛
⋮ ⋮ ⋱ ⋮

𝑓𝑥𝑛𝑥1 𝑓𝑥𝑛𝑥2 ⋯ 𝑓𝑥𝑛𝑥𝑛

⎞
⎟
⎟
⎠
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12. Multivariate calculus

If all of these derivatives are defined, 𝑓𝑥1𝑥2 = 𝑓𝑥2𝑥1 etc, so 𝐻 = 𝐻⊺, i.e. 𝐻 is symmetric, and
therefore it can be diagonalised with respect to its principal axes.

𝛿x ⋅ 𝐻 ⋅ 𝛿x⊺ = (𝛿𝑥1 𝛿𝑥2 ⋯ 𝛿𝑥𝑛)
⎛
⎜
⎜
⎝

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑛

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝛿𝑥1
𝛿𝑥2
⋯
𝛿𝑥𝑛

⎞
⎟
⎟
⎠

where the 𝜆𝑖 are eigenvalues of 𝐻 and the 𝛿𝑥𝑖 is the displacement along the principal axis
(eigenvector) 𝑖. Therefore

𝛿x ⋅ 𝐻 ⋅ 𝛿x⊺ = 𝜆1𝛿𝑥21 + 𝜆2𝛿𝑥22 +⋯+ 𝜆𝑛𝛿𝑥2𝑛

(i) At a minimum point, 𝛿x ⋅ 𝐻 ⋅ 𝛿x⊺ > 0 for any 𝛿x (moving in any direction, we go
‘downhill’). So all the 𝜆𝑖 > 0. So 𝐻 is positive definite.

(ii) At a maximum point, 𝛿x ⋅ 𝐻 ⋅ 𝛿x⊺ < 0 for any 𝛿x. So all the 𝜆𝑖 < 0. 𝐻 is negative
definite.

(iii) At a saddle point, 𝐻 is indefinite.

12.5. Signature of Hessian

Definition. The signature of 𝐻 is the pattern of the signs of its subdeterminants.

For a function 𝑓(𝑥1, 𝑥2,… , 𝑥𝑛), we want the signs of

||𝑓𝑥1𝑥1 ||⏟
|𝐻1|

, |||
𝑓𝑥1𝑥1 𝑓𝑥1𝑥2
𝑓𝑥2𝑥1 𝑓𝑥2𝑥2

|||⏟⎵⎵⎵⏟⎵⎵⎵⏟
|𝐻2|

,… ,
||||||

𝑓𝑥1𝑥1 𝑓𝑥1𝑥2 ⋯ 𝑓𝑥1𝑥𝑛
𝑓𝑥2𝑥1 𝑓𝑥2𝑥2 ⋯ 𝑓𝑥2𝑥𝑛
⋮ ⋮ ⋱ ⋮

𝑓𝑥𝑛𝑥1 𝑓𝑥𝑛𝑥2 ⋯ 𝑓𝑥𝑛𝑥𝑛

||||||⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
|𝐻1|

We know from Vectors and Matrices that if a symmetric matrix 𝐻 is positive (or negative)
definite, then𝐻1, 𝐻2,… ,𝐻𝑛−1 are positive (or negative) definite. This is known as Sylvester’s
Criterion. In other words, a minimum (or maximum) point in 𝑛-dimensional space is also
a minimum (or maximum) in any subspace containing this point. Now let us list the signs
of subdeterminants to see the types of signatures.

(i) At a minimum point (𝜆𝑖 > 0), the signature is +,+,+,+,…

(ii) At a maximum point (𝜆𝑖 < 0), the signature is −,+,−,+,…

If |𝐻| = 0, we need higher order terms in the Taylor series.
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12.6. Contours near stationary points
Consider a coordinate system alignedwith the principal axes of theHessian𝐻 in two-dimen-
sional space, so

𝐻 = (𝜆1 0
0 𝜆2

)

Let 𝛿x = (x − x𝑠) = (𝜉, 𝜂) where x𝑠 is the stationary point we’re considering. In a small
region near x𝑠, the contours of 𝑓 satisfy

𝑓 = constant (since 𝑓 is a contour) ≈ 𝑓(x𝑠) =
1
2𝛿x ⋅ 𝐻 ⋅ 𝛿x⊺

∴ 𝜆1𝜉2 + 𝜆2𝜂2 ≈ constant (12.1)

Near a minimum or maximum point, 𝜆1 and 𝜆2 have the same sign. (12.1) implies that the
contours of 𝑓 are elliptical. Near a saddle point, 𝜆1 and 𝜆2 have opposite sign so (12.1) shows
that the contours of 𝑓 are hyperbolic. As an example, let us consider

𝑓(𝑥, 𝑦) = 4𝑥3 − 12𝑥𝑦 + 𝑦2 + 10𝑦 + 6

Let us first identify the stationary points.

𝑓𝑥 = 𝑓𝑦 = 0

After solving this, we get
(𝑥, 𝑦) = (1, 1), (5, 25)

To get the Hessian matrix:

𝑓𝑥𝑥 = 24𝑥
𝑓𝑥𝑦 = 𝑓𝑦𝑥 = −12

𝑓𝑦𝑦 = 2

Now considering the stationary points separately:

• (1, 1):
𝐻 = ( 24 −12

−12 2 ) ⟹ |𝐻1| = 24; |𝐻| = 48 − 144

The signature is +,−, so this is a saddle point.
• (5, 25):

𝐻 = (120 −12
−12 2 ) ⟹ |𝐻1| = 120; |𝐻| = 240 − 144

The signature is +,+, so this is a minimum point.
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13. Systems of ODEs
13.1. Systems of linear ODEs
Consider two functions 𝑦1(𝑡), 𝑦2(𝑡) which satisfy

̇𝑦1 = 𝑎𝑦1 + 𝑏𝑦2 + 𝑓1(𝑡)
̇𝑦2 = 𝑐𝑦1 + 𝑑𝑦2 + 𝑓2(𝑡)

This is a set of coupled differential equations which wemust solve simultaneously. In vector
form,

Ẏ = 𝑀Y + F
where

Y = (𝑦1𝑦2
) ; 𝑀 = (𝑎 𝑏

𝑐 𝑑) ; F = (𝑓1𝑓2
)

Any 𝑛th order differential equation can be written as a system of 𝑛 first order ODEs. For
example, the standard form for a second order linear ODE is

̈𝑦 + 𝑎 ̇𝑦 + 𝑏𝑦 = 𝑓

Let 𝑦1 = 𝑦, 𝑦2 = ̇𝑦. Then
Y = (𝑦̇𝑦)

Hence our two equations are
̇𝑦1 = 𝑦2

̇𝑦2 + 𝑎𝑦2 + 𝑏𝑦1 = 𝑓 ⟹ ̇𝑦2 = −𝑎𝑦2 − 𝑏𝑦1 + 𝑓
And in vector form,

Ẏ = ( 0 1
−𝑏 −𝑎)Y + (0𝑓)

13.2. Matrix methods
To solve a system of 𝑛 first-order linear ODEs,

Ẏ = 𝑀Y + F (13.1)

we need the following steps.

(i) Write Y = Y𝑐 + Y𝑝 where Y𝑐 satisfies the homogeneous version of (13.1):

Ẏ𝑐 = 𝑀Y𝑐 (13.2)

(ii) Seek solutions of Y𝑐 in the form v𝑒𝜆𝑡.

(13.2) ⟹ 𝜆v = 𝑀v

So the vectors v are the eigenvectors, with eigenvalues 𝜆.
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(iii) Find Y𝑝 based on the form of F.

As a quick example, let us consider

Ẏ − (−4 24
1 −2)Y = (41) 𝑒

𝑡 (13.3)

We will try Y𝑐 = v𝑒𝜆𝑡, and we can compute that the eigenvalues and eigenvectors are

𝜆1 = 2, v1 = (41) ; 𝜆2 = −8, v2 = (−61 )

Hence,
Y𝑐 = 𝐴(41) 𝑒

2𝑡 + 𝐵 (−61 ) 𝑒
−8𝑡

Now, to solve the particular integral, we will try a Y𝑝 of the form

Y𝑝 = (𝑢1𝑢2
) 𝑒𝑡

We have

(13.3) ⟹ (𝑢1𝑢2
) − (−4 24

1 −2) (
𝑢1
𝑢2
) = (41)

𝐼 (𝑢1𝑢2
) − (−4 24

1 −2) (
𝑢1
𝑢2
) = (41)

( 5 −24
−1 3 ) (𝑢1𝑢2

) = (41)

(𝑢1𝑢2
) = (−4−1)

So the general solution is

Y = 𝐴(41) 𝑒
2𝑡 + 𝐵 (−61 ) 𝑒

−8𝑡 − (41) 𝑒
𝑡

If the forcing termmatches one of the complementary functions, wewould tryY𝑝 = u𝑡𝑒𝜆𝑡.

13.3. Decoupling ODEs
From a linear system of 𝑛 first order ODEs, we can construct 𝑛 uncoupled 𝑛th order ODEs.
For the above example (13.3),

̇𝑦1 = −4𝑦1 + 24𝑦2 + 4𝑒𝑡 (13.4)
̇𝑦2 = 𝑦1 − 2𝑦2 + 𝑒𝑡 (13.5)
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We will create a linear equation for ̈𝑦. First, we will take the derivative of (13.4).

̈𝑦1 = −4 ̇𝑦1 + 24 ̇𝑦2 + 4𝑒𝑡

Now we will substitute in (13.5) for ̇𝑦2.

̈𝑦1 = −4 ̇𝑦1 + 24(𝑦1 − 2𝑦2 + 𝑒𝑡) + 4𝑒𝑡

Now we can substitute back in the original equation (13.4) to remove the 𝑦2 term.

̈𝑦1 = −4 ̇𝑦1 + 24 (𝑦1 −
1
12( ̇𝑦1 + 4𝑦1 − 4𝑒𝑡) + 𝑒𝑡) + 4𝑒𝑡

̈𝑦1 = −4 ̇𝑦1 + 24𝑦1 − 2 ̇𝑦1 − 8𝑦1 + 8𝑒𝑡 + 28𝑒𝑡

̈𝑦1 + 6 ̇𝑦1 − 16𝑦1 = 36𝑒𝑡

which we can solve as normal. The general solution matches the first component of the
general solution vector from above. We can of course construct an analogous equation for
𝑦2, which would match the second component of the solution vector.

13.4. Phase portraits
For some complementary function Y𝑐 (or equivalently, a solution to a homogeneous system
of linear first order ODEs) satisfying

Ẏ𝑐 = 𝑀Y𝑐 (13.6)

Therefore,
Y𝑐 = 𝐴v1𝑒𝜆1𝑡 + 𝐵v2𝑒𝜆2𝑡

Let us consider three cases.

(i) 𝜆1, 𝜆2 real and opposite sign. Without loss of generality, let 𝜆1 > 0. The origin here
is known as a ‘saddle node’ as the solution curves for 𝐴 = 0 and 𝐵 = 0 cross at the
origin.

(ii) 𝜆1, 𝜆2 real and same sign. let us say that without loss of generality that |𝜆1| > |𝜆2|.
If they are both negative, Here the origin is a stable node as all solution curves tend
towards it. If 𝜆1, 𝜆2 are both positive, The origin here is an unstable node as the curves
tend away from it.

(iii) 𝜆1, 𝜆2 form a complex conjugate pair. If the real parts are negative, This is a stable
spiral; the curves tend towards zero. If the real parts are positive we have an unstable
spiral. If the real part is zero, the solution curves are circles. This is known as a centre.

Note that to find the direction of rotations in these phase portraits, wewould need to evaluate
the system of equations at a given point to find the signs of the derivatives ̇𝑦1, ̇𝑦2.
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13.5. Nonlinear systems of ODEs
Consider an autonomous system of two nonlinear first order ODEs:

̇𝑥 = 𝑓(𝑥, 𝑦) (13.7)
̇𝑦 = 𝑔(𝑥, 𝑦) (13.8)

where ‘nonlinear’means that𝑓 and 𝑔 are nonlinear functions of𝑥 and 𝑦, andwhere ‘autonom-
ous’ means that the independent variable 𝑡 does not explicitly show up in these equations.
Wewill consider the equilibriumpoints, or fixed points. Let (𝑥0, 𝑦0) be a fixed point, i.e.

̇𝑥 = ̇𝑦 = 0 ⟹ 𝑓(𝑥0, 𝑦0) = 𝑔(𝑥0, 𝑦0) = 0

at this point. We may want to understand the stability of such fixed points by perturbation
analysis, like before. Let us consider a small perturbation away from the fixed point.

(𝑥, 𝑦) = (𝑥0 + 𝜉(𝑡), 𝑦0 + 𝜂(𝑡))

We have
(13.7) ⟹ ̇𝜉 = 𝑓(𝑥0 + 𝜉, 𝑦0 + 𝜂)

We can expand this in a multivariate Taylor series, keeping the first three terms—the con-
stant term and the two linear terms.

̇𝜉 ≈ 𝑓(𝑥0, 𝑦0) + 𝜉𝑓𝑥(𝑥0, 𝑦0) + 𝜂𝑓𝑦(𝑥0, 𝑦0)
= 𝜉𝑓𝑥(𝑥0, 𝑦0) + 𝜂𝑓𝑦(𝑥0, 𝑦0)
̇𝜂 ≈ 𝑔(𝑥0, 𝑦0) + 𝜉𝑔𝑥(𝑥0, 𝑦0) + 𝜂𝑔𝑦(𝑥0, 𝑦0)
= 𝜉𝑔𝑥(𝑥0, 𝑦0) + 𝜂𝑔𝑦(𝑥0, 𝑦0)

Hence,

(
̇𝜉
̇𝜂) = (𝑓𝑥 𝑓𝑦

𝑔𝑥 𝑔𝑦
) |||𝑥0,𝑦0

(𝜉𝜂)

This is a homogeneous linear system of ODEs. The eigenvalues of 𝑀, which we will call
𝜆1, 𝜆2, determine the stability and behaviour. This is just the same as the phase portrait
analysis above to determine whether the perturbed point tends to the origin or not, and
exactly how this movement happens.

13.6. Lotka–Volterra equations
This is a worked example of a coupled set of differential equations, which model a predator-
prey system. Let the quantity of prey be represented by 𝑥, and the quantity of the predator
be 𝑦. Then

̇𝑥 = 𝛼𝑥 − 𝛽𝑥𝑦 = 𝑓(𝑥, 𝑦)
̇𝑦 = 𝛿𝑥𝑦 − 𝛾𝑦 = 𝑔(𝑥, 𝑦)
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where 𝛼, 𝛽, 𝛾, 𝛿 are positive real constants. We will start by analysing the fixed points, where
̇𝑥 = ̇𝑦 = 0.

̇𝑥 = 0 ⟹ 𝑥 = 0 or 𝑦 = 𝛼
𝛽

̇𝑦 = 0 ⟹ 𝑦 = 0 or 𝑥 = 𝛾
𝛿

Therefore,
(𝑥0, 𝑦0) = (0, 0), (𝛾𝛿 ,

𝛼
𝛽)

Using matrix methods,

𝑀 = (𝑓𝑥 𝑓𝑦
𝑔𝑥 𝑔𝑦

) = (𝛼 − 𝛽𝑦 −𝛽𝑥
𝛿𝑦 𝛿𝑥 − 𝛾)

Now we can analyse the stability of these fixed points by perturbation analysis.

• At the fixed point (0, 0), we have

(
̇𝜉
̇𝜂) = (𝛼 0

0 −𝛾) (
𝜉
𝜂)

We can read off the eigenvalues to be 𝛼 and −𝛾. This is a saddle node, since one direc-
tion will increase (𝑥) and one will decrease (𝑦).

• At the fixed point ( 𝛾
𝛿
, 𝛼
𝛽
), we have

(
̇𝜉
̇𝜂) = (

0 −𝛽 𝛾
𝛿

𝛿𝛼
𝛽

0 ) (𝜉𝜂)

The characteristic equation is 𝜒𝑀(𝜆) = 𝜆2 + 𝛼𝜆 = 0, so 𝜆 = ±√−𝛼𝛾. Since 𝛼𝛾 > 0, it
is more convenient to write 𝜆 = ±𝑖√𝛼𝛾. Since the real part is zero, this gives a centre
node. To work out the direction of rotation, let us consider the 𝑥 direction,

̇𝜉 = −𝛽𝛾𝛿𝜂

If 𝜂 > 0, then ̇𝜉 < 0, so we have anticlockwise rotation.
Now we can sketch a graph taking into account both of these fixed points, visually interpol-
ating the values between them.

13.7. First order wave equation and method of characteristics
Wewill define a partial differential equation to be a differential equation with multiple inde-
pendent variables. Here, we will consider three examples, starting with the first order wave
equation. Consider a function 𝑦(𝑥, 𝑡) where

𝜕𝑦
𝜕𝑡 − 𝑐𝜕𝑦𝜕𝑥 = 0 (13.9)
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where 𝑐 is a constant. We will solve this equation with the method of characteristics. Ima-
gine moving a ‘probe’ along a path 𝑥(𝑡). Then 𝑦 is a function 𝑦(𝑥(𝑡), 𝑡), where now the only
independent variable is 𝑡. Using the multivariate chain rule,

d𝑦
d𝑡 =

𝜕𝑦
𝜕𝑡 +

𝜕𝑦
𝜕𝑥

d𝑥
d𝑡

Comparing this with (13.9), we note that if d𝑥
d𝑡
= −𝑐, then d𝑦

d𝑡
= 0. So we have found a path

along which the ‘probe’ is at a constant height, i.e. along 𝑥(𝑡) = 𝑥0 − 𝑐𝑡, 𝑦 is a constant.
We can update our graph now showing the ‘characteristics’ we have just shown to exist. If
𝑦(𝑥, 𝑡 = 0) = 𝑓(𝑥), then 𝑦 = 𝑓(𝑥0) along the characteristics. Hence, our general solution
is

𝑦 = 𝑓(𝑥 + 𝑐𝑡)
Let us consider some examples of wave equations 𝑓.
(i) (unforced wave equation) Let 𝑦(𝑥, 0) = 𝑥2 − 3 in (13.9). Then

𝑦(𝑥, 𝑡) = (𝑥 + 𝑐𝑡)2 − 3

(ii) (forced wave equation) Let
𝜕𝑦
𝜕𝑡 + 5𝜕𝑦𝜕𝑥 = 𝑒−𝑡

and
𝑦(𝑥, 0) = 𝑒−𝑥2

Then along paths with d𝑥
d𝑡
= 5 or 𝑥 = 𝑥0 + 5𝑡,

d𝑦
d𝑡 = 𝑒−𝑡

So by integration,
𝑦 = 𝐴 − 𝑒−𝑡

along these paths. Applying our initial condition at 𝑡 = 0, our ‘probe’ is at 𝑥0 and
𝑦(𝑥, 0) = 𝐴 − 1 = 𝑒−𝑥20 . Hence, 𝐴 = 1 + 𝑒−𝑥20 . So

𝑦 = 1 + 𝑒−𝑥20 − 𝑒−𝑡

along the path given by 𝑥0. Substituting back for a general 𝑥, we can create a formula
for the general solution of 𝑦 (not necessarily on a given path):

𝑦 = 1 + 𝑒−(𝑥−5𝑡)2 − 𝑒−𝑡
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14. More PDEs
14.1. Second order wave equation
This equation is typically known as just ‘the wave equation’, but here we are referring to it
as the ‘second order’ wave equation to distinguish it from the first order equation found in
the previous lecture.

𝜕2𝑦
𝜕𝑡𝑡 − 𝑐2 𝜕

2𝑦
𝜕𝑥2 = 0 (14.1)

We will factor out the differential operator:

( 𝜕𝜕𝑡 − 𝑐 𝜕𝜕𝑥) (
𝜕
𝜕𝑡 + 𝑐 𝜕𝜕𝑥) 𝑦 = 0

The two operators commute, hence we have either

( 𝜕𝜕𝑡 − 𝑐 𝜕𝜕𝑥) 𝑦 = 0; or ( 𝜕𝜕𝑡 + 𝑐 𝜕𝜕𝑥) 𝑦 = 0

These are both instances of the first order wave equation (13.9).

𝑦 = 𝑓(𝑥 + 𝑐𝑡); 𝑦 = 𝑔(𝑥 − 𝑐𝑡)

Since (14.1) is linear in 𝑦, our general solution is the sum of these two solutions.

𝑦 = 𝑓(𝑥 + 𝑐𝑡) + 𝑔(𝑥 − 𝑐𝑡)

As an example, let us solve
𝑦𝑡𝑡 − 𝑐2𝑦𝑥𝑥 = 0

subject to
𝑦 = 1

1 + 𝑥2 ; 𝑦𝑡 = 0 at 𝑡 = 0

and further, 𝑦 → 0 as 𝑥 → ±∞. Our solution is of the form

𝑦 = 𝑓(𝑥 + 𝑐𝑡) + 𝑔(𝑥 − 𝑐𝑡)

We will use the initial conditions to find 𝑓, 𝑔.

𝑓(𝑥) + 𝑔(𝑥) = 1
1 + 𝑥2

𝑐𝑓′(𝑥) − 𝑐𝑔′(𝑥) = 0

The second equation shows that 𝑓′ = 𝑔′, or 𝑓 = 𝑔 + 𝐴.

2𝑔(𝑥) + 𝐴 = 1
1 + 𝑥2
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𝑔(𝑥) = 1
2 (

1
1 + 𝑥2 ) −

𝐴
2

𝑓(𝑥) = 1
2 (

1
1 + 𝑥2 ) +

𝐴
2

Even though we have a constant of integration𝐴 here, since 𝑦 = 𝑓+𝑔 the constant vanishes
in the general solution. So the constant does not affect the solution and it really is arbitrary.
So without loss of generality here we can let 𝐴 = 0. So our solution is

𝑦(𝑥, 𝑡) = 1
2

⎡
⎢
⎢
⎢
⎣

1
1 + (𝑥 + 𝑐𝑡)2⏟⎵⎵⎵⏟⎵⎵⎵⏟

moves left

+ 1
1 + (𝑥 − 𝑐𝑡)2⏟⎵⎵⎵⏟⎵⎵⎵⏟

moves right

⎤
⎥
⎥
⎥
⎦

14.2. Derivation of diffusion equation
We will consider random walks to derive the diffusion equation. Imagine a particle located
at position 𝑥 at time 𝑡. After some change in time Δ𝑡, the particle may move to the left or to
the right, i.e. 𝑥 + Δ𝑥 ot 𝑥 − Δ𝑥. Let 𝑐(𝑥, 𝑡) be the number of particles at 𝑥, 𝑡. After a discrete
time interval Δ𝑡, let

• The probability of moving right one step is 𝑝;

• The probability of moving left one step is 𝑝; and

• The probability of staying at x is 1 − 2𝑝.

Considering a large amount of particles,

𝑐(𝑥, 𝑡 + Δ𝑡) = (1 − 2𝑝)𝑐(𝑥, 𝑡) + 𝑝 (𝑐(𝑥 + Δ𝑥, 𝑡) + 𝑐(𝑥 − Δ𝑥, 𝑡)) (14.2)

We will now expand these terms as Taylor series through time and space, for small Δ𝑥 and
Δ𝑡. We’ll put three terms in the expansion in space since the linear term will cancel when
we combine the + and − terms.

𝑐(𝑥, 𝑡 + Δ𝑡) = 𝑐(𝑥, 𝑡) + Δ𝑡𝜕𝑐𝜕𝑡 (𝑥, 𝑡) + 𝑂(Δ𝑡2)

𝑐(𝑥 ± Δ𝑥, 𝑡) = 𝑐(𝑥, 𝑡) ± Δ𝑥 𝜕𝑐𝜕𝑥(𝑥, 𝑡) +
Δ𝑥2
2

𝜕2𝑐
𝜕𝑥2 (𝑥, 𝑡) + 𝑂(Δ𝑥3)

Now, substituting into (14.2), we have

𝑐 + Δ𝑡𝜕𝑐𝜕𝑡 + 𝑂(Δ𝑡2) = (1 − 2𝑝)𝑐 + 𝑝 (2𝑐 + Δ𝑥2 𝜕
2𝑐
𝜕𝑥2 + 𝑂(Δ𝑥3))

𝜕𝑐
𝜕𝑡 + 𝑂(Δ𝑡) = 𝑝Δ𝑥

2

Δ𝑡
𝜕2𝑐
𝜕𝑥2 + 𝑂 (Δ𝑥

3

Δ𝑡 )
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14. More PDEs

We will take the limit as Δ𝑥, Δ𝑡 → 0 such that Δ𝑥
2

Δ𝑡
is constant. This will make some things

easier. Note that Δ𝑥
3

Δ𝑡
= Δ𝑥2

Δ𝑡
⋅ Δ𝑥 → 0.

𝜕𝑥
𝜕𝑡 = 𝜅 𝜕

2𝑐
𝜕𝑥2 ; 𝑘 ≡ lim

Δ𝑥,Δ𝑡→0
𝑝Δ𝑥

2

Δ𝑡

This is the diffusion equation. Here, 𝜅 is the diffusion coefficient.

14.3. Solving the diffusion equation
For example, consider

𝜕𝑦
𝜕𝑡 = 𝜅𝜕

2𝑦
𝜕𝑥2

subject to the initial condition
𝑦(𝑥, 0) = 𝛿(𝑥)

where 𝛿(𝑥) is the Dirac delta function, and where 𝑦 → 0 as 𝑥 → ±∞. We will convert this
PDE into an ODE by constructing a similarity variable

𝜂 ≡ 𝑥2
4𝜅𝑡

This form of similarity variable can be motivated by observing units on both sides of the
PDE, since 𝜅 must have units 𝑥2/𝑡 to conserve dimensions. We will seek solutions of the
form

𝑦 = 𝑡−𝛼𝑓(𝜂)
where 𝛼, 𝑓 are to be determined. We will now compute some derivatives:

𝑦𝑡 = −𝛼𝑡−𝛼−1𝑓 + 𝑡−𝛼𝑓𝜂𝜂𝑡
𝑦𝑥 = 𝑡−𝛼𝑓𝜂𝜂𝑥
𝑦𝑥𝑥 = 𝑡−𝛼𝑓𝜂𝜂(𝜂𝑥)2 + 𝑡−𝛼𝑓𝜂𝜂𝑥𝑥

Plugging these into the diffusion equation gives
−𝛼
𝑡 𝑓 + 𝑓′𝜂𝑡 = 𝜅𝑓″(𝜂𝑥)2 + 𝜅𝑓′𝜂𝑥𝑥 (14.3)

where 𝑓′ = 𝑓𝜂, 𝑓″ = 𝑓𝜂𝜂.

𝜂𝑡 =
−𝑥2
4𝜅𝑡2 =

−𝜂
𝑡

𝜂𝑥 =
2𝑥
4𝜅𝑡 ⟹ (𝜂𝑥)2 =

4𝑥2
16𝜅2𝑡2 =

𝜂
𝜅𝑡

𝜂𝑥𝑥 =
2
4𝜅𝑡
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II. Differential Equations

Plugging these results into (14.3) gives

𝛼𝑓 + 𝑓′𝜂 + 𝑓″𝜂 + 𝑓′
2 = 0

𝜂 dd𝜂(𝑓 + 𝑓′) + 1
2(𝑓

′ + 2𝛼𝑓) = 0 (14.4)

This is an ODE for 𝑓(𝜂). We have not yet defined what 𝛼 is, and it is currently arbitrary, so
we can let it be 1

2
so that it cancels some terms.

(14.4) ⟹ 𝜂d𝐹d𝜂 + 𝐹
2 = 0; 𝐹 ≔ 𝑓 + 𝑓′

One solution is that 𝐹 = 0 for all 𝜂. This is nontrivial because then 𝑓 + 𝑓′ = 0. So 𝑓 = 𝐴𝑒−𝜂.
Then

𝑦 = 𝐴𝑡−
1
2 𝑒−

𝑥2
4𝜅𝑡

We can use the delta function initial condition to find 𝐴.

𝛿(𝑥) = lim
𝜀→0

[ 1
𝜀√𝜋

𝑒−
𝑥2
𝜀2 ]

So if we let 𝜀2 = 4𝜅𝑡, then as 𝑡 → 0, we get 𝑦(𝑥) = 𝛿(𝑥). So

1
𝜀√𝜋

= 1
√4𝜋𝜅

𝑡−
1
2

Hence,
𝐴 = 1

√4𝜋𝜅
Therefore we have

𝑦(𝑥, 𝑡) = 1
√4𝜋𝜅

𝑡−
1
2 𝑒−

𝑥2
4𝜅𝑡
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III. Groups

Lectured in Michaelmas 2020 by Dr. A. Khukhro
Many mathematical objects have lots of symmetry. To study symmetry in an abstract way,
we define the notion of a group. Groups allow us to characterise all of the possible symmet-
ries of an object, so understanding groups allows us to understand symmetry itself. Shapes,
numbers, and matrices all give rise to their own groups, which provide insight into how the
objects are structured.

Aswell as studying groups on their own, we also study theways inwhich groups can interact.
One example is a particular kind of function called a homomorphism, which preserves the
structure of the groups in question. The homomorphisms between groups allow us to study
each group in more detail.
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III. Groups

1. Axiomatic definition
1.1. Intuition with geometry
Which is more symmetrical, a scalene triangle or an equilateral triangle? Clearly, the equi-
lateral triangle has more symmetries; you can rotate it 120∘ or 240∘, and you can reflect it
across three axes. The scalene triangle has no symmetries that modify the object, but by
convention we call the ‘do-nothing’ operation a symmetry as well.

By a ‘symmetry’ of an object, we mean something that we can do to it that preserves its
structure. In the case of these shapes, we want to preserve the vertices and edges; these
symmetries are rotations and reflections. For the equilateral triangle then, what are all the
symmetries?

𝐶 𝐵

𝐴

𝑒

𝐵 𝐶

𝐴

𝑠

𝐵 𝐴

𝐶

𝑟

𝐴 𝐶

𝐵

𝑟2

𝐴 𝐵

𝐶

𝑠𝑟

𝐶 𝐴

𝐵

𝑠𝑟2

As stated before, we assign the letter 𝑒 to the identity element. The operation 𝑠 is a reflection;
𝑟 is a rotation. By combining these elements, we get the set of elements of the group. Note
that order matters: 𝑠𝑟 ≠ 𝑟𝑠.

1.2. Definition
Definition (Group). A group is a set 𝐺 together with a way of composing its elements ∗
satisfying (∀𝑔, ℎ, 𝑘 ∈ 𝐺):

• (closure) 𝑔 ∗ ℎ ∈ 𝐺

• (identity) ∃𝑒 ∈ 𝐺 s.t. 𝑒 ∗ 𝑔 = 𝑔 ∗ 𝑒 = 𝑔

• (inverses) ∃𝑔−1 ∈ 𝐺 s.t. 𝑔 ∗ 𝑔−1 = 𝑔−1 ∗ 𝑔 = 𝑒

• (associativity) 𝑔 ∗ (ℎ ∗ 𝑘) = (𝑔 ∗ ℎ) ∗ 𝑘

Formally, we might say that a set 𝐺 with a binary operation ∗ ∶ 𝐺 × 𝐺 → 𝐺 is a group if it
follows the last three axioms; the first rule is implicit in the function’s type.

Here are a few examples of groups.

(i) 𝐺 = {𝑒}—this is the ‘trivial group’.

(ii) 𝐺 = {symmetries of the equilateral triangle}; ∗ is defined by: ‘𝑔∗ℎmeans doing ℎ then
𝑔’.

(iii) 𝐺 = (ℤ,+). This is easy to prove by verifying the axioms.
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1. Axiomatic definition

(iv) 𝐺 = (ℝ,+); (ℚ,+); (ℂ, +)

(v) 𝐺 = (ℝ∗, ⋅) where ℝ∗ = ℝ ∖ {0}. Note that (ℝ, ⋅) is not a group, because ∄0−1 ∈
ℝ s.t. 0−1 ⋅ 0 = 0 ⋅ 0−1 = 1.

(vi) 𝐺 = (ℝ, ∗) where 𝑟 ∗ 𝑠 ≔ 𝑟 + 𝑠 + 5.

(vii) 𝐺 = (ℤ𝑛, +) where ℤ𝑛 = {0, 1, 2,⋯ , 𝑛 − 1} and addition is done modulo 𝑛.

(viii) A vector space with the operation of vector addition is a group.

(ix) 𝐺𝐿2(ℝ) is the set of invertible 2 × 2matrices, which is a group with respect to matrix
multiplication.

Here are a few non-examples.

(i) 𝐺 = (ℤ𝑛, +) where addition is not performed modulo 𝑛. This group is not closed, e.g.
(𝑛 − 1) + 2 ∉ 𝐺.

(ii) 𝐺 = (ℤ, ⋅) because ∄𝑛 ∈ ℤ s.t. 2 ⋅ 𝑛 = 𝑛 ⋅ 2 = 1.

(iii) 𝐺 = (ℝ, ∗) where 𝑟 ∗ 𝑠 = 𝑟2𝑠 because there is no identity element.

(iv) 𝐺 = (ℕ, ∗) where 𝑛 ∗ 𝑚 ≔ |𝑛 − 𝑚| because it is non-associative, e.g. 1 ∗ (2 ∗ 5) = 2;
(1 ∗ 2) ∗ 5 = 4.

We use the notation 𝑔ℎ = 𝑔 ⋅ ℎ = 𝑔 ∗ ℎ here to represent the group operation (regardless of
the specific operation in question).

1.3. Basic properties

Proposition. Let 𝐺 be a group. Then,

(i) The identity element 𝑒 is unique.

(ii) ∀𝑔 ∈ 𝐺, the inverse 𝑔−1 is unique.

(iii) 𝑔 ⋅ ℎ = 𝑔 ⟺ ℎ ⋅ 𝑔 = 𝑔

(iv) 𝑔 ⋅ ℎ = 𝑒 ⟺ ℎ ⋅ 𝑔 = 𝑒

(v) (𝑔ℎ)−1 = ℎ−1𝑔−1

(vi) (𝑔−1)−1 = 𝑔

Proof. We prove each case individually.

(i) Assume ∃𝑒, 𝑒′ which are distinct identity elements. We have 𝑒𝑒′ = 𝑒 and 𝑒𝑒′ = 𝑒′ by
the definition of the inverse so 𝑒 = 𝑒′ #
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(ii) Suppose ℎ and 𝑘 are distinct inverses of 𝑔. Then 𝑔ℎ = 𝑒 and 𝑔𝑘 = 𝑒, so:

𝑔ℎ = 𝑔𝑘
𝑔−1𝑔ℎ = 𝑔−1𝑔𝑘

ℎ = 𝑘 #

(iii)

𝑔ℎ = 𝑔
⟺ 𝑔ℎ = 𝑔𝑒
⟺ ℎ = 𝑒
⟺ ℎ𝑔 = 𝑒𝑔
⟺ ℎ𝑔 = 𝑔

(iv)

𝑔ℎ = 𝑒
⟺ 𝑔ℎ𝑔 = 𝑔

⟺ 𝑔−1𝑔ℎ𝑔 = 𝑔−1𝑔
⟺ ℎ𝑔 = 𝑒

(v) (𝑔ℎ)(ℎ−1𝑔−1) = 𝑔ℎℎ−1𝑔−1 = 𝑔𝑔−1 = 𝑒
(vi) 𝑔−1𝑔 = 𝑒

Definition (abelian group). A group 𝐺 is said to be abelian if ∀𝑎, 𝑏, ∈ 𝐺, 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎.
A common example of an abelian group is the reals under addition. A non-example is the
group of invertible 2 × 2matrices under matrix multiplication.
Definition. The order of a group 𝐺, denoted |𝐺|, is the number of elements in the set 𝐺.
A group 𝐺 is called a finite group if its order is finite, and it is called an infinite group if its
order is infinite.

1.4. Subgroups
Definition. Let (𝐺, ∗) be a group. A subset 𝐻 ⊆ 𝐺 is a subgroup of 𝐺 if (𝐻, ∗) is a group.
We denote this 𝐻 ≤ 𝐺.
We must verify each group axiom on a subset to check if it is a subgroup—with the notable
exception of the associativity axiom, the property of associativity is inherited by subgroups.
Here are some examples of subgroups.
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(i) {𝑒} is the trivial subgroup
(ii) 𝐺 ≤ 𝐺
(iii) (ℤ, +) ≤ (ℚ,+) ≤ (ℝ,+) ≤ (ℂ,+)
Lemma. Let 𝐺 be a group. 𝐻 ⊂ 𝐺 is a subgroup of 𝐺 if and only if 𝐻 is non-empty and
∀𝑎, 𝑏 ∈ 𝐻, 𝑎𝑏−1 ∈ 𝐻.

Proof. We prove each axiom.

• (identity) Setting 𝑎 = 𝑏 gives 𝑎𝑎−1 = 𝑒 ∈ 𝐻 as required.

• (inverses) Setting 𝑎 = 𝑒, which we know exists from the identity proof above, gives
𝑏−1 ∈ 𝐻.

• (closure) Setting 𝑏 = 𝑐−1, we know that 𝑐 ∈ 𝐻, and we can always choose a 𝑏 such
that 𝑐 is any value we want; and with the property we can see that 𝑎𝑐 ∈ 𝐻 as required
by the closure axiom.

Proposition. The subgroups of (ℤ, +) are precisely the subsets of the form 𝑛ℤ ⊂ 𝑍 where
𝑛ℤ ≔ {𝑛𝑘 ∶ 𝑘 ∈ ℤ}.

Proof. First, we know that each 𝑛ℤ is a subgroup: given any integer 𝑛 ∈ ℕ the axioms hold:

• (closure) given 𝑛𝑘1, 𝑛𝑘2 ∈ 𝑛ℤ, we have 𝑛𝑘1 + 𝑛𝑘2 = 𝑛(𝑘1 + 𝑘2) ∈ 𝑛ℤ
• (identity) 𝑒 = 0 = 𝑛 ⋅ 0 ∈ 𝑛ℤ
• (inverse) −𝑛𝑘 = 𝑛(−𝑘) ∈ 𝑛ℤ

We also prove the converse statement, namely that the only viable subgroups are of the form
(𝑛ℤ,+). If 𝐻 = {0} then clearly 𝐻 = 0ℤ which is a trivial subgroup. Otherwise, there are
some nonzero elements.

Theremust be at least one positive element in𝐻, since any negative element can be inverted
tomake a positive one in𝐻. So, let the smallest positive element be 𝑛. Since𝐻 is a subgroup,
it is closed and has inverses. This implies that

𝑛 + 𝑛 + 𝑛 +⋯ ∈ 𝐻;
𝑛−1 + 𝑛−1 + 𝑛−1 +⋯ ∈ 𝐻

Therefore 𝑛ℤ is contained within 𝐻. Now, let us show that there are no extra elements.
Suppose, for purposes of a contradiction, that ∃𝑘 ∈ 𝐻 s.t. 𝑘 ∉ 𝑛ℤ. Then, since 𝑘 is an
integer and not a multiple of 𝑛, it must lie between two such multiples: 𝑛𝑚 < 𝑘 < 𝑛(𝑚+ 1)
where 𝑚 ∈ ℤ. This means that 0 < 𝑘 − 𝑛𝑚 < 𝑛 which implies that there is a smaller
positive element than 𝑛 in the set. This is a contradiction, so there are no more elements in
the set.
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Proposition. The following statements are true:

• Let 𝐻,𝐾 be subgroups of 𝐺. Then 𝐻 ∩ 𝐾 is a subgroup of 𝐺.
• If 𝐾 ≤ 𝐻 and 𝐻 ≤ 𝐺, then 𝐾 ≤ 𝐺.
• If 𝐾 ⊆ 𝐻, 𝐻 ≤ 𝐺 and 𝐾 ≤ 𝐺 then 𝐾 ≤ 𝐻.

We can use a lattice diagram to denote subgroups. Points below other points joined by lines
represent subgroups. Let 𝐺,𝐻, 𝐾 be groups and 𝐻 ≤ 𝐺 and 𝐾 ≤ 𝐺.

{𝑒}

𝐻 ∩ 𝐾

𝐾

𝐺

𝐻

1.5. Subgroups generated by a subset
Definition. Let𝑋 ≠ ∅ be a subset of a group𝐺. The subgroup generated by𝑋 denoted ⟨𝑋⟩ is
the intersection of all subgroups containing 𝑋 . Equivalently, ⟨𝑋⟩ is the smallest subgroup of
𝐺 that contains𝑋 as a subset. Note that there will always exist some subgroup ⟨𝑋⟩ regardless
of what 𝑋 is chosen; a trivial result would be 𝐺 itself.

We can make a more precise definition of generated groups as follows:

• ⟨𝑋⟩ contains 𝑒
• ⟨𝑋⟩ contains the set 𝑋
• ⟨𝑋⟩ contains all possible products of 𝑋 and their inverses

Proposition. Let 𝑋 ⊆ 𝐺, 𝑋 ≠ ∅. Then ⟨𝑋⟩ is the set of elements of 𝐺 of the form

𝑥𝛼11 𝑥𝛼22 𝑥𝛼33 ⋯𝑥𝛼𝑘𝑘

where 𝑥𝑖 ∈ 𝑋 (not necessarily distinct), 𝛼𝑖 = ±1, and 𝑘 ≥ 0. By convention, the empty
product 𝑘 = 0 is defined to be 𝑒.

Proof. Let 𝑇 be the set of such elements of the given form. Clearly, 𝑇 ⊆ ⟨𝑋⟩. Also, 𝑇 is
a subgroup of 𝐺, and 𝑋 ⊆ 𝑇, so ⟨𝑋⟩ ⊆ 𝑇. Because both 𝑇 ⊆ ⟨𝑋⟩ and ⟨𝑋⟩ ⊆ 𝑇, we have
𝑇 = ⟨𝑋⟩.

Note that generating sets are not necessarily unique. For example, the group of integers
under addition generated by ⟨1⟩ is equivalent to ⟨2, 3⟩, both of which are equivalent to ℤ, for
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1. Axiomatic definition

example. As a discrete example, ℤ5 can be generated by any element in the set apart from
zero, for example: ℤ5 = ⟨1⟩ = ⟨2⟩ = ⟨3⟩ = ⟨4⟩ ≠ ⟨0⟩.
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III. Groups

2. Homomorphisms

2.1. Definition and elementary properties

Definition. Let (𝐺, ∗𝐺), (𝐻, ∗𝐻) be groups. A function 𝜑 ∶ 𝐻 → 𝐺 is a homomorphism if

∀𝑎, 𝑏 ∈ 𝐻, 𝜑(𝑎 ∗𝐻 𝑏) = 𝜑(𝑎) ∗𝐺 𝜑(𝑏)

A homomorphism 𝜑 ∶ 𝐻 → 𝐺 may have the following descriptions:

• injective, if 𝜑(𝑎) = 𝜑(𝑏) ⟹ 𝑎 = 𝑏;

• surjective, if ∀𝑔 ∈ 𝐺, ∃ℎ ∈ 𝐻 s.t. 𝜑(ℎ) = 𝑔; and

• bijective, if it is both injective and surjective.

A more intuitive interpretation of the descriptions is:

• A function is injective if the outputs are unique;

• A function is surjective if all outputs are used;

• A function is bijective if there is a one-to-one relation between every element in the
input and output sets.

Here are some examples, without proofs.

(i) Given any two groups𝐺 and𝐻, 𝜑 ∶ 𝐻 → 𝐺 defined by 𝜑(ℎ) = 𝑒𝐺 is a homomorphism.

(ii) The inclusion function 𝜄 ∶ 𝐻 → 𝐺 where 𝐻 ≤ 𝐺 is an injective homomorphism. The
inclusion function is defined as the identity function, simply transferring elements
from a subgroup into the supergroup.

(iii) 𝜑 ∶ ℤ → ℤ𝑛 given that 𝜑(𝑘) = 𝑘mod 𝑛 is a surjective homomorphism.

(iv) 𝜑 ∶ (ℝ,+) → (ℝ>0, ⋅) where 𝑅>0 = {𝑟 ∈ ℝ ∶ 𝑟 > 0} and 𝜑(𝑥) = 𝑒𝑥 is a bijective
homomorphism, otherwise known as an isomorphism.

(v) det ∶ 𝐺𝐿2(ℝ) → (ℝ∗, ⋅) is a surjective homomorphism.

Proposition. Let 𝜑 ∶ 𝐻 → 𝐺 be a homomorphism. Then, for all ℎ ∈ 𝐻:

(i) 𝜑(𝑒𝐻) = 𝑒𝐺
(ii) 𝜑(ℎ−1) = 𝜑(ℎ)−1

(iii) Given another homomorphism 𝜓 ∶ 𝐺 → 𝐾, 𝜓 ∘ 𝜑 ∶ 𝐻 → 𝐾 is a homomorphism.

Proof. We prove each result in order.
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(i) Given the identity element of 𝐻 is 𝑒𝐻 and similarly for 𝐺,

𝜑(𝑒𝐻 ∗ 𝑒𝐻) = 𝜑(𝑒𝐻) ∗ 𝜑(𝑒𝐻)
⟹ 𝜑(𝑒𝐻) = 𝜑(𝑒𝐻) ∗ 𝜑(𝑒𝐻)

𝑒𝐺 = 𝜑(𝑒𝐻)

(ii) Consider 𝜑(ℎ) ∗ 𝜑(ℎ−1) = 𝜑(ℎ ∗ ℎ−1) = 𝜑(𝑒𝐻) = 𝑒𝐺 which is the defining property of
the inverse.

(iii) For all 𝑎, 𝑏 ∈ 𝐻:

(𝜓 ∘ 𝜑)(𝑎 ∗ 𝑏) = 𝜓(𝜑(𝑎 ∗ 𝑏))
= 𝜓(𝜑(𝑎) + 𝜑(𝑏))
= 𝜓(𝜑(𝑎)) + 𝜓(𝜑(𝑏))
= (𝜓 ∘ 𝜑)(𝑎) + (𝜓 ∘ 𝜑)(𝑏)

2.2. Isomorphisms
A bijective homomorphism is called an isomorphism. If there exists an isomorphism 𝜑 ∶
𝐻 → 𝐺, we say that 𝐻 is isomorphic to 𝐺, or 𝐻 ≅ 𝐺.

(i) Consider a group 𝐺 defined as {𝑒
2𝜋𝑖𝑘
𝑛 ∶ 𝑘 ∈ ℤ𝑛} under multiplication. Then, (𝐺, ⋅) ≅

(ℤ𝑛, +) where 𝜑 ∶ ℤ𝑛 → 𝐺 is defined as 𝜑(𝑘) = 𝑒
2𝜋𝑖𝑘
𝑛 .

(ii) 𝜑 ∶ ℤ → 𝑛ℤ for 𝑛 ∈ ℕ given by 𝜑(𝑘) = 𝑛𝑘. Note that all non-trivial subgroups of ℤ
are isomorphic to ℤ.

Proposition. Let 𝜑 ∶ 𝐻 → 𝐺 be an isomorphism. Then 𝜑−1 ∶ 𝐺 → 𝐻 is an isomorphism.

Proof. For all 𝑎, 𝑏 ∈ 𝐺,

𝜑−1(𝑎 ∗ 𝑏) = 𝜑−1 [𝜑(𝜑−1(𝑎)) ∗ 𝜑(𝜑−1(𝑏))]
= 𝜑−1 [𝜑(𝜑−1(𝑎) ∗ 𝜑−1(𝑏))]
= 𝜑−1(𝑎) ∗ 𝜑−1(𝑏)

So 𝜑−1 is a homomorphism. But since 𝜑 is bijective, so is 𝜑−1. So 𝜑−1 is an isomorphism.

2.3. Images and kernels
Definition. Let 𝜑 ∶ 𝐻 → 𝐺 be a homomorphism. Then the image of 𝜑, denoted Im𝜑, is
defined as {𝑔 ∈ 𝐺 ∶ 𝑔 = 𝜑(ℎ) for some ℎ ∈ 𝐻}. The kernel of 𝜑, denoted ker𝜑, is defined as
{ℎ ∈ 𝐻 ∶ 𝜑(ℎ) = 𝑒𝐺}.
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Informally, we can say:

• The image of 𝜑 is the set of outputs of 𝜑.
• The kernel of 𝜑 is the set of inputs that map to the identity element.

Proposition. Im𝜑 ≤ 𝐺 and ker𝜑 ≤ 𝐻.

Proof. To prove that Im𝜑 ≤ 𝐺, we check the group axioms (apart from associativity, since
this is implicit).

• (closure) If 𝑎, 𝑏 ∈ Im𝜑 then there exist some 𝑥, 𝑦 ∈ 𝐻 such that𝜑(𝑥) = 𝑎 and𝜑(𝑦) = 𝑏.
Therefore, 𝜑(𝑥)𝜑(𝑦) = 𝜑(𝑥𝑦) which is in the image by definition.

• (identity) 𝜑(𝑒𝐻) = 𝑒𝐺
• (inverses) Let 𝑥 ∈ 𝐻 such that 𝜑(𝑥) = 𝑎. Then, because 𝑥−1 ∈ 𝐻, we know that
𝜑(𝑥−1) = 𝜑(𝑥)−1 ∈ Im𝐻 as required.

Now we prove a similar result for the kernel.

• (closure) If 𝑥, 𝑦 ∈ ker𝐻 then 𝜑(𝑥𝑦) = 𝜑(𝑥)𝜑(𝑦) = 𝑒𝐺𝑒𝐺 = 𝑒𝐺, which is the require-
ment for being in the kernel, so 𝑥𝑦 ∈ ker𝜑.

• (identity) 𝜑(𝑒𝐻) = 𝑒𝐺 so the identity element 𝑒𝐻 is in the kernel.

• (inverses) 𝜑(𝑥−1) = 𝜑(𝑥)−1. So if 𝑥 ∈ ker𝜑 then 𝜑(𝑥−1) = 𝑒−1𝐺 = 𝑒𝐺 so 𝜑−1 is also in
the kernel.

Here are a few examples of kernels and images of homomorphisms.

(i) If 𝜑 ∶ 𝐻 → 𝐺 is the trivial homomorphism (mapping every element to the identity)
then:

Im𝜑 = {𝑒𝐺}; ker𝜑 = 𝐻

(ii) If 𝐻 ≤ 𝐺 then the inclusion homomorphism 𝜄 ∶ 𝐻 → 𝐺 has

Im 𝜄 = 𝐻; ker 𝜄 = 𝑒𝐻

(iii) 𝜑 ∶ ℤ → ℤ𝑛 where operations are performed modulo 𝑛 has

Im𝜑 = ℤ𝑛; ker𝜑 = 𝑛ℤ

Proposition. Let 𝜑 ∶ 𝐻 → 𝐺 be a homomorphism. Then

• 𝜑 is surjective if and only if Im𝜑 = 𝐺; and
• 𝜑 is injective if and only if ker𝜑 = {𝑒𝐻}.
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Proof. The first case is trivial. After all, the definition of surjectivity is that all outputs are
mapped onto by something, which means that image is equal to this output set. Now, let us
prove the injectivity part. We start in the forward direction, then we prove the converse.

Suppose that 𝜑 is injective. Then 𝜑(𝑎) = 𝜑(𝑏) ⟹ 𝑎 = 𝑏. We have that 𝜑(𝑒𝐻) = 𝑒𝐺, so 𝑒𝐻
must be the only element sent to 𝑒𝐺. Therefore the kernel is simply {𝑒𝐻}.
Conversely, suppose that the kernel of 𝜑 is simply the identity element. Then, let us suppose
there are two elements 𝑎, 𝑏 in 𝐻 such that 𝜑(𝑎) = 𝜑(𝑏). Then, 𝜑(𝑎𝑏−1) = 𝜑(𝑎)𝜑(𝑏)−1 =
𝜑(𝑏)𝜑(𝑏)−1 = 𝑒𝐺. Therefore, 𝑎𝑏−1 = 𝑒𝐻 , so 𝑎 = 𝑏. So 𝜑 is injective.
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3. Types of groups
3.1. Direct products of groups
Definition. The direct product of two groups 𝐺 and 𝐻 is written 𝐺 × 𝐻, and defined to be
{(𝑔, ℎ) ∶ 𝑔 ∈ 𝐺, ℎ ∈ 𝐻}, where the group operation is defined by

(𝑔1, ℎ1) ∗𝐺×𝐻 (𝑔2, ℎ2) = (𝑔1 ∗𝐺 𝑔2, ℎ1 ∗𝐻 ℎ2)

We will now prove that this really is a group.

Proof. We prove each axiom.

• (closure) For a pair of elements (𝑔1, ℎ1) and (𝑔2, ℎ2) in𝐺×𝐻, the product (𝑔1∗𝐺𝑔2, ℎ1∗𝐻
ℎ2) is clearly in𝐺×𝐻, because the first entry is in𝐺 and the second entry is in𝐻, which
is the requirement for being a member of 𝐺 × 𝐻.

• (identity) The element (𝑒𝐺, 𝑒𝐻) is an identity.
• (inverses) Given an element (𝑔, ℎ) ∈ 𝐺 × 𝐻, the element (𝑔−1, ℎ−1) satisfies

(𝑔−1, ℎ−1)(𝑔, ℎ) = (𝑒𝐺, 𝑒𝐻) = 𝑒𝐺×𝐻

• (associativity) Given three elements (𝑔𝑖, ℎ𝑖), 𝑖 ∈ {1, 2, 3}, we have

((𝑔1, ℎ1) ∗ (𝑔2, ℎ2)) ∗ (𝑔3, ℎ3) = (𝑔1 ∗ 𝑔2, ℎ1 ∗ ℎ2) ∗ (𝑔3, ℎ3)
= ((𝑔1 ∗ 𝑔2) ∗ 𝑔3, (ℎ1 ∗ ℎ2) ∗ ℎ3)
= (𝑔1 ∗ (𝑔2 ∗ 𝑔3), ℎ1 ∗ (ℎ2 ∗ ℎ3))
= (𝑔1, ℎ1) ∗ (𝑔2 ∗ 𝑔3, ℎ2 ∗ ℎ3)
= (𝑔1, ℎ1) ∗ ((𝑔2, ℎ2) ∗ (𝑔3, ℎ3))

𝐺×𝐻 contains subgroups𝐺×𝑒𝐻 and 𝑒𝐺×𝐻 which are isomorphic to𝐺 and𝐻 respectively.
We name these subgroups simply 𝐺 and 𝐻 because they are isomorphic.

Note. In 𝐺 × 𝐻, everything in 𝐺 commutes with everything in 𝐻.

∀𝑔 ∈ 𝐺, ∀ℎ ∈ 𝐻, (𝑔, 𝑒𝐻) ∗ (𝑒𝐺, ℎ) = (𝑒𝐺, ℎ) ∗ (𝑔, 𝑒𝐻) = (𝑔, ℎ)

Theorem (Direct Product Theorem). Let 𝐻,𝐾 be subgroups of 𝐺 such that

• 𝐻 ∩ 𝐾 = {𝑒} (the groups intersect only in 𝑒)
• ∀ℎ ∈ 𝐻, ∀𝑘 ∈ 𝐾, ℎ𝑘 = 𝑘ℎ (𝐻 and 𝐾 commute in 𝐺)
• ∀𝑔 ∈ 𝐺, ∃ℎ ∈ 𝐻, ∃𝑘 ∈ 𝐾 s.t. 𝑔 = ℎ𝑘 (𝐺 = 𝐻𝐾)
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3. Types of groups

Then 𝐺 ≅ 𝐻 × 𝐾.

Proof. Consider 𝜑 ∶ 𝐻 × 𝐾 → 𝐺 where 𝜑((ℎ, 𝑘)) = ℎ𝑘. We now prove that 𝜑 is a homo-
morphism.

𝜑((ℎ1, 𝑘1)(ℎ2, 𝑘2)) = 𝜑((ℎ1ℎ2, 𝑘1𝑘2))
= ℎ1ℎ2𝑘1𝑘2
= ℎ1𝑘1ℎ2𝑘2
= 𝜑((ℎ1, 𝑘1))𝜑((ℎ2, 𝑘2))

Note that by the third property in the theorem we know that 𝜑 is surjective. We now prove
that 𝜑 is also injective.
Suppose that (ℎ, 𝑘) ∈ ker𝜑. Then 𝜑((ℎ, 𝑘)) = 𝑒𝐺 so ℎ𝑘 = 𝑒𝐺. So ℎ = 𝑘−1. This means that
there is some element that is part of both 𝐻 and 𝐾, for example ℎ. But by the first property
in the theorem, this value must be 𝑒, so ker𝜑 = {𝑒𝐺}, so 𝜑 is injective.
𝜑 is an injective, surjective homomorphism, so it is an isomorphism. So 𝐺 is isomorphic to
𝐻 × 𝐾.

Now, we can consider direct products in two distinct lenses: a combination of smaller groups
to form a large one, or a partition of a large group into two that combine to produce the
original.

3.2. Cyclic groups
Definition. Let 𝐺 be a group, and let 𝑋 ⊆ 𝐺 be some subset. If ⟨𝑋⟩ = 𝐺 then 𝑋 is a
generating set of 𝐺. We say that 𝐺 is cyclic if there exists some element 𝑎 in 𝐺 such that
⟨𝑎⟩ = 𝐺. 𝑎 is called a generator of 𝐺.
(i) The trivial group {𝑒} is generated by its element.
(ii) (ℤ, +) is a cyclic group generated by ℤ = ⟨ − 1⟩ = ⟨1⟩.
(iii) (ℤ𝑛, +), where addition is modulo 𝑛, is generated by ℤ𝑛 = ⟨𝑘⟩ where 𝑘 and 𝑛 are

coprime.

Theorem. Any cyclic group 𝐺 is isomorphic to 𝐶𝑛 (for some 𝑛 ∈ ℕ) or ℤ.

Proof. Let 𝐺 = ⟨𝑏⟩. Then suppose that there exists some natural number 𝑛 such that 𝑏𝑛 = 𝑒.
We take the smallest such 𝑛, and define 𝜑 ∶ 𝐶𝑛 → 𝐺 by 𝜑(𝑎𝑘) = 𝑏𝑘 where the elements of
𝐶𝑛 are 𝑒, 𝑎, 𝑎2 and so on.
We now show that 𝜑 is a homomorphism. For any two elements 𝑎𝑗 , 𝑎𝑘 ∈ 𝐶𝑛, we have two
cases. If 𝑗 + 𝑘 < 𝑛, then 𝜑(𝑎𝑗 ⋅ 𝑎𝑘) = 𝜑(𝑎𝑗+𝑘) = 𝑏𝑗+𝑘 = 𝑏𝑗 ⋅ 𝑏𝑘 = 𝜑(𝑎𝑗) ⋅ 𝜑(𝑎𝑘) as required.
Otherwise, 𝑗+𝑘 ≥ 𝑛, then 𝜑(𝑎𝑗 ⋅𝑎𝑘) = 𝜑(𝑎𝑗+𝑘−𝑛) = 𝑏𝑗+𝑘(𝑏𝑛)−1 = 𝑏𝑗+𝑘 ⋅𝑒 = 𝑏𝑗+𝑘 = 𝑏𝑗 ⋅𝑏𝑘 =
𝜑(𝑎𝑗) ⋅ 𝜑(𝑎𝑘) as required.
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Note that 𝜑 is bijective:
• 𝑏𝑛 = 𝑒 ∈ 𝐺 implies that all elements of 𝐺 can be written 𝑏𝑘 where 0 ≤ 𝑘 < 𝑛, so 𝜑 is
surjective; and

• Let 𝑎𝑘 be an element in the kernel of 𝜑where 0 ≤ 𝑘 < 𝑛. Then 𝜑(𝑎𝑘) = 𝑒 ⟹ 𝑏𝑘 = 𝑒.
But 𝑘must be zero, because any other value would contradict the fact that we chose 𝑛
to be the smallest number with this property. So the kernel is trivial.

So 𝜑 is an isomorphism, and 𝐺 ≅ 𝐶𝑛.
If alternatively there exists no 𝑛 such that 𝑏𝑛 = 𝑒, thenwe construct 𝜑 ∶ ℤ → 𝐺 by 𝜑(𝑘) = 𝑏𝑘.
Then 𝜑(𝑘 + 𝑚) = 𝑏𝑘+𝑚 = 𝑏𝑘 ⋅ 𝑏𝑚 = 𝜑(𝑘) ⋅ 𝜑(𝑚), so 𝜑 is a homomorphism. Clearly 𝜑 is
surjective because all elements of 𝐺 can be constructed with powers of 𝑏. Now, suppose
𝑚 ∈ ker𝜑 where 𝑚 is nonzero. Then 𝜑(𝑚) = 𝑏𝑚 = 𝑒 and 𝜑(−𝑚) = 𝑏−𝑚 = 𝑒. So one of 𝑚
and −𝑚 is positive, contradicting the fact that there is no such 𝑛 > 0 where 𝑏𝑛 = 𝑒. So the
kernel is trivial, so 𝜑 is an isomorphism, so 𝐺 ≅ ℤ.

Definition. The order of an element 𝑔 ∈ 𝐺 is the smallest 𝑛 ∈ ℕ such that 𝑔𝑛 = 𝑒. We say
that ord 𝑔 = 𝑛. If there is no such 𝑛, then ord 𝑔 = ∞.

Note that given some 𝑔 ∈ 𝐺, the subgroup ⟨𝑔⟩ is a cyclic group isomorphic to 𝐶𝑛 if ord 𝑔 = 𝑛,
and isomorphic to ℤ if ord 𝑔 = ∞. So ord 𝑔 = |⟨𝑔⟩|.
Proposition. Cyclic groups are abelian.

The proof is trivial.

3.3. Dihedral groups
Definition. The dihedral group 𝐷2𝑛 is the group of symmetries of a regular 𝑛-gon. The
group operation is composition of transformations. For example, 𝐷6 is the group of symmet-
ries of a regular triangle.

The elements of a general 𝐷2𝑛 fall into two categories:

• (rotations) We can rotate the shape around its centre through 2𝜋𝑘
𝑛
. There are 𝑛 such

rotations, including the identity element 𝑒.
• (reflections) We can reflect the shape across axes through each vertex and the shape’s
centre. If 𝑛 is odd, then there are 𝑛 such symmetries. If 𝑛 is even, there are 𝑛/2 such
symmetries, but there are a further 𝑛/2 symmetries through the midpoints of edges
and the centre of the shape, leaving a total of 𝑛.

Therefore there are (at least) 2𝑛 elements in𝐷2𝑛. Are these all the elements? To answer this,
let us name vertices 𝑣1, 𝑣2⋯𝑣𝑛, and let us consider some element 𝑔 of 𝐷2𝑛. There are two
characteristics of a rigid symmetry:

• Vertices are mapped to other vertices. So 𝑣1 ↦ 𝑣𝑘 for some 1 ≤ 𝑘 ≤ 𝑛.

140



3. Types of groups

• Edges are mapped to other edges. So 𝑣2 ↦ 𝑣𝑘+1 or 𝑣𝑘−1 (modulo 𝑛). Note that once
we define 𝑣1 and 𝑣2, then the location of 𝑣3 is predetermined. Inductively, the entire
polygon is pre-determined.

There are 𝑛 choices for the location of 𝑣1. There are two choices for the location of 𝑣2. So
there are only 2𝑛 elements in 𝐷2𝑛. So we have all the elements already. It is also trivial to
prove that 𝐷2𝑛 is a group, simply by verifying the axioms, noting the function composition
is always associative.

Note thatwe can generate𝐷2𝑛 using just one rotation and one reflection. Let 𝑟 be the rotation
by 2𝜋

𝑛
, and let 𝑠 be the reflection through 𝑣1 (such that 𝑣1 ↦ 𝑣1). Now,

• 𝑟𝑘 gives all possible rotations;
• 𝑟𝑖𝑠𝑟−𝑖 gives a reflection through 𝑣𝑖+1 and the centre;
• 𝑟𝑖+1𝑠𝑟−𝑖 gives a reflection through the edge joining 𝑣𝑖 and 𝑣𝑖+1.

These are all three cases, so 𝐷2𝑛 = ⟨𝑟, 𝑠⟩.
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4. Permutation groups
4.1. Definition
Definition. Given a set 𝑋 , a permutation of the set is a bijective function 𝜎 ∶ 𝑋 → 𝑋 . The
set of all permutations of 𝑋 is denoted Sym𝑋 .

Theorem. Sym𝑋 is a group with respect to composition.

This is provable by checking the group axioms, noting that all bijective functions are invert-
ible, and that function compositions are always associative.

Definition. If |𝑋| = 𝑛 then 𝑆𝑛 is the isomorphism class of Sym𝑋 .

Note that |𝑆𝑛| is 𝑛! because the first element has 𝑛 choices for where to be mapped, the
second element has 𝑛 − 1 choices, etc.

4.2. Cycles
We may use a two-row notation for permutations. For example, a permutation 𝜎 ∈ 𝑆3 such
that 𝜎(1) = 2, 𝜎(2) = 3, 𝜎(3) = 1may be written

𝜎 = (1 2 3
2 3 1)

The columns represent the maps that 𝜎 performs: 1 ↦ 2; 2 ↦ 3; 3 ↦ 1. However, this
is quite a clunky, long-winded notation. More often we use a kind of cycle notation, for
example

𝜎 = (1 2 3)

This says that 𝜎 represents the cycle 1 ↦ 2 ↦ 3 ↦ 1. Note that, for example, the cycle (1 2 3)
is equivalent to the cycle (2 3 1). We call a cycle like this a 3-cycle because it has 3 elements.
So, for example, the cycle (1 2 3 4 5 6 7) ∈ 𝑆𝑛 where 𝑛 ≥ 7 is a 7-cycle. Cycles with two
elements are called transpositions, and cycles with one element are called singletons.

Since cycles are permutations, we can compose them like this:

(1 2 3 4)(3 2 4) ∈ 𝑆4

We know that the resulting permutation must be a member of 𝑆4 because of the closure
axiom. We can deduce what the resulting permutation is in two ways:

• We can find the value of (1 2 3 4)(3 2 4)(𝑥) for all 1 ≤ 𝑥 ≤ 𝑛. This allows us to write
the permutation in the two-row notation.

𝜎 = (1 2 3 4
2 1 3 4)
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• Alternatively, let us begin by just finding 𝜎(1) = 2. Then, we can find where this result
maps to, and so on, until we have a completed cycle. We are guaranteed to form a cycle,
as we will prove later. Repeat this cycle generation for all unused numbers, and then
you will get a product of cycles, in this case 𝜎 = (1 2)(3)(4).

Note that the inverse of a permutation can be created by swapping the rows. A cycle can
be inverted by simply reversing the order of its elements. One more interesting fact is that
𝐷2𝑛 ≤ 𝑆𝑛. 𝐷2𝑛 is a permutation of 𝑛 vertices with some added constraints (e.g. edges must
map to edges), so it makes sense that it would be a subgroup. In particular, 𝐷6 = 𝑆3.

Cycles are considered disjoint if no number appears in both.

Lemma. Disjoint cycles commute.

Proof. Let 𝜎, 𝜏 be disjoint cycles of 𝑆𝑛. Wewant to prove that 𝜎𝜏(𝑥) = 𝜏𝜎(𝑥) for all 1 ≤ 𝑥 ≤ 𝑛.
There are three cases:

• If 𝑥 ∉ 𝜎 and 𝑥 ∉ 𝜏 then immediately 𝜎𝜏(𝑥) = 𝑥 = 𝜏𝜎(𝑥).

• If 𝑥 ∈ 𝜎 but 𝑥 ∉ 𝜏 then because 𝜎 is a cycle, 𝜎(𝑥) ∈ 𝜎; and because the cycles are
disjoint, 𝜎(𝑥) ∉ 𝜏. So 𝜎𝜏(𝑥) = 𝜎(𝑥) = 𝜏𝜎(𝑥).

• If 𝑥 ∈ 𝜏 but 𝑥 ∉ 𝜎, use the proof above but swap the letters.

4.3. Disjoint cycle decomposition
Theorem. Any 𝜎 ∈ 𝑆𝑛 can be written as a product of disjoint cycles. This is unique up
to reordering cycles (and, of course, moving the elements around within a cycle without
altering it).

Proof. Let 𝜎 ∈ 𝑆𝑛. Now consider the infinite list of terms 1, 𝜎(1), 𝜎2(1), 𝜎3(1)⋯. 𝜎 is a
bijection from a set to itself so this list will continue infinitely, but there are only 𝑛 possible
items in this set. Therefore, by the pigeonhole principle, there must be two distinct items in
that list that are the same. Let us label their indices 𝑎 and 𝑏, such that 𝜎𝑎(1) = 𝜎𝑏(1), and
that 𝑎 > 𝑏 without loss of generality. Then we can multiply on the right by 𝜎−𝑏(1) to get
𝜎𝑎−𝑏(1) = 1.

Now that we have proven that the number 1 exists multiple times in the list, let us take 𝑘 to
be the smallest positive integer such that𝜎𝑘(1) = 1. Then for 0 ≤ 𝑙 < 𝑚 < 𝑘, if𝜎𝑚(1) = 𝜎𝑙(1)
then 𝜎𝑚−𝑙(1) = 1 which contradicts the minimality of 𝑘. So the first 𝑘 numbers on the list
are distinct, so (1 𝜎(1) 𝜎2(1) ⋯ 𝜎𝑘−1(1)) is a cycle.

Repeat this whole process, replacing 1 with different unused values in the set. This will al-
ways continue to work because no number that has already appeared can reappear (because
𝜎 is a bijection).
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Continue until we have exhausted the entire set {1,⋯ , 𝑛}. Then we can multiply together
all of the (disjoint) cycles we have generated. Note that each element from {1,⋯ , 𝑛} must
appear exactly once in this product (if it is mapped to itself, it is present as a singleton). It
is clear then that this product is equal to 𝜎, because for any input 𝑘, no cycles except for the
one containing said input (and also, of course, containing the output 𝜎(𝑘)) will do anything
to it.

We can prove the uniqueness of the decomposition by supposing that there might exist two
decompositions. Taking any element 𝑥 in the set {1,⋯ , 𝑛}, we know that 𝜎 uniquely defines
the cycle that 𝑥 belongs to. So that means that in both decompositions, the cycle containing
𝑥 is the same. By repeating this for all 𝑥 in the set, we can be sure that all cycles are the same,
and thus the decompositions in their entirety are the same. Therefore the decomposition is
unique.

The set of cycle lengths of the disjoint cycle decomposition of 𝜎 is called the cycle type of 𝜎.
For example, 𝜎 = (1 2 3)(5 6) has cycle type 3, 2 (or equivalently 2, 3).

Theorem. The order of 𝜎 ∈ 𝑆𝑛 is the least commonmultiple of the cycle lengths in its cycle
type.

Proof. The order of a 𝑘-cycle is 𝑘. Let us decompose 𝜎 into a product of disjoint cycles such
that 𝜎 = 𝜏1𝜏2⋯𝜏𝑟. Then 𝜎𝑚 = 𝜏𝑚1 𝜏𝑚2 ⋯𝜏𝑚𝑟 since disjoint cycles commute.

Let each 𝜏𝑖 be a 𝑘𝑖-cycle. Then if 𝜎𝑚 = 𝑒, 𝜏𝑚1 𝜏𝑚2 ⋯𝜏𝑚𝑟 = 𝑒, and so 𝜏𝑚1 = 𝜏−𝑚2 𝜏−𝑚3 ⋯𝜏−𝑚𝑟 . Note
that the right hand side and left hand side permute different elements, so they must both be
the identity element 𝑒. Repeating this style of argument with every 𝜏 shows that 𝜏𝑚𝑖 = 𝑒 so
𝑘𝑖|𝑚.

So clearly the lowest common multiple of all of the 𝑘𝑖 divides the order of the permutation,
𝑜(𝜎). Now, we check that it is actually equal to 𝑜(𝜎). Let 𝐿 be this lowest common multiple.
Then 𝜎𝐿 = 𝜏𝐿1 𝜏𝐿2 ⋯𝜏𝐿𝑟 = (𝜏𝑘11 )𝐿/𝑘1(𝜏𝑘22 )𝐿/𝑘2 ⋯(𝜏𝑘𝑟𝑟 )𝐿/𝑘𝑟 . All of these exponents are integers
because 𝐿 is a multiple of each 𝑘𝑖. So we have 𝑒 ⋅ 𝑒⋯ 𝑒 = 𝑒. So the order of 𝜎 is 𝐿.

4.4. Products of transpositions
Proposition. Let 𝜎 ∈ 𝑆𝑛. Then 𝜎 is a product of transpositions.

Proof. It is enough to prove this for just a cycle, then we can use the disjoint cycle decom-
position to create a transposition product for the whole 𝜎. We have

(𝑎1 𝑎2⋯𝑎𝑛) = (𝑎1 𝑎2)(𝑎2 𝑎3)⋯ (𝑎𝑛−1 𝑎𝑛)

so the result is immediate.

Note that this decomposition is not unique in general.
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A permutation may be considered even if its transposition decomposition has an even num-
ber of terms, or odd otherwise. Note that an even-length cycle has odd parity, and an odd-
length cycle has even parity.

Proposition. The parity of a permutation is well-defined, regardless of exactly how you
write a permutation.

Proof. Let us denote the amount of cycles in the disjoint cycle decomposition of 𝜎with#(𝜎).
Let 𝜏 = (𝑐 𝑑). Then the effects of multiplying 𝜎 by 𝜏 (on the right) have two cases, since it
only affects 𝑐 and 𝑑.

• If 𝑐 and 𝑑 are in the same cycle in 𝜎, we get the following conversion:

(𝑐 𝑎2⋯𝑎𝑘−1 𝑑 𝑎𝑘+1⋯𝑎𝑙) ↦ (𝑐 𝑎𝑘+1⋯𝑎𝑙)(𝑑 𝑎2⋯𝑎𝑘−1)

So #(𝜎𝜏) = #(𝜎) + 1.
• Otherwise, 𝑐 and 𝑑 are in different cycles (possibly singletons) in 𝜎, so we get the fol-
lowing conversion:

(𝑐 𝑎2⋯𝑎𝑘)(𝑑 𝑏2⋯𝑎𝑙) ↦ (𝑐 𝑏2⋯𝑏𝑙 𝑑 𝑎2⋯𝑎𝑘)

So #(𝜎𝜏) = #(𝜎) − 1.
In either case, parity is flipped. Now, suppose that 𝜎 is written as two products of transpos-
itions, where one has 𝑚 transpositions, and one has 𝑛 transpositions. Therefore we have
#(𝜎) ≡ #(𝑒) +𝑚mod 2, and #(𝜎) ≡ #(𝑒) + 𝑛mod 2. But #(𝜎) is uniquely determined by 𝜎,
so both equations match, so𝑚 ≡ 𝑛mod 2, so the parity is well-defined.

Definition. Writing 𝜎 as a product of transpositions, the sign of 𝜎 is defined as 1 if the
permutation is even, and −1 if it is odd.
Note that the function sign(𝜎) is a homomorphism from 𝑆𝑛 to ({−1, 1}, ⋅).
Definition. The alternating group 𝐴𝑛 is defined as the kernel of the sign homomorphism
on 𝑆𝑛. In other words, it is the set of even permutations of 𝑆𝑛.
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5. Möbius transformations
5.1. The Möbius group
Möbius groups are an analogous concept to permutation groups, but on the infinite set of
the complex numbers. A Möbius transformation 𝑓 is defined as follows:

𝑓 ∶ ℂ̂ → ℂ̂; 𝑓(𝑧) = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 ; 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ; 𝑎𝑑 − 𝑏𝑐 ≠ 0

The reason for the restriction that 𝑎𝑑 − 𝑏𝑐 ≠ 0 is that 𝑎𝑑 = 𝑏𝑐 implies that 𝑓 is a constant
value for all 𝑧. Note that ℂ̂ is known as the ‘extended complex plane’, defined as the complex
plane together with a point at infinity, denoted∞. There are some special points related to
Möbius transformations:

• 𝑓(−𝑑
𝑐
) is defined to be∞. This is because the denominator of the fraction would be

zero.

• 𝑓(∞) is defined to be 𝑎
𝑐
if 𝑐 ≠ 0. This is because as the length of 𝑧 increases to infinity,

the constant terms 𝑏 and 𝑑 vanish. However, if 𝑐 = 0, then the numerator explodes to
infinity as the denominator remains constant, so 𝑓(∞) = ∞ in this case.

Lemma. Möbius transformations are bijections from ℂ̂ → ℂ̂.

Proof. We can prove this by evaluating 𝑓(𝑓−1(𝑧)) and 𝑓−1(𝑓(𝑧)) at all 𝑧, taking into account
all the special points. The entire proof is not written here, but it suffices to substitute every
special point and a generic 𝑧 into both of these expressions, and show that they equal 𝑧 in
all cases.

Theorem. The setℳ of Möbius maps forms a group under composition of functions.

Proof. We must check each of the group axioms, and we begin with closure. Let 𝑓1(𝑧) =
𝑎1𝑧+𝑏1
𝑐1𝑧+𝑑1

; 𝑓2(𝑧) =
𝑎2𝑧+𝑏2
𝑐2𝑧+𝑑2

. To compose these functions, we first ignore the special points and
then check them individually later.

(𝑓2 ∘ 𝑓1)(𝑧) = 𝑓2(𝑓1(𝑧))

=
𝑎2 (

𝑎1𝑧+𝑏1
𝑐1𝑧+𝑑1

) + 𝑏2

𝑐2 (
𝑎1𝑧+𝑏1
𝑐1𝑧+𝑑1

) + 𝑑2

= (𝑎1𝑎2 + 𝑏2𝑐1)𝑧 + (𝑎2𝑏1 + 𝑏2𝑑1)
(𝑐2𝑎1 + 𝑑2𝑐1)𝑧 + (𝑐2𝑏1 + 𝑑1𝑑2)

=∶ 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

Note that 𝑎𝑑 − 𝑏𝑐 = (𝑎1𝑎2 + 𝑏2𝑐1)(𝑐2𝑏1 + 𝑑1𝑑2) − (𝑎2𝑏1 + 𝑏2𝑑1)(𝑐2𝑎1 + 𝑑2𝑐1) = (𝑎1𝑑1 −
𝑏1𝑐1)(𝑎2𝑑2−𝑏2𝑐2)which is the product of two nonzero numbers, which is therefore nonzero.
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Now we will check all the special points.

(𝑓2 ∘ 𝑓1)(∞) = 𝑓2 (
𝑎1
𝑐1
)

=
𝑎2 (

𝑎1
𝑐1
) + 𝑏2

𝑐2 (
𝑎1
𝑐1
) + 𝑑2

= 𝑎1𝑎2 + 𝑏2𝑐1
𝑐2𝑎1 + 𝑑2𝑐1

= 𝑎
𝑐

(𝑓2 ∘ 𝑓1)(∞) = 𝑓2(∞) = 𝑎2
𝑐2

(𝑓2 ∘ 𝑓1) (𝑓−1 (
−𝑑2
𝑐2

)) = 𝑓2 (
−𝑑2
𝑐2

)

= ∞

Note that each of these results matches upwith our intuitive understanding of infinity in the
limit, for instance (𝑓2∘𝑓1)(∞) = 𝑎

𝑐
, where naïvelywemight assume (𝑓2∘𝑓1)(∞) = 𝑎⋅∞+𝑏

𝑐⋅∞+𝑑
= 𝑎

𝑐
.

Now we may prove the other group axioms hold forℳ. Clearly there is an identity element
𝑓(𝑧) = 1𝑧+0

0𝑧+1
. We know that there are always inverses because 𝑓 is a bijection. Finally, we

know that all Möbius maps obey the associative law because function composition is always
associative. Soℳ is a group.

5.2. Properties of the Möbius group

When we are working with Möbius groups, we use the following conventions:

1
∞ = 0; 1

0 = ∞; 𝑎 ⋅ ∞
𝑐 ⋅ ∞ = 𝑎

𝑐

Firstly,ℳ is not abelian. For example, let 𝑓1(𝑧) = 𝑧+1; 𝑓2(𝑧) = 2𝑧. Then (𝑓2 ∘𝑓1)(𝑧) = 2𝑧+2
and (𝑓1 ∘ 𝑓2)(𝑧) = 2𝑧 + 1.

Proposition. Every Möbius transformation can be written as a composition of maps of the
following forms:

(i) 𝑓(𝑧) = 𝑎𝑧 where 𝑎 ≠ 0. This is a dilation or rotation.

(ii) 𝑓(𝑧) = 𝑧 + 𝑏. This is a translation by 𝑏.

(iii) 𝑓(𝑧) = 1
𝑧
. This is an inversion.
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Proof. Let 𝑓(𝑧) = 𝑎𝑧+𝑏
𝑐𝑧+𝑑

. Then if 𝑐 ≠ 0, 𝑓(𝑧) is given by

𝑧 (ii)−−→ 𝑧 + 𝑑
𝑐

(iii)−−→ 1
𝑧 + 𝑑

𝑐

(i)−→ (−𝑎𝑑 + 𝑏𝑐)𝑐−2

𝑧 + 𝑑
𝑐

(ii)−−→ 𝑎
𝑐 +

(−𝑎𝑑 + 𝑏𝑐)𝑐−2

𝑧 + 𝑑
𝑐

= 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

If 𝑐 = 0, 𝑓(𝑧) is given by
𝑧 (i)−→ 𝑎

𝑑𝑧
(ii)−−→ 𝑎

𝑑𝑧 +
𝑏
𝑑 = 𝑎𝑧 + 𝑏

𝑑

Note therefore that the set 𝒮 of all dilations, rotations, translations and inversions generates
ℳ, or in symbolic form, ⟨𝒮⟩ = ℳ.
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6. Cosets and Lagrange’s theorem

6.1. Cosets

Let 𝐻 be a subgroup of some group 𝐺, and let 𝑔 ∈ 𝐺. Then a set of the form 𝑔𝐻 ≔ {𝑔ℎ ∶
ℎ ∈ 𝐻} is called a left coset of 𝐻 in 𝐺. Also, a set of the form 𝐻𝑔 ≔ {ℎ𝑔 ∶ ℎ ∈ 𝐻} is called a
right coset of𝐻 in 𝐺. Mostly we use left cosets, but right cosets can be seen in more specific
scenarios. Note that the order of group 𝐻 is the same as the order of the cosets 𝑔𝐻 and 𝐻𝑔;
we can think of 𝑔𝐻 and 𝐻𝑔 as translated copies of 𝐻. Note further that 𝑔𝐻 and 𝐻𝑔 are not
necessarily groups; in fact in general they are not groups. We now consider some example
cosets.

(i) Let 𝐻 = {𝑒} ≤ 𝐺. Then 𝑔𝐻 = {𝑔}.

(ii) Let 𝐻 = 2ℤ and let 𝐺 = ℤ. Then (where the cosets are written additively):

• 0 + 2ℤ = 2ℤ which is the set of even integers.

• 1 + 2ℤ = {1 + 𝑘 ∶ 𝑘 ∈ 2ℤ} which is the set of odd integers.

• 2+2ℤ = 2ℤ. There are only two distinct cosets of𝐻 in 𝐺 here; every odd integer
will create the set of odd integers, and every even integer will create the set of
even integers.

(iii) Let 𝐻 = {𝑒, (1 2)}, and let 𝐺 = 𝑆3. Then, each (left) coset of 𝐻 in 𝐺 is given by

• 𝑒𝐻 = {𝑒, (1 2)} = 𝐻

• (1 2)𝐻 = {(1 2), 𝑒} = 𝐻

• (1 3)𝐻 = {(1 3), (1 2 3)}

• (1 2 3)𝐻 = {(1 2 3), (1 3)}

• (2 3)𝐻 = {(2 3), (1 3 2)}

• (1 3 2)𝐻 = {(1 3 2), (2 3)}

Note that:

• 𝑒𝐻 = 𝐻

• ∀ℎ ∈ 𝐻, ℎ𝐻 = 𝐻 as 𝐻 is a group and therefore closed under multiplication with
ℎ

• |𝑔𝐻| = |𝐻|

• ⋃𝑔∈𝐺 𝑔𝐻 = 𝐺, and in this example in particular, each pair of cosets is equal and
disjoint to any other pair
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6.2. Lagrange’s theorem
Definition. We define the index of a subgroup 𝐻 ≤ 𝐺 in 𝐺, written |𝐺 ∶ 𝐻|, to be the
number of distinct cosets of 𝐻 in 𝐺.

Theorem (Lagrange’s Theorem). Let 𝐻 ≤ 𝐺 be a subgroup of a finite group 𝐺. Then:

(i) |𝐻| = |𝑔𝐻| for any 𝑔 ∈ 𝐺;

(ii) for any 𝑔1, 𝑔2 ∈ 𝐺, either 𝑔1𝐻 = 𝑔2𝐻 or 𝑔1𝐻 ∩ 𝑔2𝐻 = ∅; and

(iii) 𝐺 = ⋃𝑔∈𝐺 𝑔𝐻

And in particular, |𝐺| = |𝐺 ∶ 𝐻| ⋅ |𝐻|.

Proof. We prove each statement independently.

(i) The function 𝐻 → 𝑔𝐻, defined by ℎ ↦ 𝑔ℎ, defines a bijection between 𝐻 and 𝑔𝐻, so
|𝐻| = |𝑔𝐻|.

(ii) Suppose 𝑔1𝐻 ∩ 𝑔2𝐻 ≠ ∅. Then ∃𝑔 ∈ 𝑔1𝐻 ∩ 𝑔2𝐻. So 𝑔 = 𝑔1ℎ1 = 𝑔2ℎ2 for some
ℎ1, ℎ2 ∈ 𝐻. So 𝑔1 = 𝑔2ℎ2ℎ−11 . So for any ℎ ∈ 𝐻, we have

𝑔1ℎ = 𝑔2 ℎ2ℎ−11 ℎ⏟⎵⏟⎵⏟
∈𝐻

So certainly 𝑔1𝐻 ⊆ 𝑔2𝐻. Employing a symmetric argument for the other way round,
we have 𝑔1𝐻 = 𝑔2𝐻.

(iii) Given some 𝑔 ∈ 𝐺 then 𝑔 ∈ 𝑔𝐻, since 𝑒 ∈ 𝐻. So 𝐺 ⊆ ⋃𝑔∈𝐺 𝑔𝐻. But also, 𝑔𝐻 ⊆ 𝐺, so
⋃𝑔∈𝐺 𝑔𝐻 ⊆ 𝐺. So 𝐺 = ⋃𝑔∈𝐺 𝑔𝐻.

So now that we know that 𝐺 is composed of a union of disjoint cosets, all of which are the
same size, we know that |𝐺| is just the number of these cosets multiplied by the size of such
a coset, or in other words

|𝐺| = |𝐺 ∶ 𝐻| ⋅ |𝐻|

Note that we could equivalently have used right cosets in place of left cosets. Remember that
in general, 𝑔𝐻 ≠ 𝐻𝑔, and the set of left cosets is not equal to the set of right cosets.

Proposition. 𝑔1𝐻 = 𝑔2𝐻 ⟺ 𝑔−11 𝑔2 ∈ 𝐻.

Proof. We first consider the forwards case. Clearly 𝑔1 is an element of 𝑔1𝐻, as 𝐻 contains
𝑒. Also, 𝑔2 is an element of 𝑔2. So 𝑔−11 𝑔2 ∈ 𝐻. Now for the backwards case. Clearly, 𝑔2𝐻
contains the element 𝑔2, as 𝑒 maps to it. Also, since 𝐻 contains 𝑔−11 𝑔2, 𝑔1𝐻 contains the
element 𝑔1 ∗ (𝑔−11 𝑔2) = 𝑔2. As cosets are either disjoint or equal, and they clearly share the
element 𝑔2, then they are equal.
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Note further that 𝑔′ ∈ 𝑔𝐻 implies 𝑔′𝐻 = 𝑔𝐻. We may therefore take a single element from
each of these distinct cosets, and we will call them 𝑔1, 𝑔2,⋯ , 𝑔|𝐺∶𝐻|. Then

𝐺 =
|𝐺∶𝐻|

⨆
𝑖=1

𝑔𝑖𝐻

where the⨆ symbol denotes a disjoint union of sets. These 𝑔𝑖 are called coset representatives
of 𝐻 in 𝐺.

Corollary. Let 𝐺 be a finite group and 𝑔 ∈ 𝐺. Then (ord 𝑔) ∣ |𝐺|.

Proof. Recall that ord 𝑔 is defined as the smallest 𝑛 such that 𝑔𝑛 = 𝑒. We define the subgroup
𝐻 ≤ 𝐺 as 𝐻 = ⟨𝑔⟩. Then ord 𝑔 = |𝐻|. By Lagrange’s Theorem, we know that |𝐻| ∣ |𝐺|.

Corollary. Let 𝐺 be a finite group, and let 𝑔 ∈ 𝐺. Then 𝑔|𝐺| = 𝑒.

Proof. This follows directly from the previous corollary. 𝑔|𝐺| = 𝑔𝑛⋅ord𝑔 for some natural
number 𝑛, so this simply reduces to 𝑒.

Corollary. Groups of prime order are cyclic, and are generated by any non-identity element.

Proof. Let |𝐺| = 𝑝, where 𝑝 is a prime. We will take some 𝑔 ∈ 𝐺, and generate a group from
it. By Lagrange’s Theorem, |⟨𝑔⟩| ∣ |𝐺|, so |⟨𝑔⟩| is either 1 or 𝑝. Now, note that 𝑒 and 𝑔 are both
elements of ⟨𝑔⟩, so if 𝑔 ≠ 𝑒 then clearly |⟨𝑔⟩| > 1, so |⟨𝑔⟩| = 𝑝.

We can take Lagrange’s theorem into the world of number theory, and specifically modular
arithmetic, where we are dealing with finite groups. Clearly, ℤ𝑛 is a group under addition
modulo 𝑛, but what happens with multiplication modulo 𝑛? Clearly this is not a group—for
a start, 0 has no inverse. By removing all elements of the group that have no inverse, we
obtain ℤ∗𝑛.

Note that for any 𝑥 ∈ ℤ𝑛, 𝑥 has a multiplicative inverse if and only if HCF(𝑥, 𝑛) = 1, i.e.
if 𝑥 and 𝑛 are coprime. This follows directly from the fact that we can write 1 as a linear
combination of 𝑥 and 𝑛, i.e. 𝑥𝑦 + 𝑚𝑛 = 1, thus defining 𝑦 as the multiplicative inverse of 𝑥
modulo 𝑛. From this, it is simple to check thatℤ∗𝑛 forms a group undermultiplication.

We may also create an equivalent group-theoretic definition of Euler’s totient function 𝜑
as follows: 𝜑(𝑛) ≔ |ℤ∗𝑛|. We can now use Lagrange’s theorem to prove the Fermat–Euler
theorem (that is, HCF(𝑁, 𝑛) = 1 ⟹ 𝑁𝜑(𝑛) ≡ 1mod 𝑛) as follows.

Proof. If𝑁 and 𝑛 are coprime, then there is an element, here denoted 𝑎, inℤ𝑛 corresponding
to 𝑁. So 𝑎𝜑(𝑛) = 𝑎||ℤ∗𝑛|| = 1 in ℤ𝑛. Since 𝑁 = 𝑎+𝑘𝑛, we may expand𝑁𝜑(𝑛) = 𝑎𝜑(𝑛)+𝑛(⋯) ≡
𝑎𝜑(𝑛) ≡ 1mod 𝑛.
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6.3. Groups of small order
We can completely classify groups of small order; we already know enough to classify all
groups up to order 5 using Lagrange’s Theorem.

Proposition. If |𝐺| = 4, then 𝐺 ≅ 𝐶4 or 𝐺 ≅ 𝐶2 × 𝐶2.

Proof. By Lagrange’s Theorem, the possible orders of elements of 𝐺 with |𝐺| = 4 are 1 (only
the identity), 2 and 4.

• If there is an element 𝑔 of order 4, then𝐺 = ⟨𝐺⟩ because 𝑒 ≠ 𝑔 ≠ 𝑔2 ≠ 𝑔3, so it is cyclic
of order 4.

• If there is no such element, then all non-identity elements must have order 2. 𝐺 is
abelian (by question 7 on example sheet 1). Take two distinct elements 𝑏, 𝑐 of order 2.
Then:

– ⟨𝑏⟩ ∩ ⟨𝑐⟩ = {𝑒, 𝑏} ∩ {𝑒, 𝑐} = {𝑒}
– 𝑏𝑐 = 𝑐𝑏 as the group is abelian.
– The element 𝑏𝑐 is not equal to 𝑏 or 𝑐 (𝑏𝑐 = 𝑏 ⟹ 𝑐 = 𝑒 which is an element of
order 1). It is also not equal to 𝑒 because then 𝑏 = 𝑐−1 which implies 𝑏 = 𝑐. So
the remaining element of 𝐺 is simply 𝑏𝑐. So any element in 𝐺 may be written as
the product of an element in ⟨𝑏⟩multiplied by an element in ⟨𝑐⟩.

These are the three conditions of the direct product theorem, so𝐺 = ⟨𝑏⟩×⟨𝑐⟩ ≅ 𝐶2×𝐶2.

Now here is a list the first five smallest groups (we need more tools in order to classify larger
groups):

(i) 𝐺 = {𝑒}
(ii) 𝐺 ≅ 𝐶2 because a group of prime order is cyclic.
(iii) 𝐺 ≅ 𝐶3 for the same reason.
(iv) 𝐺 ≅ 𝐶4 or 𝐺 ≅ 𝐶2 × 𝐶2 by the proof above.
(v) 𝐺 ≅ 𝐶5 because 5 is prime.
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7. Normal subgroups and quotients
7.1. Normal subgroups
How and when does it make sense to divide one group by another?

Definition. An subgroup 𝑁 of a group 𝐺 is normal if ∀𝑔 ∈ 𝐺, 𝑔𝑁 = 𝑁𝑔. We write 𝑁 ⊴ 𝐺.

The following equivalent definitions hold:

• ∀𝑔 ∈ 𝐺, 𝑔𝑁 = 𝑁𝑔

• ∀𝑔 ∈ 𝐺, ∀𝑛 ∈ 𝑁, 𝑔−1𝑛𝑔 ∈ 𝑁

• ∀𝑔 ∈ 𝐺, 𝑔−1𝑁𝑔 = 𝑁

Proof. The first case is the definition. For the second case, clearly (from the first definition)
𝑛𝑔 ∈ 𝑔𝑁. So multiplying on the left by 𝑔−1, we have 𝑔−1𝑛𝑔 ∈ 𝑁 as required. For the
third case, we can simply multiply the first definition on the left by 𝑔−1. Note that these
multiplications are distributed over each element in the coset: 𝑎(𝑏𝐶) = {𝑎𝑏𝑐 ∶ 𝑐 ∈ 𝐶}.

(i) {𝑒} and 𝐺 are normal subgroups of 𝐺.

(ii) 𝑛ℤ ⊴ ℤ. ∀𝑎 ∈ ℤ, we have 𝑎 + 𝑛ℤ = {𝑎 + 𝑛𝑘 ∶ 𝑘 ∈ ℤ} = {𝑛𝑘 + 𝑎 ∶ 𝑘 ∈ ℤ} = 𝑛ℤ + 𝑎.

(iii) 𝐴3 ⊴ 𝑆3.

• 𝑒𝐴3 = 𝐴3 = 𝐴3𝑒

• (1 2 3)𝐴3 = 𝐴3 = 𝐴3(1 2 3)

• (1 3 2)𝐴3 = 𝐴3 = 𝐴3(1 3 2)

• (1 2)𝐴3 = {(1 2), (2 3), (1 3)} = 𝐴3(1 2)

and so on.

Proposition. (i) Any subgroup of an abelian group is normal.

(ii) Any subgroup of index 2 is normal.

Proof. (i) If 𝐺 is abelian, then ∀𝑔 ∈ 𝐺, ∀𝑛 ∈ 𝑁, 𝑔−1𝑛𝑔 = 𝑛 ∈ 𝑁 which is stronger than
required.

(ii) If 𝐻 ≤ 𝐺 with |𝐺 ∶ 𝐻| = 2, then there are only 2 cosets. 𝐻 = 𝑒𝐻 = 𝐻𝑒 is one of
the two cosets. Since cosets are disjoint, the other coset must be 𝐺 ∖ 𝐻. This is true
for both left and right cosets. So the other left and right cosets must be equal, so 𝐻 is
normal.

Proposition. If 𝜑 ∶ 𝐺 → 𝐻 is a homomorphism, then ker𝜑 ⊴ 𝐺.

153



III. Groups

Proof. We already know ker𝜑 is a subgroup of 𝐺. Now we must check it is normal. Given
some 𝑘 ∈ ker𝜑, 𝑔 ∈ 𝐺, we want to show that 𝑔−1𝑘𝑔 ∈ ker𝜑. We have 𝜑(𝑔−1𝑘𝑔) =
𝜑(𝑔−1)𝜑(𝑘)𝜑(𝑔) = 𝜑(𝑔−1)𝑒𝜑(𝑔) = 𝜑(𝑔−1𝑔) = 𝜑(𝑒) = 𝑒 so 𝑔−1𝑘𝑔 ∈ ker𝜑 as required.

In fact, we will show later that normal subgroups are exactly kernels of homomorphisms
and nothing else.

Here is now a less formal explanation of this theorem and its consequences. Consider some
subgroup 𝐾 ≤ 𝐺. There may be some property 𝑃 that is true for every element of 𝐾 and false
for every other element of 𝐺. Then certainly, for example, given 𝑘1, 𝑘2 ∈ 𝐾, we know that
𝑘1𝑘2 has the same property as it is within𝐾. As another example, let 𝑘 ∈ 𝐾 and let 𝑔 ∈ 𝐺∖𝐾.
Then 𝑘𝑔 does not have this property, as 𝑘𝑔 ∉ 𝐾.

We can encapsulate this behaviour by making a homomorphism from the whole group 𝐺
to some other group—it doesn’t matter where we end up, just as long as anything with this
particular property maps to the new group’s identity element. Let 𝜑 ∶ 𝐺 → 𝐻, where 𝐻 is
some group that we don’t really care about (apart from the identity). This means that any
element of 𝐾, i.e. any element with property 𝑃, is mapped to 𝑒𝐻 . By the laws of homomorph-
isms, any product of 𝑘 ∈ 𝐾 with 𝑔 ∈ 𝐺 ∖ 𝐾 does not give the identity element, so it does not
have this property! This is exactly the behaviour we wanted.

If we can find such a homomorphism, then 𝐾 is the kernel of this homomorphism. Again,
the image of this homomorphism is essentially irrelevant; all we care about is which ele-
ments map to the identity. Now, note that by the laws of homomorphisms, given some
element 𝑔 ∈ 𝐺 and 𝑘 ∈ 𝐾, 𝜑(𝑔−1𝑘𝑔) = 𝜑(𝑔−1)𝜑(𝑘)𝜑(𝑔). But since 𝑘 has this desired prop-
erty, the 𝜑(𝑘) term vanishes. So we’re left with the identity element. This gives us the result
that 𝑔−1𝑘𝑔must be an element of 𝐾, so it must have property 𝑃. This is a definition for a nor-
mal subgroup, so 𝐾 must be normal in order for us to be able to find such a homomorphism
𝜑.

As another small aside, a normal subgroup in this context essentiallymeans this: given some
element 𝑘with property 𝑃, the property is preservedwhen surrounding 𝑘with inverses. This
is just a ‘translation’ of a definition of a normal subgroup: 𝑔−1𝑘𝑔 ∈ 𝐾.

(i) 𝑆𝐿𝑛(ℝ) ⊴ 𝐺𝐿𝑛(ℝ), where 𝐺𝐿𝑛(ℝ) is the group of invertible matrices of dimension 𝑛,
and where 𝑆𝐿𝑛(ℝ) is the group of matrices of determinant 1. This is because det ∶
𝐺𝐿𝑛(ℝ) → ℝ∗, and 𝑆𝐿𝑛(ℝ) = ker(det).

(ii) 𝐴𝑛 ⊴ 𝑆𝑛 as 𝐴𝑛 is the kernel of the sign homomorphism. Alternatively, it is an index 2
subgroup so it must be normal.

(iii) 𝑛ℤ ⊴ ℤ as the kernel of 𝜑 ∶ ℤ → ℤ𝑛, where 𝜑(𝑘) = 𝑘mod 𝑛, or since ℤ is abelian.

With this notion of normal subgroups, we can make some progress into categorising small
groups.

Proposition. If |𝐺| = 6, then 𝐺 ≅ 𝐶6 or 𝐺 ≅ 𝐷6.
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Proof. By Lagrange’s Theorem, the possible element orders are 1 (only the identity), 2, 3, 6.

• If there is an element 𝑔 of order 6, then 𝐺 = ⟨𝑔⟩ ≅ 𝐶6.

• Otherwise, (again by question 7 on example sheet 1) there must be an element of the
group not of order 2, because if we just had elements of order 2 then |𝐺| would have
to be a power of 2. So there is an element 𝑟 of order 3, so |⟨𝑟⟩| = 3, and by Lagrange’s
Theorem |𝐺| = 6 = |𝐺 ∶ ⟨𝑟⟩| ⋅ |⟨𝑟⟩|, so |𝐺 ∶ ⟨𝑟⟩| = 2. So ⟨𝑟⟩ ⊴ 𝐺. There must also be an
element 𝑠 of order 2, since |𝐺| is even (by question 8 from example sheet 1).

So, what can 𝑠−1𝑟𝑠 be? Because ⟨𝑟⟩ is normal, then 𝑠−1𝑟𝑠 ∈ ⟨𝑟⟩. So it is either 𝑒, 𝑟 or 𝑟2.

– If 𝑠−1𝑟𝑠 = 𝑒 then 𝑟 = 𝑒 #

– If 𝑠−1𝑟𝑠 = 𝑟 then 𝑠𝑟 = 𝑟𝑠, and so 𝑠𝑟 has order LCM(ord 𝑠, ord 𝑟) = LCM(2, 3) = 6
#

– So 𝑠−1𝑟𝑠 = 𝑟2, then 𝐺 = ⟨𝑟, 𝑠⟩with 𝑟3 = 𝑠2 = 𝑒 and 𝑠𝑟 = 𝑟2𝑠 = 𝑟−1𝑠, which are the
defining features of 𝐷6.

7.2. Motivation for quotients

Let us consider 𝑛ℤ ⊴ ℤ. The cosets are 0 + 𝑛ℤ, 1 + 𝑛ℤ,⋯ , (𝑛 − 1) + 𝑛ℤ. These cosets,
although they are subsets of ℤ, behave a lot like the elements of the group ℤ𝑛. For example,
if we try to define addition between the cosets:

(𝑘 + 𝑛ℤ) + (𝑚 + 𝑛ℤ) ≔ (𝑘 + 𝑚) + 𝑛ℤ

which acts like addition modulo 𝑛ℤ. For a general subgroup 𝐻 ≤ 𝐺, we could try to do the
same.

𝑔1𝐻 ⋅ 𝑔2𝐻 ≔ 𝑔1𝑔2𝐻

But we can write the cosets on the left hand side in many ways, as the representation is
dependent on the choice of representative for each coset, so this multiplication may not be
well defined. We can guarantee that it is well defined (so that we can turn the set of cosets
into a group) by ensuring that

𝑔′1𝐻 = 𝑔1𝐻; 𝑔′2𝐻 = 𝑔2𝐻 ⟹ 𝑔′1𝑔′2𝐻 = 𝑔1𝑔2𝐻

If 𝑔′1𝐻 = 𝑔1𝐻; 𝑔′2𝐻, then 𝑔′1 = 𝑔1ℎ1 and 𝑔′2 = 𝑔2ℎ2 for some ℎ1ℎ2 ∈ 𝐻. So

𝑔′1𝑔′2𝐻 = 𝑔1ℎ1𝑔2 ℎ2𝐻⏟
ℎ2𝐻={ℎ2ℎ∶ℎ∈𝐻}=𝐻
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So in order to get 𝑔′1𝑔′2𝐻 = 𝑔1𝑔2𝐻, we need 𝑔1ℎ1𝑔2𝐻 = 𝑔1𝑔2𝐻 for any elements 𝑔1, 𝑔2, ℎ1 that
we choose. Therefore:

𝑔1ℎ1𝑔2𝐻 = 𝑔1𝑔2𝐻
𝑔−12 ℎ1ℎ2𝐻 = 𝐻

or 𝑔−12 ℎ1𝑔2 ∈ 𝐻 (∀𝑔2 ∈ 𝐺, ℎ1 ∈ 𝐻)

This is an equivalent condition for the subgroup to be normal.

7.3. Quotients
Proposition. Let𝑁 ⊴ 𝐺. The set of (left) cosets of𝑁 in𝐺 forms a group under the operation
𝑔1𝑁 ⋅ 𝑔2𝑁 = 𝑔1𝑔2𝑁.

Proof. The group operation is well defined as shown above. We now show the group axioms
hold.

• (closure) If 𝑔1𝑁, 𝑔2𝑁 are cosets, then 𝑔1𝑔2𝑁 is also a coset.

• (identity) 𝑒𝑁 = 𝑁

• (inverses) (𝑔𝑁)−1 = 𝑔−1𝑁

• (associativity) Follows from the associativity of 𝐺: (𝑔1𝑁 ⋅ 𝑔2𝑁) ⋅ 𝑔3𝑁 = 𝑔1𝑔2𝑁 ⋅ 𝑔3𝑁 =
𝑔1𝑔2𝑔3𝑁 = 𝑔1𝑁 ⋅ 𝑔2𝑔3𝑁 = 𝑔1𝑁 ⋅ (𝑔2𝑁 ⋅ 𝑔3𝑁)

Definition. If 𝑁 ⊴ 𝐺, the group of (left) cosets of 𝑁 in 𝐺 is called the quotient group of 𝐺
by 𝑁, written 𝐺⟋𝑁.

This is a nice way of thinking about quotient groups. Imagine you have a group 𝑁 of some
distinct objects 𝑛1, 𝑛2, 𝑛3 and so on. Imagine lining them all up in a row of length |𝑁|. Then
the cosets of 𝑁 in 𝐺 can be thought of as ‘translated copies’ of 𝑁. For example, let the cosets
of 𝑁 in 𝐺 be 𝑁, 𝑔1𝑁, 𝑔2𝑁 and so forth. Now, picture these cosets as copies of 𝑁, translated
downwards on the page, so that they are likemultiple rows, and that therefore there we have
a grid containing all elements of 𝐺. Now, we have formed a rectangle of area |𝐺| out of |𝑁|
columns and 𝑐 rows, where 𝑐 is the amount of ‘copies’ of 𝑁. Therefore, 𝑐 = |𝐺|

|𝑁|
, as the area

of a rectangle is width multiplied by height.

Now, given some element in one of the cosets (i.e. in 𝐺) we can do some transformation
𝑔 to take us to another element. But because we made cosets out of a normal subgroup,
multiplying by 𝑔 is the same as swapping some of the rows, then maybe moving around the
order of the elements in each row. It keeps the identity of each row consistent—all elements
in a given row are transformed to the same output row. Remember that the word ‘row’
basically means ‘coset’.
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This means that we can basically forget about the individual elements in these cosets, all
that we really care about is how the rows are swapped with each other under a given trans-
formation. Note, the quotient of 5 in 100 is 20, because there are 20 copies of 5 in 100. So the
quotient group of 𝑁 in 𝐺 is just all the copies of 𝑁 in 𝐺. The group operation is simply the
transformation of rows. If we’re talking about 𝐺⟋𝑁, ask the question: ‘how do the copies of
𝑁 in 𝐺 behave’?

7.4. Examples and properties
(i) The cosets of 𝑛ℤ in ℤ give a group that behaves exactly like ℤ𝑛. We write ℤ⟋𝑛ℤ ≅ ℤ𝑛.

In fact, these are the only quotients of ℤ, as these are the only subgroups of ℤ.
(ii) 𝐴3 ⊴ 𝑆3 gives 𝑆3⟋𝐴3

which has only two elements since |𝑆3 ∶ 𝐴3| = 2, so it is iso-
morphic to 𝐶2. Note that in general, |𝐺 ∶ 𝑁| = ||𝐺⟋𝑁||.

(iii) If 𝐺 = 𝐻 × 𝐾, then both 𝐻 and 𝐾 are normal subgroups of 𝐺. We have 𝐺⟋𝐻 ≅ 𝐾 and
𝐺⟋𝐾 ≅ 𝐻

(iv) Consider 𝑁 ≔ ⟨𝑟2⟩ ⊴ 𝐷8. We can check that it is normal by trying 𝑟−1𝑟2𝑟−1 ∈ 𝑁,
and also 𝑠−1𝑟2𝑠 = 𝑟−2 = 𝑟2 ∈ 𝑁. Since ⟨𝑟, 𝑠⟩ = 𝐷8, and the generators obey this
normal subgroup relation, it follows that 𝑔−1𝑛𝑔 for all 𝑔 ∈ 𝐷8. We know |𝑁| = 2, so
||𝐷8⟋𝑁|| = |𝐷8 ∶ 𝑁| =

|𝐷8|
|𝑁|

by Lagrange’s Theorem. So ||𝐷8⟋𝑁|| = 4. We know that any
group of order 4 is isomorphic either to 𝐶4 or 𝐶2 × 𝐶2. We can check that the cosets
are 𝐷8⟋𝑁 = {𝑁, 𝑠𝑁, 𝑟𝑁, 𝑠𝑟𝑁} which does not contain an element of order 4, so it is
isomorphic to 𝐶2 × 𝐶2.

We now show a non-example using the subgroup𝐻 ≔ ⟨(1 2)⟩ ≤ 𝑆3 which is not normal, e.g.
(1 2 3)𝐻 ≠ 𝐻(1 2 3). The cosets are

𝐻; (1 2 3)𝐻 = {(1 2 3), (1 3)}; (1 3 2)𝐻 = {(1 3 2), (2 3)}

Attempting a multiplication gives

(1 2 3)𝐻 ⋅ (1 3 2)𝐻 = (1 2 3)(1 3 2)𝐻 = 𝐻

but using a different coset representative,

(1 3)𝐻 ⋅ (1 3 2)𝐻 = (1 3)(1 3 2)𝐻 = (2 3)𝐻 ≠ 𝐻

so the multiplication is not well defined so we cannot form the quotient.

• We can check that certain properties are inherited into quotient groups from the ori-
ginal group, such as being abelian and being finite.

• Quotients are not subgroups of the original group. They are associated with the ori-
ginal group in a very different way to subgroups—in general, a coset may not even be
isomorphic to a subgroup in the group. The example with direct products above was
an example that is not true in general.
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• With normality, we need to specify in which group the subgroup is normal. For ex-
ample, if 𝐾 ≤ 𝑁 ≤ 𝐺, with 𝐾 ⊴ 𝑁. This does not imply that 𝐾 ⊴ 𝐺, this would require
that 𝑔−1𝐾𝑔 = 𝐾 for all elements 𝑔 in 𝐺, but we only have that 𝑛−1𝐾𝑛 = 𝐾 for all ele-
ments 𝑛 in 𝑁, which is a weaker condition. Normality is not transitive—for example,
𝐾 ⊴ 𝑁 ⊴ 𝐺 does not imply 𝐾 ⊴ 𝐺.

• However, if 𝑁 ≤ 𝐻 ≤ 𝐺 and 𝑁 ⊴ 𝐺, then the weaker condition 𝑁 ⊴ 𝐻 is true.

Theorem. Given 𝑁 ⊴ 𝐺, the function 𝜋 ∶ 𝐺 → 𝐺⟋𝑁, 𝜋(𝑔) = 𝑔𝑁 is a surjective homo-
morphism called the quotient map. We have ker𝜋 = 𝑁.

Proof. We prove that 𝜋 is a homomorphism. 𝜋(𝑔)𝜋(ℎ) = 𝑔𝑁 ⋅ ℎ𝑁 = (𝑔ℎ)𝑁 = 𝜋(𝑔ℎ) as re-
quired. Clearly it is surjective wewe can create all possible cosets by applying the 𝜋 function
to a coset representative. Also, 𝜋(𝑔) = 𝑔𝑁 = 𝑁 if and only if 𝑔 ∈ 𝑁, so ker𝜋 = 𝑁.

Therefore, normal subgroups are exactly kernels of homomorphisms. Using the idea of
‘properties’ for normal subgroups above, the property in question here is ‘belonging to 𝑁’.
Any element of 𝑁 is in the coset 𝑁, which is the identity coset of 𝐺⟋𝑁. Essentially, the first
row of this quotient ‘grid’ (as described above) is 𝑁, which acts as the identity element in
the 𝐺⟋𝑁 quotient group.
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8. Isomorphism theorems

8.1. First isomorphism theorem

Theorem. Let 𝜑 ∶ 𝐺 → 𝐻 be a homomorphism. Then 𝐺⟋ker𝜑 ≅ Im𝜑.

Proof. Define 𝜑 ∶ 𝐺⟋ker𝜑 → Im𝜑 using 𝑔 ker𝜑 ↦ 𝜑(𝑔).

• (well-defined) If 𝑔1 ker𝜑 = 𝑔2 ker𝜑, then 𝑔1 = 𝑔2𝑘, for some 𝑘 ∈ ker𝜑. Hence
𝜑(𝑔1 ker𝜑) = 𝜑(𝑔1) = 𝜑(𝑔2𝑘) = 𝜑(𝑔2)𝜑(𝑘) = 𝜑(𝑔2) = 𝜑(𝑔2 ker𝜑).

• (homomorphism) Let 𝑔, 𝑔′ ∈ 𝐺. 𝜑(𝑔 ker𝜑 ⋅ 𝑔′ ker𝜑) = 𝜑(𝑔𝑔′ ker𝜑) = 𝜑(𝑔𝑔′) =
𝜑(𝑔)𝜑(𝑔′) = 𝜑(𝑔 ker𝜑) ⋅ 𝜑(𝑔′ ker𝜑).

• (surjective) All elements of Im𝜑 are of the form 𝜑(𝑔) for some 𝑔 ∈ 𝐺, so clearly sur-
jective.

• (injective) If 𝜑(𝑔 ker𝜑) = 𝑒 = 𝜑(𝑔) in Im𝜑 then 𝑔 ∈ ker𝜑, so 𝑔 ker𝜑 = ker𝜑.

This is a useful way to understand the first isomorphism theorem. Recall that 𝐺⟋ker𝜑 is
really asking the question ‘how do the copies of ker𝜑 interact in 𝐺’? Well, as 𝜑 is a homo-
morphism, it represents some property that is true for members of a normal subgroup 𝑁 in
𝐺, where 𝑁 = ker𝜑. Now, we can imagine the grid analogy from before, laying out several
copies of 𝑁 as rows. Let’s call the group of these rows 𝐾.

Now, multiplying together two rows, i.e. two elements from 𝐾, we can apply the homo-
morphism 𝜑 to one of the coset representatives for each row to see how the entire row
behaves under 𝜑. We know that all coset representatives give equal results, because each
element in a given coset 𝑔𝑁 can be written as 𝑔𝑛, 𝑛 ∈ 𝑁, so 𝜑(𝑔𝑛) = 𝜑(𝑔). So all elements
in the rows behave just like their coset representatives under the homomorphism. Further,
all the cosets give different outputs under 𝜑—if they gave the same output they’d have to be
part of the same coset. So in some sense, each row represents a distinct output for 𝜑. So the
quotient group must be isomorphic to the image of the homomorphism.

Here are some examples.

(i) det ∶ 𝐺𝐿2(ℝ) → ℝ∗, Im(det) = ℝ∗, ker(det) = 𝑆𝐿2(ℝ). Therefore, 𝐺𝐿2(ℝ)⟋𝑆𝐿2(ℝ) ≅
ℝ∗.

(ii) Consider the map 𝜑 ∶ ℝ → ℂ∗, 𝜑(𝑟) = 𝑒2𝜋𝑖𝑟. This is a homomorphism because
𝜑(𝑟 + 𝑠) = 𝑒2𝜋𝑖(𝑟+𝑠) = 𝑒2𝜋𝑖𝑟 ⋅ 𝑒2𝜋𝑖𝑠 = 𝜑(𝑟) ⋅ 𝜑(𝑠). The image is the unit circle |𝑧| = 1,
denoted by 𝑆1; the kernel is ℤ as 𝑒2𝜋𝑖𝑧 for some 𝑧 ∈ ℤ, the result is 1. Therefore
ℝ⟋ℤ = 𝑆1.
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8.2. Correspondence theorem
Now, let’s try to understand how subgroups behave inside quotient groups.

Theorem. Let 𝑁 ⊴ 𝐺. The subgroups of 𝐺⟋𝑁 are in bijective correspondence with sub-
groups of 𝐺 containing 𝑁.

Proof. Given 𝑁 ≤ 𝑀 ≤ 𝐺, 𝑁 ⊴ 𝐺, then 𝑁 ⊴ 𝑀 and clearly 𝑀⟋𝑁 ≤ 𝐺⟋𝑁. Conversely, for
every subgroup 𝐻 ≤ 𝐺⟋𝑁, we can take the preimage of 𝐻 under the quotient map 𝜋 ∶ 𝐺 →
𝐺⟋𝑁, i.e. 𝜋−1(𝐻) = {𝑔 ∈ 𝐺 ∶ 𝑔𝑁 ∈ 𝐻}. This is a subgroup of 𝐺:

• (closure) if 𝑔1, 𝑔2 ∈ 𝜋−1(𝐻), then 𝑔1𝑔2𝑁 = 𝑔1𝑁 ⋅ 𝑔2𝑁 where both elements 𝑔1𝑁 and
𝑔2𝑁 are in 𝐻. So 𝑔1𝑔2𝑁 ∈ 𝐻.

• (identity, inverses easy to check)

𝜋−1(𝐻) contains𝑁, since ∀𝑛 ∈ 𝑁, 𝑛𝑁 = 𝑁 ∈ 𝐻. Nowwe can check that for any𝑁 ≤ 𝑀 ≤ 𝐺,
𝜋−1(𝑀⟋𝑁) = 𝑀 and for 𝐻 ≤ 𝐺⟋𝑁, 𝜋

−1(𝐻)⟋𝑁 = 𝐻. So the correspondence is bijective (this
satisfies the property that 𝑓𝑓−1 and 𝑓−1𝑓 are the identity maps on the relevant sets).

This correspondence preserves lots of structure: for example, indices, normality, contain-
ment. Now, let 𝑁 ≔ ⟨(𝑎2, 𝑏)⟩. Note that this is normal because we are in an abelian group.
Then, according to the above theorem, the subgroup lattice for 𝐶4 × 𝐶2⟋𝑁 is bijective with
the set of paths on the above lattice that terminate with 𝑁 (i.e. have 𝑁 as a subgroup). We
took the quotient of a group of order 8 by a group of order 2, so 𝑁 has order 4, so it must be
isomorphic to 𝐶4 (as it has only one subgroup isomorphic to 𝐶2 as can be seen in the lattice,
so it cannot be 𝐶2 × 𝐶2).

8.3. Second isomorphism theorem
Let 𝐻 ≤ 𝐺 and 𝑁 ⊴ 𝐺, but 𝑁 ≰ 𝐻. We can actually still make a normal subgroup of 𝐻 by
intersecting 𝐻 with 𝑁.
Theorem. Let 𝐻 ≤ 𝐺 and 𝑁 ⊴ 𝐺. Then 𝐻 ∩ 𝑁 ⊴ 𝐻 and 𝐻⟋𝐻 ∩ 𝑁 ≅ 𝐻𝑁⟋𝑁.

Proof. When 𝑁 ⊴ 𝐺,𝐻 ≤ 𝐺, then 𝐻𝑁 = {ℎ𝑛 ∶ ℎ ∈ 𝐻, 𝑛 ∈ 𝑁} is a subgroup of 𝐺, and
𝐻𝑁 = ⟨𝐻,𝑁⟩.
Consider the function 𝜑 ∶ 𝐻 → 𝐻𝑁⟋𝑁,𝜑(ℎ) ≔ ℎ𝑁. This is a well-defined surjective homo-
morphism. 𝜑(ℎ) = ℎ𝑁 = 𝑁 ⟺ ℎ ∈ 𝑁, but also ℎ ∈ 𝐻, so ℎ ∈ 𝑁 ∩ 𝐻 is the kernel. So by
the First Isomorphism Theorem, 𝐻⟋𝑁 ∩ 𝐻 ≅ 𝐻𝑁⟋𝑁 (note that 𝐻𝑁⟋𝑁 ≤ 𝐺⟋𝑁).

8.4. Third isomorphism theorem
We noted earlier that normality is preserved inside quotient groups. We can say something
analogous about quotients.
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Theorem. Let 𝑁 ≤ 𝑀 ≤ 𝐺 such that 𝑁 ⊴ 𝐺 and 𝑀 ⊴ 𝐺. Then 𝑀⟋𝑁 ⊴ 𝐺⟋𝑁, and
𝐺/𝑁⟋𝑀/𝑁 = 𝐺⟋𝑀.

Proof. Let us define 𝜑 ∶ 𝐺⟋𝑁 → 𝐺⟋𝑀 by 𝜑(𝑔𝑁) = 𝑔𝑀. 𝜑 is well defined since 𝑁 ≤ 𝑀, and
it is a surjective homomorphism. 𝜑(𝑔𝑁) = 𝑔𝑀 = 𝑀 ⟺ 𝑔 ∈ 𝑀, so its kernel is𝑀⟋𝑁. By
the First Isomorphism Theorem, 𝐺/𝑁⟋𝑀/𝑁 ≅ 𝐺⟋𝑀.

Example. (i) Consider ℤ,𝐻 = 3ℤ, 𝑁 = 5ℤ. Then by the Second Isomorphism Theorem,
we have

𝐻 ∩ 𝑁 ⊴ 𝐻 ⟹ 15ℤ ⊴ 3ℤ
and, since 𝐻𝑁 = ⟨𝐻,𝑁⟩ = ℤ as 3 and 5 are coprime,

𝐻⟋𝐻 ∩ 𝑁 ≅ 𝐻𝑁⟋𝑁 ⟹ 3ℤ⟋15ℤ ≅ ℤ⟋5ℤ ≅ ℤ5

(ii) Let 𝐶4 = ⟨𝑎⟩, 𝐶2 = ⟨𝑏⟩, 𝐺 = 𝐶4 × 𝐶2, 𝑁 = ⟨(𝑎2, 𝑏)⟩, 𝑀 = ⟨(𝑒, 𝑏), (𝑎2, 𝑒)⟩. Then
𝑁 ≤ 𝑀 ≤ 𝐺. By the Third Isomorphism Theorem,

(𝐶4 × 𝐶2)/𝑁⟋𝑀/𝑁 = 𝐶4 × 𝐶2⟋𝑀 = 𝐶2

8.5. Simple groups
Definition. A group 𝐺 is simple if its only normal subgroups are trivial {𝑒} and 𝐺 itself.

• 𝐶𝑝 where 𝑝 is prime is a simple group.
• 𝐴5 is simple. A proof of this will be shown later in the course.
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9. Group actions
9.1. Definition
For many of the examples of groups that we have encountered, we have identified elements
of that group by their effect on some set, for example the symmetric group 𝑆𝑛 permuting
the set {1,⋯ , 𝑛}, and the Möbius group being functions ℂ̂ → ℂ̂, and the dihedral group 𝐷2𝑛
being symmetries of an 𝑛-gon. While we can study groups purely algebraically, it can be very
useful to see how a group acts on other objects.

Definition. Let 𝐺 be a group, 𝑋 be a set. An action of 𝐺 on 𝑋 is a function 𝛼 ∶ 𝐺 × 𝑋 → 𝑋 ,
written

𝛼(𝑔, 𝑥) = 𝛼𝑔(𝑥)
satisfying:

• 𝛼𝑔(𝑥) ∈ 𝑋 (implied by the function’s type)

• 𝛼𝑒(𝑥) = 𝑥; ∀𝑥 ∈ 𝑋
• 𝛼𝑔 ∘ 𝛼ℎ(𝑥) = 𝛼𝑔ℎ(𝑥); ∀𝑔, ℎ ∈ 𝐺, ∀𝑥 ∈ 𝑋

We can write 𝐺 ↷ 𝑋 .
Here are some examples.

(i) Take any 𝐺, 𝑋 and define the trivial action 𝛼𝑔(𝑥) = 𝑥.
(ii) 𝑆𝑛 ↷ {1, 2,⋯ , 𝑛} by permutation.
(iii) 𝐷2𝑛 ↷ {vertices of a regular 𝑛-gon}, and labelling the vertices as 1 to 𝑛, we have𝐷2𝑛 ↷

{1, 2,⋯ , 𝑛}.
(iv) ℳ ↷ ℂ̂ via Möbius maps.

(v) Symmetries of a cube act on the set of vertices, the set of edges, and even (for example)
the set of pairs of opposite faces of the cube.

Examples (i), (ii) show that more than one group can act on a given set. Example (iv) shows
that one group can act on many sets. Group actions help us deduce information about the
group.

Lemma. ∀𝑔 ∈ 𝐺, 𝛼𝑔 ∶ 𝑋 → 𝑋, 𝑥 ↦ 𝛼𝑔(𝑥) is a bijection.

Proof. We have that
𝛼𝑔(𝛼𝑔−1(𝑥)) = 𝛼𝑔𝑔−1(𝑥) = 𝛼𝑒(𝑥) = 𝑥

Similarly,
𝛼𝑔−1(𝛼𝑔(𝑥)) = 𝛼𝑔−1𝑔(𝑥) = 𝛼𝑒(𝑥) = 𝑥

So the composition 𝛼𝑔 ∘ 𝛼𝑔−1 is the identity on 𝑋 , and 𝛼𝑔−1 ∘ 𝛼𝑔 is also the identity on 𝑋 , so
𝛼𝑔 is a bijection.
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We can also define actions by linking 𝐺 to Sym(𝑋).
Proposition. Let 𝐺 be a group, 𝑋 a set. Then 𝛼∶ 𝐺 × 𝑋 → 𝑋 is an action if and only if the
function 𝜌∶ 𝐺 → Sym(𝑋) where 𝜌(𝑔) = 𝛼𝑔 is a homomorphism.

Proof. 𝛼 is an action. By the above lemma, 𝛼𝑔 is a bijection from 𝑋 → 𝑋 . So 𝛼𝑔 ∈ Sym(𝑋).
Now, we want to show that 𝜌 is a homomorphism. 𝜌(𝑔ℎ) = 𝛼𝑔ℎ, and for all 𝑥 ∈ 𝑋 , 𝛼𝑔ℎ(𝑥) =
𝛼𝑔 ∘ 𝛼ℎ(𝑥), so 𝜌(𝑔ℎ) = 𝛼𝑔ℎ = 𝜌(𝑔) ∘ 𝜌(ℎ). So 𝜌 is a homomorphism.
In the other direction, given that 𝜌 is a homomorphism 𝐺 → Sym(𝑋), we can define an
action 𝛼∶ 𝐺 × 𝑋 → 𝑋 by 𝛼(𝑔, 𝑥) = 𝛼𝑔(𝑥) ≔ 𝜌(𝑔)(𝑥). 𝛼 is an action because 𝛼𝑔 ∘ 𝛼ℎ =
𝜌(𝑔)𝜌(ℎ) = 𝜌(𝑔ℎ) = 𝛼𝑔ℎ, and the identity element 𝜌(𝑒) is the identity element in Sym(𝑋), so
𝛼𝑒(𝑥) = 𝜌(𝑒)(𝑥) = 𝑥 as required.

Sometimes we write 𝑔(𝑥) instead of the more verbose 𝛼𝑔(𝑥).
Definition. The kernel of an action 𝛼∶ 𝐺 × 𝑋 → 𝑋 is the kernel of the homomorphism
𝜌∶ 𝐺 → Sym(𝑋). These are all the elements of 𝐺 that preserve every element of 𝑋 .
Note that 𝐺⟋ker 𝜌 ≅ Im 𝜌 ≤ Sym(𝑋). So in particular, if the kernel is trivial, then 𝐺 ≤
Sym(𝑋).
(i) 𝐷2𝑛 acting on the vertices {1,⋯ , 𝑛} of an 𝑛-gon has ker 𝜌 = {𝑒}. Every non-trivial

element of 𝐷2𝑛 moves at least one vertex. So 𝐷2𝑛 ≤ 𝑆𝑛 by the First Isomorphism
Theorem.

(ii) Let 𝐺 be symmetries of a cube, and consider 𝑋 = {unordered pairs of opposite faces}.
Then |𝑋| = 3 as there are three unordered pairs of opposite faces. So 𝜌∶ 𝐺 → 𝑆3.
Clearly there are symmetries of the cube that realise all the permutations of 𝑋 , so 𝜌
is surjective. So 𝐺⟋ker 𝜌 ≅ 𝑆3. Note that there are clearly non-trivial symmetries (e.g.
reflection) that preserve 𝑋 , so the kernel is non-trivial.

Definition. An action 𝐺 ↷ 𝑋 is called faithful if ker 𝜌 = {𝑒}.
Then 𝐺 is isomorphic to a subgroup of Sym𝑋 by the First Isomorphism Theorem.

9.2. Orbits and stabilisers
Which elements of 𝑋 can we ‘get to’ from a certain 𝑥 ∈ 𝑋 using the action of 𝐺?
Definition. Let 𝐺 ↷ 𝑋 , 𝑥 ∈ 𝑋 . The orbit of 𝑥 is

Orb(𝑥) = 𝐺(𝑥) ≔ {𝑔(𝑥) ∶ 𝑔 ∈ 𝐺} ⊆ 𝑋

Which group elements leave a given 𝑥 unchanged?
Definition. The stabiliser of 𝑥 is defined by

Stab(𝑥) = 𝐺𝑥 ≔ {𝑔 ∈ 𝐺 ∶ 𝑔(𝑥) = 𝑥} ⊆ 𝐺

163



III. Groups

Definition. An action is transitive if Orb(𝑥) = 𝑋 , i.e. we can get to any element from any
other element.

As an example, let 𝐺 = 𝑆3. Then we could say, for example, 𝐺 ↷ {1, 2, 3, 4}.

• Orb(1) = Orb(2) = Orb(3) = {1, 2, 3}

• Orb(4) = {4}

• Stab(1) = {𝑒, (2 3)}

• Stab(2) = {𝑒, (1 3)}

• Stab(3) = {𝑒, (1 2)}

• Stab(4) = 𝐺

Lemma. For any 𝑥 ∈ 𝑋 , Stab(𝑥) ≤ 𝐺.

Proof. Associativity is inherited.

• (closure) 𝑔, ℎ ∈ Stab(𝑥) implies that (𝑔ℎ)(𝑥) = 𝑔(ℎ(𝑥)) = 𝑔(𝑥) = 𝑥 so 𝑔ℎ ∈ Stab(𝑥).

• (identity) 𝑒(𝑥) = 𝑥 by definition, so 𝑒 ∈ Stab(𝑥).

• (inverses) if 𝑔 ∈ Stab(𝑥) then 𝑔(𝑥) = 𝑥, and therefore 𝑥 = 𝑔−1(𝑥), so 𝑔−1 ∈ Stab(𝑥).

Recall from Numbers and Sets: a partition of a set 𝑋 is a set of subsets of 𝑋 such that each
𝑥 ∈ 𝑋 belongs to exactly one subset in the partition.

Lemma. Let 𝐺 ↷ 𝑋 . Then the orbits partition 𝑋 .

Proof. • Firstly, for any 𝑥 ∈ 𝑋 , 𝑥 ∈ Orb(𝑥). So the union of all orbits is 𝑋 .

• Suppose that the orbits are not all disjoint. Let 𝑧 ∈ Orb(𝑥) ∩ Orb(𝑦). Then ∃𝑔1 ∈ 𝐺
such that 𝑔1(𝑥) = 𝑧, and also ∃𝑔2 ∈ 𝐺 such that 𝑔2(𝑦) = 𝑧, i.e. 𝑦 = 𝑔−12 (𝑧). So
𝑦 = 𝑔−12 𝑔1(𝑥). Thus, for any 𝑔 ∈ 𝐺, 𝑔(𝑦) = 𝑔𝑔−12 𝑔1(𝑥) ∈ Orb(𝑥) so Orb(𝑦) ⊆ Orb(𝑥).
Vice versa, Orb(𝑥) ⊆ Orb(𝑦), so Orb(𝑥) = Orb(𝑦). Thus orbits are either disjoint or
equal.

Recall the proof of disjoint cycle notation for 𝜎 ∈ 𝑆𝑛: we were really finding the orbits in
{1, 2,⋯ , 𝑛} under ⟨𝜎⟩, which are disjoint. Note that the sizes of orbits can be different (unlike
cosets, where the sizes are always the same).

Theorem (Orbit-Stabiliser Theorem). Let 𝐺 ↷ 𝑋 , 𝐺 finite. Then for any 𝑥 ∈ 𝑋 ,

|𝐺| = |Orb𝑥| ⋅ |Stab𝑥|
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Proof. 𝑔(𝑥) = ℎ(𝑥) ⟺ ℎ−1𝑔(𝑥) = 𝑥 ⟺ ℎ−1𝑔 ∈ Stab(𝑥). By a previous result, this
statement is true if and only if 𝑔 Stab(𝑥) = ℎ Stab(𝑥) as cosets. So distinct points in the orbit
of 𝑥 are in bijection with distinct cosets of the stabiliser. So |Orb𝑥| = |𝐺 ∶ Stab𝑥| and the
result follows.

In particular, notice that all elements in a given coset 𝑔 Stab(𝑥) do the same thing to 𝑥 as 𝑔:
an element of this coset has the form 𝑔ℎ where ℎ ∈ Stab(𝑥). Then 𝑔ℎ(𝑥) = 𝑔(𝑥).
This theorem is very powerful, we can use it for investigating groups further. For example,
we can construct another proof that |𝐷2𝑛| = 2𝑛 using the Orbit-Stabiliser theorem. 𝐷2𝑛 acts
transitively on {1, 2,⋯ , 𝑛} so |Orb(1)| = 𝑛. |Stab(1)| = 2 because only the identity and the
reflection through this point stabilise the point. So |𝐷2𝑛| = 2𝑛.

9.3. The Platonic solids
Example (tetrahedron). A tetrahedron has 4 faces (regular, equilateral triangles), 4 vertices,
and 6 edges. We will label the vertices 1, 2, 3, 4. Let 𝐺 be the group of symmetries of the
tetrahedron. Clearly 𝐺 acts transitively on the vertices (we can get from any vertex to any
other through a symmetry). There is no non-trivial symmetry that fixes all the vertices, so
𝜌∶ 𝐺 → 𝑆4 is an injective homomorphism.
Orb(1) = {1, 2, 3, 4} as 𝐺 is transitive. Stab(1) = all of the symmetries of the face {2, 3, 4}, i.e.

Stab(1) = {𝑒, (2 3 4), (2 4 3), (2 3), (3 4), (2 4)} ≅ 𝐷6 ≅ 𝑆3

Then |𝐺| = |Orb(1)| ⋅ |Stab(1)| = 4 ⋅ 6 = 24 = |𝑆4|. Since 𝐺 ≤ 𝑆4 and their orders match,
𝐺 = 𝑆4.
Now let 𝐺+ be the subgroup of 𝐺 formed only of the rotations in 𝐺. Again, Orb(1) =
{1, 2, 3, 4}. Now, Stab(1) = {𝑒, (2 3 4), (2 4 3)}. So |𝐺+| = |Orb(1)| ⋅ |Stab(1)| = 4⋅3 = 12. Since
𝐺+ ≤ 𝐺 = 𝑆4, then we know that 𝐺+ = 𝐴4. Indeed, we have all 3-cycles (since these are
rotations through vertices), and all elements of the form (1 2)(3 4) since these are rotations
in the axis through the midpoints of opposite edges.

Example (cube). We label the vertices from 1 to 8 here, and let 𝐺 be the group of sym-
metries of the cube acting on the vertices. Clearly the action is transitive, so |Orb(1)| = 8.
Stab(1) = {𝑒, 𝑟, 𝑟2, 𝑠1, 𝑠2, 𝑠3} where 𝑟 and 𝑟2 are the rotations through the axis that passes
through vertex 1, and where the 𝑠𝑖 are the reflections through three planes containing ver-
tex 1. So |Stab(1)| = 6, so |𝐺| = 48. We will determine this group completely later on.
Let𝐺+ be the subgroup of𝐺 containing the rotations of𝐺. Then, the action is still transitive,
and |Stab(1)| = 3, since we are only looking at the rotations. So |𝐺+| = 24.
Now, to determine this group, let 𝐺+ act on the 4 diagonals in the cube. This gives us a ho-
momorphism 𝜌∶ 𝐺+ → 𝑆4. We have all 4-cycles in Im 𝜌, since rotating the cube by quarter
turns through the 𝑥, 𝑦, 𝑧 axes permute the diagonals in this way. We also have all transpos-
itions (2-cycles) by rotating the cube by a half turn through the plane of two diagonals. In
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example sheet 2, we prove that ⟨(1 2), (1 2 3 4)⟩ = 𝑆4, so 𝜌 is surjective. But since the orders
match, 𝐺+ ≅ 𝑆4.
The aforementioned solids are two of the five Platonic solids; the solids inℝ3 that have poly-
gonal faces, straight edges and vertices such that their group of symmetries acts transitively
on triples (vertex, incident edge, incident face). These are therefore particularly symmetric
solids for having this transitive action. The other solids are the octahedron, dodecahedron
and icosahedron. The cube and octahedron are ‘dual’, i.e. they can be inscribed in each
other with vertices placed in the centres of faces. The dodecahedron and icosahedron are
also dual. Dual solids have the same symmetry groups, so there are only three symmetry
groups of Platonic solids.

9.4. Cauchy’s theorem
Theorem. Let 𝐺 be a finite group, 𝑝 a prime such that 𝑝 ∣ |𝐺|. Then 𝐺 has an element of
order 𝑝.

Proof. Let 𝑝 ∣ |𝐺|. Consider 𝐺𝑝 = 𝐺 × 𝐺 ×⋯ × 𝐺. This is the group formed of 𝑝-tuples of
elements of 𝐺 with coordinate-wise composition. Consider the subset 𝑋 ⊆ 𝐺𝑝, given by

𝑋 ≔ {(𝑔1, 𝑔2,⋯ , 𝑔𝑝) ∈ 𝐺𝑝 ∶ 𝑔1𝑔2⋯𝑔𝑝 = 𝑒}

which can be described as ‘𝑝-tuples multiplying to 𝑒’. Note that if 𝑔 ∈ 𝐺 has order 𝑝, then
(𝑔, 𝑔,⋯ , 𝑔) ∈ 𝑋 ; and that if (𝑔, 𝑔,⋯ , 𝑔) ∈ 𝑋 where 𝑔 ≠ 𝑒, then 𝑔 has order 𝑝.
Now take a cyclic group 𝐶𝑝 = ⟨𝑎⟩, and let 𝐶𝑝 ↷ 𝑋 by ‘cycling’:

𝑎(𝑔1, 𝑔2,⋯ , 𝑔𝑝) = (𝑔2,⋯ , 𝑔𝑝, 𝑔1)

This really is an action:

• If 𝑔1𝑔2⋯𝑔𝑝 = 𝑒, then 𝑒 = 𝑔−11 𝑒𝑔1 = 𝑔−11 𝑔1𝑔2⋯𝑔𝑝𝑔1 = 𝑔2⋯𝑔𝑝𝑔1 as required. Of
course, this applies inductively for any power of 𝑎.

• 𝑒(𝑔1,⋯ , 𝑔𝑝) = (𝑔1,⋯ , 𝑔𝑝) as required.

• 𝑎𝑘(𝑔1,⋯ , 𝑔𝑝) = (𝑔𝑘+1,⋯ , 𝑔𝑘) = 𝑎 ⋅ 𝑎⋯𝑎(𝑔1,⋯ , 𝑔𝑘).
Since orbits partition 𝑋 , the sum of the sizes of the orbits must be |𝑋|. We know that |𝑋| =
|𝐺|𝑝−1, since all choices of 𝑔𝑖 are free apart from the last one, which must be the inverse of
the product of the other elements. So we have 𝑝−1 choices of |𝐺| elements, so |𝑋| = |𝐺|𝑝−1.
So since 𝑝 ∣ |𝐺|, then 𝑝 ∣ |𝑋|. By the Orbit-Stabiliser theorem:

||Orb((𝑔1,⋯ , 𝑔𝑝))|| ⋅ ||Stab((𝑔1,⋯ , 𝑔𝑝))|| = ||𝐶𝑝|| = 𝑝

So any orbit has size 1 or 𝑝, and they sum to |𝑋| = 𝑝𝑘 for some 𝑘 ∈ ℕ. So

|𝑋| = 𝑝𝑘 = ∑
orbits of size 1

1 + ∑
orbits of size 𝑝

𝑝
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Clearly, |Orb((𝑒, 𝑒,⋯ , 𝑒))| = 1. So there must be some other orbits of size 1, so that 𝑝 divides
the amount of orbits of size 1. But orbits of size 1 must be of the form Orb((𝑔, 𝑔,⋯ , 𝑔)) in
order to have the same form under the action of 𝑎. So there exists some 𝑔 ≠ 𝑒 ∈ 𝐺 such that
(𝑔, 𝑔,⋯𝑔) ∈ 𝑋 , i.e. 𝑔𝑝 = 𝑒, so 𝑜(𝑔) = 𝑝.

9.5. Left regular action
Lemma. Let 𝐺 be a group. 𝐺 acts on itself by left multiplication. This action is faithful and
transitive.

Proof. • For any 𝑔, 𝑥 ∈ 𝐺, 𝑔𝑥 ∈ 𝐺
• 𝑒(𝑥) = 𝑒 ⋅ 𝑥 = 𝑥
• (𝑔1𝑔2)𝑥 = 𝑔1(𝑔2𝑥)

So it really is an action. It is faithful because 𝑔(𝑥) = 𝑔𝑥 = 𝑥 implies 𝑔 = 𝑒. It is transitive,
because given any 𝑥, 𝑦 ∈ 𝐺, the action 𝑔 = 𝑦𝑥−1 gives 𝑔(𝑥) = 𝑦.

Definition. This left-multiplication action of a group on itself is known as the left regular
action.

9.6. Cayley’s theorem
Theorem. Every group is isomorphic to a subgroup of a symmetric group.

Proof. Let 𝐺 ↷ 𝐺 by the left regular action. This gives a homomorphism 𝜌∶ 𝐺 → Sym(𝐺),
with ker 𝜌 = {𝑒} since the action is faithful. So, by theFirst IsomorphismTheorem,𝐺⟋ker 𝜌 =
𝐺 ≅ Im 𝜌 ≤ Sym(𝐺).

Proposition. Let𝐻 ≤ 𝐺. Then𝐺 acts on the set of left cosets of𝐻 in𝐺 by leftmultiplication,
and this action is transitive. (This is called the ‘left coset action’).

Proof. We check the conditions for actions.

• 𝑔(𝑔1𝐻) = 𝑔𝑔1𝐻, so 𝑔(𝑔1𝐻) is a left coset.
• 𝑒(𝑔1𝐺) = 𝑒𝑔1𝐻 = 𝑔1𝐻
• (𝑔𝑔′)(𝑔1𝐻) = 𝑔𝑔′𝑔1𝐻 = 𝑔(𝑔′(𝑔1𝐻))

So this is an action. Given two cosets 𝑔1𝐻 and 𝑔2𝐻, the element (𝑔1𝑔−12 ) acts on 𝑔2𝐻 to give
𝑔1𝐻, so it is transitive.

Note:

• This is the left regular action if 𝐻 = {𝑒}.
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• This induces actions of 𝐺 on its quotient groups 𝐺⟋𝑁.
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10. Conjugation
10.1. Conjugation actions
Definition. Given 𝑔, ℎ ∈ 𝐺, the element ℎ𝑔ℎ−1 is the conjugate of 𝑔 by ℎ.
We should think of conjugate elements as doing the same thing but from different ‘points of
view’—we change perspective by doing ℎ−1, then do the action 𝑔, then reset the perspective
back to normal using ℎ.
Here is an example using 𝐷10, where the vertices of the regular pentagon are 𝑣1…𝑣5 clock-
wise. Consider the conjugates 𝑠 and 𝑟𝑠𝑟−1, where 𝑠 is a reflection through 𝑣1 and the centre,
and 𝑟 is a rotation by 2𝜋

5
clockwise. So 𝑟𝑠𝑟−1 ends up being just a reflection through 𝑣2 and

the centre. So the result of conjugating the reflection by a rotation is still a reflection, just
from a different point of view.

Another example is in matrix groups such as 𝐺𝐿𝑛(ℝ) where a conjugate matrix represents
the same transformation but with respect to a different basis. This will be covered in more
detail later.

As a general principle, conjugate elements can be expected to have similar properties. We
will now prove some of these such properties.

Proposition. A group 𝐺 acts on itself by conjugation.

Proof. • 𝑔(𝑥) = 𝑔𝑥𝑔−1 ∈ 𝐺 for any 𝑔, 𝑥 ∈ 𝐺
• 𝑒(𝑥) = 𝑒𝑥𝑒−1 = 𝑥 for any 𝑥 ∈ 𝐺
• 𝑔(ℎ(𝑥)) = 𝑔ℎ𝑥ℎ−1𝑔−1 = (𝑔ℎ)(𝑥)

Definition. The kernel, orbits and stabilisers have special names:

• The kernel of the conjugation action of 𝐺 on itself is the centre 𝑍(𝐺):

𝑍(𝐺) ≔ {𝑔 ∈ 𝐺 ∶ ∀ℎ ∈ 𝐺, 𝑔ℎ𝑔−1 = ℎ ⟺ 𝑔ℎ = ℎ𝑔}

In less formal terms, 𝑍(𝐺) is the set of ‘elements that commute with everything’.
• An orbit of this action is called a conjugacy class:

ccl(ℎ) ≔ {𝑔ℎ𝑔−1 ∶ 𝑔 ∈ 𝐺}

Sometimes this is written ccl𝐺(ℎ) to clarify which group we’re working on.
• Stabilisers are called centralisers:

𝐶𝐺(ℎ) ≔ {𝑔 ∈ 𝐺 ∶ 𝑔ℎ𝑔−1 = ℎ ⟺ 𝑔ℎ = ℎ𝑔}

This is the set of ‘elements that commute with ℎ’.
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Exercise: 𝑍(𝐺) = ⋂ℎ∈𝐺 𝐶𝐺(ℎ).

Definition. If 𝐻 ≤ 𝐺, 𝑔 ∈ 𝐺, then the conjugate of 𝐻 by 𝑔 is:

𝑔𝐻𝑔−1 = {𝑔ℎ𝑔−1 ∶ ℎ ∈ 𝐻}

Proposition. Let 𝐻 ≤ 𝐺, 𝑔 ∈ 𝐺. Then 𝑔𝐻𝑔−1 is also a subgroup of 𝐺.

Proof. We check the group axioms.

• (closure) If 𝑔ℎ1𝑔−1, 𝑔ℎ2𝑔−1 ∈ 𝑔𝐻𝑔−1, then

(𝑔ℎ1𝑔−1)(𝑔ℎ2𝑔−1) = 𝑔ℎ1(𝑔−1𝑔)ℎ2𝑔−1 = 𝑔(ℎ1ℎ2)𝑔−1 ∈ 𝑔𝐻𝑔−1

• (identity) 𝑔𝑒𝑔−1 = 𝑒 ∈ 𝑔𝐻𝑔−1

• (inverses) Given 𝑔ℎ𝑔−1 ∈ 𝑔𝐻𝑔−1, the inverse is 𝑔ℎ−1𝑔−1, which of course is an element
of 𝑔𝐻𝑔−1.

Note that 𝑔𝐻𝑔−1 is isomorphic to 𝐻 (proof as exercise).

Proposition. Agroup𝐺 acts by conjugation on the set of its subgroups. The singleton orbits
are the normal subgroups.

Proof as exercise. (Recall that 𝑁 ⊴ 𝐺 ⟺ ∀𝑔 ∈ 𝐺, 𝑔𝑁𝑔−1 = 𝑁, which is the same as being
stable under conjugation)

Proposition. Normal subgroups are those subgroups that are unions of conjugacy classes.
Recall that ccl(ℎ) = {𝑔ℎ𝑔−1 ∶ 𝑔 ∈ 𝐺}.

Proof. Let 𝑁 ⊴ 𝐺. Then if ℎ ∈ 𝑁, then 𝑔ℎ𝑔−1 ∈ 𝑁 for all 𝑔 ∈ 𝐺 because 𝑁 is a normal
subgroup. So ccl(ℎ) ⊆ 𝑁. So 𝑁 is a union of conjugacy classes of its elements;

𝑁 = ⋃
ℎ∈𝑁

ccl(ℎ)

Conversely, if𝐻 is a subgroup that is a union of conjugacy classes, then ∀𝑔 ∈ 𝐺, ∀ℎ ∈ 𝐻, we
have 𝑔ℎ𝑔−1 ∈ 𝐻. So 𝐻 ⊴ 𝐺.

As an example, consider𝐴3 = {𝑒, (1 2 3), (1 3 2)} ⊴ 𝑆3. Now, 𝐴3 = {𝑒}⊔ {(1 2 3), (1 3 2)}. Note
that (1 2 3), (1 3 2) are conjugates in 𝑆3 but they are not conjugates in 𝐴3.
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10.2. Conjugation in symmetric groups
Lemma. Given a 𝑘-cycle (𝑎1…𝑎𝑘) and 𝜎 ∈ 𝑆𝑛, we have

𝜎(𝑎1…𝑎𝑘)𝜎−1 = (𝜎(𝑎1)…𝜎(𝑎𝑘))

Proof. Let us apply the left hand side transformation to 𝜎(𝑎𝑖).

𝜎(𝑎1…𝑎𝑘)𝜎−1𝜎(𝑎𝑖) = 𝜎(𝑎1…𝑎𝑘)(𝑎𝑖) = 𝜎(𝑎𝑖+1mod 𝑘)

Now let us consider the effect of the transformation on 𝜎(𝑏) for 𝑏 ≠ 𝑎𝑖.

𝜎(𝑎1…𝑎𝑘)𝜎−1𝜎(𝑏) = 𝜎(𝑎1…𝑎𝑘)(𝑏) = 𝜎(𝑏)

So these are unchanged. Therefore, the left hand side is equal to the right hand side.

Proposition. Two elements of 𝑆𝑛 are conjugate (in 𝑆𝑛, i.e. via a conjugation by some ele-
ment in 𝑆𝑛) if and only if they have the same cycle type.

Proof. Two elements that are conjugate will have the same cycle type: given 𝜎 ∈ 𝑆𝑛, we
can write 𝜎 as a product of disjoint cycles, say 𝜎 = 𝜎1…𝜎𝑚. Then if 𝜌 ∈ 𝑆𝑛, 𝜌𝜎𝜌−1 =
𝜌𝜎1𝜌−1𝜌𝜎2𝜌−1…𝜌𝜎𝑚𝜌−1 which is a product of the conjugates of the cycles. By the above
lemma, the conjugate of a 𝑘-cycle is a 𝑘-cycle, and because 𝜌 is bijective the 𝜌𝜎𝑖𝜌−1 are all
disjoint, so we retain the cycle type of 𝜎 under conjugation in 𝑆𝑛.
Conversely, if 𝜎 and 𝜏 have the same cycle type, then we can write

𝜎 = (𝑎1…𝑎𝑘1)(𝑎𝑘1+1…𝑎𝑘2)…

𝜏 = (𝑏1…𝑏𝑘1)(𝑏𝑘1+1…𝑏𝑘2)…
in disjoint cycle notation, including singletons. Then all of {1,… , 𝑛} appear in both 𝜎 and
𝜏. Then, setting 𝜌 to be defined by 𝜌(𝑎𝑖) = 𝑏𝑖, which is indeed a permutation, we obtain
𝜌𝜎𝜌−1 = 𝜏.

Let us consider the conjugacy classes of 𝑆4. We can compute the size of 𝐶𝑆4 using the
orbit-stabiliser theorem; the conjugacy class is the orbit of a particular point under conjuga-
tion.

cycle type example element size of ccl size of 𝐶𝑆4 sign

1, 1, 1, 1 𝑒 1 24 +1
2, 1, 1 (1 2) 6 4 −1
2, 2 (1 2)(3 4) 3 8 +1
3, 1 (1 2 3) 8 3 +1
4 (1 2 3 4) 6 4 −1

From this, we can compute all normal subgroups of 𝑆4, since normal subgroups:
• must contain 𝑒
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• must be a union of conjugacy classes

• must have an order that divides |𝑆4| = 24
To check all possibilities, we will look through all divisors of 24, and check whether we can
form a union of conjugacy classes.

• (1) {𝑒}
• (2) impossible, no conjugacy classes have orders which add to 2

• (3) impossible

• (4) 3 + 1 = 4 so we have

{𝑒, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} ≅ 𝐶2 × 𝐶2

This subgroup is often referred to as 𝑉4, the Klein four group.
• (6) impossible

• (8) impossible

• (12) 1 + 3 + 8 = 12 so we have

{𝑒, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 3 4), (1 4 3), (2 3 4), (2 4 3)} = 𝐴4

• (24) 𝑆4 ⊴ 𝑆4.
So all possible quotients of 𝑆4 are:

• 𝑆4⟋{𝑒} ≅ 𝑆4

• 𝑆4⟋𝑉4 = {𝑉4, (1 2)𝑉4, (1 3)𝑉4, (2 3)𝑉4, (1 2 3)𝑉4, (1 3 2)𝑉4} ≅ 𝑆3

• 𝑆4⟋𝐴4
≅ 𝐶2

• 𝑆4⟋𝑆4 ≅ {𝑒}

Exercise: repeat with 𝑆5.

10.3. Conjugation in alternating groups
Note that

ccl𝑆𝑛(𝜎) = {𝜏𝜎𝜏−1 ∶ 𝜏 ∈ 𝑆𝑛}
ccl𝐴𝑛(𝜎) = {𝜏𝜎𝜏−1 ∶ 𝜏 ∈ 𝐴𝑛}

So clearly ccl𝐴𝑛(𝜎) ⊆ ccl𝑆𝑛(𝜎) since 𝐴𝑛 ⊆ 𝑆𝑛. But elements that are conjugate in 𝑆𝑛may not
be conjugate in 𝐴𝑛, for example (1 2 3) and (1 3 2) in 𝑆3 and 𝐴3.

172



10. Conjugation

Some conjugacy classes of 𝑆𝑛 are split into smaller conjugacy classes in 𝐴𝑛, since some ele-
ments require elements of 𝑆𝑛 ∖ 𝐴𝑛 to conjugate with each other. By the orbit-stabiliser the-
orem,

|𝑆𝑛| = ||ccl𝑆𝑛(𝜎)|| ⋅ ||𝐶𝑆𝑛(𝜎)||
|𝐴𝑛| = ||ccl𝐴𝑛(𝜎)|| ⋅ ||𝐶𝐴𝑛(𝜎)||

But |𝑆𝑛| = 2|𝐴𝑛|, and ||ccl𝑆𝑛(𝜎)|| ≥ ||ccl𝐴𝑛(𝜎)||. So either:
• ccl𝑆𝑛(𝜎) = ccl𝐴𝑛(𝜎) and ||𝐶𝑆𝑛(𝜎)|| = 2||𝐶𝐴𝑛(𝜎)||, or
• ||ccl𝑆𝑛(𝜎)|| = 2||ccl𝐴𝑛(𝜎)|| and 𝐶𝑆𝑛(𝜎) = 𝐶𝐴𝑛(𝜎)

Definition. When ||ccl𝑆𝑛(𝜎)|| = 2||ccl𝐴𝑛(𝜎)||, we say that the conjugacy class of 𝜎 splits in 𝐴𝑛.

When does a conjugacy class split in 𝐴𝑛?

Proposition. The conjugacy class of 𝜎 ∈ 𝐴𝑛 splits in 𝐴𝑛 if and only if there are no odd
permutations that commute with 𝜎.

Proof.
||ccl𝑆𝑛(𝜎)|| = 2||ccl𝐴𝑛(𝜎)|| ⟺ 𝐶𝑆𝑛(𝜎) = 𝐶𝐴𝑛(𝜎)

𝐶𝐴𝑛(𝜎) = 𝐴𝑛 ∩ 𝐶𝑆𝑛(𝜎)

𝐴𝑛 ∩ 𝐶𝑆𝑛(𝜎) = 𝐶𝑆𝑛(𝜎) ⟺ 𝐶𝑆𝑛(𝜎) contains no odd elements
So no odd permutation is in this centraliser.

Let us consider an example for conjugacy classes in 𝐴4.

cycle type example element odd element in 𝐶𝑆4? size of ccl𝑆4 size of ccl𝐴4

1, 1, 1, 1 𝑒 yes, e.g. (1 2) 1 1
2, 2 (1 2)(3 4) yes, e.g. (1 2) 3 3
3, 1 (1 2 3) no 8 two classes of size 4

There is no odd element in 𝐶𝑆4(1 2 3) because ||𝐶𝑆4(1 2 3)|| = 3 and clearly 𝐶𝑆4 contains
⟨(1 2 3)⟩, which is a set of 3 elements, so 𝐶𝑆4 = ⟨(1 2 3)⟩ which are all even elements.
Let us now consider conjugacy classes in 𝐴5.

cycle type example element odd element in 𝐶𝑆5? size of ccl𝑆5 size of ccl𝐴5

1, 1, 1, 1, 1 𝑒 yes, e.g. (1 2) 1 1
2, 2, 1 (1 2)(3 4) yes, e.g. (1 2) 15 15
3, 1, 1 (1 2 3) yes, e.g. (4 5) 20 20
5 (1 2 3 4 5) no 24 two classes of size 12

Lemma. 𝐶𝑆5(1 2 3 4 5) = ⟨(1 2 3 4 5)⟩.
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Proof.
||ccl𝑆5(1 2 3 4 5)|| =

5 ⋅ 4 ⋅ 3 ⋅ 2
5 = 24

By the orbit-stabiliser theorem,

|𝑆5| = 120 = 24||𝐶𝑆5(1 2 3 4 5)|| ⟹ ||𝐶𝑆5(1 2 3 4 5)|| = 5

Clearly ⟨(1 2 3 4 5)⟩ ⊆ 𝐶𝑆5(1 2 3 4 5) so ⟨(1 2 3 4 5)⟩ = 𝐶𝑆5(1 2 3 4 5). Note, this contains only
even elements.

Theorem. 𝐴5 is a simple group.

Proof. Normal subgroups must be unions of conjugacy classes, they must contain 𝑒, and
their order must divide the order of the group |𝐴5| = 60. The sizes of conjugacy classes we
have are 1, 15, 20, 12, 12 from the example above. The only ways of adding 1 plus some of
the other numbers to get a divisor of 60 are

• (1) which can only be the trivial subgroup

• (1 + 15 + 20 + 12 + 12 = 60) which can only be the group itself
So those are the only possible normal subgroups, so it is simple.

Remark. All 𝐴𝑛 for 𝑛 ≥ 5 are simple.
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11. Action of the Möbius group
11.1. Introduction
Wecannow study the action of theMöbius groupℳ, which is the groupofMöbiusmaps

𝑓∶ ℂ̂ → ℂ̂; 𝑓(𝑧) = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 ; 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ; 𝑎𝑑 − 𝑏𝑐 ≠ 0; 1

0 = ∞; 1
∞ = 0

Remark. The above definition defines an action𝑀 ↷ ℂ̂.
Proposition. The action𝑀 ↷ ℂ̂ is faithful (the only elements acting as the identity are the
identity), and soℳ ≤ Sym(ℂ̂).

Proof. Consider 𝜌∶ ℳ → Sym(ℂ̂) given by 𝜌(𝑓)(𝑧) = 𝑓(𝑧). Then if 𝜌(𝑓) = 𝑒Sym(ℂ̂) (the
function 𝑧 ↦ 𝑧) then 𝑓 is the identity 𝑒ℳ . So 𝜌 is injective and the action is faithful.

Definition. A fixed point of a Möbius map 𝑓 is a point 𝑧 such that 𝑓(𝑧) = 𝑧.
Theorem. AMöbius map with at least three fixed points is the identity.

Proof. Let 𝑓(𝑧) = 𝑎𝑧+𝑏
𝑐𝑧+𝑑

have at least three fixed points.

• If∞ is not a fixed point, then the equation 𝑎𝑧+𝑏
𝑐𝑧+𝑑

= 𝑧 is true for at least three complex
numbers. Rewritten,

𝑐𝑧2 + (𝑑 − 𝑎)𝑧 − 𝑏 = 0
By the fundamental theorem of algebra, this can only have at most two distinct roots.
So we must have 𝑐 = 𝑏 = 0, 𝑑 = 𝑎, i.e. 𝑓(𝑧) = 𝑧.

• If∞ is a fixed point, then 𝑎∞+𝑏
𝑐∞+𝑑

= 𝑎
𝑐
= ∞ so 𝑐 = 0. So for the other two fixed points,

𝑎𝑧+𝑏
𝑑

= 𝑧 for at least two complex numbers. Rewritten,

(𝑎 − 𝑑)𝑧 + 𝑏 = 0

By the fundamental theorem of algebra, this can only have one root. So we must have
𝑎 = 𝑑, 𝑏 = 0, i.e. 𝑓(𝑧) = 𝑧.

Corollary. If two Möbius maps coincide on three distinct points in ℂ̂, then they must be
equal.

Proof. Let 𝑓, 𝑔 ∈ ℳ be such that 𝑓(𝑧1) = 𝑔(𝑧1), 𝑓(𝑧2) = 𝑔(𝑧2), 𝑓(𝑧3) = 𝑔(𝑧3) for three
distinct points 𝑧1, 𝑧2, 𝑧3 ∈ ℂ̂. Then 𝑔−1𝑓(𝑧𝑖) = 𝑧𝑖 for the same three distinct points. So 𝑔−1𝑓
is the identity by the theorem above, so 𝑔 = 𝑓.
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In less formal words, we can say ‘knowing what a Möbius map does to 3 points determines
it’.

11.2. Constructing Möbius maps
Theorem. There is a uniqueMöbiusmap sending any three distinct points of ℂ̂ to any three
distinct points of ℂ̂.

Proof. Let the map send distinct points 𝑧1, 𝑧2, 𝑧3 to 𝑤1, 𝑤2, 𝑤3. Suppose first that 𝑤1 = 0,
𝑤2 = 1, 𝑤3 = ∞. Then

𝑓(𝑧) = (𝑧2 − 𝑧3)(𝑧 − 𝑧1)
(𝑧2 − 𝑧1)(𝑧 − 𝑧3)

satisfies this requirement. There is a special case if one of the 𝑧𝑖 is infinity. Then

𝑧1 = ∞ ⟹ 𝑓(𝑧) = 𝑧2 − 𝑧3
𝑧 − 𝑧3

𝑧2 = ∞ ⟹ 𝑓(𝑧) = 𝑧 − 𝑧1
𝑧 − 𝑧3

𝑧3 = ∞ ⟹ 𝑓(𝑧) = 𝑧 − 𝑧1
𝑧2 − 𝑧1

Thus we can find a function 𝑓1 sending (𝑧1, 𝑧2, 𝑧3) to (0, 1,∞). We can also find a function
𝑓2 sending (𝑤1, 𝑤2, 𝑤3) to (0, 1,∞). So surely 𝑓−12 ∘ 𝑓1 is a map first sending (𝑧1, 𝑧2, 𝑧3) to
(0, 1,∞), and then from (0, 1,∞) to (𝑤1, 𝑤2, 𝑤3), which is the required map. It is unique
because of the corollary at the end of the previous section.

On example sheet 2, it was proven that a conjugate ℎ𝑓ℎ−1 of aMöbius map 𝑓 satisfies:
• ord(ℎ𝑓ℎ−1) = ord(𝑓) since (ℎ𝑓ℎ−1)𝑛 = ℎ𝑓𝑛ℎ−1

• 𝑓(𝑧) = 𝑧 ⟺ ℎ𝑓ℎ−1(ℎ(𝑧)) = ℎ(𝑧). In particular, the number of fixed points of a
conjugate is the same as that of the original map. The following theorem is a partial
converse to this observation.

Theorem. Every non-identity 𝑓 ∈ ℳ has either one or two fixed points.

• If 𝑓 has one fixed point, then it is conjugate to the map 𝑧 ↦ 𝑧 + 1; and
• If 𝑓 has two fixed points, then it is conjugate to the map 𝑧 ↦ 𝑎𝑧 for some 𝑎 ∈ ℂ ∖ {0}.

Proof. We know that a non-identity element has at most two fixed points, so it suffices to
show that it cannot have zero fixed points. If 𝑓(𝑧) = 𝑎𝑧+𝑏

𝑐𝑧+𝑑
, we can consider the quadratic

𝑐𝑧2 + (𝑑 − 𝑎)𝑧 − 𝑏 = 0

arising from 𝑓(𝑧) = 𝑧. This quadratic must have at least one solution in the complex plane,
so in ℂ there must be at least one fixed point.
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• If 𝑓 has exactly one fixed point 𝑧0, then let us choose some point 𝑧1 ∈ ℂ which is not
fixed by 𝑓. Then the triple (𝑧1, 𝑓(𝑧1), 𝑧0) are all distinct. So there is some 𝑔 ∈ ℳ such
that (𝑧1, 𝑓(𝑧1), 𝑧0) ↦ (0, 1,∞). Now, let us consider 𝑔𝑓𝑔−1. We have

– 0 ↦ 𝑧1 ↦ 𝑓(𝑧1) ↦ 1

– ∞↦ 𝑧0 ↦ 𝑧0 ↦∞

So 𝑔𝑓𝑔−1 has the form 𝑧 ↦ 𝑎𝑧 + 1 for some complex number 𝑎 (proof as exercise).
If 𝑎 ≠ 1 then 1

1−𝑎
is a fixed point, but this is a contradiction since∞ can be the only

fixed point. So 𝑔𝑓𝑔−1 has the form 𝑧 ↦ 𝑧 + 1, so 𝑓 is conjugate (via 𝑔) to 𝑧 ↦ 𝑧 + 1 as
required.

• If 𝑓 has exactly two fixed points 𝑧0 and 𝑧1, then let 𝑔 be any Möbius map which sends
(𝑧0, 𝑧1) ↦ (0,∞). So 𝑔𝑓𝑔−1 sends:

– 0 ↦ 𝑧0 ↦ 𝑧0 ↦ 0

– ∞↦ 𝑧1 ↦ 𝑧1 ↦∞

So 𝑔𝑓𝑔−1 fixes zero and infinity. So 𝑔𝑓𝑔−1 must have the form 𝑧 ↦ 𝑎𝑧 where 𝑎 =
𝑔𝑓𝑔−1(1) as required.

We can use this to efficiently work out 𝑓𝑛 for 𝑓 ∈ ℳ. We can quickly see that 𝑔𝑓𝑛𝑔−1 =
(𝑔𝑓𝑔−1)𝑛 will be either

• 𝑧 ↦ 𝑧 + 𝑛 if 𝑓 has one fixed point; and

• 𝑧 ↦ 𝑎𝑛𝑧 if 𝑓 has two fixed points.

11.3. Geometric properties of Möbius maps

We have seen that the image under 𝑓 ∈ ℳ of three points in ℂ̂ uniquely determine 𝑓. Three
points also uniquely define lines and circles in ℂ̂.

• The equation of a circle with centre 𝑏 ∈ ℂ and radius 𝑟 ∈ ℝ, 𝑟 > 0 is |𝑧 − 𝑏| = 𝑟. We
can rewrite this as

|𝑧 − 𝑏|2 − 𝑟2 = 0
⟺ (𝑧 − 𝑏)(𝑧 − 𝑏) − 𝑟2 = 0

⟺ 𝑧𝑧 − 𝑏𝑧 − 𝑏𝑧 + 𝑏𝑏 − 𝑟2 = 0 (∗)

• The equation of a straight line in ℂ is 𝑎Re(𝑧) + 𝑏 Im(𝑧) = 𝑐, similar to the implicit
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form of a straight line in ℝ2, 𝑎𝑥 + 𝑏𝑦 = 𝑐. Expanded, we have

𝑎Re(𝑧) + 𝑏 Im(𝑧) = 𝑐

𝑎𝑧 + 𝑧
2 + 𝑏𝑧 − 𝑧

2𝑖 = 𝑐
1
2 [𝑎(𝑧 + 𝑧) − 𝑏𝑖(𝑧 − 𝑧)] − 𝑐 = 0
1
2 [𝑧(𝑎 − 𝑏𝑖) + 𝑧(𝑎 + 𝑏𝑖)] − 𝑐 = 0

𝑎 + 𝑖𝑏
2 𝑧 + 𝑎 + 𝑖𝑏

2 𝑧 − 𝑐 = 0 (†)

For a straight line in ℂ̂, we also consider that ∞ is always on the line. Under a ste-
reographic projection to the Riemann sphere, lines are circles through the north pole
(∞).

Both equations (∗) and (†) have the form of the following definition:

Definition. A circle in ℂ̂ is the set of points satisfying the equation

𝐴𝑧𝑧 + 𝐵𝑧 + 𝐵𝑧 + 𝐶 = 0

where 𝐴,𝐶 ∈ ℝ, 𝐵 ∈ ℂ, and |𝐵|2 > 𝐴𝐶. We consider∞ to be a solution to this equation if
and only if 𝐴 = 0.
Exercise: the set of points satisfying such an equation is always either a circle in ℂ or a line
in ℂ̂. We call all of these ‘circles’ in ℂ̂ by convention, since they’re all circles on the Riemann
sphere. We should not consider∞ to be a special point here; it simply ‘closes off’ any line
in ℂ into a circle in ℂ̂.
Theorem. Möbius maps preserve circles. In other words, points on a circle in ℂ̂ are trans-
formed onto points on a (possibly different) circle in ℂ̂.

Proof. As we saw in a previous section on Möbius maps, maps inℳ are generated by

• 𝑧 ↦ 𝑎𝑧
• 𝑧 ↦ 𝑧 + 𝑏
• 𝑧 ↦ 1

𝑧

So it is enough to check that each of these generating maps preserves circles. We will write
𝑆(𝐴, 𝐵, 𝐶) for the circle satisfying

𝐴𝑧𝑧 + 𝐵𝑧 + 𝐵𝑧 + 𝐶 = 0 (♣)

We can check that under a dilation or rotation 𝑧 ↦ 𝑎𝑧,

𝑆(𝐴, 𝐵, 𝐶) ↦ 𝑆 ( 𝐴𝑎𝑎,
𝐵
𝑎 , 𝐶)
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Under a translation 𝑧 ↦ 𝑧 + 𝑏,

𝑆(𝐴, 𝐵, 𝐶) ↦ 𝑆 (𝐴, 𝐵 − 𝐴𝑏, 𝐶 + 𝐴𝑏𝑏 − 𝐵𝑏 − 𝐵𝑏)

Under an inversion, solutions to (♣) become solutions to

𝐶𝑤𝑤 + 𝐵𝑤 + 𝐵𝑤 + 𝐴 = 0

So
𝑆(𝐴, 𝐵, 𝐶) ↦ 𝑆(𝐶, 𝐵, 𝐴)

Bear in mind when solving various exercises that it is often sufficient to check certain prop-
erties apply in the generating set in order to verify that they apply in the general case.

Remark. A circle is determined by three points on it, and a Möbius map is determined by
where it sends three points. So in practice, it is easy to find a Möbius map sending a given
circle to another given circle.

11.4. Cross-ratios
Recall that given distinct points 𝑧1, 𝑧2, 𝑧3 ∈ ℂ̂, we have a unique Möbius map 𝑓 such that
𝑓(𝑧1) = 0, 𝑓(𝑧2) = 1, 𝑓(𝑧3) = ∞.

Definition. If 𝑧1, 𝑧2, 𝑧3, 𝑧4 ∈ ℂ̂ are distinct, then their cross-ratio [𝑧1, 𝑧2, 𝑧3, 𝑧4] is defined
to be 𝑓(𝑧4) where 𝑓 ∈ ℳ is the unique Möbius map 𝑓 such that 𝑓(𝑧1) = 0, 𝑓(𝑧2) = 1,
𝑓(𝑧3) = ∞.

In particular, [0, 1,∞,𝑤] = 𝑤. We have the following formula for computing the cross-
ratio.

[𝑧1, 𝑧2, 𝑧3, 𝑧4] =
(𝑧4 − 𝑧1)(𝑧2 − 𝑧3)
(𝑧2 − 𝑧1)(𝑧4 − 𝑧3)

with special cases interpreted accordingly where 𝑧𝑖 = ∞. This result follows from the proof
that we can construct a map to send any three distinct points to 0, 1,∞. There are in fact 4!
different conventions for the cross-ratio, depending on the order of 0, 1,∞, so ensure that the
correct convention is being used if referring to sources. However, this potential ambiguity
is mitigated by the following fact.

Proposition. Double transpositions of the 𝑧𝑖 fix the cross-ratio.

Proof. By inspection of the formula, it it clear that this is true.

Theorem. Möbius maps preserve the cross-ratio. ∀𝑔 ∈ ℳ, ∀𝑧1, 𝑧2, 𝑧3, 𝑧4 ∈ ℂ̂,

[𝑔(𝑧1), 𝑔(𝑧2), 𝑔(𝑧3), 𝑔(𝑧4)] = [𝑧1, 𝑧2, 𝑧3, 𝑧4]
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Proof. Let 𝑓 ∈ ℳ be the unique Möbius map such that

𝑓(𝑧1) = 0; 𝑓(𝑧2) = 1; 𝑓(𝑧3) = ∞

so therefore 𝑓(𝑧4) = [𝑧1, 𝑧2, 𝑧3, 𝑧4]. Now, consider 𝑓 ∘ 𝑔−1:

(𝑓 ∘ 𝑔−1)𝑔(𝑧1) = 0; (𝑓 ∘ 𝑔−1)𝑔(𝑧2) = 1; (𝑓 ∘ 𝑔−1)𝑔(𝑧3) = ∞

and 𝑓 ∘ 𝑔−1 is the unique map with this property. So the cross-ratio here is

[𝑔(𝑧1), 𝑔(𝑧2), 𝑔(𝑧3), 𝑔(𝑧4)] = (𝑓 ∘ 𝑔−1)𝑔(𝑧4) = 𝑓(𝑧4)

as required.

Corollary. Four distinct points 𝑧1, 𝑧2, 𝑧3, 𝑧4 ∈ ℂ̂ lie on a circle if and only if their cross-ratio
is real.

Proof. Let 𝑓 be the unique Möbius map sending (𝑧1, 𝑧2, 𝑧3) ↦ (0, 1,∞), so that 𝑓(𝑧4) is the
required cross-ratio. The circle 𝐶 passing through 𝑧1, 𝑧2, 𝑧3 is sent by 𝑓 to the unique circle
passing through 0, 1,∞, i.e. the real line together with the point at infinity. So 𝑧4 lies on 𝐶
if and only if 𝑓(𝑧4) lies on ℝ ∪ {∞}. But since 𝑓(𝑧3) = ∞, 𝑓(𝑧4) ≠ ∞, so this condition is
restricted only to ℝ, excluding a point at infinity.
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12. Matrix groups
12.1. Definitions
Wewill look at various groups ofmatrices, their related actions, and study distance-preserving
maps on ℝ2 and ℝ3. Here are some examples of matrix groups.

• 𝑀𝑛×𝑛(𝔽) is the set of 𝑛 × 𝑛matrices over the field 𝔽.

• 𝐺𝐿𝑛(𝔽) is the set of 𝑛 × 𝑛 matrices over 𝔽 which are invertible. This is known as the
general linear group over 𝔽.

– 𝐺𝐿𝑛(𝔽) is a group under multiplication.

– det∶ 𝐺𝐿𝑛(𝔽) → 𝔽× ≔ 𝔽 ∖ {0} is a surjective homomorphism.

– Given 𝐴 ∈ 𝐺𝐿𝑛(ℝ), 𝐴⊺ is the matrix with entries (𝐴⊺)𝑖𝑗 = 𝐴𝑗𝑖. It satisfies

* (𝐴𝐵)⊺ = 𝐵⊺𝐴⊺

* (𝐴−1)⊺ = (𝐴⊺)−1

* 𝐴𝐴⊺ = 𝐼 ⟺ 𝐴⊺𝐴 = 𝐼 ⟺ 𝐴⊺ = 𝐴−1

* det𝐴⊺ = det𝐴

• 𝑆𝐿𝑛(𝔽) ≤ 𝐺𝐿𝑛(𝔽) is the kernel of the det homomorphism. This is the special linear
group.

• 𝑂𝑛 = 𝑂𝑛(ℝ) ≔ {𝐴 ∈ 𝐺𝐿𝑛(ℝ) ∶ 𝐴⊺𝐴 = 𝐼} is the orthogonal group. We can check the
group axioms to verify it is a subgroup of 𝐺𝐿𝑛(ℝ).

• 𝑆𝑂𝑛 ≤ 𝑂𝑛 is the kernel of the det homomorphism. This is the special orthogonal
group.

Proposition. det∶ 𝑂𝑛 → {±1} is a surjective homomorphism.

Proof. If 𝐴 ∈ 𝑂𝑛, then 𝐴⊺𝐴 = 𝐼. So (det𝐴)2 = det𝐴⊺ ⋅ det𝐴 = det(𝐴⊺𝐴) = det 𝐼 = 1. So
det𝐴 = ±1. It is surjective since det 𝐼 = 1, and the determinant of the matrix similar to the
identity but one of the diagonal entries is −1 has determinant −1.

12.2. Matrix encoding of Möbius maps
Proposition. The function 𝜑∶ 𝑆𝐿2(ℂ) → ℳ mapping

(𝑎 𝑏
𝑐 𝑑) ↦ 𝑓; 𝑓(𝑧) = 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑

is a surjective homomorphism with kernel {𝐼, −𝐼}.
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Proof. Firstly, 𝜑 is a homomorphism. If 𝑓1(𝑧) =
𝑎1𝑧+𝑏1
𝑐1𝑧+𝑑1

, 𝑓2(𝑧) =
𝑎2𝑧+𝑏2
𝑐2𝑧+𝑑2

, then we have seen

that 𝑓2(𝑓1(𝑧)) can be written in the form
𝑎𝑧+𝑏
𝑐𝑧+𝑑

where

(𝑎 𝑏
𝑐 𝑑) = (𝑎2 𝑏2

𝑐2 𝑑2
) (𝑎1 𝑏1
𝑐1 𝑑1

)

So
𝜑 ((𝑎2 𝑏2

𝑐2 𝑑2
) (𝑎1 𝑏1
𝑐1 𝑑1

)) = 𝜑 (𝑎2 𝑏2
𝑐2 𝑑2

) ⋅ 𝜑 (𝑎1 𝑏1
𝑐1 𝑑1

)

Secondly, 𝜑 is surjective. If 𝑎𝑧+𝑏
𝑐𝑧+𝑑

is a Möbius map, then

(𝑎 𝑏
𝑐 𝑑) ∈ 𝐺𝐿2(ℂ)

since 𝑎𝑑 − 𝑏𝑐 ≠ 0. But
det (𝑎 𝑏

𝑐 𝑑)

may not be 1, so we will take 𝐷2 to be this determinant, then we can consider

(𝑎/𝐷 𝑏/𝐷
𝑐/𝐷 𝑑/𝐷)

This new matrix has determinant 1 and is equal to the original Möbius map, so we have a
matrix in 𝑆𝐿2(ℂ) that maps to any given Möbius map. Finally, we want to find the kernel.

𝜑 (𝑎 𝑏
𝑐 𝑑) = id ∈ ℳ ⟹ 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑 = 𝑧 ⟺ 𝑐 = 𝑑 = 0; 𝑎 = 𝑑

But since this matrix has determinant 1, 𝑎 = 𝑑 = ±1, and thus ker𝜑 = {𝐼, −𝐼}.

Corollary.
ℳ ≅ 𝑆𝐿2(ℂ)⟋{𝐼, −𝐼}

Proof. This is an immediate consequence of the first isomorphism theorem.

The quotient 𝑆𝐿2(ℂ)⟋{𝐼, −𝐼} is known as the projective special linear group 𝑃𝑆𝐿2(ℂ).

12.3. Actions of matrices on vector spaces
All of the groups defined above act on the corresponding vector spaces. For example, we
have 𝐺𝐿𝑛(𝔽) ↷ 𝔽𝑛. As an example, let 𝐺 ≤ 𝐺𝐿2(ℝ) ↷ ℝ2. What are the orbits of this
action? Clearly, {0} is a singleton orbit since we are acting by linear maps.
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• If 𝐺 = 𝐺𝐿2(ℝ), 𝐺 acts transitively on ℝ2 ∖ {0}. We can complete any v ≠ 0 to a basis
and therefore we have an invertible change of basis matrix sending any basis to any
basis. So there are two orbits: ℝ2 ∖ {0} and {0} itself.

• If 𝐺 is the set of upper triangular matrices given by

𝐺 = {(𝑎 𝑏
0 𝑑) ∈ 𝐺𝐿2(ℝ)} = {(𝑎 𝑏

0 𝑑) ∶ 𝑎, 𝑑 ≠ 0}

We know that Orb(0) = {0}. Further:

Orb (10) = {(𝑎 𝑏
0 𝑑) (

1
0) ∶ (

𝑎 𝑏
0 𝑑) ∈ 𝐺} = {(𝑎0) ∶ 𝑎 ≠ 0}

We haven’t found all of the orbits yet so let us consider another point.

Orb (01) = {(𝑎 𝑏
0 𝑑) (

0
1) ∶ (

𝑎 𝑏
0 𝑑) ∈ 𝐺} = {(𝑏𝑑) ∶ 𝑑 ≠ 0}

We have found all of the orbits since the union gives ℝ2.

12.4. Conjugation action of general linear group
Recall from Vectors and Matrices: if 𝛼∶ 𝔽𝑛 → 𝔽𝑛 is a linear map, we can represent 𝛼 as a
matrix 𝐴 with respect to a basis {e1,… , e𝑛}. If we choose a different basis {f1,… , f𝑛} then 𝛼
can also be written as a matrix with respect to this new basis, by the matrix 𝑃−1𝐴𝑃 where 𝑃
is the change of basis matrix, defined by

f𝑗 = 𝑃𝑖𝑗e𝑖
This is an example of conjugation.

Proposition. 𝐺𝐿𝑛(𝔽) acts on𝑀𝑛×𝑛(𝔽) by conjugation. The orbit of a matrix 𝐴 ∈ 𝑀𝑛×𝑛(𝔽)
is the set of matrices representing the same linear map as 𝐴 with respect to different bases.

Proof. This is an action:

• 𝑃(𝐴) = 𝑃𝐴𝑃−1 ∈ 𝑀𝑛×𝑛(𝔽) for any chosen matrix 𝐴 ∈ 𝑀𝑛×𝑛(𝔽), 𝑃 ∈ 𝐺𝐿𝑛(𝔽)
• 𝐼(𝐴) = 𝐼𝐴𝐼−1 = 𝐴
• 𝑄(𝑃(𝐴)) = 𝑄𝑃𝐴𝑃−1𝑄−1 = (𝑄𝑃)𝐴(𝑄𝑃)−1 = (𝑄𝑃)(𝐴)

As shown in the discussion above,𝐴 and𝐵 are in the sameorbit if and only if𝐴 = 𝑃𝐵𝑃−1 ⟺
𝐵 = 𝑃−1𝐴𝑃, which is equivalent to this conjugation action.

Recall from Vectors and Matrices that any matrix in 𝑀2×2(ℂ) is conjugate to a matrix in
Jordan Normal Form, i.e. to one of the following types of matrix:

(𝜆1 0
0 𝜆2

) ; (𝜆 0
0 𝜆) ; (𝜆 1

0 𝜆)
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In the first case, the values 𝜆1, 𝜆2 are uniquely determined by the matrix we are trying to
conjugate (specifically its eigenvalues). But of course, the order of the eigenvalues is not
determined uniquely. Other than this, no twomatrices on this list of possible JordanNormal
Forms are conjugate.

• (𝜆1 0
0 𝜆2

) is characterised by having two distinct eigenvalues, a property independent
of the chosen basis, so it cannot be conjugate to the others.

• (𝜆 0
0 𝜆) is only conjugate to itself since it is 𝜆𝐼.

• (𝜆 1
0 𝜆) is characterised by having a repeated eigenvalue 𝜆, but only a one dimensional
eigenspace (independent of the basis we choose).

This gives a complete description of the orbits of 𝐺𝐿𝑛(ℂ) ↷ 𝑀𝑛×𝑛(ℂ).

12.5. Stabilisers of conjugation action
Clearly we have

𝑃 ∈ Stab(𝐴) ⟺ 𝑃𝐴𝑃−1 = 𝐴 ⟺ 𝑃𝐴 = 𝐴𝑃
So if two matrices commute, they stabilise each other. Let us consider the three cases as
above.

• For 𝐴 = (𝜆1 0
0 𝜆2

):

(𝑎 𝑏
𝑐 𝑑) (

𝜆1 0
0 𝜆2

) = (𝜆1𝑎 𝜆2𝑏
𝜆1𝑐 𝜆2𝑑

)

(𝜆1 0
0 𝜆2

) (𝑎 𝑏
𝑐 𝑑) = (𝜆1𝑎 𝜆1𝑏

𝜆2𝑐 𝜆2𝑑
)

So this matrix is in the stabiliser if and only if 𝑏 = 𝑐 = 0.

Stab (𝜆1 0
0 𝜆2

) = {(𝑎 0
0 𝑑) ∈ 𝐺𝐿2(ℂ)}

• For 𝐴 = (𝜆 0
0 𝜆), clearly its stabiliser is 𝐺𝐿2(ℂ) since 𝐴 = 𝜆𝐼, and so it commutes with

any matrix.

• For 𝐴 = (𝜆 1
0 𝜆), the stabiliser is

Stab (𝜆 1
0 𝜆) = {(𝑎 𝑏

0 𝑎) ∈ 𝐺𝐿2(ℂ)}

(Proof as exercise)
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12.6. Geometry of orthogonal groups
We will look more closely at the orthogonal group and special orthogonal group, and then
focus on symmetries of ℝ2 and ℝ3. Let us consider the standard inner product in ℝ𝑛:

x ⋅ y = 𝑥𝑖𝑦𝑖 = x⊺y

If we consider the columns p1,… ,p𝑛 of an orthogonal matrix 𝑃 ∈ 𝑂𝑛, we have

(𝑃⊺𝑃)𝑖𝑗 = p⊺𝑖p𝑗 = p𝑖 ⋅ p𝑗
So since 𝑃 ∈ 𝑂𝑛 ⟺ 𝑃⊺𝑃 = 𝐼, we have

p𝑖 ⋅ p𝑗 = 𝛿𝑖𝑗

Proposition. 𝑃 ∈ 𝑂𝑛 if and only if the columns of 𝑃 form an orthonormal basis.

This has been proven by the above discussion. Thinking of 𝑃 ∈ 𝑂𝑛 as a change of basis
matrix, we get the following result.

Proposition. Consider 𝑂𝑛 ↷ 𝑀𝑛×𝑛(ℝ) by conjugation. Two matrices are in the same orbit
if and only if they represent the same linear map with respect to two orthonormal bases.

Proposition. 𝑃 ∈ 𝑂𝑛 if and only if 𝑃x ⋅𝑃y = x ⋅y, i.e. thematrix preserves the inner product.

Proof. In the forward direction:

(𝑃x) ⋅ (𝑃y) = (𝑃x)⊺(𝑃y) = x⊺𝑃⊺𝑃y = x⊺y = x ⋅ y

In the backward direction: if 𝑃x ⋅ 𝑃y = x ⋅ y for all x, y ∈ ℝ𝑛, then taking the standard basis
vectors e𝑖, e𝑗 we have

𝑃e𝑖 ⋅ 𝑃e𝑗 = e𝑖 ⋅ e𝑗 = 𝛿𝑖𝑗
So the vectors 𝑃e1,… , 𝑃e𝑛 are orthonormal. These are the columns of 𝑃, so 𝑃 ∈ 𝑂𝑛.

Corollary. For 𝑃 ∈ 𝑂𝑛, x, y ∈ ℝ𝑛, we have

(i) |𝑃x| = |x| (𝑃 preserves length)
(ii) 𝑃x∠𝑃y = x∠y (𝑃 preserves angles between vectors)

Proof. (i) Follows from the fact that the inner product is preserved, by taking the inner
product of a vector with itself under the transformation.

(ii) Angles are also defined using the inner product,

cos(x∠y) = x ⋅ y
|x||y|

Since the inner product and the lengths are preserved, the cosine of the angle is there-
fore preserved. Since cos∶ [0, 𝜋] → [−1, 1] is injective, x∠y = 𝑃x∠𝑃y.
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12.7. Reflections in 𝑂𝑛

We will consider what the elements of these groups look like when acting upon ℝ𝑛.

Definition. If a ∈ ℝ𝑛 with |a| = 1, then the reflection in the plane normal to a is the linear
map

𝑅a∶ ℝ𝑛 → ℝ𝑛; x↦ x − 2(x ⋅ a)a

Lemma. 𝑅a lies in 𝑂𝑛.

Proof. Let x, y ∈ ℝ𝑛.

𝑅a(x) ⋅ 𝑅a(y) = (x − 2(x ⋅ a)a) ⋅ (y − 2(y ⋅ a)a)
= x ⋅ y − 2(x ⋅ a)(a ⋅ y) − 2(y ⋅ a)(x ⋅ a) + 4(x ⋅ a)(y ⋅ a) (a ⋅ a)⏟

=1

= x ⋅ y

So it preserves the inner product, so it is an orthogonal matrix.

Aswemight expect, conjugates of reflections by orthogonalmatrices are also reflections.

Lemma. Given 𝑃 ∈ 𝑂𝑛, 𝑃𝑅a𝑃−1 = 𝑅𝑃a.

Proof. We have

𝑃𝑅a𝑃−1(x) = 𝑃(𝑃−1(x) − 2(𝑃−1(x) ⋅ a)a)
= x − 2(𝑃−1(x) ⋅ a)(𝑃a)
= x − 2(𝑃⊺(x) ⋅ a)(𝑃a)
= x − 2(x⊺𝑃a)(𝑃a)
= x − 2(x ⋅ 𝑃a)(𝑃a)

which by inspection is the reflection of x by the plane with normal 𝑃a.

We know that no reflection matrix can be in 𝑆𝑂𝑛, since this requires the determinant to
be +1, which is the product of the eigenvalues. The 𝑛 − 1 eigenvectors with eigenvalue +1
are 𝑛 − 1 linearly independent vectors spanning the plane, and the single eigenvector with
eigenvalue −1 is the normal to the plane. So the determinant is −1.

12.8. Classifying elements of 𝑂2

Theorem. Every element of 𝑆𝑂2 is of the form

(cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 )

for some 𝜃 ∈ [0, 2𝜋).
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This is an anticlockwise rotation of ℝ2 about the origin by angle 𝜃. Conversely, every such
element lies in 𝑆𝑂2.

Proof. Let

𝐴 = (𝑎 𝑏
𝑐 𝑑) ∈ 𝑆𝑂2

We have 𝐴⊺𝐴 = 𝐼 and det𝐴 = 1. So

𝐴⊺ = 𝐴−1 ⟹ (𝑎 𝑐
𝑏 𝑑) =

1
1 (

𝑑 −𝑏
−𝑐 𝑎 )

So 𝑎 = 𝑑, 𝑏 = −𝑐. Since 𝑎𝑑 − 𝑏𝑐 = 1, 𝑎2 + 𝑐2 = 1. Then we can write 𝑎 = cos 𝜃 and 𝑐 = sin 𝜃
for a unique 𝜃 ∈ [0, 2𝜋).
Conversely, the determinant of this matrix is 1, and is in 𝑂2, so this element lies in 𝑆𝑂2.

Theorem. The elements of 𝑂2 ∖ 𝑆𝑂2 are the reflections in lines through the origin.

Proof. Let

𝐴 = (𝑎 𝑏
𝑐 𝑑) ∈ 𝑂2 ∖ 𝑆𝑂2

So 𝐴⊺𝐴 = 𝐼 and det𝐴 = −1.

𝐴⊺ = 𝐴−1 ⟹ (𝑎 𝑐
𝑏 𝑑) =

1
−1 (

𝑑 −𝑏
−𝑐 𝑎 )

So 𝑎 = −𝑑, 𝑏 = 𝑐. Together with 𝑎𝑑 − 𝑏𝑐 = −1, we have 𝑎2 + 𝑐2 = 1. So let 𝑎 = cos 𝜃,
𝑐 = sin 𝜃 like before, so

𝐴 = (cos 𝜃 sin 𝜃
sin 𝜃 − cos 𝜃)

which can be shown to be a reflection using double angle formulas such that

𝐴(
sin 𝜃

2
cos 𝜃

2

) = −(
sin 𝜃

2
cos 𝜃

2

) ; 𝐴 (
cos 𝜃

2
sin 𝜃

2

) = (
cos 𝜃

2
sin 𝜃

2

)

So 𝐴 is a reflection in the plane orthogonal to the vector (
sin 𝜃

2
cos 𝜃

2

). Conversely, any reflection

in a line through the origin has this form, so it will be in 𝑂2 ∖ 𝑆𝑂2.

Corollary. Every element of 𝑂2 is the composition of at most two reflections.

Proof. Every element of 𝑂2 ∖ 𝑆𝑂2 is a reflection, so this is trivial. If 𝐴 ∈ 𝑆𝑂2, then we can
write

𝐴 = 𝐴(−1 0
0 1)⏟⎵⎵⏟⎵⎵⏟

det=−1

(−1 0
0 1)⏟⎵⏟⎵⏟
det=−1

So we have expressed 𝐴 as the product of two reflections.
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12.9. Classifying elements of 𝑂3

Theorem. If 𝐴 ∈ 𝑆𝑂3, then there exists some unit vector v ∈ ℝ3 with 𝐴v = v, i.e. there
exists an eigenvector with eigenvalue 1.

Proof. It is sufficient to show that 1 is an eigenvalue of 𝐴, since this guarantees that there is
some nonzero eigenvector for this eigenvalue which we can then normalise. This is equival-
ent to showing that det(𝐴 − 𝐼) = 0.

det(𝐴 − 𝐼) = det(𝐴 − 𝐴𝐴⊺)
= det(𝐴) det(𝐼 − 𝐴⊺)
= det(𝐼 − 𝐴⊺)
= det((𝐼 − 𝐴)⊺)
= det(𝐼 − 𝐴)
= (−1)3 det(𝐴 − 𝐼)

So 2 det(𝐴 − 𝐼) = 0 ⟹ det(𝐴 − 𝐼) = 0.

Corollary. Every element 𝐴 ∈ 𝑆𝑂3 is conjugate (in 𝑆𝑂3) to a matrix of the form

(
1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

)

Proof. By the above theorem, there exists some unit vector v1 which is an eigenvector of
eigenvalue 1. We can extend this vector to an orthonormal basis {v1, v2, v3} of ℝ3. Then, for
𝑖 = 2, 3, we have

𝐴v𝑖 ⋅ v1 = 𝐴v𝑖 ⋅ 𝐴v1 = v𝑖 ⋅ v1 = 0
So 𝐴v2, 𝐴v3 lie in the subspace generated by v2, v3, i.e. span{v2, v3} = ⟨v2, v3⟩. So 𝐴 maps
this subspace to itself, and we can thus consider the restriction of 𝐴 to this subspace. The
matrix in this new basis will have form

(
1 0 0
0 𝑎 𝑏
0 𝑐 𝑑

)

The smaller matrix in the bottom right will still have determinant 1, since we can expand
the determinant here by the first row. So 𝐴 restricted to this subspace is an element of 𝑆𝑂2,
so its matrix must be of the form

(𝑎 𝑏
𝑐 𝑑) = (cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃 )

So 𝐴 has the required form with respect to this new basis {v1, v2, v3}. The change of basis
matrix 𝑃 lies in 𝑂3 since {v1, v2, v3} is an orthonormal basis. If 𝑃 ∉ 𝑆𝑂3, then we can use
the basis {−v1, v2, v3} instead, which will invert the determinant of 𝑃. So in either case 𝑃 ∈
𝑆𝑂3.
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This tells us in particular that every element in 𝑆𝑂3 is a rotation about some axis, here
v1.

Corollary. Every element of 𝑂3 is the composition of at most three reflections.

Proof. • If 𝐴 ∈ 𝑆𝑂3, then ∃𝑃 ∈ 𝑆𝑂3 such that 𝑃𝐴𝑃−1 = 𝐵, where 𝐵 is of the form

𝐵 = (
1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

)

Since this smaller matrix
(cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 )

is a composition of at most two reflections, then 𝐵 is also a composition of at most two
reflections, i.e. 𝐵 = 𝐵1𝐵2. Since 𝐴 is a conjugate of 𝐵, it is also a composition of at
most two reflections, as the conjugate of a reflection is a reflection, and 𝐴 = 𝑃−1𝐵𝑃 =
(𝑃−1𝐵1𝑃)(𝑃−1𝐵2𝑃).

• If 𝐴 ∈ 𝑂3 ∖ 𝑆𝑂3, then det𝐴 = −1 and we can construct

𝐴 = 𝐴(
−1 0 0
0 1 0
0 0 1

)
⏟⎵⎵⎵⏟⎵⎵⎵⏟

det=1

(
−1 0 0
0 1 0
0 0 1

)
⏟⎵⎵⎵⏟⎵⎵⎵⏟

det=−1

So the left-hand product lies in 𝑆𝑂3, so it is a composition of at most two reflections.
The final element is a reflection in the 𝑦–𝑧 plane, so the combined product is a com-
position of at most three reflections.

Example (symmetries of the cube, revisited). We can think of symmetry groups of the Pla-
tonic solids as subgroups of 𝑂3 by placing the solid at the origin. By question 11 on example
sheet 4, we have that 𝑂3 ≅ 𝑆𝑂3 × 𝐶2, where 𝐶2 is generated by the map v ↦ −v. So if
v ↦ −v is a symmetry of our platonic solid, then this group of symmetries will also split as
the direct product of 𝐺+ × 𝐶2 where 𝐺+ is the group of rotations (proof as exercise).

So we have that the group of symmetries of the cube is 𝐺+ × 𝐶2 ≅ 𝑆4 × 𝐶2 by the results
from earlier.
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13. Groups of order 8
13.1. Quaternions
Wehave already seem all the possibilities of groups of order less than 8. For order 8, we need
to first define a new group.

Definition. Consider the subset of matrices of 𝐺𝐿2(ℂ) given by

1 = (1 0
0 1) ; i = (𝑖 0

0 −𝑖) ; j = ( 0 1
−1 0) ; k = (0 𝑖

𝑖 0)

Wecan forma group from thesematrices. The set {±1, ±i, ±j, ±k} forms a groupwith respect
to matrix multiplication known as the quaternions, denoted 𝑄8. The elements therefore
satisfy

• 𝑔4 = 1

• (−1)2 = 1

• i2 = j2 = k2 = −1
• ij = k; jk = i;ki = j

• ji = −k;kj = −i; ik = −j

13.2. Elements of order 2
Lemma. If a finite group has all non-identity elements of order 2, then it is isomorphic to
𝐶2 × 𝐶2 ×⋯× 𝐶2.

Proof. By question 7 on example sheet 1, we already know that such a 𝐺 must be abelian,
and that |𝐺| = 2𝑛. If |𝐺| = 2, then 𝐺 ≅ 𝐶2. If |𝐺| > 2, then we can choose some element 𝑎1
of order 2, and then there exists another element 𝑎2 ∉ ⟨𝑎1⟩ of order 2. By the Direct Product
Theorem, ⟨𝑎1, 𝑎2⟩ ≅ ⟨𝑎1⟩ × ⟨𝑎2⟩. We can repeat this direct product with elements not in the
group to generate the whole group.

13.3. Classification of groups of order 8
Theorem. A group of order 8 is isomorphic to exactly one of:

• 𝐶8
• 𝐶4 × 𝐶2
• 𝐶2 × 𝐶2 × 𝐶2
• 𝐷8
• 𝑄8
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Proof. Firstly, the above groups are not isomorphic: 𝐶8, 𝐶4×𝐶2, 𝐶2×𝐶2×𝐶2 are all abelian
while 𝐷8 and 𝑄8 are not. The abelian groups can be distinguished by the maximal order
of an element. The non-abelian groups can be distinguished by the number of elements of
order 2. 𝐷8 has 𝑠, 𝑟2, 𝑟2𝑠, while 𝑄8 only has −1.
Now let 𝐺 be a group such that |𝐺| = 8. If 𝑔 ∈ 𝐺, then 𝑜(𝑔) ∣ 8 by Lagrange’s Theorem. So
𝑜(𝑔) = 1, 2, 4, 8.

• If there is an element of order 8, then 𝐺 = ⟨𝑔⟩ ≅ 𝐶8.
• If all non-identity elements have order 2, then 𝐺 = 𝐶2 × 𝐶2 × 𝐶2 by the above lemma.
• The remaining cases are when there are no elements of order 8, and not all elements
are of order 2, so there exists some element ℎ of order 4. Note then that ⟨ℎ⟩ ≅ 𝐶4
and |𝐺 ∶ ⟨ℎ⟩| = 2, so ⟨ℎ⟩ ⊴ 𝐺. Thus, 𝑔2 ∈ ⟨ℎ⟩ by question 4 on example sheet 3. So
𝑔2 = 𝑒, ℎ, ℎ2, ℎ3.
Now, consider 𝑔ℎ𝑔−1. This must lie in ⟨ℎ⟩ since ⟨ℎ⟩ ⊴ 𝐺, and must have order 4 since
ℎ does. So 𝑔ℎ𝑔−1 = ℎ, ℎ3. We will now consider each possible case of 𝑔2 together with
each possible case of 𝑔ℎ𝑔−1.
– If 𝑔2 = ℎ, ℎ3 then 𝑔4 = ℎ2 ≠ 𝑒 so 𝑔 has order 8 #. So either 𝑔2 = 𝑒 or 𝑔 = ℎ2.
– If 𝑔2 = 𝑒:

* If 𝑔ℎ𝑔−1 = ℎ, then 𝑔ℎ = ℎ𝑔, so 𝑔 and ℎ commute. Further, ⟨ℎ⟩ ∩ ⟨𝑔⟩ = {𝑒},
and 𝐺 = ⟨ℎ⟩ ⋅ ⟨𝑔⟩. By the Direct Product Theorem, 𝐺 ≅ ⟨ℎ⟩ × ⟨𝑔⟩ = 𝐶4 × 𝐶2.

* If 𝑔ℎ𝑔−1 = ℎ3 = ℎ−1, then since 𝑔2 = 𝑒, we recognise that the group is the
dihedral group 𝐷8 with ℎ = 𝑟, 𝑔 = 𝑠.

– If 𝑔2 = ℎ2 (note that this does not necessarily imply that 𝑔 = ℎ), we will have

* If 𝑔ℎ𝑔−1 = ℎ, then 𝑔 and ℎ commute, so (𝑔ℎ)2 = 𝑔2ℎ2 = ℎ2ℎ2 = 𝑒. So 𝑔ℎ
has order 2. We can again apply the direct product theorem to ⟨ℎ⟩ ≅ 𝐶4 and
⟨𝑔ℎ⟩ ≅ 𝐶2, and we get 𝑔 ≅ ⟨ℎ⟩ × ⟨𝑔⟩ ≅ 𝐶4 × 𝐶2 again.

* If 𝑔ℎ𝑔−1 = ℎ3 = ℎ−1, then we can define a map

𝜑∶ 𝐺 → 𝑄8

by

𝑒 ↦ 1 𝑔 ↦ j
ℎ ↦ i 𝑔ℎ ↦ −k
ℎ2 ↦ −1 𝑔ℎ2 ↦ −j
ℎ3 ↦ −i 𝑔ℎ3 ↦ k

Clearly 𝜑 is bijective, and we can check that it is a homomorphism. So it is
an isomorphism, so 𝐺 ≅ 𝑄8.
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Remark. We know that in an abelian group, every subgroup is normal. The converse is not
true. Just because every subgroup is normal, this does not mean that the group is abelian.
For example 𝑄8 is an example, where its subgroups are ⟨i⟩, ⟨j⟩, ⟨k⟩ (which are normal since
they have index 2), and ⟨ − 1⟩ which is normal since it commutes with everything.
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Lectured in Michaelmas 2020 by Dr. J. M. Evans
The complex numbers can be viewed as a kind of two-dimensional analogue to the real
numbers, with a real coordinate and an imaginary coordinate. Euclidean space is a three-
dimensional version of the reals, with three coordinates to represent each point. In this
course, we generalise these examples, and study vector spaces which can have any dimen-
sion.

Functions between vector spaces that preserve the vector space structure are called linear.
Linear maps have many different useful properties. One such property is the determinant:
if the determinant is any number except zero, the linear map has an inverse function.
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1. Complex numbers

1. Complex numbers

1.1. Definition and basic theorems

We construct the complex numbers from ℝ by adding an element 𝑖 such that 𝑖2 = −1. By
definition, any complex number 𝑧 ∈ ℂ = 𝑥 + 𝑖𝑦 where 𝑥, 𝑦 ∈ ℝ. We use the notation 𝑥 =
Re 𝑧 and 𝑦 = Im 𝑧 to query the components of a complex number. The complex numbers
contains the set of real numbers, due to the fact that 𝑥 = 𝑥+ 𝑖0. We define the operations of
addition and multiplication in familiar ways, which lets us state that ℂ is a field.

We also define the complex conjugate 𝑧 as negating the imaginary part of 𝑧. Trivially we can
see facts such as (𝑧) = 𝑧; 𝑧 + 𝑤 = 𝑧 + 𝑤 and 𝑧𝑤 = 𝑧 ⋅ 𝑤.

The Fundamental Theorem of Algebra states that a polynomial of degree 𝑛 can be written
as a product of 𝑛 linear factors:

𝑐𝑛𝑧𝑛 +⋯+ 𝑐1𝑧1 + 𝑐0𝑧0 = 𝑐𝑛(𝑧 − 𝛼1)(𝑧 − 𝛼2)⋯ (𝑧 − 𝛼𝑛) (where 𝑐𝑖, 𝛼𝑖 ∈ ℂ)

We can reformulate this statement as follows: a polynomial of degree 𝑛 has 𝑛 solutions 𝛼𝑖,
counting repeats. This theorem is not proved in this course.

The modulus of complex numbers 𝑧1, 𝑧2 satisfies:

• (composition) |𝑧1𝑧2| = |𝑧1||𝑧2|, and

• (triangle inequality) |𝑧1 + 𝑧2| ≤ |𝑧1| + |𝑧2|

Proof. The composition property is trivial. To prove the triangle inequality, we square both
sides and compare.

LHS = |𝑧1 + 𝑧2|
2

= (𝑧1 + 𝑧2)(𝑧1 + 𝑧2)
= |𝑧1|

2 + 𝑧1𝑧2 + 𝑧1𝑧2 + |𝑧2|
2

RHS = |𝑧1|
2 + 2|𝑧1||𝑧2| + |𝑧2|

2

Note that

𝑧1𝑧2 + 𝑧1𝑧2 ≤ 2|𝑧1||𝑧2|

⟺ 1
2 (𝑧1𝑧2 + 𝑧1𝑧2) ≤ |𝑧1||𝑧2|
⟺ Re(𝑧1𝑧2) ≤ ||𝑧1𝑧2||

which is true.
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We can alternatively use the map 𝑧2 → 𝑧2 − 𝑧1 to write the triangle inequality as

|𝑧2 − 𝑧1| ≥ |𝑧2| − |𝑧1|
or |𝑧2 − 𝑧1| ≥ |𝑧1| − |𝑧2|
∴ |𝑧2 − 𝑧1| ≥ ||𝑧2| − |𝑧1||

De Moivre’s Theorem states that

(cos 𝜃 + 𝑖 sin 𝜃)𝑛 = cos𝑛𝜃 + 𝑖 sin𝑛𝜃 (∀𝑛 ∈ ℤ)

We can prove this using induction for 𝑛 ≥ 0. To show the negative case, simply use the
positive result and raise it to the power of −1.

1.2. Complex valued functions
For 𝑧 ∈ ℂ, we can define:

exp 𝑧 =
∞
∑
𝑛=0

1
𝑛!𝑧

𝑛

cos 𝑧 = 1
2 (𝑒

𝑖𝑧 + 𝑒−𝑖𝑧)

sin 𝑧 = 1
2𝑖 (𝑒

𝑖𝑧 − 𝑒−𝑖𝑧)

By defining log 𝑧 = 𝑤 s.t. 𝑒𝑤 = 𝑧, we have a complex logarithm function. By expanding the
definition, we get that log 𝑧 = log 𝑟 + 𝑖𝜃 where 𝑟 = |𝑧| and 𝜃 = arg 𝑧. Note that because the
argument of a complex number is multi-valued, so is the logarithm.

We can define exponentiation in the general case by defining 𝑧𝛼 = 𝑒𝛼 log𝑧. Depending on
the choice of 𝛼, we have three cases:

• If 𝛼 = 𝑝 ∈ ℤ then the result of 𝑧𝑝 is unambiguous because

𝑧𝑝 = 𝑒𝑝 log𝑧 = 𝑒𝑝(log 𝑟+𝑖𝜃+2𝜋𝑖𝑛)

which has a factor of 𝑒2𝜋𝑖𝑝𝑛 which is 1.
• For a similar reason, a rational exponent has finitely many values.

• But in the general case, there are infinitely many values.

We can calculate results such as the square root of a complex number, which have two results
as you might expect.

Note. We can’t use facts like 𝑧𝛼𝑧𝛽 = 𝑧𝛼+𝛽 in the complex case because the left and right
hand sides both have infinite sets of answers, which may not be the same.
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1.3. Transformations and primitives
We can represent a line passing through 𝑥0 ∈ ℂ parallel to 𝑤 ∈ ℂ using the formula:

𝑧 = 𝑧0 + 𝜆𝑤 (𝜆 ∈ ℝ)

We can eliminate the dependency on 𝜆 by computing the conjugate of both sides:

𝑧 = 𝑧0 + 𝜆𝑤
𝑤𝑧 − 𝑤𝑧 = 𝑤𝑧0 − 𝑤𝑧0

We can also write the equation for a circle with centre 𝑐 ∈ ℂ and radius 𝜌 ∈ ℝ:

𝑧 = 𝑐 + 𝜌𝑒𝑖𝛼

or equivalently:
|𝑧 − 𝑐| = ||𝜌𝑒𝑖𝛼|| = 𝜌

or by squaring both sides:
|𝑧|2 − 𝑐𝑧 − 𝑐𝑧 = 𝜌2 − |𝑐|2
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2. Vectors in three dimensions
We use the normal Euclidean notions of points, lines, planes, length, angles and so on. By
choosing an (arbitrary) origin point 𝑂, we may write positions as position vectors with re-
spect to that origin point.

2.1. Vector addition and scalar multiplication
We define vector addition using the shape of a parallelogram with points 0, a, a + b,b. We
define scalar multiplication of a vector using the line 𝑂𝐴 and setting the length to be multi-
plied by the constant. Note that this vector space is an abelian group under addition.

Definition. a and b are defined to be parallel if and only if a = 𝜆b or b = 𝜆a for some
𝜆 ∈ ℝ. This is denoted a ∥ b. Note that the vectors may be zero, in particular the zero vector
is parallel to all vectors.

Definition. The span of a set of vectors is defined as span{a,b,⋯ , c} = {𝛼a+𝛽b+⋯+𝛾c ∶
𝛼, 𝛽, 𝛾 ∈ ℝ}. This is the line/plane/volume etc. containing the vectors. The span has an
amount of dimensions at most equal to the amount of vectors in the input set. For example,
the span of a set of two vectors may be a point, line or plane containing the vectors.

2.2. Scalar product
Definition. Given two vectors a,b, let 𝜃 be the angle between the two vectors. Then, we
define

a ⋅ b = |a||b| cos 𝜃

Note that if either of the vectors is zero, 𝜃 is undefined. However, the dot product is zero
anyway here, so this is irrelevant.

Definition. Two vectors a and b are defined to be parallel (or orthogonal) if and only if
a ⋅ b = 0. This is denoted a ⟂ b. This is true in two cases:

(i) cos 𝜃 = 0 ⟺ 𝜃 = 𝜋
2

mod 𝜋, or

(ii) a = 0 or b = 0.

Therefore, the zero vector is perpendicular to all vectors.

Definition. We can decompose a vector b into components relative to a:

b = b∥ + b⟂

where b∥ is the component of b parallel to a, and b⟂ is the component of b perpendicular to
a. In particular, we have that

a ⋅ b = a ⋅ b∥
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2.3. Vector product
Definition. Given two vectors a,b, let 𝜃 be the angle between the two vectors measured
with respect to an arbitrary normal n̂. Then, we define

a ∧ b = a × b = |a||b|n̂ sin 𝜃
Note that by swapping the sign of n̂, 𝜃 changes to 2𝜋−𝜃, leaving the result unchanged. There
are two degenerate cases:

• 𝜃 is undefined if a or b is the zero vector, but the result is zero anyway because we
multiply by the magnitudes of both vectors.

• n̂ is undefined if a ∥ b, but here sin 𝜃 = 0 so the result is zero anyway.
We can provide several useful interpretations of the cross product:

• The magnitude of a × b is the vector area of the parallelogram defined by the points
0, a, a + b,b.

• By fixing a vector a, we can consider the plane perpendicular to it. If x is another
vector in the plane, x↦ a× x rotates x by 𝜋

2
in the plane, scaling it by the magnitude

of a.

Note that by resolving a vector b perpendicular to another vector a, we have that
a × b = a × b⟂

A final useful property of the cross product is that since the result is perpendicular to both
input vectors, we have

a ⋅ (a × b) = b ⋅ (a × b) = 0

2.4. Basis vectors
To represent vectors as some collection of numbers, we can choose somebasis vectors e1, e2, e3
which are ‘orthonormal’, i.e. they are unit vectors and pairwise orthogonal. Note that

e𝑖 ⋅ e𝑗 = {1 if 𝑖 = 𝑗
0 otherwise

The set {e1, e2, e3} is called a basis because any vector can be written uniquely as a linear
combination of the basis vectors. Becausewe have orthonormal basis vectors, we can reduce
this to

a = ∑
𝑖
a𝑖e𝑖 ⟹ a𝑖 = e𝑖 ⋅ a

By representing a vector as a linear combination of basis vectors, it is very easy to evaluate the
scalar product algebraically. To calculate the vector product, we first need to define whether
e1 × e2 = e3 or −e3. By convention, we assume that the basis vectors are right-handed, i.e.
e1×e2 = e3. Then we can calculate the formula for the cross product in terms of the vectors’
components.
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2.5. Scalar triple product
The scalar triple product is the scalar product of one vector with the cross product of two
more.

a ⋅ (b × c) = b ⋅ (c × a) = c ⋅ (a × b) = [a,b, c]
The result of the scalar triple product is the signed volume of the parallelepiped starting at
the origin with axes a, b, c. We can represent this triple product as the determinant of a
matrix:

a ⋅ (b × c) =
|
|
|
|

a1 a2 a3
b1 b2 b3
c1 c2 c3

|
|
|
|

If the scalar triple product is greater than zero, then a,b, c is called a right handed set. If it
is equal to zero, then the vectors are all coplanar: c ∈ span{a,b}.

2.6. Vector triple product
The vector triple product is the cross product of three vectors. Note that this is non-associative.
The proof is covered in the subsequent lecture.

a × (b × c) = (a ⋅ c)b − (a ⋅ b)c

(a × b) × c = (a ⋅ c)b − (b ⋅ c)a

2.7. Lines
A line through a parallel to u is defined by

r = a + 𝜆u

where 𝜆 is some real parameter. We can eliminate lambda by using the cross product with
u. This will allow us to get a u × u term which will cancel to zero.

u × r = u × a

Informally, this is saying that r and a have the same components perpendicular to u. Note
that we can also reverse this process. Consider the equation

u × r = c

By using the dot product with u we can say

u ⋅ (u × r) = u ⋅ c

Ifu⋅c ≠ 0 then the equation is inconsistent. Otherwise, we can suppose thatmaybe r = u×c
and use the formula for the vector product to get the left hand side to be u×(u×c) = −|u|2c.
Therefore, by inspection, a = − 1

|u|2
(u × c) is a solution. Now, note that we can add any

multiple of u to a and it remains a solution. So the general solution is r = a + 𝜆u.
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2.8. Planes
The general point on a plane that passes through a and has directions u and v is

r = a + 𝜆u + 𝜇v
where u and v are not parallel, and 𝜆 and 𝜇 are real parameters. We can do a dot product
with n = (u × v) to eliminate both parameters.

n ⋅ r = 𝜅
where 𝜅 = n ⋅ a. Note that |𝜅|/|n| is the perpendicular distance from the origin to the
plane.

2.9. Other vector equations
The equation of a sphere is given by a quadratic vector equation in r.

r2 + r ⋅ a = 𝑘
We can complete the square to give

(r + 1
2a)

2
= 1
4a

2 + 𝑘

which is clearly a sphere with centre − 1
2
a and radius ( 1

4
a2 + 𝑘)

1/2
.

Another example of a vector equation is
r + a × (b × r) = c (1)

where a,b, c are fixed. We can dot with a to eliminate the second term:
a ⋅ r = a ⋅ c (2)

Note that using the dot product loses information—this is simply a tool to make deductions;
(2) does not contain the full information of (1). Combining (1) and (2), and using the formula
for the vector triple product, we get

r + (a ⋅ r)b − (a ⋅ b)r = c (3)
⟹ r + (a ⋅ c)b − (a ⋅ b)r = c

This eliminates the dependency on r inside the dot product. Now, we can factorise, leav-
ing

(1 − a ⋅ b)r = c − (a ⋅ c)b (4)
If 1−a ⋅b ≠ 0 then r has a single solution, a point. Otherwise, the right hand side must also
be zero (otherwise the equation is inconsistent). Therefore, c − (a ⋅ c)b = 0. We can now
combine this expression for c into (3), eliminating the (1 − a ⋅ b) term, to get

(a ⋅ r − a ⋅ c)b = 0
This shows us that (given that b is nonzero) the solutions to the equation are given by (2),
which is the equation of a plane.
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3. Index notation and the summation convention
3.1. Kronecker 𝛿 and Levi-Civita 𝜀
The Kronecker 𝛿 is defined by

𝛿𝑖𝑗 = {1 if 𝑖 = 𝑗
0 if 𝑖 ≠ 𝑗

Then e𝑖e𝑗 = 𝛿𝑖𝑗 . We can also use 𝛿 to rewrite indices: ∑𝑖 𝛿𝑖𝑗a𝑖 = a𝑗 . So

a ⋅ b = (∑
𝑖
a𝑖e𝑖) ⋅ (∑

𝑗
b𝑗e𝑗)

= ∑
𝑖𝑗
a𝑖b𝑗(e𝑖 ⋅ e𝑗)

= ∑
𝑖𝑗
a𝑖b𝑗𝛿𝑖𝑗

= ∑
𝑖
a𝑖b𝑖

The Levi-Civita 𝜀 is defined by

𝜀𝑖𝑗𝑘 =
⎧
⎨
⎩

+1 if 𝑖𝑗𝑘 is an even permutation of [1, 2, 3]
−1 if 𝑖𝑗𝑘 is an odd permutation of [1, 2, 3]
0 otherwise

Then

𝜀123 = 𝜀231 = 𝜀312 = +1
𝜀132 = 𝜀321 = 𝜀213 = −1

and all other permutations of [1, 2, 3] yield 0. This shows that 𝜀 is totally antisymmetric;
exchanging any pair of indices changes the sign. We now have:

e𝑖 × e𝑗 = ∑
𝑘
𝜀𝑖𝑗𝑘e𝑘

And:

a × b = (∑
𝑖
a𝑖e𝑖) × (∑

𝑗
b𝑗e𝑗)

a × b = ∑
𝑖𝑗
a𝑖b𝑗 (e𝑖 × e𝑗)

a × b = ∑
𝑖𝑗𝑘

a𝑖b𝑗𝜀𝑖𝑗𝑘e𝑘
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So the individual terms of the cross product can be written

(a × b)𝑘 = ∑
𝑖𝑗
a𝑖b𝑗𝜀𝑖𝑗𝑘

Weuse the ‘summation convention’ to abbreviate themany summation symbols used through-
out linear algebra.

(i) An index which occurs exactly once in some term, called a ‘free’ index, must appear
once in every term in that equation.

(ii) An index which occurs exactly twice in a given term, called a ‘repeated’, ‘contracted’,
or ‘dummy’ index, is implicitly summed over.

(iii) No index can occur more than twice in a given term.

3.2. Identities
The most general 𝜀𝜀 identity is as follows:

𝜀𝑖𝑗𝑘𝜀𝑝𝑞𝑟 = 𝛿𝑖𝑝𝛿𝑗𝑞𝛿𝑘𝑟 − 𝛿𝑗𝑝𝛿𝑖𝑞𝛿𝑘𝑟
+ 𝛿𝑗𝑝𝛿𝑘𝑞𝛿𝑖𝑟 − 𝛿𝑘𝑝𝛿𝑗𝑞𝛿𝑖𝑟
+ 𝛿𝑘𝑝𝛿𝑖𝑞𝛿𝑗𝑟 − 𝛿𝑖𝑝𝛿𝑘𝑞𝛿𝑗𝑟

This is, however, very verbose and not used often throughout the course. It is provable by
noting the total antisymmetry in 𝑖, 𝑗, 𝑘 and 𝑝, 𝑞, 𝑟 on both sides of the equation implies that
both sides agree up to a constant factor. We can check that this factor is 1 by substituting in
values such as 𝑖 = 𝑝 = 1, 𝑗 = 𝑞 = 2 and 𝑘 = 𝑟 = 3.
The next most generic form is a very useful identity.

𝜀𝑖𝑗𝑘𝜀𝑝𝑞𝑘 = 𝛿𝑖𝑝𝛿𝑗𝑞 − 𝛿𝑖𝑞𝛿𝑗𝑝

This is essentially the first line of the above identity, noting that 𝑘 = 𝑟. We can prove this is
true by observing the antisymmetry, and that both sides vanish under 𝑖 = 𝑗 or 𝑝 = 𝑞. So it
suffices to check two cases: 𝑖 = 𝑝, 𝑗 = 𝑞 and 𝑖 = 𝑞, 𝑗 = 𝑝.
We can now continue making more indices equal to each other to get even more specific
identities:

𝜀𝑖𝑗𝑘𝜀𝑝𝑗𝑘 = 2𝛿𝑖𝑝
This is easy to prove by noting that 𝛿𝑗𝑗 = ∑𝑗 𝛿𝑗𝑗 = 3, and using the 𝛿 rewrite rule.
Finally, we have

𝜀𝑖𝑗𝑘𝜀𝑖𝑗𝑘 = 6
No indices are free here, so the values of 𝑖, 𝑗, 𝑘 themselves are predetermined by the fact that
we are in three-dimensional space.
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IV. Vectors and Matrices

Using the summation convention (as will now be implied for the remainder of the course),
we can prove the vector triple product identity

[a × (b × c)]𝑖 = 𝜀𝑖𝑗𝑘a𝑗(b × c)𝑘
= 𝜀𝑖𝑗𝑘a𝑗𝜀𝑝𝑞𝑘b𝑝c𝑞
= 𝜀𝑖𝑗𝑘𝜀𝑝𝑞𝑘a𝑗b𝑝c𝑞
= (𝛿𝑖𝑝𝛿𝑗𝑞)a𝑗b𝑝c𝑞 − (𝛿𝑖𝑞𝛿𝑗𝑝)a𝑗b𝑝c𝑞
= (a ⋅ c)b𝑖 − (a ⋅ b)c𝑖
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4. Higher dimensional vectors

4. Higher dimensional vectors
4.1. Multidimensional real space
We define multidimensional real space as follows:

ℝ𝑛 = {x = (𝑥1, 𝑥2,⋯ , 𝑥𝑛) ∶ 𝑥𝑖 ∈ ℝ}

We can define addition and scalar multiplication by mapping these operations over each
term in the tuple. Therefore, we have a notion of linear combinations of vectors and hence
a concept of parallel vectors. We can say, like before in ℝ3, that x ∥ y if and only if x = 𝜆y
or y = 𝜆x.
We define an operator analogous to the scalar product in ℝ3. The inner product is defined
as 𝑥 ⋅ 𝑦 = 𝑥𝑖𝑦𝑖. Directly from this definition, we can deduce some properties:

• (symmetric) x ⋅ y = y ⋅ x
• (bilinear) (𝜆x + 𝜆′x′) ⋅ y = 𝜆x ⋅ y + 𝜆′x′ ⋅ y
• (positive definite) x ⋅ x ≥ 0, and the equality holds if and only if x = 0.

We can define the norm of a vector (similar to the concept of length in three-dimension
space), denoted |x|, by |x|2 = x ⋅ x. We can now define orthogonality as follows: x ⟂ y ⟺
x ⋅ y = 0.
We define the standard basis vectors e1, e2,… , e𝑛 by setting each element of the tuple e𝑖 to
zero apart from the 𝑖th element, which is set to one. Also, we redefine the Kronecker 𝛿 to
be valid in higher-dimensional space. Note that under this definition, the standard basis
vectors are orthonormal because e𝑖 ⋅ e𝑗 = 𝛿𝑖𝑗 .

4.2. Cauchy–Schwarz inequality
Proposition. For vectors x, y in ℝ𝑛, |x ⋅ y| ≤ |x||y|, where the equality is true if and only if
x ∥ y.

Proof. If y = 0, then the result is immediate. So suppose that y ≠ 0, then for some 𝜆 ∈ ℝ,
we have

|x − 𝜆y|2 = (x − 𝜆y) ⋅ (x − 𝜆y)
= |x|2 − 2𝜆x ⋅ y + 𝜆2|y|2 ≥ 0

As this is a positive real quadratic in 𝜆 that is always greater than zero, it has at most one
real root. Therefore the discriminant is less than or equal to zero.

(−2x ⋅ y)2 − 4|x|2|y|2 ≤ 0 ⟹ |x ⋅ y| ≤ |x||y|

where the equality only holds if x and y are parallel (i.e. when x − 𝜆y equals zero for some
𝜆).
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4.3. Triangle inequality
Following from the Cauchy–Schwarz inequality,

|x + y|2 = |x|2 + 2(x ⋅ y) + |y|2

≤ |x|2 + 2|x||y| + |y|2

= (|x| + |y|)2

where the equality holds under the same conditions as above.

4.4. Levi-Civita 𝜀 in higher dimensions
Note that the Levi-Civita 𝜀 has three indices inℝ3. We can extend this 𝜀 to higher and lower
dimensions by increasing or reducing the amount of indices. It does not make logical sense
to use the same 𝜀 without changing the amount of indices to define, for example, a vector
product in four-dimensional space, since we would have unused indices. The expression
(x × y)𝑘 = 𝜀𝑖𝑗𝑘a𝑖b𝑗 works because there is one free index, 𝑘, on the right hand side, so we
can use this to calculate the values of each element of the result.

We can, however, use this 𝜀 to extend the notion of a scalar triple product to other dimensions,
for example two-dimensional space, with [a,b] ≔ 𝜀𝑖𝑗a𝑖b𝑗 . This is the signed area of the
parallelogram spanning a and b.

4.5. General real vector spaces
Vector spaces are not studied axiomatically in this course, but the axioms are given here
for completeness. A real (as in, ℝ) vector space 𝑉 is a set of objects with two operators
+ ∶ 𝑉 × 𝑉 → 𝑉 and ⋅ ∶ ℝ × 𝑉 → 𝑉 such that

• (𝑉, +) is an abelian group
• 𝜆(𝑣 + 𝑤) = 𝜆𝑣 + 𝜆𝑤
• (𝜆 + 𝜇)𝑣 = 𝜆𝑣 + 𝜇𝑣
• 𝜆(𝜇𝑣) = (𝜆𝜇)𝑣
• 1𝑣 = 𝑣 (to exclude trivial cases for example 𝜆𝑣 = 0 for all 𝑣)

A subspace of a real vector space 𝑉 is a subset 𝑈 ⊆ 𝑉 that is a vector space. Equivalently, if
all pairs of vectors 𝑣, 𝑤 ∈ 𝑈 satisfy 𝜆𝑣 + 𝜇𝑤 ∈ 𝑈 , then 𝑈 is a subspace of 𝑉 . Note that the
span generated from a set of vectors is a subspace, as it is characterised by this equivalent
definition. Also, note that the origin must be part of any subspace, because multiplying a
vector by zero must yield the origin.

In some real vector space 𝑉 , let v1, v2⋯ v𝑟 be vectors in 𝑉 . Now consider the linear rela-
tion

𝜆1v1 + 𝜆2v2 +⋯+ 𝜆𝑟v𝑟 = 0
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Then we call the set of vectors a linearly independent set if the only solution is where all 𝜆
values are zero. Otherwise, it is a linearly dependent set.

4.6. Inner product spaces

An inner product is an extra structure that we can have on a real vector space 𝑉 , which
is often denoted by angle brackets or parentheses. It can also be characterised by axioms
(specifically the ones in Section 6.2). Features like the norm of a vector, and theorems like
the Cauchy–Schwarz inequality, follow from these axioms.

For example, let us consider the vector space

𝑉 = {𝑓 ∶ [0, 1] → ℝ ∶ 𝑓 smooth; 𝑓(0) = 𝑓(1) = 0}

We can define the inner product to be

𝑓 ⋅ 𝑔 = ⟨𝑓, 𝑔⟩ = ∫
1

0
𝑓(𝑥)𝑔(𝑥) d𝑥

Then by the Cauchy–Schwarz inequality, we have

|⟨𝑓, 𝑔⟩| ≤ ‖𝑓‖ ⋅ ‖𝑔‖

∴
||||
∫

1

0
𝑓(𝑥)𝑔(𝑥) d𝑥

||||
≤
√√√
√

∫
1

0
𝑓(𝑥)2 d𝑥

√√√
√

∫
1

0
𝑔(𝑥)2 d𝑥

Lemma. In any real inner product space 𝑉 , if v1⋯𝑣𝑟 ≠ 0 are orthogonal, they are linearly
independent.

Proof. If∑𝑖 𝛼𝑖v𝑖 = 0, then

⟨v𝑗 ,∑
𝑖
𝛼𝑖v𝑖⟩ = 0

And because each vector that is not v𝑗 is orthogonal to it, those terms cancel, leaving

∴ ⟨v𝑗 , 𝛼𝑗v𝑗⟩ = 0
𝛼𝑗 ⟨v𝑗 , v𝑗⟩ = 0

𝛼𝑗 = 0

So they are linearly independent.
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4.7. Bases and dimensions
In a vector space 𝑉 , a basis is a set ℬ = {e1⋯ e𝑛} such that

• ℬ spans 𝑉 ; and
• ℬ is linearly independent, which implies that the coefficients on these basis vectors
are unique for any vector in 𝑉 , since it is impossible to write one vector in terms of the
others

Theorem. If {e1⋯ e𝑛} and {f1⋯ f𝑚} are bases for a real vector space 𝑉 , then 𝑛 = 𝑚, which
we call the dimension of 𝑉 .

Proof. This proof is non-examinable (without prompts). We can write each basis vector in
terms of the others, since they all span the same vector space. Thus:

f𝑎 = ∑
𝑖
𝐴𝑎𝑖e𝑖; e𝑖 = ∑

𝑎
𝐵𝑖𝑎f𝑎

Note that indices 𝑖, 𝑗 span from 1 to 𝑛, while 𝑎, 𝑏 span from 1 to 𝑚. We can substitute one
expression into the other, forming:

f𝑎 = ∑
𝑖
𝐴𝑎𝑖 (∑

𝑏
𝐵𝑖𝑏f𝑏)

f𝑎 = ∑
𝑏
(∑

𝑖
𝐴𝑎𝑖𝐵𝑖𝑏) f𝑏

Note that we have now written f𝑎 as a linear combination of f𝑏 for all valid 𝑏. But since
they are linearly independent, the coefficient of f𝑏 must be zero if 𝑎 ≠ 𝑏, and one of 𝑎 = 𝑏.
Therefore, we have

𝛿𝑎𝑏 = ∑
𝑖
𝐴𝑎𝑖𝐵𝑖𝑏

We can make a similar statement about e𝑖:

𝛿𝑖𝑗 = ∑
𝑎
𝐵𝑖𝑎𝐴𝑎𝑗 = ∑

𝑎
𝐴𝑎𝑗𝐵𝑖𝑎

Now, assigning 𝑎 = 𝑏 and 𝑖 = 𝑗, summing over both, and substituting into our two previous
expressions for 𝛿, we have:

∑
𝑖𝑎
𝐴𝑎𝑖𝐵𝑖𝑎 = ∑

𝑎
𝛿𝑎𝑎 = ∑

𝑖
𝛿𝑖𝑖

= 𝑚 = 𝑛

Note that {0} is a trivial subspace of all vector spaces, and it has dimension zero since it
requires a linear combination of no vectors.
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Proposition. Let 𝑉 be a vector space with finite subsets 𝑌 = {w1,⋯ ,w𝑚} that spans 𝑉 ,
and 𝑋 = {u1,⋯ ,u𝑘} that is linearly independent. Let 𝑛 = dim𝑉 . Then:
(i) A basis can be found as a subset of 𝑌 by discarding vectors in 𝑌 as necessary, and that

𝑛 ≤ 𝑚.
(ii) 𝑋 can be extended to a basis by adding in additional vectors from 𝑌 as necessary, and

that 𝑘 ≤ 𝑛.

Proof. This proof is non-examinable (without prompts).

(i) If 𝑌 is linearly independent, then 𝑌 is a basis and𝑚 = 𝑛. Otherwise, 𝑌 is not linearly
independent. So there exists some linear relation

𝑚
∑
𝑖=1

𝜆𝑖w𝑖 = 0

where there is some 𝑖 such that 𝜆𝑖 ≠ 0. Without loss of generality (because the order
of elements in 𝑌 does not matter) we will reorder 𝑌 such thatw𝑚 ≠ 0. So we have

w𝑚 = −1
𝜆𝑚

𝑚−1
∑
𝑖=1

𝜆𝑖w𝑖

So span𝑌 = span(𝑌 ∖ {w𝑚}). We can repeat this process of eliminating vectors from
𝑌 until linear independence is achieved. We know that this process will end because
𝑌 is a finite set. Clearly, in this case, 𝑛 < 𝑚. So for all cases, 𝑛 ≤ 𝑚.

(ii) If 𝑋 spans 𝑉 , then 𝑋 is a basis and 𝑘 = 𝑛. Else, there exists some 𝑢𝑘+1 ∈ 𝑉 that is not
in the span of 𝑋 . Then, we will construct an arbitrary linear relation

𝑘+1
∑
𝑖=1

𝜇𝑖u𝑖 = 0

Note that this implies that 𝜇𝑘+1 = 0 because it is not in the span of 𝑋 , and that 𝜇𝑖 = 0
for all 𝑖 ≤ 𝑘 because the original 𝑋 was linearly independent. So we know that all the
coefficients are zero, and therefore 𝑋 ∪ {𝑢𝑘+1} is linearly independent.
Note that we can always choose this 𝑢𝑘+1 to be an element of 𝑌 because we just need
to ensure that 𝑢𝑘+1 ∉ span𝑋 . Suppose we cannot choose such a vector in 𝑌 . Then
𝑌 ⊆ span𝑋 ⟹ span𝑌 ⊆ span𝑋 ⟹ span𝑋 = 𝑉 , which is clearly false because
𝑋 does not span𝑉 . This is a contradiction, so we can always choose such a vector from
𝑌 . We can repeat this process of taking vectors from 𝑌 and adding them to 𝑋 until we
have a basis. This process will always terminate in a finite amount of steps because we
are taking new vectors from a finite set 𝑌 . Therefore 𝑘 ≤ 𝑛, as we are adding vectors
(increasing 𝑘) until 𝑘 = 𝑛.
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It is perfectly possible to have a vector space that has infinite dimensionality. However, they
will be rarely touched upon in this course apart from specific examples, like the following
example. Let 𝑉 = {𝑓 ∶ [0, 1] → ℝ ∶ 𝑓 smooth, 𝑓(0) = 𝑓(1) = 0}. Then let 𝑆𝑛(𝑥) =
√2 sin(𝑛𝜋𝑥) where 𝑛 is a natural number 1, 2,⋯. Clearly, 𝑆𝑛 ∈ 𝑉 for all 𝑛. The inner
product of two of these 𝑆 functions is given by

⟨𝑆𝑛, 𝑆𝑚⟩ = 2∫
1

0
sin(𝑛𝜋𝑥) sin(𝑚𝜋𝑥) d𝑥

= 𝛿𝑚𝑛

So 𝑆𝑛 are orthonormal and therefore linearly independent. So we can continue addingmore
vectors until it becomes a basis. However, the set of all 𝑆𝑛 is already infinite—so𝑉 must have
infinite dimensionality.

4.8. Multidimensional complex space
We define ℂ𝑛 by

ℂ𝑛 ≔ {z = (𝑧1, 𝑧2,⋯ , 𝑧𝑛) ∶ ∀𝑖, 𝑧𝑖 ∈ ℂ}
We define addition and scalar multiplication in obvious ways. Note that we have a choice
over what the scalars are allowed to be. If we only allow scalars that are real numbers, ℂ𝑛

can be considered a real vector space with bases (0,⋯ , 1,⋯ , 0) and (0,⋯ , 𝑖,⋯ , 0) and di-
mension 2𝑛. Alternatively, if we let the scalars be any complex numbers, we don’t need to
have imaginary bases, thus giving us a complex vector space with bases (0,⋯ , 1,⋯ , 0) and
dimension 𝑛. We can say that ℂ𝑛 has dimension 2𝑛 over ℝ, and dimension 𝑛 over ℂ. From
here on, unless stated otherwise, we treat ℂ𝑛 to be a complex vector space.

We can define the inner product by

⟨z,w⟩ ≔ ∑
𝑗
𝑧𝑗𝑤𝑗

The conjugate over the 𝑧 terms ensures that the inner product is positive definite. It has
these properties, analogous to the properties of the inner product in the real vector space
ℝ𝑛:

• (Hermitian) ⟨z,w⟩ = ⟨w, z⟩
• (linear/antilinear) ⟨z, 𝜆w + 𝜆′w′⟩ = 𝜆⟨z,w⟩ + 𝜆′⟨z,w′⟩ and ⟨𝜆z + 𝜆′z′, 𝑤⟩ = 𝜆⟨z,w⟩ +
𝜆′⟨z′,w⟩

• (positive definite) ⟨z, z⟩ = ∑𝑗 ||𝑧𝑗 ||
2 which is real and greater than or equal to zero,

where the equality holds if and only if z = 0.

We can also define the norm of z to satisfy |z| ≥ 0 and |z|2 = ⟨z, z⟩. Note that the standard
basis for ℂ𝑛 is orthonormal, since the inner product of any two basis vectors e𝑗 and e𝑘 is
given by 𝛿𝑗𝑘.
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Here is an example of the use of the complex inner product on ℂ1 = ℂ. Note first that
⟨𝑧, 𝑤⟩ = 𝑧𝑤. Let 𝑧 = 𝑎1 + 𝑖𝑎2 and 𝑤 = 𝑏1 + 𝑖𝑏2 where 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ ℝ. Then

⟨𝑧, 𝑤⟩ = 𝑧𝑤
= (𝑎1𝑏1 + 𝑎2𝑏2) + 𝑖(𝑎1𝑏2 − 𝑎2𝑏1)
= (𝑧 ⋅ 𝑤) + 𝑖[𝑧, 𝑤]

We can therefore use the inner product to compute two different scalar products at the same
time.
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5. Linear maps
5.1. Introduction
A linear map (or linear transformation) is some operation 𝑇 ∶ 𝑉 → 𝑊 between vector
spaces 𝑉 and𝑊 preserving the core vector space structure (specifically, the linearity). It is
defined such that

𝑇 (𝜆x + 𝜇y) = 𝜆𝑇(x) + 𝜇𝑇(y)

for all x, y ∈ 𝑉 where the scalars 𝜆 and 𝜇match upwith the scalar field that𝑉 and𝑊 use (so
this could be ℝ or ℂ in our examples). Much of the language used for linear maps between
vector spaces is analogous to the language used for homomorphisms between groups.

Note that a linear map is completely determined by its action on a basis {e1,⋯ , e𝑛} where
𝑛 = dim𝑉 , since

𝑇 (∑
𝑖
𝑥𝑖e𝑖) = ∑

𝑖
𝑥𝑖𝑇(e𝑖)

Wedenote x′ = 𝑇(x) ∈ 𝑊 , and define x′ as the image of 𝑥 under𝑇. Further, we define

Im(𝑇) = {x′ ∈ 𝑊 ∶ x′ = 𝑇(x) for some x ∈ 𝑉}

to be the image of 𝑇, and we define

ker(𝑇) = {x ∈ 𝑉 ∶ 𝑇(x) = 0}

to be the kernel of 𝑇.

Lemma. ker𝑇 is a subspace of 𝑉 , and Im𝑇 is a subspace of𝑊 .

Proof. To verify that some subset is a subspace, it suffices to check that it is non-empty, and
that it is closed under linear combinations.

ker𝑇 is non-empty because 0 ∈ ker𝑇. For x, y ∈ ker𝑇, we have 𝑇(𝜆x + 𝜇y) = 𝜆𝑇(x) +
𝜇𝑇(y) = 0 ∈ ker𝑇 as required.

Im𝑇 is non-empty because 0 ∈ Im𝑇. For x, y ∈ 𝑉 , let x′ = 𝑇(x) and y′ = 𝑇(y), therefore
x′, y′ ∈ Im𝑇. Now, 𝜆x′ + 𝜇y′ = 𝑇(𝜆x + 𝜇y) so it is closed under linear combinations as
required.

Here are some examples of images and kernels.

(i) The zero linear map x↦ 0 has:

Im𝑇 = {0}
ker𝑇 = 𝑉
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(ii) The identity linear map x↦ x has:

Im𝑇 = 𝑉
ker𝑇 = {0}

(iii) Let 𝑇 ∶ ℝ3 → ℝ3, such that

𝑥′1 = 3𝑥1 − 𝑥2 + 5𝑥3
𝑥′2 = −𝑥1 − 2𝑥3
𝑥′3 = 2𝑥1 + 𝑥2 + 3𝑥 + 3

This map has

Im𝑇 = {𝜆(
3
−1
2
) + 𝜇(

1
0
1
) ∶ 𝜆, 𝜇 ∈ ℝ}

ker𝑇 = {𝜆(
2
−1
−1

) ∶ 𝜆 ∈ ℝ}

5.2. Rank and nullity
We define the rank of a linear map to be the dimension of its image, and the nullity of a
linear map to be the dimension of its kernel.

rank𝑇 = dim Im𝑇; null𝑇 = dimker𝑇

Note that therefore for 𝑇 ∶ 𝑉 → 𝑊 , we have rank𝑇 ≤ dim𝑊 and ker𝑇 ≤ dim𝑉 .
Theorem. For some linear map 𝑇 ∶ 𝑉 → 𝑊 ,

rank𝑇 + null𝑇 = dim𝑉

Proof. This proof is non-examinable (without prompts). Let e1,⋯ , e𝑘 be a basis for ker𝑇, so
𝑇(e𝑖) = 0 for all valid 𝑖. Wemay extend this basis by adding more vectors e𝑖 where 𝑘 < 𝑖 ≤ 𝑛
until we have a basis for 𝑉 , where 𝑛 = dim𝑉 . We claim that the setℬ = {𝑇(e𝑘+1),⋯ , 𝑇(e𝑛)}
is a basis for Im𝑇. If this is true, then clearly the result follows because 𝑘 = dimker𝑇 =
null𝑇 and 𝑛 − 𝑘 = dim Im𝑇 = rank𝑇.
To prove the claim we need to show that ℬ spans Im𝑇 and that it is a linearly independent
set.

• ℬ spans Im𝑇 because for any x = ∑𝑛
𝑖=1 𝑥𝑖e𝑖, we have

𝑇(x) =
𝑛
∑

𝑖=𝑘+1
𝑥𝑖𝑇(e𝑖) ∈ spanℬ
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IV. Vectors and Matrices

• ℬ is linearly independent. Consider a general linear combination of basis vectors:
𝑛
∑

𝑖=𝑘+1
𝜆𝑖𝑇(e𝑖) = 0 ⟹ 𝑇 (

𝑛
∑

𝑖=𝑘+1
𝜆𝑖e𝑖) = 0

so
𝑛
∑

𝑖=𝑘+1
𝜆𝑖e𝑖 ∈ ker𝑇

Because this is in the kernel, it may be written in terms of the basis vectors of the
kernel. So, we have

𝑛
∑

𝑖=𝑘+1
𝜆𝑖e𝑖 =

𝑘
∑
𝑖=1

𝜇𝑖e𝑖

This is a linear relation in terms of all basis vectors of 𝑉 . So all coefficients are zero.

5.3. Rotations
Linear maps are often used to describe geometrical transformations, such as rotations, re-
flections, projections, dilations and shears. A convenient way to express these maps is by
describing where the basis vectors are mapped to. In ℝ2, we may describe a rotation anti-
clockwise around the origin by angle 𝜃 with

e1 ↦ cos 𝜃e1 + sin 𝜃e2
e2 ↦ − sin 𝜃e1 + cos 𝜃e2

Inℝ3 we can construct a similar transformation for a rotation around the e3 axis with

e1 ↦ cos 𝜃e1 + sin 𝜃e2
e2 ↦ − sin 𝜃e1 + cos 𝜃e2
e3 ↦ e3

We can extend this to a general rotation in ℝ3 about an axis given by a unit normal vector n̂.
For any vector x ∈ ℝ3 we can resolve parallel and perpendicular to n̂ as follows.

x = x∥ + x⟂; x∥ = (x ⋅ n̂)n̂; x⟂ = x − (x ⋅ n̂)n̂

Note that n̂ resembles the e3 axis here, and x⟂ resembles the e1 axis. So we can compute
the equivalent of e2 using the cross product, n̂ × x⟂ = n̂ × x. Now we may define the map
with

x∥ ↦ x∥
x⟂ ↦ (cos 𝜃)x⟂ + (sin 𝜃)(n̂ × x)

So all together, we have

x↦ (cos 𝜃)x + (1 − cos 𝜃)(n̂ ⋅ x)n̂ + (sin 𝜃)(n̂ × x)
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5.4. Reflections and projections
For a plane with normal n̂, we define a projection to be

x∥ ↦ 0
x⟂ ↦ x⟂
x↦ x⟂ = x − (x ⋅ n̂)n̂

and a reflection to be

x∥ ↦ −x∥
x⟂ ↦ x⟂
x↦ x⟂ − x∥ = x − 2(x ⋅ n̂)n̂

The same expressions also apply in ℝ2, where we replace the plane with a line.

5.5. Dilations
Given scale factors 𝛼, 𝛽, 𝛾 > 0, we define a dilation along the axes by

e1 ↦ 𝛼e1
e2 ↦ 𝛽e2
e3 ↦ 𝛾e3

5.6. Shears
Let a,b be orthogonal unit vectors inℝ3, i.e. |a| = |b| = 0 and a ⋅b = 0, and we define a real
parameter 𝜆. A shear is defined as

x↦ x′ = x + 𝜆a(x ⋅ b)
a↦ a
b↦ b + 𝜆a

This definition holds equivalently in ℝ2.

5.7. Matrices
Consider a linear map 𝑇 ∶ ℝ𝑛 → ℝ𝑚, with standard bases {e𝑖} ∈ ℝ𝑛, {f𝑎}, ∈ ℝ𝑚, and with
𝑇(x) = x′. Let further

x = ∑
𝑖
𝑥𝑖e𝑖 =

⎛
⎜
⎜
⎝

𝑥1
𝑥2
⋮
𝑥𝑛

⎞
⎟
⎟
⎠

; 𝑥′ = ∑
𝑎
𝑥′𝑎f𝑎 =

⎛
⎜
⎜
⎝

𝑥′1
𝑥′2
⋮
𝑥′𝑚

⎞
⎟
⎟
⎠
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Linearity implies that 𝑇 is fixed by specifying

𝑇(e𝑖) = e′𝑖 = C𝑖 ∈ ℝ𝑚

We take these C as columns of an 𝑚 × 𝑛 array or matrix 𝑀, with rows denoted as R𝑎 ∈
ℝ𝑛.

(
↑ ↑
C1 ⋯ C𝑛
↓ ↓

) = 𝑀 = (
← R1 →

⋮
← R𝑚 →

)

𝑀 has entries𝑀𝑎𝑖 ∈ ℝ, where 𝑎 labels rows and 𝑖 labels columns, so

(C𝑖)𝑎 = 𝑀𝑎𝑖 = (R𝑎)𝑖

The action of 𝑇 is then given by the matrix 𝑀 multiplying the vector x in the following
way:

x′ = 𝑀x
defined by

𝑥′𝑎 = 𝑀𝑎𝑖𝑥𝑖
or explicitly:

⎛
⎜
⎜
⎝

𝑥′1
𝑥′2
⋮
𝑥′𝑚

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

𝑀11 𝑀12 ⋯ 𝑀1𝑛
𝑀21 𝑀22 ⋯ 𝑀2𝑛
⋮ ⋮ ⋱ ⋮

𝑀𝑚1 𝑀𝑚2 ⋯ 𝑀𝑚𝑛

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝑥1
𝑥2
⋮
𝑥𝑛

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

𝑀11𝑥1 +𝑀12𝑥2 +⋯+𝑀1𝑛𝑥𝑛
𝑀21𝑥1 +𝑀22𝑥2 +⋯+𝑀2𝑛𝑥𝑛

⋮
𝑀𝑚1𝑥1 +𝑀𝑚2𝑥2 +⋯+𝑀𝑚𝑛𝑥𝑛

⎞
⎟
⎟
⎠

To check that the matrix multiplication above gives the action of 𝑇, we can plug in a generic
value x, and we get

x′ = 𝑇 (∑
𝑖
𝑥𝑖e𝑖) = ∑

𝑖
𝑥𝑖𝑇(e𝑖) = ∑

𝑖
𝑥𝑖C𝑖

and by taking component 𝑎 of the vector, we have

𝑥′𝑎 = ∑
𝑖
𝑥𝑖(C𝑖)𝑎 = ∑

𝑖
𝑥𝑖𝑀𝑎𝑖

as required. Note also that

𝑥′𝑎 = 𝑀𝑎𝑖𝑥𝑖 = (R𝑎)𝑖𝑥𝑖 = R𝑎 ⋅ x

We can now regard the properties of 𝑇 as properties of 𝑀 (suitably interpreted). For ex-
ample:

• Im(𝑇) = Im(𝑀) = span{C1,⋯ ,C𝑛}. In words, the image of a matrix is the span of its
columns.
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• ker(𝑇) = ker(𝑀) = {x ∶ ∀𝑎,R𝑎 ⋅x = 0}. In some sense, the kernel of𝑀 is the subspace
perpendicular to all of its rows.

Example. (i) The zero map ℝ𝑛 → ℝ𝑚 corresponds to the zero matrix

𝑀 = 0 with𝑀𝑎𝑖 = 0

(ii) The identity map ℝ𝑛 → ℝ𝑛 corresponds to the identity (or unit) matrix

𝑀 = 𝐼 with 𝐼𝑖𝑗 = 𝛿𝑖𝑗

(iii) The map ℝ3 → ℝ3 given by x′ = 𝑇(x) = 𝑀x with

𝑀 = (
3 1 5
−1 0 −2
2 1 3

)

gives

(
𝑥′1
𝑥′2
𝑥′3
) = (

3𝑥1 + 𝑥2 + 5𝑥3
−𝑥1 − 2𝑥3

2𝑥1 + 𝑥2 + 3𝑥3
)

In this case, we may read off the column vectors C𝑎 from the matrix. Note that since
they form a linearly dependent set, we have

Im(𝑇) = Im(𝑀) = span{C1,C2,C3} = span{C1,C2}

Here, R2 ×R3 = (2 −1 −1)⊺ = u is actually perpendicular to all rows as they form
a linearly dependent set. So

ker(𝑇) = ker(𝑀) = {𝜆u}

(iv) A rotation through 𝜃 in ℝ2 is given by (building from the images of the basis vectors):

(cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 )

(v) A dilation x′ = 𝑀x with scale factors 𝛼, 𝛽, 𝛾 along axes in ℝ3 is given by

(
𝛼 0 0
0 𝛽 0
0 0 𝛾

)

(vi) A reflection in a plane perpendicular to a unit vector n̂ is given by a matrix 𝐻 that
must have the property that

x′ = 𝐻x = x − 2(x − n̂)n̂
𝑥′𝑖 = 𝑥𝑖 − 2𝑥𝑗𝑛𝑗𝑛𝑖 = 𝐻𝑖𝑗𝑥𝑗
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And by comparing coefficients of 𝑥𝑗 , and using 𝛿 to rewrite 𝑥𝑖 using the 𝑗 index, we
have

𝐻𝑖𝑗 = 𝛿𝑖𝑗 − 2𝑛𝑖𝑛𝑗

For example, with n̂ = 1
√3
(1 1 1), then 𝑛𝑖𝑛𝑗 =

1
3
for all 𝑖, 𝑗, so

𝐻 = 1
3 (

1 −2 −2
−2 1 −2
−2 −2 1

)

(vii) A shear is defined by a matrix 𝑆 such that

x′ = 𝑆x = x + 𝜆(b ⋅ x)a

where a, b are unit vectors with a ⟂ b, and where 𝜆 is a real scale factor. Therefore:

𝑥′𝑖 = 𝑥𝑖 + 𝜆𝑏𝑗𝑥𝑗𝑎𝑖 = 𝑆 𝑖𝑗𝑥𝑗
∴ 𝑆 𝑖𝑗 = 𝛿𝑖𝑗 + 𝜆𝑎𝑖𝑏𝑗

For example in ℝ2 with a = (10) and b = (01), we have

𝑆 = (1 𝜆
0 1)

(viii) A rotation matrix 𝑅 in ℝ3 with axis n̂ and angle 𝜃 must satisfy

x′ = 𝑅x = (cos 𝜃)x + (1 − cos 𝜃)(n̂ ⋅ x)n̂ + (sin 𝜃)(n̂ × x)
𝑥′𝑖 = (cos 𝜃)𝑥𝑖 + (1 − cos 𝜃)𝑛𝑗𝑥𝑗𝑛𝑖 − (sin 𝜃)𝜀𝑖𝑗𝑘𝑥𝑗𝑛𝑘 = 𝑅𝑖𝑗𝑥𝑗

∴ 𝑅𝑖𝑗 = 𝛿𝑖𝑗(cos 𝜃) − (1 − cos 𝜃)𝑛𝑖𝑛𝑗 − (sin 𝜃)𝜀𝑖𝑗𝑘𝑛𝑘

5.8. Matrix of a general linear map
Consider a linear map 𝑇 ∶ 𝑉 → 𝑊 between general real or complex vector spaces of dimen-
sion 𝑛,𝑚 respectively. We will choose bases {e𝑖} for 𝑉 and {f𝑎} for𝑊 . The matrix represent-
ing the linear map 𝑇 with respect to these bases is an𝑚×𝑛 array with entries𝑀𝑎𝑖 ∈ ℝ or ℂ
as appropriate, defined by

𝑇(e𝑖) = ∑
𝑎
f𝑎𝑀𝑎𝑖

Then
x′ = 𝑇(x) ⟺ 𝑥′𝑎 = ∑

𝑖
𝑀𝑎𝑖𝑥𝑖 = 𝑀𝑎𝑖𝑥𝑖
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where
x = ∑

𝑖
𝑥𝑖e𝑖; x′ = ∑

𝑎
𝑥𝑎f𝑎

Note therefore that (in real vector spaces) given choices of bases {e𝑖} and {f𝑎}, 𝑉 is identified
with ℝ𝑛 in the sense that any vector has 𝑛 real components, and that 𝑊 is identified with
𝑅𝑚 analogously, and that therefore 𝑇 is identified with an𝑚×𝑛 real matrix𝑀. Note further
that entries in column 𝑖 of𝑀 are components of 𝑇(e𝑖) with respect to basis {f𝑎}.

5.9. Linear combinations
If 𝑇 ∶ 𝑉 → 𝑊 and 𝑆 ∶ 𝑉 → 𝑊 , between real or complex vector spaces 𝑉,𝑊 of dimension
𝑛,𝑚 respectively, are linear, then

𝛼𝑇 + 𝛽𝑆 ∶ 𝑉 → 𝑊

is also a linear map, where

(𝛼𝑇 + 𝛽𝑆)(x) = 𝛼𝑇(x) + 𝛽𝑆(x)

for any x ∈ 𝑉 . So the set of linear maps is a vector space. If𝑀 and𝑁 are the𝑚×𝑁 matrices
for 𝑇, 𝑆 then 𝛼𝑀 + 𝛽𝑁 is the𝑚× 𝑛matrix for the linear combination above, where

(𝛼𝑀 + 𝛽𝑁)𝑎𝑖 + 𝛼𝑀𝑎𝑖 + 𝛽𝑁𝑎𝑖; 𝑎 = 1,⋯ ,𝑚; 𝑖 = 1,⋯ , 𝑛

with respect to the same bases.

5.10. Matrix multiplication
If 𝐴 is an 𝑚 × 𝑛matrix with entries 𝐴𝑎𝑖, and 𝐵 is an 𝑛 × 𝑝matrix with entries 𝐵𝑖𝑟, then we
define 𝐴𝐵 to be an𝑚× 𝑝matrix with entries

(𝐴𝐵)𝑎𝑟 = 𝐴𝑎𝑖𝐵𝑖𝑟; 𝑎 = 1,⋯ ,𝑚; 𝑖 = 1,⋯ , 𝑛; 𝑟 = 1,⋯ , 𝑝

The product is not defined unless the amount of columns of 𝐴matches the number of rows
of 𝐵.
Matrixmultiplication corresponds to composition of linearmaps. Consider linearmaps:

𝑆 ∶ ℝ𝑝 → ℝ𝑛; 𝑆(x) = 𝐵x, x ∈ ℝ𝑝

𝑇 ∶ ℝ𝑛 → ℝ𝑚; 𝑇(x) = 𝐴x, x ∈ ℝ𝑛

⟹ 𝑇 ∘ 𝑆 ∶ ℝ𝑝 → ℝ𝑚; (𝑇 ∘ 𝑆)(x) = (𝐴𝐵)𝑥

since
[(𝐴𝐵)x]𝑎 = (𝐴𝐵)𝑎𝑟𝑥𝑟

and
𝐴(𝐵(x)) = 𝐴𝑎𝑖(𝐵x)𝑖 = 𝐴𝑎𝑖𝐵𝑖𝑟𝑥𝑟 = (𝐴𝐵)𝑎𝑟𝑥𝑟
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as required. The definition of matrix multiplication ensures that these answers agree. Of
course, this proof works for complex or general vector spaces.

Whenever the products are defined, then for any scalars 𝜆 and 𝜇:

• (𝜆𝑀 + 𝜇𝑁)𝑃 = 𝜆𝑀𝑃 + 𝜇𝑁𝑃

• 𝑃(𝜆𝑀 + 𝜇𝑁) = 𝜆𝑃𝑀 + 𝜇𝑃𝑁

• (𝑀𝑁)𝑃 = 𝑀(𝑁𝑃)

• 𝐼𝑀 = 𝑀𝐼 = 𝑀 where 𝐼𝑖𝑗 = 𝛿𝑖𝑗
We may view matrix multiplication in the following ways.

(i) Regarding a vector x ∈ ℝ𝑛 as a column vector (an 𝑛×1matrix), then thematrix-vector
and matrix-matrix multiplication rules agree.

(ii) Consider the product 𝐴𝐵 where 𝐴 is an𝑚×𝑛matrix and 𝐵 is an 𝑛× 𝑝, with columns
C𝑟(𝐵) ∈ ℝ𝑛 and columns C𝑟(𝐴𝐵) ∈ ℝ𝑚, where 1 ≤ 𝑟 ≤ 𝑝. The columns are related
by C𝑟(𝐴𝐵) = 𝐴C𝑟(𝐵). Less formally, each column in the right matrix is acted on by
the left matrix as if it were a vector, then the resultant vectors are combined into the
output matrix.

(iii) In terms of rows and columns,

𝐴𝐵 = (
⋮

← R𝑛(𝐴) →
⋮

)(
↑

⋯ C𝑟(𝐵) ⋯
↓

)

gives

(𝐴𝐵)𝑎𝑟 = [R𝑎(𝐴)]𝑖 [C𝑟(𝐵)]𝑖
= R𝑎(𝐴) ⋅ C𝑟(𝐵) for real matrices, where the ⋅ is the dot product in 𝑅𝑛

5.11. Matrix inverses
If 𝐴 is an 𝑚 × 𝑛 then 𝐵, an 𝑛 × 𝑚matrix, is a left inverse of 𝐴 if 𝐵𝐴 = 𝐼 (the 𝑛 × 𝑛 identity
matrix). 𝐶 is a right inverse of𝐴 if𝐴𝐶 = 𝐼 (the𝑚×𝑚 identitymatrix). If𝑚 = 𝑛 (𝐴 is square),
then one of these implies the other; there is no distinction between left and right inverses.
We say that 𝐵 = 𝐶 = 𝐴−1, the inverse of the matrix𝐴, such that𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼. Not every
matrix has an inverse. If such an inverse exists, 𝐴 is called invertible, or non-singular.

Consider x, x′ ∈ ℝ𝑛 orℂ𝑛, and𝑀 is an 𝑛×𝑛matrix. If𝑀−1 exists, we can solve the equation
x′ = 𝑀x for x, given x′, because we can apply the matrix inverse on the left. For example,
where 𝑛 = 2, we have

𝑀 = (𝑀11 𝑀12
𝑀21 𝑀22

)
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and
𝑥′1 = 𝑀11𝑥1 +𝑀12𝑥2
𝑥′2 = 𝑀21𝑥1 +𝑀22𝑥2

We can solve these simultaneous equations to construct the general matrix inverse.
𝑀22𝑥′1 −𝑀12𝑥′2 = (det𝑀)𝑥1

−𝑀21𝑥′1 +𝑀11𝑥′2 = (det𝑀)𝑥2
where det𝑀 = 𝑀11𝑀22 −𝑀12𝑀21, called the determinant of the matrix. Where the determ-
inant is nonzero, the matrix inverse

𝑀−1 = 1
det𝑀 ( 𝑀22 −𝑀12

−𝑀21 𝑀11
)

exists. Note that

C1 = 𝑀e1 = (𝑀11
𝑀21

)

C2 = 𝑀e2 = (𝑀12
𝑀22

)

⟺ det𝑀 = [C1,C2] = [𝑀e1,𝑀e2] in ℝ2

So the determinant gives the signed factor by which areas are scaled under the action of𝑀.
det𝑀 is nonzero if and only if𝑀e1 and𝑀e2 are linearly independent, which is true if and
only if the image of𝑀 has dimension 2, i.e.𝑀 hasmaximal rank. For example, a shear

𝑆(𝜆) = (1 𝜆
0 1)

has determinant 1, so areas are preserved. In particular, in this case,

𝑆−1(𝜆) = (1 −𝜆
0 1 ) = 𝑆(−𝜆)

As another example, we know that a matrix 𝑅(𝜃) for a rotation about a fixed axis n̂ through
angle 𝜃 has formula
𝑅(𝜃)𝑖𝑗𝑅(−𝜃)𝑗𝑘 = (𝛿𝑖𝑗 cos 𝜃 + (1 − cos 𝜃)𝑛𝑖𝑛𝑗 − 𝜀𝑖𝑗𝑝𝑛𝑝 sin 𝜃) × (𝛿𝑗𝑘 cos 𝜃 + (1 − cos 𝜃)𝑛𝑗𝑛𝑘 + 𝜀𝑗𝑘𝑞𝑛𝑞 sin 𝜃)
Expanding out, noting that 𝑛𝑖𝑛𝑖 = 1 as n̂ is a unit vector, and cancelling:

= 𝛿𝑖𝑘 cos2 𝜃 + 2 cos 𝜃(1 − cos 𝜃)𝑛𝑖𝑛𝑘 + (1 − cos 𝜃)2𝑛𝑖𝑛𝑘 − 𝜀𝑖𝑗𝑝𝜀𝑗𝑘𝑞𝑛𝑝𝑛𝑞 sin2 𝜃
By using an 𝜀𝜀 identity:

= 𝛿𝑖𝑘 cos2 𝜃 + (1 − cos2 𝜃)𝑛𝑖𝑛𝑘 + 𝛿𝑖𝑘𝑛𝑝𝑛𝑝 sin2 𝜃 − (sin2 𝜃)𝑛𝑖𝑛𝑘
= 𝛿𝑖𝑘 cos2 𝜃 + 𝛿𝑖𝑘𝑛𝑝𝑛𝑝 sin2 𝜃
= 𝛿𝑖𝑘 cos2 𝜃 + 𝛿𝑖𝑘 sin2 𝜃
= 𝛿𝑖𝑘

as required.
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6. Transpose and Hermitian conjugate
6.1. Transpose
If 𝑀 is an 𝑚 × 𝑛 (real or complex) matrix, the transpose 𝑀⊺ is an 𝑛 × 𝑚 matrix defined
by

(𝑀⊺)𝑖𝑎 = 𝑀𝑎𝑖

which essentially exchanges rows and columns. Here are some key properties.

• (𝛼𝐴 + 𝛽𝐵)⊺ = 𝛼𝐴⊺ + 𝛽𝐵⊺ for 𝛼, 𝛽 scalars, and 𝐴, 𝐵 both𝑚× 𝑛matrices.
• (𝐴𝐵)⊺ = 𝐵⊺𝐴⊺, where 𝐴 is𝑚× 𝑛 and 𝐵 is 𝑛 × 𝑝. This is because

[(𝐴𝐵)⊺]𝑟𝑎 = (𝐴𝐵)𝑎𝑟
= 𝐴𝑎𝑖𝐵𝑖𝑟
= (𝐴⊺)𝑖𝑎(𝐵⊺)𝑟𝑖
= (𝐵⊺)𝑟𝑖(𝐴⊺)𝑖𝑎
= (𝐵⊺𝐴⊺)𝑟𝑎

• If x is a column vector (or an 𝑛 × 1 matrix), x⊺ is the equivalent row vector (a 1 × 𝑛
matrix).

• The inner product in ℝ𝑛 can therefore be written x ⋅ y = x⊺y. Note that this is not
equivalent to xy⊺, which is known as the outer product, which results in a matrix not
a scalar.

• If𝑀 is 𝑛 × 𝑛 (square) then𝑀 is:

– symmetric iff𝑀⊺ = 𝑀, or𝑀𝑖𝑗 = 𝑀𝑗𝑖

– antisymmetric iff𝑀⊺ = −𝑀, or𝑀𝑖𝑗 = −𝑀𝑗𝑖

• Any 𝑀 which is square can be written as a sum of a symmetric and and an antisym-
metric part

𝑀 = 𝑆 + 𝐴 where 𝑆 = 1
2(𝑀 +𝑀⊺); 𝐴 = 1

2(𝑀 −𝑀⊺)

as 𝑆 is symmetric and 𝐴 is antisymmetric by construction.

• If 𝐴 is 3 × 3 and antisymmetric, then we can write

𝐴𝑖𝑗 = 𝜀𝑖𝑗𝑘𝑎𝑘 where 𝐴 = (
0 𝑎3 −𝑎2
−𝑎3 0 𝑎1
𝑎2 −𝑎1 0

)

Then, we have
(𝐴x)𝑖 = 𝜀𝑖𝑗𝑘𝑎𝑘𝑥𝑗 = (x × a)𝑖
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6.2. Hermitian conjugate

Let 𝑀 be an 𝑚 × 𝑛 matrix. Then the Hermitian conjugate (also known as the conjugate
transpose)𝑀† is an 𝑛 × 𝑚matrix defined by

(𝑀†)𝑖𝑎 = 𝑀𝑎𝑖

If𝑀 is square, then𝑀 is Hermitian if and only if𝑀† = 𝑀, or alternatively𝑀𝑖𝑎 = 𝑀𝑎𝑖;𝑀 is
anti-Hermitian if𝑀† = −𝑀, or alternatively𝑀𝑖𝑎 = −𝑀𝑎𝑖. Similarly to above, if z is a column
vector inℂ𝑛 (an 𝑛×1matrix), then the complex inner product is given by z ⋅w = z†w.

6.3. Trace

For a complex 𝑛 × 𝑛 (square) matrix 𝑀, the trace of the matrix, denoted tr(𝑀), is defined
by

tr(𝑀) = 𝑀𝑖𝑖 = 𝑀11 +𝑀22 +⋯+𝑀𝑛𝑛

It has a number of key properties.

• tr(𝛼𝑀 + 𝛽𝑁) = 𝛼 tr𝑀 + 𝛽 tr𝑁 where 𝛼 and 𝛽 are scalars, and 𝑀 and 𝑁 are 𝑛 × 𝑛
matrices.

• tr(𝑀𝑁) = tr(𝑁𝑀) where𝑀 is𝑚× 𝑛 and 𝑁 is 𝑛 × 𝑚. 𝑀𝑁 and 𝑁𝑀 need not have the
same dimension, but their traces are identical. We can check this as follows: tr(𝑀𝑁) =
(𝑀𝑁)𝑎𝑎 = 𝑀𝑎𝑖𝑁 𝑖𝑎 = 𝑁 𝑖𝑎𝑀𝑎𝑖 = (𝑁𝑀)𝑖𝑖 = tr(𝑁𝑀).

• tr(𝑀⊺) = tr(𝑀)

• tr(𝐼) = 𝛿𝑖𝑖 = 𝑛 where 𝑛 is the dimensionality of the vector space.

• If 𝑆 is 𝑛 × 𝑛 and symmetric, let

𝑇 = 𝑆 − 1
𝑛 tr(𝑆)𝐼

or 𝑇𝑖𝑗 = 𝑆 𝑖𝑗 −
1
𝑛 tr(𝑆)𝛿𝑖𝑗

then tr(𝑇) = 𝑇𝑖𝑖 = 𝑆 𝑖𝑖 =
1
𝑛 tr(𝑆)𝛿𝑖𝑖

= tr(𝑆) − 1
𝑛 tr(𝑆) = 0

Then 𝑆 = 𝑇 + 1
𝑛
tr(𝑆)𝐼 where 𝑇 is traceless and the right hand term 1

𝑛
tr(𝑆)𝐼 is ‘pure

trace’.

• If 𝐴 is 𝑛 × 𝑛 antisymmetric, tr(𝐴) = 𝐴𝑖𝑖 = 0.
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6.4. Orthogonal matrices
A real 𝑛 × 𝑛matrix 𝑈 is orthogonal if and only if its transpose is its inverse.

𝑈⊺𝑈 = 𝑈𝑈⊺ = 𝐼

These conditions can be written

𝑈𝑘𝑖𝑈𝑘𝑗 = 𝑈 𝑖𝑘𝑈𝑗𝑘 = 𝛿𝑖𝑗

In words, the left hand side says that the columns of𝑈 are orthonormal, and themiddle part
of the equation says that the rows of 𝑈 are orthonormal.

𝑈⊺𝑈 = (
⋮

← C𝑖 →
⋮

)(
↑

⋯ C𝑗 ⋯
↓

) = (
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

)

For example, if 𝑈 = 𝑅(𝜃) is a rotation through 𝜃 around an axis n̂, then 𝑈⊺ = 𝑅(𝜃)⊺ =
𝑅(−𝜃) = 𝑅(𝜃)−1 = 𝑈−1. An equivalent definition for orthogonality is: 𝑈 is orthogonal if
and only if it preserves the inner product on ℝ𝑛.

(𝑈x) ⋅ (𝑈y) = x ⋅ y ∀x, y ∈ ℝ𝑛

To check equivalence:

(𝑈x) ⋅ (𝑈y) = (𝑈x)⊺(𝑈y)
= (x⊺𝑈⊺)(𝑈y)
= x⊺(𝑈⊺𝑈)y
= x⊺y
= x ⋅ y

which is true if and only if 𝑈⊺𝑈 = 𝐼. Note that in ℝ𝑛, the columns of 𝑈 are 𝑈e𝑖,⋯ ,𝑈e𝑛 so
the inner product is preserved when𝑈 acts on the standard basis vectors if and only if

(𝑈e𝑖) ⋅ (𝑈e𝑗) = e𝑖 ⋅ e𝑗 = 𝛿𝑖𝑗

i.e. the columns of 𝑈 are orthonormal.

Let us now try to find a general 2 × 2 orthogonal matrix. We begin by transforming the
basis vectors. e𝑖 = (10)must be transformed to a unit vector. Therefore, in the most general
sense:

𝑈 (10) = (cos 𝜃sin 𝜃)

for some parameter 𝜃. Now, the other basis vector e2must be orthogonal to it, and so it must
be

𝑈 (01) = ±(− sin 𝜃cos 𝜃 )
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So we have two cases:

𝑈 = 𝑅 = (cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ) ; 𝑈 = 𝐻 = (cos 𝜃 sin 𝜃

sin 𝜃 − cos 𝜃)

where 𝑅 is a rotation by 𝜃 and 𝐻 is a reflection in ℝ2, where

n̂ = (
− sin 𝜃

2
cos 𝜃

2

)

because

𝐻𝑖𝑗 = 𝛿𝑖𝑗 − 2𝑛𝑖𝑛𝑗∴ 𝐻 = (
1 − 2 sin2 𝜃

2
2 sin 𝜃

2
cos 𝜃

2
2 sin 𝜃

2
cos 𝜃

2
1 − 2 cos2 𝜃

2

)

which simplifies as required. Note that det𝑅 = +1, but det𝐻 = −1.

6.5. Unitary matrices
A complex 𝑛 × 𝑛matrix 𝑈 is called unitary if and only if

𝑈†𝑈 = 𝑈𝑈† = 𝐼

Equivalently, 𝑈 is unitary if and only if it preserves the complex inner product on ℂ𝑛:

⟨𝑈z, 𝑈w⟩ = ⟨z,w⟩ ∀z,w ∈ ℂ𝑛

To check equivalence:

⟨𝑈z, 𝑈w⟩ = (𝑈z)†(𝑈w)
= (z†𝑈†)(𝑈w)
= z†(𝑈†𝑈)w
= z†w

which of course matches if and only if 𝑈†𝑈 = 𝐼.
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7. Adjugates and alternating forms
7.1. Inverses in two dimensions
Consider a linear map 𝑇 ∶ ℝ𝑛 → ℝ𝑛. If 𝑇 is invertible (i.e. bijective), then ker𝑇 = {0} as 𝑇
is injective, and Im𝑇 = ℝ𝑛 as 𝑇 is surjective. These conditions are actually equivalent due
to the rank-nullity theorem. Conversely, if the conditions hold, then 𝑇(e1), 𝑇(e2),⋯ , 𝑇(e𝑛)
must be a basis of the image, so we can just define 𝑇−1 by defining its actions on the basis
vectors 𝑇(e1), 𝑇(e2)⋯𝑇(e𝑛), specifically mapping them to the standard basis.

How can we test whether the conditions above hold for a matrix𝑀 representing 𝑇, and how
can we find𝑀−1 from𝑀 explicitly? For any 𝑛 × 𝑛matrix𝑀 (not necessarily invertible), we
will define the adjugate matrix �̃� and the determinant det𝑀 such that

�̃�𝑀 = (det𝑀)𝐼 (∗)

Then if det𝑀 ≠ 0,𝑀 is invertible, where

𝑀−1 = 1
det𝑀�̃�

From 𝑛 = 2, recall that (∗) holds with

𝑀 = (𝑀11 𝑀21
𝑀12 𝑀22

) ; �̃� = ( 𝑀22 −𝑀21
−𝑀12 𝑀11

) ; det𝑀 = [𝑀e1,𝑀e2] = 𝜀𝑖𝑗𝑀𝑖1𝑀𝑗2

The determinant in this case is the factor by which areas scale under 𝑀. det𝑀 ≠ 0 if and
only if𝑀e1,𝑀e2 are linearly independent.

7.2. Three dimensions
For 𝑛 = 3, we will define similarly

det𝑀 = [𝑀e1,𝑀e2,𝑀e3] = 𝜀𝑖𝑗𝑘𝑀𝑖1𝑀𝑗2𝑀𝑘3

We define it like this because this is the factor by which volumes scale under 𝑀 in three
dimensions. So

det𝑀 ≠ 0 ⟺ {𝑀e1,𝑀e2,𝑀e3} linearly independent, or Im𝑀 = ℝ3

Now we define �̃� from𝑀 using row/column notation.

R1(�̃�) = C2(𝑀) × C3(𝑀)
R2(�̃�) = C3(𝑀) × C1(𝑀)
R3(�̃�) = C1(𝑀) × C2(𝑀)

Note that therefore,

(�̃�𝑀)𝑖𝑗 = R𝑖(�̃�) ⋅ C𝑗(𝑀) = (C1(𝑀) × C2(𝑀) ⋅ C3(𝑀))⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
det𝑀

𝛿𝑖𝑗
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as claimed. For example, let us invert the following matrix.

𝑀 = (
1 3 0
0 −1 −2
4 1 −1

)

C2 × C3 = (
3
−1
1
) × (

0
2
−1

) = (
−1
3
6
)

C3 × C1 = (
0
2
−1

) × (
1
0
4
) = (

8
−1
−2

)

C1 × C2 = (
1
0
4
) × (

3
−1
1
) = (

4
11
−1

)

�̃� = (
−1 3 6
8 −1 −2
4 11 −1

)

det𝑀 = C1 ⋅ C2 × C3 = 23
�̃�𝑀 = 23𝐼

7.3. Levi-Civita 𝜀 in higher dimensions
Recall (from IA Groups):

• A permutation 𝜎 on the set {1, 2,⋯ , 𝑛} is a bijection from the set to itself, specified by
an ordered list 𝜎(1), 𝜎(2),⋯ , 𝜎(𝑛).

• Permutations form a group 𝑆𝑛, called the symmetric group of order 𝑛!
• A transposition 𝜏 = (𝑝, 𝑞) where 𝑝 ≠ 𝑞 is a permutation that swaps 𝑝 and 𝑞.
• Any permutation is a product of of 𝑘 transpositions, where 𝑘 is unique modulo 2 for
a given 𝜎. In this course, we will write 𝜀(𝜎) to mean the sign (or signature) of the
permutation, (−1)𝑘. 𝜎 is even if the sign is 1, and odd if the sign is −1.

The alternating symbol 𝜀 in ℝ𝑛 or ℂ𝑛 is an 𝑛-index object (tensor) defined by

𝜀𝑖𝑗⋯𝑙⏟
𝑛 indices

=
⎧
⎨
⎩

+1 if 𝑖, 𝑗⋯ , 𝑙 is an even permutation of 1, 2,⋯ , 𝑛
−1 if 𝑖, 𝑗⋯ , 𝑙 is an odd permutation of 1, 2,⋯ , 𝑛
0 otherwise, i.e. if any indices take the same value

Thus if 𝜎 is any permutation, then

𝜀𝜎(1)⋯𝜎(𝑛) = 𝜀(𝜎)

So 𝜀𝑖𝑗⋯𝑙 is totally antisymmetric and changes signwhenever a pair of indices are exchanged.
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IV. Vectors and Matrices

Definition. Given vectors v1,⋯ v𝑛 ∈ ℝ𝑛 orℂ𝑛, the alternating form combines them to give
the scalar

[v1, v2,⋯ , v𝑛] = 𝜀𝑖𝑗⋯𝑙(v1)𝑖(v2)𝑗⋯(v𝑛)𝑙
= ∑

𝜎∈𝑆𝑛
𝜀(𝜎) ⋅ (v1)𝜎(1) ⋅ (v2)𝜎(2)⋯(v𝑛)𝜎(𝑛)

7.4. Properties
(i) The alternating form is multilinear.

[v1,⋯ , v𝑝−1, 𝛼u + 𝛽w, v𝑝+1⋯, v𝑛] = 𝛼[v1,⋯ , v𝑝−1,u, v𝑝+1⋯, v𝑛]
+ 𝛽[v1,⋯ , v𝑝−1,w, v𝑝+1⋯, v𝑛]

(ii) It is totally antisymmetric. [v𝜎(1), v𝜎(2),⋯ , v𝜎(𝑛)] = 𝜀(𝜎)[v1,⋯ , v𝑛]
(iii) Standard basis vectors give a positive result: [e𝑖,⋯ , e𝑛] = 1.
These three properties fix the alternating form completely, and they also imply

(iv) If v𝑝 = v𝑞 where 𝑝 ≠ 𝑞, then
[v1,⋯ , v𝑝,⋯ , v𝑞,⋯ , v𝑛] = 0

(v) If v𝑝 can be written as a non-trivial linear combination of the other vectors, then
[v1,⋯ , v𝑝,⋯ , v𝑛] = 0

Property (iv) follows from property (ii), where we swap v𝑝 and v𝑞. Property (v) follows from
substituting the linear combination representation of v𝑝 into the alternating form expres-
sion, the using properties (i) and (iv). To justify (ii) above, it suffices to check a transposition
𝜏 = (𝑝 𝑞) where (without loss of generality) 𝑝 < 𝑞, then since transpositions generate all
permutations the result follows.

[v1,⋯ , v𝑝−1, v𝑞, v𝑝+1,⋯ , v𝑞−1, v𝑝, v𝑞+1,⋯ , v𝑛]
= ∑

𝜎
𝜀(𝜎)(v1)𝜎(1)⋯(v𝑝−1)𝜎(𝑝−1)(v𝑞)𝜎(𝑝)(v𝑝+1)𝜎(𝑝+1)

⋯(v𝑞−1)𝜎(𝑞−1)(v𝑝)𝜎(𝑞)(v𝑞+1)𝜎(𝑞+1)
= ∑

𝜎
𝜀(𝜎)(v1)𝜎′(1)⋯(v𝑝−1)𝜎′(𝑝−1)(v𝑞)𝜎′(𝑞)(v𝑝+1)𝜎′(𝑝+1)

⋯(v𝑞−1)𝜎′(𝑞−1)(v𝑝)𝜎′(𝑝)(v𝑞+1)𝜎′(𝑞+1)
where 𝜎′ = 𝜎𝜏

= −∑
𝜎′
𝜀(𝜎′)(v1)𝜎′(1)⋯(v𝑝−1)𝜎′(𝑝−1)(v𝑝)𝜎′(𝑝)(v𝑝+1)𝜎′(𝑝+1)

⋯(v𝑞−1)𝜎′(𝑞−1)(v𝑞)𝜎′(𝑞)(v𝑞+1)𝜎′(𝑞+1)
= −[v1,⋯ , v𝑝−1, v𝑝, v𝑝+1,⋯ , v𝑞−1, v𝑞, v𝑞+1,⋯ , v𝑛]
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7. Adjugates and alternating forms

as required.

Proposition. [v1, v2,⋯ , v𝑛] ≠ 0 if and only if v1, v2,⋯ , v𝑛 are linearly independent.

Proof. To show the forward implication, let us suppose that they are not linearly independ-
ent and use property (v). Then we can express some v𝑝 as a linear combination of the others.
Then [v1, v2,⋯ , v𝑛] = 0.
To show the other direction, note that v1, v2,⋯ , v3 means that they span, and if they span
then each of the standard basis vectors e𝑖 can be written as a linear combination of the v
vectors, i.e. e𝑖 = 𝑈𝑎𝑖v𝑎. Then

[e1, e2,⋯ , e𝑛] = [𝑈𝑎1v𝑎, 𝑈𝑏2v𝑏,⋯ ,𝑈𝑐𝑛v𝑐]
= 𝑈𝑎1𝑈𝑏2⋯𝑈𝑐𝑛[v𝑎, v𝑏,⋯ , v𝑐]
= 𝑈𝑎1𝑈𝑏2⋯𝑈𝑐𝑛𝜀𝑎𝑏⋯𝑐[v1, v2,⋯ , v𝑛]

By definition, the left hand side is +1, so [v1, v2,⋯ , v𝑛] is nonzero.

As an example of these ideas, let

v1 =
⎛
⎜
⎜
⎝

𝑖
0
0
2

⎞
⎟
⎟
⎠

; v2 =
⎛
⎜
⎜
⎝

0
0
5𝑖
0

⎞
⎟
⎟
⎠

; v3 =
⎛
⎜
⎜
⎝

3
2𝑖
0
0

⎞
⎟
⎟
⎠

; v4 =
⎛
⎜
⎜
⎝

0
0
𝑖
1

⎞
⎟
⎟
⎠

; where v𝑗 ∈ ℂ4

Then

[v1, v2, v3, v4] = 5𝑖[v1, e3, v3, v4]
= 5𝑖[𝑖e1 + 2e4, e3, 3e1 + 2𝑖e2, −𝑖e3 + e4]

By multilinearity, we can eliminate all e3 terms not in the second position because they will
cancel with it, giving

= 5𝑖[𝑖e1 + 2e4, e3, 3e1 + 2𝑖e2, e4]

And likewise with e4:

= 5𝑖[𝑖e1, e3, 3e1 + 2𝑖e2, e4]

And again with e1:

= 5𝑖[𝑖e1, e3, 2𝑖e2, e4]
= 5𝑖 ⋅ 2𝑖 ⋅ 𝑖[e1, e3, e2, e4]
= 10𝑖[e1, e2, e3, e4]
= 10𝑖
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8. Determinant
8.1. Definition
For an 𝑛×𝑛matrix𝑀 with columns C𝑎 = 𝑀e𝑎, then the determinant det(𝑀) = |𝑀| ∈ ℝ or
ℂ is given by any of the following equivalent definitions.

det𝑀 = [C1,C2,⋯ ,C𝑛]
= [𝑀e1,𝑀e2,⋯ ,𝑀e𝑛]
= 𝜀𝑖𝑗⋯𝑙𝑀𝑖1𝑀𝑗2⋯𝑀𝑙𝑛

= ∑
𝜎
𝜀(𝜎)𝑀𝜎(1)1𝑀𝜎(2)2⋯𝑀𝜎(𝑛)𝑛

Here are some examples.

(i) 𝑛 = 2
det𝑀 =∑

𝜎
𝑀𝜎(1)1𝑀𝜎(2)2 =

|||
𝑀11 𝑀21
𝑀12 𝑀22

||| = 𝑀11𝑀22 −𝑀12𝑀21

(ii) 𝑀 diagonal, i.e.𝑀𝑖𝑗 = 0 for 𝑖 ≠ 𝑗

𝑀 =
⎛
⎜
⎜
⎝

𝑀11 0 ⋯ 0
0 𝑀22 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑀𝑛𝑛

⎞
⎟
⎟
⎠

⟹ det𝑀 = 𝑀11𝑀22⋯𝑀𝑛𝑛

(iii) Let𝑀 be 𝑛 × 𝑛, 𝐴 be (𝑛 − 1) × (𝑛 − 1), where

𝑀 = ( 𝐴 0
0 1 )

We call𝑀 a matrix ‘in block form’. So𝑀𝑛𝑖 = 𝑀𝑖𝑛 = 0 if 𝑖 ≠ 𝑛. So we can restrict the
permutation 𝜎 to only transmuting the first (𝑛 − 1) terms, i.e. 𝜎(𝑛) = 𝑛. So det𝑀 =
det𝐴.

Proposition. If R𝑎 are the rows of𝑀, det𝑀 is given by

det𝑀 = [R1,R2,⋯ ,R𝑛]
= 𝜀𝑖𝑗⋯𝑙𝑀1𝑖𝑀2𝑗⋯𝑀𝑛𝑙

= ∑
𝜎
𝜀(𝜎)𝑀1𝜎(1)𝑀2𝜎(2)⋯𝑀𝑛𝜎(𝑛)

i.e. det𝑀 = det𝑀⊺.

Proof. Recall that (C𝑎)𝑖 = 𝑀𝑖𝑎 = (R𝑖)𝑎. We need to show that one of these definitions is
equivalent to one of the previous definitions, then all other equivalent definitions follow.
We use the Σ definition by considering the product𝑀1𝜎(1)𝑀2𝜎(2)⋯𝑀𝑛𝜎(𝑛). We may rewrite
this product in a different order: 𝑀𝜌(1)1𝑀𝜌(2)2⋯𝑀𝜌(𝑛)𝑛. Then𝜌 = 𝜎−1. But then 𝜀(𝜎) = 𝜀(𝜌),
and a sum over 𝜎 is equivalent to a sum over 𝜌.
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8. Determinant

8.2. Expanding by rows or columns
For an 𝑛 × 𝑛matrix𝑀 with entries𝑀𝑖𝑎, we define the minor𝑀𝑖𝑎 to be the (𝑛 − 1) × (𝑛 − 1)
determinant of the matrix obtained by deleting row 𝑖 and column 𝑎 from𝑀.

Proposition. The determinant of a generic 𝑛 × 𝑛matrix𝑀 is given by

det𝑀 =∑
𝑖
(−1)𝑖+𝑎𝑀𝑖𝑎𝑀𝑖𝑎 for a fixed 𝑎

= ∑
𝑎
(−1)𝑖+𝑎𝑀𝑖𝑎𝑀𝑖𝑎 for a fixed 𝑖

This process is known as expanding by row 𝑖 or by column 𝑎. As an example, let us take the
following 4 × 4 complex matrix

𝑀 =
⎛
⎜
⎜
⎝

𝑖 0 3 0
0 0 2𝑖 0
0 5𝑖 0 −𝑖
2 0 0 1

⎞
⎟
⎟
⎠

Then, the determinant is given by (expanding by row 3)

det𝑀 = −5𝑖
|
|
|
|

𝑖 3 0
0 2𝑖 0
2 0 1

|
|
|
|
+ 𝑖

|
|
|
|

𝑖 0 3
0 0 2𝑖
2 0 0

|
|
|
|

= −5𝑖 [𝑖 |||
2𝑖 0
0 1

||| − 3 |||
0 0
2 1

|||] + 𝑖 [−2𝑖 |||
𝑖 0
2 0

|||]

= −5𝑖[𝑖 ⋅ 2𝑖 − 3 ⋅ 0] + 𝑖[−2𝑖 ⋅ 0]
= −5𝑖[−2] + 𝑖[0]
= 10𝑖

8.3. Row and column operations
Consider the following consequences of the properties of the determinant:

• (row and column scaling) IfR𝑖 ↦ 𝜆R𝑖 for a fixed 𝑖, orC𝑎 ↦ 𝜆C𝑎, then det𝑀 ↦ 𝜆 det𝑀
bymultilinearity. If we scale all rows or columns, then𝑀 ↦ 𝜆𝑀, so det𝑀 ↦ 𝜆𝑛 det𝑀
where𝑀 is an 𝑛 × 𝑛matrix.

• (row and column operations) If R𝑖 ↦ R𝑖 + 𝜆R𝑗 where 𝑖 ≠ 𝑗 (or the corresponding
conversion with columns), then det𝑀 ↦ det𝑀.

• (row and column exchanges) If we swap R𝑖 and R𝑗 (or two columns), then det𝑀 ↦
− det𝑀.
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IV. Vectors and Matrices

For example, let us find the determinant of matrix 𝐴, where

𝐴 = (
1 1 𝑎
𝑎 1 1
1 𝑎 1

) ; 𝑎 ∈ ℂ

Then:

det𝐴 =
|
|
|
|

1 1 𝑎
𝑎 1 1
1 𝑎 1

|
|
|
|

C1 ↦ C1 − C3 ∶ det𝐴 =
|
|
|
|

1 − 𝑎 1 𝑎
𝑎 − 1 1 1
0 𝑎 1

|
|
|
|

det𝐴 = (1 − 𝑎)
|
|
|
|

1 1 𝑎
−1 1 1
0 𝑎 1

|
|
|
|

C2 ↦ C2 − C3 ∶ det𝐴 = (1 − 𝑎)
|
|
|
|

1 1 − 𝑎 𝑎
−1 0 1
0 𝑎 − 1 1

|
|
|
|

det𝐴 = (1 − 𝑎)2
|
|
|
|

1 1 𝑎
−1 0 1
0 −1 1

|
|
|
|

R1 ↦ R1 + R2 + R3 ∶ det𝐴 = (1 − 𝑎)2
|
|
|
|

0 0 𝑎 + 2
−1 0 1
0 −1 1

|
|
|
|

det𝐴 = (1 − 𝑎)2(𝑎 + 2) |||
−1 0
0 −1

||| = (1 − 𝑎)2(𝑎 + 2)

8.4. Multiplicative property of determinants
Theorem. For 𝑛 × 𝑛matrices𝑀,𝑁, det(𝑀𝑁) = det𝑀 ⋅ det𝑁.

We can prove this using the following elaboration on the definition of the determinant:

Lemma.
𝜀𝑖1𝑖2⋯𝑖𝑛𝑀𝑖1𝑎1𝑀𝑖2𝑎2 ⋯𝑀𝑖𝑛𝑎𝑛 = (det𝑀)𝜀𝑎1𝑎2⋯𝑎𝑛

Proof. The left hand side and right hand side are each totally antisymmetric (alternating) in
𝑎1, 𝑎2,⋯ , 𝑎𝑛, so they must be related by a constant of proportionality. To fix the constant,
we can simply consider taking 𝑎𝑖 = 𝑖 and the result follows.

Now, we prove the above theorem.
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Proof. Using the lemma above:

det𝑀𝑁 = 𝜀𝑖1𝑖2⋯𝑖𝑛(𝑀𝑁)𝑖11(𝑀𝑁)𝑖22⋯(𝑀𝑁)𝑖𝑛𝑛
= 𝜀𝑖1𝑖2⋯𝑖𝑛

𝑀𝑖1𝑘1
𝑁𝑘11

𝑀𝑖2𝑘2
𝑁𝑘22

⋯ 𝑀𝑖𝑛𝑘𝑛
𝑁𝑘𝑛𝑛

= (det𝑀)𝜀𝑎1𝑎2⋯𝑎𝑛𝑁𝑘11𝑁𝑘22⋯𝑁𝑘𝑛𝑛
= (det𝑀)(det𝑁)

as required.

Note the following consequences.

(i) 𝑀−1𝑀 = 𝐼 ⟹ det(𝑀−1) det(𝑀) = det 𝐼 = 1. Therefore, det(𝑀−1) = (det𝑀)−1, so
det𝑀 must be nonzero for𝑀 to be invertible.

(ii) For 𝑅 real and orthogonal, 𝑅⊺𝑅 = 𝐼 ⟹ det(𝑅⊺) det(𝑅) = 1. But det(𝑅⊺) = det𝑅, so
(det𝑅)2 = 1, so det𝑅 = ±1.

(iii) For 𝑈 complex and unitary, 𝑈†𝑈 = 𝐼 ⟹ det(𝑈†) det(𝑈) = 1. But since 𝑈† = 𝑈⊺,
we have det𝑈 det𝑈 = 1, so ||(det𝑈)2|| = 1, so |det𝑈| = 1.

8.5. Cofactors and determinants
Consider a column of some 𝑛 × 𝑛matrix𝑀, written in the form

C𝑎 = ∑
𝑖
𝑀𝑖𝑎e𝑖

⟹ det𝑀 = [C1,⋯ ,C𝑎,⋯ ,C𝑛]
= [C1,⋯ ,C𝑎−1,∑

𝑖
𝑀𝑖𝑎e𝑖,C𝑎+1,⋯ ,C𝑛]

= ∑
𝑖
𝑀𝑖𝑎Δ𝑖𝑎

where

Δ𝑖𝑎 = [C1,⋯ ,C𝑎−1, e𝑖,C𝑎+1,⋯ ,C𝑛]

=

|
|
|
|
|
|
|
|
|
|

𝐴
0
⋮
0

𝐵
0 ⋯ 0 1 0 ⋯ 0

𝐶
0
⋮
0

𝐷

|
|
|
|
|
|
|
|
|
|
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where the zero entries in the rows arise from antisymmetry, giving

= (−1)𝑛−𝑎⏟⎵⏟⎵⏟
amount of column transpositions

⋅ (−1)𝑛−𝑖⏟⎵⏟⎵⏟
amount of row transpositions

|||
𝐴 𝐵
𝐶 𝐷

|||

= (−1)𝑖+𝑎𝑀𝑖𝑎

where 𝑀𝑖𝑎 is the minor in this position; the determinant of the matrix with this particular
row and column removed. We call Δ𝑖𝑎 the cofactor.

det𝑀 =∑
𝑖
𝑀𝑖𝑎Δ𝑖𝑎 = ∑

𝑖
(−1)𝑖+𝑎𝑀𝑖𝑎𝑀𝑖𝑎

Similarly, by considering rows,

det𝑀 =∑
𝑎
𝑀𝑖𝑎Δ𝑖𝑎 = ∑

𝑎
(−1)𝑖+𝑎𝑀𝑖𝑎𝑀𝑖𝑎

8.6. Adjugates and inverses

Reasoning as above, consider C𝑏 = ∑𝑖𝑀𝑖𝑏e𝑖. Then,

[C1,⋯ ,C𝑎−1,C𝑏,C𝑎+1,⋯ ,C𝑛] = ∑
𝑖
𝑀𝑖𝑏Δ𝑖𝑎

If 𝑎 = 𝑏 then clearly this is det𝑀. Otherwise, C𝑏 is equal to one of the other columns, so
∑𝑖𝑀𝑖𝑏Δ𝑖𝑎 = 0.

∑
𝑖
𝑀𝑖𝑏Δ𝑖𝑎 = (det𝑀)𝛿𝑎𝑏

Similarly,
∑
𝑎
𝑀𝑗𝑎Δ𝑖𝑎 = (det𝑀)𝛿𝑖𝑗

Now, let Δ be the matrix of cofactors (i.e. entries Δ𝑖𝑎), and we define the adjugate �̃� = Δ⊺.
Then

Δ𝑖𝑎𝑀𝑖𝑏 = �̃�𝑎𝑖𝑀𝑖𝑏 = (�̃�𝑀)𝑎𝑏 = (det𝑀)𝛿𝑎𝑏

Therefore,
�̃�𝑀 = (det𝑀)𝐼

We can reach this result similarly considering the other index. Hence, if det𝑀 ≠ 0 then
𝑀−1 = 1

det𝑀
�̃�.
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8.7. Systems of linear equations
Consider a systemof𝑛 linear equations in𝑛unknowns𝑥𝑖written inmatrix-vector form:

𝐴x = b, x,b ∈ ℝ𝑛,

where 𝐴 is an 𝑛 × 𝑛matrix. There are three possibilities:
(i) det𝐴 ≠ 0 ⟹ 𝐴−1 exists so there is a unique solution x = 𝐴−1b
(ii) det𝐴 = 0 and 𝑏 ∉ Im𝐴means that there is no solution

(iii) det𝐴 = 0 and 𝑏 ∈ Im𝐴means that there are infinitely many solutions of the form

x = x0 + u

where u ∈ ker𝐴 and x0 is a particular solution

A solution therefore exists if and only if 𝐴x0 = b for some x0, which is true if and only if
b ∈ Im𝐴. Then x is also a solution if and only if u = x − x0 satisfies

𝐴u = 0

This equation is known as the equivalent homogeneous problem. Now, det𝐴 ≠ 0 ⟺
Im𝐴 = ℝ𝑛 ⟺ ker𝐴 = {0}. So in case (i), there is always a unique solution for any b. But
det𝐴 = 0 ⟺ rank(𝐴) < 𝑛 ⟺ null𝐴 > 0. Then either 𝑏 ∉ Im𝐴 as in case (ii), or
𝑏 ∈ Im𝐴 as in case (iii).

If u1,… ,u𝑘 is a basis for ker𝐴, then the general solution to the homogeneous problem is
some linear combination of these basis vectors, i.e.

u =
𝑘
∑
𝑖=1

𝜆𝑖u𝑖, 𝑘 = null𝐴

This is similar to the complementary function and particular integral technique used to solve
linear differential equations.

For example, in 𝐴x = b, let

𝐴 = (
1 1 𝑎
𝑎 1 1
1 𝑎 1

) ; b = (
1
𝑐
1
) ; 𝑎, 𝑐 ∈ ℝ

We have previously found that det𝐴 = (𝑎 − 1)2(𝑎 + 2). So the cases are:
• (𝑎 ≠ 1, 𝑎 ≠ −2) det𝐴 ≠ 0 and 𝐴−1 exists; we previously found this to be

𝐴−1 = 1
(1 − 𝑎)(2 + 𝑎) (

1 1 + 𝑎 1
1 1 −1 − 𝑎

−1 − 𝑎 1 1
)
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For these values of 𝑎, there is a unique solution for any 𝑐, demonstrating case (i) above:

x = 𝐴−1b = 1
(1 − 𝑎)(2 + 𝑎) (

2 − 𝑐 − 𝑐𝑎
𝑐 − 𝑎
𝑐 − 𝑎

)

Geometrically, this solution is simply a point.

• (𝑎 = 1) In this case, the matrix is simply

𝐴 = (
1 1 1
1 1 1
1 1 1

) ⟹ Im𝐴 = span{(
1
1
1
)} = {𝜆(

1
1
1
)} ; ker𝐴 = span{(

−1
1
0
) , (

−1
0
1
)}

Note that b ∈ Im𝐴 if and only if 𝑐 = 1, where a particular solution is

x0 = (
1
0
0
)

So the general solution is given by

x = x0 + u = (
1 − 𝜆 − 𝜇

𝜆
𝜇

)

In summary, for 𝑎 = 1, 𝑐 = 1 we have case (iii). Geometrically this is a plane. For
𝑎 = 1, 𝑐 ≠ 1, we have case (ii) where there are no solutions.

• (𝑎 = −2) The matrix becomes

𝐴 = (
1 1 −2
−2 1 1
1 −2 1

) ⟹ Im𝐴 = span{(
1
−2
1
) , (

1
1
−2

)} ; ker𝐴 = {𝜆(
1
1
1
)}

Now, b ∈ Im𝐴 if and only if 𝑐 = −2, the particular solution is

x0 = (
1
0
0
)

The general solution is therefore

x = x0 + u = (
1 + 𝜆
𝜆
𝜆

)

In summary, for 𝑎 = −2 and 𝑐 = −2 we have case (iii). Geometrically this is a line.
For 𝑎 = −2, 𝑐 ≠ −2, we have case (ii) where there are no solutions.
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8.8. Geometrical interpretation of solutions of linear equations
Let R1,R2,R3 be the rows of the 3 × 3 matrix 𝐴. Then the rows represent the normals of
planes. This is clear by expanding thematrixmultiplication of the homogeneous form:

𝐴u = 0 ⟺ R1 ⋅ u = 0
R2 ⋅ u = 0
R3 ⋅ u = 0

So the solution of the homogeneous problem (i.e. finding the general solution) amounts to
determining where the planes intersect.

• (rank𝐴 = 3) The rows are linearly independent, so the three planes’ normals are
linearly independent and the planes intersect at 0 only.

• (rank𝐴 = 2) The normals span a plane, so the planes intersect in a line.
• (rank𝐴 = 1) The normals are parallel and therefore the planes coincide.
• (rank𝐴 = 0) The normals are all zero, so any vector in ℝ3 solves the equation.

Now, let us consider instead the original problem 𝐴x = b:

𝐴b = 0 ⟺ R1 ⋅ u = 𝑏1
R2 ⋅ u = 𝑏2
R3 ⋅ u = 𝑏3

The planes still have normals R𝑖 as before, but they do not necessarily pass through the
origin.

• (rank𝐴 = 3) The planes’ normals are linearly independent and the planes intersect at
a point; this is the unique solution.

• (rank𝐴 < 3) The existence of a solution depends on the value of b.
– (rank𝐴 = 2) The planes may intersect in a line as before, but they may instead
form a sheaf (the planes pairwise intersect in lines but they do not as a triple), or
two planes could be parallel and not intersect each other at all.

– (rank𝐴 = 1) The normals are parallel, so the planes may coincide or they might
be parallel. There is no solution unless all three planes coincide.
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9. Properties of matrices
9.1. Eigenvalues and eigenvectors
For a linear map 𝑇 ∶ 𝑉 → 𝑉 , a vector v ∈ 𝑉 with v ≠ 0 is called an eigenvector of 𝑇 with
eigenvalue 𝜆 if 𝑇(v) = 𝜆v. If 𝑉 = ℝ𝑛 or ℂ𝑛, and 𝑇 is given by an 𝑛× 𝑛matrix 𝐴, then

𝐴v = 𝜆𝑣 ⟺ (𝐴 − 𝜆𝐼)v = 0

and for a given 𝜆, this holds for some v ≠ 0 if and only if

det(𝐴 − 𝜆𝐼) = 0

This is called the characteristic equation for 𝐴. So 𝜆 is an eigenvalue if and only if it is a root
of the characteristic polynomial

𝜒𝐴(𝑡) = det(𝐴 − 𝑡𝐼) =
||||||

𝐴11 − 𝑡 𝐴12 ⋯ 𝐴1𝑛
𝐴21 𝐴22 − 𝑡 ⋯ 𝐴2𝑛
⋮ ⋮ ⋱ ⋮
𝐴𝑛1 𝐴𝑛2 ⋯ 𝐴𝑛𝑛 − 𝑡

||||||

We can look for eigenvalues as roots of the characteristic polynomial or characteristic equa-
tion, and then determine the corresponding eigenvectors once we’ve deduced what the pos-
sibilities are. Here are a few examples.

(i) 𝑉 = ℂ2:

𝐴 = ( 2 𝑖
−𝑖 2) ⟹ det(𝐴 − 𝜆𝐼) = (2 − 𝜆)2 − 1 = 0

So we have (2 − 𝜆)2 = 1 so 𝜆 = 1 or 3.
• (𝜆 = 1)

(𝐴 − 𝐼)v = ( 1 𝑖
−𝑖 1) (

𝑣1
𝑣2
) = 0 ⟹ v = 𝛼(1𝑖)

for any 𝛼 ≠ 0.
• (𝜆 = 3)

(𝐴 − 3𝐼)v = (−1 𝑖
−𝑖 −1) (

𝑣1
𝑣2
) = 0 ⟹ v = 𝛽 ( 1−𝑖)

for any 𝛽 ≠ 0.
(ii) 𝑉 = ℝ2:

𝐴 = (1 1
0 1) ⟹ det(𝐴 − 𝜆𝐼) = (1 − 𝜆)2 = 0

So 𝜆 = 1 only, a repeated root.

(𝐴 − 𝐼)v = (0 1
0 0) (

𝑣1
𝑣2
) = 0 ⟹ v = 𝛼(10)

for any 𝛼 ≠ 0. There is only one (linearly independent) eigenvector here.
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(iii) 𝑉 = ℝ2 or ℂ2:

𝑈 = (cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ) ⟹ 𝜒𝑈(𝑡) = det(𝑈 − 𝑡𝐼) = 𝑡2 − 2𝑡 cos 𝜃 + 1

The eigenvalues 𝜆 are 𝑒±𝑖𝜃. The eigenvectors are

v = 𝛼( 1∓𝑖) ; 𝛼 ≠ 0

So there are no real eigenvalues or eigenvectors except when 𝜃 = 𝑛𝜋.
(iv) 𝑉 = ℂ𝑛:

𝐴 =
⎛
⎜
⎜
⎝

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑛

⎞
⎟
⎟
⎠

⟹ 𝜒𝐴(𝑡) = det(𝐴 − 𝑡𝐼) = (𝜆1 − 𝑡)(𝜆2 − 𝑡)(𝜆3 − 𝑡)… (𝜆𝑛 − 𝑡)

So the eigenvalues are all the 𝜆𝑖, and the eigenvectors are v = 𝛼e𝑖 (𝛼 ≠ 0) for each 𝑖.

9.2. The characteristic polynomial
For an 𝑛 × 𝑛matrix 𝐴, the characteristic polynomial 𝜒𝐴(𝑡) has degree 𝑛:

𝜒𝐴(𝑡) =
𝑛
∑
𝑗=0

𝑐𝑗𝑡𝑗 = (−1)𝑛(𝑡 − 𝜆1)… (𝑡 − 𝜆𝑛)

(i) There exists at least one eigenvalue (solution to 𝜒𝐴), due to the fundamental theorem
of algebra, or 𝑛 roots counted with multiplicity.

(ii) tr(𝐴) = 𝐴𝑖𝑖 = ∑𝑛
𝑖=1 𝜆𝑖, the sum of the eigenvalues. Compare terms of degree 𝑛 − 1 in

𝑡, and from the determinant we get

(−𝑡)𝑛−1𝐴11 + (−𝑡)𝑛−1𝐴22 +⋯+ (−𝑡)𝑛−1𝐴𝑛𝑛

The overall sign matches with the expansion of (−1)𝑛(𝑡 − 𝜆1)(𝑡 − 𝜆2)… (𝑡 − 𝜆𝑛).
(iii) det(𝐴) = 𝜒𝐴(0) = ∏𝑛

𝑖=1 𝜆𝑖, the product of the eigenvalues.
(iv) If𝐴 is real, then the coefficients 𝑐𝑖 in the characteristic polynomial are real, so𝜒𝐴(𝜆) =

0 ⟺ 𝜒𝐴(𝜆) = 0. So the non-real roots occur in conjugate pairs if 𝐴 is real.

9.3. Eigenspaces and multiplicities
For an eigenvalue 𝜆 of a matrix 𝐴, we define the eigenspace

𝐸𝜆 = {v ∶ 𝐴v = 𝜆v} = ker(𝐴 − 𝜆𝐼)
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All nonzero vectors in this space are eigenvectors. The geometric multiplicity is

𝑚𝜆 = dim𝐸𝜆 = null(𝐴 − 𝜆𝐼)

equivalent to the number of linearly independent eigenvectors with the given eigenvalue 𝜆.
The algebraic multiplicity is

𝑀𝜆 = the multiplicity of 𝜆 as a root of 𝜒𝐴(𝑡)

i.e. 𝜒𝐴(𝑡) = (𝑡 − 𝜆)𝑀𝑡𝑓(𝑡), where 𝑓(𝜆) ≠ 0.
Proposition. 𝑀𝜆 ≥ 𝑚𝜆 (and𝑚𝜆 ≥ 1 since 𝜆 is an eigenvalue). The proof of this proposition
is delayed until the next section where we will then have the tools to prove it.

Here are some examples.

(i)

𝐴 = (
−2 2 −3
2 1 −6
−1 −2 0

) ⟹ 𝜒𝐴(𝑡) = det(𝐴 − 𝑡𝐼) = (5 − 𝑡)(𝑡 + 3)2

So 𝜆 = 5,−3. 𝑀5 = 1,𝑀−3 = 2. We will now find the eigenspaces.

• (𝜆 = 5)

𝐸5 = {𝛼(
1
2
−1

)}

• (𝜆 = −3)

𝐸−3 = {𝛼(
−2
1
0
) + 𝛽 (

3
0
1
)}

Note that to compute the eigenvectors, we just need to solve the equation (𝐴−𝜆𝐼)x = 0.
In the case of 𝜆 = −3, for example, we then have

(
1 2 −3
2 4 −6
−1 −2 3

)(
𝑥1
𝑥2
𝑥3
) = 0

We can use the first line of the matrix to get a linear combination for 𝑥1, 𝑥2, 𝑥3, spe-
cifically 𝑥1 + 2𝑥2 = 3𝑥3 = 0, so we can eliminate one of the variables (here, 𝑥1) to
get

x = (
−2𝑥2 + 3𝑥3

𝑥2
𝑥3

) = 0

Now, dim𝐸5 = 𝑚5 = 1 = 𝑀5. Similarly, dim𝐸−3 = 𝑚−3 = 2 = 𝑀−3.
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(ii)

𝐴 = (
−3 −1 1
−1 −3 1
−2 −2 0

) ⟹ 𝜒𝐴(𝑡) = det(𝐴 − 𝑡𝐼) = −(𝑡 + 2)3

Wehave a root 𝜆 = −2with𝑀−2 = 3. To find the eigenspace, wewill look for solutions
of:

(𝐴 + 2𝐼)x = (
−1 −1 1
−1 −1 1
−2 −2 2

)(
𝑥1
𝑥2
𝑥3
) = 0 ⟹ x = (

−𝑥2 + 𝑥3
𝑥2
𝑥3

)

So

𝐸−2 = {𝛼(
−1
1
0
) + 𝛽 (

1
0
1
)}

Further,𝑚−2 = 2 < 3 = 𝑀−2.

(iii) A reflection in a plane through the origin with unit normal n̂ satisfies

𝐻n̂ = −n̂; ∀u ⟂ n̂, 𝐻u = u

The eigenvalues are therefore ±1 and 𝐸−1 = {𝛼n̂}, and 𝐸1 = {x ∶ x ⋅ n̂ = 0}. The
multiplicities are given by𝑀−1 = 𝑚−1 = 1,𝑀1 = 𝑚1 = 2.

(iv) A rotation about an axis n̂ through angle 𝜃 in ℝ3 satisfies

𝑅n̂ = n̂

So the axis of rotation is the eigenvector with eigenvalue 1. There are no other real
eigenvalues unless 𝜃 = 𝑛𝜋. The rotation restricted to the plane perpendicular to n̂ has
eigenvalues 𝑒±𝑖𝜃 as shown above.

9.4. Linear independence of eigenvectors
Proposition. Let v1,… , v𝑟 be eigenvectors of an 𝑛 × 𝑛matrix 𝐴 with eigenvalues 𝜆1,… , 𝜆𝑟.
If the eigenvalues are distinct, then the eigenvectors are linearly independent.

Proof. Note that if we take some linear combination w = ∑𝑟
𝑗=1 𝛼𝑗v𝑗 , then (𝐴 − 𝜆𝐼)w =

∑𝑟
𝑗=1 𝛼𝑗(𝜆𝑗 − 𝜆)v𝑗 . Here are two methods for getting this proof.

(i) Suppose the eigenvectors are linearly dependent, so there exist linear combinations
w = 0 where some 𝛼 are nonzero. Let 𝑝 be the amount of nonzero 𝛼 values. So,
2 ≤ 𝑝 ≤ 𝑟. Now, pick such aw for which 𝑝 is least. Without loss of generality, let 𝛼1
be one of the nonzero coefficients. Then

(𝐴 − 𝜆1𝐼)w =
𝑟
∑
𝑗=2

𝛼𝑗(𝜆𝑗 − 𝜆1)v𝑗 = 0

This is a linear relation with 𝑝 − 1 nonzero coefficients #.
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(ii) Alternatively, given a linear relationw = 0,

∏
𝑗≠𝑘

(𝐴 − 𝜆𝑗𝐼)w = 𝛼𝑘∏
𝑗≠𝑘

(𝜆𝑘 − 𝜆𝑗)v𝑘 = 0

for some fixed 𝑘. So 𝛼𝑘 = 0. So the eigenvectors are linearly independent as claimed.

Corollary. With conditions as in the proposition above, letℬ𝜆𝑖 be a basis for the eigenspace
𝐸𝜆𝑖 . Then ℬ = ℬ𝜆1 ∪ ℬ𝜆2 ∪⋯ ∪ ℬ𝜆𝑟 is linearly independent.

Proof. Consider a general linear combination of all these vectors, it has the form

w = w1 +w2 +⋯+w𝑟

where eachw𝑖 ∈ 𝐸𝑖. Applying the same arguments as in the proposition, we find that

w = 0 ⟹ ∀𝑖w𝑖 = 0

So eachw𝑖 is the trivial linear combination of elements of ℬ𝜆𝑖 and the result follows.

9.5. Diagonalisability
Proposition. For an 𝑛 × 𝑛matrix 𝐴 acting on 𝑉 = ℝ𝑛 or ℂ𝑛, the following conditions are
equivalent:

(i) there exists a basis of eigenvectors of 𝐴 for 𝑉 , named v1, v2,… , v𝑛 which 𝐴v𝑖 = 𝜆𝑖v𝑖
for each 𝑖; and

(ii) there exists an 𝑛 × 𝑛 invertible matrix 𝑃 with the property that

𝑃−1𝐴𝑃 = 𝐷 =
⎛
⎜
⎜
⎝

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑛

⎞
⎟
⎟
⎠

If either of these conditions hold, then 𝐴 is diagonalisable.

Proof. Note that for any matrix 𝑃, 𝐴𝑃 has columns 𝐴C𝑖(𝑃), and 𝑃𝐷 has columns 𝜆𝑖C𝑖(𝑃).
Then (i) and (ii) are related by choosing v𝑖 = C𝑖(𝑃). Then 𝑃−1𝐴𝑃 = 𝐷 ⟺ 𝐴𝑃 = 𝑃𝐷 ⟺
𝐴v𝑖 = 𝜆𝑖v𝑖.
In essence, given a basis of eigenvectors as in (i), the relation above defines 𝑃, and if the
eigenvectors are linearly independent then 𝑃 is invertible. Conversely, given a matrix 𝑃 as
in (ii), its columns are a basis of eigenvectors.

Let’s try some examples.
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(i) Let

𝐴 = (1 1
0 1) ⟹ 𝐸1 = {𝛼 (10)}

This is a single eigenvalue 𝜆 = 1 with one linearly independent eigenvector. So there
is no basis of eigenvectors for ℝ2 or ℂ2, so 𝐴 is not diagonalisable.

(ii) Let

𝑈 = (cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ) ⟹ 𝐸𝑒𝑖𝜃 = {𝛼 ( 1−𝑖)} ; 𝐸𝑒−𝑖𝜃 = {𝛽 (1𝑖)}

which are two linearly independent complex eigenvectors. So,

𝑃 = ( 1 1
−𝑖 𝑖) ; 𝑃−1 = 1

2 (
1 𝑖
1 −𝑖) ; 𝑃−1𝑈𝑃 = (𝑒

𝑖𝜃 0
0 𝑒𝑖𝜃)

So 𝑈 is diagonalisable over ℂ2 but not over ℝ2.

9.6. Criteria for diagonalisability
Proposition. Consider an 𝑛 × 𝑛matrix 𝐴.
(i) 𝐴 is diagonalisable if it has 𝑛 distinct eigenvalues (sufficient condition).
(ii) 𝐴 is diagonalisable if and only if for every eigenvalue 𝜆, 𝑀𝜆 = 𝑚𝜆 (necessary and

sufficient condition).

Proof. Use the proposition and corollary above.

(i) If we have 𝑛 distinct eigenvalues, then we have 𝑛 linearly independent eigenvectors.
Hence they form a basis.

(ii) If 𝜆𝑖 are all the distinct eigenvalues, thenℬ𝜆1 ∪⋯∪ℬ𝜆𝑟 are linearly independent. The
number of elements in this new basis is∑𝑖𝑚𝜆𝑖 = ∑𝑖𝑀𝜆𝑖 = 𝑛 which is the degree of
the characteristic polynomial. So we have a basis.

Note that case (i) is just a specialisation of case (ii) where both multiplicities are 1.

Let us consider some examples.

(i) Let

𝐴 = (
−2 2 −3
2 1 −6
−1 −2 0

) ⟹ 𝜆 = 5,−3; 𝑀5 = 𝑚5 = 1; 𝑀−3 = 𝑚−3 = 2

So 𝐴 is diagonalisable by case (ii) above, and moreover

𝑃 = (
1 −2 3
2 1 0
−1 0 1

) ; 𝑃−1 = 1
8 (

1 2 −3
−2 4 6
1 2 5

) ⟹ 𝑃−1𝐴𝑃 = (
5 0 0
0 −3 0
0 0 −3

)
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(ii) Let

𝐴 = (
−3 −1 1
−1 −3 1
−2 2 0

) ⟹ 𝜆 = −2; 𝑀−2 = 3 > 𝑚−2 = 2

So 𝐴 is not diagonalisable. As a check, if it were diagonalisable, then there would be
some matrix 𝑃 such that 𝑃−1𝐴𝑃 = −2𝐼 ⟹ 𝐴 = 𝑃(−2𝐼)𝑃−1 = −2𝐼 #.

9.7. Similarity
Matrices 𝐴 and 𝐵 (both 𝑛 × 𝑛) are similar if 𝐵 = 𝑃−1𝐴𝑃 for some invertible 𝑛 × 𝑛matrix 𝑃.
This is an equivalence relation.

Proposition. If 𝐴 and 𝐵 are similar, then

(i) tr𝐵 = tr𝐴

(ii) det𝐵 = det𝐴

(iii) 𝜒𝐵 = 𝜒𝐴

Proof. (i)

tr𝐵 = tr(𝑃−1𝐴𝑃)
= tr(𝐴𝑃𝑃−1)
= tr𝐴

(ii)

det𝐵 = det(𝑃−1𝐴𝑃)
= det𝑃−1 det𝐴 det𝑃
= det𝐴

(iii)

det(𝐵 − 𝑡𝐼) = det(𝑃−1𝐴𝑃 − 𝑡𝐼)
= det(𝑃−1𝐴𝑃 − 𝑡𝑃−1𝑃)
= det(𝑃−1(𝐴 − 𝑡𝐼)𝑃)
= det𝑃−1 det(𝐴 − 𝑡𝐼) det𝑃
= det(𝐴 − 𝑡𝐼)
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9.8. Real eigenvalues and orthogonal eigenvectors

Recall that an 𝑛×𝑛matrix𝐴 is hermitian if and only if𝐴† = 𝐴
⊺
= 𝐴, or𝐴𝑖𝑗 = 𝐴𝑗𝑖. If𝐴 is real,

then it is hermitian if and only if it is symmetric. The complex inner product for v,w ∈ ℂ𝑛

is v†w = ∑𝑖 𝑣𝑖𝑤𝑖, and for v,w ∈ ℝ𝑛, this reduces to the dot product in ℝ𝑛, v⊺w.

Here is a key observation. If 𝐴 is hermitian, then

(𝐴v)†w = v†(𝐴w)

Theorem. For an 𝑛 × 𝑛matrix 𝐴 that is hermitian:

(i) Every eigenvalue 𝜆 is real;
(ii) Eigenvectorsv,wwith different eigenvalues𝜆, 𝜇 respectively, are orthogonal, i.e.v†w =

0; and
(iii) If𝐴 is real and symmetric, then for each eigenvalue 𝜆we can choose a real eigenvector,

and part (ii) becomes v ⋅w = 0.

Proof. (i) Using the observation above with v = wwhere v is any eigenvector with eigen-
value 𝜆, we get

v†(𝐴v) = (𝐴v)†v
v†(𝜆v) = (𝜆v)†v
𝜆v†(v) = 𝜆(v)†v

As v is an eigenvector, it is nonzero, so v†v ≠ 0, so

𝜆 = 𝜆

(ii) Using the same observation,

v†(𝐴w) = (𝐴v)†w
v†(𝜇w) = (𝜆v)†w
𝜇v†w = 𝜆𝐯†w

Since 𝜆 ≠ 𝜇, v†w = 0, so the eigenvectors are orthogonal.
(iii) Given 𝐴v = 𝜆v with v ∈ ℂ𝑛 but 𝐴 is real, let

v = u + 𝑖u′; u,u′ ∈ ℝ𝑛

Since v is an eigenvector, and this is a linear equation, we have
𝐴u = 𝜆u; 𝐴u′ = 𝜆u′

So u and u′ are eigenvectors. v ≠ 0 implies that at least one of u and u′ are nonzero,
so there is at least one real eigenvector with this eigenvalue.
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Case (ii) is a stronger claim for hermitian matrices than just showing that eigenvectors are
linearly independent. Furthermore, previously we considered basesℬ𝜆 for each eigenspace
𝐸𝜆, and it is now natural to choose bases ℬ𝜆 to be orthonormal when we are considering
hermitian matrices. Here are some examples.

(i) Let

𝐴 = ( 2 𝑖
−𝑖 2) ; 𝐴† = 𝐴; 𝜆 = 1, 3; u1 =

1
√2

(1𝑖) ; u2 =
1
√2

( 1−𝑖)

We have chosen coefficients for the vectors u1 and u2 such that they are unit vectors.
As shownabove, they are then orthonormal. Weknow that having distinct eigenvalues
means that a matrix is diagonalisable. So let us set

𝑃 = 1
√2

(1 1
𝑖 −𝑖) ⟹ 𝑃−1𝐴𝑃 = 𝐷 = (1 0

0 3)

Since the eigenvectors are orthonormal, so are the columns of 𝑃, so 𝑃−1 = 𝑃† (i.e. 𝑃 is
unitary).

(ii) Let

𝐴 = (
0 1 1
1 0 1
1 1 0

)

𝐴 is real and symmetric, with eigenvalues 𝜆 = −1, 2 with𝑀−1 = 2,𝑀2 = 1. Further,

𝐸−1 = span{w1,w2}; w1 = (
1
−1
0
) ; w2 = (

1
0
−1

)

So𝑚−1 = 2, and the matrix is diagonalisable. Let us choose an orthonormal basis for
𝐸−1 by taking

u1 =
1

|w1|
w1 =

1
√2

(
1
−1
0
)

and we can consider

w′
2 = w2 − (u1 ⋅w2)u1 = (

1/2
1/2
−1

)

so that w′
2 is orthogonal to u1 by construction. We can then normalise this vector to

get

u2 =
1

||w′
2||
w′
2 =

1
√6

(
1
1
−2

)
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9. Properties of matrices

and therefore
ℬ−1 = {u1,u2}

is an orthonormal basis. For 𝐸2, let us choose ℬ2 = {u3} where

u3 =
1
√3

(
1
1
1
)

Together,

ℬ = { 1
√2

(
1
−1
0
) , 1

√6
(
1
1
−2

) , 1
√3

(
1
1
1
)}

is an orthonormal basis for ℝ3. Let 𝑃 be the matrix with columns u1,u2,u3, then
𝑃−1𝐴𝑃 = 𝐷 as required. Since we have chosen an orthonormal basis, 𝑃 is orthogonal,
so 𝑃⊺𝐴𝑃 = 𝐷.

9.9. Unitary and orthogonal diagonalisation
Theorem. Any 𝑛 × 𝑛 hermitian matrix 𝐴 is diagonalisable.

(i) There exists a basis of eigenvectors u1,… ,u𝑛 ∈ ℂ𝑛 with 𝐴u𝑖 = 𝜆u𝑖; equivalently
(ii) There exists an 𝑛 × 𝑛 invertible matrix 𝑃 with 𝑃−1𝐴𝑃 = 𝐷 where 𝐷 is the matrix with

eigenvalues on the diagonal, where the columns of 𝑃 are the eigenvectors u𝑖.
In addition, the eigenvectors u𝑖 can be chosen to be orthonormal, so

u†𝑖 u𝑗 = 𝛿𝑖𝑗

or equivalently, the matrix 𝑃 can be chosen to be unitary,

𝑃† = 𝑃−1 ⟹ 𝑃†𝐴𝑃 = 𝐷

In the special case that the matrix 𝐴 is real, the eigenvectors can be chosen to be real, and so

u⊺u𝑗 = u𝑖 ⋅ u𝑗 = 𝛿𝑖𝑗

so 𝑃 is orthogonal, so
𝑃⊺ = 𝑃−1 ⟹ 𝑃⊺𝐴𝑃 = 𝐷
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10. Quadratic forms
10.1. Simple example
Consider a function ℱ∶ ℝ2 → ℝ defined by

ℱ(x) = 2𝑥21 − 4𝑥1𝑥2 + 5𝑥22

This can be simplified by writing

ℱ(x) = 𝑥′21 + 6𝑥′22

where
𝑥′1 =

1
√5

(2𝑥1 + 𝑥2); 𝑥′2 =
1
√5

(−𝑥1 + 2𝑥2)

This can be found by writing ℱ(x) = x⊺𝐴x where

𝐴 = ( 2 −2
−2 5 )

by inspection from the original equation, and then diagonalising𝐴. We find the eigenvalues
to be 𝜆 = 1, 6, with eigenvectors

1
√5

(21) ;
1
√5

(−12 )

10.2. Diagonalising quadratic forms
In general, a quadratic form is a function ℱ∶ ℝ𝑛 → ℝ given by

ℱ(x) = x⊺𝐴x ⟹ ℱ(x)𝑖𝑗 = 𝑥𝑖𝐴𝑖𝑗𝑥𝑗

where𝐴 is a real symmetric 𝑛×𝑛matrix. Any antisymmetric part of𝐴would not contribute
to the result, so there is no loss of generality under this restriction. From the section above,
we know we can write 𝑃⊺𝐴𝑃 = 𝐷 where 𝐷 is a diagonal matrix containing the eigenvalues,
and 𝑃 is constructed from the eigenvectors, with orthonormal columns u𝑖. Setting x′ = 𝑃⊺x,
or equivalently x = 𝑃x′, we have

ℱ(x) = x⊺𝐴x
= (𝑃x′)⊺𝐴(𝑃x′)
= (x′)⊺𝑃⊺𝐴𝑃x′
= (x′)⊺𝐷x′

= ∑
𝑖
𝜆𝑖𝑥′2𝑖 = 𝜆1𝑥′21 + 𝜆2𝑥′22 +…
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10. Quadratic forms

We say that ℱ has been diagonalised. Now, note that

x′ = 𝑥′1e1 +⋯+ 𝑥′𝑛e𝑛
x = 𝑥1e1 +⋯+ 𝑥𝑛e𝑛
= 𝑥′1u1 +⋯+ 𝑥′𝑛u𝑛

where the e𝑖 are the standard basis vectors, since

x′𝑖 = u𝑖 ⋅ x ⟺ x′ = 𝑃⊺x

Hence the x′𝑖 can be regarded as coordinates with respect to a new set of axes defined by
the orthonormal eigenvector basis, known as the principal axes of the quadratic form. They
are related to the standard axes (given by basis vectors e𝑖) by the orthogonal transformation
𝑃.
Example (two dimensions). Consider ℱ(x) = x⊺𝐴x with

𝐴 = (𝛼 𝛽
𝛽 𝛼)

The eigenvalues are 𝜆 = 𝛼 + 𝛽, 𝛼 − 𝛽 and

u1 =
1
√2

(11) ; u2 =
1
√2

(−11 )

So in terms of the standard basis vectors,

ℱ(x) = 𝛼𝑥21 + 2𝛽𝑥1𝑥2 + 𝛼𝑥22
And in terms of our new basis vectors,

ℱ(x) = (𝛼 + 𝛽)𝑥′21 + (𝛼 − 𝛽)𝑥′22
where

x′1 = u1 ⋅ x =
1
√2

(𝑥1 + 𝑥2)

x′2 = u2 ⋅ x =
1
√2

(−𝑥1 + 𝑥2)

Taking for example 𝛼 = 3
2
, 𝛽 = −1

2
, we have 𝜆1 = 1, 𝜆2 = 2. If we choose ℱ = 1, this

represents an ellipse in our new coordinate system:

𝑥′21 + 2𝑥′22 = 1

If instead we chose 𝛼 = −1
2
, 𝛽 = 3

2
. We now have 𝜆1 = 1, 𝜆2 = −2. The locus at ℱ = 1 gives

a hyperbola:
𝑥′21 − 2𝑥′22 = 1
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Example (three dimensions). Inℝ3, note that if 𝜆1, 𝜆2, 𝜆3 are all strictly positive, thenℱ = 1
gives an ellipsoid. This is analogous to the ℝ2 case above.

Let us consider an example. Earlier, we found that the eigenvalues of the matrix 𝐴 where

𝐴 = (
0 1 1
1 0 1
1 1 0

)

are 𝜆1 = 𝜆2 = −1, 𝜆3 = 2, where

u1 =
1
√2

(
1
−1
0
) ; u2 =

1
√6

(
1
1
−2

) ; u3 =
1
√3

(
1
1
1
)

Then

ℱ(x) = 2𝑥1𝑥2 + 2𝑥2𝑥3 + 2𝑥3𝑥1
= −𝑥′21 − 𝑥′22 + 2𝑥′23

Now, ℱ = 1 corresponds to
2𝑥′23 = 1 + 𝑥′21 + 𝑥′22

So we can more clearly see that this is a hyperboloid of two sheets in ℝ3 with rotational
symmetry between the 𝑥1 and 𝑥2 axes. Further, ℱ = −1 corresponds to

1 + 2𝑥′23 = 𝑥′21 + 𝑥′22
Here, this is a hyperboloid of one sheet since for any fixed 𝑥3 coordinate, it defines a circle
in the 𝑥1 and 𝑥2 axes.

10.3. Hessian matrix as a quadratic form

Consider a smooth function 𝑓∶ ℝ𝑛 → ℝ with a stationary point at x = a, i.e. 𝜕𝑓
𝜕𝑥𝑖

= 0 at
x = a. By Taylor’s theorem,

𝑓(a + h) + 𝑓(a) + ℱ(h) + 𝑂(|h|3)
where ℱ is a quadratic form with

𝐴𝑖𝑗 =
1
2

𝜕2𝑓
𝜕𝑥𝑖𝜕𝑥𝑗

all evaluated at x = a. Note that this𝐴 is half of the Hessianmatrix, and that the linear term
vanishes since we are at a stationary point. Rewriting this h in terms of the eigenvectors of
𝐴 (the principal axes), we have

ℱ = 𝜆1ℎ′21 + 𝜆2ℎ′22 +⋯+ 𝜆𝑛ℎ′2𝑛
So clearly if 𝜆𝑖 > 0 for all 𝑖, then 𝑓 has a minimum at x = a. If 𝜆𝑖 < 0 for all 𝐼, then 𝑓 has
a maximum at x = a. Otherwise, it has a saddle point. Note that it is often sufficient to
consider the trace and determinant of 𝐴, since tr𝐴 = 𝜆1 + 𝜆2 and det𝐴 = 𝜆1𝜆2.
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11. Cayley–Hamilton theorem

11. Cayley–Hamilton theorem
11.1. Matrix polynomials
If 𝐴 is an 𝑛 × 𝑛 complex matrix and

𝑝(𝑡) = 𝑐0 + 𝑐1𝑡 + 𝑐22 +⋯+ 𝑐𝑘𝑡𝑘

is a polynomial, then
𝑝(𝐴) = 𝑐0𝐼 + 𝑐1𝐴 + 𝑐2𝐴2 +⋯+ 𝑐𝑘𝐴𝑘

We can also define power series on matrices (subject to convergence). For example, the
exponential series which always converges:

exp(𝐴) = 𝐼 + 𝐴 + 1
2𝐴

2 +⋯+ 1
𝑟!𝐴

𝑟 +…

For a diagonalmatrix, polynomials and power series can be computed easily since the power
of a diagonalmatrix just involves raising its diagonal elements to said power. Therefore,

𝐷 =
⎛
⎜
⎜
⎝

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑛

⎞
⎟
⎟
⎠

⟹ 𝑝(𝐷) =
⎛
⎜
⎜
⎝

𝑝(𝜆1) 0 ⋯ 0
0 𝑝(𝜆2) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑝(𝜆𝑛)

⎞
⎟
⎟
⎠

Therefore,

exp(𝐷) =
⎛
⎜
⎜
⎝

𝑒𝜆1 0 ⋯ 0
0 𝑒𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑒𝜆𝑛

⎞
⎟
⎟
⎠

If 𝐵 = 𝑃−1𝐴𝑃 (similar to 𝐴) where 𝑃 is an 𝑛 × 𝑛 invertible matrix, then
𝐵𝑟 = 𝑃−1𝐴𝑟𝑃

Therefore,
𝑝(𝐵) = 𝑝(𝑃−1𝐴𝑃) = 𝑃−1𝑝(𝐴)𝑃

Of special interest is the characteristic polynomial,
𝜒𝐴(𝑡) = det(𝐴 − 𝑡𝐼) = 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2 +⋯+ 𝑐𝑛𝑡𝑛

where 𝑐0 = det𝐴, and 𝑐𝑛 = (−1)𝑛.
Theorem (Cayley–Hamilton Theorem).

𝜒𝐴(𝐴) = 𝑐0𝐼 + 𝑐1𝐴 + 𝑐2𝐴2 +⋯+ 𝑐𝑛𝐴𝑛 = 0
Less formally, a matrix satisfies its own characteristic equation.

Remark. We can find an expression for the matrix inverse.
−𝑐0𝐼 = 𝐴(𝑐1 + 𝑐2𝐴 +⋯+ 𝑐𝑛𝐴𝑛−1)

If 𝑐0 = det𝐴 ≠ 0, then
𝐴−1 = −1

𝑐0
(𝑐1 + 𝑐2𝐴 +⋯+ 𝑐𝑛𝐴𝑛−1)
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11.2. Proofs of special cases of Cayley–Hamilton theorem
Proof for a 2 × 2matrix. Let 𝐴 be a general 2 × 2matrix.

𝐴 = (𝑎 𝑏
𝑐 𝑑) ⟹ 𝜒𝐴(𝑡) = 𝑡2 − (𝑎 + 𝑑)𝑡 + (𝑎𝑑 − 𝑏𝑐)

We can check the theorem by substitution.

𝜒𝐴(𝐴) = 𝐴2 − (𝑎 + 𝑑)𝐴 − (𝑎𝑑 − 𝑏𝑐)𝐼

This is shown on the last example sheet.

Proof for diagonalisable 𝑛 × 𝑛matrices. Consider 𝐴 with eigenvalues 𝜆𝑖, and an invertible
matrix 𝑃 such that 𝑃−1𝐴𝑃 = 𝐷, where 𝐷 is diagonal.

𝜒𝐴(𝐷) =
⎛
⎜
⎜
⎝

𝜒𝐴(𝜆1) 0 ⋯ 0
0 𝜒𝐴(𝜆2) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜒𝐴(𝜆𝑛)

⎞
⎟
⎟
⎠

= 0

since the 𝜆𝑖 are eigenvalues. Then

𝜒𝐴(𝐴) = 𝜒𝐴(𝑃𝐷𝑃−1) = 𝑃𝜒𝐴(𝐷)𝑃−1 = 0

11.3. Proof in general case (non-examinable)
Proof. Let 𝑀 = 𝐴 − 𝑡𝐼. Then det𝑀 = det(𝐴 − 𝑡𝐼) = 𝜒𝐴(𝑡) = ∑𝑟=0 𝑐𝑟𝑡𝑟. We can construct
the adjugate matrix.

�̃� =
𝑛−1
∑
𝑟=0

𝐵𝑟𝑡𝑟

Therefore,

�̃�𝑀 = (det𝑀)𝐼 = (
𝑛−1
∑
𝑟=0

𝐵𝑟𝑡𝑟) (𝐴 − 𝑡𝐼)

= 𝐵0𝐴 + (𝐵1𝐴 − 𝐵0)𝑡 + (𝐵2𝐴 − 𝐵1)𝑡2 +⋯+ (𝐵𝑛−1𝐴 − 𝐵𝑛−2)𝑡𝑛−1 − 𝐵𝑛−1𝑡

Now by comparing coefficients,

𝐶0𝐼 = 𝐵0𝐴
𝐶1𝐼 = 𝐵1𝐴 − 𝐵0
⋮

𝐶𝑛−1𝐼 = 𝐵𝑛−1𝐴 − 𝐵𝑛−2
𝐶𝑛𝐼 = −𝐵𝑛−1
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Summing all of these coefficients, multiplying by the relevant powers,

𝐶0𝐼 + 𝐶1𝐴 + 𝐶2𝐴2 +⋯+ 𝐶𝑛𝐴𝑛
= 𝐵0𝐴 + (𝐵1𝐴2 − 𝐵0𝐴) + (𝐵2𝐴3 − 𝐵1𝐴2) +⋯ + (𝐵𝑛−1𝐴𝑛 − 𝐵𝑛−2𝐴𝑛−1) − 𝐵𝑛−1𝐴𝑛
= 0
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12. Changing bases
12.1. Change of basis formula
Recall that given a linear map 𝑇 ∶ 𝑉 → 𝑊 where 𝑉 and𝑊 are real or complex vector spaces,
and choices of bases {e𝑖} for 𝑖 = 1,… , 𝑛 and {f𝑎} for 𝑎 = 1,… ,𝑚, then the 𝑚 × 𝑛 matrix 𝐴
with respect to these bases is defined by

𝑇(e𝑖) = ∑
𝑎
f𝑎𝐴𝑎𝑖

So the entries in column 𝑖 of 𝐴 are the components of 𝑇(e𝑖) with respect to the basis {f𝑎}.
This is chosen to ensure that the statement y = 𝑇(x) is equivalent to the statement that
𝑦𝑎 = 𝐴𝑎𝑖𝑥𝑖, where y = ∑𝑎 𝑦𝑎f𝑎 and x = ∑𝑖 𝑥𝑖e𝑖. This equivalence holds since

𝑇 (∑
𝑖
𝑥𝑖e𝑖) = ∑

𝑖
𝑥𝑖𝑇(e𝑖) = ∑

𝑖
𝑥𝑖 (∑

𝑎
f𝑎𝐴𝑎𝑖) = ∑

𝑎
(∑

𝑖
𝐴𝑎𝑖𝑥𝑖)

⏟⎵⎵⏟⎵⎵⏟
𝑦𝑎

f𝑎

as required. For the same linear map 𝑇, there is a different matrix representation 𝐴′ with
respect to different bases {e′𝑖} and {f

′
𝑎}. To relate 𝐴 with 𝐴′, we need to understand how the

new bases relate to the original bases. The change of base matrices 𝑃 (𝑛× 𝑛) and 𝑄 (𝑚×𝑚)
are defined by

e′𝑖 = ∑
𝑗
e𝑗𝑃𝑗𝑖; f′𝑎 = ∑

𝑏
f𝑏𝑄𝑏𝑎

The entries in column 𝑖 of 𝑃 are the components of the new basis e′𝑖 in terms of the old basis
vectors {e𝑗}, and similarly for 𝑄. Note, 𝑃 and 𝑄 are invertible, and in the relation above we
could exchange the roles of {e𝑖} and {e′𝑖} by replacing 𝑃 with 𝑃−1, and similarly for 𝑄.

Proposition (Change of base formula for a linear map). With the definitions above,

𝐴′ = 𝑄−1𝐴𝑃

First we will consider an example, then we will construct a proof. Let 𝑛 = 2,𝑚 = 3,
and

𝑇(e1) = f1 + 2f2 − f3 = ∑
𝑎
f𝑎𝐴𝑎1

𝑇(e2) = −f1 + 2f2 + f3 = ∑
𝑎
f𝑎𝐴𝑎2

Therefore,

𝐴 = (
1 −1
2 2
−1 1

)
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Consider a new basis for 𝑉 , given by

e′1 = e1 − e2 = ∑
𝑖
e𝑖𝑃𝑖1

e′2 = e1 + e2 = ∑
𝑖
e𝑖𝑃𝑖2

𝑃 = ( 1 1
−1 1)

Consider further a new basis for𝑊 , given by

f′1 = f1 − f3 = ∑
𝑎
f𝑎𝑄𝑎1

f′2 = f2 = ∑
𝑎
f𝑎𝑄𝑎2

f′3 = f1 + f3 = ∑
𝑎
f𝑎𝑄𝑎3

𝑄 = (
1 0 1
0 1 0
−1 0 1

)

From the change of base formula,

𝐴′ = 𝑄−1𝐴𝑃

= (
1/2 0 −1/2
0 1 0
1/2 0 1/2

)(
1 −1
2 2
−1 1

) ( 1 1
−1 1)

= (
2 0
0 4
0 0

)

Now checking this result directly,

𝑇(e′1) = 2f1 − 2f3 = 2f′1
𝑇(e′2) = 4f2 = 4f′2

which matches the content of the matrix as required. Now, let us prove the proposition in
general.
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Proof.

𝑇(e′𝑖) = 𝑇 (∑
𝑗
e𝑗𝑃𝑗𝑖)

= ∑
𝑗
𝑇(e𝑗)𝑃𝑗𝑖

= ∑
𝑗
(∑

𝑎
f𝑎𝐴𝑎𝑗) 𝑃𝑗𝑖

= ∑
𝑗𝑎
f𝑎𝐴𝑎𝑗𝑃𝑗𝑖

But on the other hand,

𝑇(e′𝑖) = ∑
𝑏
f′𝑏𝐴

′
𝑏𝑖

= ∑
𝑏
(∑

𝑎
f𝑎𝑄𝑎𝑏)𝐴′

𝑏𝑖

= ∑
𝑎𝑏
f𝑎𝑄𝑎𝑏𝐴′

𝑏𝑖

which is a sum over the same set of basis vectors, so we may equate coefficients of f𝑎.

∑
𝑗
𝐴𝑎𝑗𝑃𝑗𝑖 = ∑

𝑏
𝑄𝑎𝑏𝐴′

𝑏𝑖

(𝐴𝑃)𝑎𝑖 = (𝑄𝐴′)𝑎𝑖

Therefore
𝐴𝑃 = 𝑄𝐴′ ⟹ 𝐴′ = 𝑄−1𝐴𝑃

as required.

12.2. Changing bases of vector components
Here is another way to arrive at the formula 𝐴′ = 𝑄−1𝐴𝑃. Consider changes in vector com-
ponents

x = ∑
𝑖
𝑥𝑖e𝑖 = ∑

𝑗
𝑥′𝑗e′𝑗

= ∑
𝑖
(∑

𝑗
𝑃𝑖𝑗𝑥′𝑗) e𝑖

⟹ 𝑥𝑖 = 𝑃𝑖𝑗𝑥′𝑗
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We will write

𝑋 = (
𝑥1
⋮
𝑥𝑛
) ; 𝑋 ′ = (

𝑥′1
⋮
𝑥′𝑛
)

Then 𝑋 = 𝑃𝑋 ′ or 𝑋 ′ = 𝑃−1𝑋 . Similarly,

y = ∑
𝑎
𝑦𝑎f𝑎 = ∑

𝑏
𝑦′𝑏f′𝑏

⟹ 𝑦𝑎 = 𝑄𝑎𝑏𝑦′𝑏
Then 𝑌 = 𝑄𝑌 ′ or 𝑌 ′ = 𝑄−1𝑌 . So the matrices are defined to ensure that

𝑌 = 𝐴𝑋; 𝑌 ′ = 𝐴′𝑋 ′

Therefore,
𝑄𝑌 ′ = 𝐴𝑃𝑋 ′ ⟹ 𝑌 ′ = (𝑄−1𝐴𝑃)𝑋 ′ ⟹ 𝐴′ = 𝑄−1𝐴𝑃

12.3. Specialisations of changes of basis
Now, let us consider some special cases (in increasing order of specialisation).

(i) Let 𝑉 = 𝑊 with e𝑖 = f𝑖 and e′𝑖 = f′𝑖. So 𝑃 = 𝑄 and the change of basis is

𝐴′ = 𝑃−1𝐴𝑃

Matrices representing the same linear map but with respect to different bases are sim-
ilar. Conversely, if 𝐴,𝐴′ are similar, then we can construct an invertible change of
basis matrix 𝑃 which relates them, so they can be regarded as representing the same
linear map. In an earlier section we noted that tr(𝐴′) = tr(𝐴), det(𝐴′) = det(𝐴) and
𝜒𝐴(𝑡) = 𝜒𝐴′(𝑡). so these are intrinsic properties of the linear map, not just the partic-
ular matrix we choose to represent it.

(ii) Let 𝑉 = 𝑊 = ℝ𝑛 or ℂ𝑛 where e𝑖 is the standard basis, with respect to which, 𝑇 has
matrix 𝐴. If there exists a basis of eigenvectors, e′𝑖 = v𝑖 with 𝐴v𝑖 = 𝜆𝑖v𝑖. Then

𝐴′ = 𝑃−1𝐴𝑃 = 𝐷 =
⎛
⎜
⎜
⎝

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑛

⎞
⎟
⎟
⎠

and
v𝑖 = ∑

𝑘
e𝑗𝑃𝑗𝑖

so the eigenvectors are the columns of 𝑃.
(iii) Let 𝐴 be hermitian, i.e. 𝐴† = 𝐴, then we always have a basis of orthonormal eigen-

vectors e′𝑖 = u𝑖. Then the relations in (ii) apply, and 𝑃 is unitary, 𝑃† = 𝑃−1.
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12.4. Jordan normal form
Also known as the (Jordan) Canonical Form, this result classifies 𝑛×𝑛 complex matrices up
to similarity.

Proposition. Any 2 × 2 complex matrix 𝐴 is similar to one of the following:

(i) 𝐴′ = (𝜆1 0
0 𝜆2

) with 𝜆1 ≠ 𝜆2, so 𝜒𝐴(𝑡) = (𝑡 − 𝜆1)(𝑡 − 𝜆2).

(ii) 𝐴′ = (𝜆 0
0 𝜆), so 𝜒𝐴(𝑡) = (𝑡 − 𝜆)2.

(iii) 𝐴′ = (𝜆 1
0 𝜆), so 𝜒𝐴(𝑡) = (𝑡 − 𝜆)2 as in case (ii).

Proof. 𝜒𝐴(𝑡) has two roots over ℂ.
(i) For distinct roots 𝜆1, 𝜆2, we have 𝑀𝜆1 = 𝑚𝜆1 = 𝑀𝜆2 = 𝑚𝜆2 = 1. So the eigenvectors

v1, v2 provide a basis. Hence 𝐴′ = 𝑃−1𝐴𝑃 with the eigenvectors as the columns of 𝑃.
(ii) For a repeated root 𝜆 with𝑀𝜆 = 𝑚𝜆 = 2, the same argument applies.
(iii) For a repeated root 𝜆 with 𝑀𝜆 = 2, 𝑚𝜆 = 1, we do not have a basis of eigenvectors

so we cannot diagonalise the matrix. We only have one linearly independent eigen-
vector, which we will call v. Let w be any other vector such that {v,w} are linearly
independent. Then

𝐴v = 𝜆v
𝐴w = 𝛼v + 𝛽w

Thematrix representing this linearmapwith respect to the basis vectors {v,w} is there-
fore

(𝜆 𝛼
0 𝛽)

Let us solve for some of these unknowns. We know that the characteristic polynomial
of this matrix must be (𝑡−𝜆)2, so 𝛽 = 𝜆. Also, 𝛼 ≠ 0, otherwise we have case (ii) above.
So now we can set u = 𝛼v, so

𝐴(𝛼v) = 𝜆(𝛼v)
𝐴w = 𝛼v + 𝛽w

So with respect to the basis {u,w} we get the matrix 𝐴 to be

𝐴′ = (𝜆 1
0 𝜆)

260



12. Changing bases

Alternative Proof. Here is an alternative approach for case (iii). If 𝐴 has characteristic poly-
nomial

𝜒𝐴(𝑡) = (𝑡 − 𝜆)2

but 𝐴 ≠ 𝜆𝐼, then there exists some vectorw for which u = (𝐴 − 𝜆𝐼)w ≠ 0. So (𝐴 − 𝜆𝐼)u =
(𝐴 − 𝜆𝐼)2w = 0 by the Cayley–Hamilton theorem. So

𝐴u = 𝜆u
𝐴w = u + 𝜆w

So with basis {u,w} we have the matrix

𝐴′ = (𝜆 1
0 𝜆)

Here is a concrete example using this alternative proof method.

𝐴 = ( 1 4
−1 5) ⟹ 𝜒𝐴(𝑡) = (𝑡 − 3)2

So
𝐴 − 3𝐼 = (−2 4

−1 2)

We will choose w = (10) and we find u = (𝐴 − 3𝐼)w = (−2−1). w is not an eigenvector, as

required for the construction. By the reasoning in the alternative argument above, u is an
eigenvector by construction.

𝐴u = 3u
𝐴w = u + 3w

So
𝑃 = (−2 1

−1 0) ⟹ 𝑃−1 = (0 −1
1 −2)

and we can check that
𝑃−1𝐴𝑃 = (3 1

0 3) = 𝐴′

12.5. Jordan normal forms in 𝑛 dimensions
To extend the arguments above to larger matrices, consider the 𝑛 × 𝑛matrix

𝑁 =
⎛
⎜
⎜
⎜
⎝

0 1 0 ⋯ 0
0 0 1 ⋯ 0
0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 0

⎞
⎟
⎟
⎟
⎠
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When applied to the standard basis vectors in ℂ𝑛, the action of this matrix sends e𝑛 ↦
e𝑛−1 ↦ ⋯ ↦ e1 ↦ 0. This is consistent with the property that 𝑁𝑛 = 0. The kernel of this
matrix has dimension 1. Now consider the matrix 𝐽 = 𝜆𝐼 + 𝑁, as follows:

𝑁 =
⎛
⎜
⎜
⎜
⎝

𝜆 1 0 ⋯ 0
0 𝜆 1 ⋯ 0
0 0 𝜆 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝜆

⎞
⎟
⎟
⎟
⎠

This matrix has
𝜒𝐽(𝑡) = (𝜆 − 𝑡)𝑛

with 𝑀𝜆 = 𝑛 and 𝑚𝜆 = 1, since the kernel of 𝐽 − 𝜆𝐼 = 𝑁 has dimension 1 as before. The
general result is as follows.

Theorem. Any 𝑛 × 𝑛 complex matrix 𝐴 is similar to a matrix of the form

𝐴′ =
⎛
⎜
⎜
⎝

𝐽𝑛1(𝜆1) 0 ⋯ 0
0 𝐽𝑛2(𝜆2) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐽𝑛𝑟(𝜆𝑟)

⎞
⎟
⎟
⎠

where each diagonal block is a Jordan block 𝐽𝑛𝑟(𝜆𝑟) which is an 𝑛𝑟 × 𝑛𝑟 matrix 𝐽 with ei-
genvalue 𝜆𝑟. 𝜆1,… , 𝜆𝑟 are eigenvalues of 𝐴 and 𝐴′, and the same eigenvalue may appear in
different blocks. Further, 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑟 = 𝑛 so we end up with an 𝑛 × 𝑛 matrix. 𝐴 is
diagonalisable if and only if 𝐴′ consists entirely of 1 × 1 blocks. The expression above is the
Jordan Normal Form.

The proof is non-examinable anddepends on the Part IB courses LinearAlgebra, andGroups,
Rings and Modules, so is not included here.
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13. Conics and quadrics

13. Conics and quadrics
13.1. Quadrics in general
A quadric in ℝ𝑛 is a hypersurface defined by an equation of the form

𝑄(x) = x⊺𝐴x + b⊺x + 𝑐 = 0

for some nonzero, symmetric, real 𝑛 × 𝑛matrix 𝐴, 𝑏 ∈ ℝ𝑛, 𝑐 ∈ ℝ. In components,

𝑄(x) = 𝐴𝑖𝑗𝑥𝑖𝑥𝑗 + 𝑏𝑖𝑥𝑖 + 𝑐 = 0

We will classify solutions for x up to geometrical equivalence, so we will not distinguish
between solutions here which are related by isometries inℝ𝑛 (distance-preserving maps, i.e.
translations and orthogonal transformations about the origin).

Note that𝐴 is invertible if and only if it has no zero eigenvalues. In this case, we can complete
the square in the equation𝑄(x) = 0 by setting y = x+ 1

2
𝐴−1b. This is essentially a translation

isometry, moving the origin to 1
2
𝐴−1b.

y⊺𝐴y = (x + 1
2𝐴

−1b)⊺𝐴(x + 1
2𝐴

−1b)

= (x⊺ + 1
2b

⊺(𝐴−1)⊺)𝐴(x + 1
2𝐴

−1b)

= x⊺𝐴x + b⊺x + 1
4b

⊺𝐴−1b

since (𝐴⊺)−1 = (𝐴−1)⊺. Then,

𝑄(x) = 0 ⟺ ℱ(y) = 𝑘

with
ℱ(y) = y⊺𝐴y

which is a quadratic form with respect to a new origin y = 0, and where 𝑘 = 1
4
b⊺𝐴−1b − 𝑐.

Now we can diagonalise ℱ as in the above section, in particular, orthonormal eigenvectors
give the principal axes, and the eigenvalues of𝐴 and the value of 𝑘 determine the geometrical
nature of the solution of the quadric. In ℝ3, the geometrical possibilities are (as we saw
before):

(i) eigenvalues positive, 𝑘 positive gives an ellipsoid;

(ii) eigenvalues different signs, 𝑘 nonzero gives a hyperboloid

If𝐴 has one ormore zero eigenvalues, then the analysis we have just provided changes, since
we can no longer construct such a y vector, since 𝐴−1 does not exist. The simplest standard
form of 𝑄may have both linear and quadratic terms.
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13.2. Conics as quadrics
Quadrics in ℝ2 are curves called conics. Let us first consider the case where det𝐴 ≠ 0. By
completing the square and diagonalising 𝐴, we get a standard form

𝜆1𝑥′1
2 + 𝜆2𝑥′2

2 = 𝑘

The variables 𝑥′𝑖 correspond to the principal axes and the new origin. We have the following
cases.

• (𝜆1, 𝜆2 > 0) This is an ellipse for 𝑘 > 0, and a point for 𝑘 = 0. There are no solutions
for 𝑘 < 0.

• (𝜆1 > 0, 𝜆2 < 0) This gives a hyperbola for 𝑘 > 0, and a hyperbola in the other axis if
𝑘 < 0. If 𝑘 = 0, this is a pair of lines. For instance, 𝑥′1

2 − 𝑥′2
2 = 0 ⟹ (𝑥′1 − 𝑥′2)(𝑥′1 +

𝑥′2) = 0.

If det𝐴 = 0, then there is exactly one zero eigenvalue since 𝐴 ≠ 0. Then:

• (𝜆1 > 0, 𝜆2 = 0) We will diagonalise 𝐴 in the original expression for the quadric. This
gives

𝜆1𝑥′1
2 + 𝑏′1𝑥′1 + 𝑏′2𝑥′2 + 𝑐 = 0

This is a new equation in the coordinate system defined by 𝐴’s principal axes. Com-
pleting the square here in the 𝑥′1 term, we have

𝜆1𝑥″1
2 + 𝑏′2𝑥′2 + 𝑐′ = 0

where 𝑥″1 = 𝑥′1+
1
2𝜆1

𝑏′1, and 𝑐′ = 𝑐− 𝑏′1
2

4𝜆21
. If 𝑏′2 = 0, then 𝑥2 can take any value; and we

get a pair of lines if 𝑐′ < 0, a single line if 𝑐′ = 0, and no solutions if 𝑐′ > 0. Otherwise,
𝑏′2 ≠ 0, and the equation becomes

𝜆1𝑥″1
2 + 𝑏′2𝑥″2 = 0

where 𝑥″2 = 𝑥′2 +
1
𝑏′2
𝑐′, and clearly this equation is a parabola.

All changes of coordinates correspond to translations (shifts of the origin) or orthogonal
transformations, both of which preserve distance and angles.

13.3. Standard forms for conics
The general forms of conics can be written in terms of lengths 𝑎, 𝑏 (the semi-major and
semi-minor axes), or equivalently a length scale ℓ and a dimensionless eccentricity constant
𝑒.
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• First, let us consider Cartesian coordinates. The formulas are:
conic formula eccentricity foci

ellipse 𝑥2

𝑎2
+ 𝑦2

𝑏2
= 1 𝑏2 = 𝑎2(1 − 𝑒2), and 𝑒 < 1 𝑥 = ±𝑎𝑒

parabola 𝑦2 = 4𝑎𝑥 one quadratic term vanishes, 𝑒 = 1 𝑥 = +𝑎
hyperbola 𝑥2

𝑎2
− 𝑦2

𝑏2
= 1 𝑏2 = 𝑎2(𝑒2 − 1), and 𝑒 > 1 𝑥 = ±𝑎𝑒

• Polar coordinates are a convenient alternative to Cartesian coordinates. In this co-
ordinate system, we set the origin to be at a focus. Then, the formulas are

𝑟 = ℓ
1 + 𝑒 cos 𝜃

– For the ellipse, 𝑒 < 1 and ℓ = 𝑎(1 − 𝑒2);
– For the parabola, 𝑒 = 1 and ℓ = 2𝑎; and
– For the hyperbola, 𝑒 > 1 and ℓ = 𝑎(𝑒2 − 1). There is only one branch for the
hyperbola given by this polar form.

13.4. Conics as sections of a cone
The equation for a cone in ℝ3 given by an apex c, an axis n̂, and an angle 𝛼 < 𝜋

2
, is

(x − c) ⋅ n̂ = |x − c| cos𝛼

Less formally, the angle of x away from n̂ must be 𝛼. By squaring this equation, we can
essentially define two cones which stretch out infinitely far and meet at the centre point
c.

((x − c) ⋅ n̂)2 = |x − c|2 cos2 𝛼
Let us choose a set of coordinate axes so that our equations end up slightly easier. Let c =
𝑐e3, n̂ = cos 𝛽e1−sin 𝛽e3. Then essentially the cone starts at (0, 0, 𝑐) and points ‘downwards’
in the e1–e3 plane. Then the conic section is the intersection of this cone with the e1–e2
plane, i.e. 𝑥3 = 0.

(𝑥1 cos 𝛽 − 𝑐 sin 𝛽)2 = (𝑥21 + 𝑥22 + 𝑐2) cos2 𝛼
⟺ (cos2 𝛼 − cos2 𝛽)𝑥21 + (cos2 𝛼)𝑥22 + 2𝑥1𝑐 sin 𝛽 cos 𝛽 = const.

Nowwe can compare the signs of the 𝑥21 and 𝑥22 terms. Clearly the 𝑥22 term is always positive,
so we consider the sign of the 𝑥21 term.

• If cos2 𝛼 > cos2 𝛽 (i.e. 𝛼 < 𝛽), then we have an ellipse.
• If cos2 𝛼 = cos2 𝛽 (i.e. 𝛼 = 𝛽), then we have a parabola.
• If cos2 𝛼 < cos2 𝛽 (i.e. 𝛼 > 𝛽), then we have a hyperbola.
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14. Symmetries and transformation groups
14.1. Orthogonal transformations and rotations
We know that if a matrix 𝑅 is orthogonal, we have 𝑅⊺𝑅 = 𝐼 ⟺ (𝑅x) ⋅ (𝑅y) = x ⋅y ⟺ the
rows or columns are orthonormal. The set of 𝑛 × 𝑛matrices 𝑅 forms the orthogonal group
𝑂𝑛 = 𝑂(𝑛). If 𝑅 ∈ 𝑂(𝑛) then det𝑅 = ±1. 𝑆𝑂𝑛 = 𝑆𝑂(𝑛) is the special orthogonal group,
which is the subgroup of 𝑂(𝑛) defined by det𝑅 = 1. If some matrix 𝑅 is an element of 𝑂(𝑛),
then 𝑅 preserves the modulus of 𝑛-dimensional volume. If 𝑅 ∈ 𝑆𝑂(𝑛), then 𝑅 preserves not
only the modulus but also the sign of such a volume.

𝑆𝑂(𝑛) consists precisely of all rotations in ℝ𝑛. 𝑂(𝑛) ∖ 𝑆𝑂(𝑛) consists of all reflections. For
some specific 𝐻 ∈ 𝑂(𝑛) ∖ 𝑆𝑂(𝑛), any element of 𝑂(𝑛) can be written as a product of 𝐻 with
some element in 𝑆𝑂(𝑛), i.e. 𝑅 or 𝑅𝐻 with 𝑅 ∈ 𝑆𝑂(𝑛). For example, if 𝑛 is odd, we can choose
𝐻 = −𝐼.
Now, we can consider the transformation 𝑥′𝑖 = 𝑅𝑖𝑗𝑥𝑗 under two distinct points of view.

• (active) The rotation 𝑅 acts on the vector x and yields a new vector x′. The 𝑥′𝑖 are
components of the transformed vector in terms of the standard basis vectors.

• (passive) The 𝑥′𝑖 are components of the same vector x but with respect to new or-
thonormal basis vectors u𝑖. In general, x = ∑𝑖 𝑥𝑖e𝑖 = ∑𝑖 𝑥′𝑖u𝑖 which is true where
u𝑖 = ∑𝑗 𝑅𝑖𝑗e𝑗 = ∑𝑗 e𝑗𝑃𝑗𝑖. So 𝑃 = 𝑅−1 = 𝑅⊺ where 𝑃 is the change of basis matrix.

14.2. 2DMinkowski space
Consider a new ‘inner product’ on ℝ2 given by

(x, y) = x⊺𝐽y; 𝐽 = (1 0
0 −1)

∴ ((𝑥0𝑥1
) , (𝑦0𝑦1

)) = 𝑥0𝑦0 − 𝑥1𝑦1

Westart indexing these vectors fromzero, not one. Here are some important properties.

• This ‘inner product’ is not positive definite. In fact, (x, x) = 𝑥20−𝑥21. (This is a quadratic
form for x with eigenvalues ±1.)

• It is bilinear and symmetric.

• Defining e0 = (10) and e1 = (01), they obey

(e0, e0) = −(e1, e1) = 1; (e0, e1) = 0
This is similar to orthonormality, in this generalised sense.

This inner product is known as the Minkowski metric on ℝ2. ℝ2 with this metric is called
Minkowski space.
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14.3. Lorentz transformations
Let us consider a matrix

𝑀 = (𝑀00 𝑀01
𝑀10 𝑀11

)

giving a mapℝ2 → ℝ2; this preserves the Minkowski metric if and only if (𝑀x,𝑀y) = (x, y)
for any vectors x, y. Expanded, this condition is

(𝑀x)⊺𝐽(𝑀y) = x⊺𝑀⊺𝐽𝑀y = x⊺𝐽y

⟹ 𝑀⊺𝐽𝑀 = 𝐽

The set of such matrices form a group. Also, det𝑀 = ±1 for the same reason as before.
Furthermore, |𝑀00|

2 ≥ 1, so either𝑀00 ≥ 1 or𝑀00 ≤ −1. The subgroup with det𝑀 = +1
and𝑀00 ≥ 1 is known as the Lorentz group.

Let us find the general form of 𝑀, by using the fact that the columns 𝑀e0 and 𝑀e𝑖 are
orthonormal with respect to the Minkowski metric.

(𝑀e0,𝑀e0) = 𝑀2
00 −𝑀2

10 = (e0, e0) = 1 (hence |𝑀00|
2 ≥ 1)

Taking𝑀00 ≥ 1, we can write

𝑀e0 = (cosh 𝜃sinh 𝜃)

for some real value 𝜃. For the other column,

(𝑀e0,𝑀e1) = 0; (𝑀e1,𝑀e1) = −1 ⟹ 𝑀e1 = ±(sinh 𝜃cosh 𝜃)

The sign is fixed to be positive by the condition that det𝑀 = +1.

𝑀 = (cosh 𝜃 sinh 𝜃
sinh 𝜃 cosh 𝜃)

The curves defined by (x, x) = 𝑘 where 𝑘 is a constant are hyperbolas. This is analogous to
how the curves defined by x⋅x = 𝑘 are circles. So applying𝑀 to any vector on a given branch
of a hyperbola, the resultant vector remains on the hyperbola. Note that these matrices obey
the rule𝑀(𝜃1)𝑀(𝜃2) = 𝑀(𝜃1 + 𝜃2). This confirms that they form a group.

14.4. Application to special relativity
Let

𝑀(𝜃) = 𝛾(𝑣) (1 𝑣
𝑣 1) ; 𝑣 = tanh 𝜃; 𝛾 = (1 − 𝑣2)−

1
2
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Here, 𝑣 lies in the range −1 < 𝑣 < 1. We will rename 𝑥0 to be 𝑡, which is now our time
coordinate. 𝑥1 will just be written 𝑥, our one-dimensional space coordinate. Then,

x′ = 𝑀x ⟺ {𝑡
′ = 𝛾 ⋅ (𝑡 + 𝑣𝑥)
𝑥′ = 𝛾 ⋅ (𝑥 + 𝑣𝑡)

This is a Lorentz transformation, or ‘boost’, relating the time and space coordinates for ob-
servers moving with relative velocity 𝑣 in Special Relativity, in units where the speed of light
𝑐 is taken to be 1. The 𝛾 factor in the Lorentz transformation gives rise to time dilation and
length contraction effects. The group property 𝑀(𝜃3) = 𝑀(𝜃1)𝑀(𝜃2) with 𝜃3 = 𝜃1 + 𝜃2
corresponds to the velocities

𝑣𝑖 = tanh 𝜃𝑖 ⟹ 𝑣3 =
𝑣1 + 𝑣2
1 + 𝑣1𝑣2

This is consistent with the fact that all velocities are less than the speed of light, 1.
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Lectured in Lent 2021 by Prof. P. H. Haynes
In the first part of this course, we study the classical laws of motion. We apply physical laws
to study various phenomena such as gravity, friction, and orbits. Many such laws take the
form of differential equations, and by solving these equations we can compute things like
trajectories of particles.

In the second part, we study special relativity. We explore things like time dilation and the
twin paradox, and how the laws of physics seem to change when particles are travelling very
close to the speed of light.
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1. Basic definitions and Newton’s laws

1. Basic definitions and Newton’s laws
1.1. Basic concepts
Definition. A particle is an object which has negligible size. It therefore does not have an
alignment or rotation. It has a finite mass 𝑚 > 0, and perhaps an electric charge 𝑞 (which
may be positive or negative). The position of the particle is described by a position vector
r(𝑡) or x(𝑡), with respect to an origin 𝑂.
Definition. The Cartesian components of this vector r(𝑡) are given by (𝑥, 𝑦, 𝑧), where r =
𝑥 ̂ı + 𝑦 ̂ȷ + 𝑧k̂, with ̂ı, ̂ȷ, k̂ orthonormal. The choice of coordinate axes defines a frame of
reference 𝑆.
Definition. The velocity of a particle is u(𝑡) = ̇r = d

d𝑡
r(𝑡). The velocity is tangential to the

path, or trajectory, of the particle.

Definition. The momentum of a particle is p = 𝑚u.
Definition. The acceleration of a particle is a = u̇ = ̈r.
Note. The time derivative of u(𝑡), for example, is defined using the limit definition:

u̇(𝑡) = lim
ℎ→0

u(𝑡 + ℎ) − u(𝑡)
ℎ

with u → u0 if and only if |u − u0| → 0. With Cartesian basis vectors, we can evaluate de-
rivatives componentwise, bringing the differential operator inside each vector component.

The derivatives of scalar and vector functions interoperate as expected. Suppose we have a
scalar function 𝑓(𝑡) and vector functions g(𝑡),h(𝑡), then for example we have

d
d𝑡 (𝑓g) =

d𝑓
d𝑡 g + 𝑓dgd𝑡

d
d𝑡 (g ⋅ h) =

dg
d𝑡 ⋅ h + g ⋅ dhd𝑡

d
d𝑡 (g × h) = dg

d𝑡 × h + g × dh
d𝑡

Takenote of the ordering of the terms involving g andhwhenusing the vector product.

1.2. Newton’s laws of motion
(i) (Galileo’s Law of Inertia) There exist inertial frames of reference in which a particle

remains at rest or moves in a straight line at constant speed (i.e. at constant velocity),
unless it is acted on by a force.

(ii) In an inertial frame of reference, the rate of change of momentum of a particle is equal
to the force acting on it.
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(iii) To every action, there is an equal and opposite reaction. The forces exerted between
two particles are equal in magnitude and opposite in direction.

Note that the second law is a statement about vectors. All of these statements that we have
made about particles can also be extended to finite bodies, composed ofmanyparticles.

1.3. Boosts
In an inertial frame, the acceleration of a particle is zero if the force acting on the particle is
zero.

̈r = 0 ⟺ F = 0
There is no unique inertial frame of reference. If 𝑆 is an inertial frame, then any other frame
𝑆′ moving at constant velocity relative to 𝑆 is also an inertial frame. For example, suppose
that 𝑆′ is moving at speed 𝑣 in the 𝑥 direction. Then here

𝑥′ = 𝑥 − 𝑣𝑡; 𝑦′ = 𝑦; 𝑧′ = 𝑧; 𝑡′ = 𝑡

and we can generalise this to 𝑆′ moving in an arbitrary direction relative to 𝑆, i.e.

r′ = r − v𝑡

where v is the velocity of 𝑆′ relative to 𝑆. This type of transformation is known as a ‘boost’.
For a particle with position vector r(𝑡) in 𝑆 (and position vector r′(𝑡) in 𝑆′), we can compute
the velocity u = ̇r and acceleration a = ̈r as follows:

u′ = u − v; a′ = a

This can be seen by taking the derivative of the ‘boost’ formula.

1.4. Galilean transformations
AgeneralGalileanTransformation is any transformation that preserves inertial frames. They
are combinations of:

• boosts r′ = r − v𝑡 where v is constant,
• translations of space (moving the origin) r′ = r − r0 where 𝑟0 is constant,
• translations of time 𝑡′ = 𝑡 − 𝑡0 where 𝑡0 is constant,
• rotations and reflections in space r′ = 𝑅r where 𝑅 is a constant orthogonal matrix.

This set generates the Galilean group. For any Galilean transformation we have

̈r = 0 ⟺ ̈(r′) = 0

The principle of Galilean relativity is that the laws of Newtonian physics are the same in all
inertial frames. In other words, the laws of physics are always the same:
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• at any point in space

• at any point in time

• in any direction

• at any constant velocity

Any set of equations which describe Newtonian physics must preserve this Galilean invari-
ant. This shows that measurement of velocity cannot be absolute, it must be relative to a
specific inertial frame of reference—but conversely, measurement of acceleration is abso-
lute.

1.5. Newton’s second law
For any particle subject to a force F, the momentum p of the particle satisfies

dp
d𝑡 = F

where p = 𝑚u. For this part of the course, let us assume that𝑚 is constant. Then F = ṗ =
𝑚a. We can interpret this value𝑚 as a measure of ‘reluctance to accelerate’, i.e. its inertia. If
F is specified as a function of r, ̇r, 𝑡, then we have a second order differential equation for r.
In order to solve this equation, we must provide two initial conditions, such as r0 and ̇r0 at
some initial time 𝑡0. The trajectory of the particle is then determined for all future and past
times.

1.6. Gravitational force
Consider two particles, one at r1 and one at r2. Newton’s law of gravitation states that the
gravitational force on r1 is given by

F1 =
−𝐺𝑚1𝑚2(r1 − r2)

|r1 − r2|
3

where 𝐺 is the gravitational constant, and F2 is given by −F1. Note that:

• This is known as an inverse square law, since the magnitude of the output is propor-
tional to the inverse of the square of the distance between the particles.

• This is an attractive force, since it is in the direction r2 − r1.

• This obeys Newton’s Third Law, since F2 = −F1.

• By inspection, 𝐺must have dimension 𝐿3 ⋅𝑀−1 ⋅ 𝑇−2, i.e. length cubed over mass over
time squared.
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1.7. Electromagnetic force
Consider a particle with electric charge 𝑞, in the presence of an electric field E(r, 𝑡) and a
magnetic field B(r, 𝑡). The Lorentz force law states that

F(r, ̇r, 𝑡) = 𝑞 (E + ̇r × B)

As an example, let E = 0 everywhere, and let B be a constant vector. Then

𝑚 ̈r = 𝑞 ̇r × B

We can solve this differential equation for r. Let us choose axes such that B = 𝐵ẑ, i.e. B is
in the 𝑧 direction. Evaluating the cross product,𝑚 ̈𝑧 = 0, so 𝑧 = 𝑧0 + 𝑢𝑡 where 𝑧0 and 𝑢 are
constants. Further,

𝑚 ̈𝑥 = 𝑞𝐵 ̇𝑦; 𝑚 ̈𝑦 = −𝑞𝐵 ̇𝑥
For convenience, let us define 𝜔 = 𝑞𝐵/𝑚, and then

𝑥 = 𝑥0 − 𝛼 cos(𝜔(𝑡 − 𝑡0)); 𝑥 = 𝑦0 + 𝛼 sin(𝜔(𝑡 − 𝑡0))

This describes circles in the 𝑥–𝑦 plane, and constant velocity motion in the 𝑧 direction. This
results in a helix in the direction of the magnetic field, clockwise when viewed from the
direction of B.
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2. Dimensional analysis
2.1. Choice of units
Many problems in dynamics involve three basic dimensional quantities: length, mass and
time. These are commonly referred to using the symbols 𝐿, 𝑀 and 𝑇, to be generic over
the choice of unit system. The dimensions of some quantity 𝑥 can therefore be expressed in
terms of powers of 𝐿,𝑀, 𝑇. So the dimension of density is𝑀 ⋅ 𝐿−3. The dimension of force
is𝑀 ⋅ 𝐿 ⋅ 𝑇−2.

Only ‘power law’ functions of these quantities are allowed; we are not allowed to exponen-
tiate a dimensional quantity, for example. This is because 𝑒𝐿 = 1 + 𝐿 + 1

2
𝐿2 + … would be

comparing a dimensionless constant 1 with some length, and some area, and so forth. This
comparison does not make any sense.

We can choose a unit system that is convenient, for example SI units. It defines the metre
for 𝐿, the kilogram for 𝑀 and the second for 𝑇. So many other physical quantities can be
formed from these. For example, the SI unit for the gravitational constant is m3 kg−1 s−2. In
this unit system, we can say 𝐺 = 6.67 × 10−11m3 kg−1 s−2.

As a general principle, dynamical and physical equations must work for any consistent
choice of units. If, however, we used SI units for length, mass and time, but the imperial
unit pound-force as the unit for force, the equations would be inconsistent.

2.2. Scaling and dimensional independence
Suppose that a dimensional quantity𝑌 depends on a set of dimensional quantities𝑋1,… , 𝑋𝑛,
so the dimension of 𝑌 is 𝐿𝑎𝑀𝑏𝑇𝑐 and the dimension of the 𝑋𝑖 are 𝐿𝑎𝑖𝑀𝑏𝑖𝑇𝑐𝑖 .

If 𝑛 ≤ 3, then 𝑌 = 𝐶 ⋅ 𝑋𝑝1
1 𝑋𝑝2

2 𝑋𝑝3
3 , and 𝑝1, 𝑝2, 𝑝3 can be found by balancing the dimensions.

Hence 𝑎 = 𝑎1𝑝1 + 𝑎2𝑝2 + 𝑎3𝑝3 and so forth for 𝑏 and 𝑐. This yields a unique solution for
𝑝1, 𝑝2, 𝑝3 if these three equations are linearly independent, i.e. if the dimensions of𝑋1, 𝑋2, 𝑋3
are independent.

If 𝑛 > 3, then this property of dimensional independence does not hold; it is always possible
to express one of the four (or more) dimensions in terms of the other three. So let us choose
𝑋1, 𝑋2, 𝑋3 to be dimensionally independent, and then we can incorporate 𝑋4, 𝑋5 and so on
as dimensionless quantities:

𝜆1 =
𝑋4

𝑋𝑞11
1 𝑋𝑞12

2 𝑋𝑞13
3

; 𝜆2 =
𝑋5

𝑋𝑞21
1 𝑋𝑞22

2 𝑋𝑞23
3

⋯

where the powers 𝑞𝑖𝑗 have been chosen such that the 𝜆 are dimensionless. Then

𝑌 = 𝑋𝑝1
1 𝑋𝑝2

2 𝑋𝑝3
3 ⋅ 𝐶(𝜆1, 𝜆2,… , 𝜆𝑛−3)

This is known as Bridgman’s Theorem.
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Example. As an example, let us consider a simple pendulum with a string of length ℓ,
released from rest, when the horizontal distance from the end of the pendulum to the rest
position is 𝑑. How does the period 𝑃 of the pendulum depend on the four dimensional
quantities𝑚, ℓ, 𝑑, 𝑔?
We know that the dimension of the period is 𝑇, time. The dimension of𝑚 is𝑀, the dimen-
sion of 𝑔 is 𝐿 ⋅ 𝑇−2, and the dimensions of ℓ and 𝑑 are both 𝐿. We will form one dimen-
sionless group, since 𝑛 = 4 in this case. A simple way of doing so is letting 𝜆 = 𝑑/ℓ. So
𝑃 = 𝑚𝑝1ℓ𝑝2𝑔𝑝3 ⋅ 𝑓(𝑑/ℓ). Comparing units, we have 𝑇 = 𝑀𝑝1𝐿𝑝2(𝐿 ⋅ 𝑇−2)𝑝3 . Solving, we get
𝑝1 = 0, 𝑝2 =

1
2
, 𝑝3 =

−1
2
. Applying Bridgman’s Theorem, we have 𝑃 = √ℓ/𝑔 ⋅ 𝑓(𝑑/ℓ). This

does not completely specify the formula, but it does provide useful insights. For example,
doubling both 𝑑 and ℓ, 𝑃 ↦ √2𝑃, since 𝑑/ℓ does not change.
Example. Taylor used publicly available data on the fireball’s growth over time in order to
estimate the energy released in the first atomic explosion. Let𝑅(𝑡) be the radius of the fireball
as a function of time, which has dimension 𝐿. The time 𝑡 has dimension𝑇. The density of air
𝜌 has dimension𝑀 ⋅𝐿−3. The energy of the explosion is 𝐸 which has dimension𝑀 ⋅𝐿2 ⋅ 𝑇−2.
Then, 𝑅 = 𝐶 ⋅ 𝑡𝛼𝜌𝛽𝐸𝛾. By balancing dimensions, we have 𝛼 = 2

5
, 𝛽 = −1

5
, 𝛾 = 1

5
. Then,

𝑅(𝑡) = 𝐶 ⋅ 𝑡
2
5𝜌

−1
5 𝛾

1
5 .

Taylor then verified this 2
5
power law, and estimated the value of 𝐸 as 𝜌𝑅5

𝐶5𝑡2
. It was observed

that 𝑅
5

𝑡2
∼ 6.7 × 1013m5 s−1, and 𝜌 ∼ 1.25 kgm−3. Then if 𝐶 ∼ 1 then 𝐸 ∼ 1 × 1014 J, which

is approximately 2.4 × 104 t of TNT.
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3. Forces and potential energy
3.1. Forces
Consider a particle of mass𝑚 at position 𝑥(𝑡) in one spatial dimension. Let us consider the
action of a force 𝐹(𝑥) on the particle, i.e. a force dependent entirely on the position and not
the velocity or time. We define the potential energy 𝑉(𝑥) by

𝐹(𝑥) = −d𝑉d𝑥
Hence,

𝑉(𝑥) = −∫
𝑥
𝐹(𝑢) d𝑢

The lower limit is unspecified to give an arbitrary constant in 𝑉(𝑥). If possible, the constant
is usually chosen such that as |𝑥| → ∞, we have 𝑉 → 0. By Newton’s Second Law,

𝑚 ̈𝑥 = −d𝑉d𝑥

We define the kinetic energy 𝑇 = 1
2
𝑚 ̇𝑥2. The total energy in the system 𝐸 is defined as

𝑇 + 𝑉 = 1
2
𝑚 ̇𝑥2 + 𝑉(𝑥). We will show that total energy is conserved: d𝐸

d𝑡
= 0.

Proof.

d𝐸
d𝑡 =

d
d𝑡 (

1
2𝑚 ̇𝑥2 + 𝑉(𝑥))

= 𝑚 ̇𝑥 ̈𝑥 + d𝑉
d𝑥 ̇𝑥

= ̇𝑥 (𝑚 ̈𝑥 + d𝑉
d𝑥 )

= ̇𝑥(0)
= 0

In general, in order to conserve a total energy 1
2
𝑚 ̇𝑥2 + Φ, we require that

̇𝑥𝐹 = −d𝜙d𝑡
It is usually the case that there exists no such Φ if 𝐹 depends on ̇𝑥 or 𝑡.
Example. Let us consider the example of the harmonic oscillator, i.e.

𝐹(𝑥) = −𝑘𝑥
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Then we can construct

𝑉(𝑥) = −∫
𝑥
−𝑘𝑢 d𝑢 = ∫

𝑥
𝑘𝑢 d𝑢 = 1

2𝑘𝑥
2

where we have chosen the arbitrary constant conveniently. Note that we can explicitly solve
the second order ordinary differential equation to compute 𝑥 as a function of 𝑡:

𝑥(𝑡) = 𝐴 cos𝜔𝑡 + 𝐵 sin𝜔𝑡; ̇𝑥(𝑡) = −𝜔𝐴 sin𝜔𝑡 + 𝜔𝐵 cos𝜔𝑡

where 𝜔 = √
𝑘
𝑚
. We can check that energy 𝐸 is conserved:

𝐸 = 1
2𝑚 ̇𝑥2 + 1

2𝑘𝑥
2

= 1
2𝑚 (−𝜔𝐴 cos𝜔𝑡 + 𝜔𝐵 sin𝜔𝑡)2 + 1

2𝑘 (𝐴 sin𝜔𝑡 + 𝐵 cos𝜔𝑡)2

= 1
2𝑘(𝐴

2 + 𝐵2)

3.2. More general potentials
Note that conservation of energy is a first integral of Newton’s Second Law. In one dimen-
sion, conservation of energy gives useful information about a particle’s motion that can help
in deriving 𝑥 as a function of 𝑡. In the previous example, we verified that conservation of
energy holds having already solved the differential equation, but it can often be more useful
to consider energy while solving the equation.

𝐸 = 1
2𝑚 ̇𝑥2 + 𝑉(𝑥)

Hence,

̇𝑥 = ±√
2
𝑚(𝐸 − 𝑉(𝑥))

Therefore,

∫
𝑥

𝑥0

d𝑢

√
2
𝑚
(𝐸 − 𝑉(𝑢))

= 𝑡 − 𝑡0

where 𝑥(𝑡0) = 𝑥0. This gives 𝑡 as a function of 𝑥; we can invert this function to give 𝑥 as
a function of 𝑥. Realistically, this integral is mostly useful to get structural insight rather
than actually solving 𝑥 as a function of time, since it is difficult to do this analytically. As an
example, let

𝑉(𝑥) = 𝜆(𝑥3 − 3𝛽2𝑥)
where𝜆, 𝛽 are positive constants. What happens ifwe release the particle from rest at𝑥 = 𝑥0?
We can draw the graph of 𝑉(𝑥) and imagine the height of the graph as the height of a ‘rail’
that the particle sits on, acted on under gravity, i.e. the particle ‘falls’ from higher 𝑉(𝑥) to
lower 𝑉(𝑥), gaining kinetic energy as it falls. Since we start at rest, 𝐸 = 𝑉(𝑥0) at 𝑡 = 0, and
in the subsequent motion 𝐸 ≤ 𝑉(𝑥0). We have a few cases:
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3. Forces and potential energy

(i) (𝑥0 < −𝛽) 𝑥0 = −𝛽 is a maximum point on the graph. The particle will move to the
left with 𝑥(𝑡) → −∞ as 𝑡 → ∞.

(ii) (−𝛽 < 𝑥0 < 2𝛽) Note that 𝑉(−𝛽) = 𝑉(2𝛽); they are the same height on the graph.
Since there is no friction in this model, the particle’s motion is confined to the region
−𝛽 < 𝑥 < 2𝛽 and will oscillate forever.

(iii) (2𝛽 < 𝑥0) The particle will move to the left, reaching 𝑥 = −𝛽, and then will continue
to the left, since it has kinetic energy at this point. So 𝑥 → −∞ as 𝑡 → ∞.

We also have special cases on the turning points±𝛽, where the particle does notmove. There
is another case at 𝑥0 = 2𝛽: the particle will move to the left, accelerating until 𝑥 = 𝛽, then
decelerating until 𝑥 = −𝛽, where it will then stopmoving at this maximum point. How long
does it take for the particle to move from 𝑥0 = 2𝛽 to 𝑥 = −𝛽, where it rests? We can use the
integral above to compute this, letting 𝑡0 = 0 and 𝑥(0) = 2𝛽.

∫
2𝛽

𝑥(𝑡)

d ̃𝑥

√
2𝜆
𝑚
(2𝛽3 − ̃𝑥3 + 3𝛽2 ̃𝑥)

= 𝑡

∫
2𝛽

𝑥(𝑡)

d ̃𝑥

√
2𝜆
𝑚
( ̃𝑥 + 𝛽)2(2𝛽 − ̃𝑥)

= 𝑡

∫
2𝛽

𝑥(𝑡)

d ̃𝑥

( ̃𝑥 + 𝛽)√
2𝜆
𝑚
(2𝛽 − ̃𝑥)

= 𝑡

This integral diverges as ̃𝑥 → −𝛽, so it takes an infinite amount of time to come to rest at
this maximum point; specifically it exhibits logarithmic behaviour.

3.3. Equilibrium points
An equilibrium point is defined as a point where the potential is stationary, in other words
where the force on the particle is zero. So the particle stays at rest for all time. In the example
in the previous lecture, 𝑥 = ±𝛽 were the equilibrium points. We can analyse the motion
close to the equilibrium point in order to work out whether the equilibrium point is stable
or unstable. Let 𝑥0 be an equilibrium point, so 𝑉 ′(𝑥0) = 0. We can expand 𝑉(𝑥) as a series,
assuming that 𝑥 − 𝑥0 is small.

𝑉(𝑥) = 𝑉(𝑥0) +
1
2(𝑥 − 𝑥0)2𝑉″(𝑥0) + 𝑜((𝑥 − 𝑥0)2)

In the neighbourhood of 𝑥0,

𝑚 ̈𝑥 = −𝑉 ′(𝑥) ≈ −(𝑥 − 𝑥0)𝑉″(𝑥0)
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• If 𝑉″(𝑥0) > 0, we have a local minimum of potential, which gives rise to a stable
equilibriumpoint. The equation ofmotion of a particle near𝑥0 is a harmonic oscillator.

The angular frequency of oscillation is 𝜔 =√
𝑉″(𝑥0)

𝑚
.

• If 𝑉″(𝑥0) < 0, we have a local maximum of potential, which gives rise to an unstable
equilibrium point. Any perturbation from this point will cause an increased deviation
from the point. The equation of motion near this point is exponential; almost always

exponentially increasing rather than decreasing. The growth rate is 𝛾 = √
−𝑉″(𝑥0)

𝑚
.

• If 𝑉″(𝑥) = 0, we must use higher-order terms from the Taylor series in order to de-
termine the behaviour.

Let us consider the example of a simple pendulum with a mass 𝑚 held by a rigid beam of
length ℓ. Let the angle between the beamand the vertical direction be 𝜃. ByNewton’s second
law,

𝐹(𝑥 = ℓ𝜃) = 𝑚ℓ ̈𝜃 = −𝑚𝑔 sin 𝜃

We can derive an energy equation by using 𝐹(𝑥) = −𝑉 ′(𝑥).

𝑉(𝑥 = ℓ𝜃) = −∫
ℓ𝜃

0
𝐹(𝑢) d𝑢 = −𝑚𝑔ℓ cos 𝜃

The kinetic energy 𝑇 is given by

𝑇 = 1
2𝑚ℓ

2 ̇𝜃2

We can check that d𝐸
d𝑡

= 0 at all 𝑡. The stationary points of 𝑉 are at 𝜃 = 0 and 𝜃 = 𝜋
(assuming 0 ≤ 𝜃 < 2𝜋). The 𝜃 = 0 point is stable, since 𝑉″(𝜃 = 0) > 0. The 𝜃 = 𝜋 point
is unstable. If −𝑚𝑔ℓ < 𝐸 < 𝑚𝑔ℓ, the pendulum will oscillate between two values since it
cannot continue spinning in circles. In particular, this oscillation occurs about a position of
stable equilibrium. However, if we add additional energy into this system, either ̇𝜃 > 0 or
̇𝜃 < 0 for all time. It is impossible to have 𝐸 < −𝑚𝑔ℓ since this is the minimum value of the

potential.

Now, let us consider the period 𝑃 of the oscillation of 𝜃 after releasing the particle from rest
at some initial angle 𝜃0. Note that the oscillation consists of 𝜃0 → 0 → −𝜃0 → 0 → 𝜃0.
By symmetry, this period is four times the time it takes to go from 𝜃0 to 0. From the energy
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equation, we can deduce

𝑃 = 4∫
𝜃0

0

d𝜃

√
2𝑔ℓ
ℓ2
(cos 𝜃 − cos 𝜃0)

= 4
√

ℓ
𝑔 ∫

𝜃0

0

d𝜃
√2 cos 𝜃 − 2 cos 𝜃0

= 4
√

ℓ
𝑔𝐹(𝜃0)

where 𝑓 is notably a function only of 𝜃0. Recall from the dimensional analysis lecture
that

𝑃 =
√

𝑙
𝑔𝐻 (𝑑ℓ)

noting that 𝑑/ℓ and 𝜃 both define the initial condition. So we have deduced this unknown
function 𝐻. This integral is difficult to compute exactly; however, we can compute an ap-
proximation when 𝜃0 (and hence 𝜃) is small.

𝐹(𝜃0) = ∫
𝜃0

0

d𝜃

√𝜃20 − 𝜃2

= 𝜋
2

which is independent of 𝜃0. Hence, for small angles,

𝑃 ≈ 2𝜋
√

ℓ
𝑔

3.4. Force and potential in three spatial dimensions
Consider a particle moving in three spatial dimensions under a force F. Then Newton’s
second law states

𝑚 ̈r = F

We define the kinetic energy by
𝑇 = 1

2| ̇r|
2 = 1

2|u|
2

Then
d𝑇
d𝑡 = 𝑚 ̇r ⋅ ̈r = F ⋅ ̇r = F ⋅ u

This is the rate of working of the force on the particle. Let us consider the total work done
by a force on a particle as it moves along a finite curve 𝐶 from 𝑡1 to 𝑡2. Then the total work
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done is the line integral

𝑊 = ∫
𝑡2

𝑡1
F ⋅ u d𝑡 = ∫

𝑡2

𝑡1
F ⋅ ̇r d𝑡 = ∫

r(𝑡2)

r(𝑡1)
F ⋅ dr

Note that we must specify that this integral acts along the curve 𝐶, since any other curve
could connect the points r(𝑡1) and r(𝑡2). We can write this integral in terms of coordin-
ates:

∫
r(𝑡2)

r(𝑡1)
𝐹𝑥 d𝑥 + 𝐹𝑦 d𝑦 + 𝐹𝑧 d𝑧

Now, if force is only a function of the position r, then we say that F(r) defines a force field.
A conservative force field is such that

F(r) = −∇𝑉(r)

for some function 𝑉(r). In component form, this is equivalent to

𝐹𝑖 = −𝜕𝑉𝜕𝑥𝑖
If the force is conservative, then the energy 𝐸 = 𝑇 + 𝑉(r) is conserved.

Proof.
d𝐸
d𝑡 =

d𝑇
d𝑡 +

d
d𝑡𝑉(r) = 𝑚 ̇r ⋅ ̈r + ∇𝑉 ⋅ ̇r = 𝑚 ̇r ⋅ ̈r −𝑚 ̈r ⋅ ̇r = 0

Let us consider the total work done on the particle under a conservative force. From the
properties of the gradient vector,

𝑊 = ∫
𝐶
F ⋅ dr = −∫

𝐶
∇𝑉 ⋅ dr = 𝑉(r1) − 𝑉(r2)

Note that this is dependent only on the end points of the curve; it is irrelevant of the path
taken. Hence, if 𝐶 is closed, then no net work is done by the force. Note that in general,
𝐹(r) is not conservative, so in general there is no 𝑉(r) such that F = −∇𝑉 . In fact, F(r) is
conservative if

∇ × F(r) = 0
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4. Gravitational and electromagnetic forces

4.1. Gravity

The gravitational force experienced by a mass 𝑚 at position vector r relative to a mass𝑀 is
given by

F = −𝐺𝑀𝑚
|r|3

⋅ r = −𝐺𝑀𝑚
|r|2

⋅ ̂r

This is a conservative force:

F(r) = −∇𝑉(r); 𝑉(r) = −𝐺𝑀𝑚
𝑟

To remove the factor of𝑚, we define the ‘gravitational potential’ Φ𝑔 to be

Φ𝑔(r) =
−𝐺𝑀
𝑟

We further define the gravitational field

g(r) = −∇Φ𝑔(r) =
−𝐺𝑀
𝑟2 ̂r

Note that this is dependent only on 𝑀, and not 𝑚. These quantities are related to F and 𝑉
by scale factors of𝑚.

𝑉(r) = 𝑚Φ𝑔(r); F(r) = 𝑚g

We can generalise these expressions to define the gravitational potential associated with
many point masses𝑀𝑖 for 𝑖 = 1,… , 𝑛. Then,

Φ𝑔(r) = −
𝑛
∑
𝑖=1

𝐺𝑀𝑖
|r − r𝑖|

g(r) = −
𝑛
∑
𝑖=1

𝐺𝑀𝑖

|r − r𝑖|
3 (r − r𝑖)

We can extend this to a continuousmass distribution by generalising the summation into an
integral. In particular, for a uniform spherical distribution of mass centred at the origin, we
have that outside the sphere

Φ𝐺(r) =
−𝐺𝑀
𝑟

which is equivalent to the formula for a point mass at the origin. So we can represent any
spherical distribution of mass as a particle, provided we never consider behaviour inside the
sphere.
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4.2. Gravitational and inertial mass
Note that in the equations for gravitational force, mass plays two roles.

• Inertial mass: In Newton’s second law,𝑚 ̈r = F shows that the mass encapsulates the
resistance to motion

• Gravitational mass: In the law of gravitation, F = −𝐺𝑀𝑚
𝑟2

̂r, showing the scale factor by
which the mass affects the force.

It turns out that these ‘masses’ are not exactly the same; they differ by a factor of around
1 × 10−12. In this course, we will consider these masses to be identical since the factor is
very small.

4.3. One-dimensional approximation to gravity
Let us consider a one-dimensional approximation. Consider a mass 𝑚 at some height 𝑧
above the surface of a planet of mass 𝑀 and radius 𝑅, where 𝑧 ≪ 𝑅. Using the binomial
expansion, the potential is approximated by

𝑉(𝑅 + 𝑧) = −𝐺𝑀𝑚
𝑅 + 𝑧 ≈ −𝐺𝑀𝑚

𝑅 + 𝐺𝑀𝑚𝑧
𝑅2 −…

The first term in the expansion is a constant, and the second term is 𝑚𝑔𝑧 where 𝑔 is a con-
stant. So when 𝑧 ≪ 𝑅,

𝑉(𝑅 + 𝑧) ≈ 𝑚𝑔𝑧; 𝑔 = 𝐺𝑀
𝑅2 ≈ 9.8ms−2

4.4. Escape velocity
Consider a particle leaving the surface of a planet of mass 𝑀 and radius 𝑅, starting with
velocity 𝑣. Can this particle escape the gravitational attraction of the planet, and fly off to
infinity? By conservation of energy,

𝐸 = 𝑇 + 𝑉 = 1
2𝑚𝑣

2 − 𝐺𝑀𝑚
𝑟

If 𝐸 < 0, the particle does not have sufficient energy to leave the ‘potential well’ 𝑉 . If 𝐸 > 0,
the particle can escape to infinity. The critical velocity 𝑣0 at which the particle can escape
with lowest energy (the escape velocity) is therefore computed by setting 𝐸 = 0 at 𝑟 = 𝑅,
i.e.

1
2𝑣

2
0 =

𝐺𝑀
𝑅 ⟹ 𝑣0 =√

2𝐺𝑀
𝑅

Note that light has a finite velocity, 𝑐. Therefore it must be possible that a mass is large
enough that even the speed of light is insufficient for a particle to escape from a given radius.
This describes a black hole. Of course, at this point we would need to invoke Einstein’s
theory of relativity in order to properly describe the behaviour of such an object.
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4.5. Electromagnetism
We know that the force F acting on a particle with charge 𝑞 is

F = 𝑞E + 𝑞 ̇r × B

where E,B are functions of r and 𝑡. This is known as the Lorentz force law. Let us first con-
sider time-independent fields E(r),B(r) as a simplification. In this case, we can write

E = −∇Φ𝑒(r)

whereΦ𝑒 is the electrostatic potential. The force 𝑞E is therefore conservative. We now prove
that for time independent E(r) and B(r), F is conservative.

Proof.

𝐸 = 1
2𝑚| ̇r|

2 + 𝑞Φ𝑒(r)
d𝐸
d𝑡 = 𝑚 ̇r ⋅ ̈r + 𝑞 ̇r ⋅ ∇Φ𝑒(r)

= ̇r ⋅ (𝑚 ̈r + 𝑞∇Φ𝑒)
= ̇r ⋅ (𝑞E + 𝑞 ̇r × B + 𝑞∇Φ𝑒)
= ̇r ⋅ (𝑞 ̇r × B)
= 0

since this is a triple product where two of the vectors are parallel. SinceB acts perpendicular
to the velocity, it does not do work on the particle.

Analogously to point masses, we may consider point charges. A particle with charge 𝑄 loc-
ated at the origin generates an electrostatic potential and electric field

Φ𝑒(r) =
𝑄

4𝜋𝜀0𝑟
; E(r) = −∇Φ𝑒 =

𝑄
4𝜋𝜀0𝑟2

̂r

where 𝜀0 = 8.85 × 10−12m−3 kg−1 s2 C2 is the electric constant. So the force on a particle of
charge 𝑞 located at r is given by

F = −𝑞∇Φ𝑒 =
𝑄𝑞

4𝜋𝜀0𝑟2
̂r

This is called the Coulomb force. A negative sign is an attractive force; a positive sign is a
repulsive force. This can be seen by considering a perturbation from the origin.
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5. Friction
Friction is a contact force, unlike the forces we have discussed previously. It is a convenient
encapsulation ofmany complicatedmolecular phenomena; it is not a fundamental force.

5.1. Dry friction

The friction associated with solid bodies in contact is called ‘dry’ friction. It has two associ-
ated forces: the normal forceN perpendicular to the contact surface, which prevents objects
from passing through each other, and the tangential force F parallel to the contact surface,
which resists the relative tangential motion of the bodies in contact. When the two bodies
are static, the empirically-derived formula relating the forces is

|F| ≤ 𝜇𝑠|N|

where 𝜇𝑠 is the coefficient of static friction. If the objects start to move relative to each other,
this is kinetic friction. In this case,

|F| = 𝜇𝑘|N|

where 𝜇𝑘 is the coefficient of kinetic friction. Generally 𝜇𝑠 > 𝜇𝑘 > 0.

5.2. Fluid drag

When a solid bodymoves through a fluid (a liquid or a gas), it experiences a drag force. There
are two important equations that model fluid drag. The linear drag formula is

F = −𝑘1u

This formula is most relevant to ‘small’ objects, moving through a viscous fluid. Stokes’ drag
law for a moving sphere states that

𝑘1 = 6𝜋𝜂𝑅

where 𝜂 is the viscosity of the fluid, and 𝑅 is the radius of the sphere. The quadratic drag
formula is

F = −𝑘2|u|u

This formula is more relevant to ‘large’ objects, moving through a less viscous fluid. Of
course, 𝑘1 ≠ 𝑘2 since they have different dimensions. Typically, we have

𝑘2 = 𝜌fluid𝐶𝐷𝑅2

where 𝐶𝐷 is the drag coefficient, and 𝑅2 is the size of the cross section.
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5.3. Work done by friction
Note that since friction always acts in a direction opposite to a component of motion, the
body loses kinetic energy if the fluid (or other body) is assumed to be at rest. The rate of
work under a fluid’s drag force is

F ⋅ u = {−𝑘1|u|
2 linear drag

−𝑘2|u|
3 quadratic drag

In the latter case, the total work done is proportional to |u|2 multiplied by the total distance
travelled. The fluid gains energy, which may manifest as heat.

5.4. Projectiles experiencing linear drag
Let us consider the example of a projectile moving through the air, under uniform gravity
and a linear drag force.

𝑚du
d𝑡 = 𝑚g − 𝑘u

Solving with an integrating factor, we have

d
d𝑡 (u𝑒

𝑘𝑡/𝑚) = 𝑚g𝑒𝑘𝑡/𝑚

u = 𝑚g
𝑘 + C𝑒−𝑘𝑡/𝑚

We can find C using the initial conditions, say at 𝑡 = 0, x = 0,u = U.

u = 𝑚g
𝑘 + (U − −g

𝑘 ) 𝑒−𝑘𝑡/𝑚

Then

x = 𝑚g
𝑘 𝑡 − 𝑚

𝑘 (U − −g
𝑘 ) 𝑒−𝑘𝑡/𝑚 + 𝐷

= 𝑚g
𝑘 𝑡 + 𝑚

𝑘 (U − −g
𝑘 ) (1 − 𝑒−𝑘𝑡/𝑚)

Now, considering the components of x = (𝑥, 𝑦, 𝑧) and u = (𝑢, 𝑣, 𝑤), we can choose

U = (𝑈 cos 𝜃, 0, 𝑈 sin 𝜃); g = (0, 0, −𝑔)

Then

(
𝑢
𝑣
𝑤
) = (

𝑈 cos 𝜃𝑒−𝑘𝑡/𝑚
0

(𝑈 sin 𝜃 + 𝑚𝑔
𝑘
) 𝑒−𝑘𝑡/𝑚 − 𝑚𝑔

𝑘

)
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Note that the terminal velocity is (0, 0, −𝑚𝑔/𝑘), achieved on a time scale of 𝑚/𝑘 (as seen
from the exponential term). Further,

(
𝑥
𝑦
𝑧
) =

⎛
⎜⎜
⎝

𝑚𝑈 cos𝜃
𝑘

(1 − 𝑒−𝑘𝑡/𝑚)
0

𝑚
𝑘
(𝑈 sin 𝜃 + 𝑚𝑔

𝑘
) (1 − 𝑒−𝑘𝑡/𝑚) − 𝑚𝑔𝑡

𝑘

⎞
⎟⎟
⎠

There exists a range 𝑅 of this particle, since initially the particle moves upwards, but as time
increases the particle begins moving downwards again. 𝑅 is a function of 𝑈, 𝜃,𝑚, 𝑘, 𝑔. We
can construct the dimensionless group 𝑘𝑈

𝑚𝑔
= 𝑈/𝑔

𝑚/𝑘
, which can be thought of as the gravita-

tional time scale divided by the frictional time scale. Dimensional analysis shows that

𝑅 = 𝑈2

𝑔 𝐹 (𝜃, 𝑘𝑈𝑚𝑔)

When 𝑘𝑈
𝑚𝑔

≪ 1, this is very small friction.

𝑅 = 𝑈2

𝑔 ⋅ 2 sin 𝜃 cos 𝜃

When 𝑘𝑈
𝑚𝑔

≫ 1, this is very large friction.

𝑅 = 𝑈2

𝑔 (𝑚𝑔𝑘𝑈 cos 𝜃)

𝑅 is a decreasing function of 𝑘𝑈
𝑚𝑔
.
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6. Angular motion and orbits
6.1. Angular momentum
We define the angular momentum for a particle with position vector r(𝑡), of mass𝑚, moving
under the influence of a force F as

L = r × p = r ×𝑚 ̇r

Then
L̇ = 𝑚 ̇r × ̇r +𝑚r × ̈r = r × F = G

This term r × F = G is sometimes called the torque or the moment of the force. The values
of L and G depend on the choice of origin, so we typically refer to the angular momentum
about a particular point. If r × F = 0, then the angular momentum is conserved. The
angular momentum around some suitably chosen point may be constant; this may help
with calculations since we are free to choose the origin.

6.2. Orbits
Wewill begin the topic of orbits by considering the problemof gravitational orbits. Let

𝑚 ̈r = −∇𝑉(𝑟)

This represents a particle moving in a conservative force that is a function only of the radius
from the origin. For this problem, we are assuming that the ‘central’ mass remains fixed
at the origin. This is a good approximation if the central mass is significantly larger than
𝑚.

6.3. Central forces
We define a central force as a conservative force with the potential 𝑉(𝑟) being a function
only of the radius from the origin. Consequently,

F = −∇𝑉(𝑟) = −∇𝑉(|r|) = −d𝑉d𝑟 ̂r

Consider the angular momentum L about the origin, given by

L̇ = r × F = r × (−d𝑉d𝑟 ̂r) = 0

So angular momentum about the origin is conserved for any central force. Further, from the
definition of L,

L ⋅ r = 0
Hence, the motion of the particle is confined to the plane through the origin, perpendicular
to L. This reduces a three-dimensional problem into a two-dimensional problem.
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6.4. Polar coordinates in the plane
A convenient choice of coordinates to use is the set of two-dimensional polar coordinates,
by choosing the 𝑧 axis such that the orbit lies in the plane 𝑧 = 0. Then

𝑥 = 𝑟 cos 𝜃; 𝑦 = 𝑟 sin 𝜃

Then, relative to the Cartesian axes,

e𝑟 = ̂r = (cos 𝜃sin 𝜃) ; e𝜃 = (− sin 𝜃cos 𝜃 )

At any point, e𝑟, e𝜃 form an orthonormal basis, but the basis can point in different direc-
tions for different values of 𝜃. In other words, they form a set of orthonormal curvilinear
coordinates. We have

d
d𝜃e𝑟 = e𝜃;

d
d𝜃e𝜃 = −e𝑟

Note that for a moving particle, 𝑟 and 𝜃 are functions of position, and hence functions of
time. So we can use the following results:

de𝑟
d𝑡 = d𝜃

d𝑡
de𝑟
d𝜃 = e𝜃

d𝜃
d𝑡 ;

de𝜃
d𝑡 = d𝜃

d𝑡
de𝜃
d𝜃 = −e𝑟

d𝜃
d𝑡

We can compute expressions for velocity and acceleration in terms of these new coordin-
ates.

r = 𝑟e𝑟
∴ ̇r = ̇𝑟e𝑟 + 𝑟 dd𝑡e𝑟

= ̇𝑟e𝑟 + 𝑟 ̇𝜃e𝜃

So ̇𝑟 is the radial component of the velocity, and 𝑟 ̇𝜃 is the angular component of the velocity.
Note that ̇𝜃 is the angular velocity. Further:

̈r = d
d𝑡 ( ̇𝑟e𝑟 + 𝑟 ̇𝜃e𝜃)

= ̈𝑟e𝑟 + ̇𝑟ė𝑟 + ̇𝑟 ̇𝜃e𝜃 + 𝑟 ̈𝜃e𝜃 + 𝑟 ̇𝜃ė𝜃
= ̈𝑟e𝑟 + ̇𝑟 ̇𝜃e𝜃 + ̇𝑟 ̇𝜃e𝜃 + 𝑟 ̈𝜃e𝜃 + 𝑟 ̇𝜃 (− ̇𝜃e𝑟)
= ( ̈𝑟 − 𝑟 ̇𝜃2) e𝑟 + (2 ̇𝑟 ̇𝜃 + 𝑟 ̈𝜃) e𝜃

Again we can read off the radial and angular components of the acceleration.

6.5. Circular motion
Let us consider the example of circular motion with constant angular velocity. Then we can
set 𝑟 = 𝑎, ̇𝜃 = 𝜔, and let ̇𝑟 = ̈𝑟 = ̈𝜃 = 0. We can find that

̇r = 𝑎𝜔e𝜃; ̈r = −𝑎𝜔2e𝑟
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The acceleration is in the inward radial direction, which constrains the particle to follow
a circular path instead of flying off tangentially towards infinity. Therefore, by Newton’s
second law, there is a constant force in this direction.
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7. Orbits and stability

7.1. Motion in a central force field

By Newton’s second law, the force in a central force field is given by

𝑚 ̈r = F = −∇𝑉 = −d𝑉d𝑟 e𝑟

The results from the previous lecture give

𝑚( ̈𝑟 − 𝑟 ̇𝜃2) e𝑟 +𝑚(2 ̇𝑟 ̇𝜃 + 𝑟 ̈𝜃) e𝜃 =
− d𝑉
d𝑟 e𝑟 (∗)

But the right hand side has no angular component, so𝑚(2 ̇𝑟 ̇𝜃 + 𝑟 ̈𝜃) = 0. Then

𝑚
𝑟
d
d𝑡 (𝑟

2 ̇𝜃) = 0

So the quantity ℎ = 𝑟2 ̇𝜃, known as the specific angularmomentum (since it contains nomass
component) is constant. Note that the angular momentum L is given by

L = 𝑚r × ̇r = 𝑚𝑟e𝑟 × ( ̇𝑟e𝑟 + 𝑟 ̇𝜃e𝜃) = 𝑚𝑟2 ̇𝜃e𝑧

Hence the magnitude of the angular momentum is constant. Now, let us consider the radial
component in (∗).

𝑚 ̈𝑟 − 𝑚𝑟 ̇𝜃2 = −d𝑉d𝑟
𝑚 ̈𝑟 = −d𝑉d𝑟 + 𝑚ℎ2

𝑟3

𝑚 ̈𝑟 = −d𝑉 eff
d𝑟

where

𝑉eff(𝑟) = 𝑉(𝑟) + 𝑚ℎ2
2𝑟2

where 𝑉eff is called the effective potential. In other words, the motion of the particle is equi-
valent to one-dimensional motion under the influence of the effective potential. The energy
of the particle is given by

𝑇 + 𝑉(𝑟) = 1
2𝑚 ( ̇𝑟2 + 𝑟2 ̇𝜃2) + 𝑉(𝑟) = 1

2𝑚 ̇𝑟2 + 𝑚ℎ2
2𝑟2 + 𝑉(𝑟) = 1

2𝑚 ̇𝑟2 + 𝑉eff(𝑟)

which is consistent with our description of the effective potential.
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7.2. Orbits under gravity
As an example, let us consider

𝑉(𝑟) = −𝐺𝑀𝑚
𝑟 ; 𝑉eff(𝑟) =

−𝐺𝑀𝑚
𝑟 + 𝑚ℎ2

2𝑟2

The effective potential has a single minimum point at 𝑟∗, and a single root at 𝑟0. In other
words, 𝑉 ′

eff(𝑟∗) = 0 and 𝑉eff(𝑟0) = 0. We can compute that

𝑟0 =
ℎ2
2𝐺𝑀 ; 𝑟∗ =

ℎ2
𝐺𝑀

The minimum energy is therefore

𝐸min =
−𝑚(𝐺𝑀)2

2ℎ2

What is the possible motion of the particle? At 𝐸 = 𝐸min, we have 𝑟(𝑡) = 𝑟∗, an equi-
librium position. Further, ̇𝜃 = ℎ

𝑟2∗
everywhere. At 𝐸min < 𝐸 < 0, then 𝑟(𝑡) oscillates

between a minimum point (periapsis/perihelion/perigee) and a maximum point (apoap-
sis/aphelion/apogee), and ̇𝜃 varies. If 𝐸min ≥ 0, the particle escapes to infinity. This is
sometimes called an unbound orbit.

7.3. Stability of circular orbits
Consider a general potential𝑉(𝑟). Does a circular orbit exist, and is it stable? Wewill assume
that the angular momentum is given and nonzero. For a circular orbit, the radius is a con-
stant value 𝑟∗, so ̈𝑟 = 0 and hence 𝑉 ′

eff(𝑟∗) = 0. We know that we have a stable equilibrium
if 𝑉eff has a minimum at this point. Correspondingly, it is unstable if this is a maximum.
So, for instance, it is stable if 𝑉″

eff(𝑟∗) > 0. Now, let us rewrite these conditions in terms of
𝑉(𝑟).

𝑉 ′(𝑟∗) −
𝑚ℎ2
𝑟3∗

= 0; 𝑉″(𝑟∗) = 𝑉″(𝑟∗) +
3𝑚ℎ2
𝑟4∗

> 0

We can combine these to give the condition for stability as

𝑉″(𝑟∗) +
3𝑉 ′(𝑟∗)
𝑟∗

> 0

Now let us consider an example,
𝑉(𝑟) = −𝑘𝑚

𝑟𝑝
where 𝑝 > 0, 𝑘 > 0. If 𝑝 = 1, this is an example of an inverse square law. We have a circular
orbit if

𝑝𝑘𝑚
𝑟𝑝+1∗

− 𝑚ℎ2
𝑟3∗

= 0

295



V. Dynamics and Relativity

Hence,

𝑟𝑝−2∗ = 𝑝𝑘𝑚
𝑚ℎ2 ⟹ 𝑟∗ = (𝑝𝑘𝑚𝑚ℎ2 )

1
𝑝−2

So there exists a circular orbit for all ℎ provided 𝑝 ≠ 2. Is this a stable orbit?

𝑉″(𝑟∗) +
3𝑉 ′(𝑟∗)
𝑟∗

= −𝑘𝑚𝑝(𝑝 + 1)
𝑟𝑝+2∗

+ 3𝑘𝑚𝑝
𝑟𝑝+2∗

= 𝑝(2 − 𝑝)𝑘𝑚
𝑟𝑝+2∗

So this is greater than zero (stable) if 0 < 𝑝 < 2 and less than zero (unstable) if 𝑝 > 2.

7.4. The orbit equation

What shape does a non-circular orbit trace out? We could in principle find 𝑟(𝑡) by the energy
equation

𝐸 = 1
2𝑚 ̇𝑟2 + 𝑉eff(𝑟) = constant

Hence

𝑡 = ±√
𝑚
2 ∫

𝑟 d𝑢
√𝐸 − 𝑉eff(𝑢)

Then we can use 𝑟(𝑡)2 ̇𝜃 = ℎ to deduce 𝜃(𝑡). However in practice, this is not useful. An
analytic solution is only possible for a small family of effective potential functions. It is
somewhat more convenient to find 𝑟 in terms of 𝜃, not in terms of 𝑡. We can write

d
d𝑡 =

d𝜃
d𝑡

d
d𝜃 = ℎ

𝑟2
d
d𝜃

Applying this to Newton’s second law, we have

𝑚 ℎ
𝑟2

d
d𝜃 (

ℎ
𝑟2

d
d𝜃𝑟) −

𝑚ℎ2
𝑟3 = 𝐹(𝑟)

The ℎ
𝑟2

d
d𝜃
𝑟 term suggests using the substitution 𝑢 = 1

𝑟
. Then

𝑚ℎ𝑢2 dd𝜃 (−ℎ
d𝑢
d𝜃) − 𝑚ℎ2𝑢3 = 𝐹(𝑢−1)

d2𝑢
d𝜃2

+ 𝑢 = −1
𝑚ℎ2𝑢2𝐹(𝑢

−1)

This is known as the orbit equation. We can solve this for 𝑢 as a function of 𝜃.
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7.5. The Kepler problem
The Kepler problem is the orbit problem, specialised to the case of a gravitational central
force. The force is

𝐹(𝑟) = −𝑚𝑘
𝑟2

where the constant 𝑘 is equivalent to 𝐺𝑀. Hence,

d2𝑢
d𝜃2 + 𝑢 = −1

𝑚ℎ2𝑢2 ⋅ −𝑚𝑘𝑢
2 = 𝑘

ℎ2

This gives us a linear equation in 𝑢, which is promising for solving this equation. The solu-
tion is

𝑢 = 𝑘
ℎ2 + 𝐴 cos(𝜃 − 𝜃0)

where 𝐴 and 𝜃0 are specified by the initial conditions. Without loss of generality we can let
𝐴 ≥ 0. If 𝐴 = 0, then 𝑢 = 𝑘

ℎ2
giving a circular orbit. If 𝐴 > 0, then 𝑢 is maximised (at

periapsis) when 𝜃 = 𝜃0, and 𝑢 is minimised (at apoapsis) where 𝜃 = 𝜃0 +𝜋. We will choose
that 𝜃0 = 0 for convenience; we will simply need to change the origin of our coordinate
system if this does not hold. We will redefine other constants for convenience:

𝑟 = 1
𝑢 = ℓ

1 + 𝑒 cos 𝜃 ; ℓ = ℎ2
𝑘 ; 𝑒 = 𝐴ℎ

2

𝑘
This is the equation of a conic section. Here, 𝑒 is the eccentricity of the curve. We can rewrite
this in Cartesian form:

𝑟(1 + 𝑒 cos 𝜃) = ℓ
𝑟 = ℓ − 𝑒𝑥

𝑥2 + 𝑦2 = (ℓ − 𝑒𝑥)2
(1 − 𝑒2)𝑥2 + 𝑦2 + 2𝑒ℓ𝑥 = ℓ2 (†)

By inspection we can see that the value of (1 − 𝑒2) determines the shape of the conic sec-
tion.

• (0 ≤ 𝑒 < 1) This forms an ellipse; the orbit is bounded by ℓ
1+𝑒

≤ 𝑟 ≤ ℓ
1−𝑒

. We can
rewrite (†) as

(𝑥 + 𝑒𝑎)2
𝑎2 + 𝑦2

𝑏2 = 1

where 𝑎 = ℓ
1−𝑒2

and 𝑏 = ℓ
√1−𝑒2

, and therefore clearly 𝑏 ≤ 𝑎. Note that 𝑒 = 0 is the
special case of a circle. The origin lies at one of the foci of the ellipse.

• (𝑒 > 1) This forms a hyperbola. This is an unbounded orbit, since there exists a value
𝛼 such that as 𝜃 → 𝛼, we have 𝑟 → ∞. Note that 𝛼 = arccos(−1

𝑒
) ∈ (𝜋

2
, 𝜋)We can

transform (†) as before:
(𝑥 − 𝑒𝑎)2

𝑎2 − 𝑦2
𝑏2 = 1
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where 𝑎 = ℓ
𝑒2−1

and 𝑏 = ℓ
√𝑒2−1

. This hyperbolic orbit represents an incoming body
with large velocity, which is deflected by the gravitational force. The asymptotes are

𝑦 = ±𝑏𝑎(𝑥 − 𝑒𝑎)

In other words,
𝑏𝑥 ∓ 𝑎𝑦 = 𝑒𝑎𝑏

The normal vectors to the asymptotes are

n̂ = (𝑏, ±𝑎)
√𝑎2 + 𝑏2

The (asymptotic) perpendicular distance between the incoming particle and the cent-
ral mass (the origin) is given by

r ⋅ n̂ = (𝑥, 𝑦) ⋅ (𝑏, ±𝑎)
√𝑎2 + 𝑏2

= 𝑏𝑥 ∓ 𝑎𝑦
√𝑎2 + 𝑏2

= 𝑒𝑎𝑏
√𝑎2 + 𝑏2

= 𝑏

This is sometimes called the impact parameter, since it is the distance away from im-
pacting the central mass.

• (𝑒 = 1) This is the form of a parabola. This can be seen as the ‘transitional’ case
between the ellipse and the hyperbola.

𝑟 = ℓ
1 + cos 𝜃

Hence, 𝑟 → ∞ as 𝜃 → ±𝜋. In Cartesian coordinates,
𝑦2 = ℓ(ℓ − 2𝑥)

The other variables have very useful geometric interpretations; review diagrams of conic
sections for more information.

7.6. Energy and eccentricity
Recall that

𝐸 = 1
2𝑚 ( ̇𝑟2 + 𝑟2 ̇𝜃2) − 𝑚𝑘

𝑟
We can rewrite this in terms of 𝑢, using ̇𝑟 = −ℎ d𝑢

d𝜃
:

𝐸 = 1
2𝑚ℎ

2 ((d𝑢d𝜃)
2
+ 𝑢2) − 𝑚𝑘𝑢

= 1
2𝑚ℎ

2 (𝑒2 sin2 𝜃 + (1 + 𝑒 cos 𝜃)2) 1𝑒2 −
𝑚𝑘
ℓ (1 + cos 𝜃)

= 𝑚𝑘
2ℓ (𝑒

2 − 1)

So the energy is positive (unbounded orbits) if |𝑒| > 1, and negative (bounded orbits) if
|𝑒| < 1. The marginal case is at 𝑒 = 1, and 𝐸 = 0.
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7.7. Kepler’s laws of planetary motion
Kepler’s Laws state:

(i) The orbit of a planet is an ellipse, with the sun at one focus.

(ii) The line between a planet and the sun sweeps out equal area in equal times.

(iii) The period 𝑃 and the semi-major axis 𝑎 are related: 𝑃2 ∝ 𝑎3.
Note that the first law is consistent with our solution of the orbit equation for bound orbits.
The second law can be rewritten as approximating the sector area with 1

2
𝑟2𝛿𝜃, giving a rate

of changewith respect to time of 1
2
𝑟2 ̇𝜃, which is half of the angularmomentum ℎ. So this law

can be seen as stating that the angular momentum is constant. Using dimensional analysis,
we can get close to the third law, but we need to be a littlemore precise to verify it completely.
The area of the ellipse is 𝜋𝑎𝑏 = ℎ

2
𝑃 since in one period the line sweeps out the entire area

of the ellipse. We can then derive that 𝑃2 = 4𝜋2

𝑘
𝑎3. Note that two ellipses with equal semi-

major but differing semi-minor axes have the same period.

7.8. Rutherford scattering
Consider a positive charge fired towards another, fixed, positive charge. The particle will be
deflected by the electrostatic force between the two particles. What is the angle 𝛽 by which
the particle is deflected? This is motion under a repulsive inverse square law force.

𝑉(𝑟) = 𝑚𝑘
𝑟 ; 𝐹(𝑟) = 𝑚𝑘

𝑟2
We have already solved this problem for an attractive inverse square law force; this was the
orbit equation. We can replace 𝑘 with −𝑘 to model a repulsive force.

𝑢 = −𝑘
ℎ2 + 𝐴 cos(𝜃 − 𝜃0); 𝜃0 = 0, 𝐴 ≥ 0

We can rewrite this as
𝑟 = ℓ

𝑒 cos 𝜃 − 1; ℓ = ℎ2
𝑘 , 𝑒 =

𝐴ℎ2
𝑘

Since we want 𝑟 > 0, we need 𝑒 > 1 such that for some 𝜃, 𝑟 > 0. Then, 𝑟 → ∞ as 𝜃 → ±𝛼,
with arccos(𝑒−1) ∈ (0, 𝜋

2
). This gives a hyperbolic orbit. We find

(𝑥 − 𝑒𝑎)2
𝑎2 − 𝑦2

𝑏2 = 1; 𝑎 = ℓ
𝑒2 − 1, 𝑏 =

ℓ
√𝑒2 − 1

ℎ is given by |r × ̇r|. 𝑏, the impact parameter, is the asymptotic distance of the moving
particle from impacting the fixed particle. On the incoming asymptote, ̇r ≈ 𝑣e∥, and r ≈
𝑏e⟂ + 𝑧e∥ for some 𝑧. Hence, ℎ = 𝑏𝑣. Since tan𝛼 = √𝑒2 − 1, we have

𝑏 = ℓ
tan𝛼 = ℓ

tan (𝜋
2
− 𝛽)

= ℎ2
𝑘 tan (𝛽2 ) =

𝑣2𝑏2
𝑘 tan (𝛽2 )
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Hence
𝛽 = 2 arctan ( 𝑘

𝑏𝑣2 )
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8. Rotating frames
8.1. Introduction
Newton’s laws of motion are only valid in inertial frames of reference. Hence, the laws of
dynamics are different from the perspective of a rotating, or non-inertial, frame of reference.
Let 𝑆 be an inertial frame, and let 𝑆′ be a non-inertial frame, rotating around the 𝑧-axis in 𝑆
with angular velocity 𝜔 = ̇𝜃 where 𝜃 is the angle between the 𝑥 or 𝑦 axis in 𝑆 or 𝑆′. We will
denote the basis vectors e𝑖 = {x̂, ŷ, ẑ} for 𝑆 and e′𝑖 = {x̂′, ŷ′, ẑ′} for 𝑆′. Consider a particle at
rest in 𝑆′, viewed in 𝑆, with position vector r.

(drd𝑡 )𝑆
= 𝛚 × r; 𝛚 = 𝜔ẑ

This angular velocity vector is aligned with the axis of rotation. The convention is that
viewed from the direction of the vector, the rotation is anticlockwise. The same formula
applies to any vector which is fixed in 𝑆′, not just the position vector. In particular, this
applies to the basis vectors:

(
de′𝑖
d𝑡 )𝑆

= 𝛚 × e′𝑖

Here, for instance, (de
′
3

d𝑡
)
𝑆
= 0. Consider a general time-dependent vector a, defined by the

components of the basis vectors in 𝑆′:

a(𝑡) =
3
∑
𝑖=1

𝑎′𝑖(𝑡)e′𝑖(𝑡)

Then we can deduce the key identity:

( dd𝑡a(𝑡))𝑆′
=

3
∑
𝑖=1

( dd𝑡𝑎
′
𝑖(𝑡)) e′𝑖(𝑡)

( dd𝑡a(𝑡))𝑆
=

3
∑
𝑖=1

( dd𝑡𝑎
′
𝑖(𝑡)) e′𝑖(𝑡) +

3
∑
𝑖=1

𝑎′𝑖(𝑡) (
d
d𝑡e

′
𝑖(𝑡))

=
3
∑
𝑖=1

( dd𝑡𝑎
′
𝑖(𝑡)) e′𝑖(𝑡) +

3
∑
𝑖=1

𝑎′𝑖(𝑡) (𝛚 ×
d
d𝑡e

′
𝑖(𝑡))

= ( dd𝑡a(𝑡))𝑆′
+ 𝛚 × a

We can apply this identity to the position vector r, and the velocity ̇r.

(drd𝑡 )𝑆
= (drd𝑡 )𝑆′

+ 𝛚 × r
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For the purposes of this derivation, we will allow 𝛚 to depend on time.

(d
2r
d𝑡2 )𝑆

= {( dd𝑡 )𝑆′
+ 𝛚×} {( dd𝑡 )𝑆′

+ 𝛚×} r

= (d
2r
d𝑡2 )𝑆′

+ 2𝛚 × (drd𝑡 )𝑆′
+ �̇� × r + 𝛚 × (𝛚 × r)

Now, let us write down Newton’s equation of motion in a rotating frame.

𝑚(d
2r
d𝑡2 )𝑆

= F

𝑚(d
2r
d𝑡2 )𝑆′

+ 2𝑚𝛚 × (drd𝑡 )𝑆′
+𝑚�̇� × r +𝑚𝛚 × (𝛚 × r) = F

Note that we do not need to distinguish between (d𝛚
d𝑡
)
𝑆
and (d𝛚

d𝑡
)
𝑆′
, since any difference

vanishes under the cross product with 𝛚. These extra terms apart from 𝑚(d
2r
d𝑡2
)
𝑆′
can be

referred to as ‘fictitious’ forces, since they only appear to be there as perceived by an observer
in a rotating (or more general non-inertial) frame. According to this rotating observer, these
fictitious forces act in the negative direction:

𝑚(d
2r
d𝑡2 )𝑆′

= F − 2𝑚𝛚 × (drd𝑡 )𝑆′
−𝑚�̇� × r −𝑚𝛚 × (𝛚 × r)

We can give each fictitious force a name:

• −2𝑚𝛚 × (dr
d𝑡
)
𝑆′
is the Coriolis force;

• −𝑚�̇� × r is the Euler force;

• −𝑚𝛚 × (𝛚 × r) is the centrifugal force.
In many applications, we take the Euler force to be zero, since this only is relevant when the
angular velocity is changing.

8.2. The centrifugal force

−𝑚𝛚 × (𝛚 × r) = −𝑚((𝛚 ⋅ r)𝛚 − 𝛚2r)
= 𝑚𝜔2(r − �̂�(�̂� ⋅ r))
= 𝑚𝜔2r⟂

where r⟂ is the component of rwhich is perpendicular to 𝛚. Note that |r⟂| is the perpendic-
ular distance from the point r to the axis of rotation, and r⟂ is directed away from this axis.
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Hence the centrifugal force is always directed away from the rotation axis, perpendicular to
it, with its magnitude proportional to the particle’s distance from the axis. Note that

r2⟂ = r2 − (r ⋅ �̂�)2 = |�̂� × r|2

And
∇r2⟂ = 2r − 2�̂�(�̂� ⋅ r) = 2r⟂

Hence,
𝑚𝜔2r⟂ = ∇(12𝑚𝜔

2r2⟂)

Therefore the centrifugal force is conservative. On a rotating planet such as the earth, it is of-
ten convenient to combine the centrifugal force and the gravitational force into an ‘effective
gravity’

geff = g + 𝜔2r⟂
As an example, consider a spherical planet which rotates through an axis through a pole.
Point𝑃 is at latitude 𝜆, i.e. it is 𝜆 radians above the equator. On this point, wehave ẑnormal to
the Earth’s surface, ŷ in the north direction parallel to the surface and x̂ in the east direction
parallel to the surface. The earth has radius 𝑅. Now,

r = 𝑅ẑ; 𝛚 = 𝜔(ŷ cos 𝜆 + ẑ sin 𝜆)

Hence,

geff = −𝑔ẑ + 𝜔2r⟂
= −𝑔ẑ + 𝜔2𝑅 cos 𝜆(ẑ cos 𝜆 − ŷ sin 𝜆)
= ẑ(𝜔2𝑅 cos2 𝜆 − 𝑔) − ŷ(𝜔2𝑅 cos 𝜆 sin 𝜆)

The angle 𝛼 between geff and ẑ is

𝛼 = arctan 𝜔
2𝑅 cos 𝜆 sin 𝜆

𝑔 − 𝜔2𝑅 cos2 𝜆

For earth, 𝜔 = 2𝜋
86400

≈ 7.3 × 10−5 s−1 and 𝑅 ≈ 6.4 × 106m, hence 𝜔2𝑅
𝑔

≈ 3.5 × 10−3.
Neglecting the 𝜔2 term in the denominator, 𝛼 is very small for the earth.

8.3. The Coriolis force

−2𝑚𝛚 × (drd𝑡 )𝑆′
= −2𝑚𝛚 × v

where v is as observed in the rotating frame. The force is proportional to, and perpendicular
to, the velocity. Consequently, this force does not do any work. Considering the previous
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example of the earth, let us consider a velocity tangential to the surface of the planet, spe-
cifically v = 𝑣𝑥x̂ + 𝑣𝑦ŷ. The angular velocity has components 𝛚 = 𝜔(ŷ cos 𝜆 + ẑ sin 𝜆).
Hence,

−2𝑚𝛚 × v = 2𝑚𝜔 sin 𝜆(𝑣𝑦x̂ − 𝑣𝑥ŷ)⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
horizontal

+2𝑚𝜔 cos 𝜆(𝑣𝑥ẑ)⏟⎵⎵⎵⏟⎵⎵⎵⏟
vertical

The horizontal component of the Coriolis force gives an acceleration to the right of the hori-
zontal velocity in theNorthern hemisphere, and the acceleration is to the left in the southern
hemisphere. This appears due to the sin 𝜆 term, where the sign changes depending on the
hemisphere.

This force can be balanced by another force, notably a pressure gradient, which can be use-
ful for predicting weather patterns in meteorology. Hence, in the northern hemisphere, an
area of low pressure implies an anticlockwise flow of fluid around it; in the southern hemi-
sphere this would imply a clockwise flow of fluid. This is called a cyclone. A high-pressure
environment (in either hemisphere), would have the opposite direction of flow, and can be
called an anticyclone.

8.4. Dropping a particle in a rotating frame
As an example, let us consider dropping a ball from the top of a tower. Where does it land,
if we are in a rotating frame?

̈r = g − 2𝛚 × ̇r − 𝛚 × (𝛚 × r)

We will assume the rotation is slow, i.e. 𝜔2𝑅/𝑔 is small (we can accurately say ‘small’ in this
case since 𝜔2𝑅/𝑔 is a dimensionless constant).

̈r = g − 2𝜔 × ̇r + 𝑜(𝜔2)
̇r = g𝑡 − 2𝜔 × r + 𝑜(𝜔2) + 2𝜔 × r0⏟⎵⏟⎵⏟

to match the initial condition

Hence, neglecting 𝑜(𝜔3),

̈r = g − 2𝜔 × g𝑡 + 𝑜(𝜔2)

r = 1
2g𝑡

2 − 1
3𝛚 × g𝑡3 + r0 + 𝑜(𝜔2)

Now, consider g = (0, 0, −𝑔) and 𝛚 = (0, 𝜔, 0), corresponding to the equator. Let r0 =
(0, 0, 𝑅 + ℎ). Hence,

r(𝑡) = (0, 0, −12𝑔𝑡
2) + (13𝜔𝑔𝑡

3, 0, 0) + (0, 0, 𝑅 + ℎ)

The particle hits the ground when ℎ = 1
2
𝑔𝑡2, hence 𝑡 = √2ℎ/𝑔, and the corresponding

horizontal displacement is therefore

Δ𝑥 = 1
3𝜔𝑔 (

2ℎ
𝑔 )

3
2
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So the particle hits the ground to the east of the tower’s base. This is consistent with conser-
vation of angular momentum.

Example (the Foucault pendulum). Consider a pendulum at the north pole. It will swing
in the plane fixed in an inertial frame; the earth rotates relative to this frame. From the point
of view of an observer on the earth, the plane in which the pendulum moves is rotating to
the west.

If we’re at the north pole, the plane of rotation is observed to rotate once per day. This can be
explained using a fictitious force from the perspective of the rotating frame of reference of
the pendulum. At a general latitude 𝜆, the plane of rotation completes a circuit in csc 𝜆 days.
We can derive this result by considering the dynamics of the pendulum under the Coriolis
force.
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9. Systems of particles

9.1. Basic setup

Consider a system of 𝑁 particles of mass 𝑚𝑖 with position vectors r𝑖(𝑡) and momentum
p𝑖(𝑡) = 𝑚𝑖 ̇r𝑖. Newton’s second law applies to the 𝑖th particle individually, but not neces-
sarily to the whole group without any further derivation.

𝑚𝑖 ̈r𝑖 = ṗ𝑖 = F𝑖

We will make a distinction between internal and external forces;

F𝑖 = Fext𝑖 +
𝑁
∑
𝑗=1

F𝑖𝑗

where the Fext𝑖 is the external force on the 𝑖th particle, and the F𝑖𝑗 is the force exerted on the
𝑖th particle by the 𝑗th particle. Note that F𝑖𝑖 = 0 since particles do not affect themselves.
Newton’s third law gives a further constraint:

F𝑖𝑗 = −F𝑗𝑖

9.2. Centre of mass

The total mass of the system,𝑀, is given by

𝑀 =
𝑁
∑
𝑖=1

𝑚𝑖

The centre of mass, R, is given by

R = 1
𝑀

𝑁
∑
𝑖=1

𝑚𝑖r𝑖

The total linear momentum, P, is given by

P =
𝑁
∑
𝑖=1

𝑚𝑖 ̇r𝑖 =
𝑁
∑
𝑖=1

p𝑖 = 𝑀Ṙ

which is the same momentum as a single particle of mass 𝑀 and position vector R would
have. Then, by Newton’s second law, taking into account the fact that the F𝑖𝑗 are antisym-
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metric,

Ṗ = 𝑀R̈

=
𝑁
∑
𝑖=1

̇p𝑖

=
𝑁
∑
𝑖=1

Fext𝑖 +
𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

F𝑖𝑗

=
𝑁
∑
𝑖=1

Fext𝑖

= Fext

So the centre of mass moves as if it were the position of a mass𝑀 under the influence of a
force Fext. This extends Newton’s second law to a system of particles. If Fext = 0 then we
have conservation of the total momentum P. In this case, there will be an inertial frame
tracking the centre of mass at its origin.

9.3. Motion relative to the centre of mass
Let r𝑖 = R+ s𝑖, then s𝑖 is the position vector of the 𝑖th particle relative to the centre of mass.
Then

𝑁
∑
𝑖=1

𝑚𝑖s𝑖 =
𝑁
∑
𝑖=1

𝑚𝑖(r𝑖 − R) =
𝑁
∑
𝑖=1

𝑚𝑖r𝑖 −
𝑁
∑
𝑖=1

𝑚𝑖R = 0

Further,
d
d𝑡 (

𝑁
∑
𝑖=1

𝑚𝑖s𝑖) = 0

The total linear momentum is

P =
𝑁
∑
𝑖=1

𝑚𝑖(Ṙ + ̇s𝑖) =
𝑁
∑
𝑖=1

𝑚𝑖Ṙ = 𝑀Ṙ

as expected.

9.4. Angular momentum
The total angular momentum L is defined as

L =
𝑁
∑
𝑖=1

r𝑖 × p𝑖
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Then

L̇ =
𝑁
∑
𝑖=1

̇r𝑖 × p𝑖 +
𝑁
∑
𝑖=1

r𝑖 × ṗ𝑖

=
𝑁
∑
𝑖=1

r𝑖 × ṗ𝑖

=
𝑁
∑
𝑖=1

r𝑖 × (Fext𝑖 +
𝑁
∑
𝑗=1

F𝑖𝑗)

=
𝑁
∑
𝑖=1

r𝑖 × Fext𝑖 +
𝑁
∑
𝑖=1

r𝑖 ×
𝑁
∑
𝑗=1

F𝑖𝑗

The latter term is not necessarily zero, but for example if F𝑖𝑗 ∥ (r𝑖 − r𝑗) then it is zero. If
F𝑖𝑗 ∥ (r𝑖 − r𝑗) then

L̇ =
𝑁
∑
𝑖=1

r𝑖 × Fext𝑖 = Gext

where Gext is the total external torque on the system. Relative to the centre of mass, we can
write instead

L =
𝑁
∑
𝑖=1

𝑚𝑖(R + s𝑖) × (Ṙ + ̇s𝑖)

=
𝑁
∑
𝑖=1

𝑚𝑖R × Ṙ +
𝑁
∑
𝑖=1

𝑚𝑖R × ̇s𝑖
⏟⎵⎵⏟⎵⎵⏟

=0

+
𝑁
∑
𝑖=1

𝑚𝑖s𝑖 × Ṙ
⏟⎵⎵⏟⎵⎵⏟

=0

+
𝑁
∑
𝑖=1

𝑚𝑖s𝑖 × ̇s𝑖

=
𝑁
∑
𝑖=1

𝑚𝑖R × Ṙ +
𝑁
∑
𝑖=1

𝑚𝑖s𝑖 × ̇s𝑖

So the total angularmomentum is essentially the sumof the angularmomentumof a particle
of mass 𝑀 at R moving with velocity Ṙ, and the angular momentum associated with the
particles relative to the centre of mass.
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9.5. Energy
The total kinetic energy 𝑇 is given by

𝑇 =
𝑁
∑
𝑖=1

1
2𝑚𝑖 ̇r2𝑖

=
𝑁
∑
𝑖=1

1
2𝑚𝑖(Ṙ + ̇s𝑖)2

= 1
2 Ṙ

2
𝑁
∑
𝑖=1

𝑚𝑖 +
𝑁
∑
𝑖=1

𝑚𝑖Ṙ ⋅ ̇s𝑖
⏟⎵⎵⏟⎵⎵⏟

=0

+
𝑁
∑
𝑖=1

1
2𝑚𝑖 ̇s2𝑖

= 1
2𝑀Ṙ2 +

𝑁
∑
𝑖=1

1
2𝑚𝑖 ̇s2𝑖

The total kinetic energy is the sum of the kinetic energy of a particle of mass𝑀 atRmoving
with velocity Ṙ, and the kinetic energy associated with the particles relative to the centre of
mass. Let us consider the rate of change of kinetic energy:

d𝑇
d𝑡 =

d
d𝑡

𝑁
∑
𝑖=1

1
2𝑚𝑖 ̇r2𝑖

=
𝑁
∑
𝑖=1

1
2𝑚𝑖 ̇r𝑖 ⋅ ̈r𝑖

=
𝑁
∑
𝑖=1

̇r𝑖 ⋅ Fext +
𝑁
∑
𝑖=1

̇r𝑖 ⋅
𝑁
∑
𝑗=1

F𝑖𝑗

=
𝑁
∑
𝑖=1

̇r𝑖 ⋅ Fext +
𝑁
∑
𝑖=1

𝑁
∑

𝑗=𝑖+1
( ̇r𝑖 − ̇r𝑗) ⋅ F𝑖𝑗

If the external forces are defined by a potential

Fext𝑖 = −∇r𝑖𝑉 ext
𝑖

and the internal forces are defined by a potential

F𝑖𝑗 = −∇r𝑖𝑉(r𝑖 − r𝑗)

then
d𝑇
d𝑡 = − d

d𝑡
𝑁
∑
𝑖=1

𝑉 ext
𝑖 − d

d𝑡
𝑁
∑
𝑖=1

𝑁
∑

𝑗=1+1
𝑉(r𝑖 − r𝑗)

Hence we have conservation of energy if the given properties are true.
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10. Applications of orbits
10.1. Two body problem
Consider two bodies of mass𝑚1,𝑚2 experiencing gravitational attraction to the other, with
no external forces. Let𝑚1 be at position r1, and 𝑚2 at r2, with the centre of mass at R, and
total mass𝑀 = 𝑚1 +𝑚2. Then certainly,

R = 1
𝑀(𝑚1r1 +𝑚2r2)

We will define the separation vector r = r1 − r2. We can then further say that

r1 = R + 𝑚2
𝑀 r; r2 = R − 𝑚1

𝑀 r

Since Fext = 0, the centre of mass R does not accelerate; it moves with constant velocity.
Now, let us consider r.

̈r = ̈r1 + ̈r2 =
F12
𝑚1

− F21
𝑚2

= F12 (
1
𝑚1

+ 1
𝑚2

)

Equivalently, we can write
𝜇 ̈r = F12; 𝜇 = 𝑚1𝑚2

𝑚1 +𝑚2

Notice that 𝜇 has the dimension of mass; we call it the ‘reduced’ mass since it is less than𝑚1
and𝑚2. This can be seen as the equation of motion of a particle of mass 𝜇 under the effect
of force F12. In the case of a gravitational force, we have

𝜇 ̈r = −𝐺𝑚1𝑚2

|r|3
r

Hence,
̈r = −𝐺(𝑚1 +𝑚2)

|r|3
r

This is themotion of a particle under the effect of a gravitational force due to amass𝑚1+𝑚2
fixed at the origin. The total kinetic energy 𝑇 is

𝑇 = 1
2𝑀Ṙ2 + 1

2𝜇 ̇r2

The total angular momentum L is

L = 𝑀R × Ṙ + 𝜇r × ̇r

Example. Let us consider the orbit of the earth and the sun. Both particles move around
the centre of mass, and both orbits have the same shape. However, the sizes of the orbits are
very different. The ratio ofmasses is around 3×10−4, and the radius of orbit is approximately
1.5 × 107 km. Hence the displacement of the sun is around 450 km.
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10.2. Variable mass problems and the rocket problem
Consider a rocket which ejects mass (exhaust gases) at a high speed in order to propel itself
forward. We cannot applyNewton’s second law to the rocket alone, since in this systemmass
is not conserved. Consider the rocket moving in one dimension, with speed 𝑣(𝑡) and mass
𝑚(𝑡). The mass is being expelled at velocity 𝑢 relative to the rocket. At time 𝑡, the rocket
has momentum 𝑣(𝑡)𝑚(𝑡). At time 𝑡 + 𝛿𝑡, the momentum is 𝑣(𝑡 + 𝛿𝑡)𝑚(𝑡 + 𝛿𝑡). The exhaust
gases emitted during 𝛿𝑡 have velocity 𝑣(𝑡) − 𝑢 + 𝑂(𝛿𝑡) and mass𝑚(𝑡) −𝑚(𝑡 + 𝛿𝑡). The total
momentum at 𝑡 + 𝛿𝑡 is

𝑣(𝑡 + 𝛿𝑡)𝑚(𝑡 + 𝛿𝑡) + (𝑣(𝑡) − 𝑢 + 𝑂(𝛿𝑡))(𝑚(𝑡) − 𝑚(𝑡 + 𝛿𝑡))

So the change in momentum is

𝛿𝑝 = 𝑣(𝑡 + 𝛿𝑡)𝑚(𝑡 + 𝛿𝑡) + (𝑣(𝑡) − 𝑢 + 𝑂(𝛿𝑡))(𝑚(𝑡) − 𝑚(𝑡 + 𝛿𝑡)) − 𝑣(𝑡)𝑚(𝑡)

= (d𝑚d𝑡 𝑢 + 𝑚d𝑣
d𝑡 ) 𝛿𝑡 + 𝑂(𝛿𝑡2)

But since momentum is conserved,

d𝑚
d𝑡 𝑢 + 𝑚d𝑣

d𝑡 = 0

This is called the rocket equation. We can generalise this to d𝑚
d𝑡
𝑢+𝑚d𝑣

d𝑡
= Fext in the presence

of external forces. In the absence of such external forces,

d𝑚
d𝑡 𝑢 = −𝑚d𝑣

d𝑡
⟹ 𝑣(𝑡) = 𝑣(0) + 𝑢 log (𝑚(0)𝑚(𝑡) )
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11. Rigid bodies

11.1. Definition

A rigid body is an extended object of finite size that can be considered as a multi-particle sys-
tem such that the distance between any two particles in the body remains constant, i.e.

||r𝑖 − r𝑗 || = constant

The possible motion of a rigid body is therefore constrained to some combination of the two
basic isometries of Euclidean space, rotations and translations. We exclude reflections from
this, since this would alter the ‘ordering’ of the points in some sense.

11.2. Recap of angular velocity

Consider a particle rotating about an axis through the origin with angular velocity 𝛚. Let 𝑟⟂
be the perpendicular distance from r to the axis of rotation. Then

̇r = 𝛚 × r; | ̇r| = 𝜔𝑟⟂

If the particle has mass𝑚, then the kinetic energy 𝑇 is given by

𝑇 = 1
2𝑚 ̇r2 = 1

2𝑚(𝛚 × r) ⋅ (𝛚 × r) = 1
2𝑚𝜔

2𝑟2⟂

Note that if 𝛚 = 𝜔n, then 𝑟⟂ = |n × r|. We will define the moment of inertia 𝐼 to be

𝐼 = 𝑚𝑟2⟂ ⟹ 𝑇 = 1
2𝐼𝜔

2

11.3. Moment of inertia for a rigid body

Consider a rigid body to bemade up of𝑁 particles, rotating about an axis through the origin,
with angular velocity 𝛚. For each particle in the body,

̇r𝑖 = 𝛚 × r𝑖

Note that

d
d𝑡 ||r𝑖 − r𝑗 ||

2 = 2(r𝑖 − r𝑗) ⋅ ( ̇r𝑖 − ̇r𝑗)
= 2(r𝑖 − r𝑗) ⋅ (𝜔 × (r𝑖 − r𝑗))
= 0

312



11. Rigid bodies

which is consistent with the expected properties of the rigid body. Consider the kinetic en-
ergy of the entire body, which is the sum of the energies of the component particles.

𝑇 =
𝑁
∑
𝑖=1

1
2𝑚𝑖 ̇r2𝑖

=
𝑁
∑
𝑖=1

1
2𝑚𝑖|𝛚 × r𝑖|

2

= 1
2𝜔

2
𝑁
∑
𝑖=1

𝑚𝑖|n × r𝑖|
2

= 1
2𝐼𝜔

2

where 𝐼 = ∑𝑁
𝑖=1𝑚𝑖|n × r𝑖|

2 is the moment of inertia of the body for a rotation of axis n
through the origin. Now, we can consider the angular momentum.

L =
𝑁
∑
𝑖=1

𝑚𝑖r𝑖 × (𝛚 × r𝑖)

In the case that 𝛚 = 𝜔n, we have

L = 𝜔
𝑁
∑
𝑖=1

𝑚𝑖r𝑖 × (n × r𝑖)

Now, we will consider just the component of L that is parallel to the rotation axis.

L ⋅ n = 𝜔
𝑁
∑
𝑖=1

𝑚𝑖n ⋅ (r𝑖 × (n × r𝑖))

= 𝜔
𝑁
∑
𝑖=1

𝑚𝑖|n × r𝑖|
2

= 𝜔
𝑁
∑
𝑖=1

𝑚𝑖 ̇𝑟2𝑖⟂

= 𝐼𝜔
Therefore the component of the angular momentum in the direction of the rotation axis is
𝐼𝜔. However, it is not the case that L only has a component in the direction of the rotation
axis; indeed it is possible that it may have more components in other directions. We can
derive that

L = 𝜔
𝑁
∑
𝑖=1

𝑚𝑖r𝑖 × (n × r𝑖)

=
𝑁
∑
𝑖=1

𝑚𝑖(|r𝑖|
2𝛚 − (r𝑖 ⋅ 𝛚)r𝑖)
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which is a linear function of the vector 𝛚. For instance, in terms of suffix notation (which is
not examinable),

L𝛼 = 𝐼𝛼𝛽𝜔𝛽

for some symmetric tensor 𝐼 (symmetric since 𝐼𝛼𝛽 = 𝐼𝛽𝛼). In fact, we can deduce

𝐼𝛼𝛽 =
𝑁
∑
𝑖=1

𝑚𝑖 {|r𝑖|
2𝛿𝛼𝛽 − (r𝑖)𝛼(r𝑖)𝛽}

In general therefore, there are three principal axes; three linearly independent directions 𝛚
such that 𝐼 ⋅ 𝛚 is parallel to 𝛚. If a body is rotated about one of these principal axes, the
angular momentum L will be parallel to 𝛚. This holds for any shape of body, since it is
simply a property of matrices. To recap, if we choose to rotate in a direction such that L is
parallel to 𝛚, then

L = 𝐼(n)𝛚

where 𝐼(n) is the moment of inertia about this axis n. Note that since we often consider
bodies which are symmetric about a particular axis, rotating about this axis guarantees this
above property. Further note the similarities between the equations for angular and linear
velocities and energies:

𝑇 = 1
2𝐼𝜔

2,L = 𝐼𝛚; 𝑇 = 1
2𝑚𝑣

2,p = 𝑚v

11.4. Calculating moments of inertia

For a solid body, instead of considering finite sums of particles we instead consider integrals.
Consider a body occupying a volume 𝑉 , with mass density 𝜌(r). Then we can compute the
total mass𝑚 by

𝑀 = ∫
𝑉
𝜌 d𝑉

The centre of mass is given by

R = 1
𝑀 ∫

𝑉
𝜌r d𝑉

The moment of inertia about an axis n is

𝐼 = ∫
𝑉
𝜌|r⟂|

2 d𝑉 = ∫
𝑉
𝜌|n × r|2 d𝑉

We can alternatively formulate these volume integrals as surface or line integrals in order to
compute these quantities for mass distributed on a sheet or along a curve. We can explicitly
calculate these values for simple shapes.
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11. Rigid bodies

(i) Consider a uniform thin ring of total mass𝑀 and radius 𝑎. Let 𝜌 be the mass per unit
length, which is therefore 𝑀/2𝜋𝑎. The moment of inertia about an axis through the
centre of the ring and perpendicular to the plane of the ring is given by

𝐼 = ∫
2𝜋

0

𝑀
2𝜋𝑎𝑎

2𝑎 d𝜃 = 𝑎2𝑀

This is easy to compute since every point in the body has 𝑟⟂ = 𝑎.
(ii) Consider a uniform thin rod of total mass 𝑀 and length ℓ. The axis of rotation is at

one end of the rod, and the rod is rotating about an axis perpendicular to its length.
Here, 𝜌 = 𝑀/ℓ.

𝐼 = ∫
ℓ

0

𝑀
ℓ 𝑥

2 d𝑥 = 1
3𝑀ℓ2

(iii) Consider a uniform thin disc of mass𝑀, radius 𝑎with the axis of rotation through the
centre of the disc, perpendicular to the plane of the disc. We will use an area integral,
and let 𝜌 = 𝑀

𝜋𝑎2
be the mass per unit area. In plane polar coordinates,

𝐼 = ∫
𝑎

𝑟=0
d𝑟∫

2𝜋

𝜃=0
d𝜃 𝑀

𝜋𝑎2 𝑟
2𝑟 = 1

2𝑀𝑎2

(iv) Consider the same disc, but with the axis of rotation through the centre, in the plane of
the disc. Again in plane polar coordinates, we can let 𝜃 be the angle between the axis of
rotation and the line through the point and the centre of mass. Therefore 𝑟⟂ = 𝑟 sin 𝜃.
Hence,

𝐼 = ∫
𝑎

𝑟=0
d𝑟∫

2𝜋

𝜃=0
d𝜃 𝑀

𝜋𝑎2 𝑟
2 sin2 𝜃𝑟 = 1

4𝑀𝑎2

(v) Consider a uniform sphere with mass 𝑀 and radius 𝑎, with axis of rotation through
the centre of the sphere. Then 𝜌, the density per unit volume, is 3𝑀

4𝜋𝑎3
. In spherical

polar coordinates, we can let the 𝜃 = 0 axis be the axis of rotation. Then

𝐼 = ∫
𝑎

𝑟=0
d𝑟∫

𝜋

𝜃=0
d𝜃∫

2𝜋

𝜙=0
d𝜙 3𝑀

4𝜋𝑎3 𝑟
2 sin2 𝜃𝑟2 sin 𝜃 = 2

5𝑀𝑎2

11.5. Results on moments of inertia
Theorem (Perpendicular Axes Theorem). For a two-dimensional body (a lamina),

𝐼𝑧 = 𝐼𝑥 + 𝐼𝑦

where 𝐼𝑧 is the moment of inertia about the axis perpendicular to the lamina, and the 𝐼𝑥 and
𝐼𝑦 are the moments of inertia in perpendicular directions in the plane of the lamina.

315



V. Dynamics and Relativity

Proof. Let 𝐴 be the lamina as shown. Then

𝐼𝑥 = ∫
𝐴
𝜌𝑦2 d𝐴 ; 𝐼𝑦 = ∫

𝐴
𝜌𝑥2 d𝐴

where 𝑥, 𝑦 are the plane Cartesian components of the position vector of a point. Then

𝐼𝑧 = ∫
𝐴
𝜌(𝑥2 + 𝑦2) d𝐴 = 𝐼𝑥 + 𝐼𝑦

as required.

This theorem is useful when there is a level of symmetry in the problemwhere 𝐼𝑥 = 𝐼𝑦.

Theorem (Parallel Axes Theorem). Consider a rigid body of mass 𝑀 with a moment of
inertia 𝐼𝑐 about some axis through the centre of mass. Then the moment of inertia about a
parallel axis a distance 𝑑 from the centre of mass has moment of inertia

𝐼 = 𝐼𝑐 +𝑀𝑑2

Proof. Let us consider Cartesian coordinates, with the origin at the centre of mass. The
moment of inertia about an axis in the 𝑧 direction through the origin is 𝐼𝑐, and the moment
about the axis passing through the point (𝑑, 0, 0) is 𝐼. Let us denote the volume of the body
as 𝑉 . Then

𝐼𝑐 = ∫
𝑉
𝜌(𝑥2 + 𝑦2) d𝑉 ; 𝐼 = ∫

𝑉
𝜌((𝑥 − 𝑑)2 + 𝑦2) d𝑉

Hence,

𝐼 = ∫
𝑉
𝜌(𝑥2 + 𝑦2) d𝑉 − 2 ∫

𝑉
𝜌𝑥𝑑 d𝑉

⏟⎵⎵⏟⎵⎵⏟
=0

+∫
𝑉
𝜌𝑑2 d𝑉

The middle term is zero since the origin is the centre of mass, and we are integrating over
the 𝑥 coordinate multiplied by a constant multiple of density.

𝐼 = 𝐼𝑐 +𝑀𝑑2

as required.

11.6. General motion of a rigid body
In general, the motion of a rigid body can be described by a combination of

• the translation of the centre of mass, following a trajectory R(𝑡), and

• the rotation about an axis through the centre of mass.
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11. Rigid bodies

Like before, we define the position vector of a point 𝑖 in the body as r𝑖 = R + s𝑖 where the
s𝑖 are relative to the centre of mass. Recall that∑

𝑁
𝑖=1 s𝑖 = 0. If a body is rotating about the

centre of mass with angular velocity 𝛚, then

̇s𝑖 = 𝛚 × s𝑖; ̇r𝑖 = Ṙ + 𝛚 × ̇s𝑖

Recall that the kinetic energy is

𝑇 = 1
2𝑀Ṙ2 + 1

2
𝑁
∑
𝑖=1

𝑚𝑖 ̇s2𝑖 =
1
2𝑀Ṙ2 + 1

2𝐼𝑐𝜔
2

where 𝐼𝑐 is the moment of inertia about the axis of rotation n = 𝛚/𝜔 through the centre
of mass. We can therefore consider 𝑇 as the sum of a ‘translational’ kinetic energy and a
‘rotational’ kinetic energy. Recall that in a general multiparticle system, linear momentum
and angular momentum satisfy

ṗ = F; L̇ = G

where F is the total external force and G is the total external torque. For a rigid body, these
two equations determine the translational and rotational components of motion entirely.
Note that sometimes we can determine the motion in a simpler way by using energy con-
servation laws. Note further that L and G depend on the choice of origin, which could be
defined as any point fixed in an inertial frame, or alternatively we could define them with
respect to the centre of mass. In this case, the equation L̇ = G still holds. Indeed,

G⏟
external torque about origin

= d
d𝑡 (𝑀R × Ṙ +

𝑁
∑
𝑖=1

𝑚𝑖s𝑖 × ̇s𝑖)

= 𝑀Ṙ × Ṙ +𝑀R × R̈ + d
d𝑡

𝑁
∑
𝑖=1

𝑚𝑖s𝑖 × ̇s𝑖

= R × Fext + d
d𝑡

𝑁
∑
𝑖=1

𝑚𝑖s𝑖 × ̇s𝑖

Hence the rate of change of the angularmomentumabout the centre ofmass d
d𝑡
∑𝑁

𝑖=1𝑚𝑖s𝑖× ̇s𝑖
is exactly G − R × Fext. Therefore,

G𝑐 =
𝑁
∑
𝑖=1

r𝑖 × Fext𝑖 − R × Fext

=
𝑁
∑
𝑖=1
(r𝑖 − R) × Fext𝑖

Hence the rate of change of the angular momentum about the centre of mass is exactly the
external torque about the centre of mass.
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Example. Consider the motion of a rigid body in a uniform gravitional field with constant
acceleration g. The total gravitational force and torque acting on the rigid body are the same
as those that would act on a particle of the same mass located at the rigid body’s centre of
mass. In a gravitational field, the centre of mass is often referred to as the ‘centre of gravity’.
Indeed,

F =
𝑁
∑
𝑖=1

Fext𝑖

=
𝑁
∑
𝑖=1

𝑚𝑖g

= 𝑀g

Correspondingly, the total torque is given by

G =
𝑁
∑
𝑖=1

Gext
𝑖

=
𝑁
∑
𝑖=1

r𝑖 ×𝑚𝑖g

=
𝑁
∑
𝑖=1

𝑚𝑖r𝑖 × g

= 𝑀R × g

Note that the gravitational torque about the centre of mass is exactly zero, since

G𝑐 =
𝑁
∑
𝑖=1

s𝑖 ×𝑚𝑖g

=
𝑁
∑
𝑖=1

𝑚𝑖s𝑖 × g

= 0

Note further that the external potential𝑉 ext, which is exactly the gravitational potential, will
be given by

𝑉 ext = −
𝑁
∑
𝑖=1

𝑚𝑖r𝑖 ⋅ g

= −𝑀R ⋅ g

Consider a stick thrown into the air. The centre of mass will follow a parabola, and the
angular acceleration about the centre of mass is zero.
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11.7. Simple pendulum
Consider a uniform rod of length ℓ and mass 𝑀, fixed at one end to a pivot point 𝑂. The
centre of mass is the midpoint of the rod, at a distance of ℓ/2 from the pivot. The angle
between the rod and the rest position (when the rod is pointing downwards from the pivot)
is 𝜃. We can consider the angular momentum about the pivot point.

𝜔 = ̇𝜃; 𝐿 = 𝐼 ̇𝜃 = 1
3𝑀ℓ2 ̇𝜃

The torque produced by the gravitational force is

𝐺 = −𝑀𝑔ℓ2 sin 𝜃

The torque associated with the force at the pivot will be zero, since it acts on the line of the
rod. We have

�̇� = 𝐺 ⟹ 𝐼 ̈𝜃 = −𝑀𝑔ℓ2 sin 𝜃 ⟹ ̈𝜃 = −3𝑔
2ℓ sin 𝜃

which is equivalent to a simple pendulum of length 2ℓ/3 , and small oscillations will have
period 2𝜋√2ℓ/3𝑔. We could alternatively solve this using conservation of energy.

𝑇 + 𝑉 = 1
2𝐼

̇𝜃2 − 𝑀𝑔ℓ
2 cos 𝜃 = 𝐸

where 𝐸 is constant. Then
𝐼 ̇𝜃 ̈𝜃 + 𝑀𝑔ℓ

2
̇𝜃 sin 𝜃 = 0

So either ̇𝜃 = 0 everywhere, or
𝐼 ̈𝜃 + 𝑀𝑔ℓ

2 sin 𝜃 = 0

which gives the equation of motion we found earlier. In general, when solving a problem,
there are three methods:

(i) use Newton’s second law for the centre of mass, and use the rate of change of angular
momentum about the centre of mass;

(ii) use the rate of change of angular momentum about a fixed point; and

(iii) use conservation of energy (less useful in general, since it removes dimensions).

11.8. Comparison of sliding and rolling
Consider a cylinder or a sphere with radius 𝑎, moving along a stationary horizontal surface.
The general motion is some combination of the rotation of the centre of mass with angular
velocity 𝜔 and the translation of the centre of mass with velocity 𝑣. The point 𝑃 is the in-
stantaneous point of contact between the body and the surface. The horizontal velocity of
the point of contact is given by

𝑣slip = 𝑣 − 𝑎𝜔
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In general, the point of contact 𝑃 slips, and there may be some kinetic frictional force asso-
ciated with this slip. We can categorise rolling and sliding as follows.

• A ‘pure sliding’ motion is given by 𝜔 = 0, and 𝑣 = 𝑣slip ≠ 0. In this case, the body
slides across the surface without rotation.

• A ‘pure rolling’ motion is given by 𝑣slip = 0, but 𝑣 ≠ 0 and 𝜔 ≠ 0. In this case, the
point of contact 𝑃 is stationary. A rolling body can be described instantaneously as
rotating about the point of contact with angular velocity 𝜔.

As an example, consider a body rolling downhill, where the hill has a constant incline 𝛼 to
the horizontal. Let 𝑥 be the displacement of the centre of mass from its initial position, so
𝑣 = ̇𝑥. Let 𝑀𝑔 be the gravitational force, 𝑁 be the normal force, and 𝐹 be the frictional
force. Now, we know that the rolling condition is that 𝑣 − 𝑎𝜔 = 0. We will analyse the
motion of this body, under the assumption that it is rolling, by considering conservation of
energy.

𝑇 = 1
2𝑀𝑣2 + 1

2𝐼𝜔
2 = 1

2(𝑀 + 𝐼
𝑎2 )𝑣

2; 𝑉 = −𝑀𝑔𝑥 sin𝛼

The normal force does not do any work, since it is perpendicular to the direction of motion,
and the frictional force does not do work because the point of contact is instantaneously
stationary. Hence, energy is conserved, giving

1
2(𝑀 + 𝐼

𝑎2 )𝑣
2 −𝑀𝑔𝑥 sin𝛼 = 𝐸

Hence,
(𝑀 + 𝐼

𝑎2 ) ̇𝑥 ̈𝑥 − 𝑀𝑔 ̇𝑥 sin𝛼 = 0

We have therefore deduced that

(𝑀 + 𝐼
𝑎2 ) ̈𝑥 = 𝑀𝑔 sin𝛼

which is a second order differential equation with constant coefficients, which we can solve.
Note that due to the 𝐼

𝑎2
term, the total acceleration is less than it would be for a frictionless

particle (since such a particle would not rotate). For example, a cylinder would have 𝐼 =
1
2
𝑀𝑎2 hence ̈𝑥 = 2

3
𝑀𝑔 sin𝛼. Alternatively, we could analyse the forces and torques. We can

use Newton’s second law to deduce

𝑀 ̇𝑣 = 𝑀𝑔 sin𝛼 − 𝐹

Further, the rate of change of angular momentum about the centre of mass is

𝐼�̇� = 𝑎𝐹

The rolling condition implies that ̇𝑣 = 𝑎�̇�, hence

𝐼 ̇𝑣
𝑎 = 𝑎𝐹 ⟹ 𝑀 ̇𝑣 = 𝑀𝑔 sin𝛼 − 𝐼 ̇𝑣

𝑎2 ⟹ (𝑀 + 𝐼
𝑎2 ) ̇𝑣 = 𝑀𝑔 sin𝛼
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We could also alternatively look at the torque about the point 𝑃. In this case, using the
parallel axes theorem,

𝐼𝑃 = 𝐼 +𝑀𝑎2

Then,
𝐼𝑃�̇� = 𝑀𝑔𝑎 sin𝛼 ⟹ (𝑀𝑎2 + 𝐼) ̇𝑣

𝑎 = 𝑀𝑔𝑎 sin𝛼

and the substitution 𝑣 = 𝑎𝜔 gives the equation we found before.

11.9. Transition from sliding to rolling
Consider a sphere with radius 𝑎 that begins by sliding across a horizontal surface, for in-
stance a snooker ball being hit parallel to the table, through the centre of mass, by a cue.
Eventually, the ball will transition from sliding to rolling across the table. Initially, 𝑣 = 𝑣0
and 𝜔 = 0. The kinetic frictional force 𝐹 is given by

𝐹 = 𝜇𝑘𝑁 = 𝜇𝑘𝑀𝑔

Considering linear motion, we have
𝑀 ̇𝑣 = −𝐹

Considering angular motion,

𝐼�̇� = 𝑎𝐹 ⟹ 2
5𝑀𝑎�̇� = 𝐹

Hence,
𝑀 ̇𝑣 + 2

5𝑀𝑎�̇� = 0 ⟹ 𝑣 = 𝑣0 − 𝜇𝑘𝑔𝑡; 𝜔 = 5
2𝑎𝜇𝑘𝑔𝑡

We can now compute the slip velocity.

𝑣slip = 𝑣 − 𝑎𝜔 = 𝑣0 −
7
2𝜇𝑘𝑔𝑡

There is slipping when 𝑣slip > 0, which occurs for

0 ≤ 𝑡 < 2𝑣0
7𝜇𝑘𝑔

Rolling begins when 𝑡 = 2𝑣0
7𝜇𝑘𝑔

= 𝑡roll. Note that at this time,

𝑇 = 1
2𝑀𝑣2 + 1

2𝐼𝜔
2 = 1

2𝑀(1 + 2
5)𝑣

2
roll =

5
7(
1
2𝑀𝑣20)

So during the sliding phase, we have lost 2
7
of the initial kinetic energy. We can check the

loss of kinetic energy due to friction, giving

∫
𝑡roll

0
𝐹𝑣slip d𝑡 = ∫

𝑡roll

0
𝐹(𝑣0 −

7
2𝜇𝑘𝑔𝑡) d𝑡 =

2
7(
1
2𝑀𝑣20)

as expected.
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12. Special relativity
12.1. Introduction and postulates
When velocities get comparable to the speed of light 𝑐 = 299 792 458ms−1, the Newtonian
theory of dynamics is no longer a good approximation to real-world dynamical systems. In
this case, we need to consider the Special Theory of Relativity in order to get a better under-
standing of the real world. The theory of special relativity is based on two postulates:

(i) The laws of physics are the same in all inertial frames.

(ii) The speed of light in a vacuum is the same in all inertial frames.

The first postulate is consistent with the Newtonian theory of dynamics. The second pos-
tulate arises from the fact that we cannot detect any change in the speed of light in inertial
frames moving at different velocities. This second postulate then has major consequences;
in fact, we must rewrite our understanding of space and time, as well as the relationships
between energy, momentum and mass.

12.2. Lorentz transformations
Consider two inertial frames 𝑆 and 𝑆′, which are related by a Galilean transformation given
by

𝑥′ = 𝑥 − 𝑣𝑡; 𝑦′ = 𝑦; 𝑧′ = 𝑧; 𝑡′ = 𝑡
Consider the path of a ray of light travelling in the 𝑥 direction in 𝑆. It has position 𝑥 = 𝑐𝑡. In
𝑆′, we have

𝑥′ = 𝑥 − 𝑣𝑡 = 𝑐𝑡 − 𝑣𝑡 = (𝑐 − 𝑣)𝑡′

This contradicts the second postulate, since this would imply that the speed of light is not
in fact the same in all inertial frames. Therefore, the assumption that there exists a Galilean
transformation between the inertial frames was incorrect. In order to rectify this apparent
contradiction, wemust let space and time interactwith each other under this transformation.
The particular transformation that satisfies both postulates of special relativity is called the
Lorentz transformation; we will now construct such a transformation.

Consider inertial frames 𝑆 and 𝑆′ that have the same origin when 𝑡 = 𝑡′ = 0. 𝑆’ is moving at
a speed 𝑣 in the 𝑥 direction relative to 𝑆, andwewill assume that 𝑦′ = 𝑦 and 𝑧′ = 𝑧. Postulate
1 implies that a particle moving at a constant velocity in 𝑆 must appear to be moving at a
constant velocity in 𝑆′. So the transformation (𝑥, 𝑡) ↦ (𝑥′, 𝑡′) must preserve straight lines,
hence it must be a linear transformation. We know that the origin in 𝑆′ (called 𝑂′) moves
with speed 𝑣, hence

𝑥′ = 𝛾(𝑥 − 𝑣𝑡) (1)

where 𝛾 is a function of |𝑣|, since there is no directional preference in our system of physics.
Further, 𝑂moves with speed −𝑣 in 𝑆′, so in the same way,

𝑥 = 𝛾(𝑥′ + 𝑣𝑡′) (2)
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The 𝛾 value is the same since 𝛾(𝑣) = 𝛾(−𝑣). Consider a light ray passing through 𝑂 and 𝑂′

at 𝑡 = 𝑡′ = 0, moving in the 𝑥 direction.

𝑥 = 𝑐𝑡; 𝑥′ = 𝑐𝑡′

We can now substitute these equations into the results we found before.

𝑥 = 𝑐𝑡 = 𝛾(𝑥′ + 𝑣𝑡′) = 𝛾(𝑐 + 𝑣)𝑡′; 𝑥′ = 𝑐𝑡′ = 𝛾(𝑥 − 𝑣𝑡) = 𝛾(𝑐 − 𝑣)𝑡

For consistency,
𝛾2(1 − 𝑣

𝑐 )(1 +
𝑣
𝑐 ) = 1

Hence,
𝛾 = 1

√1 − 𝑣2

𝑐2

We call 𝛾 the Lorentz factor. Using (1) and (2), we can deduce that

𝑣𝑡′ = 𝑥
𝛾 − 𝑥′

= 𝑥
𝛾 − 𝛾(𝑥 − 𝑣𝑡)

= 𝛾( 1𝛾2 − 1)𝑥 + 𝛾𝑣𝑡

= 𝛾(𝑣𝑡 − 𝑣2
𝑐2 𝑥)

Hence,
𝑡′ = 𝛾(𝑡 − 𝑣𝑥

𝑐2 )

It is easy to deduce the inverse transformation

𝑡 = 𝛾(𝑡′ + 𝑣𝑥′
𝑐2 )

Note also that 𝑦 and 𝑧 are unchanged. Note that 𝛾(𝑣) ≥ 1, and 𝛾 → ∞ as |𝑣| → 𝑐. In
particular, the Galilean transformation is recovered when 𝛾 → 1. Also, as 𝑣 → 𝑐, we have
approximately

𝛾 ≈ 1
√2

⋅ 1

√1 − 𝑣
𝑐

Example. Consider a light ray travelling in the 𝑥 direction. In 𝑆, 𝑥 = 𝑐𝑡, 𝑦 = 0, 𝑧 = 0. In 𝑆′,

𝑥′ = 𝛾(𝑥 − 𝑣𝑡) = 𝛾(𝑐 − 𝑣)𝑡; 𝑡′ = 𝛾(𝑡 − 𝑣𝑥
𝑐2 ) = 𝛾(1 − 𝑣

𝑐 )𝑡
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and additionally 𝑦 = 0, 𝑧 = 0. Combined, we find

𝑥′
𝑡′ =

𝛾(𝑐 − 𝑣)
𝛾(1 − 𝑣

𝑐
)

Now instead, consider a light ray travelling in the 𝑦 direction in 𝑆. In 𝑆, 𝑥 = 0, 𝑦 = 𝑐𝑡, 𝑧 = 0.
In 𝑆′,

𝑥′ = 𝛾(𝑥 − 𝑣𝑡); 𝑡′ = 𝛾(𝑡 − 𝑣𝑥
𝑐2 )

and 𝑦′ = 𝑦 = 𝑐𝑡, 𝑧′ = 𝑧 = 0. Since 𝑥 = 0 at all time, we have

𝑥′ = −𝛾𝑣𝑡; 𝑡′ = 𝛾𝑡

The square of the speed of the light ray in 𝑆′ is given by the 𝑥 component squared plus the 𝑦
component squared.

𝑐′2 = 𝑣2 + 𝑐2
𝛾2 = 𝑐2

as expected. Note that while the speed of light has remained fixed, the direction has changed.

12.3. General properties of Lorentz transformation
Note that the following always holds.

𝑐2𝑡′2 − 𝑟′2 = 𝑐2𝑡′2(𝑥′2 + 𝑦′2 + 𝑧′2)

= 𝑐2𝛾2(𝑡 − 𝑣𝑥
𝑐2 )

2
− (𝑥 − 𝑣𝑡)2𝛾2 − 𝑦2 − 𝑧2

= 𝑐2𝛾2(𝑡2 − 2𝑣𝑥𝑡
𝑐2 + 𝑣2𝑥2

𝑐2 ) − 𝛾(𝑥2 − 2𝑣𝑥𝑡 + 𝑣2𝑡2) − 𝑦2 − 𝑧2

= 𝑐2𝑡2 − 𝑥2 − 𝑦2 − 𝑧2
= 𝑐2𝑡2 − 𝑟2

This quantity is invariant under Lorentz transformations. So, considering a radial emission
of light rays, if 𝑟′ = 𝑐𝑡′, then 𝑟 = 𝑐𝑡.
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13. Space-time diagrams, simultaneity and causality
13.1. Space-time diagrams
Consider one spatial dimension 𝑥 and one temporal dimension 𝑡 in an inertial frame 𝑆. We
can plot 𝑥 on the horizontal axis and 𝑐𝑡 on the vertical axis, in order tomake the units match.
This combination of space and time in one diagram is called Minkowski spacetime. Each
point 𝑃 in spacetime represents an event labelled by coordinates (𝑥, 𝑐𝑡). A moving particle
traces out a curve in this diagram, called the world line.

𝑃

𝑥

𝑐𝑡

The world line would be a straight line if the particle is moving at a constant velocity. In
particular, light rays have gradient 1. Since particles cannot travel faster than the speed of
light, world lines are restricted to certain regions (drawn in red) of the space time plane,
given that the particle is at 𝑥 = 0 when 𝑡 = 0.

−2 −1 1 2

−2

−1

1

2

𝑥

𝑐𝑡

We can also draw the axes of a different frame 𝑆′ on the same diagram, moving at speed 𝑣
relative to 𝑆. The 𝑡′ axis corresponds to the equation 𝑥′ = 0 and therefore corresponds to
𝑥 = 𝑣𝑡, or equivalently 𝑥 = 𝑣

𝑐
⋅ 𝑐𝑡. The 𝑥′ axis corresponds to 𝑡′ = 0, which is 𝑐𝑡 = 𝑣

𝑐
⋅𝑥.

𝑐𝑡′

𝑥′
𝑥

𝑐𝑡
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The angle between the 𝑥 and 𝑥′ axes matches the angle between the 𝑐𝑡 and 𝑐𝑡′ axes; they are
symmetric about the diagonal (as are the original 𝑥 and 𝑐𝑡 axes). Note that the diagonal is
given by 𝑥 = 𝑐𝑡 and 𝑥′ = 𝑐𝑡′, which is the same light ray.

13.2. Comparing velocities
Consider a particle moving with constant velocity 𝑢′ in 𝑆′, where 𝑆′ is travelling at velocity
𝑣 with respect to 𝑆. The world line of the particle in 𝑆′ is simply 𝑥′ = 𝑢′𝑡′. Correspondingly
in 𝑆, 𝑥 = 𝑢𝑡. Now, using the Lorentz transformation,

𝑥 = 𝛾(𝑥′ + 𝑣𝑡′) = 𝛾(𝑢′ + 𝑣)𝑡′

𝑡 = 𝛾(𝑡′ + 𝑣𝑥′
𝑐2 ) = 𝛾(1 + 𝑣𝑢′

𝑐2 )𝑡
′

Hence,

𝑢 = 𝑥
𝑡 =

𝑢′ + 𝑣
1 + 𝑢′𝑣

𝑐2

Note that
𝑐 − 𝑢 = (𝑐 − 𝑢′)(𝑐 − 𝑣)

1 + 𝑢′𝑣
𝑐2

which is always positive if 𝑢′ < 𝑐 and 𝑣 < 𝑐. Therefore, a Lorentz transformation preserves
the property that a speed is smaller than the speed of light.

13.3. Simultaneity
Two events 𝑃1 and 𝑃2 are simultaneous in 𝑆 if they occur at the same time in 𝑆. This is a
line parallel to the space axis in the spacetime diagram. In another reference frame, this
line of constant time might be at a different angle. So events simultaneous in 𝑆′ may not
correspond to events simultaneous in 𝑆. We can use the above formulae to deduce the exact
time that an event happens in a different frame of reference.

13.4. Causality
Different observers may disagree on the time ordering of events, but we can construct a
viewpoint which gives a consistent description of ‘cause’ and ‘effect’, so special relativity
does not break causality. Note that lines of simultaneity cannot have an angle greater than
𝜋
2
since the speed of the moving frame must be less than 𝑐. We can construct a ‘light cone’

from all lines or surfaces from an event 𝑃 at an angle 𝜋
2
to the time axis, which represents

the possible effects of an event.
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−1 −0.5
0.5 1

−1
−0.5

0.5
1

−1

−0.5

0.5

1

𝑥

𝑦
𝑐𝑡

The cone above the origin is the ‘future light cone’ and the cone below is called the ‘past light
cone’. Note that this cone is fixed under Lorentz transformations. If an event occurs in the
future light cone, then all observers agree that this event occurs after that the event at the
origin. Likewise, if an event occurs in the past light cone, all observers agree that this event
occurs before the event at the origin. Note that if an event 𝑃 is not in the light cone, then
it cannot cause, or be caused by, the event at the origin, since nothing travels faster than 𝑐.
Hence, an event at the origin can only be influenced by events inside the past light cone, and
may only influence events inside the future light cone.

13.5. Time dilation

Consider first a clock which is stationary in 𝑆′, which ticks at constant intervals Δ𝑡′. What
is the time interval between ticks as perceived in 𝑆? We can use the Lorentz transformation,
noting that 𝑥′ = 0 since the clock is stationary in 𝑆′, to get

𝑡 = 𝛾(𝑡′ + 𝑣𝑥′
𝑐2 ) = 𝛾𝑡′

Hence,
Δ𝑡 = 𝛾Δ𝑡′

So moving clocks run slowly.

13.6. The twin paradox

Consider two twins𝐴 and 𝐵. Twin𝐴 stays on Earth (considered to be an inertial frame), and
𝐵 travels at a constant speed 𝑣 to a distant planet 𝑃, then she turns around and returns to
Earth. In the frame of reference of 𝐴,
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𝑃

𝐸

𝐹

𝑥

𝑐𝑡

𝐸 is the point where 𝐵 reaches 𝑃. The event 𝐸 occurs at time 𝑇 as perceived by 𝐴, so 𝐸 has
coordinates (𝑥, 𝑐𝑡) = (𝑣𝑇, 𝑐𝑇). The time experienced by 𝐵 on her outward journey is

𝑇 ′ = 𝛾(𝑇 − 𝑣
𝑐 ⋅ 𝑣𝑇) =

𝑇
𝛾

On her return to event 𝐹, twin 𝐴 has aged by 2𝑇 but twin 𝐵 has aged by 2𝑇 ′ < 2𝑇. However,
from twin 𝐵’s perspective, twin 𝐴 has aged less than she has, since the problem is seemingly
symmetric. This would be a paradox. To rectify this, consider the frame of reference of 𝐵’s
outward journey. At 𝐸, 𝑥′ = 0 and 𝑡′ = 𝑇/𝛾. Consider an event 𝐺 simultaneous to 𝐸 in the
frame of reference of 𝑆′. The new line drawn in the following diagram is a line of constant
𝑡′.

328



13. Space-time diagrams, simultaneity and causality

𝑃

𝐸
𝐺

𝑥

𝑐𝑡

At 𝐸,
𝑡′ = 𝛾(𝑡 − 𝑣𝑥

𝑐2 ) = 𝑡𝛾 ⟹ 𝑡 = 𝑡′
𝛾 = 𝑇

𝛾2

So each of them thinks that the other has aged less, when 𝐵 is at 𝐸, by a factor of 𝛾−1. On
the return,

𝑃

𝐸
𝐻

𝐺

𝑥

𝑐𝑡
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The new line is a line of constant 𝑡′ as measured by 𝐵 on the return journey, at 𝐸. So for the
return journey, 𝐴 sees 𝐵 age from the event 𝐸 to the event 𝐹. However, 𝐵 sees 𝐴 age from
the event𝐻 to the event 𝐹. So there is a time gap between 𝐺 and𝐻 as observed by 𝐵, which
is not considered by the naive model of this problem. 𝐵 sees 𝐴 age instantaneously at the
point when she changes direction. In particular, the frame of 𝐵 as she changes direction is
not inertial.

13.7. Length contraction

The length of an object is dependent on the choice of frame. Consider a rod of length 𝐿′ in
𝑆′, which is stationary in 𝑆′. The world lines of the ends of the rod are vertical. The length
of the rod at time 𝑡′ is the distance in 𝑥′ between the two world lines. In 𝑆,

𝑥′ = 0 ⟹ 𝛾(𝑥 − 𝑣𝑡) = 0

Further,

𝑥′ = 𝐿′ ⟹ 𝛾(𝑥 − 𝑣𝑡) = 𝐿′

Therefore, the distance between the two 𝑥 points at the same 𝑡 is 𝐿 = 𝐿′/𝛾 < 𝐿′. So the length
of a moving object shrinks in the direction it is moving. Sometimes, analogously to ‘proper
time’, we consider the ‘proper length’ of an object, which is the length as measured in the
rest frame of the object.

For example, does a train of (proper) length 2𝐿 fit alongside a platform of length 𝐿 if it is
travelling along the tracks at a speed such that 𝛾 = 2? For observers on the platform, the
train indeed contracts to length 𝐿, so indeed it fits. On the other hand, for observers on
the train, the platform contracts to a length 1

2
𝐿, so the train would not fit. To resolve the

uncertainty, we will draw a spacetime diagram, from the frame of reference 𝑆 where the
platform is stationary. The vertical lines represent the end points of the platform. The world
lines for the end points of the train are the diagonal lines intersecting 𝐸 and 𝐹. 𝐸 is the event
when the rear of the train is at the rear of the platform, and 𝐹 is the event where the front of
the train is at the front of the platform.
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𝑐𝑡′

𝑥′
𝐸 𝐹

𝑥

𝑐𝑡

Let 𝐸 correspond to 𝑡 = 0 and 𝑡′ = 0. The front of the train is at 𝑥′ = 2𝐿, and the front of the
platform is at 𝑥 = 𝐿. In the 𝑆 frame, events 𝐸 and 𝐹 occur at the same time 𝑡 = 0.

𝑥′ = 𝛾(𝑥 − 𝑣𝑡) ⟹ 2𝐿 = 𝛾(𝐿 − 𝑣𝑡) = 2(𝐿 − 𝑣𝑡) ⟹ 𝑡 = 0

Further,

𝑥 = 𝛾(𝑥′ + 𝑣𝑡′) ⟹ 𝐿 = 𝛾(2𝐿 + 𝑣𝑡′) = 2(2𝐿 + 𝑣𝑡′) ⟹ 𝑡′ = 𝐿 − 4𝐿
2𝑣 = −3𝐿

2𝑣 < 0

Hence, the time 𝑡′ at which 𝐹 occurs is before the event 𝐸. So from the perspective of the
train, the front of the train has already passed the front of the platform by the time that the
back of the train passes the back of the platform, so from this perspective the train does not
fit.
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14. Geometry of spacetime

14.1. Invariant interval

Consider two events 𝑃 and 𝑄 with space-time coordinates (𝑐𝑡1, 𝑥1) and (𝑐𝑡2, 𝑥2), where the
time coordinate is given first. The time separation is Δ𝑡 = 𝑡1 − 𝑡2, and the space separation
Δ𝑥 = 𝑥1 − 𝑥2. These two separations are dependent on the choice of inertial frame. The
invariant interval between 𝑃 and 𝑄 is defined as

Δ𝑠2 = 𝑐2Δ𝑡2 − Δ𝑥2

This is invariant under a Lorentz transformation. In three spatial dimensions, we simply
replace this Δ𝑥2 with Δ𝑥2 + Δ𝑦2 + Δ𝑧2, so

Δ𝑠2 = 𝑐2Δ𝑡2 − Δ𝑥2 − Δ𝑦2 − Δ𝑧2

If the separation between 𝑃 and 𝑄 is very small, we can define the infinitesimal invariant
interval as

d𝑠2 = 𝑐2 d𝑡2 − d𝑥2 − d𝑦2 − d𝑧2

Note that spacetime with three spatial dimensions (Minkowski spacetime) is topologically
equivalent toℝ4, where the distancemeasure is d𝑠2 as defined above. Note that this distance
quantity, although squared, can be either positive or negative. Sometimes this arrangement
of one temporal and three spatial dimensions is denoted by the abbreviation ‘1 + 3 dimen-
sions’.

14.2. Signs of the invariant interval

As noted before, Δ𝑠2 can have either a positive or negative sign.

• Events with Δ𝑠2 > 0 are ‘time-like separated’. In this case, there exists a frame of
reference in which the events occur in the same spatial position, but at different times.
In particular, the two events appear in each other’s light cones. The time ordering of
the two events is unambiguous.

• Events with Δ𝑠2 < 0 are ‘space-like separated’. Here, there exists a frame of reference
in which the events occur at the same time, but in different places. The two events
are outside of each other’s light cones, and the ordering of the two events can change
depending on the choice of frame of reference.

• If Δ𝑠2 = 0, the events are ‘light-like separated’. The events lie exactly on each other’s
light cones, and this does not imply that the two events are the same (unlike in Euc-
lidean space, where a distance measure of zero implies that two points are equal).
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14.3. The Lorentz group
The coordinates of an event 𝑃 in some frame 𝑆 can be written as a 4-vector 𝑋 .

𝑋𝜇 =
⎛
⎜
⎜
⎝

𝑐𝑡
𝑥
𝑦
𝑧

⎞
⎟
⎟
⎠

where the 𝑐𝑡 coordinate is given by 𝜇 = 0 and the spatial dimensions are given by 𝜇 = 1, 2, 3
as usual. The invariant interval between 𝑃 and the origin is written as the inner product of
𝑋 with itself:

𝑋 ⋅ 𝑋 ≔ 𝑋⊺𝜂𝑋
or alternatively,

𝑋 ⋅ 𝑋 = 𝜂𝜇𝜈𝑋𝜇𝑋𝜈

where 𝜂 is the Minkowski metric given by

𝜂 =
⎛
⎜
⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟
⎟
⎠

Then
𝑋 ⋅ 𝑋 = 𝑐2𝑡2 − 𝑥2 − 𝑦2 − 𝑧2

We can classify 4-vectors as ‘space-like’, ‘time-like’ and ‘light-like’ as before, by considering
the sign of 𝜂𝜇𝜈𝑋𝜇𝑋𝜈. The Lorentz transformation is a linear transformation that converts
the components of 𝑋 into the components of 𝑋 in 𝑆′. Therefore, any Lorentz transform
can be represented as a 4 × 4 matrix Λ. We now define Lorentz transforms as such linear
transformations that preserve the Minkowski metric. So considering a sets of coordinates 𝑋
and 𝑋 ′ in 𝑆 and 𝑆′, we have 𝑋 ′ = Λ𝑋 , and 𝑋 ′ ⋅ 𝑋 ′ = 𝑋 ⋅ 𝑋 . This then implies that

Λ⊺𝜂Λ = 𝜂 (∗)

Two classes of possible Λ are

Λ =
⎛
⎜
⎜
⎝

1 0 0 0
0 𝑎 𝑏 𝑐
0 𝑑 𝑒 𝑓
0 𝑔 ℎ 𝑖

⎞
⎟
⎟
⎠

; 𝑅 = (
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

)

where 𝑅⊺𝑅 = 𝐼, giving that 𝑅 may be a spatial rotation or a reflection. We could also
have

Λ =
⎛
⎜
⎜
⎝

𝛾 −𝛾𝛽 0 0
−𝛾𝛽 𝛾 0 0
0 0 1 0
0 0 0 1

⎞
⎟
⎟
⎠
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where 𝛽 = 𝑣
𝑐
. This expresses a Lorentz transformation where the two frames are moving

at a constant velocity 𝑣 relative to each other, as discussed before in 1 + 1 spacetime. We
denote the Lorentz group as 𝑂(1, 3), defined by the set of Λ that satisfy (∗). Note that this
includes the group generated by the above two transformations (notably including spatial
reflections), as well as time reflections. We define the proper Lorentz group as 𝑆𝑂(1, 3),
which is the kernel of the determinant homomorphism on the Lorentz group. Note that this
includes the composition of both temporal and spatial reflection. The subgroup that forbids
any kind of reflection is called the restricted Lorentz group, denoted 𝑆𝑂+(1, 3), generated by
compositions of rotations and boosts, as shown in the above two examples (excluding the
case when 𝑅 is a reflection).

14.4. Rapidity
While a 4×4matrix can be useful for computation, it is sometimes more convenient to label
a Lorentz transformation using a concept of ‘rapidity’. In 1 + 1 spacetime, we write

Λ[𝛽] = ( 𝛾 −𝛾𝛽
−𝛾𝛽 𝛾 ) ; 𝛾 = (1 − 𝛽2)−

1
2

This represents a boost in the 𝑥 direction. Combining two boosts, we get

Λ[𝛽1]Λ[𝛽2] = ( 𝛾1 −𝛾1𝛽1
−𝛾1𝛽1 𝛾1

) ( 𝛾2 −𝛾2𝛽2
−𝛾2𝛽2 𝛾2

)

= (𝛾1𝛾2(1 + 𝛽1𝛽2) −𝛾1𝛾2(𝛽1 + 𝛽2)
−𝛾1𝛾2(𝛽1 + 𝛽2) 𝛾1𝛾2(1 + 𝛽1𝛽2)

)

= Λ[ 𝛽1 + 𝛽2
1 + 𝛽1𝛽2

]

Note the relation to the velocity transformation law. Recall that with spatial rotations, we
can characterise a rotation 𝑅 by some parameter 𝜃, where 𝑅(𝜃1)𝑅(𝜃2) = 𝑅(𝜃1 + 𝜃2). This is
the same kind of composition law. For Lorentz boosts, we can define 𝜙 such that 𝛽 = tanh𝜙,
and then we can redefine Λ to be in terms of 𝜙, giving this new composition law

Λ[𝜙1]Λ[𝜙2] = Λ[𝜙1 + 𝜙2]

Note that 𝛾 = cosh𝜙, and 𝛾𝛽 = sinh𝜙. This suggests that Lorentz boosts can be thought of
as hyperbolic rotations in spacetime.
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15. Relativistic physics
15.1. Proper time

A particle moves along a trajectory x(𝑡). The velocity of this particle is dx
d𝑡
= u(𝑡). The path

in spacetime is parametrised by 𝑡. Both x and 𝑡 vary under a Lorentz transformation. Now,
consider a particle at rest in 𝑆′ with x′ = 0. The invariant interval on the world line is

Δ𝑠2 = 𝑐2Δ𝑡2

We define the proper time 𝜏 as
Δ𝜏 = 1

𝑐Δ𝑠

In particular, in 𝑆′, Δ𝜏 = Δ𝑡, so the proper time is the time experienced in the rest frame
of the particle. However, the equation Δ𝜏 = 1

𝑐
Δ𝑠 holds in all frames, since Δ𝑠 is Lorentz

invariant. Note further that Δ𝑠 is real since this always represents a timelike interval, as it
represents a particle travelling through spacetime. We can therefore instead parametrise this
particle’s world line by its proper time, rather than by considering the time in any particular
frame. So x and 𝑡 are both functions of 𝜏 in any given reference frame. Further, infinitesimal
changes are related by

d𝜏 = d𝑠
𝑐

= 1
𝑐√𝑐2 d𝑡2 − |dx|2

= 1
𝑐√𝑐2 d𝑡2 − |u|2 d𝑡2

= (1 − u2
𝑐2 )

1
2
d𝑡

∴ d𝑡
d𝜏 = 𝛾u

where 𝛾u = (1 − u2

𝑐2
)
1
2 . Now, the total time observed by a particle moving along its world

line is
𝑇 = ∫ d𝜏 = ∫ d𝑡

𝛾u

15.2. 4-velocity
We can parametrise the position 4-vector of a particle using 𝜏, written

𝑋(𝜏) = (𝑐𝑡(𝜏)x(𝜏))

335



V. Dynamics and Relativity

We define the 4-velocity as

𝑈 = d
d𝜏𝑋 = (𝑐 d𝑡/d𝜏dx/d𝜏

) = d𝑡
d𝜏 (

𝑐
u) = 𝛾u (

𝑐
u)

Since 𝑋 ′ = Λ𝑋 , we also have that
𝑈 ′ = Λ𝑈

because 𝜏 is invariant. Note that any quantity whose components transform according to
this rule is called a 4-vector, and in particular, the derivative of a 4-vector with respect to
an invariant is also a 4-vector. Also, the scalar product 𝑈 ⋅ 𝑈 is invariant under Lorentz
transforms. Indeed, in the rest frame of a particle moving with 4-velocity 𝑈 , in this frame
we have 𝑈 ⋅ 𝑈 = 𝑐2. In other frames,

𝑈 ⋅ 𝑈 = 𝛾2(𝑐2 − u2) = 𝑐2

as expected.

15.3. Transformation of velocities
We have found that in special relativity, we cannot simply add velocities together. Consider
a transformation Λ from 𝑆 to 𝑆′, where 𝑆′ is moving (relative to 𝑆) at a speed 𝑣 in the 𝑥
direction. Consider a particle moving in 𝑆 at speed 𝑢 at an angle 𝜃 to the 𝑥 axis (with no
component in the 𝑧 axis). In 𝑆′, it moves with speed 𝑢′ at an angle 𝜃′. We can write the
4-velocities as

𝑈 =
⎛
⎜
⎜
⎝

𝛾u𝑐
𝛾u𝑢 cos 𝜃
𝛾u𝑢 sin 𝜃

0

⎞
⎟
⎟
⎠

; 𝑈 ′ =
⎛
⎜
⎜
⎝

𝛾u′𝑐
𝛾u′𝑢′ cos 𝜃′
𝛾u′𝑢′ sin 𝜃′

0

⎞
⎟
⎟
⎠

and further,
𝑈 ′ = Λ𝑈

where

Λ =
⎛
⎜
⎜
⎜
⎝

𝛾𝑣 −𝛾𝑣
𝑣
𝑐

0 0
−𝛾𝑣

𝑣
𝑐

𝛾𝑣 0 0
0 0 1 0
0 0 0 1

⎞
⎟
⎟
⎟
⎠

Carrying out the matrix multiplication, we find

⎛
⎜
⎜
⎝

𝛾u′𝑐
𝛾u′𝑢′ cos 𝜃′
𝛾u′𝑢′ sin 𝜃′

0

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

𝛾𝑣 −𝛾𝑣
𝑣
𝑐

0 0
−𝛾𝑣

𝑣
𝑐

𝛾𝑣 0 0
0 0 1 0
0 0 0 1

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝛾u𝑐
𝛾u𝑢 cos 𝜃
𝛾u𝑢 sin 𝜃

0

⎞
⎟
⎟
⎠

⟹
⎧
⎨
⎩

𝑢′ cos 𝜃′ = 𝑢 cos 𝜃 − 𝑣
1 − 𝑢𝑣 cos 𝜃/𝑐2

tan 𝜃′ = 𝑢 sin 𝜃
𝛾u(𝑢 cos 𝜃 − 𝑣)

The first equation corresponds to the normal transformation law for Lorentz transforms.
The second equation, corresponding to a change in angle due to the motion of the observer,
is called aberration. In particular, when 𝑢 = 𝑐, we can see that light rays appear to change
direction due to the relative motion of the emitter and the observer.
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15.4. Energy-momentum 4-vector
We define the 4-momentum of a particle of mass𝑚 and 4-velocity 𝑈 to be

𝑃 = 𝑚𝑈 = 𝑚𝛾u (
𝑐
u)

Since 𝑈 is a 4-vector, we must have that𝑚 is invariant under a Lorentz transformation. We
will call this 𝑚 the ‘rest mass’ of the object, defined as the mass as measured in the rest
frame of the particle. The 4-momentum of a system of particles is defined as the sum of the
4-momenta of its individual particles. The spatial components of 𝑃, given by 𝜇 = 1, 2, 3, can
be referred to as the relativistic 3-momentum, given by p = 𝛾u𝑚u. This matches with the
definition as seen in Newtonian physics, except that the mass𝑚 is replaced by 𝛾u𝑚. We call
this quantity the ‘apparent mass’ of the particle or system of particles, as it represents the
mass of the particle as observed by a different reference frame. Note that |p| and 𝛾u𝑚 both
tend to infinity as the particle approaches the speed of light. Note that the first component
of 𝑃, 𝑃0, is

𝛾u𝑚𝑐 =
𝑚𝑐

√1 − u2

𝑐2

= 1
𝑐 (𝑚𝑐

2 + 1
2𝑚u

2 +…)

We recognise the 1
2
𝑚u2 term as the kinetic energy of the particle. We interpret 𝑃0 as an

energy, divided by 𝑐 (to conserve units).

𝑃 = (
1
𝑐
𝐸
p
)

where
𝐸 = 𝛾u𝑚𝑐2 = 𝑚𝑐2 + 1

2𝑚u
2 +…

Note that as |u| → 𝑐, 𝐸 → ∞. Since 𝑃 contains an energy term as well as a momentum term,
we also call 𝑃 the energy-momentum 4-vector. Note that for a stationary particle of rest mass
𝑚, we have

𝐸 = 𝑚𝑐2

This implies that mass is a form of energy. The energy of a moving particle is

𝐸 = 𝑚𝑐2 + (𝛾u − 1)𝑚𝑐2⏟⎵⎵⏟⎵⎵⏟
relativistic kinetic energy

Since 𝑃 ⋅ 𝑃 = 𝐸2

𝑐2
− |p|2 is Lorentz invariant, we have

𝑃 ⋅ 𝑃 = 𝑚2𝑐2

Hence,
𝐸2
𝑐2 = |p|2 +𝑚2𝑐2

In Newtonian physics, mass is conserved, and energy is also conserved. In relativistic phys-
ics, mass is not conserved by itself, since it is a form of energy. From this derivation, it is
theoretically possible to convert between mass and kinetic energy.
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15.5. Massless particles
A massless particle has zero rest mass. Such particles can have nonzero momentum and
nonzero energy, because they are travelling at the speed of light, giving 𝛾u = ∞. Since
𝑃 ⋅ 𝑃 = 𝑚2𝑐2, there are no factors of 𝛾 in this expression giving

𝑃 ⋅ 𝑃 = 0

So such a particle travels along a light-like trajectory. Therefore there is no Lorentz trans-
formation that brings a given reference frame into the rest frame of the particle, sowe cannot
define proper time for such a particle. Since𝑚2𝑐2 = 0, we must have

𝐸2
𝑐2 = |p|2 ⟹ 𝐸 = |p|𝑐

Then,

𝑃 = 𝐸
𝑐 (

1
n̂)

where n̂ is a unit 3-vector in the direction of travel of the particle.

15.6. Newton’s second law
Now that we have defined 𝑃 for all particles, we can rewrite Newton’s second law in special
relativity as

d𝑃
d𝜏 = 𝐹

where 𝐹 is the 4-force. If the 3-force is F, we have

𝐹 = 𝛾u (
F ⋅ u/𝑐
F )

Hence,
d𝐸
d𝜏 = 𝛾uF ⋅ u;

dp
d𝜏 = 𝛾uF

giving
d𝐸
d𝑡 = F ⋅ u; dp

d𝑡 = F

which are the familiar Newtonian expressions for rate of work and rate of change of mo-
mentum. We can now define 4-acceleration:

𝐹 = 𝑚𝐴

where𝑚 is the rest mass. Hence,
d𝑈
d𝜏 = 𝐴
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15.7. Special relativity with particle physics

In Newtonian physics, when two particles collide, we must consider the conservation of
3-momentum. In special relativity however, we must instead consider the conservation of
4-momentum:

𝑃 = (
𝐸
𝑐
p
)

It is often convenient, when dealing with systems of particles, to let the origin of our frame
of reference be the centre of momentum. This is the frame such that the total 3-momentum
of the system is zero. However, this cannot be done when dealing with massless particles
since there does not exist such a rest frame.

15.8. Particle decay

Consider a particle ofmass𝑚1with 3-momentump1which decays into two particles ofmass
𝑚2 and 𝑚3 with 3-momenta p2,p3. Since 4-momentum is conserved, we get 𝑃1 = 𝑃2 + 𝑃3.
First, consider the 0 component (the timelike component) of 𝑃.

𝐸1 = 𝐸2 + 𝐸3

Now, consider the 1, 2, 3 components (the spacelike components) of the 4-momentum. We
have

p1 = p2 + p3

Let us look at this in the centre of momentum frame, so p1 = 0. Hence

p2 = −p3

Because we are in the centre of momentum frame, we have 𝐸1 = 𝑚1𝑐2 hence

𝐸1
𝑐 = 𝑚1𝑐 =

𝐸2
𝑐 + 𝐸3

𝑐

Further,
𝐸2
𝑐 = √p22 +𝑚2

2𝑐2;
𝐸3
𝑐 = √p23 +𝑚2

3𝑐2

Hence,

𝑚1𝑐 = √p22 +𝑚2
2𝑐2 +√p23 +𝑚2

3𝑐2 ≥ 𝑚2𝑐 + 𝑚3𝑐

Hence the rest mass of the initial particle must be at least the sum of the rest masses of the
particles that result from the decay.
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15.9. Higgs to photon decay
Consider the decay of the Higgs particle ℎ into two photons 𝛾1, 𝛾2. By conservation of 4-
momentum,

𝑃ℎ = 𝑃𝛾1 + 𝑃𝛾2
In the Higgs rest frame,

𝑃ℎ = (𝑚ℎ𝑐
0 ) = (

𝐸𝛾1
𝑐
p𝛾1

) + (
𝐸𝛾2
𝑐
p𝛾2

)

Looking at the 1, 2, 3 components we find

p𝛾1 = −p𝛾2
Looking at the 0 component we find

𝑚ℎ𝑐 =
𝐸𝛾1
𝑐 +

𝐸𝛾2
𝑐

Since 𝐸2

𝑐2
= p2 +𝑚2𝑐2, because the photons have zero rest mass we have

𝐸𝛾1
𝑐 = ||p𝛾1 || = ||p𝛾2 || =

𝐸𝛾2
𝑐

Hence,
𝐸𝛾1 = 𝐸𝛾2 =

1
2𝑚ℎ𝑐2

Note that mass has been lost, but kinetic energy has been gained.

15.10. Particle scattering
Consider two identical particles colliding, without decaying into new particles. In frame
𝑆, particle 1 is moving horizontally with 3-velocity u, and particle 2 starts at rest. After the
collision, particle 1 has 3-velocity q and particle 2 has 3-velocity r, where q has angle 𝜃 to the
horizontal and rhas angle𝜙 to the horizontal. In the centre ofmomentum frame 𝑆′, particles
1 and 2 move towards each other horizontally with 3-momenta p1 and p2 = −p1. After the
collision, particle 1 moves with 3-momentum p3 and particle 2 moves with 3-momentum
p4 = −p3. The angle of deflection is 𝜃′. By conservation of 4-momentum,

𝑃1 + 𝑃2 = 𝑃3 + 𝑃4
Since particles 1 and 2 have the same mass, their speeds (in 𝑆′) are equal both before and
after the collision. Let the speed before the collision be 𝑣 and the speed after the collision be
𝑤.

𝑃′1 =
⎛
⎜
⎜
⎝

𝑚𝛾𝑣𝑐
𝑚𝛾𝑣𝑣
0
0

⎞
⎟
⎟
⎠

; 𝑃′2 =
⎛
⎜
⎜
⎝

𝑚𝛾𝑣𝑐
−𝑚𝛾𝑣𝑣

0
0

⎞
⎟
⎟
⎠

; 𝑃′3 =
⎛
⎜
⎜
⎝

𝑚𝛾𝑤𝑐
𝑚𝛾𝑤𝑤 cos 𝜃′
𝑚𝛾𝑤𝑤 sin 𝜃′

0

⎞
⎟
⎟
⎠

; 𝑃′4 =
⎛
⎜
⎜
⎝

𝑚𝛾𝑤𝑐
−𝑚𝛾𝑤𝑤 cos 𝜃′
−𝑚𝛾𝑤𝑤 sin 𝜃′

0

⎞
⎟
⎟
⎠
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Looking at the 0 component,
2𝑚𝛾𝑣𝑐 = 2𝑚𝛾𝑤𝑐

Since𝑚 is the same on both sides,
𝑣 = 𝑤

Now we will apply a Lorentz transformation to return to 𝑆.

Λ =
⎛
⎜
⎜
⎜
⎝

𝛾𝑣 𝛾𝑣
𝑣
𝑐

0 0
𝛾𝑣

𝑣
𝑐

𝛾𝑣 0 0
0 0 1 0
0 0 0 1

⎞
⎟
⎟
⎟
⎠

Now, since 𝑢 is the initial velocity of particle 1 in 𝑆,

𝑃1 = Λ𝑃′1 =
⎛
⎜
⎜
⎜
⎝

𝑚𝛾2𝑣(𝑐 +
𝑣2

𝑐
)

𝑚𝛾2𝑣(𝑣 + 𝑣)
0
0

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

𝑚𝛾𝑢𝑐
𝑚𝛾𝑢𝑢
0
0

⎞
⎟
⎟
⎠

After the collision, as seen in 𝑆, particle 1’s 4-momentum is

𝑃3 = Λ𝑃′3 =
⎛
⎜
⎜
⎜
⎝

𝑚𝛾2𝑣(𝑐 +
𝑣2

𝑐
cos 𝜃′)

𝑚𝛾2𝑣(𝑣 + 𝑣 cos 𝜃′)
𝑚𝛾𝑣𝑣 sin 𝜃′

0

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

𝑚𝛾𝑞𝑐
𝑚𝛾𝑞𝑞 cos 𝜃
𝑚𝛾𝑞𝑞 sin 𝜃

0

⎞
⎟
⎟
⎠

By dividing the 1 and 2 components on both sides, we deduce

tan 𝜃 = 𝑚𝛾𝑣𝑣 sin 𝜃′
𝑚𝛾2𝑣𝑣(1 + cos 𝜃′)

= 1
𝛾𝑣
tan 12𝜃

′

For the second particle, we can do the same calculation to get

tan𝜙 = 𝑚𝛾𝑣𝑣 sin 𝜃′
𝑚𝛾2𝑣𝑣(1 − cos 𝜃′)

= 1
𝛾𝑣
cot 12𝜃

′

So given the knowledge of the exact setup of the particles, we can find the angles between
the particles as viewed in a different reference frame. In particular,

tan 𝜃 ⋅ tan𝜙 = 1
𝛾2𝑣

= 2
1 + 𝛾𝑢

≤ 1

This is a generalisation of the Newtonian result, where 𝛾𝑢 = 1 giving

tan 𝜃 ⋅ tan𝜙 = 1

So the angle between the trajectories in the Newtonian case is 𝜋
2
.
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15.11. Particle creation
Consider equal particles 1 and 2 of mass 𝑚 moving towards each other horizontally with
speed 𝑣 in 𝑆, with 4-momenta 𝑃1 and 𝑃2. After the collision, particles 1 and 2 have 4-momenta
𝑃3 and 𝑃4, and a new particle 3 with 4-momentum 𝑃5 is created with mass𝑀. Note that 𝑆 is
the centre of momentum frame. By conservation of 4-momentum, we have

𝑃1 + 𝑃2 = 𝑃3 + 𝑃4 + 𝑃5

We have

𝑃2 + 𝑃2 = (2𝑚𝛾𝑣𝑐0 ) = (
𝐸3
𝑐
+ 𝐸4

𝑐
+ 𝐸5

𝑐
0

)

Certainly we have

2𝑚𝛾𝑣𝑐2 = 𝐸3 + 𝐸4 + 𝐸5 ≥ (𝑚 +𝑚+𝑀)𝑐2 = (2𝑚 +𝑀)𝑐2

Hence, for the particle’s creation to be possible, we must have

𝛾𝑣 ≥ 1 + 𝑀
2𝑚

So the initial kinetic energy in 𝑆 must satisfy

2𝑚(𝛾𝑣 − 1)𝑐2 ≥ 𝑀𝑐2

Consider some other reference frame 𝑆′where one particlemoveswith speed𝑢 and the other
is at rest. Then

𝑢 = 2𝑣
1 + 𝑣2

𝑐2

Hence, by the result above in the particle scattering experiment,

𝛾𝑢 = 2(𝛾2𝑣 − 1) ≥ 2(1 + 𝑀
2𝑚)

2
− 1 = 1 + 2𝑀

𝑚 + 𝑀2

2𝑚2

Hence, in this frame, the kinetic energy𝑚𝑐2(𝛾𝑢 − 1)must satisfy

𝑚𝑐2(𝛾𝑢 − 1) ≥ 𝑚𝑐2(2𝑀𝑚 + 𝑀2

2𝑚2 ) ≥ 2𝑀𝑐2 + 𝑀2𝑐2
2𝑚

This extra 𝑀2𝑐2

2𝑚
term (compared to the 𝑀𝑐2 expression in 𝑆) is produced by the transform-

ation between frames. So in a frame where one particle is at rest, we require significantly
more kinetic energy. So a particle accelerator is most efficiently utilised by accelerating two
particles into each other, rather than by accelerating one particle into a fixed target.
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Lectured in Lent 2021 by Dr. P. Sousi
In this course, we establish the rules of probability spaces, which are the mathematical
framework for dealing with randomness. Potential states of a mathematical system are
called outcomes, and we look at particular sets of outcomes called events. For instance,
rolling two six-sided dice produces 36 outcomes, and we might be interested in the event
‘rolled a double’. Each event can be assigned a probability of occurring; in this case, one sixth.
By carefully reasoning about probabilities of events using the rules of probability spaces, we
can avoid many apparent paradoxes of probability, such as Simpson’s paradox.

When there aremany different possible outcomes (or even infinitelymany), it becomes help-
ful to think of certain events as tied to random variables. For example, the amount of coin
flips needed before getting a head is a random variable, and its value could be any integer
at least 1. The statement ‘at least three coin flips were needed’ is an example of an event
linked to this random variable. The values that a random variable can be, as well as the
probabilities that they occur, form the distribution of the random variable. We study many
different examples of distributions and their properties to gain a better understanding of
random variables.
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VI. Probability

1. Probability spaces
1.1. Probability spaces and 𝜎-algebras
Definition. Suppose Ω is a set, and ℱ is a collection of subsets of Ω. We call ℱ a 𝜎-algebra
if

(i) Ω ∈ ℱ

(ii) if 𝐴 ∈ ℱ, then 𝐴𝑐 ∈ ℱ

(iii) for any countable collection (𝐴𝑛)𝑛≥1 with 𝐴𝑛 ∈ ℱ for all 𝑛, we must also have that
⋃𝑛 𝐴𝑛 ∈ ℱ

Definition. Suppose that ℱ is a 𝜎-algebra on Ω. A function ℙ∶ ℱ → [0, 1] is called a
probability measure if

(i) ℙ (Ω) = 1

(ii) for any countable disjoint collection of sets (𝐴𝑛)𝑛≥1 in ℱ (𝐴𝑛 ∈ ℱ for all 𝑛), then
ℙ (⋃𝑛≥1 𝐴𝑛) = ∑𝑛≥1 ℙ (𝐴𝑛) (this is called ‘countable additivity’)

We say that ℙ (𝐴) is ‘the probability of 𝐴’. We call (Ω,ℱ, ℙ) a probability space, where Ω is
the sample space, ℱ is the 𝜎-algebra, and ℙ is the probability measure.

Remark. WhenΩ is countable, we take ℱ to be all subsets ofΩ, i.e. ℱ = 𝒫(Ω), its power set.

Definition. The elements ofΩ are called outcomes, and the elements ofℱ are called events.

Note that ℙ is dependent on ℱ but not on Ω. We talk about probabilities of events, not
probabilities of outcomes. For example, if you pick a uniform number from the interval
[0, 1]; then the probability of getting any specific outcome is zero—but we can define useful
events that have nonzero probabilities.

1.2. Properties of the probability measure
• ℙ (𝐴𝑐) = 1 − ℙ (𝐴), since 𝐴 and 𝐴𝑐 are disjoint sets, whose union is Ω

• ℙ (∅) = 0, since it is the complement of Ω

• if 𝐴 ⊆ 𝐵, then ℙ (𝐴) ≤ ℙ (𝐵)

• ℙ (𝐴 ∪ 𝐵) = ℙ (𝐴) + ℙ (𝐵) − ℙ (𝐴 ∩ 𝐵) using the inclusion-exclusion theorem

Example. Consider the following examples of probability spaces and probability measures.

• Rolling a fair 6-sided die:

– Ω = {1, 2, 3, 4, 5, 6}

– ℱ = 𝒫(Ω)
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– ∀𝜔 ∈ Ω,ℙ ({𝜔}) = 1
6
, and if 𝐴 ⊆ Ω then ℙ (𝐴) = |𝐴|

6

• Equally likely outcomes (more generally). Suppose Ω is some finite set, e.g. Ω =
{𝜔1, 𝜔2,… , 𝜔𝑛}. Then we define ℙ (𝐴) =

|𝐴|
|Ω|
. In classical probability, this models pick-

ing a random element of Ω.

• Picking balls from a bag. Suppose we have 𝑛 balls with 𝑛 labels from the set {1,… , 𝑛},
indistinguishable by touching. Let us pick 𝑘 ≤ 𝑛 balls at random from the bag,without
replacement. Here, ‘at random’ justmeans that all possible outcomes are equally likely,
and their probability measures should be equal.

We will take Ω = {𝐴 ⊆ {1,… , 𝑛} ∶ |𝐴| = 𝑘}. Then |Ω| = (𝑛
𝑘
). Then of course ℙ ({𝜔}) =

1
|Ω|
, since all outcomes (combinations, in this case) are equally likely.

• Consider a well-shuffled deck of 52 cards, i.e. it is equally likely that each possible
permutation of the 52 cardswill appear. Ω = {all permutations of 52 cards}, and |Ω| =
52!

The probability that the top two cards are aces is therefore 4×3×50!
52!

= 1
221
, since there

are 4 × 3 × 50! outcomes that produce such an event.

• Consider a string of 𝑛 random digits from {0,… , 9}. Then Ω = {0,… , 9}𝑛, and |Ω| =
10𝑛. We define 𝐴𝑘 = {no digit exceeds 𝑘}, and 𝐵𝑘 = {largest digit is 𝑘}. Then ℙ (𝐵𝑘) =
|𝐵𝑘|
|Ω|

. Notice that 𝐵𝑘 = 𝐴𝑘 ∖ 𝐴𝑘−1. |𝐴𝑘| = (𝑘 + 1)𝑛, so |𝐵𝑘| = (𝑘 + 1)𝑛 − 𝑘𝑛, so

ℙ (𝐵𝑘) =
(𝑘+1)𝑛−𝑘𝑛

10𝑛
.

• The birthday problem. There are 𝑛 people; what is the probability that at least two of
them share a birthday? We assume that each year has exactly 365 days, i.e. nobody is
born on 29th of February, and that the probabilities of being born on any given day are
equal.

Let Ω = {1,… , 365}𝑛, and ℱ = 𝒫(Ω). Since all outcomes are equally likely, we
take ℙ ({𝜔}) = 1

365𝑛
. Let 𝐴 = {at least two people share the same birthday}. 𝐴𝑐 =

{all 𝑛 birthdays are different}. Since ℙ (𝐴) = 1 − ℙ (𝐴𝑐), it suffices to calculate ℙ (𝐴𝑐),
which is |𝐴𝑐|

|Ω|
= 365!

(365−𝑛)!365𝑛
. So the answer is ℙ (𝐴) = 1 − 365!

(365−𝑛)!365𝑛
.

Note that at 𝑛 = 22, ℙ (𝐴) ≈ 0.476 and at 𝑛 = 23, ℙ (𝐴) ≈ 0.507. So when there are at
least 23 people in a room, the probability that two of them share a birthday is around
50%.

1.3. Combinatorial analysis
Let Ω be a finite set, and suppose |Ω| = 𝑛. We want to partition Ω into 𝑘 disjoint subsets
Ω1,… ,Ω𝑘 with |Ω𝑖| = 𝑛𝑖 and∑

𝑘
𝑖=1 𝑛𝑖 = 𝑛. How many ways of doing such a partition are
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there? The result is

( 𝑛𝑛1
)

⏟
choose first set

(𝑛 − 𝑛1
𝑛2

)
⏟⎵⏟⎵⏟

choose second set

…(𝑛 − (𝑛1 + 𝑛2 +⋯+ 𝑛𝑘−1)
𝑛𝑘

)
⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟

choose last set

= 𝑛!
𝑛1!𝑛2!…𝑛𝑘!

So we will write
( 𝑛
𝑛1,… , 𝑛𝑘

) = 𝑛!
𝑛1!𝑛2!…𝑛𝑘!

Now, let 𝑓∶ {1,… , 𝑘} → {1,… , 𝑛}. 𝑓 is strictly increasing if 𝑥 < 𝑦 ⟹ 𝑓(𝑥) < 𝑓(𝑦). 𝑓 is
increasing if 𝑥 < 𝑦 ⟹ 𝑓(𝑥) ≤ 𝑓(𝑦). Howmany strictly increasing functions 𝑓 exist? Note
that if we know the range of 𝑓, the function is completely determined. The range is a subset
of {1,… , 𝑛} of size 𝑘, i.e. a 𝑘-subset of an 𝑛-set, which yields (𝑛

𝑘
) choices, and thus there are

(𝑛
𝑘
) strictly increasing functions.

How many increasing functions 𝑓 exist? Let us define a bijection from the set of increasing
functions {𝑓∶ {1,… , 𝑘} → {1,… , 𝑛}} to the set of strictly increasing functions {𝑔∶ {1,… , 𝑘} →
{1,… , 𝑛 + 𝑘 − 1}}. For any increasing function 𝑓, we define 𝑔(𝑖) = 𝑓(𝑖) + 𝑖 − 1. Then 𝑔 is
clearly strictly increasing, and takes values in the range {1,… , 𝑛 + 𝑘 − 1}. By extension,
we can define an increasing function 𝑓 from any strictly increasing function 𝑔. So the total
number of increasing functions 𝑓∶ {1,… , 𝑘} → {1,… , 𝑛} is (𝑛+𝑘−1

𝑘
).

1.4. Stirling’s formula
Let (𝑎𝑛) and (𝑏𝑛) be sequences. We will write 𝑎𝑛 ∼ 𝑏𝑛 if

𝑎𝑛
𝑏𝑛

→ 1 as 𝑛 → ∞. This is
asymptotic equality.

Theorem (Stirling’s Formula). 𝑛! ∼ 𝑛𝑛√2𝜋𝑛 𝑒−𝑛 as 𝑛 → ∞.

Let us first prove the weaker statement log(𝑛!) ∼ 𝑛 log𝑛.

Proof. Let us define 𝑙𝑛 = log(𝑛!) = log 2+ log 3+⋯+ log𝑛. For 𝑥 ∈ ℝ, we write ⌊𝑥⌋ for the
integer part of 𝑥. Note that

log⌊𝑥⌋ ≤ log𝑥 ≤ log⌊𝑥 + 1⌋
Let us integrate this from 1 to 𝑛.

𝑛−1
∑
𝑘=1

log 𝑘 ≤ ∫
𝑛

1
log𝑥 d𝑥 ≤

𝑛
∑
𝑘=2

log 𝑘

𝑙𝑛−1 ≤ 𝑛 log𝑛 − 𝑛 + 1 ≤ 𝑙𝑛
For all 𝑛, therefore:

𝑛 log𝑛 − 𝑛 + 1 ≤ 𝑙𝑛 ≤ (𝑛 + 1) log(𝑛 + 1) − (𝑛 + 1) + 1
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Dividing through by 𝑛 log𝑛, we get
𝑙𝑛

𝑛 log𝑛 → 1

as 𝑛 → ∞.

The following complete proof is non-examinable.

Proof. For any twice-differentiable function 𝑓, for any 𝑎 < 𝑏 we have

∫
𝑏

𝑎
𝑓(𝑥) d𝑥 = 𝑓(𝑎) + 𝑓(𝑏)

2 (𝑏 − 𝑎) − 1
2 ∫

𝑏

𝑎
(𝑥 − 𝑎)(𝑏 − 𝑥)𝑓″(𝑥) d𝑥

Now let 𝑓(𝑥) = log𝑥, 𝑎 = 𝑘 and 𝑏 = 𝑘 + 1. Then

∫
𝑘+1

𝑘
log𝑥 d𝑥 = log 𝑘 + log(𝑘 + 1)

2 + 1
2 ∫

𝑘+1

𝑘

(𝑥 − 𝑘)(𝑘 + 1 − 𝑥)
𝑥2 d𝑥

= log 𝑘 + log(𝑘 + 1)
2 + 1

2 ∫
1

0

𝑥(1 − 𝑥)
(𝑥 + 𝑘)2 d𝑥

Let us take the sum for 𝑘 = 1,… , 𝑛 − 1 of the equality.

∫
𝑛

1
log𝑥 d𝑥 = log((𝑛 − 1)!) + log(𝑛!)

2 + 1
2
𝑛−1
∑
𝑘=1

∫
1

0

𝑥(1 − 𝑥)
(𝑥 + 𝑘)2 d𝑥

𝑛 log𝑛 − 𝑛 + 1 = log(𝑛!) − log𝑛
2 +

𝑛−1
∑
𝑘=1

𝑎𝑘; 𝑎𝑘 =
1
2 ∫

1

0

𝑥(1 − 𝑥)
(𝑥 + 𝑘)2 d𝑥

log(𝑛!) = 𝑛 log𝑛 − 𝑛 + log𝑛
2 + 1 −

𝑛−1
∑
𝑘=1

𝑎𝑘

𝑛! = 𝑛𝑛 𝑒−𝑛√𝑛 exp (1 −
𝑛−1
∑
𝑘=1

𝑎𝑘)

Now, note that

𝑎𝑘 ≤
1
2 ∫

1

0

𝑥(1 − 𝑥)
𝑘2 d𝑥 = 1

12𝑘2
So the sum of all 𝑎𝑘 converges. We set

𝐴 = exp (1 −
∞
∑
𝑘=1

𝑎𝑘)

and then

𝑛! = 𝑛𝑛 𝑒−𝑛√𝑛𝐴 exp
⎛
⎜
⎜
⎜
⎝

∞
∑
𝑘=𝑛

𝑎𝑘
⏟⎵⏟⎵⏟

converges to zero

⎞
⎟
⎟
⎟
⎠
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Therefore,
𝑛! ∼ 𝑛𝑛√𝑛 𝑒−𝑛 𝐴

To finish the proof, wemust show that𝐴 = √2𝜋. We canutilise the fact that𝑛! ∼ 𝑛𝑛√𝑛 𝑒−𝑛 𝐴.

2−2𝑛(2𝑛𝑛 ) = 2−2𝑛 ⋅ 2𝑛!
(𝑛!)2

∼ 2−2𝑛 (2𝑛)2𝑛 ⋅ √2𝑛 ⋅ 𝐴 ⋅ 𝑒−2𝑛
𝑛𝑛 𝑒−𝑛√𝑛𝐴𝑛𝑛 𝑒−𝑛√𝑛𝐴

= √2
𝐴√𝑛

Using a different method, we will prove that 2−2𝑛(2𝑛
𝑛
) ∼ 1

√𝜋𝑛
, which then forces 𝐴 = √2𝜋.

Consider

𝐼𝑛 = ∫
𝜋
2

0
(cos 𝜃)𝑛 d𝜃 ; 𝑛 ≥ 0

So 𝐼0 =
𝜋
2
and 𝐼1 = 1. By integrating by parts,

𝐼𝑛 =
𝑛 − 1
𝑛 𝐼𝑛−2

Therefore,
𝐼2𝑛 =

2𝑛 − 1
2𝑛 𝐼2𝑛−2 =

(2𝑛 − 1)(2𝑛 − 3)… (3)(1)
(2𝑛)(2𝑛 − 2)… (2) 𝐼0

Multiplying the numerator and denominator by the denominator, we have

𝐼2𝑛 =
(2𝑛)!

(𝑛! ⋅ 2𝑛)2 ⋅
𝜋
2 = 2−2𝑛 2𝑛𝑛 ⋅ 𝜋2

In the same way, we can deduce that

𝐼2𝑛+1 =
(2𝑛)(2𝑛 − 2)… (2)

(2𝑛 + 1)(2𝑛 − 1)… (3)(1)𝐼1 =
1

2𝑛 + 1 (2
−2𝑛(2𝑛𝑛 ))

−1

From 𝐼𝑛 =
𝑛−1
𝑛
𝐼𝑛−2, we get that

𝐼𝑛
𝐼𝑛−2

→ 1

as 𝑛 → ∞. We now want to show that 𝐼2𝑛
𝐼2𝑛+1

→ 1. We see from the definition of 𝐼𝑛 that 𝐼 is a
decreasing function of 𝑛. Therefore,

𝐼2𝑛
𝐼2𝑛+1

≤ 𝐼2𝑛−1
𝐼2𝑛+1

→ 1
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and also 𝐼2𝑛
𝐼2𝑛+1

≥ 𝐼2𝑛
𝐼2𝑛−2

→ 1

So
𝐼2𝑛
𝐼2𝑛+1

→ 1

which means that

2−2𝑛(2𝑛
𝑛
)𝜋
2

(2−2𝑛(2𝑛
𝑛
))
−1 1

2𝑛+1

→ 1 ⟹ (2−2𝑛(2𝑛𝑛 ))
2
𝜋
2 (2𝑛 + 1) → 1

Therefore,

(2−2𝑛(2𝑛𝑛 ))
2

∼ 2
𝜋(2𝑛 + 1) ∼

1
𝜋𝑛

Finally,
𝐴 = √2𝜋

completes the proof.

1.5. Countable subadditivity
Let (Ω,ℱ, ℙ) be a probability space, and let (𝐴𝑛)𝑛≥1 be a (not necessarily disjoint) sequence
of events in ℱ. Then

ℙ(
∞

⋃
𝑛=1

𝐴𝑛) ≤
∞
∑
𝑛=1

ℙ (𝐴𝑛)

Proof. Let us define a new sequence 𝐵1 = 𝐴1 and 𝐵𝑛 = 𝐴𝑛 ∖ (𝐴1 ∪ 𝐴2 ∪ ⋯ ∪ 𝐴𝑛−1). So by
construction, the sequence 𝐵𝑛 is a disjoint sequence of events in ℱ. Note further that the
union of all 𝐵𝑛 is equal to the union of all 𝐴𝑛. So

ℙ(
∞

⋃
𝑛=1

𝐴𝑛) = ℙ(
∞

⋃
𝑛=1

𝐵𝑛)

By the countable additivity axiom,

ℙ(
∞

⋃
𝑛=1

𝐵𝑛) =
∞
∑
𝑛=1

ℙ (𝐵𝑛)

But 𝐵𝑛 ⊆ 𝐴𝑛. So ℙ (𝐵𝑛) ≤ ℙ (𝐴𝑛). Therefore,

ℙ(
∞

⋃
𝑛=1

𝐴𝑛) ≤
∞
∑
𝑛=1

ℙ (𝐴𝑛)
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1.6. Continuity of probability measures
Let (Ω,ℱ, ℙ) be a probability space. Let (𝐴𝑛)𝑛≥1 be an increasing sequence inℱ, i.e.𝐴𝑛 ∈ ℱ,
and 𝐴𝑛 ⊆ 𝐴𝑛+1. Then ℙ (𝐴𝑛) ≤ ℙ (𝐴𝑛+1). We want to show that

lim
𝑛→∞

ℙ (𝐴𝑛) = ℙ(⋃
𝑛
𝐴𝑛)

Proof. Let 𝐵1 = 𝐴1, and for all 𝑛 ≥ 2, let 𝐵𝑛 = 𝐴𝑛 ∖ (𝐴1 ∪ 𝐴2 ∪⋯ ∪ 𝐴𝑛−1). Then the union
over 𝐵𝑖 up to 𝑛 is equal to the union over 𝐴𝑖 up to 𝑛. So

ℙ (𝐴𝑛) = ℙ(
𝑛

⋃
𝑘=1

𝐵𝑘) =
𝑛
∑
𝑘=1

ℙ (𝐵𝑘) →
∞
∑
𝑘=1

ℙ (𝐵𝑘) = ℙ(⋃
𝑛
𝐵𝑛) = ℙ(⋃

𝑛
𝐴𝑛)

We can say that probability measures are continuous; an increasing sequence of events has
a probability which tends to some limit. Similarly, if (𝐴𝑛) is decreasing, then the limit prob-
ability is the probability of the intersection of all 𝐴𝑛.
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2. Inclusion-exclusion

2.1. Inclusion-exclusion formula

Suppose that 𝐴, 𝐵 ∈ ℱ. Then ℙ (𝐴 ∪ 𝐵) = ℙ (𝐴) + ℙ (𝐵) − ℙ (𝐴 ∩ 𝐵). Now let also 𝐶 ∈ ℱ.
Then

ℙ (𝐴 ∪ 𝐵 ∪ 𝐶) = ℙ (𝐴 ∪ 𝐵) + ℙ (𝐶) − ℙ ((𝐴 ∪ 𝐵) ∩ 𝐶)
= ℙ (𝐴) + ℙ (𝐵) + ℙ (𝐶)
− ℙ (𝐴 ∩ 𝐵) − ℙ (𝐴 ∩ 𝐶) − ℙ (𝐵 ∩ 𝐶)
+ ℙ (𝐴 ∩ 𝐵 ∩ 𝐶)

Let 𝐴1,… , 𝐴𝑛 be events in ℱ. Then

ℙ(
𝑛

⋃
𝑖=1

𝐴𝑖) =
𝑛
∑
𝑖=1

ℙ (𝐴𝑖)

− ∑
1≤𝑖1<𝑖2≤𝑛

ℙ (𝐴𝑖1 ∩ 𝐴𝑖2)

+ ∑
1≤𝑖1<𝑖2<𝑖3≤𝑛

ℙ (𝐴𝑖1 ∩ 𝐴𝑖2 ∩ 𝐴𝑖3)

−⋯
+ (−1)𝑛+1ℙ (𝐴1 ∩⋯ ∩ 𝐴𝑛)

Or more concisely,

ℙ(
𝑛

⋃
𝑖=1

𝐴𝑖) =
𝑛
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<𝑖2<⋯<𝑖𝑘≤𝑛

ℙ (𝐴𝑖1 ∩⋯ ∩ 𝐴𝑖𝑘)

Proof. The case for 𝑛 = 2 has been verified, so we can use induction on 𝑛. Now, let us
assume this holds for 𝑛 − 1 events.

ℙ(
𝑛

⋃
𝑖=1

𝐴𝑖) = ℙ((
𝑛−1

⋃
𝑖=1

𝐴𝑖) ∪ 𝐴𝑛)

= ℙ(
𝑛−1

⋃
𝑖=1

𝐴𝑖) + ℙ (𝐴𝑛) − ℙ((
𝑛−1

⋃
𝑖=1

𝐴𝑖) ∩ 𝐴𝑛)

= ℙ(
𝑛−1

⋃
𝑖=1

𝐴𝑖) + ℙ (𝐴𝑛) − ℙ(
𝑛−1

⋃
𝑖=1

(𝐴𝑖 ∩ 𝐴𝑛))
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Let 𝐵𝑖 = 𝐴𝑖 ∩ 𝐴𝑛 for all 𝑖. By the inductive hypothesis, we have

ℙ(
𝑛

⋃
𝑖=1

𝐴𝑖) = ℙ(
𝑛−1

⋃
𝑖=1

𝐴𝑖) + ℙ (𝐴𝑛) − ℙ(
𝑛−1

⋃
𝑖=1

𝐵𝑛)

=
𝑛−1
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<⋯<𝑖𝑘≤𝑛−1

ℙ (𝐴𝑖1 ∩⋯ ∩ 𝐴𝑖𝑘)

−
𝑛−1
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<⋯<𝑖𝑘≤𝑛−1

ℙ (𝐵𝑖1 ∩⋯ ∩ 𝐵𝑖𝑘)

+ ℙ (𝐴𝑛)

which gives the claim as required.

Let (Ω,ℱ, ℙ) be a probability space with |Ω| < ∞ and ℙ (𝐴) = |𝐴|
|Ω|
. Let 𝐴1,… , 𝐴𝑛 ∈ ℱ.

Then

|𝐴1 ∪⋯ ∪ 𝐴𝑛| =
𝑛
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<⋯<𝑖𝑘≤𝑛

||𝐴𝑖1 ∩⋯ ∩ 𝐴𝑖𝑘 ||

2.2. Bonferroni inequalities
Truncating the sum in the inclusion-exclusion formula at the 𝑟th term yields an estimate for
the probability. The Bonferroni inequalities state that if 𝑟 is odd, it is an overestimate, and if
𝑟 is even, it is an underestimate.

𝑟 odd ⟹ ℙ(
𝑛

⋃
𝑖=1

𝐴𝑖) ≤
𝑟
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<⋯<𝑖𝑘≤𝑛

ℙ (𝐴𝑖1 ∩⋯ ∩ 𝐴𝑖𝑘)

𝑟 even ⟹ ℙ(
𝑛

⋃
𝑖=1

𝐴𝑖) ≥
𝑟
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<⋯<𝑖𝑘≤𝑛

ℙ (𝐴𝑖1 ∩⋯ ∩ 𝐴𝑖𝑘)

Proof. Again, we will use induction. The 𝑛 = 2 case is trivial. Suppose that 𝑟 is odd. Then

ℙ(
𝑛

⋃
𝑖=1

𝐴𝑖) = ℙ(
𝑛−1

⋃
𝑖=1

𝐴𝑖) + ℙ (𝐴𝑛) − ℙ(
𝑛

⋃
𝑖=1

𝐵𝑖) (∗)

where 𝐵𝑖 = 𝐴𝑖 ∩ 𝐴𝑛. Since 𝑟 is odd,

ℙ(
𝑛−1

⋃
𝑖=1

𝐴𝑖) ≤
𝑟
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<⋯<𝑖𝑘≤𝑛−1

ℙ (𝐴𝑖1 ∩⋯ ∩ 𝐴𝑖𝑘)
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Since 𝑟 − 1 is even, we can apply the inductive hypothesis to ℙ (⋃𝑛−1
𝑖=1 𝐵𝑖).

ℙ(
𝑛−1

⋃
𝑖=1

𝐵𝑖) ≥
𝑟−1
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<⋯<𝑖𝑘≤𝑛−1

ℙ (𝐵𝑖1 ∩⋯ ∩ 𝐵𝑖𝑘)

We can substitute both bounds into (∗) to get an overestimate.

2.3. Counting using inclusion-exclusion
We can apply the inclusion-exclusion formula to count various things. How many func-
tions 𝑓∶ {1,… , 𝑛} → {1,… ,𝑚} are surjective? Let Ω be the set of such functions, and
𝐴 = {𝑓 ∈ Ω ∶ 𝑓 is a surjection}. For all 𝑖 ∈ {1,… ,𝑚}, we define 𝐴𝑖 = {𝑓 ∈ Ω ∶ 𝑖 ∉
{𝑓(1), 𝑓(2),… , 𝑓(𝑛)}}. Then 𝐴 = 𝐴1

𝑐 ∩ 𝐴2
𝑐 ∩⋯ ∩ 𝐴𝑚

𝑐 = (𝐴1 ∪ 𝐴2 ∪⋯ ∪ 𝐴𝑚)
𝑐. Then

|𝐴| = |Ω| − |𝐴1 ∪⋯ ∪ 𝐴𝑚| = 𝑚𝑛 − |𝐴1 ∪⋯ ∪ 𝐴𝑚|

Now, let us use the inclusion-exclusion formula.

|𝐴1 ∪⋯ ∪ 𝐴𝑚| =
𝑛
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<⋯<𝑖𝑘≤𝑛

||𝐴𝑖1 ∩⋯ ∩ 𝐴𝑖𝑘 ||

Note that 𝐴𝑖1 ∩⋯∩𝐴𝑖𝑘 is the set of functions where 𝑘 distinct numbers are not included in
the function’s range. There are (𝑚 − 𝑘)𝑛 such functions.

|𝐴1 ∪⋯ ∪ 𝐴𝑚| =
𝑛
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<⋯<𝑖𝑘≤𝑛

(𝑚 − 𝑘)𝑛

=
𝑛
∑
𝑘=1

(−1)𝑘+1(𝑚𝑘)(𝑚 − 𝑘)𝑛

|𝐴| = 𝑚𝑛 −
𝑛
∑
𝑘=1

(−1)𝑘+1(𝑚𝑘)(𝑚 − 𝑘)𝑛

|𝐴| =
𝑛
∑
𝑘=0

(−1)𝑘(𝑚𝑘)(𝑚 − 𝑘)𝑛

2.4. Counting derangements
A derangement is a permutation which has no fixed point, i.e. ∀𝑖, 𝜎(𝑖) ≠ 𝑖. We will let Ω be
the set of permutations of {1,… , 𝑛}, i.e. 𝑆𝑛. Let 𝐴 be the set of derangements in Ω. Let us
pick a permutation 𝜎 at random from Ω. What is the probability that it is a derangement?
We define 𝐴𝑖 = {𝑓 ∈ Ω∶ 𝑓(𝑖) = 𝑖}, then 𝐴 = 𝐴𝑐

1 ∩ ⋯ ∩ 𝐴𝑐
𝑛 = (⋃𝑛

𝑖=1 𝐴𝑖)
𝑐
, so ℙ (𝐴) =
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1 − ℙ (⋃𝑛
𝑖=1 𝐴𝑖). By the inclusion-exclusion formula,

ℙ(
𝑛

⋃
𝑖=1

𝐴𝑖) =
𝑛
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<𝑖2<⋯<𝑖𝑘≤𝑛

ℙ (𝐴𝑖1 ∩⋯ ∩ 𝐴𝑖𝑘)

=
𝑛
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<𝑖2<⋯<𝑖𝑘≤𝑛

(𝑛 − 𝑘)!
|Ω|

=
𝑛
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<𝑖2<⋯<𝑖𝑘≤𝑛

(𝑛 − 𝑘)!
𝑛!

=
𝑛
∑
𝑘=1

(−1)𝑘+1(𝑛𝑘)
(𝑛 − 𝑘)!
𝑛!

=
𝑛
∑
𝑘=1

(−1)𝑘+1 𝑛!
𝑘!(𝑛 − 𝑘)! ⋅

(𝑛 − 𝑘)!
𝑛!

=
𝑛
∑
𝑘=1

(−1)𝑘+1 1𝑘!

So

ℙ (𝐴) = 1 − ℙ(
𝑛

⋃
𝑖=1

𝐴𝑖) = 1 −
𝑛
∑
𝑘=1

(−1)𝑘+1
𝑘! =

𝑛
∑
𝑘=0

(−1)𝑘
𝑘!

As 𝑛 → ∞, this value tends to 𝑒−1 ≈ 0.3678.
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3. Independence and dependence of events

3.1. Independence of events

Definition. Let (Ω,ℱ, ℙ) be a probability space. Let𝐴, 𝐵 ∈ ℱ. 𝐴 and 𝐵 are called independ-
ent if

ℙ (𝐴 ∩ 𝐵) = ℙ (𝐴) ⋅ ℙ (𝐵)

We write 𝐴 ⟂ 𝐵, or 𝐴 ⟂⟂ 𝐵. A countable collection of events (𝐴𝑛) is said to be independent
if for all distinct 𝑖1,… , 𝑖𝑘, we have

ℙ (𝐴𝑖1 ∩⋯ ∩ 𝐴𝑖𝑘) =
𝑘
∏
𝑗=1

ℙ (𝐴𝑖𝑗)

Remark. To show that a collection of events is independent, it is insufficient to show that
events are pairwise independent. For example, consider tossing a fair coin twice, so Ω =
{(0, 0), (0, 1), (1, 0), (1, 1)}. ℙ ({𝜔}) = 1

4
. Consider the events 𝐴, 𝐵, 𝐶 where

𝐴 = {(0, 0), (0, 1)}; 𝐵 = {(0, 0), (1, 0)}; 𝐶 = {(1, 0), (0, 1)}

ℙ (𝐴) = ℙ (𝐵) = ℙ (𝐶) = 1
2

ℙ (𝐴 ∩ 𝐵) = ℙ ({(0, 0)}) = 1
4 = ℙ (𝐴) ⋅ ℙ (𝐵)

ℙ (𝐴 ∩ 𝐶) = ℙ ({(0, 1)}) = 1
4 = ℙ (𝐴) ⋅ ℙ (𝐶)

ℙ (𝐵 ∩ 𝐶) = ℙ ({(1, 0)}) = 1
4 = ℙ (𝐵) ⋅ ℙ (𝐶)

ℙ (𝐴 ∩ 𝐵 ∩ 𝐶) = ℙ (∅) = 0

Claim. If 𝐴 ⟂ 𝐵, then 𝐴 ⟂ 𝐵𝑐.

Proof.

ℙ (𝐴 ∩ 𝐵𝑐) = ℙ (𝐴) − ℙ (𝐴 ∩ 𝐵)
= ℙ (𝐴) − ℙ (𝐴) ⋅ ℙ (𝐵)
= ℙ (𝐴) (1 − ℙ (𝐵))
= ℙ (𝐴)ℙ (𝐵𝑐)

as required.
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3.2. Conditional probability
Definition. Let (Ω,ℱ, ℙ) be a probability space. Let 𝐵 ∈ ℱ with ℙ (𝐵) > 0. We define the
conditional probability of 𝐴 given 𝐵, written ℙ (𝐴 ∣ 𝐵), as

ℙ (𝐴 ∣ 𝐵) = ℙ (𝐴 ∩ 𝐵)
ℙ (𝐵)

Note that if 𝐴 and 𝐵 are independent, then

ℙ (𝐴 ∣ 𝐵) = ℙ (𝐴 ∩ 𝐵)
ℙ (𝐵) = ℙ (𝐴) ⋅ ℙ (𝐵)

ℙ (𝐵) = ℙ (𝐴)

Claim. Suppose that (𝐴𝑛) is a disjoint sequence in ℱ. Then

ℙ (⋃𝐴𝑛 || 𝐵) = ∑
𝑛
ℙ (𝐴𝑛 ∣ 𝐵)

This is the countable additivity property for conditional probability.

Proof.

ℙ (⋃𝐴𝑛 || 𝐵) =
ℙ ((⋃𝐴𝑛) ∩ 𝐵)

ℙ (𝐵)

=
ℙ (⋃(𝐴𝑛 ∩ 𝐵))

ℙ (𝐵)

By countable additivity, since the (𝐴𝑛 ∩ 𝐵) are disjoint,

= ∑
𝑛

ℙ (𝐴𝑛 ∩ 𝐵)
ℙ (𝐵)

= ∑
𝑛
ℙ (𝐴𝑛 ∣ 𝐵)

We can think of ℙ ( ⋅ ∣ 𝐵) as a new probability measure for the same Ω.

3.3. Law of total probability
Claim. Suppose (𝐵𝑛) is a disjoint collection of events in ℱ, such that⋃𝐵 = Ω, and for all
𝑛, we have ℙ (𝐵𝑛) > 0. If 𝐴 ∈ ℱ then

ℙ (𝐴) = ∑
𝑛
ℙ (𝐴 ∣ 𝐵𝑛) ⋅ ℙ (𝐵𝑛)

360



3. Independence and dependence of events

Proof.

ℙ (𝐴) = ℙ (𝐴 ∩ Ω)
= ℙ (𝐴 ∩ (⋃𝐵𝑛))
= ℙ (⋃(𝐴 ∩ 𝐵𝑛))

By countable additivity,

= ∑
𝑛
ℙ (𝐴 ∩ 𝐵𝑛)

= ∑
𝑛
ℙ (𝐴 ∣ 𝐵𝑛) ℙ (𝐵𝑛)

3.4. Bayes’ formula

Claim. Suppose (𝐵𝑛) is a disjoint sequence of events with⋃𝐵𝑛 = Ω and ℙ (𝐵𝑛) > 0 for all
𝑛. Then

ℙ (𝐵𝑛 ∣ 𝐴) =
ℙ (𝐴 ∣ 𝐵𝑛) ℙ (𝐵𝑛)

∑𝑘 ℙ (𝐴 ∣ 𝐵𝑘) ℙ (𝐵𝑘)

Proof.

ℙ (𝐵𝑛 ∣ 𝐴) =
ℙ (𝐵𝑛 ∩ 𝐴)
ℙ (𝐴)

= ℙ (𝐴 ∣ 𝐵𝑛) ℙ (𝐵𝑛)
ℙ (𝐴)

By the law of total probability,

= ℙ (𝐴 ∣ 𝐵𝑛) ℙ (𝐵𝑛)
∑𝑘 ℙ (𝐴 ∣ 𝐵𝑘) ℙ (𝐵𝑘)

Note that on the right hand side, the numerator appears somewhere in the denominator.
This formula is the basis of Bayesian statistics. It allows us to reverse the direction of a
conditional probability—knowing the probabilities of the events (𝐵𝑛), and given a model of
ℙ (𝐴 ∣ 𝐵𝑛), we can calculate the posterior probabilities of 𝐵𝑛 given that 𝐴 occurs.
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3.5. Bayes’ formula for medical tests
Consider the probability of getting a false positive on a test for a rare condition. Suppose
0.1% of the population have condition 𝐴, and we have a test which is positive for 98% of
the affected population, and 1% of those unaffected by the disease. Picking an individual
at random, what is the probability that they suffer from 𝐴, given that they have a positive
test?

We define 𝐴 to be the set of individuals suffering from the condition, and 𝑃 is the set of
individuals testing positive. Then by Bayes’ formula,

ℙ (𝐴 ∣ 𝑃) = ℙ (𝑃 ∣ 𝐴)ℙ (𝐴)
ℙ (𝑃 ∣ 𝐴)ℙ (𝐴) + ℙ (𝑃 ∣ 𝐴𝑐) ℙ (𝐴𝑐) =

0.98 ⋅ 0.001
0.98 ⋅ 0.001 + 0.01 ⋅ 0.999 ≈ 0.09 = 9%

Why is this so low? We can rewrite this instance of Bayes’ formula as

ℙ (𝐴 ∣ 𝑃) = 1
1 + ℙ(𝑃∣𝐴𝑐)ℙ(𝐴𝑐)

ℙ(𝑃∣𝐴)ℙ(𝐴)

Here, ℙ (𝐴𝑐) ≈ 1, ℙ (𝑃 ∣ 𝐴) ≈ 1. So

ℙ (𝐴 ∣ 𝑃) ≈ 1
1 + ℙ(𝑃∣𝐴𝑐)

ℙ(𝐴)

So this is low because ℙ (𝑃 ∣ 𝐴𝑐) ≫ ℙ (𝐴). Suppose that there is a population of 1000 people
and about 1 suffers from the disease. Among the 999 not suffering from 𝐴, about 10 will test
positive. So there will be about 11 people who test positive, and only 1 out of 11 (9%) of those
actually has the disease.

3.6. Probability changes under extra knowledge
Consider these three statements:

(a) I have two children, (at least) one of whom is a boy.

(b) I have two children, and the eldest one is a boy.

(c) I have two children, one of whom is a boy born on a Thursday.

What is the probability that I have two boys, given 𝑎, 𝑏 or 𝑐? Since no further information is
given, we will assume that all outcomes are equally likely. We define:

• 𝐵𝐺 is the event that the elder sibling is a boy, and the younger is a girl;

• 𝐺𝐵 is the event that the elder sibling is a girl, and the younger is a boy;
• 𝐵𝐵 is the event that both children are boys; and
• 𝐺𝐺 is the event that both children are girls.
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Now, we have

(a) ℙ (𝐵𝐵 ∣ 𝐵𝐵 ∪ 𝐵𝐺 ∪ 𝐺𝐵) = 1
3

(b) ℙ (𝐵𝐵 ∣ 𝐵𝐵 ∪ 𝐵𝐺) = 1
2

(c) Let us define𝐺𝑇 to be the event that the elder sibling is a girl, and the younger is a boy
born on a Thursday, and define 𝑇𝑁 to be the event that the elder sibling is a boy born
on a Thursday and the younger is a boy not born on a Thursday, and other events are
defined similarly. So

ℙ (𝑇𝑇 ∪ 𝑇𝑁 ∪ 𝑁𝑇 ∣ 𝐺𝑇 ∪ 𝑇𝐺 ∪ 𝑇𝑇 ∪ 𝑇𝑁 ∪ 𝑁𝑇) = ℙ (𝑇𝑇 ∪ 𝑇𝑁 ∪ 𝑁𝑇)
ℙ (𝐺𝑇 ∪ 𝑇𝐺 ∪ 𝑇𝑇 ∪ 𝑇𝑁 ∪ 𝑁𝑇)

=
1
2
1
7
1
2
1
7
+ 2 ⋅ 1

2
1
7
1
2
6
7

2 ⋅ 1
2
1
2
1
7
+ 1

2
1
7
1
2
1
7
+ 2 ⋅ 1

2
1
7
1
2
6
7

= 13
27 ≈ 48%

3.7. Simpson’s paradox
Consider admissions bymen andwomen from state and independent schools to a university
given by the tables

All applicants Admitted Rejected % Admitted

State 25 25 50%
Independent 28 22 56%

Men only Admitted Rejected % Admitted

State 15 22 41%
Independent 5 8 38%

Women only Admitted Rejected % Admitted

State 10 3 77%
Independent 23 14 62%

This is seemingly a paradox; both women and men are more likely to be admitted if they
come from a state school, but when looking at all applicants, they are more likely to be
admitted if they come froman independent school. This is called Simpson’s paradox; it arises
when we aggregate data from disparate populations. Let 𝐴 be the event that an individual is
admitted, 𝐵 be the event that an individual is a man, and 𝐶 be the event that an individual
comes from a state school. We see that

ℙ (𝐴 ∣ 𝐵 ∩ 𝐶) > ℙ (𝐴 ∣ 𝐵 ∩ 𝐶𝑐)
ℙ (𝐴 ∣ 𝐵𝑐 ∩ 𝐶) > ℙ (𝐴 ∣ 𝐵𝑐 ∩ 𝐶𝑐)

ℙ (𝐴 ∣ 𝐶) < ℙ (𝐴 ∣ 𝐶𝑐)
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First, note that

ℙ (𝐴 ∣ 𝐶) = ℙ (𝐴 ∩ 𝐵 ∣ 𝐶) + ℙ (𝐴 ∩ 𝐵𝑐 ∣ 𝐶)

= ℙ (𝐴 ∩ 𝐵 ∩ 𝐶)
ℙ (𝐶) + ℙ (𝐴 ∩ 𝐵𝑐 ∩ 𝐶)

ℙ (𝐶)

= ℙ (𝐴 ∣ 𝐵 ∩ 𝐶)ℙ (𝐵 ∩ 𝐶)
ℙ (𝐶) + ℙ (𝐴 ∣ 𝐵𝑐 ∩ 𝐶)ℙ (𝐵𝑐 ∩ 𝐶)

ℙ (𝐶)
= ℙ (𝐴 ∣ 𝐵 ∩ 𝐶)ℙ (𝐵 ∣ 𝐶) + ℙ (𝐴 ∣ 𝐵𝑐 ∩ 𝐶)ℙ (𝐵𝑐 ∣ 𝐶)
> ℙ (𝐴 ∣ 𝐵 ∩ 𝐶𝑐) ℙ (𝐵 ∣ 𝐶) + ℙ (𝐴 ∣ 𝐵𝑐 ∩ 𝐶𝑐) ℙ (𝐵𝑐 ∣ 𝐶)

Let us also assume that ℙ (𝐵 ∣ 𝐶) = ℙ (𝐵 ∣ 𝐶𝑐). Then

ℙ (𝐴 ∣ 𝐶) > ℙ (𝐴 ∣ 𝐵 ∩ 𝐶𝑐) ℙ (𝐵 ∣ 𝐶𝑐) + ℙ (𝐴 ∣ 𝐵𝑐 ∩ 𝐶𝑐) ℙ (𝐵𝑐 ∣ 𝐶𝑐)
= ℙ (𝐴 ∣ 𝐶𝑐)

So we needed to further assume that ℙ (𝐵 ∣ 𝐶) = ℙ (𝐵 ∣ 𝐶𝑐) in order for the ‘intuitive’ result
to hold. The assumption was not valid in the example, so the result did not hold.
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4. Discrete distributions
4.1. Discrete distributions
In a discrete probability distribution on a probability space (Ω,ℱ, ℙ), Ω is either finite or
countable, i.e. Ω = {𝜔1, 𝜔2,… }, and as stated before, ℱ is the power set of Ω. If we know
ℙ ({𝜔𝑖}), then this completely determines ℙ. Indeed, let 𝐴 ⊆ Ω, then

ℙ (𝐴) = ℙ( ⋃
𝑖 ∶ 𝜔𝑖∈𝐴

{𝜔𝑖}) = ∑
𝑖 ∶ 𝜔𝑖∈𝐴

ℙ ({𝜔𝑖})

by countable additivity. We will see later that this is not true if Ω is uncountable. We write
𝑝𝑖 = ℙ ({𝜔𝑖}), and we then call this a discrete probability distribution. It has the following
key properties:

• 𝑝𝑖 ≥ 0
• ∑𝑖 𝑝𝑖 = 1

4.2. Bernoulli distribution
Wemodel the outcome of a test with two outcomes (e.g. the toss of a coin) with the Bernoulli
distribution. Let Ω = {0, 1}. We will denote 𝑝 = 𝑝1, then clearly 𝑝0 = 1 − 𝑝.

4.3. Binomial distribution
The binomial distribution 𝐵 has parameters 𝑁 ∈ ℤ+, 𝑝 ∈ [0, 1]. This distribution models
a sequence of 𝑁 independent Bernoulli distributions of parameter 𝑝. We then count the
amount of ‘successes’, i.e. trials in which the result was 1. Ω = {0, 1,… ,𝑁}.

ℙ ({𝑘}) = 𝑝𝑘 = (𝑁𝑘)𝑝
𝑘(1 − 𝑝)𝑁−𝑘

4.4. Multinomial distribution
The multinomial distribution is a generalisation of the binomial distribution. 𝑀 has para-
meters 𝑁 ∈ ℤ+ and 𝑝1, 𝑝2,⋯ ∈ [0, 1] where ∑𝑘

𝑖=1 𝑝𝑖 = 1. This models a sequence of 𝑁
independent trials in which a number from 1 to 𝑁 is selected, where the probability of se-
lecting 𝑖 is 𝑝𝑖. Ω = {(𝑛1,… , 𝑛𝑘) ∈ ℕ𝑘∶ ∑𝑘

𝑖=1 𝑛𝑖 = 𝑁}, in other words, ordered partitions of
𝑁. Therefore

ℙ (𝑛1 outcomes had value 1,… , 𝑛𝑘 outcomes had value 𝑘) = ℙ ((𝑛1,… , 𝑛𝑘))

= ( 𝑁
𝑛1,… , 𝑛𝑘

)𝑝𝑛11 …𝑝𝑛𝑘𝑘
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4.5. Geometric distribution
Consider a Bernoulli distribution of parameter 𝑝. The geometric distribution models run-
ning this trial many times independently until the first ‘success’ (i.e. the first result of value
1). Then Ω = {1, 2,… } = ℤ+. Then

𝑝𝑘 = (1 − 𝑝)𝑘−1𝑝

We can compute the infinite geometric series ∑𝑝𝑘 which gives 1. We could alternatively
model the distribution usingΩ′ = {0, 1,… } = ℕwhich records the amount of failures before
the first success. Then

𝑝′𝑘 = (1 − 𝑝)𝑘𝑝
Again, the sum converges to 1.

4.6. Poisson distribution
This is used to model the number of occurrences of an event in a given interval of time.
Ω = {0, 1, 2,… } = ℕ. This distribution has one parameter 𝜆 ∈ ℝ. We have

𝑝𝑘 = 𝑒−𝜆𝜆
𝑘

𝑘!
Then

∞
∑
𝑘=0

𝑝𝑘 = 𝑒−𝜆
∞
∑
𝑘=0

𝜆𝑘
𝑘! = 𝑒−𝜆 ⋅ 𝑒𝜆 = 1

Suppose customers arrive into a shop during the time interval [0, 1]. We will subdivide [0, 1]
into 𝑁 intervals [ 𝑖−1

𝑁
, 𝑖
𝑁
]. In each interval, a single customer arrives with probability 𝑝, in-

dependent of other time intervals. In this example,

ℙ (𝑘 customers arrive) = (𝑁𝑘)𝑝
𝑘(1 − 𝑝)𝑁−𝑘

Let 𝑝 = 𝜆
𝑁
for 𝜆 > 0. We will show that as 𝑁 → ∞, this binomial distribution converges to

the Poisson distribution.

(𝑁𝑘)𝑝
𝑘(1 − 𝑝)𝑁−𝑘 = 𝑁!

𝑘!(𝑁 − 𝑘)! (
𝜆
𝑛)

𝑘
⋅ (1 − 𝜆

𝑛)
𝑁−𝑘

= 𝜆𝑘
𝑘! ⋅

𝑁!
𝑁𝑘(𝑁 − 𝑘)! ⋅ (1 −

𝜆
𝑁 )

𝑁−𝑘

→ 𝜆𝑘
𝑘! ⋅ 1 ⋅ 𝑒

−𝜆

which matches the Poisson distribution.
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5. Discrete random variables
5.1. Random variables
Definition. Consider the probability space (Ω,ℱ, ℙ). A random variable 𝑋 is a function
𝑋 ∶ Ω → ℝ satisfying

{𝜔 ∈ Ω∶ 𝑋(𝜔) ≤ 𝑥} ∈ ℱ
for any given 𝑥.
Suppose 𝐴 ⊆ ℝ. Then typically we write

{𝑋 ∈ 𝐴} = {𝜔∶ 𝑋(𝜔) ∈ 𝐴}

as shorthand. Given 𝐴 ∈ ℱ, we define the indicator of 𝐴 to be

1𝐴(𝜔) = 1(𝜔 ∈ 𝐴) = {1 if 𝜔 ∈ 𝐴
0 otherwise

Because 𝐴 ∈ ℱ, 1𝐴 is a random variable. Suppose 𝑋 is a random variable. We define the
probability distribution function of 𝑋 to be

𝐹𝑋 ∶ ℝ → [0, 1]; 𝐹𝑋(𝑥) = ℙ (𝑋 ≤ 𝑥)

Definition. (𝑋1,… , 𝑋𝑛) is called a random variable in ℝ𝑛 if (𝑋1,… , 𝑋𝑛)∶ Ω → ℝ𝑛, and for
all 𝑥1,… , 𝑥𝑛 ∈ ℝ we have

{𝑋1 ≤ 𝑥1,… , 𝑋𝑛 ≤ 𝑥𝑛} = {𝜔∶ 𝑋1(𝜔) ≤ 𝑥1,… , 𝑋𝑛(𝜔) ≤ 𝑥𝑛} ∈ ℱ

This definition is equivalent to saying that 𝑋1,… , 𝑋𝑛 are all random variables in ℝ. In-
deed,

{𝑋1 ≤ 𝑥1,… , 𝑋𝑛 ≤ 𝑥𝑛} = {𝑋1 ≤ 𝑥1} ∩ ⋯ ∩ {𝑋𝑛 ≤ 𝑥𝑛}
which, since ℱ is a 𝜎-algebra, is an element of ℱ.
Definition. A random variable 𝑋 is called discrete if it takes values in a countable set. Sup-
pose 𝑋 takes values in the countable set 𝑆. For every 𝑥 ∈ 𝑆, we write

𝑝𝑥 = ℙ (𝑋 = 𝑥) = ℙ ({𝜔∶ 𝑋(𝜔) = 𝑥})

Wecall (𝑝𝑥)𝑥∈𝑆 the probabilitymass function of𝑋 , or the distribution of𝑋 . If (𝑝𝑥) is Bernoulli
for example, then we say that 𝑋 is a Bernoulli (or such) random variable, or that 𝑋 has the
Bernoulli distribution.

Definition. Suppose 𝑋1,… , 𝑋𝑛 are discrete random variables taking variables in 𝑆1,… , 𝑆𝑛.
We say that the random variables 𝑋1,… , 𝑋𝑛 are independent if

ℙ (𝑋1 = 𝑥1,… , 𝑋𝑛 = 𝑥𝑛) = ℙ (𝑋1 = 𝑥1)⋯ℙ (𝑋𝑛 = 𝑥𝑛) ∀𝑥1 ∈ 𝑆1,… , 𝑥𝑛 ∈ 𝑆𝑛
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As an example, suppose we toss a 𝑝-biased coin 𝑛 times independently. LetΩ = {0, 1}𝑛. For
every 𝜔 ∈ Ω,

𝑝𝜔 =
𝑛
∏
𝑘=1

𝑝𝜔𝑘(1 − 𝑝)1−𝜔𝑘 ; where we write 𝜔 = (𝜔1,… , 𝜔𝑛)

We define a set of discrete random variables 𝑋𝑘(𝜔) = 𝜔𝑘. Then 𝑋𝑘 gives the output of the
𝑘th toss. We have

ℙ (𝑋𝑘 = 1) = ℙ (𝜔𝑘 = 1) = 𝑝; ℙ (𝑋𝑘 = 0) = ℙ (𝜔𝑘 = 0) = 1 − 𝑝

So 𝑋𝑘 has the Bernoulli distribution with parameter 𝑝. We can also show that the 𝑋𝑖 are
independent. Let 𝑥1,… , 𝑥𝑛 ∈ {0, 1}. Then

ℙ (𝑋1 = 𝑥1,… , 𝑋𝑛 = 𝑥𝑛) = ℙ (𝜔 = (𝑥1,… , 𝑥𝑛))
= 𝑝(𝑥1,…,𝑥𝑛)

=
𝑁
∏
𝑘=1

𝑝𝑥𝑘(1 − 𝑝)1−𝑥𝑘

=
𝑁
∏
𝑘=1

ℙ (𝑋𝑘 = 𝑥𝑘)

as required. Now, we define 𝑆𝑛(𝜔) = 𝑋1(𝜔) +⋯+ 𝑋𝑛(𝜔). This is the number of heads in 𝑁
tosses. So 𝑆𝑛∶ Ω → {0,… ,𝑁}, and

ℙ (𝑆𝑛 = 𝑘) = (𝑛𝑘)𝑝
𝑘(1 − 𝑝)𝑛−𝑘

So 𝑆𝑛 has the binomial distribution with parameters 𝑛 and 𝑝.

5.2. Expectation
Let (Ω,ℱ, ℙ) be a probability space such that Ω is countable. Let 𝑋 ∶ Ω → ℝ be a random
variable, which is necessarily discrete. We say that 𝑋 is non-negative if 𝑋 ≥ 0. We define
the expectation of 𝑋 to be

𝔼 [𝑋] = ∑
𝜔
𝑋(𝜔) ⋅ ℙ ({𝜔})

We will write
Ω𝑋 = {𝑋(𝜔)∶ 𝜔 ∈ Ω}

So
Ω = ⋃

𝑥∈Ω𝑋

{𝑋 = 𝑥}

368



5. Discrete random variables

So we have partitioned Ω using 𝑋 . Note that

𝔼 [𝑋] = ∑
𝜔
𝑋(𝜔)ℙ ({𝜔})

= ∑
𝑥∈Ω𝑋

∑
𝜔∈{𝑋=𝑥}

𝑋(𝜔)ℙ ({𝜔})

= ∑
𝑥∈Ω𝑋

∑
𝜔∈{𝑋=𝑥}

𝑥ℙ ({𝜔})

= ∑
𝑥∈Ω𝑋

𝑥ℙ ({𝑋 = 𝑥})

which matches the more familiar definition of the expectation; the average of the values
taken by 𝑋 , weighted by the probability of the event occurring. So

𝔼 [𝑋] = ∑
𝑥∈Ω𝑋

𝑥𝑝𝑥

5.3. Expectation of binomial distribution
Let 𝑋 ∼ Bin(𝑁, 𝑝). Then

∀𝑘 = 0,… ,𝑁, ℙ (𝑋 = 𝑘) = (𝑁𝑘)𝑝
𝑘(1 − 𝑝)𝑁−𝑘

So using the second definition,

𝔼 [𝑋] =
𝑁
∑
𝑘=0

𝑘ℙ (𝑋 = 𝑘)

=
𝑁
∑
𝑘=0

𝑘(𝑛𝑘)𝑝
𝑘(1 − 𝑝)𝑁−𝑘

=
𝑁
∑
𝑘=0

𝑘 ⋅ 𝑁!
𝑘! ⋅ (𝑁 − 𝑘)!𝑝

𝑘(1 − 𝑝)𝑁−𝑘

=
𝑁
∑
𝑘=1

(𝑁 − 1)! ⋅ 𝑁 ⋅ 𝑝
(𝑘 − 1)! ⋅ (𝑁 − 𝑘)!𝑝

𝑘−1(1 − 𝑝)𝑁−𝑘

= 𝑁𝑝
𝑁
∑
𝑘=1

(𝑁 − 1
𝑘 − 1)𝑝

𝑘−1(1 − 𝑝)𝑁−𝑘

= 𝑁𝑝
𝑁−1
∑
𝑘=0

(𝑁 − 1
𝑘 )𝑝𝑘(1 − 𝑝)𝑁−1−𝑘

= 𝑁𝑝(𝑝 + 1 − 𝑝)𝑁−1

= 𝑁𝑝
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5.4. Expectation of Poisson distribution
Let 𝑋 ∼ Poi(𝜆), so

ℙ (𝑋 = 𝑘) = 𝑒−𝜆𝜆
𝑘

𝑘!
Hence

𝔼 [𝑋] =
∞
∑
𝑘=0

𝑘𝑒−𝜆𝜆
𝑘

𝑘!

=
∞
∑
𝑘=1

𝑒−𝜆 𝜆𝑘−1𝜆
(𝑘 − 1)!

= 𝑒−𝜆 ⋅ 𝑒𝜆 ⋅ 𝜆
= 𝜆

5.5. Expectation of a general random variable
Let𝑋 be a general (not necessarily non-negative) discrete randomvariable. Thenwedefine

𝑋+ = max(𝑋, 0); 𝑋− = max(−𝑋, 0)
Then 𝑋 = 𝑋+ − 𝑋−. Note that 𝑋+ and 𝑋− are non-negative random variables, which has a
well-defined expectation. So if at least one of 𝔼 [𝑋+] , 𝔼 [𝑋−] is finite, we define

𝔼 [𝑋] = 𝔼 [𝑋+] − 𝔼 [𝑋−]
If both are infinite, then we say that the expectation of 𝑋 is not defined. Whenever we write
𝔼 [𝑋], it is assumed to be well-defined. If 𝔼 [|𝑋|] < ∞, we say that 𝑋 is integrable. When
𝔼 [𝑋] is well-defined, we have again that

𝔼 [𝑋] = ∑
𝑥∈Ω𝑥

𝑥 ⋅ ℙ (𝑋 = 𝑥)

5.6. Properties of the expectation
The following properties follow immediately from the definition.

(i) If 𝑋 ≥ 0, then 𝔼 [𝑋] ≥ 0.
(ii) If 𝑋 ≥ 0 and 𝔼 [𝑋] = 0, then ℙ (𝑋 = 0) = 1.
(iii) If 𝑐 ∈ ℝ, then 𝔼 [𝑐𝑋] = 𝑐𝔼 [𝑋], and 𝔼 [𝑐 + 𝑋] = 𝑐 + 𝔼 [𝑋].
(iv) If 𝑋 , 𝑌 are two integrable random variables, then 𝔼 [𝑋 + 𝑌] = 𝔼 [𝑋] + 𝔼 [𝑌].
(v) More generally, let 𝑐1,… , 𝑐𝑛 ∈ ℝ and 𝑋1,… , 𝑋𝑛 integrable random variables. Then

𝔼 [𝑐1𝑋1 +⋯+ 𝑐𝑛𝑋𝑛] = 𝑐1𝔼 [𝑋1] +⋯ + 𝑐𝑛𝔼 [𝑋𝑛]
So the expectation is a linear operator over finitely many inputs.

370



5. Discrete random variables

5.7. Countable additivity for the expectation
Suppose 𝑋1, 𝑋2,… are non-negative random variables. Then

𝔼 [∑
𝑛
𝑋𝑛] = ∑

𝑛
𝔼 [𝑋𝑛]

The non-negativity constraint allows us to guarantee that the sums are well-defined; they
could be infinite, but at least their values are well-defined. We will construct a proof assum-
ing that Ω is countable, however the result holds regardless of the choice of Ω.

Proof.

𝔼 [∑
𝑛
𝑋𝑛] = ∑

𝜔
∑
𝑛
𝑋𝑛(𝜔)ℙ ({𝜔})

= ∑
𝑛
∑
𝜔
𝑋𝑛(𝜔)ℙ ({𝜔})

= ∑
𝑛
𝔼 [𝑋𝑛]

We are allowed to rearrange the sums since all relevant terms are non-negative.

5.8. Expectation of indicator function
If 𝑋 = 1(𝐴) where 𝐴 ∈ ℱ, then 𝔼 [𝑋] = ℙ (𝐴). This is obvious from the second definition of
the expectation.

5.9. Expectation under function application
If 𝑔∶ ℝ → ℝ, we can define 𝑔(𝑋) to be the random variable given by

𝑔(𝑋)(𝜔) = 𝑔(𝑋(𝜔))

Then
𝔼 [𝑔(𝑋)] = ∑

𝑥∈Ω𝑋

𝑔(𝑥) ⋅ ℙ (𝑋 = 𝑥)

Proof. Let 𝑌 = 𝑔(𝑋). Then
𝔼 [𝑌] = ∑

𝑦∈Ω𝑌

𝑦 ⋅ ℙ (𝑌 = 𝑦)
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Note that

{𝑌 = 𝑦} = {𝜔∶ 𝑌(𝜔) = 𝑦}
= {𝜔∶ 𝑔(𝑋(𝜔)) = 𝑦}
= {𝜔∶ 𝑋(𝜔) ∈ 𝑔−1({𝑦})}
= {𝑋 ∈ 𝑔−1({𝑦})}

where 𝑔−1({𝑦}) is the set of all 𝑥 such that 𝑔(𝑥) ∈ {𝑦}. So

𝔼 [𝑌] = ∑
𝑦∈Ω𝑦

𝑦 ⋅ ℙ (𝑋 ∈ 𝑔−1({𝑦}))

= ∑
𝑦∈Ω𝑌

𝑦 ⋅ ∑
𝑥∈𝑔−1({𝑦})

ℙ (𝑋 = 𝑥)

= ∑
𝑦∈Ω𝑌

∑
𝑥∈𝑔−1({𝑦})

𝑔(𝑥)ℙ (𝑋 = 𝑥)

= ∑
𝑥∈Ω𝑋

𝑔(𝑥)ℙ (𝑋 = 𝑥)

5.10. Calculating expectation with cumulative probabilities
If 𝑋 ≥ 0 and takes integer values, then

𝔼 [𝑋] =
∞
∑
𝑘=1

ℙ (𝑋 ≥ 𝑘) =
∞
∑
𝑘=0

ℙ (𝑋 > 𝑘)

Proof. Since 𝑋 takes non-negative integer values,

𝑋 =
∞
∑
𝑘=1

1(𝑋 ≥ 𝑘) =
∞
∑
𝑘=0

1(𝑋 > 𝑘)

This represents the fact that any integer is the sum of that many ones, e.g. 4 = 1+1+1+1+
0+0+… to infinity. Taking the expectation of the above formula, using that𝔼 [1(𝐴)] = ℙ (𝐴)
and countable additivity, we have the result as claimed.

5.11. Inclusion-exclusion formula with indicators
We can provide another proof of the inclusion-exclusion formula, using some basic proper-
ties of indicator functions.

• 1(𝐴𝑐) = 1 − 1(𝐴)
• 1(𝐴 ∩ 𝐵) = 1(𝐴) ⋅ 1(𝐵)
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5. Discrete random variables

• Following from the above, 1(𝐴 ∪ 𝐵) = 1 − (1 − 1(𝐴))(1 − 1(𝐵)).
More generally,

1(𝐴1 ∪⋯ ∪ 𝐴𝑛) = 1 −
𝑛
∏
𝑖=1

(1 − 1(𝐴𝑖))

which gives the inclusion-exclusion formula. Taking the expectation of both sides, we can
see that

ℙ (𝐴1 ∪⋯ ∪ 𝐴𝑛) =
𝑛
∑
𝑖=1

ℙ (𝐴𝑖) − ∑
𝑖1<𝑖2

ℙ (𝐴𝑖1 ∩ 𝐴𝑖2) +⋯ + (−1)𝑛+1ℙ (𝐴1 ∩⋯ ∩ 𝐴𝑛)

which is the result as previously found.
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6. Variance and covariance
6.1. Variance
Let 𝑋 be a random variable, and 𝑟 ∈ ℕ. If it is well-defined, we call 𝔼 [𝑋𝑟] the 𝑟th moment
of 𝑋 . We define the variance of 𝑋 by

Var (𝑋) = 𝔼 [(𝑋 − 𝔼 [𝑋])2]

If the variance is small,𝑋 is highly concentrated around𝔼 [𝑋]. If the variance is large,𝑋 has a
wide distribution including values not necessarily near 𝔼 [𝑋]. We call√Var (𝑋) the standard
deviation of 𝑋 , denoted with 𝜎. The variance has the following basic properties:

• Var (𝑋) ≥ 0, and if Var (𝑋) = 0, ℙ (𝑋 = 𝔼 [𝑋]) = 1.
• If 𝑐 ∈ ℝ, then Var (𝑐𝑋) = 𝑐2 Var (𝑋), and Var (𝑋 + 𝑐) = Var (𝑋).
• Var (𝑋) = 𝔼 [𝑋2] − 𝔼 [𝑋]2. This follows since

𝔼 [(𝑋 − 𝔼 [𝑋])2] = 𝔼 [𝑋2 − 2𝑋𝔼 [𝑋] + 𝔼 [𝑋]2]
= 𝔼 [𝑋2] − 2𝔼 [𝑋] 𝔼 [𝑋] + 𝔼 [𝑋]2

= 𝔼 [𝑋2] − 𝔼 [𝑋]2

• Var (𝑋) = min𝑐∈ℝ 𝔼 [(𝑋 − 𝑐)2], and this minimum is achieved at 𝑐 = 𝔼 [𝑋]. Indeed, if
we let 𝑓(𝑐) = 𝔼 [(𝑋 − 𝑐)2], then 𝑓(𝑐) = 𝔼 [𝑋2] − 2𝑐𝔼 [𝑋] + 𝑐2. Minimising 𝑓, we get
𝑓(𝔼 [𝑋]) = Var (𝑋) as required.

As an example, consider 𝑋 ∼ Bin(𝑛, 𝑝). Then 𝔼 [𝑋] = 𝑛𝑝, as we found before. Note that
we can also represent this binomial distribution as the sum of 𝑛 Bernoulli distributions of
parameter 𝑝 to get the same result. The variance of 𝑋 is

Var (𝑋) = 𝔼 [𝑋2] − 𝔼 [𝑋]2

In fact, in order to compute 𝔼 [𝑋2] it is easier to find 𝔼 [𝑋(𝑋 − 1)].

𝔼 [𝑋(𝑋 − 1)] =
𝑛
∑
𝑘=2

𝑘 ⋅ (𝑘 − 1) ⋅ (𝑛𝑘) ⋅ 𝑝
𝑘 ⋅ (1 − 𝑝)𝑛−𝑘

=
𝑛
∑
𝑘=2

𝑘(𝑘 − 1)𝑛!𝑝𝑘(1 − 𝑝)𝑛−𝑘
(𝑛 − 𝑘)!𝑘!

=
𝑛
∑
𝑘=2

𝑛!𝑝𝑘(1 − 𝑝)𝑛−𝑘
((𝑛 − 2) − (𝑘 − 2))!(𝑘 − 2)!

= 𝑛(𝑛 − 1)𝑝2
𝑛
∑
𝑘=2

(𝑛 − 2
𝑘 − 2)𝑝

𝑘−2(1 − 𝑝)𝑛−𝑘

= 𝑛(𝑛 − 1)𝑝2
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Hence,

Var (𝑋) = 𝔼 [𝑋(𝑋 − 1)] + 𝔼 [𝑋] − 𝔼 [𝑋]2 = 𝑛(𝑛 − 1)𝑝2 + 𝑛𝑝 − (𝑛𝑝)2 = 𝑛𝑝(1 − 𝑝)

As a second example, if 𝑋 ∼ Poi(𝜆), we have 𝔼 [𝑋] = 𝜆. Because of the factorial term, it is
easier to use 𝑋(𝑋 − 1) than 𝑋2.

𝔼 [𝑋(𝑋 − 1)] =
∞
∑
𝑘=2

𝑘(𝑘 − 1)𝑒−𝜆𝜆
𝑘

𝑘!

= 𝑒−𝜆
∞
∑
𝑘=2

𝜆𝑘−2
(𝑘 − 2)! ⋅ 𝜆

2

= 𝜆2

Hence,
Var (𝑋) = 𝜆2 + 𝜆 − 𝜆2 = 𝜆

6.2. Covariance
Definition. Let 𝑋 and 𝑌 be random variables. Their covariance is defined

Cov (𝑋, 𝑌) = 𝔼 [(𝑋 − 𝔼 [𝑋])(𝑌 − 𝔼 [𝑌])]

It is a measure of how dependent 𝑋 and 𝑌 are.

Immediately we can deduce the following properties.

• Cov (𝑋, 𝑌) = Cov (𝑌 , 𝑋)
• Cov (𝑋, 𝑋) = Var (𝑋)
• Cov (𝑋, 𝑌) = 𝔼 [𝑋𝑌] − 𝔼 [𝑋] ⋅ 𝔼 [𝑌]. Indeed, (𝑋 − 𝔼 [𝑋])(𝑌 − 𝔼 [𝑌]) = 𝑋𝑌 −𝑋𝔼 [𝑌] −
𝑌𝔼 [𝑋] + 𝔼 [𝑋] 𝔼 [𝑌] and the result follows.

• Let 𝑐 ∈ ℝ. Then Cov (𝑐𝑋, 𝑌) = 𝑐Cov (𝑋, 𝑌), and Cov (𝑐 + 𝑋, 𝑌) = Cov (𝑋, 𝑌).
• Var (𝑋 + 𝑌) = Var (𝑋) + Var (𝑌) + 2Cov (𝑋, 𝑌). Indeed, we have
Var (𝑋 + 𝑌) = 𝔼 [(𝑋 − 𝔼 [𝑋] + 𝑌 − 𝔼 [𝑌])2] which gives
𝔼 [(𝑋 − 𝔼 [𝑋])2] + 𝔼 [(𝑌 − 𝔼 [𝑌])2] + 2𝔼 [(𝑋 − 𝔼 [𝑋])(𝑌 − 𝔼 [𝑌])] as required.

• For all 𝑐 ∈ ℝ, Cov (𝑐, 𝑋) = 0
• If 𝑋 , 𝑌 , 𝑍 are random variables, then Cov (𝑋 + 𝑌, 𝑍) = Cov (𝑋, 𝑍) + Cov (𝑌, 𝑍). More
generally, for 𝑐1,… , 𝑐𝑛, 𝑑1,… , 𝑑𝑚 real numbers, and for 𝑋1,… , 𝑋𝑛, 𝑌1,… , 𝑌𝑚 random
variables, we have

Cov(
𝑛
∑
𝑖=1

𝑐𝑖𝑋𝑖,
𝑚
∑
𝑗=1

𝑑𝑗𝑌 𝑗) =
𝑛
∑
𝑖=1

𝑚
∑
𝑗=1

𝑐𝑖𝑑𝑗 Cov (𝑋𝑖, 𝑌 𝑗)
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In particular, if we apply this to 𝑋𝑖 = 𝑌 𝑖, and 𝑐𝑖 = 𝑑𝑖 = 1, then we have

Var (
𝑛
∑
𝑖=1

𝑋𝑖) =
𝑛
∑
𝑖=1

Var (𝑋𝑖) +∑
𝑖≠𝑗

Cov (𝑋𝑖, 𝑋𝑗)

6.3. Expectation of functions of a random variable
Recall that 𝑋 and 𝑌 are independent if for all 𝑥 and 𝑦,

ℙ (𝑋 = 𝑥, 𝑌 = 𝑦) = ℙ (𝑋 = 𝑥) ⋅ ℙ (𝑌 = 𝑦)

Wewould like to prove that given positive functions 𝑓, 𝑔∶ ℝ → ℝ+, if 𝑋 and 𝑌 are independ-
ent we have

𝔼 [𝑓(𝑋)𝑔(𝑌)] = 𝔼 [𝑓(𝑋)] ⋅ 𝔼 [𝑔(𝑌)]

Proof.

𝔼 [𝑓(𝑋)𝑔(𝑌)] = ∑
(𝑥,𝑦)

𝑓(𝑥)𝑔(𝑦)ℙ (𝑋 = 𝑥, 𝑌 = 𝑦)

= ∑
(𝑥,𝑦)

𝑓(𝑥)𝑔(𝑦)ℙ (𝑋 = 𝑥)ℙ (𝑌 = 𝑦)

= ∑
𝑥
𝑓(𝑥)ℙ (𝑋 = 𝑥) ⋅∑

𝑦
𝑔(𝑦)ℙ (𝑌 = 𝑦)

= 𝔼 [𝑓(𝑋)] ⋅ 𝔼 [𝑔(𝑌)]

The same result holds for general functions, provided the required expectations exist.

6.4. Covariance of independent variables
Suppose 𝑋 and 𝑌 are independent. Then

Cov (𝑋, 𝑌) = 0

This is because

Cov (𝑋, 𝑌) = 𝔼 [(𝑋 − 𝔼 [𝑋])(𝑌 − 𝔼 [𝑌])]
= 𝔼 [𝑋 − 𝔼 [𝑋]] ⋅ 𝔼 [𝑌 − 𝔼 [𝑌]]
= 0 ⋅ 0
= 0

In particular, we can deduce that

Var (𝑋 + 𝑌) = Var (𝑋) + Var (𝑌)
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Note, however, that the covariance being equal to zero does not imply independence. For
instance, let 𝑋1, 𝑋2, 𝑋3 be independent Bernoulli random variables with parameter 1

2
. Let us

now define 𝑌1 = 2𝑋1 − 1, 𝑌2 = 2𝑋2 − 1, and 𝑍1 = 𝑋3𝑌1, 𝑍2 = 𝑋3𝑌2. Now, we have

𝔼 [𝑌1] = 𝔼 [𝑌2] = 𝔼 [𝑍1] = 𝔼 [𝑍2] = 0

We can find that

Cov (𝑍1, 𝑍2) = 𝔼 [𝑍1 ⋅ 𝑍2] = 𝔼 [𝑋2
3𝑌1𝑌2] = 𝔼 [𝑋2

3 ] ⋅ 0 ⋅ 0 = 0

However, 𝑍1 and 𝑍2 are in fact not independent. Since 𝑌1, 𝑌2 are never zero,

ℙ (𝑍1 = 0, 𝑍2 = 0) = ℙ (𝑋3 = 0) = 1
2

But also

ℙ (𝑍1 = 0) = ℙ (𝑍2 = 0) = ℙ (𝑋3 = 0) = 1
2 ⟹ ℙ(𝑍1 = 0) ⋅ ℙ (𝑍2 = 0) = 0

So the events are not independent.
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7. Inequalities for random variables
7.1. Markov’s inequality
The following useful inequality, and the others derived from it, hold in the discrete and the
continuous case.

Theorem. Let 𝑋 ≥ 0 be a non-negative random variable. Then for all 𝑎 > 0,

ℙ (𝑋 ≥ 𝑎) ≤ 𝔼 [𝑋]
𝑎

Proof. Observe that 𝑋 ≥ 𝑎 ⋅ 1(𝑋 ≥ 𝑎). This can be seen to be true simply by checking both
cases, 𝑋 < 𝑎 and 𝑋 ≥ 𝑎. Taking expectations, we get

𝔼 [𝑋] ≥ 𝔼 [𝑎 ⋅ 1(𝑋 ≥ 𝑎)] = 𝔼 [𝑎 ⋅ ℙ (𝑋 ≥ 𝑎)] = 𝑎 ⋅ ℙ (𝑋 ≥ 𝑎)

and the result follows.

7.2. Chebyshev’s inequality
Theorem. Let 𝑋 be a random variable with finite expectation. Then for all 𝑎 > 0,

ℙ (|𝑋 − 𝔼 [𝑋]| ≥ 𝑎) ≤ Var (𝑋)
𝑎2

Proof. Note that ℙ (|𝑋 − 𝔼 [𝑋]| ≥ 𝑎) = ℙ (|𝑋 − 𝔼 [𝑋]|2 ≥ 𝑎2). Then we can apply Markov’s
inequality to this non-negative random variable to get

ℙ (|𝑋 − 𝔼 [𝑋]|2 ≥ 𝑎2) ≤
𝔼 [(𝑋 − 𝔼 [𝑋])2]

𝑎2 = Var (𝑋)
𝑎2

7.3. Cauchy–Schwarz inequality
Theorem. If 𝑋 and 𝑌 are random variables, then

|𝔼 [𝑋𝑌]| ≤ √𝔼 [𝑋2] ⋅ 𝔼 [𝑌2]

Proof. It suffices to prove this statement for 𝑋 and 𝑌 which have finite second moments,
i.e. 𝔼 [𝑋2] and 𝔼 [𝑋2] are finite. Clearly if they are infinite, then the upper bound is infinite
which is trivially true. We need to show that |𝔼 [𝑋𝑌]| is finite. Here we can apply the addi-
tional assumption that 𝑋 and 𝑌 are non-negative, since we are taking the absolute value:

𝑋𝑌 ≤ 1
2 (𝑋

2 + 𝑌 2) ⟹ 𝔼[𝑋𝑌] ≤ 1
2 (𝔼 [𝑋

2] + 𝔼 [𝑌2])
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Now, we can assume 𝔼 [𝑋2] > 0 and 𝔼 [𝑌2] > 0. If this were not the case, the result is trivial
since if at least one of them were equal to zero, the corresponding random variable would
be identically zero. Let 𝑡 ∈ ℝ and consider

0 ≤ (𝑋 − 𝑡𝑌)2 = 𝑋2 − 2𝑡𝑋𝑌 + 𝑡2𝑌2

Hence
𝔼 [𝑋2] − 2𝑡𝔼 [𝑋𝑌] + 𝑡2𝔼 [𝑌2] ≥ 0

We can view this left hand side as a function 𝑓(𝑡). The minimum value of this function is
achieved at 𝑡∗ =

𝔼[𝑋𝑌]
𝔼[𝑌2]

. Then

𝑓(𝑡∗) ≥ 0 ⟹ 𝔼[𝑋2] − 2𝔼 [𝑋𝑌]
𝔼 [𝑌2] + 𝔼 [𝑋𝑌]2

𝔼 [𝑌2] ≥ 0

Hence,
𝔼 [𝑋𝑌]2 ≤ 𝔼 [𝑋2] ⋅ 𝔼 [𝑌2]

and the result follows.

Note that we also have

𝔼 [|𝑋𝑌|] ≤ √𝔼 [𝑋2] ⋅ 𝔼 [𝑌2]

This is because we can redefine 𝑋 ↦ |𝑋| and 𝑌 ↦ |𝑌|, giving

|𝔼 [|𝑋| ⋅ |𝑌 |]| ≤ √𝔼 [𝑋2] ⋅ 𝔼 [𝑌2]
𝔼 [|𝑋𝑌|] ≤ √𝔼 [𝑋2] ⋅ 𝔼 [𝑌2]

7.4. Equality in Cauchy–Schwarz
In what cases do we get equality in the Cauchy–Schwarz inequality? Recall that the inequal-
ity states

|𝔼 [𝑋𝑌]| ≤ √𝔼 [𝑋2] ⋅ 𝔼 [𝑌2]

Recall that in the proof, we considered the random variable (𝑋 − 𝑡𝑌)2 where 𝑋 and 𝑌 were
non-negative, and had finite second moments. The expectation of this random variable was
called 𝑓(𝑡), andwe found that 𝑓(𝑡)wasminimised when 𝑡 = 𝔼[𝑋𝑌]

𝔼[𝑌2]
. We have equality exactly

when 𝑓(𝑡) = 0 for this value of 𝑡. But (𝑋 − 𝑡𝑌)2 is a non-negative random variable, with
expectation zero, so it must be zero with probability 1. So we have equality if and only if 𝑋
is exactly 𝑡𝑌 .
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7.5. Jensen’s inequality
Definition. A function 𝑓∶ ℝ → ℝ is called convex if ∀𝑥, 𝑦 ∈ ℝ and for all 𝑡 ∈ [0, 1],

𝑓(𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑡𝑓(𝑥) + (1 − 𝑡)𝑓(𝑦)

This can be visualised as linearly interpolating the values of the function at two points, 𝑥
and 𝑦. The linear interpolation of those points is always greater than the function applied
to the linear interpolation of the input points.

Theorem. Let 𝑋 be a random variable, and let 𝑓 be a convex function. Then

𝔼 [𝑓(𝑋)] ≥ 𝑓(𝔼 [𝑋])

We can remember the direction of this inequality by considering the variance: Var (𝑋) =
𝔼 [(𝑋 − 𝔼 [𝑋])2] which is non-negative. Further, Var (𝑋) = 𝔼 [𝑋2] − 𝔼 [𝑋]2 hence 𝔼 [𝑋2] ≥
𝔼 [𝑋]2. Squaring is an example of a convex function, so Jensen’s inequality holds in this case.
We will first prove a basic lemma about convex functions.

Lemma. Let 𝑓∶ ℝ → ℝ be a convex function. Then 𝑓 is the supremum of all the lines lying
below it. More formally, ∀𝑚 ∈ ℝ, ∃𝑎, 𝑏 ∈ ℝ such that 𝑓(𝑚) = 𝑎𝑚 + 𝑏 and 𝑓(𝑥) ≥ 𝑎𝑥 + 𝑏
for all 𝑥.

Proof. Let𝑚 ∈ ℝ. Let 𝑥 < 𝑚 < 𝑦. Then we can express𝑚 as 𝑡𝑥 + (1 − 𝑡)𝑦 for some 𝑡 in the
interval [0, 1]. By convexity,

𝑓(𝑚) ≤ 𝑡𝑓(𝑥) + (1 − 𝑡)𝑓(𝑦)

And hence,

𝑡𝑓(𝑚) + (1 − 𝑡)𝑓(𝑚) ≤ 𝑡𝑓(𝑥) + (1 − 𝑡)𝑓(𝑦)
𝑡(𝑓(𝑚) − 𝑓(𝑥)) ≤ (1 − 𝑡)(𝑓(𝑦) − 𝑓(𝑚))
𝑓(𝑚) − 𝑓(𝑥)

𝑚 − 𝑥 ≤ 𝑓(𝑦) − 𝑓(𝑚)
𝑦 − 𝑚

So the slope of the line joining 𝑚 to a point on its left is smaller than the slope of the line
joining𝑚 to a point on its right. So we can produce a value 𝑎 ∈ ℝ given by

𝑎 = sup
𝑥<𝑚

𝑓(𝑚) − 𝑓(𝑥)
𝑚 − 𝑥

such that
𝑓(𝑚) − 𝑓(𝑥)

𝑚 − 𝑥 ≤ 𝑎 ≤ 𝑓(𝑦) − 𝑓(𝑚)
𝑦 − 𝑚

for all 𝑥 < 𝑚 < 𝑦. We can rearrange this to give

𝑓(𝑥) ≥ 𝑎(𝑥 − 𝑚) + 𝑓(𝑚) = 𝑎𝑥 + (𝑓(𝑚) − 𝑎𝑚)

for all 𝑥.
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We may now prove Jensen’s inequality.

Proof. Set𝑚 = 𝔼 [𝑋]. Then from the lemma above, there exists 𝑎, 𝑏 ∈ ℝ such that
𝑓(𝑚) = 𝑎𝑚 + 𝑏 ⟹ 𝑓(𝔼 [𝑋]) = 𝑎𝔼 [𝑋] + 𝑏 (∗)

and for all 𝑥, we have
𝑓(𝑥) ≥ 𝑎𝑥 + 𝑏

We can now apply this inequality to 𝑋 to get
𝑓(𝑋) ≥ 𝑎𝑋 + 𝑏

Taking the expectation, by (∗) we get
𝔼 [𝑓(𝑋)] ≥ 𝑎𝔼 [𝑋] + 𝑏 = 𝑓(𝔼 [𝑋])

as required.

Like the Cauchy–Schwarz inequality, we would like to consider the cases of equality. Let 𝑋
be a random variable, and 𝑓 be a convex function such that if 𝑚 = 𝔼 [𝑋], then ∃𝑎, 𝑏 ∈ ℝ
such that

𝑓(𝑚) = 𝑎𝑚 + 𝑏; ∀𝑥 ≠ 𝑚, 𝑓(𝑥) > 𝑎𝑥 + 𝑏
We know that 𝑓(𝑋) ≥ 𝑎𝑋 +𝑏, since 𝑓 is convex. Then 𝑓(𝑋)− (𝑎𝑋 +𝑏) ≥ 0 is a non-negative
random variable. Taking expectations,

𝔼 [𝑓(𝑋) − (𝑎𝑋 + 𝑏)] ≥ 0
But 𝔼 [𝑎𝑋 + 𝑏] = 𝑎𝑚 + 𝑏 = 𝑓(𝑚) = 𝑓(𝔼 [𝑋]). We assumed that 𝔼 [𝑓(𝑋)] = 𝑓(𝔼 [𝑋]), hence
𝔼 [𝑎𝑋 + 𝑏] = 𝔼 [𝑓(𝑋)] and 𝔼 [𝑓(𝑋) − (𝑎𝑋 + 𝑏)] = 0. But since 𝑓(𝑋) ≥ 𝑎𝑋 + 𝑏, this forces
𝑓(𝑋) = 𝑎𝑋 + 𝑏 everywhere. By our assumption, for all 𝑥 ≠ 𝑚, 𝑓(𝑥) > 𝑎𝑥 + 𝑏. This forces
𝑋 = 𝑚 with probability 1.

7.6. Arithmetic mean and geometric mean inequality
Let 𝑓 be a convex function. Suppose 𝑥1,… , 𝑥𝑛 ∈ ℝ. Then, from Jensen’s inequality,

1
𝑛

𝑛
∑
𝑘=1

𝑓(𝑥𝑘) ≥ 𝑓 (1𝑛
𝑛
∑
𝑘=1

𝑥𝑘)

Indeed, we can define a random variable𝑋 to take values 𝑥1,… , 𝑥𝑛 all with equal probability.
Then, 𝔼 [𝑓(𝑋)] gives the left hand side, and 𝑓(𝔼 [𝑋]) gives the right hand side. Now, let
𝑓(𝑥) = − log𝑥. This is a convex function as required. Hence

−1𝑛
𝑛
∑
𝑘=1

log𝑥𝑘 ≥ − log (1𝑛
𝑛
∑
𝑘=1

𝑥𝑘)

(
𝑛
∏
𝑘=1

𝑥𝑘)

1
𝑛

≤ 1
𝑛

𝑛
∑
𝑘=1

𝑥𝑘

Hence the geometric mean is less than or equal to the arithmetic mean.
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8. Combinations of random variables
8.1. Conditional expectation and law of total expectation
Recall that if 𝐵 ∈ ℱ with ℙ (𝐵) ≥ 0, we defined

ℙ (𝐴 ∣ 𝐵) = ℙ (𝐴 ∩ 𝐵)
ℙ (𝐵)

Now, let 𝑋 be a random variable, and let 𝐵 be an event as above with nonzero probability.
We can then define

𝔼 [𝑋 ∣ 𝐵] = 𝔼 [𝑋 ⋅ 1(𝐵)]
ℙ (𝐵)

The numerator is notably zero when 1(𝐵) = 0, so in essence we are excluding the case where
𝑋 is not 𝐵.

Theorem (law of total expectation). Suppose 𝑋 ≥ 0. Let (Ω𝑛) be a partition of Ω into
disjoint events, so Ω = ⋃𝑛Ω𝑛. Then

𝔼 [𝑋] = ∑
𝑛
𝔼 [𝑋 ∣ Ω𝑛] ⋅ ℙ (Ω𝑛)

Proof. We can write 𝑋 = 𝑋 ⋅ 1(Ω), where

1(Ω) = ∑
𝑛
1(Ω𝑛)

Taking expectations, we get

𝔼 [𝑋] = 𝔼 [∑
𝑛
𝑋 ⋅ 1(Ω𝑛)]

By countable additivity of expectation, we have

𝔼 [𝑋] = ∑
𝑛
𝔼 [𝑋 ⋅ 1(Ω𝑛)] = ∑

𝑛
𝔼 [𝑋 ∣ Ω𝑛] ⋅ ℙ (Ω𝑛)

as required.

8.2. Joint distribution
Definition. Let 𝑋1,… , 𝑋𝑛 be discrete random variables. Their joint distribution is defined
as

ℙ (𝑋1 = 𝑥1,… , 𝑋𝑛 = 𝑥𝑛)

for all 𝑥𝑖 ∈ Ω𝑖.

382



8. Combinations of random variables

Now, we have

ℙ (𝑋1 = 𝑥1) = ℙ({𝑋1 = 𝑥1} ∩
𝑛

⋃
𝑖=2

⋃
𝑥𝑖
{𝑋𝑖 = 𝑥𝑖}) = ∑

𝑥2,…,𝑥𝑛
ℙ (𝑋1 = 𝑥1, 𝑋2 = 𝑥2,… , 𝑋𝑛 = 𝑥𝑛)

In general,

ℙ (𝑋𝑖 = 𝑥𝑖) = ∑
𝑥1,𝑥2,…,𝑥𝑖−1,𝑥𝑖+1,…,𝑥𝑛

ℙ (𝑋1 = 𝑥1, 𝑋2 = 𝑥2,… , 𝑋𝑛 = 𝑥𝑛)

We call (ℙ (𝑋𝑖 = 𝑥𝑖))𝑖 the marginal distribution of 𝑋𝑖. Let 𝑋, 𝑌 be random variables. The
conditional distribution of 𝑋 given 𝑌 = 𝑦 where 𝑦 ∈ Ω𝑦 is defined to be

ℙ (𝑋 = 𝑥 ∣ 𝑌 = 𝑦) = ℙ (𝑋 = 𝑥, 𝑌 = 𝑦)
ℙ (𝑌 = 𝑦)

We can find

ℙ (𝑋 = 𝑥) = ∑
𝑦
ℙ (𝑋 = 𝑥, 𝑌 = 𝑦) = ∑

𝑦
ℙ (𝑋 = 𝑥 ∣ 𝑌 = 𝑦)ℙ (𝑌 = 𝑦)

which is the law of total probability.

8.3. Convolution

Let𝑋 and𝑌 be independent, discrete randomvariables. Wewould like to findℙ (𝑋 + 𝑌 = 𝑧).
Clearly this is

ℙ (𝑋 + 𝑌 = 𝑧) = ∑
𝑦
ℙ (𝑋 + 𝑌 = 𝑧, 𝑌 = 𝑦)

= ∑
𝑦
ℙ (𝑋 = 𝑧 − 𝑦, 𝑌 = 𝑦)

= ∑
𝑦
ℙ (𝑋 = 𝑧 − 𝑦) ⋅ ℙ (𝑌 = 𝑦)

This last sum is called the convolution of the distributions of 𝑋 and 𝑌 . Similarly,

ℙ (𝑋 + 𝑌 = 𝑧) = ∑
𝑥
ℙ (𝑋 = 𝑥) ⋅ ℙ (𝑌 = 𝑧 − 𝑥)
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As an example, let 𝑋 ∼ Poi(𝜆) and 𝑌 ∼ Poi(𝜇) be independent. Then

ℙ (𝑋 + 𝑌 = 𝑛) =
𝑛
∑
𝑟=0

ℙ (𝑋 = 𝑟) ℙ (𝑌 = 𝑛 − 𝑟)

=
𝑛
∑
𝑟=0

𝑒−𝜆𝜆
𝑟

𝑟! ⋅ 𝑒
−𝜇 𝜇𝑛−𝑟
(𝑛 − 𝑟)!

= 𝑒−(𝜆+𝜇)
𝑛
∑
𝑟=0

𝜆𝑟𝜇𝑛−𝑟
𝑟!(𝑛 − 𝑟)!

= 𝑒−(𝜆+𝜇)
𝑛!

𝑛
∑
𝑟=0

𝜆𝑟𝜇𝑛−𝑟 ⋅ 𝑛!
𝑟!(𝑛 − 𝑟)!

= 𝑒−(𝜆+𝜇)
𝑛!

𝑛
∑
𝑟=0

(𝑛𝑟)𝜆
𝑟𝜇𝑛−𝑟

= 𝑒−(𝜆+𝜇)
𝑛! (𝜆 + 𝜇)𝑛

which is the probability mass function of a Poisson random variable with parameter 𝜆 + 𝜇.
In other words, 𝑋 + 𝑌 ∼ Poi(𝜆 + 𝜇).

8.4. Conditional expectation

Let 𝑋 and 𝑌 be discrete random variables. Then the conditional expectation of 𝑋 given that
𝑌 = 𝑦 is

𝔼 [𝑋 ∣ 𝑌 = 𝑦] = 𝔼 [𝑋 ⋅ 1(𝑌 = 𝑦)]
ℙ (𝑌 = 𝑦)

= 1
ℙ (𝑌 = 𝑦) ∑𝑥

𝑥 ⋅ ℙ (𝑋 = 𝑥, 𝑌 = 𝑦)

= ∑
𝑥
𝑥 ⋅ ℙ (𝑋 = 𝑥 ∣ 𝑌 = 𝑦)

Observe that for every 𝑦 ∈ Ω𝑦, this expectation is purely a function of 𝑦. Let 𝑔(𝑦) =
𝔼 [𝑋 ∣ 𝑌 = 𝑦]. Now, we define the conditional expectation of 𝑋 given 𝑌 as 𝔼 [𝑋 ∣ 𝑌] = 𝑔(𝑌).

384



8. Combinations of random variables

Note that 𝔼 [𝑋 ∣ 𝑌] is a random variable, dependent only on 𝑌 . We have
𝔼 [𝑋 ∣ 𝑌] = 𝑔(𝑌) ⋅ 1

= 𝑔(𝑌)∑
𝑦
1(𝑌 = 𝑦)

= ∑
𝑦
𝑔(𝑌) ⋅ 1(𝑌 = 𝑦)

= ∑
𝑦
𝑔(𝑦) ⋅ 1(𝑌 = 𝑦)

= ∑
𝑦
𝔼 [𝑋 ∣ 𝑌 = 𝑦] ⋅ 1(𝑌 = 𝑦)

This is perhaps a clearer way to see that it depends only on 𝑌 . As an example, let us consider
tossing a 𝑝-biased coin 𝑛 times independently. We write 𝑋𝑖 for the indicator function that
the 𝑖th toss was a head. Let 𝑌𝑛 = 𝑋1+⋯+𝑋𝑛. What is 𝔼 [𝑋1 ∣ 𝑌𝑛]? Let 𝑔(𝑦) = 𝔼 [𝑋1 ∣ 𝑌𝑛 = 𝑦].
Then 𝔼 [𝑋1 ∣ 𝑌𝑛] = 𝑔(𝑌𝑛). We therefore need to find 𝑔. Let 𝑦 ∈ {0,… , 𝑛}, then

𝑔(𝑦) = 𝔼 [𝑋1 ∣ 𝑌𝑛 = 𝑦]
= ℙ (𝑋1 = 1 ∣ 𝑌𝑛 = 𝑦)

Clearly if 𝑦 = 0, then ℙ (𝑋1 = 1 ∣ 𝑌𝑛 = 0) = 0. Now, suppose 𝑦 ≠ 0. We have

ℙ (𝑋1 = 1 ∣ 𝑌𝑛 = 𝑦) = ℙ (𝑋1 = 1, 𝑌𝑛 = 𝑦)
ℙ (𝑌𝑛 = 𝑦)

= ℙ (𝑋1 = 1, 𝑋2 +⋯+ 𝑋𝑛 = 𝑦 − 1)
ℙ (𝑌𝑛 = 𝑦)

= ℙ (𝑋1 = 1) ⋅ ℙ (𝑋2 +⋯+ 𝑋𝑛 = 𝑦 − 1)
ℙ (𝑌𝑛 = 𝑦)

=
𝑝 ⋅ (𝑛−1

𝑦−1
) ⋅ 𝑝𝑦−1(1 − 𝑝)𝑛−𝑦

ℙ (𝑌𝑛 = 𝑦)

=
(𝑛−1
𝑦−1

) ⋅ 𝑝𝑦(1 − 𝑝)𝑛−𝑦

(𝑛
𝑦
)𝑝𝑦(1 − 𝑝)𝑛−𝑦

=
(𝑛−1
𝑦−1

)
(𝑛
𝑦
)

= 𝑦
𝑛

Hence
𝑔(𝑦) = 𝑦

𝑛
We can then find that

𝔼 [𝑋1 ∣ 𝑌𝑛] = 𝑔(𝑌𝑛) =
𝑌𝑛
𝑛

which is indeed a random variable dependent only on 𝑌𝑛.
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8.5. Properties of conditional expectation
The following properties hold.

• For all 𝑐 ∈ ℝ, 𝔼 [𝑐𝑋 ∣ 𝑌] = 𝑐𝔼 [𝑋 ∣ 𝑌], and 𝔼 [𝑐 ∣ 𝑌] = 𝑐.
• Let 𝑋1,… , 𝑋𝑛 be random variables. Then 𝔼 [∑𝑛

𝑖=1 𝑋𝑖 ∣ 𝑌] = ∑𝑛
𝑖=1 𝔼 [𝑋𝑖 ∣ 𝑌].

• 𝔼 [𝔼 [𝑋 ∣ 𝑌]] = 𝔼 [𝑋].
The last property is not obvious from the definition, so it warrants its own proof. We can see
by the standard properties of the expectation that

𝔼 [𝑋 ∣ 𝑌] = ∑
𝑦
1(𝑌 = 𝑦)𝔼 [𝑋 ∣ 𝑌 = 𝑦]

∴ 𝔼 [𝔼 [𝑋 ∣ 𝑌]] = ∑
𝑦
𝔼 [1(𝑌 = 𝑦)] 𝔼 [𝑋 ∣ 𝑌 = 𝑦]

= ∑
𝑦
ℙ (𝑌 = 𝑦) 𝔼 [𝑋 ∣ 𝑌 = 𝑦]

= ∑
𝑦
ℙ (𝑌 = 𝑦) 𝔼 [𝑋 ⋅ 1(𝑌 = 𝑦)]

ℙ (𝑌 = 𝑦)

= ∑
𝑦
𝔼 [𝑋 ⋅ 1(𝑌 = 𝑦)]

= 𝔼 [∑
𝑦
𝑋 ⋅ 1(𝑌 = 𝑦)]

= 𝔼[𝑋∑
𝑦
1(𝑌 = 𝑦)]

= 𝔼 [𝑋]

Alternatively, we could expand the inner expectation as a sum:

∑
𝑦
𝔼 [𝑋 ∣ 𝑌 = 𝑦] ⋅ ℙ (𝑌 = 𝑦) = ∑

𝑥
∑
𝑦
𝑥 ⋅ ℙ (𝑋 = 𝑥 ∣ 𝑌 = 𝑦) ⋅ ℙ (𝑌 = 𝑦)

and the result follows as required. The final property relates conditional probability to inde-
pendence. Let 𝑋 and 𝑌 be independent. Then 𝔼 [𝑋 ∣ 𝑌] = 𝔼 [𝑋]. Indeed,

𝔼 [𝑋 ∣ 𝑌] = ∑
𝑦
1(𝑌 = 𝑦)𝔼 [𝑋 ∣ 𝑌 = 𝑦]

= ∑
𝑦
1(𝑌 = 𝑦)𝔼 [𝑋]

= 𝔼 [𝑋]
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Proposition. Suppose 𝑌 and 𝑍 are independent random variables. Then

𝔼 [𝔼 [𝑋 ∣ 𝑌] ∣ 𝑍] = 𝔼 [𝑋]

Proof. Let 𝔼 [𝑋 ∣ 𝑌] = 𝑔(𝑌) be a random variable that is a function only of 𝑌 . Since 𝑌 and
𝑍 are independent, 𝑓(𝑌) is also independent of 𝑍 for any function 𝑓. Then 𝔼 [𝑔(𝑌) ∣ 𝑍] =
𝔼 [𝑔(𝑌)] = 𝔼 [𝑋].

Proposition. Suppose ℎ∶ ℝ → ℝ is a function. Then

𝔼 [ℎ(𝑌) ⋅ 𝑋 ∣ 𝑌] = ℎ(𝑌) ⋅ 𝔼 [𝑋 ∣ 𝑌]

We can ‘take out what is known’, since we know what 𝑌 is.

Proof. Note that

𝔼 [ℎ(𝑌) ⋅ 𝑋 ∣ 𝑌 = 𝑦] = 𝔼 [ℎ(𝑦) ⋅ 𝑋 ∣ 𝑌 = 𝑦] = ℎ(𝑦) ⋅ 𝔼 [𝑋 ∣ 𝑌 = 𝑦]

Then
𝔼 [ℎ(𝑌) ⋅ 𝑋 ∣ 𝑌] = ℎ(𝑦) ⋅ 𝔼 [𝑋 ∣ 𝑌]

as required.

Corollary. 𝔼 [𝔼 [𝑋 ∣ 𝑌] ∣ 𝑌] = 𝔼 [𝑋 ∣ 𝑌], and 𝔼 [𝑋 ∣ 𝑋] = 𝑋 .

Let 𝑋𝑖 = 1(𝑖th toss is a head), and 𝑌𝑛 = 𝑋1+⋯+𝑋𝑛. We found before that 𝔼 [𝑋1 ∣ 𝑌𝑛] =
𝑌𝑛
𝑛
.

By symmetry, for all 𝑖 we have 𝔼 [𝑋𝑖 ∣ 𝑌𝑛] = 𝔼 [𝑋1 ∣ 𝑌𝑛]. Hence

𝔼 [𝑌𝑛 ∣ 𝑌𝑛] = 𝔼 [
𝑛
∑
𝑖=1

𝑋𝑖 ∣ 𝑌𝑛] =
𝑛
∑
𝑖=1

𝔼 [𝑋𝑖 ∣ 𝑌𝑛] = 𝑛 ⋅ 𝔼 [𝑋1 ∣ 𝑌𝑛]

which yields the same result.

387



VI. Probability

9. Randomwalks
9.1. Definition
A random process, also known as a stochastic process, is a sequence of random variables 𝑋𝑛
for 𝑛 ∈ ℕ. A random walk is a random process that can be expressed as

𝑋𝑛 = 𝑥 + 𝑌1 +⋯+ 𝑌𝑛

where the 𝑌 𝑖 are independent and identically distributed, and 𝑥 is a deterministic number.
We will focus on the simple random walk on ℤ, which is defined by taking

ℙ (𝑌 𝑖 = 1) = 𝑝; ℙ (𝑌 𝑖 = −1) = 1 − 𝑝 = 𝑞

This can be thought of as a specific case of a Markov chain; it has the property that the path
to 𝑋𝑖 does not matter, all that matters is the value that we are at, at any point in time.

9.2. Gambler’s ruin estimate
What is the probability that 𝑋𝑛 reaches some value 𝑎 before it falls to 0? We will write ℙ𝑥 for
the probability measure ℙ with the condition that 𝑋0 = 𝑥, i.e.

ℙ𝑥 (𝐴) = ℙ (𝐴 ∣ 𝑋0 = 𝑥)

We define ℎ(𝑥) = ℙ𝑥 ((𝑋𝑛) hits 𝑎 before hitting 0). We can define a recurrence relation. By
the law of total probability, we have, for 0 < 𝑥 < 𝑎,

ℎ(𝑥) = ℙ𝑥 ((𝑋𝑛) hits 𝑎 before hitting 0 ∣ 𝑌1 = 1) ⋅ ℙ𝑥 (𝑌1 = 1)
+ ℙ𝑥 ((𝑋𝑛) hits 𝑎 before hitting 0 ∣ 𝑌1 = −1) ⋅ ℙ𝑥 (𝑌1 = −1)
= 𝑝 ⋅ ℎ(𝑥 + 1) + 𝑞 ⋅ ℎ(𝑥 − 1)

Note that
ℎ(0) = 0; ℎ(𝑎) = 1

There are two cases; 𝑝 = 𝑞 = 1
2
and 𝑝 ≠ 𝑞. If 𝑝 = 𝑞 = 1

2
, then

ℎ(𝑥) − ℎ(𝑥 + 1) = ℎ(𝑥 − 1) − ℎ(𝑥)

We can then solve this to find
ℎ(𝑥) = 𝑥

𝑎
If 𝑝 ≠ 𝑞, then

ℎ(𝑥) = 𝑝ℎ(𝑥 + 1) + 𝑞ℎ(𝑥 − 1)
We can try a solution of the form 𝜆𝑥. Substituting gives

𝑝𝜆2 − 𝜆 + 𝑞 = 0 ⟹ 𝜆 = 1, 𝑞𝑝
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9. Random walks

The general solution can be found by using the boundary conditions.

ℎ(𝑥) = 𝐴 + 𝐵 (𝑞𝑝)
𝑥
⟹ ℎ(𝑥) =

(𝑞
𝑝
)
𝑥
− 1

(𝑞
𝑝
)
𝑎
− 1

This is known as the ‘gambler’s ruin’ estimate, since it determines whether a gambler will
reach a target before going bankrupt.

9.3. Expected time to absorption
Let us define 𝑇 to be the first time that 𝑥 = 0 or 𝑥 = 𝑎. Then 𝑇 = min{𝑛 ≥ 0∶ 𝑋𝑛 ∈ {0, 𝑎}}.
We want to find 𝔼𝑥 [𝑇] = 𝜏𝑥. We can apply a condition on the first step, and use the law of
total expectation to give

𝜏𝑥 = 𝑝𝔼𝑥 [𝑇 ∣ 𝑌1 = 1] + 𝑞𝔼𝑥 [𝑇 ∣ 𝑌1 = −1]

Hence
𝜏𝑥 = 𝑝(𝜏𝑥+1 + 1) + 𝑞(𝜏𝑥−1 + 1)

We can deduce that, for 0 < 𝑥 < 𝑎,

𝜏𝑥 = 1 + 𝑝𝜏𝑥+1 + 𝑞𝜏𝑥−1

and 𝜏0 = 𝜏𝑎 = 0. If 𝑝 = 𝑞 = 1
2
, then we can try a solution of the form 𝐴𝑥2.

𝐴𝑥2 = 1 + 1
2𝐴(𝑥 + 1)2 + 1

2𝐴(𝑥 − 1)2

This gives a general solution of the form

𝐴 = −1 ⟹ 𝜏𝑥 = −𝑥2 + 𝐵𝑥 + 𝐶 ⟹ 𝜏𝑥 = 𝑥(𝑎 − 𝑥)

If 𝑝 ≠ 𝑞, then we will try a solution of the form 𝐶𝑥, giving

𝐶 = 1
𝑞 − 𝑝

The general solution has the form

𝜏𝑥 =
𝑥

𝑞 − 𝑝 + 𝐴 + 𝐵 (𝑞𝑝)
𝑥
⟹ 𝜏𝑥 =

𝑥
𝑞 − 𝑝 − 𝑞

𝑞 − 𝑝 ⋅
(𝑞
𝑝
)
𝑥
− 1

(𝑞
𝑝
)
𝑎
− 1
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10. Probability generating functions
10.1. Definition
Let 𝑋 be a random variable with values in the positive integers, ℕ. Let 𝑝𝑟 = ℙ (𝑋 = 𝑟) be the
probability mass function. Then the probability generating function is defined to be

𝑝(𝑧) =
∞
∑
𝑟=0

𝑝𝑟𝑧𝑟 = 𝔼 [𝑧𝑋] for |𝑧| ≤ 1

When |𝑧| ≤ 1, the probability generating function converges absolutely, since ||∑∞
𝑟=0 𝑝𝑟𝑧𝑟|| ≤

∑∞
𝑟=0 𝑝𝑟 = 1. So 𝑝(𝑧) is well-defined and has a radius of convergence of at least 1.

Theorem. The probability generating function of 𝑋 uniquely determines the distribution
of 𝑋 .

Proof. Suppose (𝑝𝑟) and (𝑞𝑟) are two probability mass functions with
∞
∑
𝑟=0

𝑝𝑟𝑧𝑟 =
∞
∑
𝑟=0

𝑞𝑟𝑧𝑟, ∀|𝑧| ≤ 1

Wewill show that 𝑝𝑟 = 𝑞𝑟 for all 𝑟. First, set 𝑧 = 0, then clearly 𝑝0 = 𝑞0. Then by induction,
suppose that 𝑝𝑟 = 𝑞𝑟 for all 𝑟 ≤ 𝑛. Then we would like to show that 𝑝𝑛+1 = 𝑞𝑛+1. We know
that

∞
∑

𝑟=𝑛+1
𝑝𝑟𝑧𝑟 =

∞
∑

𝑟=𝑛+1
𝑞𝑟𝑧𝑟

Hence, dividing by 𝑧𝑛+1, and taking the limit as 𝑧 → 0, we have𝑝𝑛+1 = 𝑞𝑛+1 as required.

10.2. Finding moments and probabilities
Theorem.

lim
𝑧→1−

𝑝′(𝑧) = 𝑝′(1−) = 𝔼 [𝑋]

Proof. We will first assume that 𝔼 [𝑋] is finite; we will then extend the proof to the infinite
case. Let 0 < 𝑧 < 1, then since the series 𝑝(𝑧) is absolutely convergent, we can interchange
the sum and the derivative operators, giving

𝑝′(𝑧) =
∞
∑
𝑟=0

𝑟𝑝𝑟𝑧𝑟−1

We can make an upper bound for this sum:
∞
∑
𝑟=0

𝑟𝑝𝑟𝑧𝑟−1 ≤
∞
∑
𝑟=0

𝑟𝑝𝑟 = 𝔼 [𝑋]
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10. Probability generating functions

Since 0 < 𝑧 < 1, we see that 𝑝′(𝑧) is an increasing function of 𝑧. This implies that there
exists a limit of 𝑝′(𝑧) as 𝑧 → 1−, which is upper bounded by 𝔼 [𝑋]. Now, let 𝜀 > 0 and let 𝑁
be an integer large enough such that

𝑁
∑
𝑟=0

𝑟𝑝𝑟 ≥ 𝔼 [𝑋] − 𝜀

We have further that, since 0 < 𝑧 < 1,

𝑝′(𝑧) ≥
𝑁
∑
𝑟=1

𝑟𝑝𝑟𝑧𝑟−1

So

lim
𝑧→1−

𝑝′(𝑧) ≥
𝑁
∑
𝑟=1

𝑟𝑝𝑟 ≥ 𝔼 [𝑋] − 𝜀

which is true for any 𝜀. Therefore lim𝑧→1− 𝑝′(𝑧) = 𝔼 [𝑋]. Now, in the case that 𝔼 [𝑋] is
infinite, for any𝑀 we can find a sufficiently large 𝑁 such that

𝑁
∑
𝑟=0

𝑟𝑝𝑟 ≥ 𝑀

From above, we know that

lim
𝑧→1−

𝑝′(𝑧) ≥
𝑁
∑
𝑟=1

𝑟𝑝𝑟 ≥ 𝑀

Since this is true for any𝑀, this limit is equal to∞.

In exactly the same way, we can prove that

𝑝″(1−) = 𝔼 [𝑋(𝑋 − 1)]

and in general,
𝑝(𝑘)(1−) = 𝔼 [𝑋(𝑋 − 1)⋯ (𝑋 − 𝑘 + 1)]

In particular,
Var (𝑋) = 𝑝″(1−) + 𝑝′(1−) − 𝑝′(1−)2

Further,

ℙ (𝑋 = 𝑛) = 1
𝑛!

d𝑛
d𝑧𝑛𝑝(𝑧)

|||𝑧=0
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10.3. Sums of random variables
Suppose that 𝑋1,… , 𝑋𝑛 are independent random variables with probability generating func-
tions 𝑞1,… , 𝑞𝑛 respectively. Then

𝑝(𝑧) = 𝔼 [𝑧𝑋1+⋯+𝑋𝑛]

Recall that if𝑋 and𝑌 are independent, then for all functions𝑓 and 𝑔, wehave𝔼 [𝑓(𝑋)𝑔(𝑌)] =
𝔼 [𝑓(𝑋)] 𝔼 [𝑔(𝑌)]. Therefore,

𝑝(𝑧) = 𝔼 [𝑧𝑋1𝑧𝑋2 ⋯𝑧𝑋𝑛] = 𝔼 [𝑧𝑋1]⋯𝔼 [𝑧𝑋𝑛] = 𝑞1(𝑧)⋯𝑞𝑛(𝑧)

So the probability generating function factorises into its independent parts. In particular, if
all the 𝑋𝑖 are independent and identically distributed, then

𝑝(𝑧) = 𝑞(𝑧)𝑛

10.4. Common probability generating functions
Suppose that 𝑋 ∼ Bin(𝑛, 𝑝). Then

𝑝(𝑧) = 𝔼 [𝑧𝑋]

=
𝑛
∑
𝑟=0

𝑧𝑟(𝑛𝑟)𝑝
𝑟(1 − 𝑝)𝑛−𝑟

=
𝑛
∑
𝑟=0

(𝑛𝑟)(𝑝𝑧)
𝑟(1 − 𝑝)𝑛−𝑟

= (𝑝𝑧 + 1 − 𝑝)𝑛

Now, let 𝑋 ∼ Bin(𝑛, 𝑝), 𝑌 ∼ Bin(𝑚, 𝑝) be independent random variables. Then the probab-
ility generating function of 𝑋 + 𝑌 is

(𝑝𝑧 + 1 − 𝑝)𝑛 ⋅ (𝑝𝑧 + 1 − 𝑝)𝑚 = (𝑝𝑧 + 1 − 𝑝)𝑛+𝑚

which is the probability generating function of a binomial distribution where the number of
trials is 𝑛 + 𝑚. Now, suppose that 𝑋 ∼ Geo(𝑝). Then

𝑝(𝑧) = 𝔼 [𝑧𝑋]

=
𝑛
∑
𝑟=0

𝑧𝑟(1 − 𝑝)𝑟𝑝

= 𝑝
1 − 𝑧(1 − 𝑝)
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10. Probability generating functions

Now, suppose that 𝑋 ∼ Poi(𝜆). Then

𝑝(𝑧) = 𝔼 [𝑧𝑋]

=
𝑛
∑
𝑟=0

𝑧𝑟𝑒−𝜆𝜆
𝑟

𝑟!
= 𝑒𝜆(𝑧−1)

10.5. Random sums of random variables
Consider the sum of a random number of random variables. Let 𝑋1,… be independent and
identically distributed, and let𝑁 be an independent random variable with values inℕ. Now,
we can define the random variables 𝑆𝑛 to be

𝑆𝑛 = 𝑋1 +⋯+ 𝑋𝑛

Then
𝑆𝑁 = 𝑋1 +⋯+ 𝑋𝑁

is a random variable dependent on 𝑁. For all 𝜔 ∈ Ω,

𝑆𝑁(𝜔) = 𝑋1(𝜔) +⋯+ 𝑋𝑁(𝜔)(𝜔)

=
𝑁(𝜔)
∑
𝑖=1

𝑋𝑖(𝜔)

Now, let 𝑞 be the probability generating function of 𝑁, and 𝑝 be the probability generating
function of 𝑋1 (or equivalently, any 𝑋𝑖). Then let

𝑟(𝑧) = 𝔼 [𝑧𝑆𝑁 ]
= ∑

𝑛
𝔼 [𝑧𝑋1+⋯+𝑋𝑁 ⋅ 1(𝑁 = 𝑛)]

= ∑
𝑛
𝔼 [𝑧𝑋1+⋯+𝑋𝑛 ⋅ 1(𝑁 = 𝑛)]

= ∑
𝑛
𝔼 [𝑧𝑋1+⋯+𝑋𝑛] 𝔼 [1(𝑁 = 𝑛)]

= ∑
𝑛
𝔼 [𝑧𝑋1+⋯+𝑋𝑛] ℙ (𝑁 = 𝑛)

= ∑
𝑛
𝔼 [𝑧𝑋1]𝑛 ℙ (𝑁 = 𝑛)

= ∑
𝑛
𝑝(𝑧)𝑛ℙ (𝑁 = 𝑛)

= 𝑞(𝑝(𝑧))
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Here is an alternative proof using conditional expectation.

𝑟(𝑧) = 𝔼 [𝑧𝑆𝑁 ]
= 𝔼 [𝔼 [𝑧𝑆𝑁 ∣ 𝑁]]

We can see that

𝔼 [𝑧𝑆𝑁 ∣ 𝑁 = 𝑛] = 𝔼 [𝑧𝑆𝑛 ∣ 𝑁 = 𝑛]
= 𝔼 [𝑧𝑋1]𝑛

= 𝑝(𝑧)𝑛

Therefore,

𝑟(𝑧) = 𝔼 [𝑝(𝑧)𝑁]
= 𝑞(𝑝(𝑧))

Using this expression for 𝑟, we can find that

𝔼 [𝑆𝑁] = 𝑟′(1−) = 𝑞′(𝑝(1−)) ⋅ 𝑝′(1−) = 𝑞′(1−) ⋅ 𝑝′(1−) = 𝔼 [𝑁] 𝔼 [𝑋1]

Similarly,
Var (𝑆𝑁) = 𝔼 [𝑁]Var (𝑋1) + Var (𝑁) (𝔼 [𝑋1])

2
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11. Branching processes
11.1. Introduction
Let (𝑋𝑛∶ 𝑛 ≥ 0) be a random process, where 𝑋𝑛 is the number of individuals in generation
𝑛, and 𝑋0 = 1. The individual in generation 0 produces a random number of offspring with
distribution

𝑔𝑘 = ℙ (𝑋1 = 𝑘)

Then every individual in generation 1 produces an independent number of offspringwith the
same distribution. This is called a branching process. We can write a recursive formula for
𝑋𝑛. First, let (𝑌 𝑘,𝑛∶ 𝑘 ≥ 1, 𝑛 ≥ 0) be an independent and identically distributed sequence
with distribution (𝑔𝑘)𝑘. So𝑌 𝑘,𝑛 is the number of offspring of the 𝑘th individual in generation
𝑛.

𝑋𝑛+1 = {𝑌1,𝑛 +⋯+ 𝑌 𝑋𝑛,𝑛 when 𝑋𝑛 ≥ 1
0 otherwise

11.2. Expectation of generation size
Theorem.

𝔼 [𝑋𝑛] = 𝔼 [𝑋1]
𝑛

Proof. Inductively,

𝔼 [𝑋𝑛+1] = 𝔼 [𝔼 [𝑋𝑛+1 ∣ 𝑋𝑛]]
𝔼 [𝑋𝑛+1 ∣ 𝑋𝑛 = 𝑚] = 𝔼 [𝑌1,𝑛 +⋯+ 𝑌 𝑋𝑛,𝑛 ∣ 𝑋𝑛 = 𝑚]

= 𝔼 [𝑌1,𝑛 +⋯+ 𝑌𝑚,𝑛 ∣ 𝑋𝑛 = 𝑚]
= 𝑚𝔼 [𝑌1,𝑛]
= 𝑚𝔼 [𝑋1]

∴ 𝔼 [𝑋𝑛+1 ∣ 𝑋𝑛] = 𝑋𝑛 ⋅ 𝔼 [𝑋1]
∴ 𝔼 [𝑋𝑛+1] = 𝔼 [𝑋𝑛 ⋅ 𝔼 [𝑋1]]

= 𝔼 [𝑋𝑛] ⋅ 𝔼 [𝑋1]

11.3. Probability generating functions
Theorem. Let 𝐺(𝑧) = 𝔼 [𝑧𝑋1] be the probability generating function of 𝑋1, and 𝐺𝑛(𝑧) =
𝔼 [𝑧𝑋𝑛] be the probability generating function of 𝑋𝑛. Then

𝐺𝑛+1(𝑧) = 𝐺(𝐺𝑛(𝑧)) = 𝐺(𝐺(⋯𝐺(𝑧)⋯)) = 𝐺𝑛(𝐺(𝑧))
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Proof.

𝐺𝑛+1(𝑧) = 𝔼 [𝑧𝑋𝑛+1]
= 𝔼 [𝔼 [𝑧𝑋𝑛+1 ∣ 𝑋𝑛]]

𝔼 [𝑧𝑋𝑛+1 ∣ 𝑋𝑛 = 𝑚] = 𝔼 [𝑧𝑌1,𝑛+⋯+𝑌𝑚,𝑛 ∣ 𝑋𝑛 = 𝑚]
= 𝔼 [𝑧𝑋1]𝑚

= 𝐺(𝑧)𝑚
∴ 𝔼 [𝔼 [𝑧𝑋𝑛+1 ∣ 𝑋𝑛]] = 𝔼 [𝐺(𝑧)𝑋𝑛]

= 𝐺𝑛(𝐺(𝑧))

11.4. Probability of extinction
We define the extinction probability 𝑞 as the probability that 𝑋𝑛 = 0 for some 𝑛 ≥ 1, and
𝑞𝑛 = ℙ (𝑋𝑛 = 0). It is clear that 𝑋𝑛 = 0 implies that 𝑋𝑛+1 = 0. So the sequence of events
(𝐴𝑛) = ({𝑋𝑛 = 0}) is an increasing sequence of events. So by the continuity of the probability
measure,ℙ (𝐴𝑛) converges toℙ (⋃𝐴𝑛) as 𝑛 → ∞. Note that the event⋃𝐴𝑛 is the event that
there will be extinction. Therefore, 𝑞𝑛 → 𝑞 as 𝑛 → ∞.

Claim. 𝑞𝑛+1 = 𝐺(𝑞𝑛) and 𝑞 = 𝐺(𝑞).

Proof. Using the above theorem on 𝑞,

𝑞𝑛+1 = ℙ (𝑋𝑛+1 = 0)
= 𝐺𝑛+1(0)
= 𝐺(𝐺𝑛(0))
= 𝐺(𝑞𝑛)

Since 𝐺 is continuous, taking the limit as 𝑛 → ∞ and using that 𝑞𝑛 → 𝑞 gives 𝐺(𝑞) = 𝑞.

We can form another proof for the first part of the above claim.

Proof. Instead of conditioning on the previous generation, let us condition on the first gener-
ation, i.e. 𝑋1 = 𝑚. Note that after the first generation, we will have𝑚 independent subtrees
on the family tree. Each tree is identically distributed to the entire tree as a whole. Hence,

𝑋𝑛+1 = 𝑋(1)
𝑛 +⋯+ 𝑋(𝑚)

𝑛

where the 𝑋(𝑗)
𝑖 are independent and identically distributed random processes each with the
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same offspring distribution. By the law of total probability,

𝑞𝑛+1 = ℙ (𝑋𝑛+1 = 0)
= ∑

𝑚
ℙ (𝑋𝑛+1 = 0 ∣ 𝑋1 = 𝑚) ⋅ ℙ (𝑋1 = 𝑚)

= ∑
𝑚
ℙ (𝑋(1)

𝑛 = 0,… , 𝑋(𝑚)
𝑛 = 0) ⋅ ℙ (𝑋1 = 𝑚)

= ∑
𝑚
ℙ (𝑋(1)

𝑛 = 0)
𝑚
⋅ ℙ (𝑋1 = 𝑚)

= ∑
𝑚
𝑞𝑚𝑛 ⋅ ℙ (𝑋1 = 𝑚)

= 𝐺(𝑞𝑛)

Theorem. The extinction probability 𝑞 is the minimal non-negative solution to 𝐺(𝑡) = 𝑡.
Further, supposing that ℙ (𝑋1 = 1) < 1, we have that 𝑞 < 1 if and only if 𝔼 [𝑋1] > 1.

Proof. First, we will prove the minimality of 𝑞. Let 𝑡 be the smallest non-negative solution
to 𝐺(𝑡) = 𝑡. We will prove inductively that 𝑞𝑛 ≤ 𝑡 for all 𝑛, and then by taking limits we
have that 𝑞 ≤ 𝑡. Since 𝑞 is a solution, this will imply that 𝑞 = 𝑡. Now, as a base case,
𝑞0 = 0 = ℙ (𝑋0 = 0) ≤ 𝑡. Inductively let us suppose that 𝑞𝑛 ≤ 𝑡. We know that 𝑞𝑛+1 = 𝐺(𝑞𝑛).
𝐺 is an increasing function on [0, 1], and since 𝑞𝑛 ≤ 𝑡 we have 𝑞𝑛+1 = 𝐺(𝑞𝑛) ≤ 𝐺(𝑡) = 𝑡.
Now, we can take ℙ (𝑋1 = 1) < 1. Let us use the notation 𝑔𝑟 = ℙ (𝑋1 = 𝑟) for simplicity.
Consider the function 𝐻(𝑧) = 𝐺(𝑧) − 𝑧. Let us assume further that 𝑔0 + 𝑔1 < 1, since
otherwise we cannot possibly ever increase the amount of individuals in future generations,
as 𝔼 [𝑋1] = ℙ (𝑋1 = 1) < 1. In this case,𝐺(𝑧) = 𝑔0+𝑔1𝑧 = 1−𝔼 [𝑋1]+𝔼 [𝑋1] ⋅𝑧, and solving
𝐺(𝑧) = 𝑧 we would get only 𝑧 = 1 since 𝔼 [𝑋1] < 1. Now,

𝐻″(𝑧) =
∞
∑
𝑟=2

𝑟(𝑟 − 1)𝑔𝑟𝑧𝑟−2 > 0 ∀𝑧 ∈ (0, 1)

This implies that𝐻′(𝑧) is a strictly increasing function in (0, 1). Hence,𝐻(𝑧) has at most one
root different from 1 in (0, 1), which follows from Rolle’s theorem; indeed, if it had two roots
different from 1, then𝐻′ would be zero once in (𝑧1, 𝑧2) and once in (𝑧2, 1), which contradicts
the fact that 𝐻′ is strictly increasing.

Let us first consider the case where 𝐻 has no other root apart from 1. In this case, 𝐻(1) = 0
and 𝐻(0) = 𝑔0 ≥ 0 ⟹ 𝐻(𝑧) ≥ 0 for all 𝑧 ∈ [0, 1]. We can find that

𝐻′(1−) = lim
𝑧→1−

𝐻(𝑧) − 𝐻(1)
𝑧 − 1 = 𝐻(𝑧)

𝑧 − 1 < 0

since the numerator is positive, and the denominator is negative. We know that 𝐻′(1−) =
𝐺′(1−) − 1, and 𝐻′(1−) ≤ 0 ⟹ 𝐺′(1−) ≤ 1, and 𝐺′(1−) = 𝔼 [𝑋1]. So when 𝑞 = 1, then
𝔼 [𝑋1] ≤ 1.
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In the other case,𝐻 has one other root 𝑟 < 1 aswell as 1. Wehave that𝐻(𝑟) = 0 and𝐻(1) = 0.
By Rolle’s theorem, there exists 𝑧 ∈ (𝑟, 1) such that 𝐻′(𝑧) = 0. Further, 𝐻′(𝑥) = 𝐺′(𝑥) − 1
therefore 𝐺′(𝑧) = 1. Now,

𝐺′(𝑥) =
∞
∑
𝑟=1

𝑟𝑔𝑟𝑥𝑟−1 ⟹ 𝐻″(𝑥) = 𝐺″(𝑥) =
∞
∑
𝑟=2

𝑟(𝑟 − 1)𝑔𝑟𝑥𝑟−2

Under the assumption that 𝑔0 + 𝑔1 < 1, we have that 𝐺″(𝑥) > 0 for all 𝑥 ∈ (0, 1), hence 𝐺′

is strictly increasing for all 𝑥 ∈ (0, 1). Therefore, 𝐺′(1−) > 𝐺′(𝑧) = 1 giving 𝔼 [𝑋1] > 1. So if
𝑞 < 1, then 𝔼 [𝑋1] > 1.
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12. Continuous random variables
12.1. Probability distribution function
Let (Ω,ℱ, ℙ) be a probability space. Then, as defined before,𝑋 ∶ Ω → ℝ is a randomvariable
if

∀𝑥 ∈ ℝ, {𝑋 ≤ 𝑥} = {𝜔∶ 𝑋(𝜔) ≤ 𝑥} ∈ ℱ
We define the probability distribution function 𝐹 ∶ ℝ → [0, 1] as

𝐹(𝑥) = ℙ (𝑋 ≤ 𝑥)

Theorem. The following properties hold.

(i) If 𝑥 ≤ 𝑦, then 𝐹(𝑥) ≤ 𝐹(𝑦).
(ii) For all 𝑎 < 𝑏, ℙ (𝑎 < 𝑥 ≤ 𝑏) = 𝐹(𝑏) − 𝐹(𝑎).
(iii) 𝐹 is a right continuous function, and left limits always exist. In other words,

𝐹(𝑥+) = lim
𝑦→𝑥+

𝐹(𝑦) = 𝐹(𝑥); 𝐹(𝑥−) = lim
𝑦→𝑥−

𝐹(𝑦) ≤ 𝐹(𝑥)

(iv) For all 𝑥 ∈ ℝ, 𝐹(𝑥−) = ℙ (𝑋 < 𝑥).
(v) We have lim𝑥→∞ 𝐹(𝑥) = 1 and lim𝑥→−∞ 𝐹(𝑥) = 0.

Proof. (i) The first statement is immediate from the definition of the probability measure.

(ii) We can deduce
ℙ (𝑎 < 𝑋 ≤ 𝑏) = ℙ ({𝑎 < 𝑋} ∩ {𝑋 ≤ 𝑏})

= ℙ (𝑋 ≤ 𝑏) − ℙ ({𝑋 ≤ 𝑏} ∩ {𝑋 ≤ 𝑎})
= ℙ (𝑋 ≤ 𝑏) − ℙ (𝑋 ≤ 𝑎)
= 𝐹(𝑏) − 𝐹(𝑎)

(iii) For right continuity, we want to prove lim𝑛→∞ 𝐹(𝑥 + 1
𝑛
) = 𝐹(𝑥). We will define 𝐴𝑛 =

{𝑥 < 𝑋 ≤ 𝑥 + 1
𝑛
}. Then the 𝐴𝑛 are decreasing events, and the intersection of all 𝐴𝑛

is the empty set ∅. Hence, by continuity of the probability measure, ℙ (𝐴𝑛) → 0 as
𝑛 → ∞. But ℙ (𝐴𝑛) = ℙ (𝑥 < 𝑋 ≤ 𝑥 + 1

𝑛
) = 𝐹(𝑥 + 1

𝑛
) − 𝐹(𝑥), hence 𝐹(𝑥 + 1

𝑛
) → 𝐹(𝑥)

as required. Now, we want to show that left limits always exist. This is clear since 𝐹 is
an increasing function, and is always bounded above by 1.

(iv) We know 𝐹(𝑥−) = lim𝑛→∞ 𝐹(𝑥 − 1
𝑛
). Consider 𝐵𝑛 = {𝑋 ≤ 𝑥 − 1

𝑛
}. Then the 𝐵𝑛 is an

increasing sequence of events, and their union is {𝑋 < 𝑥}. Hence ℙ (𝐵𝑛) converges to
ℙ (𝑋 < 𝑥), so 𝐹(𝑥−) = ℙ (𝑋 < 𝑥).

(v) This is evident from the properties of the probability measure.
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12.2. Defining a continuous random variable
For a discrete random variable, 𝐹 is a step function, which of course is right continuous with
left limits.

Definition. A random variable 𝑋 is called continuous if 𝐹 is a continuous function. In this
case, clearly left limits and right limits give the same value, and ℙ (𝑋 = 𝑥) = 0 for all 𝑥 ∈ ℝ.
In this course, we will consider only absolutely continuous random variables. A continuous
random variable is absolutely continuous if 𝐹 is differentiable. Wewill make the convention
that 𝐹′(𝑥) = 𝑓(𝑥), where 𝑓(𝑥) is called the probability density function of 𝑋 . The following
immediate properties hold.

(i) 𝑓 ≥ 0
(ii) ∫+∞

−∞ 𝑓(𝑥) d𝑥 = 1

(iii) 𝐹(𝑥) = ∫𝑥
−∞ 𝑓(𝑡) d𝑡

(iv) For 𝑆 ⊆ ℝ, ℙ (𝑋 ∈ 𝑆) = ∫𝑆 𝑓(𝑥) d𝑥
Here is an intuitive explanation of the probability density function. Suppose Δ𝑥 is a small
quantity. Then

ℙ (𝑥 < 𝑋 ≤ 𝑥 + Δ𝑥) = ∫
𝑥+Δ𝑥

𝑥
𝑓(𝑦) d𝑦 ≈ 𝑓(𝑥) ⋅ Δ𝑥

So we can think of 𝑓(𝑥) as the continuous analogy to ℙ (𝑋 = 𝑥).

12.3. Expectation
Consider a continuous random variable 𝑋 ∶ Ω → ℝ, with probability distribution function
𝐹(𝑥) and probability density function 𝑓(𝑥) = 𝐹′(𝑥). We define the expectation of such a
non-negative random variable as

𝔼 [𝑋] = ∫
∞

0
𝑥𝑓(𝑥) d𝑥

In this case, the expectation is either non-negative and finite, or positive infinity. Now, let
𝑋 be a general continuous random variable, that is not necessarily non-negative. Suppose
𝑔 ≥ 0. Then,

𝔼 [𝑔(𝑋)] = ∫
∞

−∞
𝑔(𝑥)𝑓(𝑥) d𝑥

We can define 𝑋+ = max(𝑋, 0) and 𝑋− = max(−𝑋, 0). If at least one of 𝔼 [𝑋+] or 𝔼 [𝑋−] is
finite, then clearly

𝔼 [𝑋] ≔ 𝔼 [𝑋+] − 𝔼 [𝑋−] = ∫
∞

−∞
𝑥𝑓(𝑥) d𝑥

It is easy to verify that the expectation is a linear function, due to the linearity property of
the integral.
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12.4. Computing the expectation
Claim. Let 𝑋 ≥ 0. Then

𝔼 [𝑋] = ∫
∞

0
ℙ (𝑋 ≥ 𝑥) d𝑥

Proof. Using the definition of the expectation,

𝔼 [𝑋] = ∫
∞

0
𝑥𝑓(𝑥) d𝑥

= ∫
∞

0
(∫

𝑥

0
d𝑦) 𝑓(𝑥) d𝑥

= ∫
𝑥

0
d𝑦∫

∞

𝑦
𝑓(𝑥) d𝑥

= ∫
∞

0
d𝑦 (1 −∫

𝑦

−∞
𝑓(𝑥) d𝑥)

= ∫
∞

0
d𝑦 ℙ (𝑋 ≥ 𝑦)

Here is an alternative proof.

Proof. For every 𝜔 ∈ Ω, we can write

𝑋(𝜔) = ∫
∞

0
1(𝑋(𝜔) ≥ 𝑥) d𝑥

Taking expectations, we get

𝔼 [𝑋] = 𝔼 [∫
∞

0
1(𝑋(𝜔) ≥ 𝑥) d𝑥]

We will interchange the integral and the expectation, although this step is not justified or
rigorous.

𝔼 [𝑋] = ∫
∞

0
𝔼 [1(𝑋(𝜔) ≥ 𝑥)] d𝑥

= ∫
∞

0
ℙ (𝑋 ≥ 𝑥) d𝑥
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12.5. Variance
We define the variance of a continuous random variable as

Var (𝑋) = 𝔼 [(𝑋 − 𝔼 [𝑋])2] = 𝔼 [𝑋2] − 𝔼 [𝑋]2

12.6. Uniform distribution
Consider the uniform distribution defined by 𝑎, 𝑏 ∈ ℝ.

𝑓(𝑥) = {
1

𝑏−𝑎
𝑥 ∈ [𝑎, 𝑏]

0 otherwise

We write 𝑋 ∼ 𝑈[𝑎, 𝑏]. For some 𝑥 ∈ [𝑎, 𝑏], we can write

ℙ (𝑋 ≤ 𝑥) = ∫
𝑥

𝑎
𝑓(𝑦) d𝑦 = 𝑥 − 𝑎

𝑏 − 𝑎

Hence, for 𝑥 ∈ [𝑎, 𝑏],

𝐹(𝑥) =
⎧
⎨
⎩

1 𝑥 > 𝑏
𝑥−𝑎
𝑏−𝑎

𝑥 ∈ [𝑎, 𝑏]
0 𝑥 < 𝑎

Then,

𝔼 [𝑋] = ∫
𝑏

𝑎

𝑥
𝑏 − 𝑎 d𝑥 =

𝑎 + 𝑏
2

12.7. Exponential distribution
The exponential distribution is defined by 𝑓(𝑥) = 𝜆𝑒−𝜆𝑥 for 𝜆 > 0, 𝑥 > 0. We write 𝑋 ∼
Exp(𝜆).

𝐹(𝑥) = ℙ (𝑋 ≤ 𝑥) = ∫
𝑥

0
𝜆𝑒−𝜆𝑦 d𝑦 = 1 − 𝑒−𝜆𝑥

Further,

𝔼 [𝑋] = ∫
∞

0
𝜆𝑥𝑒−𝜆𝑥 d𝑥 = 1

𝜆
We can view the exponential distribution as a limit of geometric distributions. Suppose that
𝑇 ∼ Exp(𝜆), and let 𝑇𝑛 = ⌊𝑛𝑇⌋ for all 𝑛 ∈ ℕ. We have

ℙ (𝑇𝑛 ≥ 𝑘) = ℙ (𝑇 ≥ 𝑘
𝑛) = 𝑒−𝜆𝑘/𝑛 = (𝑒−𝜆/𝑛)𝑘

Hence 𝑇𝑛 is a geometric distribution with parameter 𝑝𝑛 = 𝑒−𝜆/𝑛. As 𝑛 → ∞, 𝑝𝑛 ∼
𝜆
𝑛
, and

𝑇𝑛
𝑛
∼ 𝑇. Hence the exponential distribution is the limit of a scaled version of the geometric
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distribution. A key property of the exponential distribution is that it has no memory. If 𝑇 ∼
Exp(𝜆), ℙ (𝑇 > 𝑡 + 𝑠 ∣ 𝑇 > 𝑠) = ℙ (𝑇 > 𝑡). In fact, the distribution is uniquely characterised
by this property.

Proposition. Let 𝑇 be a positive continuous random variable not identically zero or infinity.
Then 𝑇 has the memoryless property ℙ (𝑇 > 𝑡 + 𝑠 ∣ 𝑇 > 𝑠) = ℙ (𝑇 > 𝑡) if and only if 𝑇 ∼
Exp(𝜆) for some 𝜆 > 0.

Proof. Clearly if 𝑇 ∼ Exp(𝜆), then ℙ (𝑇 > 𝑡 + 𝑠 ∣ 𝑇 > 𝑠) = 𝑒−𝜆𝑡 = ℙ (𝑇 > 𝑡) as required.
Now, given that 𝑇 has this memoryless property, for all 𝑠 and 𝑡, we have ℙ (𝑇 > 𝑡 + 𝑠) =
ℙ (𝑇 > 𝑡) ℙ (𝑇 > 𝑠). Let 𝑔(𝑡) = ℙ (𝑇 > 𝑡); we would like to show that 𝑔(𝑡) = 𝑒−𝜆𝑡. Then 𝑔
satisfies 𝑔(𝑡+𝑠) = 𝑔(𝑡)𝑔(𝑠). Then for all𝑚 ∈ ℕ, 𝑔(𝑚𝑡) = (𝑔(𝑡))𝑚. Setting 𝑡 = 1, 𝑔(𝑚) = 𝑔(1)𝑚.
Now, 𝑔(𝑚/𝑛)𝑛 = 𝑔(𝑚𝑛/𝑛) = 𝑔(𝑚) hence 𝑔(𝑚/𝑛) = 𝑔(1)𝑚/𝑛. So for all rational numbers
𝑞 ∈ ℚ, 𝑔(𝑞) = 𝑔(1)𝑞.
Now, 𝑔(1) = ℙ (𝑇 > 1) ∈ (0, 1). Indeed, 𝑔(1) ≠ 0 since in this case, for any rational number
𝑞we would have 𝑔(𝑞) = 0 contradicting the assumption that 𝑇 was not identically zero, and
𝑔(1) ≠ ∞ because in this case 𝑇 would be identically infinity. Now, let 𝜆 = − logℙ (𝑇 > 1) >
0. We have now proven that 𝑔(𝑡) = 𝑒−𝜆𝑡 for all 𝑡 ∈ ℚ.
Let 𝑡 ∈ ℝ+. Then for all 𝜀 > 0, there exist 𝑟, 𝑠 ∈ ℚ such that 𝑟 ≤ 𝑡 ≤ 𝑠 and |𝑟 − 𝑠| ≤ 𝜀. In this
case, 𝑒−𝜆𝑠 = ℙ (𝑇 > 𝑠) ≤ ℙ (𝑇 > 𝑡) ≤ ℙ (𝑇 > 𝑟) = 𝑒−𝜆𝑟. Sending 𝜀 → 0 finishes the proof,
showing that 𝑔(𝑡) = 𝑒−𝜆𝑡 for all positive reals.

12.8. Functions of continuous random variables
Theorem. Suppose that𝑋 is a continuous random variable with density 𝑓. Let 𝑔 be amono-
tonic continuous function (either strictly increasing or strictly decreasing), such that 𝑔−1 is
differentiable. Then 𝑔(𝑋) is a continuous random variable with density 𝑓𝑔−1(𝑥)||

d
d𝑥
𝑔−1(𝑥)||.

Proof. Suppose that 𝑔 is strictly increasing. We have

ℙ (𝑔(𝑋) ≤ 𝑥) = ℙ (𝑋 ≤ 𝑔−1(𝑥)) = 𝐹(𝑔−1(𝑥))

Hence,
d
d𝑥ℙ (𝑔(𝑋) ≤ 𝑥) = 𝐹′(𝑔−1(𝑥)) ⋅ d

d𝑥𝑔
−1(𝑥) = 𝑓(𝑔−1(𝑥)) dd𝑥𝑔

−1(𝑥)

Note that since 𝑔 is strictly increasing, so is 𝑔−1. Now, suppose the 𝑔 is strictly decreasing.
Since the random variable is continuous,

ℙ (𝑔(𝑋) ≤ 𝑥) = ℙ (𝑋 ≥ 𝑔−1(𝑥)) = 1 − 𝐹(𝑔−1(𝑥))

Hence,
d
d𝑥ℙ (𝑔(𝑋) ≤ 𝑥) = −𝐹′(𝑔−1(𝑥)) ⋅ d

d𝑥𝑔
−1(𝑥) = 𝑓(𝑔−1(𝑥))|||

d
d𝑥𝑔

−1(𝑥)|||
Likewise, in this case, 𝑔 is strictly decreasing.
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12.9. Normal distribution
The normal distribution is characterised by 𝜇 ∈ ℝ and 𝜎 > 0. We define

𝑓(𝑥) = 1
√2𝜋𝜎2

exp {−(𝑥 − 𝜇)2
2𝜎2 }

𝑓(𝑥) is indeed a probability density function:

𝐼 = ∫
∞

−∞
𝑓(𝑥) d𝑥 = ∫

∞

−∞

1
√2𝜋𝜎2

exp {−(𝑥 − 𝜇)2
2𝜎2 } d𝑥

Applying the substitution 𝑥 ↦ 𝑥−𝜇
𝜎
, we have

𝐼 = 1
√2𝜋

∫
∞

−∞
exp {−𝑥

2

2 } d𝑥

We can evaluate this integral by considering 𝐼2.

𝐼2 = 2
𝜋 ∫

∞

0
∫

∞

0
𝑒
−(𝑢2−𝑣2)

2 d𝑢 d𝑣

Using polar coordinates 𝑢 = 𝑟 cos 𝜃 and 𝑣 = 𝑟 sin 𝜃, we have

𝐼2 = 2
𝜋 ∫

∞

0
d𝑟∫

𝜋
2

0
d𝜃 𝑟𝑒−

𝑟2
2 = 1 ⟹ 𝐼 = ±1

But clearly 𝐼 > 0, so 𝐼 = 1. Hence 𝑓 really is a probability density function. Now, if 𝑋 ∼
N(𝜇, 𝜎2),

𝔼 [𝑋] = ∫
∞

−∞

𝑥
√2𝜋𝜎2

exp {−(𝑥 − 𝜇)2
2𝜎2 } d𝑥

= ∫
∞

−∞

𝑥 − 𝜇
√2𝜋𝜎2

exp {−(𝑥 − 𝜇)2
2𝜎2 } d𝑥

⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
odd function around 𝜇 hence 0

+𝜇 ∫
∞

−∞

1
√2𝜋𝜎2

exp {−(𝑥 − 𝜇)2
2𝜎2 } d𝑥

⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
𝐼=1 by above

= 𝜇

We can also compute the variance, using the substitution 𝑢 = 𝑥−𝜇
𝜎
, giving

Var (𝑋) = ∫
∞

−∞

(𝑥 − 𝜇)2

√2𝜋𝜎2
exp {−(𝑥 − 𝜇)2

2𝜎2 } d𝑥

= 𝜎2∫
∞

−∞

𝑢2

√2𝜋
exp {−𝑢

2

2 } d𝑢

= 𝜎2
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12. Continuous random variables

In particular, when𝜇 = 0 and𝜎2 = 1, we call the distributionN(𝜇, 𝜎2) = N(0, 1) the standard
normal distribution. We define

Φ(𝑥) = ∫
𝑥

−∞

1
√2𝜋

𝑒−
𝑢2
2 d𝑢 ; 𝜙(𝑥) = Φ′(𝑥) = 1

√2𝜋
𝑒−

𝑥2
2

Hence Φ(𝑥) = ℙ (𝑋 ≤ 𝑥) if 𝑋 has the standard normal distribution. Since 𝜙(𝑥) = 𝜙(−𝑥), we
have Φ(𝑥) + Φ(−𝑥) = 1, hence ℙ (𝑋 ≤ 𝑥) = 1 − ℙ (𝑋 ≤ −𝑥).
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VI. Probability

13. Multivariate density functions

13.1. Standardising normal distributions

Suppose𝑋 ∼ N(𝜇, 𝜎2). Let 𝑎 ≠ 0, 𝑏 ∈ ℝ, and let 𝑔(𝑥) = 𝑎𝑥+𝑏. We define𝑌 = 𝑔(𝑋) = 𝑎𝑋+𝑏.
We can find the density 𝑓𝑌 of 𝑌 , by noting that 𝑔 is a monotonic function and the inverse
has a derivative. We can then use the theorem in the last lecture to show that

𝑓𝑌 (𝑦) = 𝑓𝑋(𝑔−1(𝑦)) ⋅
|||
d
d𝑦𝑔

−1(𝑦)|||

= 1
√2𝜋𝜎2

exp(−
(𝑦−𝑏

𝑎
− 𝜇)2

2𝜎2 ) ⋅ 12𝑎

= 1
√2𝜋𝑎2𝜎2

exp(−(𝑦 − 𝑎𝜇 + 𝑏)2
2𝑎2𝜎2 )

Hence 𝑌 ∼ N(𝑎𝜇 + 𝑏, 𝑎2𝜎2). In particular, 𝑋−𝜇
𝜎

is exactly the standard normal distribu-
tion.

Definition. Suppose 𝑋 is a continuous random variable. Then the median of 𝑋 , denoted
by𝑚, is the number satisfying

ℙ (𝑋 ≤ 𝑚) = ℙ (𝑋 ≥ 𝑚) = 1
2

If 𝑋 ∼ N(𝜇, 𝜎2), then ℙ (𝑋 ≤ 𝜇) = Φ(0) = 1
2
hence 𝜇 is the median of the normal distribu-

tion.

13.2. Multivariate density functions

Suppose 𝑋 = (𝑋1,… , 𝑋𝑛) ∈ ℝ𝑛 is a random variable. We say that 𝑋 has density 𝑓 if

ℙ (𝑋1 ≤ 𝑥1,… , 𝑋𝑛 ≤ 𝑥𝑛) = ∫
𝑥1

−∞
…∫

𝑥𝑛

−∞
𝑓(𝑦1,… , 𝑦𝑛) d𝑦1… d𝑦𝑛

Then,

𝑓(𝑥1,… , 𝑥𝑛) =
𝜕𝑛

𝜕𝑥1…𝜕𝑥𝑛
𝐹(𝑥1,… , 𝑥𝑛)

This generalises the fact that for all (reasonable) 𝐵 ⊆ ℝ𝑛,

ℙ ((𝑋1,… , 𝑋𝑛) ∈ 𝐵) = ∫
𝐵
𝑓(𝑦1,… , 𝑦𝑛) d𝑦1… d𝑦𝑛
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13. Multivariate density functions

13.3. Independence of events
In the continuous case, we can no longer use the definition

ℙ (𝑋 = 𝑎, 𝑌 = 𝑏) = ℙ (𝑋 = 𝑎)ℙ (𝑌 = 𝑏)

since the probability of a random variable being a specific value is always zero. Instead, we
define that 𝑋1,… , 𝑋𝑛 are independent if for all 𝑥1,… , 𝑥𝑛 ∈ ℝ,

ℙ (𝑋1 ≤ 𝑥1,… , 𝑋𝑛 ≤ 𝑥𝑛) = ℙ (𝑋1 ≤ 𝑥1)⋯ℙ (𝑋𝑛 ≤ 𝑥𝑛)

Theorem. Suppose 𝑋 = (𝑋1,… , 𝑋𝑛) has density 𝑓.
(a) Suppose 𝑋1,… , 𝑋𝑛 are independent with densities 𝑓1,… , 𝑓𝑛. Then 𝑓(𝑥1,… , 𝑥𝑛) =

𝑓1(𝑥1)⋯𝑓𝑛(𝑥𝑛).
(b) Suppose that 𝑓 factorises as 𝑓(𝑥1,… , 𝑥𝑛) = 𝑓1(𝑥1)⋯𝑓𝑛(𝑥𝑛) for some non-negative

functions 𝑓1,… , 𝑓𝑛. Then 𝑋1,… , 𝑋𝑛 are independent with densities proportional to
𝑓1,… , 𝑓𝑛. (In order to have a density function, we require that it integrates to 1, so we
choose a scaling factor such that this requirement holds.)

In other words, 𝑓 factorises if and only if it is comprised of independent events.

Proof. (a) We know that

ℙ (𝑋1 ≤ 𝑥1,… , 𝑋𝑛 ≤ 𝑥𝑛) = ℙ (𝑋1 ≤ 𝑥1)⋯ℙ (𝑋𝑛 ≤ 𝑥𝑛)

= ∫
𝑥1

−∞
𝑓1(𝑦1) d𝑦1⋯∫

𝑥𝑛

−∞
𝑓𝑛(𝑦𝑛) d𝑦𝑛

= ∫
𝑥1

−∞
…∫

𝑥𝑛

−∞

𝑛
∏
𝑖=1

𝑓𝑖(𝑦𝑖) d𝑦𝑖

So the density of (𝑋1,… , 𝑋𝑛) is the product of the (𝑓𝑖).
(b) Suppose 𝑓 factorises. Let 𝐵1,… , 𝐵𝑛 ⊆ ℝ. Then

ℙ (𝑋1 ∈ 𝐵1,… , 𝑋𝑛 ∈ 𝐵𝑛) = ∫
𝐵1
⋯∫

𝐵𝑛
𝑓1(𝑥1)⋯𝑓𝑛(𝑥𝑛) d𝑦1⋯ d𝑦𝑛

Now, let 𝐵𝑗 = ℝ for all 𝑗 ≠ 𝑖. Then

ℙ (𝑋𝑖 ∈ 𝐵𝑖) = ℙ (𝑋𝑖 ∈ 𝐵𝑖, 𝑋𝑗 ∈ 𝐵𝑗 ∀𝑗 ≠ 𝑖) = ∫
𝐵𝑖
𝑓𝑖(𝑦𝑖) d𝑦𝑖 ⋅∏

𝑗≠1
∫
𝐵𝑗
𝑓𝑗(𝑥𝑗) d𝑦𝑗

Since 𝑓 is a density function,

∫
∞

−∞
⋯∫

∞

−∞
𝑓(𝑥1,… , 𝑥𝑛) d𝑥1⋯ d𝑥𝑛 = 1
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But 𝑓 is the product of the 𝑓𝑖, so

∏
𝑗
∫

∞

−∞
𝑓𝑗(𝑦) d𝑦 = 1 ⟹ ∏

𝑗≠𝑖
∫

∞

−∞
𝑓𝑗(𝑦) d𝑦 =

1
∫∞
−∞ 𝑓𝑖(𝑦) d𝑦

Hence,

ℙ (𝑋𝑖 ∈ 𝐵𝑖) =
∫𝐵𝑖 𝑓𝑖(𝑦) d𝑦
∫∞
−∞ 𝑓𝑖(𝑦) d𝑦

This shows that the density of 𝑋𝑖 is
𝑓𝑖

∫∞
−∞ 𝑓𝑖(𝑦) d𝑦

The 𝑋𝑖 are independent, since

ℙ (𝑋1 ≤ 𝑥1,… , 𝑋𝑛 ≤ 𝑥𝑛) =
∫𝑥1
−∞ 𝑓1(𝑦1) d𝑦1⋯∫𝑥𝑛

−∞ 𝑓𝑛(𝑦𝑛) d𝑦𝑛
∫∞
−∞ 𝑓1(𝑦1) d𝑦1⋯∫∞

−∞ 𝑓𝑛(𝑦𝑛) d𝑦𝑛
= ℙ (𝑋1 ≤ 𝑥1)⋯ℙ (𝑋𝑛 ≤ 𝑥𝑛)

13.4. Marginal density
Suppose that (𝑋1,… , 𝑋𝑛) has density 𝑓. Now we can compute the marginal density as fol-
lows.

ℙ (𝑋1 ≤ 𝑥) = ℙ (𝑋1 ≤ 𝑥, 𝑋2 ∈ ℝ,… , 𝑋𝑛 ∈ ℝ)

= ∫
𝑥

−∞
∫

∞

−∞
⋯∫

∞

−∞
𝑓(𝑥1,… , 𝑥𝑛) d𝑥1⋯ d𝑥𝑛

= ∫
𝑥

−∞
d𝑥1 (∫

∞

−∞
⋯∫

∞

−∞
𝑓(𝑥1,… , 𝑥𝑛) d𝑥2⋯ d𝑥𝑛)

⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
marginal density of 𝑋1

13.5. Sum of random variables
Recall that in the discrete case, for independent random variables 𝑋 and 𝑌 we have

ℙ (𝑋 + 𝑌 = 𝑧) = ∑
𝑦
ℙ (𝑋 + 𝑌 = 𝑧, 𝑌 = 𝑦)

= ∑
𝑦
ℙ (𝑋 = 𝑧 − 𝑦)ℙ (𝑌 = 𝑦)

= ∑
𝑦
𝑝𝑥(𝑧 − 𝑦)𝑝𝑦(𝑦)
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13. Multivariate density functions

which was called the convolution. In the continuous case,

ℙ (𝑋 + 𝑌 ≤ 𝑧) =∬
{𝑥+𝑦≤𝑧}

𝑓𝑋,𝑌 (𝑥, 𝑦) d𝑥 d𝑦

= ∫
∞

−∞
∫

𝑧−𝑥

−∞
𝑓𝑋(𝑥)𝑓𝑌 (𝑦) d𝑥 d𝑦

= ∫
∞

−∞
(∫

𝑧

−∞
𝑓𝑋(𝑥)𝑓𝑌 (𝑦 − 𝑥) d𝑦) d𝑥 (using 𝑦 ↦ 𝑦 + 𝑥)

= ∫
𝑧

−∞
d𝑦 (∫

∞

−∞
𝑓𝑌 (𝑦 − 𝑥)𝑓𝑋(𝑥) d𝑥)

⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
𝑔(𝑦)

Hence the density of 𝑋 + 𝑌 is 𝑔(𝑦), where

𝑔(𝑦) = ∫
∞

−∞
𝑓𝑌 (𝑦 − 𝑥)𝑓𝑋(𝑥) d𝑥

Definition. Let 𝑓, 𝑔 be density functions. Then the convolution of 𝑓 and 𝑔 is

(𝑓 ⋆ 𝑔)(𝑦) = ∫
∞

−∞
𝑓𝑌 (𝑦 − 𝑥)𝑓𝑋(𝑥) d𝑥

Here is a non-rigorous argument, which can be used as a heuristic.

ℙ (𝑋 + 𝑌 ≤ 𝑧) = ∫
∞

−∞
ℙ (𝑋 + 𝑌 ≤ 𝑧, 𝑌 ∈ d𝑦)

= ∫
∞

−∞
ℙ (𝑋 + 𝑌 ≤ 𝑧, 𝑌 ∈ d𝑦)

= ∫
∞

−∞
ℙ (𝑋 ≤ 𝑧 − 𝑦)ℙ (𝑌 ∈ d𝑦)

= ∫
∞

−∞
ℙ (𝑋 ≤ 𝑧 − 𝑦) 𝑓𝑌 (𝑦) d𝑦

= ∫
∞

−∞
𝐹𝑋(𝑧 − 𝑦)𝑓𝑌 (𝑦) d𝑦

d
d𝑧ℙ (𝑋 + 𝑌 ≤ 𝑧) = ∫

∞

−∞

d
d𝑧𝐹𝑋(𝑧 − 𝑦)𝑓𝑌 (𝑦) d𝑦

= ∫
∞

−∞
𝑓𝑋(𝑧 − 𝑦)𝑓𝑌 (𝑦) d𝑦
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13.6. Conditional density
Wewill now define the conditional density of a continuous random variable, given the value
of another continuous random variable. Let 𝑋 and 𝑌 be continuous random variables with
joint density 𝑓𝑋,𝑌 andmarginal densities 𝑓𝑋 and 𝑓𝑌 . Then we define the conditional density
of 𝑋 given that 𝑌 = 𝑦 is defined as

𝑓𝑋∣𝑌 (𝑥 ∣ 𝑦) =
𝑓𝑋,𝑌 (𝑥, 𝑦)
𝑓𝑌 (𝑦)

Then we can find the law of total probability in the continuous case.

𝑓𝑋(𝑥) = ∫
∞

−∞
𝑓𝑋𝑌 (𝑥, 𝑦) d𝑦

= ∫
∞

−∞
𝑓𝑋∣𝑌 (𝑥 ∣ 𝑦)𝑓𝑌 (𝑦) d𝑦

13.7. Conditional expectation
Wewant to define𝔼 [𝑋 ∣ 𝑌] to be some function 𝑔(𝑌) for some function 𝑔. Wewill define

𝑔(𝑦) = ∫
∞

−∞
𝑥𝑓𝑋∣𝑌 (𝑥 ∣ 𝑦) d𝑥

which is the analogous expression to 𝔼 [𝑋 ∣ 𝑌 = 𝑦] from the discrete case. Then we just set
𝔼 [𝑋 ∣ 𝑌] = 𝑔(𝑌) to be the conditional expectation.

13.8. Transformations of multidimensional random variables
Theorem. Let 𝑋 be a continuous random variable with values in 𝐷 ⊆ ℝ𝑑, with density 𝑓𝑋 .
Now, let 𝑔 be a bijection 𝐷 to 𝑔(𝐷) which has a continuous derivative, and det 𝑔′(𝑥) ≠ 0 for
all 𝑥 ∈ 𝐷. Then the random variable 𝑌 = 𝑔(𝑋) has density

𝑓𝑌 (𝑦) = 𝑓𝑋(𝑥) ⋅ |𝐽| where 𝑥 = 𝑔−1(𝑦)

where 𝐽 is the Jacobian

𝐽 = det ((𝜕𝑥𝑖𝜕𝑦𝑗
)
𝑑

𝑖,𝑗=1
)

No proof will be given for this theorem. As an example, let 𝑋 and 𝑌 be independent con-
tinuous random variables with the standard normal distribution. The point (𝑋, 𝑌) in ℝ2

has polar coordinates (𝑅, Θ). What are the densities of 𝑅 and Θ? We have 𝑋 = 𝑅 cosΘ and
𝑌 = 𝑅 sinΘ. The Jacobian is

𝐽 = det (cos 𝜃 −𝑟 sin 𝜃
sin 𝜃 𝑟 cos 𝜃 ) = 𝑟
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13. Multivariate density functions

Hence,

𝑓𝑅,Θ(𝑟, 𝜃) = 𝑓𝑋,𝑌 (𝑟 cos 𝜃, 𝑟 sin 𝜃)|𝐽|
= 𝑓𝑋,𝑌 (𝑟 cos 𝜃, 𝑟 sin 𝜃)𝑟
= 𝑓𝑋(𝑟 cos 𝜃)𝑓𝑌 (𝑟 sin 𝜃)𝑟

= 1
√2𝜋

𝑒−
𝑟2 cos2 𝜃

2 ⋅ 1
√2𝜋

𝑒−
𝑟2 sin2 𝜃

2 ⋅ 𝑟

= 1
2𝜋𝑒

− 𝑟2
2 ⋅ 𝑟

for all 𝑟 > 0 and 𝜃 ∈ [0, 2𝜋]. Note that the joint density factorises into marginal densit-
ies:

𝑓𝑅,Θ(𝑟, 𝜃) =
1
2𝜋⏟
𝑓Θ

𝑟𝑒−
𝑟2
2⏟

𝑓𝑅

so the random variables 𝑅 and Θ are independent, where Θ ∼ 𝑈[0, 2𝜋] and 𝑅 has density

𝑟𝑒
−𝑟2
2 on (0,∞).

13.9. Order statistics of a random sample
Let𝑋1,… , 𝑋𝑛 be independent and identically distributed random variables with distribution
function 𝐹 and density function 𝑓. We can put them in increasing order:

𝑋(1) ≤ 𝑋(2) ≤ ⋯ ≤ 𝑋(𝑛)
and let 𝑌 𝑖 = 𝑋(𝑖). The (𝑌 𝑖) are the order statistics.

ℙ (𝑌1 ≤ 𝑥) = ℙ (min(𝑋1,… , 𝑋𝑛) ≤ 𝑥)
= 1 − ℙ (min(𝑋1,… , 𝑋𝑛) > 𝑥)
= 1 − ℙ (𝑋1 > 𝑥)⋯ℙ (𝑋𝑛 > 𝑥)
= 1 − (1 − 𝐹(𝑥))𝑛

Further,

𝑓𝑌1(𝑥) =
d
d𝑥 (1 − (1 − 𝐹(𝑥))𝑛)

= 𝑛(1 − 𝐹(𝑥))𝑛−1𝑓(𝑥)

We can compute an analogous result for the maximum.

ℙ (𝑌𝑛 ≤ 𝑥) = (𝐹(𝑥))𝑛
𝑓𝑌𝑛(𝑥) = 𝑛(𝐹(𝑥))𝑛−1𝑓(𝑥)

What are the densities of the other random variables? First, let 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛. Then, we
can first find the joint distribution ℙ (𝑌1 ≤ 𝑥1,… , 𝑌𝑛 ≤ 𝑥𝑛). Note that this is simply the sum
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over all possible permutations of the (𝑋𝑖) ofℙ (𝑋1 ≤ 𝑥1,… , 𝑋𝑛 ≤ 𝑥𝑛). But since the variables
are independent and identically distributed, these probabilities are the same. Hence,

ℙ (𝑌1 ≤ 𝑥1,… , 𝑌𝑛 ≤ 𝑥𝑛) = 𝑛! ⋅ ℙ (𝑋1 ≤ 𝑥1,… , 𝑋𝑛 ≤ 𝑥𝑛, 𝑋1 < ⋯ < 𝑋𝑛)

= 𝑛!∫
𝑥1

−∞
∫

𝑥2

𝑢1
⋯∫

𝑥𝑛

𝑢𝑛−1
𝑓(𝑢1)⋯𝑓(𝑢𝑛) d𝑢1⋯ d𝑢𝑛

∴ 𝑓𝑌1,…,𝑌𝑛(𝑥1,… , 𝑥𝑛) = 𝑛!𝑓(𝑥1)⋯𝑓(𝑥𝑛)

when 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛, and the joint density is zero otherwise. Note that this joint density
does not factorise as a product of densities, since we must always consider the indicator
function that 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛.

13.10. Order statistics on exponential distribution

Let 𝑋 ∼ Exp(𝜆), 𝑌 ∼ Exp(𝜇) be independent continuous random variables. Let 𝑍 =
min(𝑋, 𝑌).

ℙ (𝑍 ≥ 𝑧) = ℙ (𝑋 ≥ 𝑧, 𝑌 ≥ 𝑧) = ℙ (𝑋 ≥ 𝑧)ℙ (𝑌 ≥ 𝑧) = 𝑒−𝜆𝑧 ⋅ 𝑒−𝜇𝑧 = 𝑒−(𝜆+𝜇)𝑧

Hence 𝑍 has the exponential distribution with parameter 𝜆+𝜇. More generally, if 𝑋1,… , 𝑋𝑛
are independent continuous random variables with 𝑋𝑖 ∼ Exp(𝜆𝑖), then 𝑍 = min(𝑋1,… , 𝑋𝑛)
has distribution Exp (∑𝑛

𝑖=1 𝜆𝑖). Now, let 𝑋1,… , 𝑋𝑛 be independent identically distributed
random variables with distribution Exp(𝜆), and let 𝑌 𝑖 be their order statistics. Then

𝑍1 = 𝑌1; 𝑍2 = 𝑌2 − 𝑌1; 𝑍𝑖 = 𝑌 𝑖 − 𝑌 𝑖−1

So the 𝑍𝑖 are the ‘durations between consecutive results’ from the 𝑋𝑖. What is the density of
these 𝑍𝑖? First, note that

𝑍 = (
𝑍1
⋮
𝑍𝑛
) = 𝐴(

𝑌1
⋮
𝑌𝑛
) ; 𝐴 =

⎛
⎜
⎜
⎜
⎝

1 0 0 ⋯ 0
−1 1 0 ⋯ 0
0 −1 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1

⎞
⎟
⎟
⎟
⎠

Note that det𝐴 = 1, and 𝑍 = 𝐴𝑌 , and note further that

𝑦𝑗 =
𝑗
∑
𝑖=1

𝑧𝑖
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13. Multivariate density functions

Now,

𝑓(𝑍1,…,𝑍𝑛)(𝑧1,… , 𝑧𝑛) = 𝑓(𝑌1,…,𝑌𝑛)(𝑦1,… , 𝑦𝑛) |𝐴|⏟
=1

= 𝑛!𝑓(𝑦1)⋯𝑓(𝑦𝑛)
= 𝑛!(𝜆𝑒−𝜆𝑦1)⋯ (𝜆𝑒−𝜆𝑦𝑛)
= 𝑛!𝜆𝑛𝑒−𝜆(𝑛𝑧1+(𝑛−1)𝑧2+⋯+𝑧𝑛)

=
𝑛
∏
𝑖=1

(𝑛 − 𝑖 + 1)𝜆𝑒−𝜆(𝑛−𝑖+1)𝑧𝑖

The density function of the vector 𝑍 factorises into functions of the 𝑧𝑖, so 𝑍1,… , 𝑍𝑛 are inde-
pendent and 𝑍𝑖 ∼ Exp(𝜆(𝑛 − 𝑖 + 1)).
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VI. Probability

14. Moment generating functions

14.1. Moment generating functions

Consider a continuous random variable 𝑋 with density 𝑓. Then the moment generating
function of 𝑋 is defined as

𝑚(𝜃) = 𝔼 [𝑒𝜃𝑋] = ∫
∞

−∞
𝑒𝜃𝑥𝑓(𝑥) d𝑥

whenever this integral is finite. Note that𝑚(0) = 1.

Theorem. The moment generating function uniquely determines the distribution of a con-
tinuous random variable, provided that it is defined on some open interval (𝑎, 𝑏) of values
of 𝜃.

No proof will be given.

Theorem. Suppose themoment generating function is defined on an open interval of values
of 𝜃. Then

d𝑟
d𝜃𝑟𝑚(𝜃)

|||𝜃=0
= 𝔼 [𝑋𝑟]

Theorem. Suppose 𝑋1,… , 𝑋𝑛 are independent random variables. Then

𝑚(𝜃) = 𝔼 [𝑒𝜃(𝑋1+⋯+𝑋𝑛)] =
𝑛
∏
𝑖=1

𝔼 [𝑒𝜃𝑋𝑖]

Proof. Since the 𝑋𝑖 are independent, we can move the product outside of the expectation.

14.2. Gamma distribution

Let 𝑋 be a random variable with density

𝑓(𝑥) = 𝑒−𝜆𝑥 𝜆
𝑛𝑥𝑛−1
(𝑛 − 1)!
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14. Moment generating functions

where 𝜆 > 0, 𝑛 ∈ ℕ, 𝑥 ≥ 0. We can say that 𝑋 ∼ Γ(𝑛, 𝜆). First, we check that 𝑓 is indeed a
density.

𝐼𝑛 = ∫
∞

0
𝑓(𝑥) d𝑥

= ∫
∞

0
𝜆𝑒−𝜆𝑥 𝜆

𝑛𝑥𝑛−1
(𝑛 − 1)! d𝑥

= ∫
∞

0

𝑒−𝜆𝑥𝜆𝑛−1(𝑛 − 1)𝑥𝑛−2
(𝑛 − 1)! d𝑥

= ∫
∞

0

𝑒−𝜆𝑥𝜆𝑛−1𝑥𝑛−2
(𝑛 − 2)! d𝑥

= 𝐼𝑛−1 = ⋯ = 𝐼1
Note that for 𝑛 = 1, 𝑓(𝑥) = 𝜆𝑒−𝜆𝑥 which is the density of the exponential distribution.
Therefore, 𝐼𝑛 = 1 as required, so 𝑓 really is a density. Now,

𝑚(𝜃) = ∫
∞

0

𝑒𝜃𝑥𝑒−𝜆𝑥𝜆𝑛𝑥𝑛−1
(𝑛 − 1)! d𝑥

If 𝜆 > 𝜃, then we have a finite integral. If 𝜆 ≤ 𝜃, then the exponential term 𝑒𝜃𝑥 will dominate
and we will have an infinite integral. So, let 𝜆 > 𝜃.

𝑚(𝜃) = ∫
∞

0

𝑒𝜃𝑥𝑒−𝜆𝑥𝜆𝑛𝑥𝑛−1
(𝑛 − 1)! d𝑥

= ( 𝜆
𝜆 − 𝜃)

𝑛
∫

∞

0

𝑒−(𝜆−𝜃)𝑥(𝜆 − 𝜃)𝑛𝑥𝑛−1
(𝑛 − 1)! d𝑥

The integral on the right hand side is the probability distribution function of a random
variable 𝑌 ∼ Γ(𝑛, 𝜆 − 𝜃), which gives 1 since the integral is taken over the entire domain.
Hence,

𝑚(𝜃) = ( 𝜆
𝜆 − 𝜃)

𝑛

Now, let𝑋 ∼ Γ(𝑛, 𝜆) and𝑌 ∼ Γ(𝑚, 𝜆) be independent continuous randomvariables. Then

𝑚(𝜃) = 𝔼 [𝑒𝜃(𝑋+𝑌)] = 𝔼 [𝑒𝜃𝑋] 𝔼 [𝑒𝜃𝑌 ] = ( 𝜆
𝜆 − 𝜃)

𝑛+𝑚

So by the uniqueness property we saw earlier, we get that 𝑋 + 𝑌 ∼ Γ(𝑛 + 𝑚, 𝜆). In par-
ticular, this implies that if 𝑋1,… , 𝑋𝑛 are independent and identically distributed with the
distribution Exp(𝜆) = Γ(1, 𝜆), then

𝑋1 +⋯+ 𝑋𝑛 ∼ Γ(𝑛, 𝜆)
We could alternatively consider Γ(𝛼, 𝜆) for 𝛼 > 0 by replacing (𝑛 − 1)! with

Γ(𝛼) = ∫
∞

0
𝑒−𝑥𝑥𝛼−1 d𝑥

which agrees with this factorial function for integer values of 𝛼.
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VI. Probability

14.3. Moment generating function of the normal distribution

Recall that

𝑓(𝑥) = 1
√2𝜋𝜎2

exp(−(𝑥 − 𝜇)2
2𝜎2 )

Now,

𝑚(𝜃) = ∫
∞

0
𝑒𝜃𝑥 1

√2𝜋𝜎2
exp(−(𝑥 − 𝜇)2

2𝜎2 ) d𝑥 = ∫
∞

0

1
√2𝜋𝜎2

exp(𝜃𝑥 − (𝑥 − 𝜇)2
2𝜎2 ) d𝑥

Note that

𝜃𝑥 − (𝑥 − 𝜇)2
2𝜎2 = 𝜃𝜇 + 𝜃2𝜎2

2 −
(𝑥 − (𝜇 + 𝜃𝜎2))2

2𝜎2

Hence,

𝑚(𝜃) = ∫
∞

0

1
√2𝜋𝜎2

exp(𝜃𝜇 + 𝜃2𝜎2
2 −

(𝑥 − (𝜇 + 𝜃𝜎2))2

2𝜎2 ) d𝑥

= exp(𝜃𝜇 + 𝜃2𝜎2
2 )∫

∞

0

1
√2𝜋𝜎2

exp(−
(𝑥 − (𝜇 + 𝜃𝜎2))2

2𝜎2 ) d𝑥

Note that the integral on the right hand side has the form of the probability distribution
function of a variable 𝑌 ∼ N(𝜇 + 𝜃𝜎2, 𝜎2), hence it integrates to 1.

𝑚(𝜃) = exp(𝜃𝜇 + 𝜃2𝜎2
2 )

Recall that if 𝑋 ∼ N(𝜇, 𝜎2), then 𝑎𝑋 + 𝑏 ∼ N(𝑎𝜇 + 𝑏, 𝑎2𝜎2). We can then deduce that

𝔼 [𝑒𝜃(𝑎𝑋+𝑏)] = exp(𝜃(𝑎𝜇 + 𝑏) + 𝜃2𝑎2𝜎2
2 )

Now, suppose that 𝑋 ∼ N(𝜇, 𝜎2) and 𝑌 ∼ N(𝜈, 𝜏2) are independent. Then

𝔼 [𝑒𝜃(𝑋+𝑌)] = 𝔼 [𝑒𝜃𝑋] 𝔼 [𝑒𝜃𝑌 ]

= exp(𝜃𝜇 + 𝜃2𝜎2
2 ) exp(𝜃𝜈 + 𝜃2𝜏2

2 )

= exp(𝜃(𝜇 + 𝜈) + 𝜃2(𝜎2 + 𝜏2)
2 )

Hence 𝑋 + 𝑌 ∼ N(𝜇 + 𝜈, 𝜎2 + 𝜏2).
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14. Moment generating functions

14.4. Cauchy distribution
Suppose that a continuous random variable 𝑋 has density

𝑓(𝑥) = 1
𝜋(1 + 𝑥2)

where 𝑥 ∈ ℝ. Now,

𝑚(𝜃) = 𝔼 [𝑒𝜃𝑋] = ∫
∞

−∞

𝑒𝜃𝑥
𝜋(1 + 𝑥2) = {∞ 𝜃 ≠ 0

1 𝜃 = 0

Suppose 𝑋 ∼ 𝑓. Then 𝑋, 2𝑋, 3𝑋,… have the same moment generating function, but they do
not have the same distribution. This is because𝑚(𝜃) is not finite on an open interval.

14.5. Multivariate moment generating functions
Let 𝑋 = (𝑋1,… , 𝑋𝑛) be a random variable with values in ℝ𝑛. Then the moment generating
function of 𝑋 is defined as

𝑚(𝜃) = 𝔼 [𝑒𝜃⊺𝑋] = 𝔼 [𝑒𝜃1𝑋1+⋯+𝜃𝑛𝑋𝑛] ; 𝜃 = (
𝜃1
⋮
𝜃𝑛
)

Theorem. If the moment generating function is finite for a range of values of 𝜃, it uniquely
determines the distribution of 𝑋 . Also,

𝜕𝑟𝑚
𝜕𝜃𝑟𝑖

|||𝜃=0
= 𝔼 [𝑋𝑟

𝑖 ]

and
𝜕𝑟+𝑠𝑚
𝜕𝜃𝑟𝑖 𝜕𝜃𝑠𝑗

|
|
|𝜃=0

= 𝔼 [𝑋𝑟
𝑖 𝑋𝑠

𝑗 ]

Further,

𝑚(𝜃) =
𝑛
∏
𝑖=1

𝔼 [𝑒𝜃𝑖𝑋𝑖]

if and only if 𝑋1,… , 𝑋𝑛 are independent.
No proof is provided.
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15. Limit theorems
15.1. Convergence in distribution
Definition. Let (𝑋𝑛∶ 𝑛 ∈ ℕ) be a sequence of random variables and let 𝑋 be another ran-
dom variable. We say that 𝑋𝑛 converges to 𝑋 in distribution, written 𝑋𝑛

𝑑−→ 𝑋 , if

𝐹𝑋𝑛(𝑥) → 𝐹𝑋(𝑥)

for all 𝑥 ∈ ℝ that are continuity points of 𝐹𝑋 .

Theorem (Continuity property for moment generating functions). Let 𝑋 be a continuous
random variable with𝑚(𝜃) < ∞ for some 𝜃 ≠ 0. Suppose that𝑚𝑛(𝜃) → 𝑚(𝜃) for all 𝜃 ∈ ℝ,
where𝑚𝑛(𝜃) = 𝔼 [𝑒𝜃𝑋𝑛], and𝑚(𝜃) = 𝔼 [𝑒𝜃𝑋]. Then 𝑋𝑛

𝑑−→ 𝑋 .

15.2. Weak law of large numbers
Theorem. Let (𝑋𝑛∶ 𝑛 ∈ ℕ) be a sequence of independent and identically distributed ran-
dom variables, with 𝜇 = 𝔼 [𝑋1] < ∞. Let 𝑆𝑛 = 𝑋1 +⋯+ 𝑋𝑛. Then for all 𝜀 > 0,

ℙ(|||
𝑆𝑛
𝑛 − 𝜇||| > 𝜀) → 0

as 𝑛 → ∞.

We will give a proof assuming that the variance of 𝑋1 is finite.

Proof. By Chebyshev’s inequality,

ℙ(|||
𝑆𝑛
𝑛 − 𝜇||| > 𝜀) = ℙ (|𝑆𝑛 − 𝑛𝜇| > 𝜀𝑛)

≤ Var (𝑆𝑛)
𝜀2𝑛2

= 𝑛𝜎2
𝜀2𝑛2

→ 0

15.3. Types of convergence

Definition. A sequence (𝑋𝑛) converges to 𝑋 in probability, written 𝑋𝑛
ℙ−→ 𝑋 as 𝑛 → ∞ if for

all 𝜀 > 0,
ℙ (|𝑋𝑛 − 𝑋| > 𝜀) → 0; 𝑛 → ∞
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Definition. A sequence (𝑋𝑛) converges to 𝑋 almost surely (with probability 1), if

ℙ( lim
𝑛→∞

𝑋𝑛 = 𝑋) = 1

This second definition is a stronger form of convergence. If a sequence (𝑋𝑛) converges to
zero almost surely, then 𝑋𝑛

ℙ−→ 0 as 𝑛 → ∞.

Proof. We want to show that given any 𝜀 > 0, ℙ (|𝑋𝑛| > 𝜀) → 0 as 𝑛 → ∞, or equivalently,
ℙ (|𝑋𝑛| ≤ 𝜀) → 1.

ℙ (|𝑋𝑛| ≤ 𝜀) ≥ ℙ
⎛
⎜
⎜
⎜
⎝

∞

⋂
𝑚=𝑛

{|𝑋𝑚| ≤ 𝜀}
⏟⎵⎵⎵⏟⎵⎵⎵⏟

𝐴𝑛

⎞
⎟
⎟
⎟
⎠

Note that 𝐴𝑛 is an increasing sequence of events, and

⋃
𝑛
𝐴𝑛 = {|𝑋𝑚| ≤ 𝜀 for all𝑚 sufficiently large}

Hence, as 𝑛 → ∞,
ℙ (𝐴𝑛) → ℙ (⋃𝐴𝑛)

Therefore,

lim
𝑛→∞

ℙ (|𝑋𝑛| ≤ 𝜀) ≥ lim
𝑛→∞

ℙ (𝐴𝑛) = ℙ (⋃𝐴𝑛) ≥ ℙ ( lim
𝑛→∞

𝑋𝑛 = 0)

Since 𝑋𝑛 converges to zero almost surely, this event on the right hand side has probability 1,
so in particular the limit on the left has probability 1, as required.

15.4. Strong law of large numbers
Theorem. Let (𝑋𝑛)𝑛∈ℕ be an independent and identically distributed sequence of random
variables, with 𝜇 = 𝔼 [𝑋1] finite. Let 𝑆𝑛 = 𝑋1 +⋯+ 𝑋𝑛. Then

𝑆𝑛
𝑛 → 𝜇 as 𝑛 → ∞ almost surely

In other words,
ℙ( lim

𝑛→∞
𝑆𝑛
𝑛 → 𝜇) = 1

The following proof,madeunder the assumption of a finite fourthmoment, is non-examinable.
A proof can be formulated without this assumption, but it is more complicated.
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VI. Probability

Proof. Let 𝑌 𝑖 = 𝑋𝑖−𝜇. Then 𝔼 [𝑌 𝑖] = 0, and 𝔼 [𝑌4
𝑖 ] ≤ 24(𝔼 [𝑋4

𝑖 ]+𝜇4) < ∞. It then suffices
to show that

𝑆𝑛
𝑛 → 0 a.s.

where 𝑆𝑛 = ∑𝑛
1 𝑋𝑖 and 𝔼 [𝑋𝑖] = 0, 𝔼 [𝑋4

𝑖 ] < ∞. First,

𝑆4𝑛 = (
𝑛
∑
𝑖=1

𝑋𝑖)
4

=
𝑛
∑
𝑖=1

𝑋4
𝑖 + (42)

𝑛
∑
𝑖=1

𝑋2
𝑖 𝑋2

𝑗 + 𝑅

where 𝑅 is a sum of terms of the form 𝑋2
𝑖 𝑋𝑗𝑋𝑘 or 𝑋3

𝑖 𝑋𝑗 or 𝑋𝑖𝑋𝑗𝑋𝑘𝑋ℓ for 𝑖, 𝑗, 𝑘, 𝑙 distinct. Once
we take expectations, each term in 𝑅 will have no contribution to the result, since they all
contain an 𝔼 [𝑋𝑖] = 0 term.

𝔼 [𝑆4𝑛] = 𝑛𝔼 [𝑋4
𝑖 ] + (42)

𝑛(𝑛 − 1)
2 𝔼 [𝑋2

𝑖 𝑋2
𝑗 ] + 𝔼 [𝑅]

= 𝑛𝔼 [𝑋4
1 ] + 3𝑛(𝑛 − 1)𝔼 [𝑋2

1 ] 𝔼 [𝑋2
1 ]

≤ 𝑛𝔼 [𝑋4
1 ] + 3𝑛(𝑛 − 1)𝔼 [𝑋4

1 ]
= 3𝑛2𝔼 [𝑋4

1 ]
by Jensen’s inequality. Now,

𝔼 [
∞
∑
𝑛=1

(𝑆𝑛𝑛 )
4
] ≤

∞
∑
𝑛=1

3
𝑛2𝔼 [𝑋

4
1 ] < ∞

Hence,
∞
∑
𝑛=1

(𝑆𝑛𝑛 )
4
< ∞ with probability 1

Then since the sum of infinitely many positive terms is finite, the terms must converge to
zero.

lim
𝑛→∞

𝑆𝑛
𝑛 → 0 a.s.

15.5. Central limit theorem
Suppose, like before, that we have a sequence of independent and identically distributed
random variables 𝑋𝑛, and suppose further that 𝔼 [𝑋1] = 𝜇, and Var (𝑋1) = 𝜎2 < ∞.

Var (𝑆𝑛𝑛 − 𝜇) = 𝜎2
𝑛

Wecannormalise this new randomvariable 𝑆𝑛
𝑛
−𝜇 bydividing by its standard deviation.

𝑆𝑛
𝑛
− 𝜇

√Var (𝑆𝑛
𝑛
− 𝜇)

=
𝑆𝑛
𝑛
− 𝜇
𝜎
√𝑛

= 𝑆𝑛 − 𝑛𝜇
𝜎√𝑛
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15. Limit theorems

Theorem. For all 𝑥 ∈ ℝ,

ℙ(𝑆𝑛 − 𝑛𝜇
𝜎√𝑛

≤ 𝑥) → Φ(𝑥) = ∫
𝑥

−∞

𝑒−
𝑦2
2

√2𝜋
d𝑦

In other words,
𝑆𝑛 − 𝑛𝜇
𝜎√𝑛

𝑑−→ 𝑍

where 𝑍 is the standard normal distribution.
Less formally, we might say that the central limit theorem shows that, for a large 𝑛,

𝑆𝑛 ≈ 𝑛𝜇 + 𝜎√𝑛𝑍 ∼ 𝑁(𝑛𝜇, 𝑛𝜎2)

Proof. Consider 𝑌 𝑖 =
𝑋𝑖−𝜇
𝜎

. Then the 𝑌 𝑖 have zero expectation and unit variance. It then
suffices to prove the central limit theorem when the 𝑋𝑖 have zero expectation and unit vari-
ance. We assume further that there exists 𝛿 > 0 such that

𝔼 [𝑒𝛿𝑋1] < ∞; 𝔼 [𝑒−𝛿𝑋1] < ∞
We will show that

𝑆𝑛
𝑛

𝑑−→ N(0, 1)
By the continuity property of moment generating functions, it is sufficient to show that for
all 𝜃 ∈ ℝ,

lim
𝑛→∞

𝔼 [𝑒
𝜃𝑆𝑛
𝑛 ] = 𝔼 [𝑒𝜃𝑍] = 𝑒

𝜃2
2

Let𝑚(𝜃) = 𝔼 [𝑒𝜃𝑋1]. Then

𝔼 [𝑒
𝜃𝑆𝑛
𝑛 ] = 𝔼 [𝑒

𝜃
√𝑛

𝑋1]
𝑛

= (𝑚( 𝜃
√𝑛

))
𝑛

We now need to show that

lim
𝑛→∞

(𝑚( 𝜃
√𝑛

))
𝑛

= 𝑒
𝜃2
2

Now, let |𝜃| < 𝛿
2
. In this case,

𝑚(𝜃) = 𝔼 [𝑒𝜃𝑋1]

= 𝔼 [1 + 𝜃𝑋1 +
𝜃2
2 𝑋

2
1 +

∞
∑
𝑘=3

𝜃𝑘
𝑘! 𝑋

𝑘
1 ]

= 𝔼 [1] + 𝔼 [𝜃𝑋1] + 𝔼 [𝜃
2

2 𝑋
2
1] + 𝔼 [

∞
∑
𝑘=3

𝜃𝑘
𝑘! 𝑋

𝑘
1 ]

= 1 + 𝜃2
2 + 𝔼[

∞
∑
𝑘=3

𝜃𝑘
𝑘! 𝑋

𝑘
1 ]
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Now, it suffices to prove that |||𝔼 [∑
∞
𝑘=3

𝜃𝑘

𝑘!
𝑋𝑘
1 ]||| = 𝑜(𝜃2) as 𝜃 → 0. Indeed, if we have this

bound, then 𝑚( 𝜃
√𝑛
) = 1 + 𝜃2

2𝑛
+ 𝑜(𝜃

2

𝑛
), and hence lim𝑛→∞ (𝑚( 𝜃

√𝑛
))

𝑛
= 𝑒

𝜃2
2 . To find this

bound, we know that

||||
𝔼 [

∞
∑
𝑘=3

𝜃𝑘
𝑘! 𝑋

𝑘
1 ]
||||
≤ 𝔼 [

∞
∑
𝑘=3

|𝜃|𝑘|𝑋1|
𝑘

𝑘! ]

= 𝔼 [|𝜃𝑋1|
3

∞
∑
𝑘=0

|𝜃𝑋1|
𝑘

(𝑘 + 3)!]

≤ 𝔼 [|𝜃𝑋1|
3

∞
∑
𝑘=0

|𝜃𝑋1|
𝑘

𝑘! ]

Since |𝜃| ≤ 𝛿
2
,

𝔼[|𝜃𝑋1|
3

∞
∑
𝑘=0

|𝜃𝑋1|
𝑘

𝑘! ] ≤ 𝔼 [|𝜃𝑋1|
3𝑒

𝛿
2
|𝑋1|]

Now,

|𝜃𝑋1|
3𝑒

𝛿
2
|𝑋1| = |𝜃|3

(𝛿
2
|𝑋1|)

3

3! ⋅ 3!

(𝛿
2
)
3 ⋅ 𝑒

𝛿
2
|𝑋1|

Note that

(𝛿
2
|𝑋1|)

3

3! ≤
∞
∑
𝑘=0

(𝛿
2
|𝑋1|)

𝑘

𝑘! = 𝑒
𝛿
2
|𝑋1|

Hence,

|𝜃𝑋1|
3𝑒

𝛿
2
|𝑋1| ≤ |𝜃|3𝑒

𝛿
2
|𝑋1| ⋅ 3!

(𝛿
2
)
3 ⋅ 𝑒

𝛿
2
|𝑋1| = 3!|𝜃|3

(𝛿
2
)
3 𝑒𝛿|𝑋1| = 3!(2|𝜃|𝛿 )

3
𝑒𝛿|𝑋1|

Therefore,
𝑒𝛿|𝑋1| ≤ 𝑒𝛿𝑋1 + 𝑒−𝛿𝑋1

So finally,

𝔼[|𝜃𝑋1|
3

∞
∑
𝑘=0

|𝜃𝑋1|
𝑘

𝑘! ] ≤ 3!(2|𝜃|𝛿 )
3
𝔼 [𝑒𝛿𝑋1 + 𝑒−𝛿𝑋1] = 𝑜(|𝜃|2)

as 𝜃 → 0.

422



15. Limit theorems

15.6. Applications of central limit theorem
We can use the central limit theorem to approximate the binomial distribution using the
normal distribution. Suppose that 𝑆𝑛 ∼ Bin(𝑛, 𝑝). Then 𝑆𝑛 = ∑𝑛

𝑖=1 𝑋𝑖, where the 𝑋𝑖 have
the Bernoulli distribution with parameter 𝑝. We know that 𝔼 [𝑆𝑛] = 𝑛𝑝, and Var (𝑆𝑛) =
𝑛𝑝(1 − 𝑝). Therefore, in particular,

𝑆𝑛 ≈ N(𝑛𝑝, 𝑛𝑝(1 − 𝑝))

for 𝑛 large. Note that we showed before that

Bin(𝑛, 𝜆𝑛) → Poi(𝜆)

Note that with this approximation to the binomial, we let the parameter 𝑝 depend on 𝑛.
Since this is the case, we can no longer apply the central limit theorem, and we get a Poisson
distributed approximation.

We can, however, use the central limit theorem to find a normal approximation for a Poisson
random variable 𝑆𝑛 ∼ Poi(𝑛), since 𝑆𝑛 can be written as ∑

𝑛
𝑖=1 𝑋𝑖 where the 𝑋𝑖 ∼ Poi(1).

Then
𝑆𝑛 ≈ N(𝑛, 𝑛)

15.7. Sampling error via central limit theorem
Suppose individuals independently vote ‘yes’ (with probability 𝑝) or ‘no’ (with probability
1 − 𝑝). We can sample the population to find an approximation for 𝑝. Pick 𝑁 individuals
at random, and let ̂𝑝𝑁 = 𝑆𝑁

𝑁
, where 𝑆𝑛 is the number of individuals who voted ‘yes’. We

would like to find the minimum 𝑁 such that | ̂𝑝𝑁 − 𝑝| ≤ 4% with probability at least 99%.
We have

𝑆𝑁 ∼ Bin(𝑁, 𝑝) ≈ 𝑁𝑝 +√𝑁𝑝(1 − 𝑝)𝑍; 𝑍 ∼ N(0, 1)
Hence,

𝑆𝑁
𝑁 ≈ 𝑝 +√

𝑝(1 − 𝑝)
𝑁 𝑍 ⟹ | ̂𝑝𝑁 − 𝑝| ≈ √

𝑝(1 − 𝑝)
𝑁 |𝑍|

We then want to find 𝑁 such that

ℙ(√
𝑝(1 − 𝑝)

𝑁 |𝑍| ≤ 0.04) ≥ 0.99

We can compute this from the tables of the standard normal distribution. If 𝑧 = 2.58, then
ℙ (|𝑍| ≥ 2.58) = 0.01, hence we need an 𝑁 such that

0.04
√

𝑁
𝑝(1 − 𝑝) ≥ 2.58

In the worst case scenario, 𝑝 = 1
2
would give the largest 𝑁. So we need 𝑁 ≥ 1040 to get a

good result for all 𝑝.
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15.8. Buffon’s needle
Consider a set of parallel lines on a plane, all a distance 𝐿 apart. Imagine dropping a needle
of length ℓ ≤ 𝐿 onto this plane at random. What is the probability that it intersects at least
one line?

We will interpret a random drop to be represented by independent values 𝑥 and 𝜃, where
𝑥 is the perpendicular distance from the lower end of the needle to the nearest line above
it, and 𝜃 is the angle between the horizontal and the needle, where a value of 𝜃 = 0means
that the needle is horizontal, and higher values of 𝜃 mean that the needle has been rotated
𝜃 radians anticlockwise. We assume that Θ ∼ U[0, 𝜋], and 𝑋 ∼ U[0, 𝐿], and that they are
independent. The needle intersects a line if and only if ℓ sin 𝜃 ≥ 𝑥. We have

ℙ (intersection) = ℙ (𝑋 ≤ ℓ sinΘ)

= ∫
𝐿

0
∫

𝜋

0

1
𝜋𝐿1(𝑥 ≤ ℓ sin 𝜃) d𝑥 d𝜃

= 2ℓ
𝜋𝐿

Let this probability be denoted by 𝑝. So we can compute an approximation to 𝜋 by find-
ing

𝜋 = 2ℓ
𝑝𝐿

We can use the sampling error calculation above to find the amount of needles required to
get a good approximation to𝜋 (within 0.1%) with probability ast least 99%, so wewant

ℙ (|�̂�𝑛 − 𝜋| ≤ 0.001) ≥ 0.99

Let 𝑆𝑛 be the number of needles intersecting a line. Then 𝑆𝑛 ∼ Bin(𝑛, 𝑝). So by the central
limit theorem,

𝑆𝑛 ≈ 𝑛𝑝 +√𝑛𝑝(1 − 𝑝)𝑍 ⟹ ̂𝑝𝑛 =
𝑆𝑛
𝑛 = 𝑝 +√

𝑝(1 − 𝑝)
𝑛 𝑍

Hence,

̂𝑝𝑛 − 𝑝 ≈√
𝑝(1 − 𝑝)

𝑛 𝑍

Now, let 𝑓(𝑥) = 2ℓ/𝑥𝐿. Then 𝑓(𝑝) = 𝜋, 𝑓′(𝑝) = −𝜋
𝑝
, and �̂�𝑛 = 𝑓( ̂𝑝𝑛). We can then use a

Taylor expansion to find

�̂�𝑛 = 𝑓( ̂𝑝𝑛) ≈ 𝑓(𝑝) + ( ̂𝑝𝑛 − 𝑝)𝑓′(𝑝) ⟹ �̂�𝑛 ≈ 𝜋 − ( ̂𝑝𝑛 − 𝑝)𝜋𝑝

Hence,

�̂�𝑛 − 𝜋 ≈ −𝜋𝑝√
𝑝(1 − 𝑝)

𝑛 = −𝜋
√

1 − 𝑝
𝑝𝑛 𝑍
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15. Limit theorems

We want

ℙ(𝜋
√

1 − 𝑝
𝑝𝑛 |𝑍| ≤ 0.001) ≥ 0.99

So using tables, we find in the worst case scenario that 𝑛 ≈ 3.75×107. So this approximation
becomes good very slowly.

15.9. Bertrand’s paradox

Consider a circle of radius 𝑟, and draw a random chord on the circle. What is the probability
that its length 𝐶 is less than 𝑟? There are two interpretations of the words ‘random chord’,
that give different results. This is Bertrand’s paradox.

(i) First, let us interpret ‘random chord’ as follows. Let 𝑋 ∼ U[0, 𝑟], and then we draw
a chord perpendicular to a radius, such that it intersects the radius at a distance of 𝑋
from the origin. Then we have formed a triangle between this intersection point, one
end of the chord, and the circle’s centre. By Pythagoras’ theorem, the length of the
chord is then twice the height of this triangle, so 𝐶 = 2√𝑟2 − 𝑋2. Hence,

ℙ (𝐶 ≤ 𝑟) = ℙ (2√𝑟2 − 𝑋2 ≤ 𝑟)
= ℙ (4(𝑟2 − 𝑋2) ≤ 𝑟2)

= ℙ(𝑋 ≥ √3
2 𝑟)

= 1 − √3
2 ≈ 0.134

(ii) Instead, let us fix one end point of the chord𝐴, and letΘ ∼ U[0, 2𝜋]. Let the other end
point 𝐵 be such that the angle between the radii 𝑂𝐴 and 𝑂𝐵 is Θ. Then if Θ ∈ [0, 𝜋],
the length of the chord can be found by splitting this triangle in two by dropping a
perpendicular from the centre, giving

𝐶 = 2𝑟 sin Θ2

If Θ ∈ [𝜋, 2𝜋], then

𝐶 = 2𝑟 sin 2𝜋 − Θ
2 = 2𝑟 sin Θ2
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as before. Now,

ℙ (𝐶 ≤ 𝑟) = ℙ (2𝑟 sin Θ2 ≤ 𝑟)

= ℙ (sin Θ2 ≤ 1
2)

= ℙ (Θ ≤ 𝜋
3 ) + ℙ (Θ ≥ 5𝜋

3 )

= 1
6 +

1
6

= 1
3 ≈ 0.333

Clearly, the two probabilities do not match.
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16. Gaussian vectors

16. Gaussian vectors
16.1. Multidimensional Gaussian random variables
Recall that a random variable 𝑋 with values in ℝ is called Gaussian (or normal) if

𝑋 = 𝜇 + 𝜎𝑍; 𝜇 ∈ ℝ, 𝜎 ≥ 0, 𝑍 ∼ N(0, 1)

The density function of 𝑋 is

𝑓(𝑥) = 1
√2𝜋𝜎2

exp(−(𝑥 − 𝜇)2
2𝜎2 )

Now, let 𝑋 = (𝑋1,… , 𝑋𝑛)⊺ with values in ℝ𝑛. Then we define that 𝑋 is a Gaussian vector
(also called Gaussian) if

∀𝑢 = (
𝑢1
⋮
𝑢𝑛
) ∈ ℝ𝑛, 𝑢⊺𝑋 =

𝑛
∑
𝑖=1

𝑢𝑖𝑋𝑖 = 𝜇 + 𝜎𝑍

so any linear combination of the 𝑋𝑖 is Gaussian. This does not require that the 𝑋𝑖 are inde-
pendent, just that their sum is always Gaussian.

Let 𝑋 be Gaussian in ℝ𝑛. Suppose that 𝐴 is an 𝑚 × 𝑛matrix, and 𝑏 ∈ ℝ𝑚. Then 𝐴𝑋 + 𝑏 is
also Gaussian. Indeed, let 𝑢 ∈ ℝ𝑚, and let 𝑣 = 𝐴⊺𝑢. Then

𝑢⊺(𝐴𝑋 + 𝑏) = 𝑢⊺𝐴𝑋 + 𝑢⊺𝑏 = 𝑣⊺𝑋 + 𝑢⊺𝑏

Since 𝑋 is Gaussian, 𝑣⊺𝑋 is also Gaussian. An additive constant preserves this property, so
the entire expression is Gaussian.

16.2. Expectation and variance
We define the mean of a Gaussian vector 𝑋 as

𝜇 = 𝔼 [𝑋] = (
𝔼 [𝑋1]
⋮

𝔼 [𝑋𝑛]
) ; 𝜇𝑖 = 𝔼 [𝑋𝑖]

We further define

𝑉 = Var (𝑋) = 𝔼 [(𝑋 − 𝜇)(𝑋 − 𝜇)⊺]

=
⎛
⎜
⎜
⎝

𝔼 [(𝑋1 − 𝜇1)2] 𝔼 [(𝑋1 − 𝜇1)(𝑋2 − 𝜇2)] ⋯ 𝔼 [(𝑋1 − 𝜇1)(𝑋𝑛 − 𝜇𝑛)]
𝔼 [(𝑋2 − 𝜇2)(𝑋1 − 𝜇1)] 𝔼 [(𝑋2 − 𝜇2)2] ⋯ 𝔼 [(𝑋2 − 𝜇2)(𝑋𝑛 − 𝜇𝑛)]

⋮ ⋮ ⋱ ⋮
𝔼 [(𝑋𝑛 − 𝜇𝑛)(𝑋1 − 𝜇1)] 𝔼 [(𝑋𝑛 − 𝜇1)(𝑋𝑛 − 𝜇2)] ⋯ 𝔼 [(𝑋𝑛 − 𝜇𝑛)2]

⎞
⎟
⎟
⎠
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Hence the components of 𝑉 are

𝑉 𝑖𝑗 = Cov (𝑋𝑖, 𝑋𝑗)

In particular, 𝑉 is a symmetric matrix, and

𝔼 [𝑢⊺𝑋] = 𝔼 [
𝑛
∑
𝑖=1

𝑢𝑖𝑋𝑖] =
𝑛
∑
𝑖=1

𝑢𝑖𝜇𝑖 = 𝑢⊺𝜇

and

Var (𝑢⊺𝑋) = Var (
𝑛
∑
𝑖=1

𝑢𝑖𝑋𝑖) =
𝑛
∑
𝑖,𝑗=1

𝑢𝑖 Cov (𝑋𝑖, 𝑋𝑗) 𝑢𝑗 = 𝑢⊺𝑉𝑢

Hence𝑢⊺𝑋 ∼ N(𝑢⊺𝜇, 𝑢⊺𝑉𝑢). Further,𝑉 is a non-negative definitematrix. Indeed, let𝑢 ∈ ℝ𝑛.
Then Var (𝑢⊺𝑋) = 𝑢⊺𝑉𝑢. Since Var (𝑢⊺𝑋) ≥ 0, we have 𝑢⊺𝑉𝑢 ≥ 0.

16.3. Moment generating function
We define the moment generating function of 𝑋 by

𝑚(𝜆) = 𝔼 [𝑒𝜆⊺𝑋]

where 𝜆 ∈ ℝ𝑛. Then, we know that 𝜆⊺𝑋 ∼ N(𝜆⊺𝜇, 𝜆⊺𝑉𝜆). Hence 𝑚(𝜆) is the moment
generating function of a normal random variable with the abovemean and variance, applied
to the parameter 𝜃 = 1.

𝑚(𝜆) = exp(𝜆⊺𝜇 + 𝜆⊺𝑉𝜆
2 )

Since themoment generating function uniquely characterises the distribution, it is clear that
a Gaussian vector is uniquely characterised by its mean vector 𝜇 and variance matrix 𝑉 . In
this case, we write 𝑋 ∼ N(𝜇, 𝑉).

16.4. Constructing Gaussian vectors
Given a 𝜇 and a 𝑉 matrix, we might like to create a Gaussian vector that has this mean and
variance. Let 𝑍1,… , 𝑍𝑛 be a list of independent and identically distributed standard normal
random variables. Let 𝑍 = (𝑍1,… , 𝑍𝑛)⊺. Then 𝑍 is a Gaussian vector.

Proof. For any vector 𝑢 ∈ ℝ𝑛, we have

𝑢⊺𝑍 =
𝑛
∑
𝑖=1

𝑢𝑖𝑍𝑖
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Because the 𝑍𝑖 are independent, it is easy to take the moment generating function to get

𝔼[exp(𝜆
𝑛
∑
𝑖=1

𝑢𝑖𝑧𝑖)] = 𝔼[
𝑛
∏
𝑖=1

exp(𝜆𝑢𝑖𝑍𝑖)]

=
𝑛
∏
𝑖=1

𝔼 [exp(𝜆𝑢𝑖𝑍𝑖)]

=
𝑛
∏
𝑖=1

exp((𝜆𝑢𝑖)
2

2 )

= exp(𝜆
2|𝑢|2
2 )

So 𝑢⊺𝑍 ∼ N(0, |𝑢|2), which is normal as required.

Now, 𝔼 [𝑍] = 0, and Var (𝑍) = 𝐼, the identity matrix. We then write 𝑍 ∼ N(0, 𝐼). Now, let
𝜇 ∈ ℝ𝑛, and 𝑉 be a non-negative definite matrix. We want to construct a Gaussian vector 𝑋
such that its mean is 𝜇 and its expectation is𝑉 , by using 𝑍. In the one-dimensional case, this
is easy, since 𝜇 is a single value, and 𝑉 contains only one element, 𝜎2. In this case therefore,
𝑍 ∼ N(0, 1) so 𝜇 + 𝜎𝑍 ∼ N(𝜇, 𝜎2). In the general case, since 𝑉 is non-negative definite, we
can write

𝑉 = 𝑈⊺𝐷𝑈
where 𝑈−1 = 𝑈⊺, and 𝐷 is a diagonal matrix with diagonal entries 𝜆𝑖 ≥ 0. We define the
square root of the matrix 𝑉 to be

𝜎 = 𝑈⊺√𝐷𝑈
where√𝐷 is the diagonal matrix with diagonal entries√𝜆𝑖. Then clearly,

𝜎2 = 𝑈⊺√𝐷𝑈𝑈⊺√𝐷𝑈 = 𝑈⊺√𝐷√𝐷𝑈 = 𝑈⊺𝐷𝑈 = 𝑉
Now, let 𝑋 = 𝜇 + 𝜎𝑍. We now want to show that 𝑋 ∼ N(𝜇, 𝑉).

Proof. 𝑋 is certainly Gaussian, since it is generated by a linear multiple of the Gaussian
vector 𝑍, with an added constant. By linearity,

𝔼 [𝑋] = 𝜇
and

Var (𝑋) = 𝔼 [(𝑋 − 𝜇)(𝑋 − 𝜇)⊺]
= 𝔼 [(𝜎𝑍)(𝜎𝑍)⊺]
= 𝔼 [𝜎𝑍𝑍⊺𝜎⊺]
= 𝜎𝔼 [𝑍𝑍⊺] 𝜎⊺
= 𝜎𝜎⊺
= 𝜎𝜎
= 𝑉
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16.5. Density
We can calculate the density of such a Gaussian vector 𝑋 ∼ N(𝜇, 𝑉). First, consider the case
where 𝑉 is positive definite. Recall that in the one-dimensional case,

𝑓𝑋(𝑥) = 𝑓𝑍(𝑧)|𝐽|; 𝑥 = 𝜇 + 𝜎𝑧
In general, since 𝑉 is positive definite, 𝜎 is invertible. So 𝑥 = 𝜇 + 𝜎𝑧 gives 𝑧 = 𝜎−1(𝑥 − 𝜇).
Hence,

𝑓𝑋(𝑥) = 𝑓𝑍(𝑧)|𝐽|

=
𝑛
∏
𝑖=1

exp(−𝑧2𝑖
2
)

√2𝜋
||det𝜎−1||

= 1
(2𝜋)𝑛/2 exp(−

|𝑧|2
2 ) ⋅ 1

√det𝑉
= 1
√(2𝜋)𝑛 det𝑉

exp(−𝑧
⊺𝑧
2 )

Now,

𝑧⊺𝑧 = (𝜎−1(𝑥 − 𝜇))⊺(𝜎−1(𝑥 − 𝜇))
= (𝑥 − 𝜇)⊺(𝜎−1)⊺𝜎−1(𝑥 − 𝜇)
= (𝑥 − 𝜇)⊺𝜎−2(𝑥 − 𝜇)
= (𝑥 − 𝜇)⊺𝑉−1(𝑥 − 𝜇)

Hence,
𝑓𝑋(𝑥) =

1
√(2𝜋)𝑛 det𝑉

exp(−(𝑥 − 𝜇)⊺𝑉−1(𝑥 − 𝜇)
2 )

In the case where 𝑉 is just non-negative definite (so it could have some zero eigenvalues),
we can make an orthogonal change of basis, and assume that

𝑉 = (𝑈 0
0 0) ; 𝜇 = (𝜆𝜈)

where 𝑈 is an𝑚×𝑚 positive definite matrix, where𝑚 < 𝑛, and where 𝜆 ∈ ℝ𝑚, 𝜈 ∈ ℝ𝑛−𝑚.
For 𝑈 , we can then apply the result above. We can write

𝑋 = (𝑌𝜈)

where 𝑌 has density

𝑓𝑌 (𝑦) =
1

√(2𝜋)𝑛 det𝑈
exp(−(𝑦 − 𝜆)⊺𝑈−1(𝑦 − 𝜆)

2 )
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16.6. Diagonal variance
Note that if a Gaussian vector 𝑋 = (𝑋1,… , 𝑋𝑛) is comprised of independent normal ran-
dom variables, then 𝑉 is a diagonal matrix. Indeed, since the 𝑋𝑖 are independent then
Cov (𝑋𝑖, 𝑋𝑗) = 0 for all 𝑖 ≠ 𝑗, so 𝑉 is diagonal.

Lemma. If 𝑉 is diagonal, then the 𝑋𝑖 are independent.
Note that zero covariance does not in general imply independence, as we saw earlier in the
course, but in this specific case with Gaussian variables, this is true.

Proof. Since 𝑉 is diagonal with diagonal entries 𝜆𝑖, we have

(𝑥 − 𝜇)⊺𝑉−1(𝑥 − 𝜇) =
𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇𝑖)2
𝜆𝑖

Hence,

𝑓𝑋(𝑥) =
1

√(2𝜋)𝑛 det𝑉
exp(−

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇𝑖)2
2𝜆𝑖

)

So 𝑓𝑋 factorises into a product. Hence the 𝑋𝑖 are independent.

We can construct an alternative proof using moment generating functions.

Proof.

𝑚(𝜃) = 𝔼 [𝑒𝜃⊺𝑋]

= exp(𝜃⊺𝜇 + 𝜃⊺𝑉𝜃
2 )

= exp(
𝑛
∑
𝑖=1

𝜃𝑖𝜇𝑖 +
1
2

𝑛
∑
𝑖=1

𝜃2𝑖 𝜆𝑖)

Hence𝑚(𝜃) factorises into the moment generating functions of Gaussian random variables
in ℝ.

In summary, for Gaussian vectors, we have (𝑋1,… , 𝑋𝑛) independent if and only if 𝑉 is diag-
onal.

16.7. Bivariate Gaussian vectors
A bivariate Gaussian is a Gaussian vector of two variables (𝑛 = 2). Let 𝑋 = (𝑋1, 𝑋2). Let
𝜇𝑘 = 𝔼 [𝑋𝑘] and 𝜎2𝑘 = Var (𝑋𝑘). We further define the correlation

𝜌 = Corr (𝑋1, 𝑋2) =
Cov (𝑋1, 𝑋2)

√Var (𝑋1)Var (𝑋2)
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Note that due to the Cauchy–Schwarz inequality, we have 𝜌 ∈ [−1, 1]. We can write the
variance matrix as

𝑉 = ( 𝜎21 𝜌𝜎1𝜎2
𝜌𝜎1𝜎2 𝜎22

)

This matrix 𝑉 is non-negative definite. Indeed, let 𝑢 = (𝑢1𝑢2
), then

𝑢⊺𝑉𝑢 = (1 − 𝜌)(𝜎21𝑢21 + 𝜎22𝑢22) + 𝜌(𝜎1𝑢1 + 𝜎2𝑢2)2
= (1 + 𝜌)(𝜎21𝑢21 + 𝜎22𝑢22) − 𝜌(𝜎1𝑢1 − 𝜎2𝑢2)2

Since 𝜌 ∈ [−1, 1], this is non-negative for all choices of 𝜌.

16.8. Density of bivariate Gaussian
When 𝜌 = 0 and 𝜎1, 𝜎2 > 0, we have

𝑓𝑋1,𝑋2(𝑥1, 𝑥2) =
2
∏
𝑖=1

1

√2𝜋𝜎2𝑘
exp(−(𝑥𝑘 − 𝜇𝑘)2

2𝜎2𝑘
)

So 𝑋1 and 𝑋2 are independent in this case.

16.9. Conditional expectation
Let (𝑋1, 𝑋2) be a bivariate Gaussian vector. Then let 𝑎 ∈ ℝ, and consider 𝑋2 − 𝑎𝑋1. We
have

Cov (𝑋2 − 𝑎𝑋1, 𝑋1) = Cov (𝑋2, 𝑋1)−𝑎Cov (𝑋1, 𝑋1) = Cov (𝑋2, 𝑋1)−𝑎Var (𝑋1) = 𝜌𝜎1𝜎2−𝑎𝜎21

Now, let 𝑎 = 𝜌𝜎2
𝜎1
, so Cov (𝑋2 − 𝑎𝑋1, 𝑋1) = 0. Since 𝑌 = 𝑋2 − 𝑎𝑋1 is Gaussian, (𝑋1, 𝑌) is a

Gaussian vector, and so 𝑌 and 𝑋1 are independent. Now, we can find

𝔼 [𝑋2 ∣ 𝑋1] = 𝔼 [𝑌 + 𝑎𝑋1 ∣ 𝑋1]
= 𝔼 [𝑌] + 𝑎𝔼 [𝑋1 ∣ 𝑋1]
= 𝔼 [𝑋2 − 𝑎𝑋1] + 𝑎𝑋1

In particular, since 𝑋2 = (𝑋2 − 𝑎𝑋1) + 𝑎𝑋1, we can say that given 𝑋1,

𝑋2 ∼ N(𝜇2 − 𝑎𝜇1 + 𝑎𝑋1,Var (𝑋2 − 𝑎𝑋1))

and
Var (𝑋2 − 𝑎𝑋1) = Var (𝑋2) + 𝑎2 Var (𝑋1) − 2𝑎Cov (𝑋1, 𝑋2)
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16.10. Multivariate central limit theorem
This subsection is non-examinable, but included for completeness. Let𝑋 be a randomvector
inℝ𝑘 with 𝜇 = 𝔼 [𝑋] and covariance matrix Σ. Let 𝑋1, 𝑋2,… be independent and identically
distributed with the same distribution as 𝑋 . Then

𝑆𝑛 =
1
√𝑛

𝑛
∑
𝑖=1

𝑋𝑖 − 𝔼 [𝑋𝑖]
𝑑−→ N(𝜇, Σ)

Convergence in distribution here means that for all reasonable 𝐵 ⊆ ℝ𝑘, we have

ℙ (𝑆𝑛 ∈ 𝐵) → ℙ (N(𝜇, Σ) ∈ 𝐵)
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17. Simulation of random variables
17.1. Sampling from uniform distribution
It is easy for a computer to generate a random number in the interval [0, 1).
We can use this as a source of randomness to simulate a random variable with an arbitrary
density. Let 𝑈 ∼ U[0, 1], then let 𝑋 = − log𝑈 . Then

ℙ (𝑋 ≤ 𝑥) = ℙ (log𝑈 ≤ 𝑥) = ℙ (𝑈 ≥ 𝑒−𝑥) = 1 − 𝑒−𝑥

So 𝑋 is exponentially distributed with parameter 1. More generally, we have the follow-
ing.

Theorem. Let 𝑋 be a continuous random variable with distribution function 𝐹. Then, if
𝑈 ∼ U[0, 1], then 𝐹−1(𝑈) ∼ 𝐹.

Proof. Set 𝑌 = 𝐹−1(𝑈). Then

ℙ (𝑌 ≤ 𝑥) = ℙ (𝐹−1(𝑈) ≤ 𝑥)
= ℙ (𝑈 ≤ 𝐹(𝑥))
= 𝐹(𝑥)

One way of thinking of this function 𝐹−1 function is that it takes an input probability 𝑝, and
outputs the 𝑥 value such that ℙ (𝑋 ≤ 𝑥) = 𝑝. Then, if 𝑈 is uniformly distributed, we are
essentially sampling a random 𝑝.

17.2. Rejection sampling
In certain cases, finding such an 𝐹−1 function is difficult, if not impossible, especially where
this function has jumps or has a higher dimension. Here is an alternative sampling method.
Suppose 𝐴 ⊂ [0, 1]𝑑. We then define

𝑓(𝑥) = 1(𝑥 ∈ 𝐴)
|𝐴|

where |𝐴| is the size or volume of this set𝐴. Let 𝑋 have density function 𝑓. How can we sim-
ulate 𝑋? Let (𝑈𝑛) be an independent and identically distributed sequence of 𝑑-dimensional
uniform random variables, i.e.

𝑈𝑛 = (𝑈𝑘,𝑛∶ 𝑘 ∈ {1,… , 𝑑}); (𝑈𝑘,𝑛) ∼ U[0, 1] i.i.d.

Now, let
𝑁 = min {𝑛 ≥ 1∶ 𝑈𝑛 ∈ 𝐴}
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So we keep generating random numbers until a𝑈𝑛 lies in 𝐴, and reject all other possibilities.
We now show that 𝑈𝑁 ∼ 𝑓. In particular, we want to show that for all 𝐵 ⊆ [0, 1]𝑑,

ℙ (𝑈𝑛 ∈ 𝐵) = ∫
𝐵
𝑓(𝑥) d𝑥

We have

ℙ (𝑈𝑛 ∈ 𝐵) =
∞
∑
𝑛=1

ℙ (𝑈𝑁 ∈ 𝐵,𝑁 = 𝑛)

=
∞
∑
𝑛=1

ℙ (𝑈𝑛 ∈ 𝐴 ∩ 𝐵,𝑈𝑛−1 ∉ 𝐴,… ,𝑈1 ∉ 𝐴)

=
∞
∑
𝑛=1

ℙ (𝑈𝑛 ∈ 𝐴 ∩ 𝐵)ℙ (𝑈𝑛−1 ∉ 𝐴)⋯ℙ (𝑈1 ∉ 𝐴)

=
∞
∑
𝑛=1

|𝐴 ∩ 𝐵|(1 − |𝐴|)𝑛−1

= |𝐴 ∩ 𝐵|
|𝐴|

= ∫
𝐴

1(𝑥 ∈ 𝐵)
|𝐴| d𝑥

= ∫
𝐵
𝑓(𝑥) d𝑥

Now suppose that 𝑓 is a density on [0, 1]𝑑−1 which is bounded by 𝜆 > 0. We can use rejection
sampling to sample a random variable 𝑋 with this density. Consider the set

𝐴 = {(𝑥1,… , 𝑥𝑑) ∈ [0, 1]𝑑 ∶ 𝑥𝑑 ≤
𝑓(𝑥1,… , 𝑥𝑑−1)

𝜆 }

From the above, we can generate a uniform random variable 𝑌 = (𝑋1,… , 𝑋𝑑) on 𝐴. Let
𝑋 = (𝑋1,… , 𝑋𝑑−1), then we will show that 𝑋 ∼ 𝑓. In particular, we want to show that for
all 𝐵 ⊆ [0, 1]𝑑−1,

ℙ (𝑋 ∈ 𝐵) = ∫
𝐵
𝑓(𝑥) d𝑥
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We find that

ℙ (𝑋 ∈ 𝐵) = ℙ ((𝑋1,… , 𝑋𝑑−1) ∈ 𝐵)
= ℙ ((𝑋1,… , 𝑋𝑑) ∈ (𝐵 × [0, 1]) ∩ 𝐴)

= |(𝐵 × [0, 1]) ∩ 𝐴|
|𝐴|

|(𝐵 × [0, 1]) ∩ 𝐴| = ∫⋯∫1((𝑋1,… , 𝑋𝑑) ∈ (𝐵 × [0, 1]) ∩ 𝐴) d𝑥1… d𝑥𝑑

= ∫⋯∫1((𝑋1,… , 𝑋𝑑−1) ∈ 𝐵) ⋅ 1(𝑥𝑑 ≤
𝑓(𝑥1,… , 𝑥𝑑−1)

𝜆 ) d𝑥1… d𝑥𝑑

= ∫⋯∫1((𝑋1,… , 𝑋𝑑−1) ∈ 𝐵) ⋅ 𝑓(𝑥1,… , 𝑥𝑑−1)
𝜆 d𝑥1… d𝑥𝑑−1

= 1
𝜆 ∫⋯∫1((𝑋1,… , 𝑋𝑑−1) ∈ 𝐵) ⋅ 𝑓(𝑥1,… , 𝑥𝑑−1) d𝑥1… d𝑥𝑑−1

= 1
𝜆 ∫𝐵

𝑓(𝑥) d𝑥

|𝐴| = 1
𝜆 ∫[0,1]𝑑−1

𝑓(𝑥) d𝑥

= 1
𝜆

∴ ℙ (𝑋 ∈ 𝐵) = ∫
𝐵
𝑓(𝑥) d𝑥
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VII. Vector Calculus

Lectured in Lent 2021 by Dr. A. Ashton
This course brings the tools of calculus to higher dimensions. We move away from one-
dimensional graphs and towards curves and surfaces, building the foundation for a subject
called differential geometry. These new kinds of objects have different ways of calculating
derivatives, giving rise to various differential operators. One such operator, the gradient op-
erator, shows how the value of a function changes when the input point is moved slightly
in all possible directions in space. These differential operators show up in many formu-
las in mathematics and physics, and we explore various tools to solve equations involving
them.

We also study tensors, which can be thought of as a step up fromvectors, matrices, or bilinear
maps. We can also apply differential operators to tensors. Tensors can be seen in physics,
such as the linear strain tensor which explains some features of how an elastic body deforms,
or the inertia tensor which shows how mass is concentrated in a rigid body.
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1. Differential geometry of curves

1. Differential geometry of curves
1.1. Notation
Throughout this course, a column vector e.g.

(
𝑎
𝑏
𝑐
)

should be interpreted as the vector

x = 𝑎e𝑥 + 𝑏e𝑦 + 𝑥e𝑧

where {e𝑥, e𝑦, e𝑧} are the basis vectors aligned with the fixed Cartesian 𝑥, 𝑦, 𝑧 axes inℝ3. We
will be dealing with various kinds of basis vectors through the course, so it is useful to define
now that column vectors written as above always represent the standard basis.

1.2. Parametrised curves and smoothness
A parametrised curve 𝐶 in 𝑅3 is the image of a continuous map x∶ [𝑎, 𝑏] → ℝ3, in which
𝑡 ↦ x(𝑡). In Cartesian coordinates,

x(𝑡) = (
𝑥1(𝑡)
𝑥2(𝑡)
𝑥3(𝑡)

) = (
𝑥(𝑡)
𝑦(𝑡)
𝑧(𝑡)

)

The resultant curve has a direction, from x(𝑎) to x(𝑏).
Definition. We say that 𝐶 is a differentiable curve if each of the components {𝑥𝑖(𝑡)} are
differentiable functions. 𝐶 is regular if it is differentiable and |x′(𝑡)| ≠ 0. If𝐶 is differentiable
and regular, we say that 𝐶 is smooth.

Note. We need this regularity condition because it is quite easy to create ‘bad curves’ with
cusps and spikes using only differentiable functions, for example

x(𝑡) = (𝑡2, 𝑡3)

The components are clearly differentiable, but x(𝑡)has a cusp at 𝑡 = 0. At this point, |x′(0)| =
0.
Definition. Recall that 𝑥𝑖(𝑡) is called ‘differentiable’ at 𝑡 if

𝑥𝑖(𝑡 + ℎ) = 𝑥𝑖(𝑡) + 𝑥′𝑖(𝑡)ℎ + 𝑜(ℎ)

where 𝑜(ℎ) represents a function that obeys

lim
ℎ→0

𝑜(ℎ)
ℎ = 0
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VII. Vector Calculus

In terms of vectors,
x(𝑡 + ℎ) = x(𝑡) + x′(𝑡)ℎ + 𝑜(ℎ)

where here 𝑜(ℎ) is a vector for which

lim
ℎ→0

|𝑜(ℎ)|
ℎ = 0

1.3. Arc length
We can approximate the length of a curve 𝐶 by splitting it into small straight lines and sum-
ming the lengths of such lines. We will introduce a partition 𝑃 of [𝑎, 𝑏] with 𝑡0 = 𝑎, 𝑡𝑁 = 𝑏
and

𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑁
Let us now set Δ𝑡𝑖 = 𝑡𝑖+1 − 𝑡𝑖 and Δ𝑡 = max𝑖 Δ𝑡𝑖. The length of the curve relative to 𝑃 is
defined as

ℓ(𝐶, 𝑃) =
𝑁−1
∑
𝑖=0

|x(𝑡𝑖+1) − x(𝑡𝑖)|

As Δ𝑡 gets smaller, we would expect ℓ(𝐶, 𝑃) to give a better approximation to the true length
of 𝐶, which we will call ℓ(𝐶). Therefore we can define the length of 𝐶 by

ℓ(𝐶) = lim
Δ𝑡→0

𝑁−1
∑
𝑖=0

|x(𝑡𝑖+1) − x(𝑡𝑖)| = lim
Δ𝑡→0

ℓ(𝐶, 𝑃)

If this limit doesn’t exist, we say that the curve is non-rectifiable. Suppose 𝐶 is differentiable.
Then

x(𝑡𝑖+1) = x(𝑡𝑖 + 𝑡𝑖+1 − 𝑡𝑖)
= x(𝑡𝑖 + Δ𝑡𝑖)
= x(𝑡𝑖) + x′(𝑡𝑖)Δ𝑡𝑖 + 𝑜(Δ𝑡𝑖)

It follows then that
|x(𝑡𝑖+1) − x(𝑡𝑖)| = |x′(𝑡𝑖)|Δ𝑡𝑖 + 𝑜(Δ𝑡𝑖)

So if 𝐶 is differentiable,

ℓ(𝐶, 𝑃) = lim
Δ𝑡→0

𝑁−1
∑
𝑖=0

(|x′(𝑡𝑖)|Δ𝑡𝑖 + 𝑜(Δ𝑡𝑖))

Recall that this 𝑜(Δ𝑡𝑖) term represents a function for which 𝑜(Δ𝑡𝑖)/Δ𝑡𝑖 → 0. So for any 𝜀 > 0,
if Δ𝑡 = max𝑖 Δ𝑡𝑖 is sufficiently small, we have |𝑜(Δ𝑡𝑖)| <

𝜀
𝑏−𝑎

Δ𝑡𝑖, for 𝑖 = 0,… ,𝑁 − 1. So by
the Triangle Inequality, choosing Δ𝑡 sufficiently small,

||||
ℓ(𝐶, 𝑃) −

𝑁−1
∑
𝑖=0

|x′(𝑡𝑖)|Δ𝑡𝑖
||||
=
||||

𝑁−1
∑
𝑖=0

𝑜(Δ𝑡𝑖)
||||
< 𝜀
𝑏 − 𝑎

𝑁−1
∑
𝑖=0

Δ𝑡𝑖
⏟⎵⏟⎵⏟

𝑏−𝑎

= 𝜀
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1. Differential geometry of curves

So the left hand side tends to zero as Δ𝑡 → 0. We then get

ℓ(𝐶) = lim
Δ𝑡→0

ℓ(𝐶, 𝑃)

= lim
Δ𝑡→0

𝑁−1
∑
𝑖=0

|x′(𝑡𝑖)|Δ𝑡𝑖

= ∫
𝑏

𝑎
|x′(𝑡)| d𝑡

according to Analysis I, and the definition of the Riemann Integral. So in summary, if
𝐶∶ [𝑎, 𝑏] ∋ 𝑡 ↦ x(𝑡), then

ℓ(𝐶) = ∫
𝑏

𝑎
|x′(𝑡)| d𝑡

= ∫
𝐶
d𝑠

where d𝑠 is the ‘arc length element’, i.e. d𝑠 = |x′(𝑡)| d𝑡. Similarly, we define

∫
𝐶
𝑓(x) d𝑠 = ∫

𝑏

𝑎
𝑓(x(𝑡)) |x′(𝑡)| d𝑡

If𝐶 is made up of𝑀 smooth curves𝐶1,… , 𝐶𝑀 , we say that𝐶 is ‘piecewise smooth’. Wewrite
𝐶 = 𝐶1 +⋯+ 𝐶𝑀 and define

∫
𝐶
𝑓(x) d𝑠 =

𝑀
∑
𝑖=1

∫
𝐶𝑖

𝑓(x) d𝑠

Now note (informally) that

d𝑠 = |x′(𝑡)| d𝑡 = √(d𝑥d𝑡 )
2
+ (d𝑦d𝑡 )

2
+ (d𝑧d𝑡 )

2
d𝑡

i.e. (now very informally)
d𝑠2 = d𝑥2 + d𝑦2 + d𝑧2

which is Pythagoras’ Theorem.

Example. Let 𝐶 be the circle of radius 𝑟 > 0 in ℝ3

x(𝑡) = (
𝑟 cos 𝑡
𝑟 sin 𝑡
0

) ; 𝑡 ∈ [0, 2𝜋]

So

x′(𝑡) = (
−𝑟 sin 𝑡
𝑟 cos 𝑡
0

)
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VII. Vector Calculus

Therefore

∫
𝐶
d𝑠 = ∫

2𝜋

0
|x′(𝑡)| d𝑡 = ∫

2𝜋

0
√𝑟2 sin2 𝑡 + 𝑟2 cos2 𝑡 d𝑡 = ∫

2𝜋

0
𝑟 d𝑡 = 2𝜋𝑟

Also, for example,

∫
𝐶
𝑥2𝑦 d𝑠 = ∫

2𝜋

0
(𝑟 cos 𝑡)2(𝑟 sin 𝑡)√𝑟2 sin2 𝑡 + 𝑟2 cos2 𝑡 d𝑡 = ∫

2𝜋

0
𝑟3 cos2 𝑡 sin 𝑡 d𝑡 = 0

1.4. Choice of parametrisation of curves
Does ℓ(𝐶) depend on the choice of parametrisation of x(𝑡)? For example,

x(𝑡) = (
𝑟 cos 𝑡
𝑟 sin 𝑡
0

) ; 𝑡 ∈ [0, 2𝜋]

and

x̃(𝑡) = (
𝑟 cos 2𝑡
𝑟 sin 2𝑡
0

) ; 𝑡 ∈ [0, 𝜋]

both give rise to a circle, but have different forms. Suppose that 𝐶 has two different paramet-
risations,

x = x1(𝑡); 𝑎 ≤ 𝑡 ≤ 𝑏

x = x2(𝜏); 𝛼 ≤ 𝜏 ≤ 𝛽

There must be some relationship x2(𝜏) = x1(𝑡(𝜏)) for some function 𝑡(𝜏), since they repres-
ent the same curve. We can assume d𝑡

d𝜏
≠ 0, so the map between 𝑡 and 𝜏 is invertible and

differentiable (see IB Analysis and Topology). Note that

x′2(𝜏) =
d
d𝜏x2(𝜏)

= d
d𝜏x1(𝑡(𝜏))

By the Chain Rule,

= d𝑡
d𝜏x

′
1(𝑡(𝜏))

And now from the above definitions,

∫
𝐶
𝑓(x) d𝑠 = ∫

𝑏

𝑎
𝑓(x1(𝑡)) ||x′1(𝑡)|| d𝑡
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1. Differential geometry of curves

Making the substitution 𝑡 = 𝑡(𝜏), and assuming d𝑡
d𝜏
> 0, the latter integral becomes

∫
𝛽

𝛼
𝑓(x2(𝜏)) ||x′1(𝑡(𝜏))||

d𝑡
d𝜏d𝜏⏟⎵⎵⎵⏟⎵⎵⎵⏟

||x′2(𝜏)|| d𝜏

= ∫
𝛽

𝛼
𝑓(x2(𝜏)) ||x′2(𝜏)|| d𝜏

which is precisely the same as ∫𝐶 𝑓(x) d𝑠 using the x2(𝜏) parametrisation. When d𝑡
d𝜏

< 0,
you get the same result. So the definition of ∫𝐶 𝑓(x) d𝑠 does not depend on the choice of
parametrisation of 𝐶.

1.5. Parametrisation according to arc length
We know that for any curve 𝐶 there exist multiple unique parametrisations. We will define
the arc-length function for a curve [𝑎, 𝑏] ∋ 𝑡 ↦ x(𝑡) by

𝑠(𝑡) = ∫
𝑡

𝑎
|x′(𝜏)| d𝜏

So 𝑠(𝑎) = 0, 𝑠(𝑏) = ℓ(𝐶). Using the Fundamental Theorem of Calculus, we have

𝑠′(𝑡) = |x′(𝑡)| ≥ 0

For regular curves, we have that
𝑠′(𝑡) > 0

So we can invert the relationship between 𝑠 and 𝑡; i.e. we can find 𝑡 as a function of 𝑠. Hence,
we can parametrise curves with respect to arc length. If we write

r(𝑠) = x(𝑡(𝑠))

where 0 ≤ 𝑠 ≤ ℓ(𝐶), then by the chain rule we have

d𝑡
d𝑠 =

1
d𝑠
d𝑡

= 1
|x′(𝑡(𝑠))|

So
r′(𝑠) = d

d𝑠x(𝑡(𝑠)) =
d𝑡
d𝑠x

′(𝑡(𝑠)) = x′(𝑡(𝑠))
|x′(𝑡(𝑠))|

In other words, r′(𝑠) is a unit vector tangential to the curve. This (consistently) gives

ℓ(𝐶) = ∫
ℓ(𝐶)

0
|r′(𝑠)| d𝑠 = ∫

ℓ(𝐶)

0
d𝑠

as previously found above.
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VII. Vector Calculus

1.6. Curvature
Throughout this section, we will be talking about a generic regular curve 𝐶, parametrised
with respect to arc length, where a position vector on 𝐶 is given by r(𝑠). We will define the
tangent vector

t(𝑠) = r′(𝑠)

We already know that |t(𝑠)| = 1. Therefore the only part of t that changes with respect to 𝑠
is its direction. So t′(𝑠) = r″(𝑠) only measures the change in the direction of the tangent as
we move along the curve. So intuitively, if |r″(𝑠)| is large then the curve is rapidly changing
direction. If |r″(𝑠)| is small, the curve is approximately flat; there is little change in direction.
Using this intuition, we will define curvature as

𝜅(𝑠) = |r″(𝑠)| = |t′(𝑠)|

In other words 𝜅 is the magnitude of the acceleration a particle experiences while moving
along the curve at unit speed.

1.7. Torsion
Since t = r′(𝑠) is a unit vector, differentiating t ⋅ t = 1 gives t ⋅ t′ = 0. We will define the
principal normal n by the formula

t′ = 𝜅n

Note that n is everywhere normal to the curve 𝐶, since it is always perpendicular to the
tangent vector t, since t ⋅ n = 0. We can extend the vectors {t,n} into an orthonormal basis
by computing the cross product:

b = t × n

We call b the binormal. It is a unit vector, since it is the cross product of two orthogonal
unit vectors in ℝ3. We also have that b ⋅ b′ = 0; also since t ⋅ b = 0 and n ⋅ b = 0, we must
have

0 = (t ⋅ b)′ = t′ ⋅ b + t ⋅ b′ = 𝜅n ⋅ b + t ⋅ b′ = t ⋅ b′

So b′ is orthogonal to both t and b, i.e. it is parallel to n. We will define the torsion 𝜏 of a
curve by

b′ = −𝜏n

Aphysical interpretation of torsion is a kind of ‘corkscrew’ rotation in three dimensions.

Proposition (Fundamental Theorem of Differential Geometry of Curves). The curvature
𝜅(𝑠) and torsion 𝜏(𝑠) uniquely define a curve in ℝ3, up to translation and orientation.

Proof. Since n = b × t, we have t′ = 𝜅(b × t) and b′ = −𝜏(b × t). This gives six equations
(written in component form) for six unknowns. Given 𝜅(𝑠) and 𝜏(𝑠), and given t(0) and b(0),
we can construct the functions t(𝑠),b(𝑠),n(𝑠) = b(𝑠) × t(𝑠).
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1. Differential geometry of curves

1.8. Radius of curvature
A generic curve 𝑠 ↦ r(𝑠) can be Taylor expanded around 𝑠 = 0. Writing t = t(0),n = n(0)
and so on, we have

r(𝑠) = r + 𝑠r′ + 1
2𝑠

2r″ + 𝑜(𝑠2)

= r + 𝑠t + 1
2𝑠

2𝜅n + 𝑜(𝑠2)

What circle that touches the curve at 𝑠 = 0 would be the best approximation for the curve
at this point? Since the circle touches the curve, we know the position vectors (of the curve
and the circle) match, and their first derivatives match. So we want to unify the second
derivatives. The equation of such a circle of radius 𝑅 is

x(𝜃) = r + 𝑅(1 − cos 𝜃)n + 𝑅(sin 𝜃)t

Expanding this for small 𝜃 gives

x(𝜃) = r + 𝑅𝜃t + 1
2𝑅𝜃

2n + 𝑜(𝜃2)

But the arc length on a circle is simply 𝑅𝜃. So in terms of arc length,

x(𝜃) = r + 𝑠t + 1
2𝑠

2 1
𝑅n + 𝑜(𝑠2)

Hence by comparing coefficients,
𝑅 = 1

𝜅
We name this 𝑅(𝑠) the radius of curvature.

1.9. Gaussian curvature (non-examinable)
This subsection is non-examinable. How can we find the curvature of a surface? At any
point r on a surface, we have a normal vector n. We can construct a plane containing this
normal; such a plane will then intersect the surface near r. This intersection is a curve 𝐶,
which has a curvature 𝜅. The choice of plane is arbitrary, however. To unify all of these
different possible results for 𝜅, we can compute the Gaussian curvature 𝜅𝐺 by

𝜅𝐺 = 𝜅min𝜅max
• The Gaussian curvature of a flat plane is zero, since the minimum and maximum
curvatures are both zero.

• On any point on a sphere of radius 𝑅, the Gaussian curvature is 1
𝑅2
, since any plane

containing the normal produces a great circle of radius 𝑅, i.e. of curvature 1
𝜅
.

Theorem (Gauss’s Remarkable Theorem). The Gaussian curvature of a surface 𝑆 is invari-
ant under local isometries; i.e. if you bend the surface without stretching it.
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2. Coordinates, differentials and gradients

2.1. Differentials and first order changes

Recall that for a function 𝑓(𝑢1,… , 𝑢𝑛), we define the differential of 𝑓, written d𝑓, by

d𝑓 = 𝜕𝑓
𝜕𝑢𝑖

d𝑢𝑖

noting that the summation convention applies. The d𝑢𝑖 are called differential forms, which
can be thought of as linearly independent objects (if the coordinates 𝑢1,… , 𝑢𝑛 are independ-
ent), i.e. 𝛼𝑖 d𝑢𝑖 = 0 ⟹ 𝛼𝑖 = 0 for all 𝑖. Similarly, if we have a vector x(𝑢1,… , 𝑢𝑛), we
define

dx = 𝜕x
𝜕𝑢𝑖

d𝑢𝑖

As an example, let 𝑓(𝑢, 𝑣, 𝑤) = 𝑢2 + 𝑤 sin(𝑣). Then

d𝑓 = 2𝑢 d𝑢 + 𝑤 cos(𝑣) d𝑣 + sin(𝑣) d𝑤

Similarly, given

x(𝑢, 𝑣, 𝑤) = (
𝑢2 − 𝑣2
𝑤
𝑒𝑣

)

we can compute

dx = (
2𝑢
0
0
) d𝑢 + (

−2𝑣
0
𝑒𝑣

) d𝑣 + (
0
1
0
) d𝑤

Differentials encode information about how a function (or vector field) changes when we
change the coordinates by a small amount. By calculus,

𝑓(𝑢 + 𝛿𝑢1,… , 𝑢𝑛 + 𝛿𝑢𝑛) − 𝑓(𝑢1,… , 𝑢𝑛) =
𝜕𝑓
𝜕𝑢𝑖

𝛿𝑢𝑖 + 𝑜(𝛿u)

So if 𝛿𝑓 denotes the change in 𝑓(𝑢1,… , 𝑢𝑛) under this small change in coordinates, we have,
to first order,

𝛿𝑓 ≈ 𝜕𝑓
𝜕𝑢𝑖

𝛿𝑢𝑖

The analogous result holds for vector fields:

𝛿x ≈ 𝜕x
𝜕𝑢𝑖

𝛿𝑢𝑖
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2.2. Coordinates and line elements in ℝ2

We can create multiple different consistent coordinate systems by defining a relationship
between them. For example, polar coordinates (𝑟, 𝜃) and Cartesian coordinates (𝑥, 𝑦) can be
related by

𝑥 = 𝑟 cos 𝜃; 𝑦 = 𝑟 sin 𝜃
Even though this relationship is not bijective (there are multiple polar coordinates mapping
to the origin), it’s still a useful coordinate system because the vast majority of points work
well. Even coordinate systems with a countable amount of badly-behaved points are still
useful.

A general set of coordinates (𝑢, 𝑣) onℝ2 can be specified by their relationship to the standard
Cartesian coordinates (𝑥, 𝑦). We must specify smooth, invertible functions 𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣).
We would also like to have a small change in one coordinate system to be equivalent to a
small change in the other coordinate system (i.e. the inverse is also smooth). The same
principle applies in ℝ3 for three coordinates, for example.

Consider the standard Cartesian coordinates in ℝ2.

x(𝑥, 𝑦) = (𝑥𝑦) = 𝑥e𝑥 + 𝑦e𝑦

Note that {e𝑥, e𝑦} are orthonormal, and point in the same direction regardless of the value
of x: e𝑥 points in the direction of changing 𝑥 with 𝑦 held constant, for example. Equival-
ently,

e𝑥 =
𝜕
𝜕𝑥
x(𝑥, 𝑦)

||
𝜕
𝜕𝑥
x(𝑥, 𝑦)||

; e𝑦 =
𝜕
𝜕𝑦
x(𝑥, 𝑦)

|||
𝜕
𝜕𝑦
x(𝑥, 𝑦)|||

Note that
dx = 𝜕x

𝜕𝑥 d𝑥 +
𝜕x
𝜕𝑦 d𝑦 = d𝑥 e𝑥 + d𝑦 e𝑦

In other words, when applying the change in coordinate 𝑥 ↦ 𝑥 + 𝛿𝑥, the vector changes
(to first order) to x ↦ x + 𝛿𝑥e𝑥. In fact, in the case of Cartesian coordinates, this change is
precisely correct for any size of 𝛿, since the coordinate basis vectors are the same everywhere.
We call dx the line element; it tells us how small changes in coordinates produce changes in
position vectors.

Now, let us consider polar coordinates in two-dimensional space. We can use the same idea
as before, giving

e𝑟 =
𝜕
𝜕𝑟
x(𝑟, 𝜃)

||
𝜕
𝜕𝑟
x(𝑟, 𝜃)||

= (cos 𝜃sin 𝜃) ; e𝜃 =
𝜕
𝜕𝜃
x(𝑟, 𝜃)

||
𝜕
𝜕𝜃
x(𝑟, 𝜃)||

= (− sin 𝜃cos 𝜃 )

Therefore, we have
x(𝑟, 𝜃) = (𝑟 cos 𝜃𝑟 sin 𝜃) = 𝑟e𝑟
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Note that {e𝑟, e𝜃} are also orthonormal at each (𝑟, 𝜃), but their exact values are not the same
everywhere. Since the basis vectors are orthogonal, we can call 𝑟 and 𝜃 orthogonal curvilin-
ear coordinates. Also, we can compute the line element dx as

dx = 𝜕x
𝜕𝑟 d𝑟 +

𝜕x
𝜕𝜃 d𝜃 = (cos 𝜃sin 𝜃) d𝑟 + (−𝑟 sin 𝜃𝑟 cos 𝜃 ) d𝜃 = d𝑟 e𝑟 + 𝑟 d𝜃 e𝜃

We see that a change in 𝜃 produces (up to first order) a change x ↦ x + 𝑟 𝛿𝜃 e𝜃, a change
proportional to 𝑟. So a small change in 𝜃 could cause quite a large change in Cartesian
coordinates.

2.3. Orthogonal curvilinear coordinates
We say that (𝑢, 𝑣, 𝑤) are a set of orthogonal curvilinear coordinates if the vectors

e𝑢 =
𝜕x
𝜕𝑢
||
𝜕x
𝜕𝑢
||
; e𝑣 =

𝜕x
𝜕𝑣
||
𝜕x
𝜕𝑣
||
; e𝑤 =

𝜕x
𝜕𝑤
||
𝜕x
𝜕𝑤
||

form a right-handed, orthonormal basis for each (𝑢, 𝑣, 𝑤); but not necessarily the same basis
over the entire vector field. It is standard to write

ℎ𝑢 = |||
𝜕x
𝜕𝑢
|||; ℎ𝑣 = |||

𝜕x
𝜕𝑣
|||; ℎ𝑤 = |||

𝜕x
𝜕𝑤

|||

We call ℎ𝑢, ℎ𝑣, ℎ𝑤 the scale factors. Note that the line element is

dx = 𝜕x
𝜕𝑢 d𝑢 +

𝜕x
𝜕𝑣 d𝑣 +

𝜕x
𝜕𝑤 d𝑤

= ℎ𝑢e𝑢 d𝑢 + ℎ𝑣e𝑣 d𝑣 + ℎ𝑤e𝑤 d𝑤

So the scale factors show how first-order changes in the coordinates are scaled into changes
in x.

2.4. Cylindrical polar coordinates
We define (𝜌, 𝜙, 𝑧) by

x(𝜌, 𝜙, 𝑧) = (
𝜌 cos𝜙
𝜌 sin𝜙
𝑧

)

where 0 ≤ 𝜌; 0 ≤ 𝜙 < 2𝜋; 𝑧 ∈ ℝ. So we can find

e𝜌 = (
cos𝜙
sin𝜙
0

) ; e𝜙 = (
− sin𝜙
cos𝜙
0

) ; e𝑧 = (
0
0
1
)
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The scale factors are
ℎ𝜌 = 1; ℎ𝜙 = 𝜌; ℎ𝑧 = 1

The line element is
dx = d𝜌 e𝜌 + 𝜌 d𝜙 e𝜙 + d𝑧 e𝑧

Note that

x = 𝜌(
cos𝜙
sin𝜙
0

) + 𝑧(
0
0
1
) = 𝜌e𝜌 + 𝑧e𝑧

2.5. Spherical polar coordinates
We define (𝑟, 𝜃, 𝜙) by

x(𝑟, 𝜃, 𝜙) = (
𝑟 cos𝜙 sin 𝜃
𝑟 sin𝜙 sin 𝜃
𝑟 cos 𝜃

)

where 0 ≤ 𝑟; 0 ≤ 𝜃 < 𝜋; 0 ≤ 𝜙 < 2𝜋. So we can find

e𝑟 = (
cos𝜙 sin 𝜃
sin𝜙 sin 𝜃
cos 𝜃

) ; e𝜃 = (
cos𝜙 cos 𝜃
sin𝜙 cos 𝜃
− sin 𝜃

) ; e𝜙 = (
− sin𝜙
cos𝜙
0

)

The scale factors are
ℎ𝑟 = 1; ℎ𝜃 = 𝑟; ℎ𝜙 = 𝑟 sin 𝜃

The line element is
dx = d𝑟 e𝑟 + 𝑟 d𝜃 e𝜃 + 𝑟 sin 𝜃 d𝜙 e𝜙

Note that

x = 𝑟(
cos𝜙 sin 𝜃
sin𝜙 sin 𝜃
cos 𝜃

) = 𝑟e𝑟

2.6. Gradient operator
For 𝑓∶ ℝ3 → ℝ, we define the gradient of 𝑓, written ∇𝑓, by

𝑓(x + h) = 𝑓(x) + ∇𝑓(x) ⋅ h + 𝑜(h) (∗)

as |h| → 0. The directional derivative of 𝑓 in the direction v, denoted by𝐷v𝑓 or
𝜕𝑓
𝜕v
, is defined

by
𝐷v𝑓(x) = lim

𝑡→0

𝑓(x + 𝑡v) − 𝑓(x)
𝑡

Alternatively,
𝑓(x + 𝑡v) = 𝑓(x) + 𝑡𝐷v𝑓(x) + 𝑜(𝑡) (†)
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as 𝑡 → 0. Setting h = 𝑡v in (∗), we have

𝑓(x + 𝑡v) = 𝑓(x) + 𝑡∇𝑓(x) ⋅ v + 𝑜(𝑡)

This gives another way to interpret the gradient of 𝑓. Comparing this result to (†), we see
that

𝐷v𝑓 = v ⋅ ∇𝑓
By the Cauchy–Schwarz inequality, the dot product is maximised when the two vectors are
parallel. Hence, the directional derivative is maximised when v points in the direction of
∇𝑓. So ∇𝑓 points in the direction of greatest increase of 𝑓. Similarly, −∇𝑓 points in the
direction of greatest decrease of 𝑓. For example, suppose 𝑓(𝑥) = 1

2
|x|2. Then

𝑓(x + h) = 1
2(x + h) ⋅ (x + h) = 1

2|x|
2 + 1

2(2x ⋅ h) +
1
2|h|

2 = 𝑓(x) + x ⋅ h + 𝑜(h)

Hence ∇𝑓(x) = x.

2.7. Gradient on curves
Suppose we have a curve 𝑡 ↦ x(𝑡). How does some function 𝑓 change when moving along
the curve? We will write 𝐹(𝑡) = 𝑓(x(𝑡)), 𝛿x = x(𝑡 + 𝛿𝑡) − x(𝑡).

𝐹(𝑡 + 𝛿𝑡) = 𝑓(x(𝑡 + 𝛿𝑡))
= 𝑓(x(𝑡) + 𝛿x)
= 𝑓(x(𝑡)) + ∇𝑓(x(𝑡)) ⋅ 𝛿x + 𝑜(𝛿x)

Since 𝛿x = x′(𝑡) 𝛿𝑡 + 𝑜(𝛿𝑡), we have

𝐹(𝑡 + 𝛿𝑡) = 𝐹(𝑡) + x′(𝑡) ⋅ ∇𝑓(x(𝑡)) 𝛿𝑡 + 𝑜(𝛿𝑡)

In other words,
d𝐹
d𝑡 =

d
d𝑡𝑓(x(𝑡)) =

dx
d𝑡 ⋅ ∇𝑓(x(𝑡))

2.8. Gradient on surfaces
Suppose we have a surface 𝑆 in ℝ3 defined implicitly by

𝑆 = {x ∈ ℝ3 ∶ 𝑓(x) = 0}

If 𝑡 ↦ x(𝑡) is any curve in 𝑆, then 𝑓(x(𝑡)) = 0 everywhere. So

0 = d
d𝑡𝑓(x(𝑡)) = ∇𝑓(x(𝑡)) ⋅ dxd𝑡

So ∇𝑓(x(𝑡)), the gradient, is orthogonal to dx
d𝑡
, the tangent vector of any chosen curve in 𝑆.

So ∇𝑓(x(𝑡)) is normal to the surface.
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2.9. Coordinate-independent representation
If we are working in an orthogonal curvilinear coordinate system (𝑢, 𝑣, 𝑤), it is not imme-
diately clear how to compute ∇𝑓, since we need to represent this arbitrary perturbation h
using (𝑢, 𝑣, 𝑤). In Cartesian coordinates it is simple; to represent the change x ↦ x + h we
simply add the components of x and h.

𝑓(x + h) = 𝑓((𝑥 + ℎ1, 𝑦 + ℎ2, 𝑧 + ℎ3))

= 𝑓(x) + 𝜕𝑓
𝜕𝑥ℎ1 +

𝜕𝑓
𝜕𝑦ℎ2 +

𝜕𝑓
𝜕𝑧 ℎ3 + 𝑜(h)

= 𝑓(x) + (
𝜕𝑓/𝜕𝑥
𝜕𝑓/𝜕𝑦
𝜕𝑓/𝜕𝑧

) ⋅ ℎ + 𝑜(h)

So we have

⟹ ∇𝑓 = (
𝜕𝑓/𝜕𝑥
𝜕𝑓/𝜕𝑦
𝜕𝑓/𝜕𝑧

)

Or, using suffix notation,
∇𝑓 = e𝑖

𝜕𝑓
𝜕𝑥𝑖

; [∇𝑓]𝑖 =
𝜕𝑓
𝜕𝑥𝑖

We see that this ∇ is a kind of vector differential operator. In Cartesian coordinates,

∇ = e𝑥
𝜕
𝜕𝑥 + e𝑦

𝜕
𝜕𝑦 + e𝑧

𝜕
𝜕𝑧 ≡ e𝑖

𝜕
𝜕𝑥𝑖

From our previous example,

𝑓(x) = 1
2(𝑥

2 + 𝑦2 + 𝑧2) = 1
2|x|

2

[∇𝑓]𝑖 =
𝜕
𝜕𝑥𝑖

[12𝑥𝑗𝑥𝑗]

= 1
2 [𝛿𝑖𝑗𝑥𝑗 + 𝑥𝑗𝛿𝑖𝑗]

= 𝑥𝑖
∇𝑓 = e𝑖𝑥𝑖

Let us return back to computing the gradient in the general case. Recall that in Cartesian
coordinates, the line element is simple:

dx = d𝑥𝑖 e𝑖
And also, if we have a function on ℝ3 such as 𝑓(𝑥, 𝑦, 𝑧), it has the differential

d𝑓 = 𝜕𝑓
𝜕𝑥𝑖

d𝑥𝑖
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Then,

∇𝑓 ⋅ dx = (e𝑖
𝜕𝑓
𝜕𝑥𝑖

) ⋅ (e𝑗 d𝑥𝑗)

= 𝜕𝑓
𝜕𝑥𝑖

(e𝑖 ⋅ e𝑗) d𝑥𝑗

= 𝜕𝑓
𝜕𝑥𝑖

𝛿𝑖𝑗 d𝑥𝑗

= 𝜕𝑓
𝜕𝑥𝑖

d𝑥𝑖
= d𝑓

In other words, in any set of coordinates,

∇𝑓 ⋅ dx = d𝑓

2.10. Computing the gradient vector
Proposition. If (𝑢, 𝑣, 𝑤) are orthogonal curvilinear coordinates, and 𝑓 is a function of the
position vector (𝑢, 𝑣, 𝑤), then

∇𝑓 = 1
ℎ𝑢

𝜕𝑓
𝜕𝑢e𝑢 +

1
ℎ𝑣

𝜕𝑓
𝜕𝑣 e𝑣 +

1
ℎ𝑤

𝜕𝑓
𝜕𝑤e𝑤

Proof. If 𝑓 = 𝑓(𝑢, 𝑣, 𝑤) and x = x(𝑢, 𝑣, 𝑤), then

d𝑓 = 𝜕𝑓
𝜕𝑢 d𝑢 +

𝜕𝑓
𝜕𝑣 d𝑣 +

𝜕𝑓
𝜕𝑤 d𝑤

d𝑥 = ℎ𝑢 d𝑢 e𝑢 + ℎ𝑣 d𝑣 e𝑣 + ℎ𝑤 d𝑤 e𝑤
Using the above result, we have

∇𝑓 ⋅ dx = d𝑓

((∇𝑓)𝑢e𝑢 + (∇𝑓)𝑣e𝑣 + (∇𝑓)𝑤e𝑤)⋅(ℎ𝑢 d𝑢 e𝑢 + ℎ𝑣 d𝑣 e𝑣 + ℎ𝑤 d𝑤 e𝑤) =
𝜕𝑓
𝜕𝑢 d𝑢+

𝜕𝑓
𝜕𝑣 d𝑣+

𝜕𝑓
𝜕𝑤 d𝑤

(∇𝑓)𝑢ℎ𝑢 d𝑢 + (∇𝑓)𝑣ℎ𝑣 d𝑣 + (∇𝑓)𝑤ℎ𝑤 d𝑤 = 𝜕𝑓
𝜕𝑢 d𝑢 +

𝜕𝑓
𝜕𝑣 d𝑣 +

𝜕𝑓
𝜕𝑤 d𝑤

Since 𝑢, 𝑣, 𝑤 are independent coordinates, d𝑢 , d𝑣 , d𝑤 are linearly independent. So we can
simply compare coefficients, getting

∇𝑓 = 1
ℎ𝑢

𝜕𝑓
𝜕𝑢e𝑢 +

1
ℎ𝑣

𝜕𝑓
𝜕𝑣 e𝑣 +

1
ℎ𝑤

𝜕𝑓
𝜕𝑤e𝑤

as required.
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In cylindrical polar coordinates, we have

∇𝑓 = 𝜕𝑓
𝜕𝜌e𝜌 +

1
𝜌
𝜕𝑓
𝜕𝜙e𝜙 +

𝜕𝑓
𝜕𝑧 e𝑧

In spherical polar coordinates, we have

∇𝑓 = 𝜕𝑓
𝜕𝑟 e𝑟 +

1
𝑟
𝜕𝑓
𝜕𝜃 e𝜃 +

1
𝑟 sin 𝜃

𝜕𝑓
𝜕𝜙e𝜙

Then using the familiar example 𝑓(x) = 1
2
|x|2, we have

𝑓 =
⎧⎪
⎨⎪
⎩

1
2
(𝑥2 + 𝑦2 + 𝑧2) in Cartesian coordinates

1
2
(𝜌2 + 𝑧2) in cylindrical polar coordinates

1
2
𝑟2 in spherical polar coordinates

Then we can check the value of ∇𝑓 in these different coordinate systems.

∇𝑓 =
⎧
⎨
⎩

𝑥e𝑥 + 𝑦e𝑦 + 𝑧e𝑧 in Cartesian coordinates
𝜌e𝜌 + 𝑧e𝑧 in cylindrical polar coordinates
𝑟e𝑟 in spherical polar coordinates

= x
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3. Integration over lines
3.1. Line integrals
For a vector field F(x) and a piecewise smooth parametrised curve 𝐶 defined by [𝑎, 𝑏] ∋ 𝑡 ↦
x(𝑡), we define the line integral of 𝐹 along 𝐶

∫
𝐶
F ⋅ dx = ∫

𝑏

𝑎
F(x(𝑡)) ⋅ dxd𝑡⏟

tangent vector

d𝑡

Note that this tangent vector is not necessarily normalised, and note further that the curve
direction matters. If we want to integrate in the other direction, it is common to write ∫−𝐶
instead. We can think of this line integral as the work done by a particle moving along 𝐶 in
the presence of a force 𝐹. As an example, consider the vector field given by

F = (
𝑥2𝑦
𝑦𝑧
2𝑥𝑧

)

Consider two curves connecting the origin to the position vector (
1
1
1
).

𝐶1∶ [0, 1] ∋ 𝑡 ↦ (
𝑡
𝑡
𝑡
) ; 𝐶2∶ [0, 1] ∋ 𝑡 ↦ (

𝑡
𝑡
𝑡2
)

∫
𝐶1

F ⋅ dx = ∫
1

0
(
𝑡3
𝑡2
2𝑡2

) ⋅ (
1
1
1
) d𝑡 = 5

4

∫
𝐶2

F ⋅ dx = ∫
1

0
(
𝑡3
𝑡3
2𝑡3

) ⋅ (
1
1
2𝑡
) d𝑡 = 13

10

In general, the result of the line integral depends on the path taken between the two points.
In the force analogy, there might be a path between𝐴 and 𝐵 that is very easy to traverse, and
another path that is very difficult (i.e. uses a lot of energy).

Now, consider a particle at x experiencing a force F, represented in cylindrical polar coordin-
ates as

F(x) = 𝑧𝜌e𝜙
Consider the path 𝐶 given by

𝐶∶ [0, 2𝜋] ∋ 𝑡 ↦ (
𝑎 cos 𝑡
𝑎 sin 𝑡
𝑡

)
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What is the work done by the particle travelling along 𝐶? Using the definition of the line
element dx in cylindrical polar coordinates, we can compute that Fdx = 𝑧𝜌2 d𝜙. Note that
in cylindrical polar coordinates, the path can be represented simply as (𝜌, 𝜙, 𝑧) = (𝑎, 𝑡, 𝑡).
Hence,

(d𝜌 , d𝜙 , d𝑧) = (0, d𝑡 , d𝑡)
Therefore, F ⋅ dx = 𝑧𝜌2 d𝑡. We can now compute the integral:

∫
𝐶
F ⋅ dx = 𝑎2∫

2𝜋

0
𝑡 d𝑡 = 2𝜋2𝑎2

3.2. Closed curves
A curve [𝑎, 𝑏] ∋ 𝑡 ↦ x(𝑡)might be such that x(𝑎) = x(𝑏). This is called a closed curve. The
line integral around a closed loop is written

∮
𝐶
F ⋅ dx

Sometimes, this is called the ‘circulation’ of F about 𝐶. Consider the first example from this
lecture, with curves 𝐶1 and 𝐶2. Let 𝐶 = 𝐶1 − 𝐶2. Then

∮
𝐶
F ⋅ dx = ∫

𝐶1

F ⋅ dx −∫
𝐶2

F ⋅ dx = −2
15

3.3. Conservative forces and exact differentials
We have seen how to interpret things like F ⋅ dxwhen inside an integral. This is an example
of a differential form; in orthogonal curvilinear coordinates (𝑢, 𝑣, 𝑤) we have

F ⋅ dx = 𝑎 d𝑢 + 𝑏 d𝑣 + 𝑐 d𝑤
for some 𝑎, 𝑏, 𝑐 dependent on 𝑢, 𝑣, 𝑤. We say that F ⋅ dx is exact if

F ⋅ dx = d𝑓
for some scalar function 𝑓. Recall that d𝑓 = ∇𝑓 ⋅ dx. So equivalently, F ⋅ dx is exact if and
only if

F = ∇𝑓
Such a vector field is called conservative. F ⋅dx is exact if and only if F is conservative. Using
the properties that d(𝛼𝑓 + 𝛽𝑔) = 𝛼 d𝑓 + 𝛽 d𝑔, d(𝑓𝑔) = 𝑔 d𝑓 + 𝑓 d𝑔 and so on, it is usually
easy to see if a differential form is exact.

Proposition. If 𝜃 is an exact differential form, then

∮
𝐶
𝜃 = 0

for any closed curve 𝐶.
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Proof. If 𝜃 is exact, then 𝜃 = ∇𝑓 ⋅ dx for some scalar function 𝑓. Given a curve 𝐶∶ [𝑎, 𝑏] ∋
𝑡 ↦ x(𝑡),

∮
𝐶
𝜃 = ∮

𝐶
∇𝑓 ⋅ dx

= ∫
𝑏

𝑎
∇𝑓(x(𝑡)) ⋅ dxd𝑡 d𝑡

By the previous lecture,

= ∫
𝑏

𝑎

d
d𝑡 [𝑓(x(𝑡))] d𝑡

= 𝑓(x(𝑎)) − 𝑓(x(𝑏))
= 0

since x(𝑎) = x(𝑏).

Note, for example in cylindrical polar coordinates, that 𝑓(𝜌, 𝜙, 𝑧) = 𝜙 is not a function on
ℝ3, since there are many possible values of 𝜙 for any given position vector. These are called
multi-valued functions; for example the contour integral of this function over a circle where
𝜙 ∈ [0, 2𝜋] is not well-defined, since 𝑓(𝜌, 0, 𝑧) ≠ 𝑓(𝜌, 2𝜋, 𝑧).
Note that if F is conservative, then the circulation of F around any closed curve 𝐶 vanishes.
This means that the line integral between 𝐴 and 𝐵 is not dependent on the path chosen
between the two points; simply choose the most convenient curve for the problem.

Let (𝑢, 𝑣, 𝑤) = (𝑢1, 𝑢2, 𝑢3) be a set of orthogonal curvilinear coordinates. Let

F ⋅ dx = 𝜃 = 𝐴(𝑢, 𝑣, 𝑤) d𝑢⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝜃1

+𝐵(𝑢, 𝑣, 𝑤) d𝑣⏟⎵⎵⏟⎵⎵⏟
𝜃2

+𝐶(𝑢, 𝑣, 𝑤) d𝑤⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝜃3

= 𝜃𝑖 d𝑢𝑖

A necessary condition for 𝜃 to be exact is

𝜕𝜃𝑖
𝜕𝑢𝑗

=
𝜕𝜃𝑗
𝜕𝑢𝑖

(†)

Indeed, if 𝜃 is exact, then 𝜃 = d𝑓, so

𝜃 = 𝜕𝑓
𝜕𝑢𝑖

d𝑢𝑖 ⟺ 𝜃𝑖 =
𝜕𝑓
𝜕𝑢𝑖

and therefore,
𝜕𝜃𝑖
𝜕𝑢𝑗

= 𝜕2𝑓
𝜕𝑢𝑗𝜕𝑢𝑖

=
𝜕𝜃𝑗
𝜕𝑢𝑖

A differential form 𝜃 = 𝜃𝑖 d𝑢𝑖 that obeys (†) is called a closed differential form. Certainly any
exact differential form is closed. A differential form is exact if it is closed and the domainΩ ⊂
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ℝ3 on which 𝜃 is defined is simply connected, i.e. all closed loops in Ω can be continuously
‘shrunk’ to any point inside Ω without leaving it. This is notable, since one direction of
implication is related to calculus, but the other direction is related to topology.

Now, let us consider an example. Let

𝜃 = 𝑦 d𝑥 − 𝑥 d𝑦

Is this differential form exact? First, we will check if it is closed.

𝜕
𝜕𝑦𝑦 = 1; 𝜕

𝜕𝑥(−𝑥) = −1

It is not closed, so it is not exact. As another example, let us compute the line integral

∫
𝐶
3𝑥2𝑦 d𝑥 + 𝑥3 d𝑦

where

𝐶∶ [𝛼1, 𝛼100] ∋ 𝑡 ↦
⎛
⎜⎜
⎝

cos (Im (𝜁 ( 1
2
+ 𝑖𝑡)))

sin (Re (𝜁 ( 1
2
+ 𝑖𝑡)))

0

⎞
⎟⎟
⎠

where 𝛼1 and 𝛼100 are the 1st and 100th zeroes of 𝜁 (
1
2
+ 𝑖𝑡). The loop is closed and exact;

d(𝑥3𝑦) = 3𝑥2𝑦 d𝑥 + 𝑥3 d𝑦. So the result is zero. As a final example, consider a particle
travelling along a curve 𝐶∶ [𝑎, 𝑏] ∋ 𝑡 ↦ x(𝑡). Then the work done is

𝑊 = ∫
𝐶
F ⋅ dx

= 𝑚∫
𝑏

𝑎
ẍ + ẋ d𝑡

= 1
2𝑚 |ẋ|2|||

𝑏

𝑎

which is the change in kinetic energy. If F = −∇𝑉 , i.e. F is conservative,

∫
𝐶
F ⋅ dx = −∫

𝐶
∇𝑉 ⋅ dx = 𝑉(x(𝑎)) − 𝑉(x(𝑏))

So the change in kinetic energy is equal to the change in potential energy; energy is con-
served.
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4. Integration in Euclidean space
4.1. Definition of integral in two dimensions
We can integrate over a bounded region 𝐷 ⊂ ℝ2. To do this, we can cover 𝐷 with small,
disjoint sets 𝐴𝑖𝑗 each with area 𝛿𝐴𝑖𝑗 . Each of these sets 𝐴𝑖𝑗 are contained in a disc of radius
𝜀 > 0. Let (𝑥𝑖, 𝑦𝑗) be points contained in each 𝐴𝑖𝑗 . We now define

∫
𝐷
𝑓(x) d𝐴 = lim

𝜀→0
∑
𝑖,𝑗
𝑓(𝑥𝑖, 𝑦𝑗) 𝛿𝐴𝑖𝑗

The integral exists if it is independent of the choice of partitions 𝐴𝑖𝑗 and the points (𝑥𝑖, 𝑦𝑗).
The obvious choice of partitioning 𝐷 is to use rectangles where the area of each rectangle is
𝛿𝐴𝑖𝑗 = 𝛿𝑥𝑖𝛿𝑦𝑗 . We can create horizontal ‘strips’ of height 𝛿𝑦 which we can integrate over.
The possible 𝑥 coordinates for this strip are 𝑥𝑦 = {𝑥∶ (𝑥, 𝑦) ∈ 𝐷}. We can take the limit as
𝛿𝑥 → 0, giving

𝛿𝑦∫
𝑥𝑦
𝑓(𝑥, 𝑦) d𝑥

Summing over each such strip, taking the limit as 𝛿𝑦 → 0, we have

∫
𝐷
𝑓(𝑥, 𝑦) d𝐴 = ∫

𝑌
(∫

𝑥𝑦
𝑓(𝑥, 𝑦) d𝑥) d𝑦

where 𝑌 is the set of all possible 𝑦 coordinates, i.e. 𝑌 = {𝑦∶ ∃𝑥, (𝑥, 𝑦) ∈ 𝐷}. We can equival-
ently sum over all vertical strips, and get

∫
𝐷
𝑓(𝑥, 𝑦) d𝐴 = ∫

𝑋
(∫

𝑦𝑥
𝑓(𝑥, 𝑦) d𝑦) d𝑥

More concisely, we can write the following (Fubini’s Theorem):

d𝐴 = d𝑥 d𝑦 = d𝑦 d𝑥

Let us consider an example; let𝐷 be the triangle with vertices (0, 0), (1, 0), (0, 1). If 𝑓(𝑥, 𝑦) =
𝑥𝑦2, then by integrating over horizontal strips, we have

∫
𝐷
𝑓(𝑥, 𝑦) d𝐴 = ∫

1

0
(∫

1−𝑦

0
𝑥𝑦2 d𝑥) d𝑦

= ∫
1

0
[12𝑥

2𝑦2]
1−𝑦

0
d𝑦

= ∫
1

0

1
2(1 − 𝑦)2𝑦2 d𝑦

= 1
60
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4. Integration in Euclidean space

Instead, integrating over vertical strips, we have

∫
𝐷
𝑓(𝑥, 𝑦) d𝐴 = ∫

1

0
(∫

1−𝑥

0
𝑥𝑦2 d𝑦) d𝑥

= ∫
1

0
[13𝑥𝑦

3]
1−𝑥

0
d𝑥

= ∫
1

0

1
3𝑥(1 − 𝑥)3 d𝑥

= 1
60

Note that if 𝑓(𝑥, 𝑦) = 𝑔(𝑥) ⋅ ℎ(𝑦), and 𝐷 is a rectangle {(𝑥, 𝑦)∶ 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑},
then

∫
𝐴
𝑓(𝑥, 𝑦) d𝐴 = (∫

𝑏

𝑎
𝑔(𝑥) d𝑥) (∫

𝑑

𝑐
ℎ(𝑦) d𝑦)

4.2. Change of variables
It can be useful to introduce a change of variables in order to compute the one-dimensional
integral. For example, if 𝑥 is represented as a function of 𝑢,

∫
𝑏

𝑎
𝑓(𝑥) d𝑥 = ∫

𝑥−1(𝑏)

𝑥−1(𝑎)
𝑓(𝑥(𝑢))d𝑥d𝑢 d𝑢

Note that if d𝑥
d𝑢

> 0, then the right hand side integral is taken over a limit from a smaller
value to a larger one, but if d𝑥

d𝑢
< 0, then the integral is the ‘wrong way round’. If 𝐼 = [𝑎, 𝑏]

and 𝐼′ = 𝑥−1𝐼, we have
∫
𝐼
𝑓(𝑥) d𝑥 = ∫

𝐼′
𝑓(𝑥(𝑢))|||

d𝑥
d𝑢

||| d𝑢

where the absolute value is used since 𝐼′ is defined as going from the lower limit to the upper
limit. There is a similar formula in 2D.

Proposition. Let x(𝑢, 𝑣) = (𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣)) be a smooth, invertible transformation with a
smooth inverse that maps the region𝐷′ in the (𝑢, 𝑣) plane to the region𝐷 in the (𝑥, 𝑦) plane.
(This map must be a bijection; every point must have a unique inverse.) Then

∬
𝐷
𝑓(𝑥, 𝑦) d𝑥 d𝑦 =∬

𝐷′
𝑓(𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣))|||

𝜕(𝑥, 𝑦)
𝜕(𝑢, 𝑣)

||| d𝑢 d𝑣

where
𝜕(𝑥, 𝑦)
𝜕(𝑢, 𝑣) = 𝐽 = det (𝜕𝑥/𝜕𝑢 𝜕𝑥/𝜕𝑣

𝜕𝑦/𝜕𝑢 𝜕𝑦/𝜕𝑣) = det (𝜕x𝜕𝑢
|||
𝜕x
𝜕𝑣)
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VII. Vector Calculus

is the Jacobian determinant. More concisely,

d𝑥 d𝑦 = |𝐽| d𝑢 d𝑣

It doesn’t matter if the Jacobian vanishes at a single point, since the area of a single point is
zero and hence will have no contribution to the result. The Jacobian being zero means that
something non-smooth is happening at this point, so it is important to consider why this
point is special.

Proof. We can form a partition of 𝐷 by using the image of a rectangular partition of 𝐷′. Let
the rectangular partition be characterised by a horizontal step 𝛿𝑥 and a vertical step of 𝛿𝑦.
Then each small rectangle in𝐷′ ismapped to some small (not necessarily rectangular) region
in 𝐷′, with vertices

x(𝑢𝑖, 𝑣𝑗), x(𝑢𝑖+1, 𝑣𝑗), x(𝑢𝑖+1, 𝑣𝑗+1), x(𝑢𝑖, 𝑣𝑗+1)

To first order, the area of this region is the area of the parallelogram with the same vertices.
Two of the sides of the parallelogram are

x(𝑢𝑖+1, 𝑣𝑗) − x(𝑢𝑖, 𝑣𝑗) ≈
𝜕x
𝜕𝑢(𝑢𝑖, 𝑣𝑗)𝛿𝑢

x(𝑢𝑖, 𝑣𝑗+1) − x(𝑢𝑖, 𝑣𝑗) ≈
𝜕x
𝜕𝑣 (𝑢𝑖, 𝑣𝑗)𝛿𝑣

So the area of the parallelogram is approximately

|||
𝜕x
𝜕𝑢(𝑢𝑖, 𝑣𝑗)𝛿𝑢 ⋅

𝜕x
𝜕𝑣 (𝑢𝑖, 𝑣𝑗)𝛿𝑣

||| =
|||det (

𝜕x
𝜕𝑢(𝑢𝑖, 𝑣𝑗)

|||
𝜕x
𝜕𝑣 (𝑢𝑖, 𝑣𝑗))

|||
= ||𝐽(𝑢𝑖, 𝑣𝑗)|| 𝛿𝑢 𝛿𝑣
= 𝛿𝐴𝑖𝑗

Hence,

∫
𝐷
𝑓 d𝐴 = lim

𝜀→0
∑
𝑖𝑗
𝑓(𝑥𝑖, 𝑦𝑗) 𝛿𝐴𝑖𝑗

= lim
𝜀→0

∑
𝑖𝑗
𝑓(𝑥(𝑢𝑖, 𝑣𝑗), 𝑦(𝑢𝑖, 𝑣𝑗)) ||𝐽(𝑢𝑖, 𝑣𝑗)|| 𝛿𝑢 𝛿𝑣

=∬
𝐷′
𝑓(𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣)) ||𝐽(𝑢𝑖, 𝑣𝑗)|| d𝑢 d𝑣

As an example, let us consider polar coordinates (𝜌, 𝜙), where

𝑥(𝜌, 𝜙) = 𝜌 cos𝜙; 𝑦(𝜌, 𝜙) = 𝜌 sin𝜙
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4. Integration in Euclidean space

Hence,
|𝐽| = |||det (

cos𝜙 −𝜌 sin𝜙
sin𝜙 𝜌 cos𝜙 )

||| = |𝜌| = 𝜌

If 𝐷 = {(𝑥, 𝑦)∶ 𝑥 > 0, 𝑦 > 0, 𝑥2 + 𝑦2 < 𝑟2}, which is a quarter-circle of radius 𝑟 in the first
quadrant, then 𝐷′ = {(𝜌, 𝜙)∶ 0 < 𝜌 < 𝑟, 0 < 𝜙 < 𝜋

2
}. This is notably a rectangle in polar

coordinates.
∬

𝐷
𝑓(𝑥, 𝑦) d𝑥 d𝑦 =∬

𝐷′
𝑓(𝜌 cos𝜙, 𝜌 sin𝜙) 𝜌 d𝜌 d𝜙

So, for example, if we let 𝑟 → ∞, then

∫
∞

𝑥=0
∫

∞

𝑦=0
𝑓(𝑥, 𝑦) d𝑦 d𝑥 = ∫

𝜋
2

𝜙=0
∫

∞

𝜌=0
𝑓(𝜌 cos𝜙, 𝜌 sin𝜙) 𝜌 d𝜌 d𝜙

Consider
𝐼 = ∫

∞

0
𝑒−𝑥2 d𝑥

Then,

𝐼2 = ∫
∞

0
𝑒−𝑥2 d𝑥 ⋅ ∫

∞

0
𝑒−𝑦2 d𝑦

= ∫
∞

𝑥=0
∫

∞

𝑦=0
𝑒−𝑥2−𝑦2 d𝑦 d𝑥

= ∫
𝜋
2

𝜙=0
∫

∞

𝜌=0
𝑒−𝜌2 𝜌 d𝜌 d𝜙

= 𝜋
2 ∫

∞

0

d
d𝜌 (−

1
2𝑒

−𝜌2) d𝜌

= 𝜋
4

⟹ 𝐼 = √𝜋
2

4.3. Definition of integral in three dimensions
To integrate over regions 𝑉 inℝ3, we can use similar ideas to those discussed in the previous
lecture.

∫
𝑉
𝑓(x) d𝑉 = lim

𝜀→0
∑
𝑖,𝑗,𝑘

𝑓(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘) 𝛿𝑉 𝑖𝑗𝑘

where the 𝛿𝑉 𝑖𝑗𝑘 partition 𝑉 , and each contain the point (𝑥𝑖, 𝑦𝑗 , 𝑧𝑘). In this case, the volume
element satisfies

d𝑉 = d𝑥 d𝑦 d𝑧
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The integrals may be computed in any order. As an example, consider the simplex defined
by

𝑉 = {𝑥 > 0, 𝑦 > 0, 𝑧 > 0, 𝑥 + 𝑦 + 𝑧 < 1}
We can compute the volume using the integral

𝐼 = ∫
1

𝑧=0
∫

1−𝑧

𝑦=0
∫

1−𝑦−𝑧

𝑥=0
1 d𝑥 d𝑦 d𝑧

= ∫
1

𝑧=0
∫

1−𝑧

𝑦=0
(1 − 𝑦 − 𝑧) d𝑦 d𝑧

= ∫
1

𝑧=0
((1 − 𝑧) − 1

2(1 − 𝑧)2 − (1 − 𝑧)𝑧) d𝑧

= [𝑧 − 1
2𝑧

2 − 1
2𝑧 +

1
2𝑧

2 − 1
6𝑧

3 − 1
2𝑧

2 + 1
3𝑧

3]
1

𝑧=0

= 1
6

We can compute things like the centre of mass, assuming it has constant density 𝜌 = 1.
Then

X = 1
𝑚 ∫

𝑉
𝜌x d𝑉 = 1

4 (
1
1
1
)

Proposition. Let 𝑥(𝑢, 𝑣, 𝑤), 𝑦(𝑢, 𝑣, 𝑤), 𝑧(𝑢, 𝑣, 𝑤) be a continuously differentiable bijection
with a continuously differentiable inverse, that maps the volume 𝑉 ′ to 𝑉 . The integral

∭
𝑉
𝑓(𝑥, 𝑦, 𝑧) d𝑥 d𝑦 d𝑧 =∭

𝑉 ′
𝑓(𝑥(𝑢, 𝑣, 𝑤), 𝑦(𝑢, 𝑣, 𝑤), 𝑧(𝑢, 𝑣, 𝑤)) |𝐽| d𝑢 d𝑣 d𝑤

where
𝐽 = det (𝜕x𝜕𝑢

|||
𝜕x
𝜕𝑣

|||
𝜕x
𝜕𝑤)

More concisely,
d𝑥 d𝑦 d𝑧 = |𝐽| d𝑢 d𝑣 d𝑤

The Jacobian comes from the fact that the volume of a parallepiped generated by the vec-
tors

𝜕x
𝜕𝑢𝛿𝑢,

𝜕x
𝜕𝑣𝛿𝑣,

𝜕x
𝜕𝑤𝛿𝑤

is precisely the determinant of the Jacobian matrix multiplied by 𝛿𝑢 𝛿𝑣 𝛿𝑤. The rest of this
proof follows from the two-dimensional case. As an example, let us consider cylindrical
polar coordinates (𝑢, 𝑣, 𝑤) = (𝜌, 𝜙, 𝑧).

d𝑉 = 𝜌 d𝜌 d𝜙 d𝑧 ; |𝐽| = 𝜌
In spherical polar coordinates (𝑢, 𝑣, 𝑤) = (𝑟, 𝜃, 𝜙),

d𝑉 = 𝑟2 sin 𝜃 d𝑟 d𝜃 d𝜙 ; |𝐽| = 𝑟2 sin 𝜃
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4. Integration in Euclidean space

4.4. Calculating volumes
We can use the volume element to calculate, for example, the volume of a ball of radius 𝑅.
To begin, let us use Cartesian coordinates.

∫
𝑉
d𝑉 = ∫

𝑅

𝑧=−𝑅
d𝑧∫

√𝑅2−𝑧2

𝑦=−√𝑅2−𝑧2
d𝑦∫

√𝑅2−𝑧2−𝑦2

𝑥=−√𝑅2−𝑧2−𝑦2
d𝑥

= ∫
𝑅

𝑧=−𝑅
d𝑧∫

√𝑅2−𝑧2

𝑦=−√𝑅2−𝑧2
d𝑦 [2√𝑅2 − 𝑧2 − 𝑦2]

= ∫
𝑅

𝑧=−𝑅
d𝑧 [𝑦√𝑅2 − 𝑧2 − 𝑦2 + (𝑅2 − 𝑧2) arctan ( 𝑦

√𝑅2 − 𝑧2 − 𝑦2
)
√𝑅2−𝑧2

𝑦=−√𝑅2−𝑧2
]

= ∫
𝑅

𝑧=−𝑅
d𝑧 [𝜋(𝑅2 − 𝑧2)]

= 4
3𝜋𝑅

3

We can alternatively use spherical polar coordinates.

∫
𝑉
d𝑉 = ∫

𝑅

𝑟=0
d𝑟∫

𝜋

𝜃=0
d𝜃∫

2𝜋

𝜙=0
d𝜙 ⋅ 𝑟2 sin 𝜃

= ∫
𝑅

𝑟=0
𝑟2 d𝑟∫

𝜋

𝜃=0
sin 𝜃 d𝜃∫

2𝜋

𝜙=0
d𝜙

= ∫
𝑅

𝑟=0
𝑟2 d𝑟 ⋅ ∫

𝜋

𝜃=0
sin 𝜃 d𝜃 ⋅ ∫

2𝜋

𝜙=0
d𝜙

= 1
3𝑅

3 ⋅ 2 ⋅ 2𝜋

= 4
3𝜋𝑅

3

This is clearly amuch cleaner computation. Now, consider the a ball of radius𝑎with cylinder
of radius 𝑏 < 𝑎 removed from the centre alignedwith the 𝑧 axis. To calculate this volume, the
symmetry of the problem suggests wemight want to use cylindrical polar coordinates.

𝑉 = {(𝜌, 𝜙, 𝑧)∶ 0 < 𝜌2 + 𝑧2 < 𝑎2, 𝑏 < 𝜌 < 𝑎}

∫
𝑉
d𝑉 = ∫

𝑎

𝜌=𝑏
𝜌 d𝜌∫

2𝜋

𝜙=0
d𝜙∫

√𝑎2−𝜌2

𝑧=−√𝑎2−𝜌2
d𝑧

= 2𝜋∫
𝑎

𝑏
2𝜌√𝑎2 − 𝜌2 d𝜌

= 4
3𝜋(𝑎

2 − 𝑏2)
3
2
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5. Integration over surfaces
5.1. Two-dimensional surfaces
A two-dimensional surface in ℝ3 can be defined implicitly using a function 𝑓∶ ℝ3 → ℝ,
with

𝑆 = {x ∈ ℝ3∶ 𝑓(x) = 0}
The normal to 𝑆 at x is parallel to∇𝑓(x). We call the surface regular if∇𝑓(x) ≠ 0 everywhere
on the surface. For example, consider

𝑆 = {(𝑥, 𝑦, 𝑧)∶ 𝑥2 + 𝑦2 + 𝑧2 − 1 = 0}
Then

∇𝑓(x) = (
2𝑥
2𝑦
2𝑧
) = 2x

which is clearly normal to 𝑆 at x. Some surfaces have a boundary, for instance a hemi-
sphere.

𝑆 = {(𝑥, 𝑦, 𝑧)∶ 𝑥2 + 𝑦2 + 𝑧2 − 1 = 0, 𝑧 ≥ 0}
We label the boundary 𝜕𝑆, so

𝜕𝑆 = {(𝑥, 𝑦, 𝑧)∶ 𝑥2 + 𝑦2 = 1, 𝑧 = 0}
In this course, a surface will either have no boundary or its boundary will be made of piece-
wise smooth curves. If 𝑆 has no boundary, we say that 𝑆 is a closed surface. It is often useful
to parametrise a surface using some coordinates (𝑢, 𝑣).

𝑆 = {x = x(𝑢, 𝑣)∶ (𝑢, 𝑣) ∈ 𝐷}
where 𝐷 is some region in the 𝑢-𝑣 plane. For a hemisphere, we can use spherical polar
coordinates:

𝑆 = {x = x(𝜃, 𝜙) = (
sin 𝜃 cos𝜙
sin 𝜃 sin𝜙
cos 𝜃

) ∶ 0 ≤ 𝜃 ≤ 𝜋
2 , 0 ≤ 𝜙 ≤ 2𝜋}

We call a parametrisation of 𝑆 regular if
𝜕x
𝜕𝑢 ×

𝜕x
𝜕𝑣 ≠ 0

everywhere on the surface. Note that 𝜕x
𝜕𝑢
is the tangent in one direction, and 𝜕x

𝜕𝑣
is the tangent

in another direction, so their cross product should be normal to the surface.

n̂ =
𝜕x
𝜕𝑢

× 𝜕x
𝜕𝑣

||
𝜕x
𝜕𝑢

× 𝜕x
𝜕𝑣
||

This normal will vary smoothly with respect to 𝑢 and 𝑣, if we are moving across a smooth
part of the curve. Choosing a consistent normal over 𝑆 gives a way to give an orientation to
the boundary 𝜕𝑆. We make the convention that normal vectors near you should be on your
left as you traverse 𝜕𝑆.
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5.2. Areas and integrals over surfaces
Consider a parametrised surface

𝑆 = {x = x(𝑢, 𝑣)∶ (𝑢, 𝑣) ∈ 𝐷}

The integral over 𝑆 cannot be of the form

∬
𝐷
d𝑢 d𝑣

since a patch of area 𝛿𝑢 𝛿𝑣 in 𝐷 will not in general correspond to a patch of area 𝛿𝑢 𝛿𝑣 in 𝑆.
Note that the small change 𝑢 ↦ 𝑢 + 𝛿𝑢 produces a change

x(𝑢 + 𝛿𝑢, 𝑣) − x(𝑢, 𝑣) ≈ 𝜕x
𝜕𝑢𝛿𝑢

Similarly, changing 𝑣, we have

x(𝑢, 𝑣 + 𝛿𝑣) − x(𝑢, 𝑣) ≈ 𝜕x
𝜕𝑣𝛿𝑣

So the patch of area 𝛿𝑢 𝛿𝑣 in 𝐷 corresponds (to first order) to a parallelogram of area

|||
𝜕x
𝜕𝑢 ×

𝜕x
𝜕𝑣
||| 𝛿𝑢 𝛿𝑣

This leads us to define the scalar area element and the vector area element as follows:

d𝑆 = |||
𝜕x
𝜕𝑢 ×

𝜕x
𝜕𝑣
||| d𝑢 d𝑣

dS = 𝜕x
𝜕𝑢 ×

𝜕x
𝜕𝑣 d𝑢 d𝑣 = n̂ d𝑆

So for instance the area of 𝑆 is given by

∫
𝑆
d𝑆 =∬

𝐷

|||
𝜕x
𝜕𝑢 ×

𝜕x
𝜕𝑣
||| d𝑢 d𝑣

As an example, consider the hemisphere of radius 𝑅.

𝑆 = {x = x(𝜃, 𝜙) = (
𝑅 sin 𝜃 cos𝜙
𝑅 sin 𝜃 sin𝜙
𝑅 cos 𝜃

) = 𝑅e𝑟 ∶ 0 ≤ 𝜃 ≤ 𝜋
2 , 0 ≤ 𝜙 ≤ 2𝜋}

So

𝜕x
𝜕𝜃 = (

𝑅 cos 𝜃 cos𝜙
𝑅 cos 𝜃 sin𝜙
−𝑅 sin 𝜃

) = 𝑅e𝜃

𝜕x
𝜕𝜙 = (

−𝑅 sin 𝜃 sin𝜙
𝑅 sin 𝜃 cos𝜙

0
) = 𝑅 sin 𝜃e𝜙
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Hence
d𝑆 = 𝑅2 sin 𝜃 ||e𝜃 × e𝜙|| d𝜃 d𝜙 = 𝑅2 sin 𝜃 d𝜃 d𝜙

So the surface area of the hemisphere is

∫
𝜋
2

𝜃=0
d𝜃∫

2𝜋

𝜙=0
d𝜙 𝑅2 sin 𝜃 = 2𝜋𝑅2

Here is another example. Suppose the velocity of a fluid is u(x). Given a surface 𝑆, wemight
like to calculate how much fluid passes through it per unit time. On a small patch 𝛿𝑆 on
𝑆, the fluid passing through the small patch would be (𝑢 ⋅ 𝛿S) 𝛿𝑡 in time 𝛿𝑡, where 𝛿S is the
normal direction to the area 𝛿𝑆. Over the whole surface, the amount that passes over 𝑆 in
𝛿𝑡 is

𝛿𝑡∫
𝑆
u ⋅ dS

This kind of integral is called a ‘flux integral’.

5.3. Choice of parametrisation of surfaces
Let x = x(𝑢, 𝑣) and x = x̃(�̃�, ̃𝑣) be two different parametrisations of 𝑆 with (𝑢, 𝑣) ∈ 𝐷 and
(�̃�, ̃𝑣) ∈ 𝐷′. Since every coordinate in 𝑆 has a pre-image in both 𝐷 and 𝐷′, there must be a
relationship

x(𝑢, 𝑣) = x̃(�̃�(𝑢, 𝑣), ̃𝑣(𝑢, 𝑣))
By the chain rule,

𝜕x
𝜕𝑢 ×

𝜕x
𝜕𝑣 = (𝜕x̃𝜕�̃�

𝜕�̃�
𝜕𝑢 +

𝜕x̃
𝜕 ̃𝑣

𝜕 ̃𝑣
𝜕𝑢) × (𝜕x̃𝜕�̃�

𝜕�̃�
𝜕𝑣 +

𝜕x̃
𝜕 ̃𝑣

𝜕 ̃𝑣
𝜕𝑣)

= (𝜕�̃�𝜕𝑢
𝜕 ̃𝑣
𝜕𝑣 −

𝜕�̃�
𝜕𝑣

𝜕 ̃𝑣
𝜕𝑢) (

𝜕x̃
𝜕�̃� ×

𝜕x̃
𝜕 ̃𝑣 )

= 𝜕(�̃�, ̃𝑣)
𝜕(𝑢, 𝑣) (

𝜕x̃
𝜕�̃� ×

𝜕x̃
𝜕 ̃𝑣 )

Hence,

∫
𝑆
𝑓 d𝑆 =∬

�̃�
𝑓(x̃(�̃�, ̃𝑣)) |||

𝜕x̃
𝜕�̃� ×

𝜕x̃
𝜕 ̃𝑣
||| d�̃� d ̃𝑣

=∬
𝐷
𝑓(x(𝑢, 𝑣)) |||

𝜕x̃
𝜕�̃� ×

𝜕x̃
𝜕 ̃𝑣
|||
|||
𝜕(�̃�, ̃𝑣)
𝜕(𝑢, 𝑣)

||| d𝑢 d𝑣

=∬
𝐷
𝑓(x(𝑢, 𝑣)) |||

𝜕x
𝜕𝑢 ×

𝜕x
𝜕𝑣
||| d𝑢 d𝑣

So the result of the integral over the surface is independent of the choice of parametrisa-
tion.
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6. Differential operators

6.1. Divergence, curl, and Laplacian

Recall the gradient operator ∇, which is defined in Cartesian coordinates as

∇ = e𝑖
𝜕
𝜕𝑥𝑖

For a vector field F∶ ℝ3 → ℝ3, we define the divergence of F by

∇ ⋅ F

In Cartesian coordinates,

∇ ⋅ F = (e𝑖
𝜕
𝜕𝑥𝑖

) ⋅ (𝐹𝑗e𝑗) =
𝜕𝐹𝑖
𝜕𝑥𝑖

Note that the divergence of a vector field is a scalar field. We define the curl of F to be

∇ × F

In Cartesian coordinates,

∇ × F = (e𝑗
𝜕
𝜕𝑥𝑗

) × (𝐹𝑘e𝑘) = 𝑒𝑗 × [ 𝜕
𝜕𝑥𝑗

(𝐹𝑘e𝑘)] = (e𝑗 × e𝑘)
𝜕𝐹𝑘
𝜕𝑥𝑗

= 𝜀𝑖𝑗𝑘
𝜕𝐹𝑘
𝜕𝑥𝑗

e𝑖

Hence (just in Cartesian coordinates):

[∇ × F]𝑖 = 𝜀𝑖𝑗𝑘
𝜕𝐹𝑘
𝜕𝑥𝑗

The curl of a vector field is another vector field. In terms of a ‘formal’ determinant, we can
write

∇ × F = det(
e1 e2 e3

𝜕/𝜕𝑥1 𝜕/𝜕𝑥2 𝜕/𝜕𝑥2
𝐹1 𝐹2 𝐹3

)

We cannot trivially generalise the curl operator to spaces that do not have three spatial di-
mensions. Finally, we define the Laplacian of a scalar field 𝑓∶ ℝ3 → ℝ as

∇2𝑓 ≔ ∇ ⋅ ∇𝑓

In Cartesian coordinates, [∇𝑓]𝑖 = 𝜕𝑓/𝜕𝑥𝑖 , so

∇2𝑓 = 𝜕2𝑓
𝜕𝑥𝑖𝜕𝑥𝑖

469



VII. Vector Calculus

6.2. Explanation of divergence and curl
Consider

F(x) = x

Using Cartesian coordinates,

∇ ⋅ F = 𝜕
𝜕𝑥𝑖

𝑥𝑖 = 𝛿𝑖𝑖 = 3

[∇ × F]𝑖 = 𝜀𝑖𝑗𝑘
𝜕
𝜕𝑥𝑗

𝑥𝑘 = 𝜀𝑖𝑗𝑘𝛿𝑘𝑗 = 𝜀𝑖𝑗𝑗 = 0

A positive divergence at a point indicates that the vector field is generally pointing away
from that point. If thought of as a fluid, the point acts as a ‘source’ of fluid. A negative
divergence indicates that the vector field is pointing towards that point, so it acts like a ‘sink’.
If a vector field has zero divergence, it can be thought of as representing the velocity of an
incompressible fluid. The curl measures the local rotation of the vector field (or the related
‘fluid’) in a given direction. If the vector field was going anticlockwise in the e1-e2 plane,
then the component of the curl in the e3 direction would be positive. If there is no local
rotation, then the component is zero.

6.3. Identities
Proposition. For 𝑓, 𝑔 scalar fields, F,G vector fields, the following identities hold.

• ∇(𝑓𝑔) = (∇𝑓)𝑔 + (∇𝑔)𝑓

• ∇ ⋅ (𝑓F) = (∇𝑓) ⋅ F + (∇ ⋅ F)𝑓

• ∇ × (𝑓F) = (∇𝑓) × F + (∇ × F)𝑓

• ∇(F ⋅ G) = F × (∇ × G) + G × (∇ × F) + (F ⋅ ∇)G + (G ⋅ ∇)F

• ∇ × (F × G) = F(∇ ⋅ G) − G(∇ ⋅ F) + (G ⋅ ∇)F − (F ⋅ ∇)G

• ∇ ⋅ (F × G) = (∇ × F) ⋅ G − F ⋅ (∇ × G)

Note, for example, that we can compute the dot product between vector fields and operat-
ors:

[(F ⋅ ∇)G]𝑖 = (𝐹𝑗
𝜕
𝜕𝑥𝑗

)𝐺𝑖 = 𝐹𝑗
𝜕𝐺𝑖
𝜕𝑥𝑗

Specifically, F ⋅ ∇ is a differential operator, and ∇ ⋅ F is a scalar field; they are not the same
thing.

Proof. We will only prove the fifth one for now, as all the proofs are similar. The identities
hold in any coordinate system, so we will choose the Cartesian coordinate system since the
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basis vectors are the same everywhere.

[∇ × (F × G)]𝑖 = 𝜀𝑖𝑗𝑘
𝜕
𝜕𝑥𝑗

(F × G)𝑘

= 𝜀𝑖𝑗𝑘
𝜕
𝜕𝑥𝑗

𝜀𝑘𝑙𝑚𝐹 𝑙𝐺𝑚

= 𝜀𝑖𝑗𝑘𝜀𝑘𝑙𝑚
𝜕
𝜕𝑥𝑗

𝐹 𝑙𝐺𝑚

= 𝜀𝑖𝑗𝑘𝜀𝑘𝑙𝑚 (𝐹 𝑙
𝜕𝐺𝑚
𝜕𝑥𝑗

+ 𝐺𝑙
𝜕𝐹 𝑙
𝜕𝑥𝑗

)

= (𝛿𝑖𝑙𝛿𝑗𝑚 − 𝛿𝑖𝑚𝛿𝑗𝑙) (𝐹 𝑙
𝜕𝐺𝑚
𝜕𝑥𝑗

+ 𝐺𝑙
𝜕𝐹 𝑙
𝜕𝑥𝑗

)

= 𝐹𝑖
𝜕𝐺𝑗
𝜕𝑥𝑗

− 𝐹𝑗
𝜕𝐺𝑖
𝜕𝑥𝑗

+ 𝐺𝑗
𝜕𝐹𝑖
𝜕𝑥𝑗

− 𝐺𝑖
𝜕𝐹𝑗
𝜕𝑥𝑗

= [F(∇ ⋅ G)]𝑖 − [(F ⋅ ∇)G]𝑖 + [(G ⋅ ∇)F]𝑖 − [(∇ ⋅ F)G]𝑖

6.4. Definitions in orthogonal curvilinear coordinate systems
For a general set of orthogonal curvilinear coordinates, divergence is defined by

∇ ⋅ F = (e𝑢
1
ℎ𝑢

𝜕
𝜕𝑢 + e𝑣

1
ℎ𝑣

𝜕
𝜕𝑣 + e𝑤

1
ℎ𝑤

𝜕
𝜕𝑤) ⋅ (𝐹𝑢e𝑢 + 𝐹𝑣e𝑣 + 𝐹𝑤e𝑤)

We would get terms like

(e𝑢
1
ℎ𝑢

𝜕
𝜕𝑢) ⋅ (𝐹𝑣e𝑣) =

1
ℎ𝑢
e𝑢 ⋅ [

𝜕
𝜕𝑢(𝐹𝑣e𝑣)]

= 1
ℎ𝑢
e𝑢 ⋅ [

𝜕𝐹𝑣
𝜕𝑢 e𝑣 +

𝜕e𝑣
𝜕𝑢 𝐹𝑣]

= 𝐹𝑣
ℎ𝑢

(e𝑢 ⋅
𝜕e𝑣
𝜕𝑢 )

We can combine all such terms and then derive that

∇ ⋅ F = 1
ℎ𝑢ℎ𝑣ℎ𝑤

[ 𝜕𝜕𝑢(ℎ𝑣ℎ𝑤𝐹𝑢) +
𝜕
𝜕𝑣(ℎ𝑢ℎ𝑤𝐹𝑣) +

𝜕
𝜕𝑤(ℎ𝑢ℎ𝑣𝐹𝑤)]

∇ × F = 1
ℎ𝑢ℎ𝑣ℎ𝑤

|
|
|
|

ℎ𝑢e𝑢 ℎ𝑣e𝑣 ℎ𝑤e𝑤
𝜕/𝜕𝑢 𝜕/𝜕𝑣 𝜕/𝜕𝑤
ℎ𝑢𝐹𝑢 ℎ𝑣𝐹𝑣 ℎ𝑤𝐹𝑤

|
|
|
|

∇2𝑓 = 1
ℎ𝑢ℎ𝑣ℎ𝑤

[ 𝜕𝜕𝑢 (
ℎ𝑣ℎ𝑤
ℎ𝑢

𝜕𝑓
𝜕𝑢) +

𝜕
𝜕𝑣 (

ℎ𝑢ℎ𝑤
ℎ𝑣

𝜕𝑓
𝜕𝑣 ) +

𝜕
𝜕𝑤 (ℎ𝑢ℎ𝑣ℎ𝑤

𝜕𝑓
𝜕𝑤)]
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For cylindrical polar coordinates (𝜌, 𝜙, 𝑧), we have (ℎ𝜌, ℎ𝜙, ℎ𝑧) = (1, 𝜌, 1) and hence

∇ ⋅ F = 1
𝜌
𝜕
𝜕𝜌(𝜌𝐹𝜌) +

1
𝜌
𝜕𝐹𝜙
𝜕𝜙 + 𝜕𝐹𝑧

𝜕𝑧

∇ × F = 1
𝜌
|
|
|
|

e𝜌 𝜌e𝜙 e𝑧
𝜕/𝜕𝜌 𝜕/𝜕𝜙 𝜕/𝜕𝑧
𝐹𝜌 𝜌𝐹𝜙 𝐹𝑧

|
|
|
|

∇2𝑓 = 1
𝜌
𝜕
𝜕𝜌 (𝜌

𝜕𝑓
𝜕𝜌) +

1
𝜌2
𝜕2𝑓
𝜕𝜙2 +

𝜕2𝑓
𝜕𝑧2

For spherical polar coordinates (𝑟, 𝜃, 𝜙), we have (ℎ𝑟, ℎ𝜃, ℎ𝜙) = (1, 𝑟, 𝑟 sin 𝜃) and hence

∇ ⋅ F = 1
𝑟2

𝜕
𝜕𝑟(𝑟

2𝐹𝑟) +
1

𝑟 sin 𝜃
𝜕
𝜕𝜃 (sin 𝜃 𝐹𝜃) +

1
𝑟 sin 𝜃

𝜕𝐹𝜙
𝜕𝜙

∇ × F = 1
𝑟2 sin 𝜃

|
|
|
|

e𝑟 𝑟e𝜃 𝑟 sin 𝜃 e𝜙
𝜕/𝜕𝑟 𝜕/𝜕𝜃 𝜕/𝜕𝜙
𝐹𝑟 𝑟𝐹𝜃 𝑟 sin 𝜃 𝐹𝜙

|
|
|
|

∇2𝑓 = 1
𝑟2

𝜕
𝜕𝑟 (𝑟

2 𝜕𝑓
𝜕𝑟 ) +

1
𝑟2 sin 𝜃

𝜕
𝜕𝜃 (sin 𝜃

𝜕𝑓
𝜕𝜃 ) +

1
𝑟2 sin2 𝜃

𝜕2𝑓
𝜕𝜙2

6.5. Laplacian of a vector field

The Laplacian of a vector field might be expected to be something like ∇ ⋅ (∇F). However,
we have not defined the gradient of a vector field. In Cartesian coordinates, it would make
sense that

∇2F = ∇2(𝐹𝑖e𝑖) = (∇2𝐹𝑖)e𝑖 (†)

If this is the case, we can show then that, in Cartesian coordinates,

∇2F = ∇(∇ ⋅ F) − ∇ × (∇ × F)

In other words, in Cartesian coordinates,

[∇2F]𝑖 =
𝜕2𝐹𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

= ∇2(𝐹𝑖)

Since the right hand side of (†) is well-defined in any orthogonal curvilinear coordinate
system, we will use it as a definition.
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6.6. Relations between differential operators
Proposition. For a scalar field 𝑓 and a vector field F,

∇ ×∇𝑓 = 0

and
∇ ⋅ ∇ × F = 0

In other words, curl ∘ grad gives zero, and div ∘ curl gives zero.

Proof. We will use Cartesian coordinates for simplicity.

[∇ × ∇𝑓]𝑖 = 𝜀𝑖𝑗𝑘
𝜕
𝜕𝑥𝑗

( 𝜕𝑓𝜕𝑥𝑘
)

= 𝜀𝑖𝑗𝑘
𝜕2𝑓

𝜕𝑥𝑗𝜕𝑥𝑘

𝜀𝑖𝑗𝑘 is antisymmetric in 𝑗 and 𝑘, but
𝜕2𝑓

𝜕𝑥𝑗𝜕𝑥𝑘
is symmetric in 𝑗 and 𝑘. Hence the result is zero.

Further,

∇ ⋅ ∇ × F = 𝜕
𝜕𝑥𝑖

𝜀𝑖𝑗𝑘
𝜕
𝜕𝑥𝑗

𝐹𝑘

= 𝜀𝑖𝑗𝑘
𝜕2𝐹𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

Once again the 𝜀 term is antisymmetric and the partial derivative is symmetric, so the result
follows.

6.7. Irrotational and solenoidal forces
As a short aside, ‘simply connected’ means that any loop in a space can be ‘shrunk’ to any
point within that space. It can also be referred to as ‘1-connected’ since the loop is a one-
dimensionalmanifold. For example,ℝ3 is 1-connected, butℝ3with the 𝑧-axis removed is not
1-connected; a loop around this axis cannot be shrunk to a point away from the axis.

We can write that a space is ‘2-connected’ if it is 1-connected and any 2-manifold (surface)
can be shrunk to any point within the space. Certainly ℝ3 is 2-connected, but for example
ℝ3 without the origin is not 2-connected. The space is certainly 1-connected, but it is not
2-connected because a surface around the origin cannot be shrunk to a point away from the
origin.

Recall thatF is conservative if we canwriteF = ∇𝑓. We say thatF is irrotational if∇×F = 0.
Hence, any conservative function is irrotational. The converse is true if the domain of F is
1-connected. We say that F is solenoidal if ∇ ⋅ F = 0. If there exists a vector potential
A for F, i.e. F = ∇ × A, then F is solenoidal. The converse is true if the domain of F is
2-connected.
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7. Integral theorems
7.1. Green’s theorem
Proposition. If 𝑃 = 𝑃(𝑥, 𝑦) and 𝑄 = 𝑄(𝑥, 𝑦) are continuously differentiable on a planar
domain 𝐴 ∪ 𝜕𝐴 (𝐴 and its boundary), and 𝜕𝐴 is piecewise smooth, then

∮
𝜕𝐴
𝑃 d𝑥 + 𝑄 d𝑦 =∬

𝐴
(𝜕𝑄𝜕𝑥 − 𝜕𝑃

𝜕𝑦 ) d𝑥 d𝑦

where the orientation of 𝜕𝐴 is such that 𝐴 lies to the left while traversing 𝜕𝐴.

Note that it is easy to arrive at this result for a rectangle. In this case,

∬
𝐴
(𝜕𝑄𝜕𝑥 − 𝜕𝑃

𝜕𝑦 ) d𝑥 d𝑦 = ∫
𝑑

𝑐
d𝑦∫

𝑏

𝑎
d𝑥 𝜕𝑄𝜕𝑥 −∫

𝑏

𝑎
d𝑥∫

𝑑

𝑥
d𝑦 𝜕𝑃𝜕𝑦

= ∫
𝑑

𝑐
[𝑄(𝑏, 𝑦) − 𝑄(𝑎, 𝑦)] d𝑦 +∫

𝑏

𝑎
[𝑃(𝑥, 𝑐) − 𝑃(𝑥, 𝑑)] d𝑥

= ∮
𝜕𝐴
𝑃 d𝑥 + 𝑄 d𝑦

It then intuitively follows that we can approximate a surface with a set of small rectangles,
and then the theorem should hold. As an example, let

𝑃 = −12𝑦; 𝑄 = 1
2𝑥

Then the area of some region is given by

∬
𝐴
d𝑥 d𝑦 =∬

𝐴
(12 +

1
2) d𝑥 d𝑦

=∬
𝐴
(𝜕𝑄𝜕𝑥 − 𝜕𝑃

𝜕𝑦 ) d𝑥 d𝑦

= 1
2 ∮𝜕𝐴

𝑥 d𝑦 − 𝑦 d𝑥

So letting 𝐴 be the ellipse 𝑥2

𝑎2
+ 𝑦2

𝑏2
≤ 1, we can parametrise 𝜕𝐴 by

[0, 2𝜋] ∋ 𝑡 ↦ (𝑎 cos 𝑡𝑏 sin 𝑡)

Hence the area is
1
2 ∫

2𝜋

0
(𝑎𝑏 cos2 𝑡 + 𝑎𝑏 sin2 𝑡) d𝑡 = 𝜋𝑎𝑏

474



7. Integral theorems

7.2. Stokes’ theorem
Proposition. If F(x) is a continuously differentiable vector field, and 𝑆 is an orientable,
piecewise regular surface with a piecewise smooth boundary 𝜕𝑆, then

∫
𝑆
(∇ × F) ⋅ dS = ∮

𝜕𝑆
F ⋅ dx

This can be thought of as a generalisation to the fundamental theorem of calculus. From
the fundamental theorem, we know that the integral of a differentiated function over an in-
terval 𝐼 is just the original function evaluated at the boundary 𝜕𝐼. Likewise, Stokes’ theorem
states that the integral of the curl of a function (just another differential operator) over a
surface 𝑆 is just the original function evaluated at the boundary of the surface 𝜕𝑆. In the
one-dimensional fundamental theorem of calculus, we say that the function ‘evaluated over
the boundary’ is simply the function applied to the final point, minus the function applied
to the initial point; we are in some sense considering every point on the boundary 𝜕𝐼. But in
the case of 𝜕𝑆 being a curve, we must integrate around the curve boundary, since without
an integral we can’t consider infinitely many boundary points.

Note that for a surface to be ‘orientable’, it simply means that it has two sides, an inside and
an outside. Theremust be a consistent choice of normal at each point. For example, a sphere
is orientable, but a Möbius strip is not orientable.

Example. Let 𝑆 be a cap of a sphere:

𝑆 = {x(𝜃, 𝜙) = (
sin 𝜃 cos𝜙
sin 𝜃 sin𝜙
cos 𝜃

) ≡ e𝑟; 0 ≤ 𝜃 ≤ 𝛼; 0 ≤ 𝜙 < 2𝜋}

Now, let

F(x) = (
−𝑥2𝑦
0
0

) ⟹ ∇× F = (
0
0
𝑥2
)

On 𝑆,
dS = dx

d𝜃 ×
dx
d𝜙 d𝜃 d𝜙 = e𝑟 sin 𝜃 d𝜃 d𝜙

Note that since
𝑥2e𝑧 ⋅ e𝑟 = (sin 𝜃 cos𝜙)2 cos 𝜃

on 𝑆, we can compute

∫
𝑆
(∇ × F) ⋅ dS = ∫

2𝜋

𝜙=0
(∫

𝛼

𝜃=0
(sin 𝜃 cos𝜙)2 cos 𝜃 sin 𝜃 d𝜃) d𝜙 = 𝜋

4 sin
4 𝛼

We can instead compute the integral over the boundary. By Stokes’ theorem, the results
should match. 𝜕𝑆 is described by

[0, 2𝜋] ∋ 𝑡 ↦ (
sin𝛼 cos 𝑡
sin𝛼 sin 𝑡
cos𝛼

)
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Then

dx = dx
d𝑡 d𝑡 = sin𝛼(

− sin 𝑡
cos 𝑡
0

) d𝑡

We can show that

∮
𝜕𝑆
F ⋅ dS = sin4 𝛼∫

2𝜋

0
(− cos2 𝑡 sin 𝑡) (− sin 𝑡) d𝑡 = 𝜋

4 sin
4 𝛼

7.3. Stokes’ theorem on closed surfaces
If 𝑆 is an orientable, closed surface, and F is continuously differentiable, then

∫
𝑆
(∇ × F) ⋅ dS = 0

This is clear since 𝜕𝑆 = ∅.

7.4. Zero circulation and irrotationality
Proposition. If F is continuously differentiable, and for every loop 𝐶 we have that

∮
𝐶
F ⋅ dx = 0

then∇×F = 0. In other words, F is irrotational if and only if F has zero circulation around
all closed loops.

Note that the backward implication is trivial. If F has zero circulation around all loops,
we can define that loop to be the boundary of some surface, and so the integral of the curl
vanishes.

Proof. Suppose that the result is false; there exists a unit vector k̂ such that k̂ ⋅ (∇ × F(x0)) =
𝜀 > 0 for some x0. By continuity, for a sufficiently small 𝛿 > 0,

k̂ ⋅ (∇ × F(x0)) >
1
2𝜀; for |x − x0| < 𝛿

Now, we can take a loop in this ball {x∶ |x − x0| < 𝛿} that lies entirely in a planewith normal
k̂. Let this small loop’s enclosed surface be 𝑆, with boundary 𝜕𝑆. Then

0 = ∮
𝜕𝑆
F ⋅ dx = ∫

𝑆
∇ × F ⋅ k̂ d𝑆 > 1

2𝜀∫ d𝑆 > 0

which is a contradiction.
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7.5. Intuition for curl as infinitesimal circulation
Let 𝑆𝜀 denote a region contained inside a disc of radius 𝜀 > 0, centred at x0 with normal
k̂.

∫
𝑆𝜀
∇ × F ⋅ dS = ∫

𝑆𝜀
(∇ × F(x) − ∇ × F(x0)) ⋅ dS +∫

𝑆𝜀
∇ × F(x0) ⋅ k̂ d𝑆

= ∫
𝑆𝜀
(∇ × F(x) − ∇ × F(x0)) ⋅ dS

⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
𝑜(area(𝑆𝜀))

+∇ × F(x0) ⋅ k̂ ∫
𝑆𝜀
d𝑆

⏟⎵⏟⎵⏟
area(𝑆𝜀)

As 𝜀 shrinks, the first integral tends to zero faster than the second term. Hence,

∫
𝑆𝜀
∇ × F ⋅ dS = ∇ × F(x0) ⋅ k̂ ⋅ area(𝑆𝜀) + 𝑜(area(𝑆𝜀))

We can then see, by Stokes’ theorem, that

∇ × F(x0) ⋅ k̂ = lim
𝜀→0

1
area(𝑆𝜀)

∮
𝜕𝑆𝜀

F ⋅ dx

So the curl of F at x0 in the direction k̂ is the infinitesimal circulation around x0, per unit
area.

7.6. Gauss’ divergence theorem
Proposition. If F(x) is a continuously differentiable vector field, and 𝑉 is a volume with a
piecewise regular boundary 𝜕𝑉 , then

∫
𝑉
∇ ⋅ F d𝑉 = ∫

𝜕𝑉
F ⋅ dS

where the normal of 𝜕𝑉 points out of 𝑉 .

There is also a two-dimensional version. If 𝐷 is a planar region with a piecewise smooth
boundary 𝜕𝐷,

∫
𝐷
∇ ⋅ F d𝐴 = ∮

𝜕𝐷
F ⋅ n d𝑠

where the d𝑠 represents arc length, and where n points out of 𝐷.

Example. Let 𝑉 be a cylinder, defined in cylindrical polar coordinates (𝜌, 𝜙, 𝑧) as

𝑉 = {(𝜌, 𝜙, 𝑧)∶ 0 ≤ 𝜌 ≤ 𝑅,−ℎ ≤ 𝑧 ≤ ℎ, 0 ≤ 𝜙 < 2𝜋}
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Let us label the boundary on the top 𝑆+, the boundary on the bottom 𝑆−, and the rest of the
boundary 𝑆𝑅:

𝑆± = {(𝜌, 𝜙, 𝑧)∶ 0 ≤ 𝜌 ≤ 𝑅, 𝑧 = ±ℎ, 0 ≤ 𝜙 < 2𝜋}
𝑆𝑅 = {(𝜌, 𝜙, 𝑧)∶ 𝜌 = 𝑅,−ℎ ≤ 𝑧 ≤ ℎ, 0 ≤ 𝜙 < 2𝜋}

Consider F(x) = x, hence ∇ ⋅ F = 3.

∫
𝑉
∇ ⋅ F d𝑉 = 3∫

𝑉
d𝑉 = 6𝜋𝑅2ℎ

Using instead the divergence theorem,

∫
𝑉
∇ ⋅ F d𝑉 = ∫

𝜕𝑉
F ⋅ dS

On 𝑆𝑅, dS = e𝜌𝑅 d𝜙 d𝑧, and x ⋅ e𝜌 = 𝑅. So we have the flux integral

∫
𝑆𝑅
F ⋅ dS = ∫

ℎ

𝑧=−ℎ
∫

2𝜋

𝜙=0
𝑅2 d𝜙 d𝑧 = 4𝜋𝑅2ℎ

On 𝑆±, dS = ±e𝑧𝜌 d𝜌 d𝜙, and x ⋅ e𝑧 = ±ℎ. Hence

∫
𝑆±
F ⋅ dS = ∫

2𝜋

𝜙=0
∫

𝑅

𝜌=0
ℎ𝜌 d𝜌 d𝜙 = 𝜋𝑅2ℎ

The total is 6𝜋𝑅2ℎ as expected.
Proposition. If F is continuously differentiable, and for every closed surface 𝑆 we have

∫
𝑆
F ⋅ dS = 0

then ∇ ⋅ F = 0.

Proof. Suppose that the result is false;∇⋅F(x0) = 𝜀 > 0. By continuity, for some sufficiently
small 𝛿 > 0 we have

∇ ⋅ F(x) > 1
2𝜀 for |x0 − x| < 𝛿

Now, we can choose a volume 𝑉 inside the ball |x0 − x| < 𝛿, and then by assumption, apply-
ing the divergence theorem,

0 = ∫
𝜕𝑉

F ⋅ dS = ∫
𝑉
∇ ⋅ F d𝑉 > 0

which is a contradiction. We then conclude that if the vector field has zero net flux through
any closed surface, it is solenoidal.
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7.7. Intuition for divergence as infinitesimal flux

Let 𝑉𝜀 be a volume in ℝ3, contained inside a ball of radius 𝜀 > 0, centred at a point x0.
Then

∫
𝑉𝜀
∇ ⋅ F d𝑉 = vol(𝑉𝜀)∇ ⋅ F(x0) + ∫

𝑉𝜀
[∇ ⋅ F(x) − ∇ ⋅ F(x0)] d𝑉

⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟
𝑜(vol(𝑉𝜀))

Dividing both sides by the volume of 𝑉𝜀, and taking 𝜀 → 0, we can apply the divergence
theorem to get

∇ ⋅ F(x0) = lim
𝜀→0

1
vol(𝑉𝜀)

∫
𝜕𝑉𝜀

F ⋅ dS

The divergence of F measures the infinitesimal flux per unit volume. If the flux is moving
‘outward’ at this point, ∇ ⋅ F > 0, and vice versa.

7.8. Conservation laws

Many equations in mathematical physics can be represented using density 𝜌(x, 𝑡) and a vec-
tor field J(x, 𝑡), as follows.

𝜕𝜌
𝜕𝑡 + ∇ ⋅ J = 0 (†)

This kind of equation is called a ‘conservation law’. Suppose both 𝜌 and |J| decrease rapidly
as |x| → ∞. We will define the charge 𝑄 by

𝑄 = ∫
ℝ3
𝜌(x, 𝑡) d𝑉

We have conservation of charge;

d𝑄
d𝑡 = ∫

ℝ3

𝜕𝜌
𝜕𝑡 d𝑉

= −∫
ℝ3
∇ ⋅ J d𝑉

= − lim
𝑅→∞

∫
|x|≤𝑅

∇ ⋅ J d𝑉

= − lim
𝑅→∞

∫
|x|=𝑅

J ⋅ dS

= 0

as J decreases rapidly to zero as |x| → ∞. So (†) gives conservation of charge.
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7.9. Proof of divergence theorem
Proof. Suppose first that

F = 𝐹𝑧(𝑥, 𝑦, 𝑧)e𝑧
The divergence theorem states that

∫
𝑉

𝜕𝐹𝑧
𝜕𝑧⏟
∇⋅F

d𝑉 = ∫
𝜕𝑉

𝐹𝑧e𝑧 ⋅ dS (†)

We would like to show that these two are really the same. First, let us simplify the problem
to a convex volume𝑉 , such that we can split the boundary into two halves, onewith normals
in the positive 𝑧 direction (𝑆+) and one with normals in the negative 𝑧 direction (𝑆−). Then
𝜕𝑉 = 𝑆+ ∪ 𝑆−. Project the volume into the 𝑥-𝑦 plane, and call this region 𝐴. This planar
region is then the shape of the ‘cut’ between the 𝑆+ and 𝑆− halves. We can write

𝑆± = {x(𝑥, 𝑦) = (
𝑥
𝑦

𝑔±(𝑥, 𝑦)
) ∶ (𝑥, 𝑦) ∈ 𝐴}

We can then say

∫
𝑉

𝜕𝐹𝑧
𝜕𝑧 d𝑉 =∬

𝐴
[∫

𝑔+(𝑥,𝑦)

𝑧=𝑔−(𝑥,𝑦)

𝜕𝐹𝑧
𝜕𝑧 d𝑧] d𝑥 d𝑦

=∬
𝐴
[𝐹𝑧(𝑥, 𝑦, 𝑔+(𝑥, 𝑦)) − 𝐹𝑧(𝑥, 𝑦, 𝑔−(𝑥, 𝑦))] d𝑥 d𝑦

To calculate right hand side of (†), we need dS:

dS = 𝜕x
𝜕𝑥 ×

𝜕x
𝜕𝑦 d𝑥 d𝑦

= (
− 𝜕𝑔±/𝜕𝑥
− 𝜕𝑔±/𝜕𝑦

1
) d𝑥 d𝑦

Since we want the normal to point ‘out’ of 𝑉 , on 𝑆± we have

dS |||𝑆±
= ±(

− 𝜕𝑔±/𝜕𝑥
− 𝜕𝑔±/𝜕𝑦

1
) d𝑥 d𝑦

Therefore,

∫
𝜕𝑉

F ⋅ dS = [∫
𝑆+
+∫

𝑆−
] 𝐹𝑧e𝑧 ⋅ dS

=∬
𝐴
𝐹𝑧(𝑥, 𝑦, 𝑔+(𝑥, 𝑦)) d𝑥 d𝑦 −∬

𝐴
𝐹𝑧(𝑥, 𝑦, 𝑔−(𝑥, 𝑦)) d𝑥 d𝑦
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which matches the expression we found for the left hand side of (†) above. In the same way,
we can show that

∫
𝑉

𝜕𝐹𝑥
𝜕𝑥 d𝑉 = ∫

𝜕𝑉
𝐹𝑥e𝑥 ⋅ dS

∫
𝑉

𝜕𝐹𝑦
𝜕𝑦 d𝑉 = ∫

𝜕𝑉
𝐹𝑦e𝑦 ⋅ dS

and because the integrals are linear, we can compute their sum to find

∫
𝑉
∇ ⋅ F d𝑉 = ∫

𝜕𝑉
F ⋅ dS

which is exactly the divergence theorem.

7.10. Proof of Green’s theorem

We can use the two-dimensional divergence theorem to prove Green’s theorem.

Proof. Let

F = ( 𝑄(𝑥, 𝑦)−𝑃(𝑥, 𝑦))

Then

∬
𝐴
(𝜕𝑄𝜕𝑥 − 𝜕𝑃

𝜕𝑦 ) d𝑥 d𝑦 = ∫
𝐴
∇ ⋅ F d𝐴 = ∮

𝜕𝐴
F ⋅ n d𝑠

If 𝜕𝐴 is parametrised with respect to arc length, this means that the unit tangent vector is

t = (𝑥
′(𝑠)
𝑦′(𝑠))

then the normal vector is

n = ( 𝑦
′(𝑠)

−𝑥′(𝑠))

Therefore,

∮
𝜕𝐴
F ⋅ n d𝑠 = ∮

𝜕𝐴
( 𝑄−𝑃) ⋅ (

𝑦′(𝑠)
−𝑥′(𝑠)) d𝑠 = ∮

𝜕𝐴
𝑃d𝑥d𝑠 d𝑠 + 𝑄d𝑦d𝑠 d𝑠 = ∮

𝜕𝐴
𝑃 d𝑥 + 𝑄 d𝑦
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7.11. Proof of Stokes’ theorem
We can now use Green’s theorem to derive Stokes’ theorem.

Proof. Consider a regular surface

𝑆 = {x = x(𝑢, 𝑣)∶ (𝑢, 𝑣) ∈ 𝐴}

Then the boundary is
𝜕𝑆 = {x = x(𝑢, 𝑣)∶ (𝑢, 𝑣) ∈ 𝜕𝐴}

Green’s theorem gives

∮
𝜕𝐴
𝑃 d𝑢 + 𝑄 d𝑣 =∬

𝐴
(𝜕𝑄𝜕𝑢 − 𝜕𝑃

𝜕𝑣 ) d𝑢 d𝑣 (†)

We will now set

𝑃(𝑢, 𝑣) = F(x(𝑢, 𝑣)) ⋅ 𝜕x𝜕𝑢; 𝑄(𝑢, 𝑣) = F(x(𝑢, 𝑣)) ⋅ 𝜕x𝜕𝑣
Then

𝑃 d𝑢 + 𝑄 d𝑣 = F(x(𝑢, 𝑣)) ⋅ (𝜕x𝜕𝑢 d𝑢 +
𝜕
𝜕v d𝑣) = F(x(𝑢, 𝑣)) ⋅ dx(𝑢, 𝑣)

And so we can compute the left hand side of (†):

∮
𝜕𝐴
𝑃 d𝑢 + 𝑄 d𝑣 = ∮

𝜕𝑆
F ⋅ dx

For the right hand side, we must first compute some derivatives.

𝑄 = 𝐹𝑖(x(𝑢, 𝑣))
𝜕𝑥𝑖
𝜕𝑣 ⟹ 𝜕𝑄

𝜕𝑢 =
𝜕𝑥𝑗
𝜕𝑢

𝜕𝐹𝑖
𝜕𝑥𝑗

𝜕𝑥𝑖
𝜕𝑣 + 𝐹𝑖

𝜕2𝑥𝑖
𝜕𝑢𝜕𝑣

𝑃 = 𝐹𝑖(x(𝑢, 𝑣))
𝜕𝑥𝑖
𝜕𝑢 ⟹ 𝜕𝑄

𝜕𝑣 =
𝜕𝑥𝑗
𝜕𝑣

𝜕𝐹𝑖
𝜕𝑥𝑗

𝜕𝑥𝑖
𝜕𝑢 + 𝐹𝑖

𝜕2𝑥𝑖
𝜕𝑣𝜕𝑢

Hence
𝜕𝑄
𝜕𝑢 − 𝜕𝑃

𝜕𝑣 = (𝜕𝑥𝑖𝜕𝑣
𝜕𝑥𝑗
𝜕𝑢 − 𝜕𝑥𝑖

𝜕𝑢
𝜕𝑥𝑗
𝜕𝑣 )

𝜕𝐹𝑖
𝜕𝑥𝑗

= (𝛿𝑖𝑝𝛿𝑗𝑞 − 𝛿𝑖𝑞𝛿𝑗𝑝)
𝜕𝐹𝑖
𝜕𝑥𝑗

𝜕𝑥𝑝
𝜕𝑣

𝜕𝑥𝑞
𝜕𝑢

= 𝜀𝑖𝑗𝑘𝜀𝑝𝑞𝑘
𝜕𝐹𝑖
𝜕𝑥𝑗

𝜕𝑥𝑝
𝜕𝑣

𝜕𝑥𝑞
𝜕𝑢

= [−∇ × F]𝑘 (−
𝜕x
𝜕𝑢 ×

𝜕x
𝜕𝑣)𝑘

= (∇ × F) ⋅ (𝜕x𝜕𝑢 ×
𝜕x
𝜕𝑣)
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7. Integral theorems

Therefore,

∬
𝐴
(𝜕𝑄𝜕𝑢 − 𝜕𝑃

𝜕𝑣 ) d𝑢 d𝑣 =∬
𝐴
(∇ × F) ⋅ (𝜕x𝜕𝑢 ×

𝜕x
𝜕𝑣) =∬

𝑆
(∇ × F) ⋅ dS

which gives Stokes’ theorem as required.
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VII. Vector Calculus

8. Maxwell’s equations
8.1. Introduction and the equations
We will denote the magnetic field by B(x, 𝑡), and the electric field by E(x, 𝑡). These fields
will depend on the current density J(x, 𝑡), the electric current per unit area, and the charge
density 𝜌(x, 𝑡), the electric charge per unit volume.

∇ ⋅ E = 𝜌
𝜀0

(1)

∇ ⋅ B = 0 (2)

∇ × E + 𝜕B
𝜕𝑡 = 0 (3)

∇ × B − 𝜇0𝜀0
𝜕E
𝜕𝑡 = 𝜇0J (4)

The constants 𝜀0 and𝜇0 denote the permittivity andpermeability of free space, which obey

1
𝜇0𝜀0

= 𝑐2

where 𝑐 is the speed of light, 299 792 458ms−1. Note that if we take the divergence of equa-
tion (4), we find

𝜇0𝜀0
𝜕
𝜕𝑡 (∇ ⋅ E) + 𝜇0∇ ⋅ J = 0

(1) ⟹ 𝜇0𝜀0
𝜕
𝜕𝑡

𝜌
𝜀0
+ 𝜇0∇ ⋅ J = 0

𝜕𝜌
𝜕𝑡 + ∇ ⋅ J = 0

which is a conservation law for charge.

8.2. Integral formulations of Maxwell’s equations
Integrating (1) over some volume 𝑉 , and applying the divergence theorem, gives

∇ ⋅ E = 𝜌
𝜀0

∫
𝑉
∇ ⋅ E d𝑉 = 1

𝜀0
∫
𝑉
𝜌 d𝑉

∫
𝜕𝑉

E ⋅ dS = 𝑄
𝜀0
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8. Maxwell’s equations

where 𝑄 is the total charge in 𝑉 . This is known as Gauss’ law. For magnetic fields, we can
integrate (2):

∫
𝑉
∇ ⋅ B d𝑉 = ∫

𝜕𝑉
B ⋅ dS = 0

Hence there is no net magnetic flux over any closed surface 𝜕𝑉 . This implies that we cannot
have a magnetic field with only a north pole or only a south pole. Integrating (3) over a
surface, and applying Stokes’ theorem, gives

∇ × E + 𝜕B
𝜕𝑡 = 0

∫
𝑆
(∇ × E + 𝜕B

𝜕𝑡 ) ⋅ dS = 0

∮
𝜕𝑆
E ⋅ dx +∫

𝑆

𝜕B
𝜕𝑡 ⋅ dS = 0

∮
𝜕𝑆
E ⋅ dx = − d

d𝑡 ∫𝑆
B ⋅ dS

So a change in the magnetic flux through a surface 𝑆 induces a circulation in E about the
boundary. Integrating (4) over a surface, again using Stokes’ theorem, we have

∫
𝑆
(∇ × B − 𝜇0𝜀0

𝜕E
𝜕𝑡 ) ⋅ dS = ∫

𝑆
𝜇0J ⋅ dS

∮
𝜕𝑆
B ⋅ dx = ∫

𝑆
𝜇0J ⋅ dS +∫

𝑆
𝜇0𝜀0

𝜕E
𝜕𝑡 ⋅ dS

∮
𝜕𝑆
B ⋅ dx = 𝜇0∫

𝑆
J ⋅ dS + 𝜇0𝜀0

d
d𝑡 ∫𝑆

E ⋅ dS

So if an electric current flows through a wire, this generates a circulation of the magnetic
field around the wire.

8.3. Electromagnetic waves
In empty space, 𝜌 = 0 and J = 0. Maxwell’s equations show that

∇ ⋅ E = 0 (1)
∇ ⋅ B = 0 (2)

∇ × E + 𝜕B
𝜕𝑡 = 0 (3)

∇ × B − 𝜇0𝜀0
𝜕E
𝜕𝑡 = 0 (4)

Recall that the Laplacian of a vector field F is

∇2F = ∇(∇ ⋅ F) − ∇ × (∇ × F)
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VII. Vector Calculus

We can deduce that

∇2E = ∇(∇ ⋅ E) − ∇ × (∇ × E)

= ∇(0) − ∇ × (−𝜕B𝜕𝑡 )

= ∇ × (𝜕B𝜕𝑡 )

= d
d𝑡∇ × B

= d
d𝑡𝜇0𝜀0

𝜕E
𝜕𝑡

= 1
𝑐2
𝜕2E
𝜕𝑡2

∴ ∇2E − 1
𝑐2
𝜕2E
𝜕𝑡2 = 0

which is the wave equation for waves travelling at speed 𝑐. Hence, in a vacuum, the electric
field propagates at speed 𝑐. Similarly, for the magnetic field,

∇2B = ∇(∇ ⋅ B) − ∇ × (∇ × B)

= ∇(0) − ∇ × (𝜇0𝜀0
𝜕E
𝜕𝑡 )

= −𝜇0𝜀0
d
d𝑡∇ × E

= 𝜇0𝜀0
d
d𝑡
𝜕B
𝜕𝑡

= 1
𝑐2
𝜕2B
𝜕𝑡2

∴ ∇2B − 1
𝑐2
𝜕2B
𝜕𝑡2 = 0

Hence the magnetic field also propagates at speed 𝑐. So in general, we can say that electro-
magnetic waves always travel at speed 𝑐 in a vacuum.

8.4. Electrostatics and magnetostatics
Suppose that all fields and source terms are independent of 𝑡. Then Maxwell’s equations
decouple into

∇ ⋅ E = 𝜌
𝜀0

(1)

∇ ⋅ B = 0 (2)
∇ × E = 0 (3)
∇ × B = 𝜇0J (4)
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8. Maxwell’s equations

which gives one system of equations for E, and one for B. When considering the whole of
ℝ3, which is 2-connected, then equations (2) and (3) imply

E = −∇𝜙; B = ∇ ×A

where 𝜙 is the electric potential, andA is the magnetic potential. Substituting into the other
two equations, we have

(1) ⟹ −∇ ⋅ ∇𝜙 = 𝜌
𝜀0

−∇2𝜙 = 𝜌
𝜀0

and
(4) ⟹ ∇× (∇ ×A) = 𝜇0J
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VII. Vector Calculus

9. Poisson’s and Laplace’s equations
9.1. The boundary value problem
Many problems in mathematical physics can be reduced to the form

∇2𝜙 = 𝐹

This is called Poisson’s equation. In the case that 𝐹 ≡ 0, this is called Laplace’s equation. We
are interested in solving this equation on Ω ⊆ ℝ𝑛 for 𝑛 = 2, 3. This is too general to solve
at the moment, so we will need to supply boundary conditions, which are very common in
physical problems. In other words, 𝜙 will be known on 𝜕Ω, or as |x| → ∞ if Ω = ℝ𝑛. For
instance, the Dirichlet problem is

∇2𝜙 = 𝐹 inside Ω; 𝜙 = 𝑓 on 𝜕Ω

The Neumann problem is

∇2𝜙 = 𝐹 inside Ω; 𝜕𝜙
𝜕n = 𝑔 on 𝜕Ω

where n is the normal to the surface, and 𝜕𝜙
𝜕n

≔ n ⋅ ∇𝜙. As a further restriction, we must
interpret the boundary conditions in an ‘appropriate’ manner; we assume that 𝜙 (or 𝜕𝜙

𝜕n
)

approaches the behaviour at the boundary continuously as x → 𝜕Ω. More precisely, 𝜙 and
∇𝜙 are continuous on Ω ∪ 𝜕Ω. Note that if we are solving some equation ∇2𝜙 = 0 in Ω,
we must be certain that 𝜙 is actually well-defined on the entire set. As a worked example,
consider

∇2𝜙 = 𝑟 inside {𝑟 < 𝑎} ; 𝜙 = 1 on {𝑟 = 𝑎}
We might guess that the solution is of the form 𝜙(𝑟). We can use the formula

∇2𝜙 = 1
𝑟2

d
d𝑟 (𝑟

2d𝜙
d𝑟 )

to get
𝑟3 = d

d𝑟 (𝑟
2d𝜙
d𝑟 ) inside {𝑟 < 𝑎} ; 𝜙(𝑎) = 1

The general solution to the first part is

𝜙(𝑟) = 𝐴 + 𝐵
𝑟 +

1
12𝑟

3

The 𝐵
𝑟
term is not well-defined inside {𝑟 < 𝑎}, therefore 𝐵 = 0 to eliminate the problematic

term. By the second part, we can solve for 𝐴:

1 = 𝜙(𝑎) = 𝐴 + 1
12𝑎

3 ⟹ 𝐴= 1 − 1
12𝑎

3

Hence the solution is
𝜙(𝑟) = 1 + 1

12 (𝑟
3 − 𝑎3)
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9. Poisson’s and Laplace’s equations

9.2. Uniqueness of solutions

When solving Poisson’s or Laplace’s equation, we want to ensure that the solution we find
is unique. If it is unique, then we can apply similar logic to solving differential equations,
where we can guess the form of an equation and then derive the solution from that, and we
don’t need to worry about solutions that do not have this form. Consider a generic linear
problem

𝐿𝜙 = 𝐹 in Ω; 𝐵𝜙 = 𝑓 on 𝜕Ω (†)

where 𝐿 and 𝐵 are linear differential operators. If 𝜙1 and 𝜙2 are both solutions to (†), then
consider 𝜓 = 𝜙1 − 𝜙2. By linearity,

𝐿𝜓 = 𝐿𝜙1 − 𝐿𝜙2 = 𝐹 − 𝐹 = 0 in Ω

and

𝐵𝜓 = 𝐵𝜙1 − 𝐵𝜙2 = 𝑓 − 𝑓 = 0 on 𝜕Ω

If we can show that the only solution to these new equations is 𝜓 = 0, we must conclude
that 𝜙1 = 𝜙2, which means that there is only one solution to (†). Hence the solution to
a linear problem is unique if and only if the only solution to the homogeneous problem is
zero.

Proposition. The solution to theDirichlet problem is unique. The solution to theNeumann
problem is unique up to the addition of an arbitrary constant.

Proof. Let 𝜓 = 𝜙1 − 𝜙2 be the difference between two solutions. In the Dirichlet case, we
want to show that 𝜓 = 0, and in the Neumann case, we want to show that 𝜓 is an arbitrary
constant. We know that

∇2𝜓 = 0 in Ω; 𝐵𝜓 = 0 on 𝜕Ω

where 𝐵𝜓 = 𝜓 in the Dirichlet problem, or 𝐵𝜓 = 𝜕𝜓
𝜕n

in the Neumann problem. Consider
the non-negative functional

𝐼[𝜓] = ∫
Ω
|∇𝜓|2 d𝑉 ≥ 0

Clearly,

𝐼[𝜓] = 0 ⟺ ∇𝜓 = 0 everywhere in Ω
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VII. Vector Calculus

Now, note that we can apply the divergence theorem to get

𝐼[𝜓] = ∫
Ω
|∇𝜓|2 d𝑉

= ∫
Ω
∇𝜓 ⋅ ∇𝜓 d𝑉

= ∫
Ω
(∇ ⋅ (𝜓∇𝜓) − 𝜓∇2𝜓) d𝑉

= ∫
Ω
∇ ⋅ (𝜓∇𝜓) d𝑉

= ∫
𝜕Ω

𝜓∇𝜓 ⋅ dS

= ∫
𝜕Ω

𝜓∇𝜓 ⋅ n d𝑆

= ∫
𝜕Ω

𝜓d𝜓dn d𝑆

In the Dirichlet case, 𝐼[𝜓] = 0 since 𝜓 = 0 on the boundary. In the Neumann case, 𝐼[𝜓] =
0 as well, since d𝜓

dn
= 0. Hence, in either case, ∇𝜓 = 0 everywhere in Ω. Therefore, 𝜓

is a constant throughout Ω. In the Dirichlet case, we know that 𝜓 = 0 on the boundary,
hence 𝜓 = 0 everywhere as it is continuous. However, in the Neumann problem, no such
deduction can be made.

Example. Here is an example from electrostatics. Consider the charge density 𝜌 defined by

𝜌(x) = {0 𝑟 < 𝑎
𝐹(𝑟) 𝑟 ≥ 𝑎

We can show that there is no electric field in the region 𝑟 < 𝑎. We know that the electric
potential 𝜙 will satisfy

∇2𝜙 = −𝜌(x)
𝜀0

= 0 if 𝑟 < 𝑎

By symmetry, wewill try a 𝜙 of the form 𝜙(𝑟). Hence, 𝜙(𝑎) is constant on the boundary 𝑟 = 𝑎.
Note that the unique solution to

∇2𝜙 = 0 for 𝑟 < 𝑎; 𝜙 = constant on 𝑟 = 𝑎

is exactly that 𝜙 is constant everywhere. Hence

E = −∇𝜓 = 0 throughout 𝑟 < 𝑎

This can be viewed as a version of Newton’s shell theorem.
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9. Poisson’s and Laplace’s equations

9.3. Gauss’ flux method for spherically symmetric sources
Suppose the source term (the 𝐹 on the right hand side of Poisson’s equation) is spherically
symmetric, so 𝐹 is a function of 𝑟 = |x|. Assuming we are trying to solve the equation for
Ω = ℝ3, we can rewrite the problem as

∇ ⋅ ∇𝜙 = 𝐹 (∗)

Since the right hand side only depends on 𝑟, the same is true of the left hand side. So we
might guess a 𝜙 of the form 𝜙(𝑟). In which case, we can compute

∇𝜙 = 𝜙′(𝑟)e𝑟

Using Gauss’ flux method, we will integrate (∗) over some spherical region |x| < 𝑅, and use
the divergence theorem.

∫
|x|<𝑅

∇ ⋅ ∇𝜙 d𝑉 = ∫
|x|=𝑅

∇𝜙 ⋅ dS = ∫
|x|<𝑅

𝐹(𝑟) d𝑉

Thinking of the source term 𝐹 as some kind of density, for instance charge density or mass
density, the right hand side can be thought of as the total amount of charge or mass inside
the ball. We will call this term 𝑄(𝑅).

∫
|x|=𝑅

∇𝜙 ⋅ dS = 𝑄(𝑅)

Recall that on a sphere of radius 𝑅, dS = e𝑟𝑅2 sin 𝜃 d𝜃 d𝜙. Therefore, on the boundary
|x| = 𝑅,

∇𝜙 ⋅ dS = 𝜙′(𝑟)e𝑟 ⋅ e𝑟𝑅2 sin 𝜃 d𝜃 d𝜙 = 𝜙′(𝑟)𝑅2 sin 𝜃 d𝜃 d𝜙 = 𝜙′(𝑟) d𝑆

Hence,
𝑄(𝑅) = ∫

|x|=𝑅
𝜙′(𝑟) d𝑆

But 𝜙′(𝑟) is a constant on the surface we are integrating over. Therefore,

𝑄(𝑅) = 𝜙′(𝑅)∫
|x|=𝑅

d𝑆 = 4𝜋𝑅2𝜙′(𝑅)

In summary,
𝜙′(𝑅) = 𝑄(𝑅)

4𝜋𝑅2 ⟹ ∇𝜙 = 𝑄(𝑅)
4𝜋𝑅2 e𝑟

Example. Recall the first of Maxwell’s equations:

∇ ⋅ E = 𝜌
𝜀0
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VII. Vector Calculus

If we are dealing with electrostatics, the curl of E is zero. Hence E = −∇𝜙, so

∇2𝜙 = − 𝜌
𝜀0

Consider a charge density 𝜌 of the form

𝜌(𝑟) = {𝜌0, 0 ≤ 𝑟 ≤ 𝑎
0, 𝑟 > 𝑎

By the previous result,
𝜙′(𝑟) = 1

4𝜋𝜀0
𝑄(𝑟)
𝑟2

where
𝑄(𝑟) = ∫

|x|≤𝑅
𝜌(𝑟) d𝑉

Note, if 𝑅 > 𝑎 then 𝑄(𝑅) = 𝑄(𝑎), which we will denote 𝑄 for the total charge. Hence, we
have the following solution:

E(x) = {
1

4𝜋𝜀0
𝑄(𝑟)
𝑟2

e𝑟, 𝑟 ≤ 𝑎
1

4𝜋𝜀0
𝑄
𝑟2
e𝑟, 𝑟 > 𝑎

If we take 𝑎 → 0, but keeping 𝑄 fixed, this represents a point charge. Then

E(x) = 1
4𝜋𝜀0

𝑄
𝑟2 e𝑟

In this case, the charge density 𝜌 is

𝜌(x) = 𝑄𝛿(x)

where 𝛿 is the Dirac delta function.

9.4. Cylindrical symmetry
Suppose instead that the source term 𝐹 is cylindrically symmetric, so 𝐹 is a function of 𝜌,
the distance from the 𝑧 axis. Similarly as before, we can guess that 𝜙 is a function only of 𝜌.
We can integrate ∇ ⋅ ∇𝜙 = 𝐹(𝜌) over a cylinder 𝑉 of radius 𝑅 and height 𝑎.

∇𝜙 = 𝜙′(𝜌)e𝜌
Hence,

∫
𝑉
∇ ⋅ ∇𝜙 d𝑉 = ∫

𝑉
𝐹(𝜌) d𝑉

The left hand side becomes
∫
𝜕𝑉

∇𝜙 ⋅ dS
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On the top circle, the normal n would be in the e𝑧 direction, and on the bottom circle, n
would be in the −e𝑧 direction. On the curved surface, n would be in the e𝜌 direction. Note
that since ∇𝜙 only has a component in the e𝜌 direction, on both the top and bottom circles
will provide no contribution to the final result for this boundary integral. dS = 𝑅 d𝜙 d𝑧 e𝜌,
hence

∫
𝜕𝑉

∇𝜙 ⋅ dS = ∫
2𝜋

𝜙=0
∫

𝑧0+𝑎

𝑧=𝑧0
𝜙′(𝑅)𝑅 d𝜙 d𝑧 = 2𝜋∫

𝑧0+𝑎

𝑧=𝑧0
𝜙′(𝑅)𝑅 d𝑧 = 2𝜋𝑎𝑅𝜙′(𝑅)

Substituting into the above equation gives

𝜙′(𝑅) = 1
2𝜋𝑎𝑅 ∫

𝑉
𝐹(𝜌) d𝑉

Note that the integral ∫𝑉 𝐹(𝜌) d𝑉 is given by

∫
𝑉
𝐹(𝜌) d𝑉 = ∫

2𝜋

𝜙=0
d𝜙∫

𝑧0+𝑎

𝑧=𝑧0
d𝑧∫

𝑅

𝜌=0
d𝜌𝐹(𝜌)𝜌 = 2𝜋𝑎∫

𝑅

0
𝐹(𝜌)𝜌 d𝜌

In conclusion,

𝜙′(𝜌) = 1
𝜌 ∫

𝜌

0
𝑠𝐹(𝑠) d𝑠

Example. Consider a line of charge density 𝜆 per unit length along an infinitesimally thick
wire. We could proceed analogously to the last example before, by considering a cylinder
with positive radius 𝑎, using Gauss’ flux method, and then letting 𝑎 → 0. However, we will
use a different method. Let 𝐹(𝜌) be the desired charge density. So if we integrate 𝐹(𝜌) over
any cylinder 𝐶 of length 1, we should retrieve the value 𝜆.

𝜆 = ∫
𝐶
𝐹(𝜌) d𝑉 = ∫

𝑧0+1

𝑧=𝑧0
d𝑧∫

2𝜋

𝜙=0
d𝜙∫

𝑅

𝜌=0
d𝜌 𝜌𝐹(𝜌)

= 2𝜋∫
𝑅

0
d𝜌 𝜌𝐹(𝜌)

By inspection, 𝐹 must have the form of a delta function, so 𝐹(𝜌) = 𝜆𝛿(𝜌) 1
2𝜋𝜌

. Hence the
corresponding electric potential 𝜙 is given by

𝜙′(𝜌) = − 1
𝜀0𝜌

∫
𝜌

0
𝜆𝛿(𝑠) 12𝜋 d𝑠 = −𝜆

2𝜋𝜀0𝜌

Hence,
𝐸(x) = 1

2𝜋𝜀0
e𝜌
𝜌
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9.5. Superposition principle

Consider a linear operator 𝐿. If we have solutions 𝐿𝜓𝑛 = 𝐹𝑛 for 𝑛 = 1, 2,…, then we have
𝐿(∑𝑛 𝜓𝑛) = ∑𝑛 𝐹𝑛 by linearity. In other words, we can superimpose solutions. We can
often break up a forcing term into several smaller, simpler components, and if 𝐿 is a linear
differential operator we can solve for these components separately. For example, we can
consider the electric potential due to a pair of point charges 𝑄𝑎 at x = a, and 𝑄𝑏 at x = b.
The charge density would be

𝜌(x) = 𝑄𝑎𝛿(x − a) + 𝑄𝑏𝛿(x − b)

For one point charge, we know that the electric potential obeys

−∇2𝜙 = 𝑄𝑎
𝜀0
𝛿(x − a)

Hence,

𝜙(x) = 𝑄𝑎
4𝜋𝜀0

1
|x − a|

Then by the superposition principle, for two particles,

𝜙(x) = 𝑄𝑎
4𝜋𝜀0

1
|x − a| +

𝑄𝑏
4𝜋𝜀0

1
|x − b|

Now, consider the electric potential outside a ball of radius |x| < 𝑅 of uniform charge density
𝜌0. Suppose that the ball has several balls removed from its interior. These ‘subtracted’ balls
have the form

|x − a𝑖| < 𝑅𝑖; 𝑖 = 1,… ,𝑁

We further require that the balls lay inside the main ball, and do not intersect:

|a𝑖| + 𝑅𝑖 < 𝑅; ||a𝑖 − a𝑗 || > 𝑅𝑖 + 𝑅𝑗

We can use the superposition principle to represent each hole as a ball of uniform charge
density −𝜌0. So the effective potential in |x| > 𝑅 (outside the ball) from each hole is

𝜙(𝑥) = − 𝑄𝑖
4𝜋𝜀0

1
|x − a𝑖|

; 𝑄𝑖 =
4
3𝜋𝑅

3
𝑖 𝜌0

Hence, the total potential from the ball and its holes is

𝜙(𝑥) = 𝑄
4𝜋𝜀0

1
|x| −∑

𝑖

𝑄𝑖
4𝜋𝜀0

1
|x − a𝑖|
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9.6. Integral solutions
We know that the electric potential due to a point charge at a is proportional to the inverse
of the distance to the particle. We can think of a generic distribution of charge density as an
infinite collection of superimposed particles, which leads us to consider an integral form for
a superposition.

∫
ℝ3

𝐹(y)
|x − y| d𝑉(y)

where 𝐹 is the forcing term.

Proposition. Suppose 𝐹 → 0 ‘rapidly’ as |x| → ∞. The unique solution to the Dirichlet
problem

{∇
2𝜙 = 𝐹 x ∈ ℝ3

|𝜙| → 0 |x| → ∞

is given by

𝜙(x) = − 1
4𝜋 ∫

ℝ3

𝐹(y)
|x − y| d𝑉(y)

This result is another way of saying that

∇2( −1
4𝜋|x|) = 𝛿(x)

since by differentiating with respect to 𝑥 under the integral sign,

∇2(−14𝜋 ∫
ℝ3

𝐹(y)
|x − y| d𝑉(y)) =

−1
4𝜋 ∫

ℝ3
𝐹(y)∇2( 1

|x − y|) d𝑉(y)

= ∫
ℝ3
𝐹(y)𝛿(x − y) d𝑉(y)

= 𝐹(x)

so it is sufficient to prove that this Laplacian identity holds. A full proof will not be given
here, but here is some intuition to guide the idea. Note that for 𝑟 ≠ 0,

∇2(1𝑟 ) =
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑖
(1𝑟 )

= 𝜕
𝜕𝑥𝑖

(−𝑥𝑖𝑟3 )

= −𝛿𝑖𝑖
𝑟3 + 3𝑥𝑖𝑥𝑖

𝑟5

= −3
𝑟3 + 3𝑟2

𝑟5
= 0
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So certainly ∇2(− 1
4𝜋|x|

) = 𝛿(x) for x ≠ 0. Assuming that the divergence theorem holds for
delta functions, for any ball |x| < 𝑅 we would also have

∫
|x|<𝑅

∇2( 1|x|) d𝑉 = ∫
|x|=𝑅

∇( 1|x|) ⋅ dS

= ∫
𝜋

𝜃=0
d𝜃∫

2𝜋

𝜙=0
d𝜙 (−e𝑟𝑅2 ) ⋅ e𝑟𝑅

2 sin 𝜃

= ∫
𝜋

𝜃=0
d𝜃∫

2𝜋

𝜙=0
d𝜙 (−1𝑅2 )𝑅

2 sin 𝜃

= −4𝜋
So for any 𝑅 > 0,

∫
|x|<𝑅

∇2( −1
4𝜋|x|) d𝑉 = 1 = ∫

|x|<𝑅
𝛿(x) d𝑉

So we might conclude that this Laplacian operator really does give the Dirac delta func-
tion.

9.7. Harmonic functions
Harmonic functions are solutions to Laplace’s equation,

∇2𝜙 = 0

Proposition. If 𝜙 is harmonic on Ω ⊂ ℝ3, then

𝜙(a) = 1
4𝜋𝑟2 ∫|x−a|=𝑟

𝜙(x) d𝑆 (∗)

for a ∈ Ω, and 𝑟 sufficiently small such that all x are in Ω.
This is known as the ‘mean value’ property; it essentially shows that the value of 𝜙 at any
given point a is the average of 𝜙 on the surface of any ball around a.

Proof. Let 𝐹(𝑟) denote the right hand side of (∗), 1
4𝜋𝑟2

∫|x−a|=𝑟 𝜙(x) d𝑆. Then,

𝐹(𝑟) = 1
4𝜋𝑟2 ∫|x|=𝑟

𝜙(a + x) d𝑆

We can parametrise this sphere using spherical polar coordinates, giving

𝐹(𝑟) = 1
4𝜋𝑟2 ∫

2𝜋

𝜙=0
[∫

𝜋

𝜃=0
𝜙(a + 𝑟e𝑟)𝑟2 sin 𝜃 d𝜃] d𝜙

= 1
4𝜋 ∫

2𝜋

𝜙=0
[∫

𝜋

𝜃=0
𝜙(a + 𝑟e𝑟) sin 𝜃 d𝜃] d𝜙 (†)
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Differentiating with respect to 𝑟, using d
d𝑟
𝜙(a + 𝑟e𝑟) = e𝑟 ⋅ ∇𝜙(a + 𝑟e𝑟),

𝐹′(𝑟) = 1
4𝜋 ∫

2𝜋

𝜙=0
∫

𝜋

𝜃=0
e𝑟 ⋅ ∇𝜙(a + 𝑟e𝑟) sin 𝜃 d𝜃 d𝜙

= 1
4𝜋𝑟2 ∫

2𝜋

𝜙=0
∫

𝜋

𝜃=0
e𝑟 ⋅ ∇𝜙(a + 𝑟e𝑟)𝑟2 sin 𝜃 d𝜃 d𝜙

= 1
4𝜋𝑟2 ∫|x|=𝑟

e𝑟 ⋅ ∇𝜙(a + 𝑟e𝑟) d𝑆

= 1
4𝜋𝑟2 ∫|x|=𝑟

∇𝜙(a + x) ⋅ dS

= 1
4𝜋𝑟2 ∫|x−a|=𝑟

∇𝜙 ⋅ dS

= 1
4𝜋𝑟2 ∫|x−a|<𝑟

∇ ⋅ ∇𝜙 d𝑉

= 1
4𝜋𝑟2 ∫|x−a|<𝑟

∇2𝜙 d𝑉

= 1
4𝜋𝑟2 ∫|x−a|<𝑟

0 d𝑉

= 0

Now, note from (†) that if 𝑟 → 0, then 𝐹(𝑟) → 𝜙(a), and the result follows.

9.8. Intuitive explanation of Laplacian
We can use the central idea of the above proof to examine what the Laplacian operator is
really doing.

Proposition. For any smooth function 𝜙∶ ℝ3 → ℝ,

∇2𝜙(a) = lim
𝑟→0

6
𝑟2 [

1
4𝜋𝑟2 ∫|x−a|=𝑟

𝜙(x) d𝑆] − 𝜙(a)

In particular, if 𝜙 satisfies the mean value property, then it is harmonic.

In some sense, the Laplacian is measuring how the value of 𝜙 at a point differs from its
average over a small sphere centred at this point.

Proof. Consider a function 𝐺(𝑟) defined by

𝐺(𝑟) = 1
4𝜋𝑟2 ∫|x−a|=𝑟

𝜙(x) d𝑆 − 𝜙(a)
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𝐺 measures the extent to which 𝜙 differs from its average. From the previous proof,

𝐺(𝑟) = 𝐹(𝑎) − 𝜙(a) ⟹ 𝐺′(𝑟) = 𝐹′(𝑟)

So,
𝐺′(𝑟) = 1

4𝜋𝑟2 ∫|x−a|<𝑟
∇2𝜙 d𝑉

Now, note that as 𝑟 → 0,

∫
|x−a|<𝑟

∇2𝜙(x) d𝑉 = ∇2𝜙(a)∫
|x−a|<𝑟

d𝑉 +∫
|x−a|<𝑟

(∇2𝜙(x) − ∇2𝜙(a)) d𝑉

= 4𝜋
3𝑟3∇

2𝜙(a) + 𝑜(𝑟3)

Now, as 𝑟 → 0,

𝐺′(𝑟) = 1
4𝜋𝑟2 [

4𝜋
3𝑟3∇

2𝜙(a) + 𝑜(𝑟3)] = 𝑟
3∇

2𝜙(a) + 𝑜(𝑟)

Comparing this to the Taylor expansion,

𝐺′(𝑟) = 𝐺′(0) + 𝑟𝐺″(0) + 𝑜(𝑟)

So certainly, 𝐺′(0) = 0 since there is no constant term in 𝐺′(𝑟). Further, 𝐺″(0) = 1
3
∇2𝜙(a).

Now,
𝐺(𝑟) = 𝐺(0) + 𝑟𝐺′(0) + 𝑟2

2 𝐺
″(0) + 𝑜(𝑟2)

We know that 𝐺(0) = 𝐹(0) − 𝜙(a) = 0, hence

𝐺(𝑟) = 1
6∇

2𝜙(a)𝑟2 + 𝑜(𝑟2) ⟹ ∇2𝜙(a) = lim
𝑟→0

6
𝑟2𝐺(𝑟)

which gives the result as required.

9.9. Non-existence of maximum points
Proposition. If 𝜙 is harmonic on some volume Ω ⊂ ℝ3, then 𝜙 cannot have a maximum
point at any interior point on Ω, unless 𝜙 is constant.

Proof. Suppose that there exists a maximum point at a ∈ Ω. Then 𝜙(a) ≥ 𝜙(x) for all x ∈ Ω.
Then,

𝜙(a) ≥ 𝜙(x) on |x − a| ≤ 𝜀
for some 𝜀 small enough such that the ball is inside Ω. By the mean value property,

𝜙(a) = 1
4𝜋𝜀2 ∫|x−a|=𝜀

𝜙(x) d𝑆
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Hence,
0 = 1

4𝜋𝜀2 ∫|x−a|=𝜀
(𝜙(a) − 𝜙(x)) d𝑆

Note that the integrand is always non-negative, so in order for the integral to equal zero, the
integrand must be zero everywhere on the ball. So 𝜙(a) = 𝜙(x). Since 𝜀 was arbitrary, we
can shrink the ball to a smaller ball around the same point, so 𝜙(a) = 𝜙(x) for all x such that
|x − a| ≤ 𝜀. Hence, 𝜙 is locally constant.
Now, given any other point y, we can introduce a finite sequence of overlapping balls such
that the centre of the (𝑛 + 1)th ball is contained inside the 𝑛th ball, and where the first ball
is centred at a and the last ball is centred at y. Inductively, the function is constant on each
such ball. Hence 𝜙 is actually constant everywhere, since y was arbitrarily chosen.

Corollary. If 𝜙 is harmonic on Ω, then for x ∈ Ω,

𝜙(x) ≤ max
y∈𝜕Ω

𝜙(y)

This is called the maximum principle.
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10. Cartesian tensors
Throughout this section on tensors, wedeal exclusivelywithCartesian coordinate systems.

10.1. Intuitive description of vectors and changes of basis
Consider a right-handed orthonormal basis {e𝑖} forℝ3, with respect to some fixed Cartesian
coordinate axes. We can write a vector using this basis as

x = 𝑥𝑖e𝑖

Note that the vector x and the components 𝑥𝑖 are not the same; the components only give
the vector when in combination with the given basis vectors {e𝑖}. If we instead use {e′𝑖}, then
the same position vector x would be written as a linear combination 𝑥′𝑖e′𝑖. Hence,

𝑥𝑗e𝑗 = 𝑥′𝑗e′𝑗 (∗)

Since the {e𝑗} and {e′𝑗} are orthonormal,

e𝑖 ⋅ e𝑗 = 𝛿𝑖𝑗 ; e′𝑖 ⋅ e
′
𝑗 = 𝛿𝑖𝑗

From (∗),
𝑥′𝑖 = 𝛿𝑖𝑗𝑥′𝑗 = (e′𝑖 ⋅ e

′
𝑗)𝑥

′
𝑗 = e′𝑖 ⋅ (e

′
𝑗𝑥

′
𝑗) = e′𝑖 ⋅ (e𝑗𝑥𝑗) = (e′𝑖 ⋅ e𝑗)𝑥𝑗

So let
𝑅𝑖𝑗 = e′𝑖 ⋅ e𝑗

Then
𝑥′𝑖 = 𝑅𝑖𝑗𝑥𝑗

Alternatively,

𝑥𝑖 = 𝛿𝑖𝑗𝑥𝑗 = (e𝑖 ⋅ e𝑗)𝑥𝑗 = e𝑖 ⋅ (e𝑗𝑥𝑗) = e𝑖 ⋅ (e′𝑗𝑥
′
𝑗) = (e𝑖 ⋅ e′𝑗)𝑥

′
𝑗

And therefore, we get
𝑥𝑖 = 𝑅𝑗𝑖𝑥′𝑗 = 𝑅𝑘𝑖𝑥′𝑘 ⟹ 𝑥𝑗 = 𝑅𝑘𝑗𝑥′𝑘

Combining the two results, we have

𝑥′𝑖𝑅𝑖𝑗𝑥𝑗 = 𝑅𝑖𝑗𝑅𝑘𝑗𝑥′𝑘

Therefore,
(𝛿𝑖𝑘 − 𝑅𝑖𝑗𝑅𝑘𝑗)𝑥′𝑘 = 0

Since this is true for all vectors x, we get

𝑅𝑖𝑗𝑅𝑘𝑗 = 𝛿𝑖𝑘
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So if 𝑅 is a matrix with entries 𝑅𝑖𝑗 , then

𝑅𝑅⊺ = 𝐼

So the 𝑅𝑖𝑗 are the components of an orthogonal matrix. Further, since

𝑥𝑗e𝑗 = 𝑥′𝑖e′𝑖 = 𝑅𝑖𝑗𝑥𝑗e′𝑖

holds for all 𝑥𝑗 , we also have
e𝑗 = 𝑅𝑖𝑗e′𝑖

and since both {e𝑖} and {e′𝑖} are right handed, we have

1 = e1 ⋅ (e2 × e3) = 𝑅𝑖1𝑅𝑗2𝑅𝑘3e′𝑖 ⋅ (e
′
𝑗 × e′𝑘) = 𝑅𝑖1𝑅𝑗2𝑅𝑘3𝜀𝑖𝑗𝑘 = det𝑅

Hence 𝑅 is orthogonal, and has determinant 1. Hence 𝑅 is a rotation matrix. If we trans-
form from a right-handed orthonormal set of basis vectors {e𝑖} to another basis {e′𝑖}, then the
components of a vector v transform according to 𝑣′𝑖 = 𝑅𝑖𝑗𝑣𝑗 . We call objects whose compon-
ents transform in this way ‘rank 1 tensors’, or more commonly, ‘vectors’. The basis vectors
themselves transform according to e′𝑗 = 𝑅𝑖𝑗e𝑖.

10.2. Intuitive description of scalars and scalar products
Consider the dot product between two vectors, 𝜎 = a ⋅b. This should ideally be independent
of the set of basis vectors chosen to describe a and b. So with a basis {e𝑖}, we have

𝜎 = 𝑎𝑖𝑏𝑗𝛿𝑖𝑗 = 𝑎𝑖𝑏𝑖

If instead we use a different set of basis vectors {e𝑗}, we define

𝜎′ = 𝑎′𝑖𝑏′𝑖

We can use 𝑎′𝑖 = 𝑅𝑖𝑝𝑎𝑝 and 𝑏′𝑖 = 𝑅𝑖𝑞𝑏𝑞 to give

𝜎′ = 𝑅𝑖𝑝𝑅𝑖𝑞𝑎𝑝𝑏𝑞 = 𝛿𝑝𝑞𝑎𝑝𝑏𝑞 = 𝑎𝑖𝑏𝑖 = 𝜎

Since the sets of basis vectors are related by 𝑅, 𝜎 is unchanged under changes of coordin-
ates. We call objects which are invariant under transformations like this ‘rank 0 tensors’, or
‘scalars’.

10.3. Intuitive description of linear maps
Let n ∈ ℝ3 be a fixed unit vector, and we define a linear map

𝑇 ∶ x→ y = 𝑇(x) = x − (x ⋅ n)n
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This 𝑇 is the orthogonal projection into the plane normal to n. Using a set of basis vectors
{e𝑖}, we get

𝑦𝑖e𝑖 = 𝑇(𝑥𝑗e𝑗) = 𝑥𝑗𝑇(e𝑗) = 𝑥𝑗(e𝑗 − 𝑛𝑖𝑛𝑗e𝑖) = (𝛿𝑖𝑗 − 𝑛𝑖𝑛𝑗)𝑥𝑗e𝑖

Hence,
𝑦𝑖 = (𝛿𝑖𝑗 − 𝑛𝑖𝑛𝑗)𝑥𝑗

So we will set
𝑇𝑖𝑗 = 𝛿𝑖𝑗 − 𝑛𝑖𝑛𝑗 ⟹ 𝑦𝑖 = 𝑇𝑖𝑗𝑥𝑗

We call the 𝑇𝑖𝑗 the components of the linear map 𝑇 with respect to the basis vectors e𝑖. Con-
sider a different set of basis vectors {e′𝑖}.

𝑦′𝑖 = (𝛿𝑖𝑗 − 𝑛′𝑖𝑛′𝑗)𝑥′𝑗 ; 𝑇′𝑖𝑗 = 𝛿𝑖𝑗 − 𝑛′𝑖𝑛′𝑗

Using 𝑛′𝑖 = 𝑅𝑖𝑗𝑛𝑗 , noting that 𝑅 is orthogonal, we have

𝑇′𝑖𝑗 = 𝛿𝑖𝑗 − 𝑅𝑖𝑝𝑛𝑗𝑅𝑗𝑞𝑛𝑞 = 𝑅𝑖𝑝𝑅𝑗𝑞(𝛿𝑝𝑞 − 𝑛𝑝𝑛𝑞) = 𝑅𝑖𝑝𝑅𝑗𝑞𝑇𝑝𝑞

So the components of a linear map transform according to two multiplications:

𝑇′𝑖𝑗 = 𝑅𝑖𝑝𝑅𝑗𝑞𝑇𝑝𝑞

We call such objects ‘rank 2 tensors’.

10.4. Definition
Definition. An object whose components 𝑇𝑖𝑗…𝑘 transform according to

𝑇′𝑖𝑗…𝑘 = 𝑅𝑖𝑝𝑅𝑗𝑞…𝑅𝑘𝑟𝑇𝑝𝑞…𝑟

is called a (Cartesian) tensor of rank 𝑛 if 𝑇 has 𝑛 indices, where 𝑅𝑖𝑗 = e′𝑖 ⋅e𝑗 are the compon-
ents of an orthogonal matrix, so 𝑅𝑖𝑝𝑅𝑗𝑝 = 𝛿𝑖𝑗 .

For example, if 𝑢𝑖, 𝑣𝑗 , 𝑤𝑘 are the components of 𝑛 vectors, then

𝑇𝑖𝑗…𝑘 = 𝑢𝑖𝑣𝑗…𝑤𝑘

define the components of a tensor of rank 𝑛.

Proof. We can transform each vector individually.

𝑇′𝑖𝑗…𝑘 = 𝑢′𝑖𝑣′𝑗…𝑤′
𝑘 = 𝑅𝑖𝑝𝑢𝑝𝑅𝑗𝑞𝑣𝑞…𝑅𝑘𝑟𝑤𝑟 = 𝑅𝑖𝑝𝑅𝑗𝑞𝑅𝑘𝑟𝑇𝑖𝑗…𝑘

as expected.
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10.5. Kronecker 𝛿 and Levi-Civita 𝜀
As another example, consider the Kronecker 𝛿. It was previously defined without reference
to any basis by

𝛿𝑖𝑗 = {1 𝑖 = 𝑗
0 𝑖 ≠ 𝑗

So 𝛿′𝑖𝑗 = 𝛿𝑖𝑗 by definition. Note that

𝑅𝑖𝑝𝑅𝑗𝑞𝛿𝑝𝑞 = 𝑅𝑖𝑞𝑅𝑗𝑞 = 𝛿𝑖𝑗 = 𝛿′𝑖𝑗

hence 𝛿 transforms like a rank 2 tensor, so it is indeed a rank 2 tensor. Now, consider the
Levi-Civita symbol 𝜀. It is defined without reference to any basis as

𝜀𝑖𝑗𝑘 =
⎧
⎨
⎩

+1 (𝑖 𝑗 𝑘) even
−1 (𝑖 𝑗 𝑘) odd
0 otherwise

Note that 𝜀′𝑖𝑗𝑘 = 𝜀𝑖𝑗𝑘, and

𝑅𝑖𝑝𝑅𝑗𝑞𝑅𝑘𝑟𝜀𝑝𝑞𝑟 = det𝑅 ⋅ 𝜀𝑖𝑗𝑘 = 𝜀𝑖𝑗𝑘

Hence 𝜀 is a rank 3 tensor.

10.6. Electrical conductivity tensor
Experiments suggest that there is a linear relationship between the current J produced in a
conductivemedium and the electric fieldE that it is exposed to. Hence J = 𝜎E, or 𝐽𝑖 = 𝜎𝑖𝑗𝐸𝑗 .
𝜎𝑖𝑗 is called the ‘electrical conductivity tensor’. It really is a rank 2 tensor, indeed

𝐽′𝑖 = 𝜎′𝑖𝑗𝐸′𝑗
𝑅𝑖𝑝𝐽𝑝 = 𝜎′𝑖𝑗𝐸′𝑗

𝑅𝑖𝑝𝜎𝑝𝑞𝐸𝑞 = 𝜎′𝑖𝑗𝐸′𝑗

Since 𝑅 is orthogonal,
𝐸′𝑗 = 𝑅𝑗𝑞𝐸𝑞 ⟺ 𝐸𝑞 = 𝑅𝑗𝑞𝐸′𝑗

Hence,
𝑅𝑖𝑝𝑅𝑗𝑞𝜎𝑝𝑞𝐸′𝑗 = 𝜎′𝑖𝑗𝐸′𝑗

Since this is true for all choices of 𝐸𝑗 ,

𝑅𝑖𝑝𝑅𝑗𝑞𝜎𝑝𝑞 = 𝜎′𝑖𝑗

So it really is a rank 2 tensor.
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10.7. Indexed objects without tensor transformation properties
It is possible to construct objects with indices that do not transform as tensors. For example,
given a Cartesian right handed basis {e𝑖}, we can define an arbitrary array of numbers with
components 𝐴𝑖𝑗 , and set 𝐴′

𝑖𝑗 = 0 in all other bases {e′𝑖}. Clearly this array of numbers does
not transform like a tensor.

10.8. Operations on tensors
Let 𝐴𝑖𝑗…𝑘, 𝐵𝑖𝑗…𝑘 be rank 𝑛 tensors, we define

(𝐴 + 𝐵)𝑖𝑗…𝑘 = 𝐴𝑖𝑗…𝑘 + 𝐵𝑖𝑗…𝑘

𝐴 + 𝐵 is also a rank 𝑛 tensor, by linearity. Further,

(𝛼𝐴)𝑖𝑗…𝑘 = 𝛼𝐴𝑖𝑗…𝑘

𝛼𝐴 is also a rank 𝑛 tensor. We also define the tensor product between a rank𝑚 tensor𝑈 𝑖𝑗…𝑘
and a rank 𝑛 tensor 𝑉𝑝𝑞…𝑟 as

(𝑈 ⊗ 𝑉)𝑖𝑗…𝑘𝑝𝑞…𝑟 = 𝑈 𝑖𝑗…𝑘𝑉𝑝𝑞…𝑟

Now, 𝑈 ⊗ 𝑉 is a rank𝑚+ 𝑛 tensor. Indeed,

(𝑈⊗𝑉)𝑖…𝑗𝑝…𝑞 = 𝑈 ′
𝑖…𝑗𝑉 ′

𝑝…𝑞 = 𝑅𝑖𝑎…𝑅𝑗𝑏𝑈𝑎…𝑏𝑅𝑝𝑐…𝑅𝑞𝑑𝑉𝑐…𝑑 = 𝑅𝑖𝑎…𝑅𝑗𝑏𝑅𝑝𝑐…𝑅𝑞𝑑(𝑈⊗𝑉)𝑎…𝑏𝑐…𝑑

Further, given a rank 𝑛 ≥ 2 tensor 𝑇𝑖𝑗𝑘…ℓ, we can define a tensor of rank 𝑛−2 by contracting
on a pair of indices. For instance, contracting on 𝑖 and 𝑗 is defined by

𝛿𝑖𝑗𝑇𝑖𝑗𝑘…ℓ = 𝑇𝑖𝑖𝑘…ℓ

This is really a tensor of rank 𝑛 − 2:

𝑇′𝑖𝑖𝑘…ℓ = 𝑅𝑖𝑝𝑅𝑖𝑞𝑅𝑘𝑟…𝑅ℓ𝑠𝑇𝑝𝑞𝑟…𝑠 = 𝛿𝑝𝑞𝑅𝑘𝑟…𝑅ℓ𝑠𝑇𝑝𝑞𝑟…𝑠 = 𝑅𝑘𝑟…𝑅ℓ𝑠𝑇𝑝𝑝𝑟…𝑠

10.9. Symmetric and antisymmetric tensors
We say that 𝑇𝑖𝑗…𝑘 is symmetric in (𝑖, 𝑗) if

𝑇𝑖𝑗…𝑘 = 𝑇𝑗𝑖…𝑘

This really is a well-defined property of the tensor, not its coordinates. In a different coordin-
ate frame,

𝑇′𝑖𝑗…𝑘 = 𝑅𝑖𝑝𝑅𝑗𝑞…𝑅𝑘𝑟𝑇𝑝𝑞…𝑟 = 𝑅𝑖𝑝𝑅𝑗𝑞…𝑅𝑘𝑟𝑇𝑞𝑝…𝑟 = 𝑇′𝑗𝑖…𝑘

Similarly, we say that 𝐴𝑖𝑗…𝑘 is antisymmetric in (𝑖, 𝑗) if

𝐴𝑖𝑗…𝑘 = −𝐴𝑗𝑖…𝑘
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10. Cartesian tensors

which similarly is invariant of the choice of basis. We say that a tensor is totally (anti-) sym-
metric if it is (anti-) symmetric in all pairs of indices. For example, the 𝛿𝑖𝑗 rank 2 tensor
and 𝑎𝑖𝑎𝑗𝑎𝑘 rank 3 tensor (where a is a vector) are totally symmetric tensors. The Levi-Civita
alternating tensor 𝜀 is totally antisymmetric.
In fact, in three dimensions, 𝜀 is the only totally antisymmetric tensor (up to scaling), and
there are no nonzero higher-rank antisymmetric tensors. Indeed, if 𝑇𝑖𝑗…𝑘 is totally antisym-
metric and has rank 𝑛, then 𝑇𝑖𝑗…𝑘 = 0 if any two indices are the same. But if we have
more than three indices, by the pigeonhole principle we must have two matching indices
(providedwe areworking in three dimensions). If𝑛 = 3, then there are only 3! = 6 choices of
components that give a nonzero value of 𝑇𝑖𝑗𝑘, and by antisymmetry, 𝑇123 = 𝑇231 = 𝑇312 = 𝜆
and by antisymmetry 𝑇213 = 𝑇132 = 𝑇321 = −𝜆 which defines the 𝜀 symbol.
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11. Tensor calculus
11.1. Introduction
A vector field assigns a vector v to every position x ∈ ℝ3. A scalar field assigns a scalar 𝜙 to
every position. We generalise this notion to a tensor field of rank 𝑛, written 𝑇𝑖𝑗…𝑘(x), which
assigns a rank 𝑛 tensor to every point x. Recall that

𝑥′𝑖 = 𝑅𝑖𝑗𝑥𝑗 ⟺ 𝑥𝑗 = 𝑅𝑖𝑗𝑥′𝑖

Differentiating both sides with respect to 𝑥′𝑘, we get

𝜕𝑥𝑗
𝜕𝑥′𝑘

= 𝑅𝑖𝑗
𝜕𝑥′𝑖
𝜕𝑥′𝑘

= 𝑅𝑖𝑗𝛿𝑖𝑘 = 𝑅𝑘𝑗

By the chain rule, we then have

𝜕
𝜕𝑥′𝑖

=
𝜕𝑥𝑗
𝜕𝑥′𝑖

𝜕
𝜕𝑥𝑗

= 𝑅𝑖𝑗
𝜕
𝜕𝑥𝑗

Informally, we can say that 𝜕
𝜕𝑥′𝑖

transforms like a rank 1 tensor.

Proposition. If 𝑇𝑖…𝑗 is a tensor field of rank 𝑛, then

𝜕
𝜕𝑥𝑝

⋯ 𝜕
𝜕𝑥𝑞⏟⎵⎵⏟⎵⎵⏟

𝑚 terms

𝑇𝑖…𝑗(x)

is a tensor field of rank 𝑛 + 𝑚.

Proof. We check the transformation under a change of basis. Let the above expression be
𝐴𝑝…𝑞𝑖…𝑗 . Then

𝐴′
𝑝…𝑞𝑖…𝑗 =

𝜕
𝜕𝑥′𝑝

⋯ 𝜕
𝜕𝑥′𝑞

𝑇′𝑖…𝑗(x)

= 𝑅𝑝𝑎
𝜕
𝜕𝑥𝑎

⋯𝑅𝑞𝑏
𝜕
𝜕𝑥𝑏

𝑅𝑖𝑐…𝑅𝑗𝑑𝑇𝑐…𝑑(x)

= 𝑅𝑝𝑎…𝑅𝑞𝑏𝑅𝑖𝑐…𝑅𝑗𝑑𝐴𝑎…𝑏𝑐…𝑑

Note that this only works in Cartesian coordinates, since the 𝑅 matrices are constant here.
In a general coordinate system, this is not the case, and we cannot move the change of basis
matrices outside the derivatives in this case.
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11. Tensor calculus

11.2. Differential operators producing tensor fields
If 𝜙 is a scalar field, then

[∇𝜙]𝑖 =
𝜕𝜙
𝜕𝑥𝑖

Hence ∇𝜙 is a rank 1 tensor field, which is a vector field. If v is a vector field,

∇ ⋅ v = 𝜕𝑣𝑖
𝜕𝑥𝑖

which is a rank 0 tensor field since it is a contraction of 𝜕v𝑖
𝜕𝑥𝑗

. Alternatively, from first prin-
ciples,

𝜕𝑣′𝑖
𝜕𝑥′𝑖

= 𝑅𝑖𝑝
𝜕
𝜕𝑥𝑝

𝑅𝑖𝑞𝑣𝑞 = 𝑅𝑖𝑝𝑅𝑖𝑞
𝜕𝑣𝑞
𝜕𝑥𝑝

= 𝛿𝑝𝑞
𝜕𝑣𝑞
𝜕𝑥𝑝

= 𝜕𝑣𝑖
𝜕𝑥𝑖

hence the divergence of a vector field really is a scalar field.

[∇ × v]𝑖 = 𝜀𝑖𝑗𝑘
𝜕𝑣𝑘
𝜕𝑥𝑗

From first principles we can show that

𝜀′𝑖𝑗𝑘
𝜕𝑣′𝑘
𝜕𝑥′𝑗

= 𝑅𝑖𝑎𝑅𝑗𝑏𝑅𝑘𝑐𝜀𝑎𝑏𝑐𝑅𝑗𝑝
𝜕
𝜕𝑥𝑝

𝑅𝑘𝑞𝑣𝑞

= 𝑅𝑖𝑎𝜀𝑎𝑏𝑐𝑅𝑗𝑏𝑅𝑗𝑝𝑅𝑘𝑐𝑅𝑘𝑞
𝜕𝑣𝑞
𝜕𝑥𝑝

= 𝑅𝑖𝑎𝜀𝑎𝑏𝑐𝛿𝑏𝑝𝛿𝑐𝑞
𝜕𝑣𝑞
𝜕𝑥𝑝

= 𝑅𝑖𝑎𝜀𝑎𝑏𝑐
𝜕𝑣𝑐
𝜕𝑥𝑏

which is the transformation law for a rank 1 tensor, so the curl of a vector field is a vector
field.

11.3. Divergence theoremwith tensor fields
Proposition. For a tensor field 𝑇𝑖𝑗…𝑘…ℓ(x), we have

∫
𝑉

𝜕
𝜕𝑥𝑘

𝑇𝑖𝑗…𝑘…ℓ d𝑉 = ∫
𝜕𝑉

𝑇𝑖𝑗…𝑘…ℓ𝑛𝑘 d𝑆

Proof. Consider the vector field

𝑣𝑘 = 𝑎𝑖𝑏𝑗…𝑐ℓ𝑇𝑖𝑗…𝑘…ℓ
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where the 𝑎𝑖, 𝑏𝑗 ,… , 𝑐ℓ are the components of some constant vectors. Applying the diver-
gence theorem to this vector field, we have

∫
𝑉

𝜕𝑣𝑘
𝜕𝑥𝑘

d𝑉 = ∫
𝜕𝑉

𝑣𝑘𝑛𝑘 d𝑆

𝑎𝑖𝑏𝑗…𝑐ℓ∫
𝑉

𝜕
𝜕𝑥𝑘

𝑇𝑖𝑗…𝑘…ℓ d𝑉 = 𝑎𝑖𝑏𝑗…𝑐ℓ∫
𝜕𝑉

𝑇𝑖𝑗…𝑘…ℓ𝑛𝑘 d𝑆

Since this is true for any choice of vectors 𝑎𝑖, 𝑏𝑖,… , 𝑐𝑖, the result follows.
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12. Properties of tensors
12.1. Symmetry and antisymmetry
Observe for a rank 2 tensor that

𝑇𝑖𝑗 =
1
2 (𝑇𝑖𝑗 + 𝑇𝑗𝑖) +

1
2 (𝑇𝑖𝑗 − 𝑇𝑗𝑖) ≡ 𝑆 𝑖𝑗 + 𝐴𝑖𝑗

where the 𝑆 𝑖𝑗 are the symmetric components, and the 𝐴𝑖𝑗 are the antisymmetric compon-
ents of the tensor. Note that the symmetric part 𝑆 𝑖𝑗 has six independent components (the
main diagonal and everything above it), and the antisymmetric part 𝐴𝑖𝑗 has three independ-
ent components (everything above the main diagonal) since the main diagonal is zero. So
the number of independent components of the symmetric part and the antisymmetric part
add up to the number of independent components of a general rank 2 tensor in ℝ3 (nine).
Intuitively, we might think that the information contained in 𝐴𝑖𝑗 could be represented as
some vector, since it has the same amount of independent components.

Proposition. Every rank 2 tensor 𝑇𝑖𝑗 can be decomposed uniquely into

𝑇𝑖𝑗 = 𝑆 𝑖𝑗 + 𝜀𝑖𝑗𝑘𝜔𝑘

where
𝜔𝑖 =

1
2𝜀𝑖𝑗𝑘𝑇𝑗𝑘

and 𝑆 𝑖𝑗 is symmetric.

Proof. From above, we can find 𝑆 𝑖𝑗 =
1
2
(𝑇𝑖𝑗 + 𝑇𝑗𝑖). We now just need to show that

𝜀𝑖𝑗𝑘𝜔𝑘 =
1
2 (𝑇𝑖𝑗 − 𝑇𝑗𝑖)

We can see that

𝜀𝑖𝑗𝑘𝜔𝑘 =
1
2𝜀𝑖𝑗𝑘𝜀𝑘ℓ𝑚𝑇ℓ𝑚

= 1
2(𝛿𝑖ℓ𝛿𝑗𝑚 − 𝛿𝑖𝑚𝛿𝑗ℓ)𝑇ℓ𝑚

= 1
2(𝑇𝑖𝑗 − 𝑇𝑗𝑖)

To show uniqueness, we now suppose that

𝑇𝑖𝑗 = 𝑆 𝑖𝑗 + 𝐴𝑖𝑗 = ̃𝑆 𝑖𝑗 + 𝐴𝑖𝑗 = 𝑇𝑖𝑗

If we take the symmetric part of both sides (i.e. 𝑇𝑖𝑗 + 𝑇𝑗𝑖 = 𝑇𝑖𝑗 + 𝑇𝑗𝑖), we get 𝑆 𝑖𝑗 = ̃𝑆 𝑖𝑗 .
Likewise, we have 𝐴𝑖𝑗 = 𝐴𝑖𝑗 by eliminating the equal symmetric parts.
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As an example, consider an elastic body. Each point x in such a body will undergo a small
displacement u(x) when applied to some force. Consider nearby points x + 𝛿x and x that
were initially separated by 𝛿𝑥. They will become separated by

(x + 𝛿x + u(x + 𝛿x)) − (x + u(x)) = 𝛿x + u(x + 𝛿x) − u(x)

So the change in displacement is

u(x + 𝛿x) − u(x)

This value gives us an idea of how much deformation the body is subjected to. Assuming
this is a smooth deformation, we have

𝑢𝑖(x + 𝛿x) − 𝑢𝑖(x) =
𝜕𝑢𝑖
𝜕𝑥𝑗

𝛿𝑥𝑗 + 𝑜(𝛿x)

We then decompose 𝜕𝑢𝑖
𝜕𝑥𝑗

as follows.

𝜕𝑢𝑖
𝜕𝑥𝑗

= 𝑒𝑖𝑗 + 𝜀𝑖𝑗𝑘𝜔𝑘

where the 𝑒𝑖𝑗 is the symmetric part, and the 𝜀𝑖𝑗𝑘𝜔𝑘 is the antisymmetric part. In particu-
lar,

𝑒𝑖𝑗 =
1
2(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)

is called the linear strain tensor. Considering the other tensor,

𝜔𝑘 =
1
2𝜀𝑖𝑗𝑘

𝜕𝑢𝑗
𝜕𝑥𝑘

= −1
2 (∇ × u)𝑖

Then,
𝑢𝑖(x + 𝛿x) − 𝑢𝑖(x) = 𝑒𝑖𝑗𝛿𝑥𝑗 + [𝛿x × 𝛚]𝑖 + 𝑜(𝛿x)

So the antisymmetric part corresponds to a rotation, and is irrelevant for describing the de-
formation of the internals of the body. So by separating the symmetric and antisymmetric
parts, we can in fact remove the antisymmetric part from the equation in order to study just
the linear strain.

Example. As another example, let us consider the inertia tensor, which is a common rank
2 tensor. Suppose a body with density 𝜌(x) occupies a volume 𝑉 ⊂ ℝ3, where each point in
the body is rotating with constant angular velocity 𝛚 about an axis through the origin. The
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velocity of a point x ∈ 𝑉 is given by v = 𝛚 × x. Hence, the total angular momentum is

L = ∫
𝑉
𝜌(x)(x × v) d𝑉

= ∫
𝑉
𝜌(x)(x × (𝛚 × x)) d𝑉

𝐿𝑖 = ∫
𝒱
𝜌(x)(𝑥𝑘𝑥𝑘𝜔𝑖 − 𝑥𝑖𝑥𝑗𝜔𝑗) d𝑉

= ∫
𝒱
𝜌(x)(𝑥𝑘𝑥𝑘𝛿𝑖𝑗𝜔𝑗 − 𝑥𝑖𝑥𝑗𝜔𝑗) d𝑉

= 𝐼𝑖𝑗𝜔𝑗
where 𝐼𝑖𝑗 is the inertia tensor defined by

𝐼𝑖𝑗 = ∫
𝒱
𝜌(x)(𝑥𝑘𝑥𝑘𝛿𝑖𝑗 − 𝑥𝑖𝑥𝑗) d𝑉

and where
𝒱 = {𝑥𝑖 ∶ 𝑥𝑖e𝑖 ∈ 𝑉}

If we had used a different basis, we would have found

𝐼′𝑖𝑗 = ∫
𝒱′
𝜌(x)(𝑥′𝑘𝑥′𝑘𝛿𝑖𝑗 − 𝑥′𝑖𝑥′𝑗) d𝑉

= 𝑅𝑖𝑝𝑅𝑗𝑞∫
𝒱
𝜌(x)(𝑥𝑘𝑥𝑘𝛿𝑝𝑞 − 𝑥𝑝𝑥𝑞) d𝑉

= 𝑅𝑖𝑝𝑅𝑗𝑞𝐼𝑝𝑞
So it really is a rank 2 tensor. As an example, consider the ellipsoid

𝑉 = {x∶ 𝑥21
𝑎2 +

𝑥22
𝑏2 +

𝑥23
𝑐2 ≤ 1}

with uniform density 𝜌0. Then the mass is given by

𝑀 = 4
3𝜋𝜌0𝑎𝑏𝑐

Then the inertia tensor with respect to this set of basis vectors is given by

𝐼𝑖𝑗 = ∫
𝒱
𝜌(x)(𝑥𝑘𝑥𝑘𝛿𝑖𝑗 − 𝑥𝑖𝑥𝑗) d𝑉

To help with these integrals, we make the following parametrisation into scaled spherical
coordinates:

{
𝑥1 = 𝑎𝑟 cos𝜙 sin 𝜃
𝑥2 = 𝑏𝑟 sin𝜙 sin 𝜃
𝑥3 = 𝑐𝑟 cos 𝜃

𝜙 ∈ [0, 2𝜋), 𝜃 ∈ [0, 𝜋], 𝑟 ∈ [0, 1]
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Note that if 𝑖 ≠ 𝑗, then by symmetry we have

∫
𝑉
𝜌0𝑥𝑖𝑥𝑗 d𝑉 = 0

Further,

𝐼11 = 𝜌0∫
𝑉
𝑥22 + 𝑥23 d𝑉

= 𝜌0𝑎𝑏𝑐∫
2𝜋

𝜙=0
d𝜙∫

𝜋

𝜃=0
d𝜃∫

1

𝑟=0
d𝑟 𝑟2(𝑏2 sin2 𝜙 sin2 𝜃 + 𝑐2 cos2 𝜃)𝑟2 sin 𝜃

= 𝜌0
𝑎𝑏𝑐
5 ∫

𝜋

0
(𝜋𝑏2 sin2 𝜃 + 2𝜋𝑐2 cos2 𝜃) sin 𝜃 d𝜃

= 3𝑀
20 ∫

𝜋

0
(𝑏2 sin2 𝜃 + (2𝑐2 − 𝑏2) cos2 𝜃 sin 𝜃) d𝜃

= 3𝑀
20 (2𝑏

2 + 2
3(2𝑐

2 − 𝑏2))

= 𝑀
5 (𝑏

2 + 𝑐2)

So by symmetry,
𝐼22 =

𝑀
5 (𝑎

2 + 𝑐2); 𝐼33 =
𝑀
5 (𝑎

2 + 𝑏2)
Hence,

𝐼𝑖𝑗 =
𝑀
5 (

𝑏2 + 𝑐2 0 0
0 𝑎2 + 𝑐2 0
0 0 𝑎2 + 𝑏2

)

In particular, if 𝑎 = 𝑏 = 𝑐,
𝐼𝑖𝑗 =

2𝑀
5 𝛿𝑖𝑗

Proposition. If𝑇𝑖𝑗 is symmetric, then there exists a basis {e𝑖} for which𝑇𝑖𝑗 only has nonzero
entries on the diagonal. The coordinate axes of this basis are called the principal axes of the
tensor.

Proof. Recall that for a real symmetric matrix𝑀, we can diagonalise it using an orthogonal
transformation with determinant 1. The change of basis formula for a matrix is exactly that
for a rank 2 tensor, so we can always choose such a change of basis to give a diagonal matrix.

12.2. Isotropic tensors
Definition. A tensor is isotropic if it is invariant under changes with respect to the choice
of Cartesian coordinate axes.

𝑇′𝑖𝑗…𝑘 = 𝑅𝑖𝑝𝑅𝑗𝑞…𝑅𝑘𝑟𝑇𝑝𝑞…𝑟 = 𝑇𝑖𝑗…𝑘
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for any choice of rotation 𝑅.

Note that by definition, every scalar is isotropic. The Kronecker and Levi-Civita tensors are
also isotropic, as we saw above.

12.3. Classifying isotropic tensors in three dimensions
Proposition. The isotropic tensors on ℝ3, ordered by rank, are exactly (up to the multiplic-
ation of a multiplicative scalar)

Rank 0: all tensors

Rank 1: no nonzero tensors

Rank 2: the Kronecker 𝛿

Rank 3: the Levi-Civita 𝜀

Rank 4: 𝛼𝛿𝑖𝑗𝛿𝑘ℓ + 𝛽𝛿𝑖𝑘𝛿𝑗ℓ + 𝛾𝛿𝑖ℓ𝛿𝑗𝑘 where 𝛼, 𝛽, 𝛾 are scalars

and for ranks higher than 4, they are a linear combination of products of 𝛿 and 𝜀 terms, for
instance 𝛿𝑖𝑗𝜀𝑘ℓ𝑚.

Proof. This is a non-rigorous sketch proof.

Rank 0: By definition, such tensors do not transform components under a change of basis.

Rank 1: Let 𝑣𝑖 be the components of an isotropic vector of rank 1. Then, for any 𝑅, we must
have

𝑣𝑖 = 𝑅𝑖𝑗𝑣𝑗
Let 𝑅 be a rotation by 𝜋 about the 𝑧 axis, so

𝑅 = (
−1 0 0
0 −1 0
0 0 1

)

Hence,
𝑣1 = −𝑣1; 𝑣2 = −𝑣2; 𝑣3 = 𝑣3

Hence, 𝑣1 = 0, 𝑣2 = 0. Alternatively, let

𝑅 = (
1 0 0
0 −1 0
0 0 −1

)

Then clearly 𝑣3 = −𝑣3 = 0. Hence the only tensor with this property is the zero
tensor.
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Rank 2: If 𝑇𝑖𝑗 are the components of an isotropic tensor of rank 2, then for all choices of 𝑅,
we have

𝑇𝑖𝑗 = 𝑅𝑖𝑝𝑅𝑗𝑞𝑇𝑝𝑞
Let 𝑅 be a rotation by 𝜋

2
about each axis, so for example in the 𝑧 direction,

𝑅 = (
0 1 0
−1 0 0
0 0 1

)

So 𝑇13 = 𝑅1𝑝𝑅3𝑞𝑇𝑝𝑞 = 𝑅12𝑅33𝑇23 = 𝑇23. Analogously we find, 𝑇23 = −𝑇13. Hence,
𝑇13 = 𝑇23 = 0. Further, 𝑇11 = 𝑅1𝑝𝑅1𝑞𝑇𝑝𝑞 = 𝑅12𝑅12𝑇22 = 𝑇22. So by symmetry,

𝑇11 = 𝑇22 = 𝑇33; 𝑇13 = 𝑇23 = 𝑇12 = 𝑇31 = 𝑇32 = 𝑇21 = 0

which is exactly the 𝛿 tensor, up to a scale factor.
Rank 3: For rank 3 tensors, we can use the same idea, but with more indices.

12.4. Integrals with isotropic tensors
Consider an integral of the form

𝑇𝑖𝑗…𝑘 = ∫
|x|<𝑅

𝑓(𝑟)𝑥𝑖𝑥𝑗…𝑥𝑘 d𝑉

where 𝑥𝑘𝑥𝑘 = 𝑟2, and d𝑉(𝑥) = d𝑥1 d𝑥2 d𝑥3. Note that 𝑓(𝑟) and {x∶ |x| < 𝑅} are invariant
under rotation. Since |𝐽| under a rotation is 1, we have

𝑇′𝑖𝑗…𝑘 = ∫
|x|<𝑅

𝑓(𝑟)𝑥′𝑖𝑥′𝑗…𝑥′𝑘 d𝑥′1 d𝑥′2 d𝑥′3

= ∫
|x|<𝑅

𝑓(𝑟)𝑅𝑖𝑝𝑥𝑝𝑅𝑗𝑞𝑥𝑞…𝑅𝑘𝑟𝑥𝑟 d𝑥1 d𝑥2 d𝑥3

We will now make the substitution

𝑦𝑖 = 𝑅𝑖𝑗𝑥𝑗 ; d𝑉 = d𝑦1 d𝑦2 d𝑦3
Hence,

𝑇′𝑖𝑗…𝑘 = ∫
|x|<𝑅

𝑓(𝑟)𝑦𝑖𝑦𝑗…𝑦𝑘 d𝑉(y)

= ∫
|x|<𝑅

𝑓(𝑟)𝑥𝑖𝑥𝑗…𝑥𝑘 d𝑉(x)

= 𝑇𝑖𝑗…𝑘
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Hence such an integral always yields an isotropic tensor. If we take𝑅 → ∞, this corresponds
to an integral over ℝ3. As an example, consider

𝑇𝑖𝑗 = ∫
ℝ3
𝑒−𝑟5𝑥𝑖𝑥𝑗 d𝑉

Then 𝑇𝑖𝑗 is isotropic, hence 𝑇𝑖𝑗 = 𝛼𝛿𝑖𝑗 . Contracting on (𝑖, 𝑗) to find 𝛼, we get

𝛼𝛿𝑖𝑖 = 3𝛼

= ∫
ℝ3
𝑒−𝑟5𝑟2 d𝑉

= 4𝜋∫
∞

0
𝑒−𝑟5𝑟2𝑟2 d𝑟

= 4𝜋∫
∞

0
𝑒−𝑟5𝑟4 d𝑟

= 4
5𝜋

Hence,
𝑇𝑖𝑗 =

4
15𝜋𝛿𝑖𝑗

As another example, consider the inertia tensor 𝐼𝑖𝑗 of a ball of radius 𝑅, uniform density 𝜌0,
and mass𝑀 = 4𝜋

3
𝑅3𝜌0. Recall that

𝐼𝑖𝑗 = ∫
|x|<𝑅

𝜌0(𝑥𝑘𝑥𝑘𝛿𝑖𝑗 − 𝑥𝑖𝑥𝑗) d𝑉

Both terms give an isotropic result, so the sum 𝐼𝑖𝑗 is isotropic. Contracting on (𝑖, 𝑗), we
have

𝛼𝛿𝑖𝑖 = 3𝛼

= ∫
|x|<𝑅

𝜌0(𝑟2𝛿𝑖𝑖 − 𝑥𝑖𝑥𝑖) d𝑉

= ∫
|x|<𝑅

𝜌0(3𝑟2 − 𝑟2) d𝑉

= ∫
|x|<𝑅

𝜌02𝑟2 d𝑉

= 4𝜋∫
𝑅

0
𝜌02𝑟4 d𝑟

= 4𝜋
3 𝜌0𝑅3(

3
𝑅3 ⋅ 2 ⋅

𝑅5
5 )

= 6𝑀𝑅2
5
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Hence,
𝐼𝑖𝑗 =

2𝑀𝑅2
5 𝛿𝑖𝑗

12.5. Bilinear and multilinear maps as tensors
For a tensor 𝑇𝑖𝑗 , consider the bilinear map 𝑡∶ ℝ3 × ℝ3 → ℝ defined by

𝑡(a,b) = 𝑇𝑖𝑗𝑎𝑖𝑏𝑗

The left hand side really is well defined, since the right hand side does not depend on the
choice of basis vectors. Conversely, suppose we have a bilinearmap 𝑡. Then, for a given basis
{e𝑖}, this defines an array 𝑇𝑖𝑗 by

𝑡(a,b) = 𝑡(𝑎𝑖e𝑖, 𝑏𝑗e𝑗) = 𝑎𝑖𝑏𝑗𝑡(e𝑖, e𝑗) = 𝑎𝑖𝑏𝑗𝑇𝑖𝑗

Changing basis with e′𝑖 = 𝑅𝑖𝑝e𝑝, we find

𝑇′𝑖𝑗 = 𝑡(e′𝑖, e
′
𝑗) = 𝑡(𝑅𝑖𝑝e𝑝, 𝑅𝑗𝑞e𝑞) = 𝑅𝑖𝑝𝑅𝑗𝑞𝑡(e𝑝, e𝑞)

hence this 𝑇𝑖𝑗 really is a rank 2 tensor. So there is a bijection between bilinearmaps and rank
2 tensors. In particular, if the map

(a,b) ↦ 𝑇𝑖𝑗𝑎𝑖𝑏𝑗

is a bilinear map, and independent of basis, then 𝑇𝑖𝑗 must be the components of a rank 2
tensor. The same proof applies for higher-rank tensors.

12.6. Quotient theorem
Recall from earlier that the conductivity tensor 𝜎𝑖𝑗 satisfying 𝐽𝑖 = 𝜎𝑖𝑗𝐸𝑗 was really a tensor,
by using the definitions. The quotient theorem allows us to deduce similar results more
generally. The name originates from the apparent ‘quotient’ of 𝐽𝑖 by 𝐸𝑗 to give 𝜎𝑖𝑗 .
Proposition. Let 𝑇𝑖…𝑗𝑝…𝑞 be an array of numbers defined in each Cartesian coordinate
system, such that

𝑣𝑖…𝑗 = 𝑇𝑖…𝑗𝑝…𝑞𝑢𝑝…𝑞

and that 𝑣𝑖…𝑗 is a tensor for all tensors 𝑢𝑝…𝑞. Then 𝑇𝑖…𝑗𝑝…𝑞 is a tensor.

Proof. We will first consider the special case 𝑢𝑝…𝑞 = 𝑐𝑝…𝑑𝑞 for vectors c,… ,d. Then by
assumption,

𝑣𝑖…𝑗 = 𝑇𝑖…𝑗𝑝…𝑞𝑐𝑝…𝑑𝑞
is a tensor. In particular,

𝑣𝑖…𝑗𝑎𝑖…𝑏𝑗 = 𝑇𝑖…𝑗𝑝…𝑞𝑎𝑖…𝑏𝑗𝑐𝑝…𝑑𝑞
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is a scalar, since the left hand side is just a contraction over all indices. Since the right hand
side is invariant under a change in basis, this leads us to define the multilinear map

𝑡(a,… ,b, c,… ,d) = 𝑇𝑖…𝑗𝑝…𝑞𝑎𝑖…𝑏𝑗𝑐𝑝…𝑑𝑞

Hence 𝑇𝑖…𝑗𝑝…𝑞 really is a tensor.

As an example, consider the linear strain tensor

𝑒𝑖𝑗 =
1
2(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)

whereu(x)measures the change in displacement at x. Experiments suggest that the internal
stress tensor 𝜎𝑖𝑗 experienced by a body under a deformation u(x) depends linearly on the
strain 𝑒𝑖𝑗 at each point. Hence we might assume that there exists some array 𝑐𝑖𝑗𝑘ℓ such
that

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘ℓ𝑒𝑘ℓ
However, we can’t actually apply the quotient theorem here, since 𝑒𝑘ℓ cannot be any tensor,
it can only be any symmetric tensor. See example sheet 4 for the resolution of this apparent
problem: if 𝑐𝑖𝑗𝑘ℓ = 𝑐𝑖𝑗ℓ𝑘, then we can apply the quotient theorem. We call 𝑐𝑖𝑗𝑘ℓ the stiffness
tensor, which is a property of the material being subjected to the force. Suppose that the
material is isotropic, then we might guess that 𝑐𝑖𝑗𝑘ℓ should be isotropic. Hence,

𝑐𝑖𝑗𝑘ℓ = 𝛼𝛿𝑖𝑗𝛿𝑘ℓ + 𝛽𝛿𝑖𝑘𝛿𝑗ℓ + 𝛾𝛿𝑖ℓ𝛿𝑗𝑘

where 𝛼, 𝛽, 𝛾 are scalars. Putting this into the relationship between 𝜎 and 𝑒, we find

𝜎𝑖𝑗 = 𝛼𝛿𝑖𝑗𝑒𝑘𝑘 + 𝛽𝑒𝑖𝑗 + 𝛾𝑒𝑗𝑖 = 𝜆𝛿𝑖𝑗𝑒𝑘𝑘 + 2𝜇𝑒𝑖𝑗

which is a higher-dimensional analogue of Hooke’s Law. We can in fact invert this. By
contracting on (𝑖, 𝑗) we find

𝜎𝑖𝑖 = 3𝜆𝑒𝑖𝑖 + 2𝜇𝑒𝑖𝑖
Hence,

𝑒𝑘𝑘 =
𝜎𝑘𝑘

3𝜆 + 2𝜇
We then have

𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗
𝜎𝑘𝑘

3𝜆 + 2𝜇 + 2𝜇𝑒𝑖𝑗 ⟹ 2𝜇𝑒𝑖𝑗 = 𝜎𝑖𝑗 − 𝜎𝑘𝑘𝛿𝑖𝑗
𝜆

3𝜆 + 2𝜇
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Lectured in Lent 2021 by Prof. G. Paternain
In this course, we rigorously define what it means for a sequence to approach a particular
value; this is called a limit. Limits can be used to define things like derivatives and integrals,
without appealing to concepts such as infinitesimals.

We begin by using limits to make sense of infinite summations, also called series. In general,
a series may not have a sum (take 1 + 1 + ⋯, for example), but many series do approach a
value as we keep adding more terms (such as 1 + 1

2
+ 1

4
+ 1

8
+ ⋯ → 2). We prove various

facts about when series converge to a value, and when they do not.

Then, we define what it means for a function to approach a value as we get closer to a partic-
ular input. We can use this to define the derivative of a function. As with series, derivatives
may not exist (for example, |𝑥| at 𝑥 = 0), so we need to be careful to restrict our analysis
to differentiable functions. We can similarly make a rigorous definition of the integral, and
show the fundamental theorem of calculus: under suitable assumptions, the derivative of
the integral of a function is the original function.
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VIII. Analysis I

1. Limits and convergence
1.1. Definition of limit
Definition. We say that the sequence 𝑎𝑛 → 𝑎 as 𝑛 → ∞ if given 𝜀 > 0, ∃𝑁 such that
|𝑎𝑛 − 𝑎| < 𝜀 for all 𝑛 ≥ 𝑁. Note that this𝑁 is actually a function of 𝜀; we may need to choose
a very large 𝑁 if the 𝜀 provided is very small, for instance.
Definition. An increasing sequence is a sequence for which 𝑎𝑛 ≤ 𝑎𝑛+1, and a decreasing
sequence is a sequence for which 𝑎𝑛 ≥ 𝑎𝑛+1. Such increasing and decreasing sequences are
called monotone. A strictly increasing sequence or a strictly decreasing sequence simply
strengthens the inequalities to not include the equality case.

1.2. Fundamental axiom of the real numbers
If we have some increasing sequence 𝑎𝑛 ∈ ℝ, where ∃𝐴 ∈ ℝ such that ∀𝑛 ≥ 1, 𝑎𝑛 ≤ 𝐴, then
∃𝑎 ∈ ℝ such that 𝑎𝑛 → 𝑎 as 𝑛 → ∞. This is also known as the ‘least upper bound’ axiom or
property. This axiom applies equivalently to decreasing sequences of real numbers bounded
below. We can also rephrase the axiom to state that every non-empty set of real numbers
that is bounded above has a supremum.

Definition. We say that the supremum sup 𝑆 of a non-empty, bounded above set 𝑆 is 𝐾 if

(i) 𝑥 ≤ 𝐾 for all 𝑥 ∈ 𝑆
(ii) given 𝜀 > 0, ∃𝑥 ∈ 𝑆 such that 𝑥 > 𝐾 − 𝜀

Note that the supremum (and hence the infimum) is unique.

1.3. Properties of limits
Lemma. The following properties about real sequences hold.

(i) The limit is unique. That is, if 𝑎𝑛 → 𝑎 and 𝑎𝑛 → 𝑏, then 𝑎 = 𝑏.
(ii) If 𝑎𝑛 → 𝑎 as 𝑛 → ∞ and 𝑛1 < 𝑛2 < …, then 𝑎𝑛𝑗 → 𝑎 as 𝑗 → ∞. In other words,

subsequences converge to the same limit.

(iii) If 𝑎𝑛 = 𝑐 for all 𝑛, then 𝑎𝑛 → 𝑐 as 𝑛 → ∞.

(iv) If 𝑎𝑛 → 𝑎 and 𝑏𝑛 → 𝑏, then 𝑎𝑛 + 𝑏𝑛 → 𝑎 + 𝑏.
(v) If 𝑎𝑛 → 𝑎 and 𝑏𝑛 → 𝑏, then 𝑎𝑛𝑏𝑛 → 𝑎𝑏.

(vi) If 𝑎𝑛 → 𝑎, 𝑎𝑛 ≠ 0 for all 𝑛, and 𝑎 ≠ 0, then 1
𝑎𝑛

→ 1
𝑎
.

(vii) If 𝑎𝑛 → 𝑎, and 𝑎𝑛 ≤ 𝐴 for all 𝑛, then 𝑎 ≤ 𝐴.

Proof. We prove the some of these statements here.
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1. Limits and convergence

(i) Given 𝜀 > 0, ∃𝑛1 such that |𝑎𝑛 − 𝑎| < 𝜀 for all 𝑛 ≥ 𝑛1, and ∃𝑛2 such that |𝑎𝑛 − 𝑏| < 𝜀
for all 𝑛 ≥ 𝑛2. So let 𝑁 = max(𝑛1, 𝑛2), so both inequalities hold. Then for all 𝑛 ≥ 𝑁,
using the triangle inequality, |𝑎 − 𝑏| ≤ |𝑎𝑛 − 𝑎| + |𝑎𝑛 − 𝑏| < 2𝜀. So 𝑎 = 𝑏.

(ii) Given 𝜀 > 0, ∃𝑁 such that |𝑎𝑛 − 𝑎| < 𝜀 for all 𝑛 ≥ 𝑁. Since 𝑛𝑗 ≥ 𝑗 (by induction),
||𝑎𝑛𝑗 − 𝑎|| < 𝜀 for all 𝑗 ≥ 𝑁.

(v) |𝑎𝑛𝑏𝑛 − 𝑎𝑏| ≤ |𝑎𝑛𝑏𝑛 − 𝑎𝑛𝑏| + |𝑎𝑛𝑏 − 𝑎𝑏| = |𝑎𝑛||𝑏𝑛 − 𝑏| + |𝑏||𝑎𝑛 − 𝑎|.

If 𝑎𝑛 → 𝑎, then given 𝜀 > 0, ∃𝑁1 such that |𝑎𝑛 − 𝑎| < 𝜀 for all 𝑛 ≥ 𝑁1. (∗)

If 𝑏𝑛 → 𝑏, then given 𝜀 > 0, ∃𝑁2 such that |𝑏𝑛 − 𝑏| < 𝜀 for all 𝑛 ≥ 𝑁2.

Using (∗), if 𝑛 ≥ 𝑁1(1) (i.e. 𝜀 = 1), |𝑎𝑛 − 𝑎| < 1, so |𝑎𝑛| ≤ |𝑎| + 1.

Therefore |𝑎𝑛𝑏𝑛 − 𝑎𝑏| ≤ 𝜀(|𝑎| + 1 + |𝑏|) for all 𝑛 ≥ 𝑁3(𝜀) = max{𝑁1(1), 𝑁1(𝜀), 𝑁2(𝜀)}.

1.4. Harmonic series
Lemma. The sequence 1

𝑛
tends to zero as 𝑛 → ∞.

Proof. We know that 1
𝑛
is a decreasing sequence, and it is bounded below by zero. Hence it

converges to a limit 𝑎. We will prove now that 𝑎 = 0. 1
2𝑛

= 1
2
⋅ 1
𝑛
, and by property (v) above,

1
2𝑛
tends to 1

2
⋅ 𝑎. But 1

2𝑛
is a subsequence of 1

𝑛
, and so by property (ii) it converges to 𝑎. So

by property (i), 1
2
⋅ 𝑎 = 𝑎 hence 𝑎 = 0.

1.5. Limits in the complex plane
Remark. The definition of the limit of a sequence makes perfect sense for 𝑎𝑛 ∈ ℂ.

Definition. 𝑎𝑛 → 𝑎 if given 𝜀 > 0, ∃𝑁 such that ∀𝑛 ≥ 𝑁, |𝑎𝑛 − 𝑎| < 𝜀.

From this definition, it is easy to check that properties (i)–(vi) hold for complexnumbers.

However, property (vii) makes no sense in the world of the complex numbers since they do
not have an ordering.

1.6. The Bolzano–Weierstrass theorem
Theorem. If 𝑥𝑛 is a sequence of real numbers, and there exists some 𝑘 such that |𝑥𝑛| ≤ 𝑘
for all 𝑛, then we can find 𝑛1 < 𝑛2 < 𝑛3 < 𝑛4 < … and 𝑥 ∈ ℝ such that 𝑥𝑛𝑗 → 𝑥 as 𝑗 → ∞.
In other words, any bounded sequence has a convergent subsequence.
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Remark. This theorem does not state anything about the uniqueness of such a subsequence;
indeed, there could exist many subsequences that have possibly different limits. For ex-
ample, 𝑥𝑛 = (−1)𝑛 gives 𝑥2𝑛+1 → −1 and 𝑥2𝑛 → 1.

Proof. Let [𝑎1, 𝑏1] be the range of the sequence, i.e. [−𝑘, 𝑘]. Then let themidpoint 𝑐1 =
𝑎1+𝑏1

2
.

Consider the following alternatives:

(i) 𝑥𝑛 ∈ [𝑎1, 𝑐] for infinitely many values of 𝑛.
(ii) 𝑥𝑛 ∈ [𝑐, 𝑏1] for infinitely many values of 𝑛.

Note that cases 1 and 2 could hold at the same time. If case 1 holds, we set 𝑎2 = 𝑎1 and
𝑏2 = 𝑐. If case 1 fails, then case 2 must hold, so we can set 𝑎2 = 𝑐 and 𝑏2 = 𝑏1. We have
now constructed a subsequence whose range is half as large as the original sequence, and it
contains infinitely many values of 𝑥𝑛.
We can proceed inductively to construct sequences 𝑎𝑛, 𝑏𝑛 such that 𝑥𝑚 ∈ [𝑎𝑛, 𝑏𝑛] for infin-
itely many values of𝑚. This is known as a ‘bisectionmethod’. By construction, 𝑎𝑛−1 ≤ 𝑎𝑛 ≤
𝑏𝑛 ≤ 𝑏𝑛−1. Since we are dividing by two each time,

𝑏𝑛 − 𝑎𝑛 =
1
2(𝑏𝑛−1 − 𝑎𝑛−1) (∗)

Note that 𝑎𝑛 is a bounded, increasing sequence; and 𝑏𝑛 is a bounded, decreasing sequence.
By the Fundamental Axiom of the Real Numbers, 𝑎𝑛 and 𝑏𝑛 converge to limits 𝑎 ∈ [𝑎1, 𝑏1]
and 𝑏 ∈ [𝑎1, 𝑏1]. Using (∗), 𝑏 − 𝑎 = 𝑏−𝑎

2
⟹ 𝑏 = 𝑎.

Since𝑥𝑚 ∈ [𝑎𝑛, 𝑏𝑛] for infinitelymany values of𝑚, having chosen𝑛𝑗 such that𝑥𝑛𝑗 ∈ [𝑎𝑗 , 𝑏𝑗],
there is 𝑛𝑗+1 > 𝑛𝑗 such that 𝑥𝑛𝑗+1 ∈ [𝑎𝑗+1, 𝑏𝑗+1]. Informally, this works because we have an
unlimited supply of such 𝑥 values. Hence

𝑎𝑗 ≤ 𝑥𝑛𝑗 ≤ 𝑏𝑗

So this 𝑥𝑛𝑗 → 𝑎, so we have constructed a convergent subsequence.

1.7. Cauchy sequences
Definition. A sequence 𝑎𝑛 is called a Cauchy sequence if given 𝜀 > 0 there exists 𝑁 > 0
such that |𝑎𝑛 − 𝑎𝑚| < 𝜀 for all 𝑛,𝑚 ≥ 𝑁. Informally, the terms of the sequence grow ever
closer together such that there are infinitely many consecutive terms within a small region.

Lemma. If a sequence converges, it is a Cauchy sequence.

Proof. If 𝑎𝑛 → 𝑎, given 𝜀 > 0 then ∃𝑁 such that ∀𝑛 ≥ 𝑁, |𝑎𝑛 − 𝑎| < 𝜀. Then take𝑚, 𝑛 ≥ 𝑁,
and we have

|𝑎𝑛 − 𝑎𝑚| ≤ |𝑎𝑛 − 𝑎| + |𝑎𝑚 − 𝑎| < 2𝜀
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Theorem. Every Cauchy sequence converges.

Proof. First, we note that if 𝑎𝑛 is a Cauchy sequence then it is bounded. Let us take 𝜀 = 1,
so 𝑁 = 𝑁(1) in the Cauchy property. Then

|𝑎𝑛 − 𝑎𝑚| < 1

for all𝑚, 𝑛 ≥ 𝑁(1). So by the triangle inequality,

|𝑎𝑚| ≤ |𝑎𝑚 − 𝑎𝑁 | + |𝑎𝑁 | < 1 + |𝑎𝑁 |

So the sequence after this point is bounded by 1+|𝑎𝑁 |. The remaining terms in the sequence
are only finitely many, so we can compute the maximum of all of those terms along with
1 + |𝑎𝑁 | to produce a bound 𝑘 for all 𝑛.
By theBolzano–Weierstrass Theorem, this sequence𝑎𝑛 has a convergent subsequence𝑎𝑛𝑗 →
𝑎. We want to prove that 𝑎𝑛 → 𝑎. Given 𝜀 > 0, there exists 𝑗0 such that ||𝑎𝑛𝑗 − 𝑎|| < 𝜀 for all
𝑗 ≥ 𝑗0. Also, ∃𝑁(𝜀) such that |𝑎𝑚 − 𝑎𝑛| < 𝜀 for all 𝑚, 𝑛 ≥ 𝑁(𝜀). Combining these, we can
take a 𝑗 such that 𝑛𝑗 ≥ max{𝑁(𝜀), 𝑛𝑗0}. Then, if 𝑛 ≥ 𝑁(𝜀), using the triangle inequality,

|𝑎𝑛 − 𝑎| ≤ ||𝑎𝑛 − 𝑎𝑛𝑗 || + ||𝑎𝑛𝑗 − 𝑎|| < 2𝜀

Therefore, on ℝ, a sequence is convergent if and only if it is a Cauchy sequence. This is
sometimes referred to as the general principle of convergence, however this is a relatively
old-fashioned name. This property is very useful, since we don’t need to know what the
limit actually is.
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2. Series
2.1. Definition
Let 𝑎𝑛 be a real or complex sequence. We say that∑

∞
𝑗=1 𝑎𝑗 converges to 𝑠 if the sequence of

partial sums 𝑠𝑁 converges to 𝑠 as 𝑁 → ∞, i.e.

𝑠𝑁 =
𝑁
∑
𝑗=1

𝑎𝑗 → 𝑠

If the sequence of partial sums does not converge, then we say that the series diverges. Note
that any problem on series can be turned into a problem on sequences, by considering their
partial sums.

Lemma. (i) If∑∞
𝑗=1 𝑎𝑗 and∑

∞
𝑗=1 𝑏𝑗 converge, then so does∑

∞
𝑗=1(𝜆𝑎𝑗+𝜇𝑏𝑗), where 𝜆, 𝜇 ∈

ℂ.
(ii) Suppose ∃𝑁 such that 𝑎𝑗 = 𝑏𝑗 for all 𝑗 ≥ 𝑁. Then either ∑∞

𝑗=1 𝑎𝑗 and ∑
∞
𝑗=1 𝑏𝑗 both

converge, or they both diverge. In other words, the initial terms do not matter for
considering convergence (but the sum will change).

Proof. (i) We have

𝑠𝑁 =
𝑁
∑
𝑗=1

(𝜆𝑎𝑗 + 𝜇𝑏𝑗)

=
𝑁
∑
𝑗=1

𝜆𝑎𝑗 +
𝑁
∑
𝑗=1

𝜇𝑏𝑗

= 𝜆𝑐𝑁 + 𝜇𝑑𝑁
∴ 𝑠𝑁 → 𝜆𝑐 + 𝜇𝑑

(ii) For any 𝑛 ≥ 𝑁, we have

𝑠𝑁 =
𝑛
∑
𝑗=1

𝑎𝑗 =
𝑁−1
∑
𝑗=1

𝑎𝑗 +
𝑁
∑
𝑗=𝑛

𝑎𝑗

𝑑𝑁 =
𝑛
∑
𝑗=1

𝑏𝑗 =
𝑁−1
∑
𝑗=1

𝑏𝑗 +
𝑁
∑
𝑗=𝑛

𝑏𝑗

Taking the difference, we get

𝑠𝑁 − 𝑑𝑁 =
𝑁−1
∑
𝑗=1

𝑎𝑗 −
𝑁−1
∑
𝑗=1

𝑏𝑗
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which is finite. So 𝑠𝑁 converges if and only if 𝑑𝑁 also converges.

2.2. Geometric series
Let 𝑎𝑛 = 𝑥𝑛−1, where 𝑛 ≥ 1. Then

𝑠𝑛 =
𝑛
∑
𝑗=1

𝑎𝑗 = 1 + 𝑥 + 𝑥2 +⋯+ 𝑥𝑛−1

Then

𝑠𝑛 = {
1−𝑥𝑛

1−𝑥
if 𝑥 ≠ 1

𝑛 if 𝑥 = 1
This can be shown by observing that

𝑥𝑠𝑛 = 𝑥 + 𝑥2 +⋯+ 𝑥𝑛 = 𝑠𝑛 − 1 + 𝑥𝑛 ⟹ 𝑠𝑛(1 − 𝑥) = 1 − 𝑥𝑛

If |𝑥| < 1, then 𝑥𝑛 → 0 as 𝑥 → ∞. So 𝑠𝑛 →
1

1−𝑥
. If 𝑥 > 1, then 𝑥𝑛 → ∞ and so 𝑠𝑛 → ∞. If

𝑥 < −1, 𝑠𝑛 oscillates. For completeness, if 𝑥 = −1, 𝑠𝑛 oscillates between 0 and 1.
Note that the statement 𝑠𝑛 →∞means that given 𝑎 ∈ ℝ, ∃𝑁 such that 𝑠𝑛 > 𝑎 for all 𝑛 ≥ 𝑁,
and a similar statement holds for negative infinity (swapping the inequality). If 𝑠𝑛 does not
converge or tend to ±∞, we say that 𝑠𝑛 oscillates.
Thus the geometric series converges if and only if |𝑥| < 1. Note that to prove that 𝑥𝑛 → 0 if
|𝑥| < 1, we can consider the case 0 < 𝑥 < 1 and write 1/𝑥 = 1+ 𝛿 for some positive 𝛿. Then
𝑥𝑛 = 1

(1+𝛿)𝑛
≤ 1

1+𝛿𝑛
from the binomial expansion, and this tends to zero as required.

Lemma. If∑∞
𝑗=1 𝑎𝑗 converges, then lim𝑗→∞ 𝑎𝑗 = 0.

Proof. Given 𝑠𝑛 = ∑𝑛
𝑗=1 𝑎𝑗 , we have 𝑎𝑛 = 𝑠𝑛 − 𝑠𝑛−1. If 𝑠𝑛 → 𝑎, then 𝑎𝑛 → 0 since 𝑠𝑛−1 also

tends to 𝑎.

Remark. The converse is not true. For example, the harmonic series diverges, but the terms
approach zero. Consider

𝑠2𝑛 = 𝑠𝑛 +
1

𝑛 + 1 +
1

𝑛 + 2 +⋯+ 1
2𝑛

> 𝑠𝑛 +
1
2𝑛 +

1
2𝑛 +⋯+ 1

2𝑛
= 𝑠𝑛 +

1
2

So as 𝑛 → ∞, if the sequence is convergent then the sequences 𝑠𝑛 and 𝑠2𝑛 tend to the same
limit, but they clearly do not.

527



VIII. Analysis I

3. Convergence tests
3.1. Comparison test
In this section, we will let 𝑎𝑛 ∈ ℝ, 𝑎𝑛 ≥ 0. In other words, all series contain only non-
negative real terms.

Theorem. Suppose 0 ≤ 𝑏𝑛 ≤ 𝑎𝑛 for all 𝑛. If∑
∞
𝑗=1 𝑎𝑗 converges, then∑

∞
𝑗=1 𝑏𝑗 converges.

Proof. Let 𝑠𝑁 be the𝑁th partial sum over the 𝑎𝑛, and let 𝑑𝑁 be the𝑁th partial sum over the
𝑏𝑛. Since 𝑏𝑛 ≤ 𝑎𝑛, 𝑑𝑁 ≤ 𝑠𝑁 . But 𝑠𝑁 → 𝑠, so 𝑑𝑁 ≤ 𝑠𝑁 ≤ 𝑠. So 𝑑𝑁 is an increasing sequence
that is bounded above by 𝑠, so it converges.

For example, let us analyse the behaviour of the sum of the sequence 1
𝑛2
. Note that

1
𝑛2 <

1
𝑛(𝑛 − 1) =

1
𝑛 − 1 −

1
𝑛

for 𝑛 ≥ 2. By the comparison test, it is sufficient to show that the series on the right hand
side converges, in order to show that the original series converges.

𝑁
∑
𝑗=2

𝑎𝑗 = 1 − 1
𝑁 → 1

as required. So the original series tends to some value less than or equal to 2.

3.2. Cauchy’s root test
Theorem. Suppose we have a sequence of non-negative terms 𝑎𝑛. Suppose that 𝑎1/𝑛𝑛 → 𝑎
as 𝑛 → ∞. Then if 𝑎 < 1, the series∑𝑎𝑛 converges. If 𝑎 > 1, the series∑𝑎𝑛 diverges.
Remark. Nothing can be said if 𝑎 = 1. There is an example later of this fact.

Proof. If 𝑎 < 1, let us choose an 𝑟 such that 𝑎 < 𝑟 < 1. By the definition of the limit, ∃𝑁
such that ∀𝑛 ≥ 𝑁, 𝑎1/𝑛𝑛 < 𝑟. This implies that 𝑎𝑛 < 𝑟𝑛. The geometric series∑𝑟𝑛 converges.
By comparison, the series 𝑎𝑛 converges.
If 𝑎 > 1, for all 𝑛 ≥ 𝑁, 𝑎1/𝑛𝑛 > 1which implies 𝑎𝑛 > 1, thus∑𝑎𝑛 diverges, since 𝑎𝑛 does not
tend to zero.

3.3. D’Alembert’s ratio test
Theorem. Suppose 𝑎𝑛 > 0, and 𝑎𝑛+1

𝑎𝑛
→ ℓ. If ℓ < 1, then the series ∑𝑎𝑛 converges. If

ℓ > 1, then the series∑𝑎𝑛 diverges.
Remark. Like before, no conclusion can be drawn if ℓ = 1.
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Proof. Suppose ℓ < 1. We can choose ℓ < 𝑟 < 1, ∃𝑁 such that ∀𝑛 ≥ 𝑁, 𝑎𝑛+1
𝑎𝑛

< 𝑟. Therefore
𝑎𝑛 < 𝑟𝑛−𝑁𝑎𝑁 . Hence, 𝑎𝑛 < 𝑘𝑟𝑛 where 𝑘 is independent of 𝑛. Applying the comparison test,
the series∑𝑎𝑛 must converge.
If ℓ > 1, we can choose ℓ > 𝑟 > 1. Then ∃𝑁 such that ∀𝑛 ≥ 𝑁, 𝑎𝑛+1

𝑎𝑛
> 𝑟. As before,

𝑎𝑛 > 𝑟𝑛−𝑁𝑎𝑁 . But the 𝑟𝑛−𝑁 diverges, so the original series diverges.

Example. Consider∑∞
1

𝑛
2𝑛
. We have

𝑎𝑛+1
𝑎𝑛

= (𝑛 + 1)/2𝑛+1
𝑛/2𝑛 → 1

2

So we have convergence, by the ratio test. Now, consider∑∞
1

1
𝑛
and∑∞

1
1
𝑛2
. In both cases,

the ratio test gives limit 1. So the ratio test is inconclusive if the limit is 1. Since 𝑛1/𝑛 → 1,
the root test is also inconclusive when the limit is 1. To check this limit, we can write

𝑛1/𝑛 = 1 + 𝛿𝑛; 𝛿𝑛 > 0

𝑛 = (1 + 𝛿𝑛)𝑛 >
𝑛(𝑛 − 1)

2 𝛿2𝑛
using the binomial expansion.

⟹ 𝛿2𝑛 <
2

𝑛 − 1 ⟹ 𝛿𝑛 → 0

The root test is a good candidate for series that contain powers of 𝑛, for example
∞
∑
1
[ 𝑛 + 1
3𝑛 + 5]

𝑛

In this instance, for example, we have convergence.

3.4. Cauchy’s condensation test
Theorem. Let 𝑎𝑛 be a decreasing sequence of positive terms. Then∑

∞
1 𝑎𝑛 converges if and

only if∑∞
1 2𝑛𝑎2𝑛 converges.

Proof. First, note that if 𝑎𝑛 is decreasing, then
𝑎2𝑘 ≤

(∗)
𝑎2𝑘−1+𝑖 ≤

(†)
𝑎2𝑘−1 ; 1 ≤ 𝑖 ≤ 2𝑘−1; 𝑘 ≥ 1

Now let us assume that∑𝑎𝑛 converges to 𝐴 ∈ ℝ. Then, by (∗),
2𝑛−1𝑎2𝑛 = 𝑎2𝑛 + 𝑎2𝑛 +⋯+ 𝑎2𝑛

≤ 𝑎2𝑛−1+1 + 𝑎2𝑛−1+2 +⋯+ 𝑎2𝑛

=
2𝑛

∑
𝑚=2𝑛−1+1

𝑎𝑚
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Thus,
𝑁
∑
𝑛=1

2𝑛−1𝑎2𝑛 ≤
𝑁
∑
𝑛=1

2𝑛

∑
𝑚=2𝑛−1+1

𝑎𝑚 =
2𝑁

∑
𝑛=2

𝑎𝑚

Therefore,
𝑁
∑
𝑛=1

2𝑛𝑎2𝑛 ≤ 2
2𝑁

∑
𝑛=2

𝑎𝑚 ≤ 2(𝐴 − 𝑎1)

Thus∑𝑁
𝑛=1 2𝑛𝑎2𝑛 converges, since it is increasing and bounded above. For the converse, we

will assume that∑2𝑛𝑎2𝑛 converges to 𝐵. Using (†),
2𝑛

∑
𝑚=2𝑛−1

𝑎𝑚 = 𝑎2𝑛−1 + 𝑎2𝑛−1+1 +⋯+ 𝑎2𝑛

≤ 𝑎2𝑛−1 + 𝑎2𝑛−1 +⋯+ 𝑎2𝑛−1
= 2𝑛−1𝑎2𝑛−1

So we have
2𝑁

∑
𝑚=2

𝑎𝑚 =
𝑁
∑
𝑛=1

2𝑛

∑
𝑚=2𝑛−1+1

𝑎𝑚 ≤
𝑁
∑
𝑛=1

2𝑛−1𝑎2𝑛−1 ≤
1
2𝐵

Therefore,∑𝑁
𝑚=1 𝑎𝑚 is a bounded, increasing sequence and hence converges.

Let us consider an example of this test. Consider the series definition of the Riemann zeta
function

𝜁(𝑘) =
∞
∑
𝑛=1

1
𝑛𝑘

For what 𝑘 ∈ ℝ, 𝑘 > 0 does this series converge? This is equivalent to asking if the following
series converges.

∞
∑
𝑛=1

2𝑛 [ 12𝑛 ]
𝑘
=

∞
∑
𝑛=1

(21−𝑘)𝑛

Hence it converges if and only if 21−𝑘 < 1 ⟺ 𝑘 > 1.

3.5. Alternating series
An alternating series is a series where the sign on each term switches between positive and
negative.

Theorem (Alternating Series Test). If 𝑎𝑛 decreases and tends to zero as 𝑢 → ∞, then the
alternating series

∞
∑
1
(−1)𝑛+1𝑎𝑛

converges.
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Proof. Let us consider the partial sum

𝑠𝑛 = 𝑎1 − 𝑎2 + 𝑎3 − 𝑎4 +⋯+ (−1)𝑛+1𝑎𝑛

In particular,
𝑠2𝑛 = (𝑎1 − 𝑎2) + (𝑎3 − 𝑎4) +⋯ + (𝑎2𝑛−1 − 𝑎2𝑛)

Since the sequence is decreasing, each parenthesised block is positive. Then 𝑠2𝑛 ≥ 𝑠2𝑛−2.
We can also write the partial sum as

𝑠2𝑛 = 𝑎1 − (𝑎2 − 𝑎3) − (𝑎4 − 𝑎5) −⋯ − (𝑎2𝑛−2 − 𝑎2𝑛−1) − 𝑎2𝑛

Each parenthesised block here is negative. So 𝑠2𝑛 ≤ 𝑎1. So 𝑠2𝑛 is increasing and bounded
above, so it must converge. Now, note that

𝑠2𝑛+1 = 𝑠2𝑛 + 𝑎2𝑛+1 → 𝑠2𝑛

since 𝑎2𝑛+1 → 0. So 𝑠2𝑛+1 also converges, in fact to the same limit. Hence 𝑠𝑛 converges to
this same limit.

531



VIII. Analysis I

4. Absolute convergence
4.1. Absolute convergence
Definition. Let 𝑎𝑛 ∈ ℂ. Then if ∑∞

𝑛=1 |𝑎𝑛| converges, then the series is called absolutely
convergent.

Remark. Since |𝑎𝑛| ≥ 0, we can use the previous tests to check for absolute convergence.

Theorem. Let 𝑎𝑛 ∈ ℂ. If this series is absolutely convergent, it is convergent.

Proof. Suppose first that 𝑎𝑛 is a sequence of real numbers. Then let

𝑣𝑛 = {𝑎𝑛 if 𝑎𝑛 ≥ 0
0 if 𝑎𝑛 < 0

; 𝑤𝑛 = {0 if 𝑎𝑛 ≥ 0
−𝑎𝑛 if 𝑎𝑛 < 0

Hence,
𝑣𝑛 =

|𝑎𝑛| + 𝑎𝑛
2 ; 𝑤𝑛 =

|𝑎𝑛| − 𝑎𝑛
2

Clearly, 𝑣𝑛, 𝑤𝑛 ≥ 0, and 𝑎𝑛 = 𝑣𝑛−𝑤𝑛, and |𝑎𝑛| = 𝑣𝑛+𝑤𝑛. If∑|𝑎𝑛| converges, then by com-
parison∑𝑣𝑛 and∑𝑤𝑛 also converge, and hence∑𝑎𝑛 converges. Now, let us consider the
case where 𝑎𝑛 is complex. Then we can write 𝑎𝑛 = 𝑥𝑛+𝑖𝑦𝑛 where 𝑥𝑛, 𝑦𝑛 are real sequences.
Note that |𝑥𝑛|, |𝑦𝑛| ≤ |𝑎𝑛|. So by comparison 𝑥𝑛 and 𝑦𝑛 converge, so 𝑎𝑛 converges.

Here are some examples.

(i) The alternating harmonic series∑ (−1)𝑛

𝑛
is convergent, but not absolutely convergent.

(ii) ∑ 𝑧𝑛

2𝑛
is absolutely convergent when |𝑧| < |2|, because it reduces to a real geometric

series. If |𝑧| ≥ 2, then |𝑎𝑛| ≥ 1, so we do not have absolute convergence.

4.2. Conditional convergence and rearrangement
If the series is convergent but not absolutely convergent, it is called conditionally conver-
gent. The sum to which a series converges depends on the order in which the terms are
added.

Definition. Let 𝜎 be a bijection of the positive integers to itself, then

𝑎′𝑛 = 𝑎𝜎(𝑛)

is a rearrangement of 𝑎𝑛.

Theorem. If∑∞
1 𝑎𝑛 is absolutely convergent, then every rearrangement of this series con-

verges to the same value.
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4. Absolute convergence

Proof. First, let us consider the real case. Let ∑𝑎′𝑛 be a rearrangement of ∑𝑎𝑛. Let 𝑠𝑛 =
∑𝑛

1 𝑎𝑛, and 𝑡𝑛 = ∑𝑛
1 𝑎′𝑛. Let 𝑠𝑛 converge to 𝑠. Suppose first that 𝑎𝑛 ≥ 0. Then given any

𝑛 ∈ ℕ, we can find some 𝑞 ∈ ℕ such that 𝑠𝑞 contains every term of 𝑡𝑛. Since the 𝑎𝑛 ≥ 0,

𝑡𝑛 ≤ 𝑠𝑞 ≤ 𝑠

As 𝑛 → ∞, the 𝑡𝑛 is an increasing sequence bounded above, so it must tend to a limit 𝑡,
where 𝑡 ≤ 𝑠. Note, however, that this argument is symmetric; we can equally derive that
𝑠 ≤ 𝑡. Therefore 𝑠 = 𝑡.
Now, let us drop the condition that 𝑎𝑛 ≥ 0. We can now consider 𝑣𝑛, 𝑤𝑛 from above:

𝑣𝑛 =
|𝑎𝑛| + 𝑎𝑛

2 ; 𝑤𝑛 =
|𝑎𝑛| − 𝑎𝑛

2
Since∑|𝑎𝑛| converges, both∑𝑣𝑛,∑𝑤𝑛 converge. Since all 𝑣𝑛, 𝑤𝑛 ≥ 0, we can deduce that
∑𝑣𝑛 = ∑𝑣′𝑛 and∑𝑤′

𝑛 = ∑𝑤𝑛. The claim follows since 𝑎𝑛 = 𝑣𝑛 − 𝑤𝑛.

For the case 𝑎𝑛 ∈ ℂ, we canwrite 𝑎𝑛 = 𝑥𝑛+𝑖𝑦𝑛, noting that |𝑥𝑛|, |𝑦𝑛| ≥ |𝑎𝑛|. By comparison,
the series∑𝑥𝑛,∑ 𝑦𝑛 are absolutely convergent, and by the previous case,∑𝑥𝑛 = ∑𝑥′𝑛 and
∑𝑦′𝑛 = ∑𝑦′𝑛. Since 𝑎′𝑛 = 𝑥′𝑛 + 𝑦′𝑛,∑𝑎𝑛 = ∑𝑎′𝑛 as required.
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5. Continuity
5.1. Definitions
Let 𝐸 ⊆ ℂ be a non-empty set, and 𝑓∶ 𝐸 → ℂ be any function, and let 𝑎 ∈ 𝐸. Certainly, this
includes the case in which 𝑓 is a real-valued function and 𝐸 ⊆ ℝ.

Definition. 𝑓 is continuous at 𝑎 if for every sequence 𝑧𝑛 ∈ 𝐸 that converges to 𝑎, we have
𝑓(𝑧𝑛) → 𝑓(𝑎).

We can use an alternative definition:

Definition (𝜀-𝛿 definition). 𝑓 is continuous at 𝑎 if given 𝜀 > 0, ∃𝛿 > 0 such that for every
𝑧 ∈ 𝐸, if |𝑧 − 𝑎| < 𝛿, then |𝑓(𝑧) − 𝑓(𝑎)| < 𝜀.

We will immediately prove that both definitions are equivalent. First, let us prove that the
𝜀-𝛿 definition implies the first definition.

Proof. We know that given 𝜀 > 0, ∃𝛿 > 0 such that for all 𝑧 ∈ 𝐸, |𝑧 − 𝑎| < 𝛿 implies
|𝑓(𝑧) − 𝑓(𝑎)| < 𝜀. Let 𝑧𝑛 → 𝑎, then by the definition of the limit of the sequence then there
exists 𝑛0 such that for all 𝑛 ≥ 𝑛0 we have |𝑧𝑛 − 𝑎| < 𝛿. But this implies that |𝑓(𝑧𝑛) − 𝑓(𝑎)| <
𝜀, i.e. 𝑓(𝑧𝑛) → 𝑓(𝑎).

We now prove the converse, that the first definition implies the second.

Proof. We know that for every sequence 𝑧𝑛 ∈ 𝐸 that converges to 𝑎, 𝑓(𝑧𝑛) → 𝑓(𝑎). Suppose
𝑓 is not continuous at 𝑎, according to the 𝜀-𝛿 definition. Then there exists some 𝜀 such that
for all 𝛿 > 0, there exists 𝑧 ∈ 𝐸 such that |𝑧 − 𝑎| < 𝛿 but |𝑓(𝑧) − 𝑓(𝑎)| ≥ 𝜀. So, let us
construct a sequence of 𝛿 values to substitute into this definition. Let 𝛿 = 1/𝑛. Then the
𝑧𝑛 given by this 𝛿 is such that |𝑧𝑛 − 𝑎| < 1/𝑛 and |𝑓(𝑧𝑛) − 𝑓(𝑎)| ≥ 𝜀. Clearly, 𝑧𝑛 → 𝑎, but
𝑓(𝑧𝑛) does not tend to 𝑓(𝑎) because the difference between the two is always greater than 𝜀.
This is a contradiction, since we assumed that 𝑓 is continuous by the first definition. So 𝑓 is
continuous by the 𝜀-𝛿 definition.

5.2. Making continuous functions
We can create new continuous functions from old ones by manipulating them in a number
of ways.

Proposition. Let 𝑔, 𝑓∶ 𝐸 → ℂ be continuous functions at a point 𝑎 ∈ 𝐸. Then all of the
functions

• 𝑓(𝑧) + 𝑔(𝑧)

• 𝑓(𝑧)𝑔(𝑧)

• 𝜆𝑓(𝑧) for some constant 𝜆
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are all continuous. In addition, if 𝑓(𝑧) ≠ 0 everywhere in 𝐸, then 1
𝑓
is a continuous function

at 𝑎.

Proof. Using the first definition, this is obvious using the fact that limits of sequences behave
analogously.

Trivially, the function 𝑓(𝑧) = 𝑧 is continuous. From this, we can derive that every polyno-
mial is continuous at every point in ℂ. Note that we say that 𝑓 is continuous on the entire
set 𝐸 if it is continuous at every point 𝑎 ∈ 𝐸.

5.3. Composition of continuous functions
Theorem. Let 𝑓∶ 𝐴 → ℂ and 𝑔∶ 𝐵 → ℂ where 𝐴, 𝐵 ⊆ ℂ be two functions that can be
composed, i.e. 𝑓(𝐴) ⊆ 𝐵. If 𝑓 is continuous at 𝑎 ∈ 𝐴 and 𝑔 is continuous at 𝑓(𝑎) ∈ 𝐵, then
𝑔 ∘ 𝑓∶ 𝐴 → ℂ is continuous at 𝑎.

Proof. Take any sequence 𝑧𝑛 → 𝑎. By assumption, 𝑓(𝑧𝑛) → 𝑓(𝑎). Now, let us define a new
sequence 𝑤𝑛 = 𝑓(𝑧𝑛). Then 𝑤𝑛 ∈ 𝐵 and 𝑤𝑛 → 𝑓(𝑎). Thus, 𝑔(𝑓(𝑧𝑛)) = 𝑔(𝑤𝑛) → 𝑔(𝑓(𝑎)) by
continuity, as required.

Consider the function 𝑓∶ ℝ → ℝ defined by

𝑓(𝑥) = {
sin ( 1

𝑥
) 𝑥 ≠ 0

0 𝑥 = 0

This is assuming the knowledge of sin(𝑥) being a continuous function ℝ → ℝ, which we
will prove later. So 𝑓(𝑥) is certainly continuous at every point on ℝ excluding 0, since it is
the composition of two continuous functions. We can prove it is discontinuous at 𝑥 = 0 by
providing a sequence, for example

1
𝑥𝑛

= (2𝑛 + 1
2)𝜋

Then 𝑥𝑛 → 0, and 𝑓(𝑥𝑛) = 1. But 𝑓(0) ≠ 1, so it is discontinuous. Let usmodify the example
as follows.

𝑓(𝑥) = {
𝑥 sin ( 1

𝑥
) 𝑥 ≠ 0

0 𝑥 = 0
We can prove that this sequence is continuous at 0. For an arbitrary sequence 𝑥𝑛 → 0, then
|𝑓(𝑥𝑛)| ≤ |𝑥𝑛| because |sin𝑥| ≤ 1. So 𝑓(𝑥𝑛) is bounded by 𝑥𝑛, which tends to zero, so 𝑓(𝑥𝑛)
tends to zero as required. Now for a final example, let

𝑓(𝑥) = {1 𝑥 ∈ ℚ
0 𝑥 ∉ ℚ
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This is discontinuous at every point. If 𝑥 ∈ ℚ, take a sequence 𝑥𝑛 → 𝑥with all 𝑥𝑛 irrational,
then 𝑓(𝑥𝑛) = 0 but 𝑓(𝑥) = 1. Similarly, if 𝑥 ∉ ℚ, take a sequence 𝑥𝑛 → 𝑥with all 𝑥𝑛 rational,
then 𝑓(𝑥𝑛) = 1 but 𝑓(𝑥) = 0.
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6. Limit of a function

6. Limit of a function
6.1. Definition
Let 𝑓∶ 𝐸 ⊆ ℂ → ℂ. Wewould like to definewhat ismeant by lim𝑧→𝑎 𝑓(𝑧), evenwhen 𝑎 ∉ 𝐸.
Further, if we have a set with an isolated point, for example 𝐸 = {0}∪ [1, 2], it does not make
sense to talk about limits tending to 0 since there are no points in 𝐸 close to 0.
Definition. Let 𝐸 ⊆ ℂ, 𝑎 ∈ ℂ. 𝑎 is a limit point of 𝐸 if for any 𝛿 > 0, there exists 𝑧 ∈ 𝐸
such that 0 < |𝑧 − 𝑎| < 𝛿.
First, note that 𝑎 is a limit point if and only if there exists a sequence 𝑧𝑛 ∈ 𝐸 such that
𝑧𝑛 → 𝑎, but notably 𝑧𝑛 ≠ 𝑎 for all 𝑛.
Definition. Let 𝑓∶ 𝐸 ⊆ ℂ → ℂ, and let 𝑎 ∈ ℂ be a limit point of 𝐸. We say that 𝑓 → ℓ
as 𝑧 → 𝑎, if given 𝜀 > 0 there exists 𝛿 > 0 such that whenever 0 < |𝑧 − 𝑎| < 𝛿 and 𝑧 ∈ 𝐸,
|𝑓(𝑧) − ℓ| < 𝜀. Equivalently, 𝑓(𝑧𝑛) → ℓ for every sequence 𝑧𝑛 ∈ 𝐸, such that 𝑧𝑛 → 𝑎 but
𝑧𝑛 ≠ 𝑎.
Therefore if 𝑎 ∈ 𝐸 is a limit point, then lim𝑧→𝑎 𝑓(𝑧) = 𝑓(𝑎) if and only if 𝑓 is continuous at
𝑎. If 𝑎 ∈ 𝐸 is isolated (not a limit point) then 𝑓 at 𝑎 is trivially continuous, since there are
no points near 𝑎 but 𝑎 itself.

6.2. Properties
The limit of a function has very similar properties when compared to the limit of a se-
quence.

(i) It is unique. 𝑓(𝑧) → 𝐴, 𝑓(𝑧) → 𝐵 implies 𝐴 = 𝐵.
(ii) 𝑓(𝑧) → 𝐴, 𝑔(𝑧) → 𝐵 implies

(a) 𝑓(𝑧) + 𝑔(𝑧) → 𝐴 + 𝐵
(b) 𝑓(𝑧) ⋅ 𝑔(𝑧) → 𝐴𝐵

(c) If 𝐵 ≠ 0, 𝑓(𝑧)
𝑔(𝑧)

→ 𝐴
𝐵

6.3. Intermediate value theorem
Theorem. Let 𝑓∶ [𝑎, 𝑏] → ℝ be a continuous function where 𝑓(𝑎) ≠ 𝑓(𝑏). Then 𝑓 takes
all values in the interval [𝑓(𝑎), 𝑓(𝑏)].

Proof. Without loss of generality, let us assume 𝑓(𝑎) < 𝑓(𝑏). Let us take an 𝜂 such that
𝑓(𝑎) < 𝜂 < 𝑓(𝑏). We want to prove that there exists some value 𝑐 ∈ [𝑎, 𝑏]with 𝑓(𝑐) = 𝜂. Let
𝑠 be the set of points defined by

𝑠 = {𝑥 ∈ [𝑎, 𝑏]∶ 𝑓(𝑥) < 𝜂}
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𝑎 ∈ 𝑠 therefore the set 𝑠 is non-empty. The set is also clearly bounded above by 𝑏. So there
is a supremum of this set, say sup 𝑠 = 𝑐 where 𝑐 ≤ 𝑏. This point 𝑐 can be visualised as the
last point at which 𝑦 = 𝑓(𝑥) crosses the line 𝑦 = 𝑐. We intend to show that the function at
this rightmost point is 𝜂.

By the definition of the supremum, given 𝑛 there exists 𝑥𝑛 ∈ 𝑠 such that 𝑐 − 1
𝑛
< 𝑥𝑛 ≤ 𝑐. So

the sequence 𝑥𝑛 tends to 𝑐. We know that 𝑓(𝑥𝑛) < 𝜂 for all 𝑥𝑛 by definition of the set 𝑠. By
the continuity of 𝑓, 𝑓(𝑥𝑛) → 𝑓(𝑐). Thus,

𝑓(𝑐) ≤ 𝜂 (∗)

Now, let us consider the fact that 𝑐 ≠ 𝑏. If 𝑐 = 𝑏, then 𝑓(𝑏) ≤ 𝜂 which is a contradiction
since 𝜂 < 𝑓(𝑏). So for a large 𝑛, we can ensure that 𝑐 + 1

𝑛
∈ [𝑎, 𝑏]. So by continuity of the

function, 𝑓(𝑐 + 1
𝑛
) → 𝑓(𝑐). But since 𝑐 + 1

𝑛
> 𝑐, then necessarily 𝑓(𝑐 + 1

𝑛
) ≥ 𝜂 because 𝑐 is

the supremum of 𝑠. Thus
𝑓(𝑐) ≥ 𝜂

Combining this with (∗) we get 𝑓(𝑐) = 𝜂.

This theorem is very useful for finding zeroes and fixed points. For example, we can prove
the existence of the 𝑁th root of a positive real number 𝑦. Let

𝑓(𝑥) = 𝑥𝑁

Then 𝑓 is certainly continuous on the interval [0, 1 + 𝑦], since

0 = 𝑓(0) < 𝑦 < (1 + 𝑦)𝑁 = 𝑓(1 + 𝑦)

By the intermediate value theorem, there exists a point 𝑐 ∈ (0, 1+𝑦) such that 𝑓(𝑐) = 𝑐𝑁 = 𝑦.
So 𝑐 is a positive 𝑁th root of 𝑦. We can also prove the uniqueness of such a point. Suppose
𝑑𝑁 = 𝑦 with 𝑑 > 0 and 𝑑 ≠ 𝑐. Without loss of generality, suppose 𝑑 < 𝑐. Then 𝑑𝑁 < 𝑐𝑁 so
𝑑𝑁 ≠ 𝑦, which is a contradiction.

6.4. Bounds of a continuous function
Theorem. Let 𝑓∶ [𝑎, 𝑏] → ℝ be continuous. Then the function is bounded, i.e. there exists
𝑘 ∈ ℝ such that |𝑓(𝑥)| ≤ 𝑘 for every point 𝑥 ∈ [𝑎, 𝑏].

Proof. Suppose that such a function 𝑓 is not bounded. Then in particular, given any integer
𝑛 ≥ 1, there exists 𝑥𝑛 ∈ [𝑎, 𝑏] such that |𝑓(𝑥𝑛)| > 𝑛. By the Bolzano–Weierstrass theorem,
the sequence 𝑥𝑛, which is bounded by 𝑎 ≤ 𝑥𝑛 ≤ 𝑏, has a convergent subsequence 𝑥𝑛𝑗 → 𝑥,
such that 𝑥 ∈ [𝑎, 𝑏]. Then by continuity of 𝑓, 𝑓(𝑥𝑛𝑗 ) → 𝑓(𝑥). But ||𝑓(𝑥𝑛𝑗 )|| > 𝑛𝑗 → ∞. This
is a contradiction.

We can actually improve this statement.
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Theorem. Suppose 𝑓∶ [𝑎, 𝑏] → ℝ is a continuous function. Then there exist 𝑥1, 𝑥2 ∈ [𝑎, 𝑏]
such that

𝑓(𝑥1) ≤ 𝑓(𝑥) ≤ 𝑓(𝑥2)

for all 𝑥 ∈ [𝑎, 𝑏]. In other words, a continuous function on a closed bounded interval is
bounded and attains its bounds.

Proof. Let 𝐴 = {𝑓(𝑥)∶ 𝑥 ∈ [𝑎, 𝑏]} be the image of [𝑎, 𝑏] under 𝑓. By the above theorem, 𝐴
is bounded. It is also non-empty, hence it has a supremum𝑀 = sup𝐴 (and analogously an
infimum inf𝐴, whose proof is almost identical). Then by the definition of the supremum,
given an integer 𝑛 ≥ 1 there exists 𝑥𝑛 ∈ [𝑎, 𝑏] such that 𝑀 − 1

𝑛
< 𝑓(𝑥𝑛) ≤ 𝑀. By the

Bolzano–Weierstrass theorem, there exists a convergent subsequence 𝑥𝑛𝑗 → 𝑥 ∈ [𝑎, 𝑏].
Since 𝑓(𝑥𝑛𝑗 ) → 𝑀, then by continuity, 𝑓(𝑥) = 𝑀.

Here is an alternative proof of the same theorem.

Proof. As before, let 𝐴 be the image of 𝑓, and 𝑀 be the supremum of 𝐴. Suppose there is
no 𝑥2 ∈ [𝑎, 𝑏] such that 𝑓(𝑥2) = 𝑀. Then let 𝑔(𝑥) = 1

𝑀−𝑓(𝑥)
for 𝑥 ∈ [𝑎, 𝑏]. Since there

exists no 𝑥 such that 𝑀 = 𝑓(𝑥), 𝑔(𝑥) is continuous since we are never dividing by zero. So
𝑔 is bounded. So by the previous theorem, there is some 𝑘 > 0 such that 𝑔(𝑥) ≤ 𝑘 for all
𝑥 ∈ [𝑎, 𝑏]. This means that 𝑓(𝑥) ≤ 𝑀 − 1

𝑘
on [𝑎, 𝑏] for this 𝑘, but this cannot happen since

𝑀 is the supremum.

Note that these theorems are certainly false if the interval is not closed: consider the counter-
example (0, 1] and the function 𝑥 ↦ 𝑥−1.

6.5. Inverse functions
Definition. 𝑓 is increasing for 𝑥 ∈ [𝑎, 𝑏] if 𝑓(𝑥1) ≤ 𝑓(𝑥2) for all 𝑥1 ≤ 𝑥2 ∈ [𝑎, 𝑏]. If
𝑓(𝑥1) < 𝑓(𝑥2) then the function is strictly increasing. A function may be called decreasing
or strictly decreasing analogously.

Definition. A function 𝑓 is called monotone if it is either increasing or decreasing.

Theorem. Let 𝑓∶ [𝑎, 𝑏] → ℝ be continuous and strictly increasing for 𝑥 ∈ [𝑎, 𝑏]. Let 𝑐 =
𝑓(𝑎), 𝑑 = 𝑓(𝑏). Then 𝑓∶ [𝑎, 𝑏] → [𝑐, 𝑑] is bijective, and the inverse 𝑔 ≔ 𝑓−1∶ [𝑐, 𝑑] → [𝑎, 𝑏]
is continuous and strictly increasing.

A similar theorem holds for strictly decreasing functions.

Proof. Let 𝑐 < 𝑘 < 𝑑. From the intermediate value theorem, there exists ℎ such that 𝑓(ℎ) =
𝑘. This ℎmust be unique since the function is strictly increasing. Thenwe can define 𝑔(𝑘) =
ℎ, giving us an inverse 𝑔∶ [𝑐, 𝑑] → [𝑎, 𝑏] for 𝑓.
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First, note that 𝑔 is strictly increasing. Indeed, for 𝑦1 < 𝑦2 then 𝑦1 = 𝑓(𝑥1), 𝑦2 = 𝑓(𝑥2). This
means that if 𝑥2 ≥ 𝑥1, then since 𝑓 is increasing 𝑦2 ≤ 𝑦1 which is a contradiction.
Now, note that 𝑔 is continuous. Indeed, given 𝜀 > 0, we can let 𝑘1 = 𝑓(ℎ − 𝜀) and 𝑘2 =
𝑓(ℎ + 𝜀). If 𝑓 is strictly increasing, then 𝑘1 < 𝑘 < 𝑘2. Then ℎ − 𝜀 < 𝑔(𝑦) < ℎ + 𝜀. So let
𝛿 = min(𝑘2 − 𝑘, 𝑘 − 𝑘1) where 𝑘 ∈ (𝑐, 𝑑), establishing continuity as claimed.
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7. Differentiability
7.1. Definitions
Let 𝑓∶ 𝐸 ⊆ ℂ → ℂ. Mostly we will take 𝐸 to be an interval in the real numbers, or a disc in
the complex plane.

Definition. Let 𝑥 ∈ 𝐸 be a point such that there exists a sequence 𝑥𝑛 ∈ 𝐸 with 𝑥𝑛 ≠ 𝑥, but
𝑥𝑛 → 𝑥, i.e. 𝑥 is a limit point. 𝑓 is said to be differentiable at 𝑥 with derivative 𝑓′(𝑥) if

lim
𝑦→𝑥

𝑓(𝑦) − 𝑓(𝑥)
𝑦 − 𝑥 = 𝑓′(𝑥)

If 𝑓 is differentiable at each point in 𝐸, we say that 𝑓 is differentiable on 𝐸.
Remark. One interpretation of the definition is to write it in the form

𝜀(ℎ) ≔ 𝑓(𝑥 + ℎ) − 𝑓(𝑥) − ℎ𝑓′(𝑥); lim
ℎ→0

𝜀(ℎ)
ℎ = 0

so 𝜀 is 𝑜(ℎ). Hence,
𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ𝑓′(𝑥) + 𝜀(ℎ)

We could have made an alternative definition for differentiability. 𝑓 is differentiable at 𝑥 if
there exists 𝐴 and 𝜀 such that

𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ𝐴 + 𝜀(ℎ) where lim
ℎ→0

𝜀(ℎ)
ℎ = 0

If such an 𝐴 exists, then it is unique, since 𝐴 is the limit

𝐴 = lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ

We could have alternatively written the definition as

𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ𝑓′(𝑥) + ℎ𝜀𝑓(ℎ) where lim
ℎ→0

𝜀𝑓(ℎ) = 0

or perhaps

𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)𝑓′(𝑎) + (𝑥 − 𝑎)𝜀𝑓(𝑥) where lim
𝑥→𝑎

𝜀𝑓(𝑥) = 0

Note further that if 𝑓 is differentiable at 𝑥, 𝑓 is certainly continuous at 𝑥. This follows from
the fact that 𝜀(ℎ) → 0, and hence 𝑓(𝑥 + ℎ) → 𝑓(𝑥) as ℎ → 0.
As an example, let us consider 𝑓(𝑥) = |𝑥| for 𝑓∶ ℝ → ℝ. Is the function at the point 𝑥 = 0
differentiable? If 𝑥 > 0, we have 𝑓′(𝑥) = 1, but if 𝑥 < 0, we have 𝑓′(𝑥) = −1. These results
can be checked directly using the definitions above. But we have produced two sequences
for ℎ → 0 which give different values, so the derivative is not defined here.
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7.2. Differentiation of sums and products
Proposition. (i) If 𝑓(𝑥) = 𝑐 for all 𝑥 ∈ 𝐸, then 𝑓 is differentiable with 𝑓′(𝑥) = 0.

(ii) If 𝑓 and 𝑔 are differentiable at 𝑥, then so is 𝑓 + 𝑔, where (𝑓 + 𝑔)′(𝑥) = 𝑓′(𝑥) + 𝑔′(𝑥).

(iii) If 𝑓 and 𝑔 are differentiable at 𝑥, then so is 𝑓𝑔, where (𝑓𝑔)′(𝑥) = 𝑓′(𝑥)𝑔(𝑥)+𝑔′(𝑥)𝑓(𝑥).

(iv) If 𝑓 is differentiable at 𝑥 and 𝑓(𝑥) ≠ 0, then so is 1
𝑓
, where ( 1

𝑓
)′(𝑥) = −𝑓′(𝑥)

(𝑓(𝑥))2
.

Proof. (i) limℎ→0
𝑐−𝑐
ℎ

= 0 as required.

(ii) Since all relevant limits are well-defined,

lim
ℎ→0

𝑓(𝑥 + ℎ) + 𝑔(𝑥 + ℎ) − 𝑓(𝑥) − 𝑔(𝑥)
ℎ = lim

ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ +lim

ℎ→0

𝑔(𝑥 + ℎ) − 𝑔(𝑥)
ℎ = 𝑓′(𝑥)+𝑔′(𝑥)

(iii) Let 𝜙(𝑥) = 𝑓(𝑥)𝑔(𝑥). Then, since 𝑓 is continuous at 𝑥,

lim
ℎ→0

𝜙(𝑥 + ℎ) − 𝜙(𝑥)
ℎ = lim

ℎ→0

𝑓(𝑥 + ℎ)𝑔(𝑥 + ℎ) − 𝑓(𝑥)𝑔(𝑥)
ℎ

= lim
ℎ→0

𝑓(𝑥 + ℎ)𝑔(𝑥 + ℎ) − 𝑔(𝑥)
ℎ + 𝑔(𝑥)𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ

= lim
ℎ→0

𝑓(𝑥)𝑔(𝑥 + ℎ) − 𝑔(𝑥)
ℎ + 𝑔(𝑥)𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
= 𝑓(𝑥)𝑔′(𝑥) + 𝑔(𝑥)𝑓′(𝑥)

(iv) Let 𝜙(𝑥) = 1
𝑓(𝑥)

. Then,

lim
ℎ→0

𝜙(𝑥 + ℎ) − 𝜙(𝑥)
ℎ = lim

ℎ→0

1
𝑓(𝑥+ℎ)

− 1
𝑓(𝑥)

ℎ

= lim
ℎ→0

𝑓(𝑥) − 𝑓(𝑥 + ℎ)
ℎ𝑓(𝑥)𝑓(𝑥 + ℎ)

= −𝑓′(𝑥)
𝑓(𝑥)𝑓(𝑥)

Remark. From (iii) and (iv), we can immediately find the quotient rule,

(𝑓(𝑥)𝑔(𝑥) )
′
= 𝑔(𝑥)𝑓′(𝑥) − 𝑓(𝑥)𝑔′(𝑥)

(𝑔(𝑥))2
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7.3. Differentiating polynomial terms
As an example of the differentiability properties we saw last lecture, we can find the derivat-
ive of 𝑓(𝑥) = 𝑥𝑛 for 𝑛 ∈ ℤ, 𝑛 > 0. If 𝑛 = 1, clearly 𝑓′(𝑥) = 1. We can show inductively that
𝑓′(𝑥) = 𝑛𝑥𝑛−1. Indeed,

(𝑥𝑛)′ = 𝑥 ⋅ (𝑥𝑛−1)′ + (𝑥)′ ⋅ 𝑥𝑛−1
= (𝑛 − 1)𝑥𝑛−1 + 𝑥𝑛−1
= 𝑛𝑥𝑛−1

We can now take 𝑓(𝑥) = 𝑥−𝑛. Using the reciprocal law,

𝑓′(𝑥) = −(𝑥𝑛)′
(𝑥𝑛)2

= −𝑛𝑥𝑛−1
𝑥2𝑛

= −𝑛𝑥−𝑛−1

7.4. Chain rule
Theorem. Let 𝑓∶ 𝑈 → ℂ be such that 𝑓(𝑥) ∈ 𝑉 for all 𝑥 ∈ 𝑈 . If 𝑓 is differentiable at
𝑎 ∈ 𝑈 , and 𝑔∶ 𝑉 → ℂ is differentiable at 𝑓(𝑎) ∈ 𝑉 , then 𝑔 ∘ 𝑓 is differentiable at 𝑎 with

𝑔𝑓′(𝑎) = 𝑓′(𝑎)𝑔′(𝑓(𝑎))

Proof. We know that we can write

𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)𝑓′(𝑎) + 𝜀𝑓(𝑥)(𝑥 − 𝑎)
where lim𝑥→𝑎 𝜀𝑓(𝑥) = 0. Further,

𝑔(𝑦) = 𝑔(𝑏) + (𝑦 − 𝑏)𝑔′(𝑏) + 𝜀𝑔(𝑦)(𝑦 − 𝑏)
where lim𝑦→𝑏 𝜀𝑔(𝑦) = 0, and 𝑏 = 𝑓(𝑎). We will set 𝜀𝑓(𝑎) = 0 and 𝜀𝑔(𝑏) = 0, so they
are continuous at 𝑥 = 𝑎 and 𝑦 = 𝑏, so that everything is well-defined when we begin to
compose the functions. Now, 𝑦 = 𝑓(𝑥), so
𝑔(𝑓(𝑥)) = 𝑔(𝑏) + (𝑓(𝑥) − 𝑏)𝑔′(𝑏) + 𝜀𝑔(𝑓(𝑥))(𝑓(𝑥) − 𝑏)

= 𝑔(𝑓(𝑎)) + [(𝑥 − 𝑎)𝑓′(𝑎) + 𝜀𝑓(𝑥)(𝑥 − 𝑎)] [𝑔′(𝑏) + 𝜀𝑔(𝑓(𝑥))]
= 𝑔(𝑓(𝑎)) + (𝑥 − 𝑎)𝑓′(𝑎)𝑔′(𝑏) + (𝑥 − 𝑎) [𝜀𝑓(𝑥)𝑔′(𝑏) + 𝜀𝑔(𝑓(𝑥)) (𝑓′(𝑎) + 𝜀𝑓(𝑥))]⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

𝜎(𝑥)

Now, we just need to show that lim𝑥→𝑎 𝜎(𝑥) = 0 in order to prove the theorem. Clearly
𝜎(𝑥) = 𝜀𝑓(𝑥)⏟

→0
𝑔′(𝑏) + 𝜀𝑔(𝑓(𝑥))⏟⎵⏟⎵⏟

→0

(𝑓′(𝑎) + 𝜀𝑓(𝑥))

Hence 𝜎(𝑥) → 0 as required.
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7.5. Rolle’s theorem
Theorem. Let 𝑓∶ [𝑎, 𝑏] → ℝ be a continuous function on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏).
If 𝑓(𝑎) = 𝑓(𝑏), then there exists 𝑐 ∈ (𝑎, 𝑏) such that 𝑓′(𝑐) = 0.

Proof. Let 𝑀 be the maximum point and 𝑚 be the minimum point of the function. Recall
that in Lecture 8 we proved that any function achieves its bounds. Let 𝑘 = 𝑓(𝑎). If𝑀 = 𝑚 =
𝑘, then 𝑓 must be a constant, and clearly 𝑓′(𝑐) = 0 for every value 𝑐 ∈ (𝑎, 𝑏). Otherwise,
either 𝑀 > 𝑘 or 𝑚 < 𝑘. Suppose 𝑀 > 𝑘 (the proof is very similar if 𝑚 < 𝑘). Then there
exists some value 𝑐 ∈ (𝑎, 𝑏) such that 𝑓(𝑐) = 𝑀. We would like to show that 𝑓′(𝑐) = 0, so
let us suppose that 𝑓′(𝑐) ≠ 0. If 𝑓′(𝑐) > 0, then there are values 𝑑 > 𝑐 where 𝑓(𝑑) > 𝑓(𝑐).
Indeed,

𝑓(ℎ + 𝑐) − 𝑓(𝑐) = ℎ [𝑓′(𝑐) + 𝜀(ℎ)]
For a small, positive ℎ, this value is positive. This contradicts the fact that𝑀 is themaximum.
Similarly, if 𝑓′(𝑐) < 0 there are values 𝑑 < 𝑐 with 𝑓(𝑑) > 𝑓(𝑐). Hence 𝑓′(𝑐) = 0.

7.6. Mean value theorem
We can make a small change to Rolle’s theorem and obtain the mean value theorem.

Theorem. Let 𝑓∶ [𝑎, 𝑏] → ℝ be a continuous function on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏).
Then there exists 𝑐 ∈ (𝑎, 𝑏) such that

𝑓(𝑏) − 𝑓(𝑎) = 𝑓′(𝑐)(𝑏 − 𝑎)

Proof. Let 𝜙 be a function defined by 𝜙(𝑥) = 𝑓(𝑥) − 𝑘𝑥, choosing a 𝑘 such that 𝜙(𝑎) = 𝜙(𝑏).
We can find that

𝑓(𝑏) − 𝑏𝑘 = 𝑓(𝑎) − 𝑎𝑘 ⟹ 𝑘 = 𝑓(𝑏) − 𝑓(𝑎)
𝑏 − 𝑎

By Rolle’s theorem, there exists 𝑐 ∈ (𝑎, 𝑏) such that 𝜙′(𝑐) = 0. Now, note that 𝑓′(𝑥) =
𝜙′(𝑥) + 𝑘, hence there exists 𝑐 such that 𝑓′(𝑐) = 𝑘.

Remark. We will often rewrite the mean value theorem as follows.

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ𝑓′(𝑎 + 𝜃ℎ)

where 𝜃 ∈ (0, 1). Note, however, that 𝜃 is a function of ℎ, so if we begin to shrink ℎ then 𝜃
may change.

7.7. Properties of a function from its derivative
We can deduce certain facts about a function by observing the properties its derivative ex-
hibits. These results are mostly trivial corollaries to the mean value theorem, proven in the
last lecture.
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Corollary. Let 𝑓∶ [𝑎, 𝑏] → ℝ be continuous, and differentiable on (𝑎, 𝑏). Then we have

(i) If 𝑓′(𝑥) > 0 for all 𝑥 ∈ (𝑎, 𝑏), then 𝑓 is strictly increasing on [𝑎, 𝑏];

(ii) If 𝑓′(𝑥) ≥ 0 for all 𝑥 ∈ (𝑎, 𝑏), then 𝑓 is increasing on [𝑎, 𝑏];

(iii) If 𝑓′(𝑥) = 0 for all 𝑥 ∈ (𝑎, 𝑏), then 𝑓 is constant on [𝑎, 𝑏].

Part (iii) of this corollary is essentially solving the most simple differential equation; we are
showing that the only possible solutions to this equation are the constant functions. Note
that similar statements about decreasing functions hold.

Proof. (i) We have 𝑓(𝑦) − 𝑓(𝑥) = 𝑓′(𝑐)(𝑦 − 𝑥) for some 𝑐 ∈ (𝑥, 𝑦). If 𝑓′(𝑐) > 0, then
𝑓(𝑦) − 𝑓(𝑥) > 0.

(ii) Analogously to before, 𝑓(𝑦) − 𝑓(𝑥) = 𝑓′(𝑐)(𝑦 − 𝑥) for some 𝑐 ∈ (𝑥, 𝑦). If 𝑓′(𝑐) ≥ 0,
then 𝑓(𝑦) − 𝑓(𝑥) ≥ 0.

(iii) By the mean value theorem on [𝑎, 𝑥], if 𝑓′(𝑐) = 0, then 𝑓(𝑥) − 𝑓(𝑎) = 0.

7.8. Inverse function theorem

Theorem. Let 𝑓∶ [𝑎, 𝑏] → ℝ be a continuous function on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏),
with 𝑓′(𝑥) > 0 everywhere on (𝑎, 𝑏). Let 𝑓(𝑎) = 𝑐, 𝑓(𝑏) = 𝑑. Then the function 𝑓∶ [𝑎, 𝑏] →
[𝑐, 𝑑] is bijective, and 𝑓−1∶ [𝑐, 𝑑] → [𝑎, 𝑏] is differentiable on (𝑐, 𝑑) with

(𝑓−1)′ (𝑥) = 1
𝑓′ (𝑓−1(𝑥))

Note, in lecture 8 it was proven that a continuous strictly increasing function has a con-
tinuous inverse. This strengthens that claim to include the differentiability property if the
original function was differentiable.

Proof. We know from lecture 8 that there exists 𝑔∶ [𝑐, 𝑑] → [𝑎, 𝑏]which is a strictly increas-
ing continuous function, which is the inverse of𝑓. Wemust now show that 𝑔 is differentiable
and that its derivative has the required form as stated in the claim. Now, let 𝑦 = 𝑓(𝑥). Given
𝑘 ≠ 0, let ℎ be given by

𝑦 + 𝑘 = 𝑓(𝑥 + ℎ)

Alternatively, written in terms of 𝑔,

𝑥 + ℎ = 𝑔(𝑦 + 𝑘)
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So clearly ℎ ≠ 0. Since 𝑔 is continuous, if 𝑘 → 0 then ℎ → 0. Then

𝑔(𝑦 + 𝑘) − 𝑔(𝑦)
𝑘 = 𝑥 + ℎ − 𝑥

𝑓(𝑥 + ℎ) − 𝑦

= ℎ
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

∴ lim
𝑘→0

𝑔(𝑦 + 𝑘) − 𝑔(𝑦)
𝑘 = lim

ℎ→0
ℎ

𝑓(𝑥 + ℎ) − 𝑓(𝑥)
= 1
𝑓′(𝑥)

as required.

7.9. Derivative of rational powers
First, let 𝑔(𝑥) = 𝑥1/𝑞 for some positive integer 𝑞. We can find that 𝑓(𝑥) = 𝑥𝑞 has the deriv-
ative 𝑓′(𝑥) = 𝑞𝑥𝑞−1. By the inverse function theorem, 𝑔′(𝑥) = 1

𝑞
𝑥1/𝑞−1. Now, if 𝑔(𝑥) = 𝑥𝑝/𝑞,

where 𝑝 is an integer and 𝑞 is a positive integer, then by the chain rule 𝑔′(𝑥) = 𝑝
𝑞
𝑥𝑝/𝑞−1

which matches the expected result.

7.10. Mean value theorem applied to limits
Suppose 𝑓, 𝑔∶ [𝑎, 𝑏] → ℝ are continuous, and differentiable on (𝑎, 𝑏). Suppose further that
𝑔(𝑎) ≠ 𝑔(𝑏). The mean value theorem can be applied to both functions, and will give two
points 𝑠, 𝑡 ∈ (𝑎, 𝑏) such that

𝑓(𝑏) − 𝑓(𝑎)
𝑔(𝑏) − 𝑔(𝑎) =

(𝑏 − 𝑎)𝑓′(𝑠)
(𝑏 − 𝑎)𝑔′(𝑡) =

𝑓′(𝑠)
𝑔′(𝑡)

This gives us a way to simplify a limit of the form of the left hand side (as 𝑏 → 𝑎) by instead
considering the right hand side. We can apply Cauchy’s mean value theorem, seen in the
next lecture.

7.11. Cauchy’s mean value theorem
Theorem. If 𝑓, 𝑔∶ [𝑎, 𝑏] → ℝ are continuous, and differentiable on (𝑎, 𝑏), there exists 𝑡 ∈
(𝑎, 𝑏) such that

(𝑓(𝑏) − 𝑓(𝑎))𝑔′(𝑡) = 𝑓′(𝑡)(𝑔(𝑏) − 𝑔(𝑎))

We can recover the normal mean value theorem from Cauchy’s generalisation by taking
𝑔(𝑥) = 𝑥.
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Proof. Let

𝜙(𝑥) =
|
|
|
|

1 1 1
𝑓(𝑎) 𝑓(𝑥) 𝑓(𝑏)
𝑔(𝑎) 𝑔(𝑥) 𝑔(𝑏)

|
|
|
|

Certainly 𝜙(𝑥) is continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏), by using previous results.
Also, 𝜙(𝑎) = 𝜙(𝑏) = 0 by observing the linear dependence of the columns. By Rolle’s the-
orem, there exists 𝑡 ∈ (𝑎, 𝑏) such that 𝜙′(𝑡) = 0. We can expand 𝜙′(𝑡) and this will show the
required result.

𝜙′(𝑥) = 𝑓′(𝑥)𝑔(𝑏)−𝑔′(𝑥)𝑓(𝑏)+𝑓(𝑎)𝑔′(𝑥)−𝑔(𝑎)𝑓′(𝑥) = 𝑓′(𝑥)[𝑔(𝑏)−𝑔(𝑎)]+𝑔′(𝑥)[𝑓(𝑎)−𝑓(𝑏)]

Example (l’Hôpital’s rule). The derivation of l’Hôpital’s rule is on an example sheet, so here
we will consider only a special case of it, using Cauchy’s mean value theorem.

ℓ = lim
𝑥→0

𝑒𝑥 − 1
sin𝑥

We can write
ℓ = lim

𝑥→0
𝑒𝑥 − 𝑒0

sin𝑥 − sin 0 =
𝑒𝑡
cos 𝑡

for some 𝑡 ∈ (0, 𝑥). So as 𝑥 → 0, 𝑡 → 0 and hence

𝑒𝑡
cos 𝑡 → 1
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8. Taylor’s theorem
8.1. Lagrange’s and Cauchy’s remainders
Theorem (Taylor’s Theoremwith Lagrange’s Remainder). Suppose 𝑓 and its derivatives up
to order 𝑛 − 1 are continuous in [𝑎, 𝑎 + ℎ], and 𝑓(𝑛) exists for 𝑥 ∈ (𝑎, 𝑎 + ℎ). Then

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ𝑓′(𝑎) + ℎ2
2! 𝑓

″(𝑎) +⋯ + ℎ𝑛−1
(𝑛 − 1)!𝑓

(𝑛−1)(𝑎) + ℎ𝑛
𝑛! 𝑓

(𝑛)(𝑎 + 𝜃ℎ)

where 𝜃 ∈ (0, 1).

Note that for 𝑛 = 1, this is exactly the mean value theorem, so this can be seen as an 𝑛th
order extension of the mean value theorem. We commonly write 𝑅𝑛 for the final error term
ℎ𝑛

𝑛!
𝑓(𝑛)(𝑎 + 𝜃ℎ). This is known as Lagrange’s form of the remainder.

Proof. For 0 ≤ 𝑡 ≤ ℎ, we define

𝜙(𝑡) = 𝑓(𝑎 + 𝑡) − 𝑓(𝑎) − 𝑡𝑓′(𝑎) −⋯ − 𝑡𝑛−1
(𝑛 − 1)!𝑓

(𝑛−1)(𝑎) − 𝑡𝑛
𝑛!𝐵

where we choose 𝐵 suitably such that 𝜙(ℎ) = 0. (Recall that in the proof of the mean value
theorem, we used 𝑓(𝑥) − 𝑘𝑥 and picked 𝑘 suitably such that this allowed the use of Rolle’s
theorem. This is entirely analogous, but generalised to the 𝑛th derivative). Note that

𝜙(0) = 𝜙′(0) = ⋯ = 𝜙(𝑛−1)(0) = 0

We can use Rolle’s theorem inductively 𝑛 times. Since 𝜙(0) = 𝜙(ℎ) = 0, there is a point
0 < ℎ1 < ℎ such that 𝜙′(ℎ1) = 0. Since 𝜙′(0) = 𝜙′(ℎ1) = 0, there is a point 0 < ℎ2 < ℎ1 such
that 𝜙″(ℎ2) = 0. This continues until we find a point 0 < ℎ𝑛 < ℎ such that 𝜙(𝑛)(ℎ𝑛) = 0.
Hence ℎ𝑛 = 𝜃ℎ for some 0 < 𝜃 < 1. Now, 𝜙(𝑛)(𝑡) = 𝑓(𝑛)(𝑎 + 𝑡) − 𝐵. We can see now that
𝐵 = 𝑓(𝑛)(𝑎 + 𝜃ℎ), which gives the required result.

We can prove an alternative version of Taylor’s theorem with a different error term.

Theorem (Taylor’s Theorem with Cauchy’s Remainder). Suppose (equivalently to before)
𝑓 and its derivatives up to order 𝑛 − 1 are continuous in [𝑎, 𝑎 + ℎ], and 𝑓(𝑛) exists for 𝑥 ∈
(𝑎, 𝑎 + ℎ). Then

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ𝑓′(𝑎) + ℎ2
2! 𝑓

″(𝑎) +⋯ + ℎ𝑛−1
(𝑛 − 1)!𝑓

(𝑛−1)(𝑎) + 𝑅𝑛

where
𝑅𝑛 =

(1 − 𝜃)𝑛−1ℎ𝑛𝑓(𝑛)(𝑎 + 𝜃ℎ)
(𝑛 − 1)!

for 𝜃 ∈ (0, 1).
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Proof. For simplicity, in this proof we let 𝑎 = 0, although the same argument applies when
𝑎 ≠ 0. Let us define

𝐹(𝑡) = 𝑓(ℎ) − 𝑓(𝑡) − (ℎ − 𝑡)𝑓′(𝑡) −⋯ − (ℎ − 𝑡)𝑛−1𝑓(𝑛−1)(𝑡)
(𝑛 − 1)!

for 𝑡 ∈ [0, ℎ]. Then

𝐹′(𝑡) = −𝑓′(𝑡) + 𝑓′(𝑡) − (ℎ − 𝑡)𝑓″(𝑡) + (ℎ − 𝑡)𝑓″(𝑡) − 1
2(ℎ − 𝑡)2𝑓‴(𝑡) + 1

2(ℎ − 𝑡)2𝑓‴(𝑡)

−⋯ − (ℎ − 𝑡)𝑛−1
(𝑛 − 1)! 𝑓

(𝑛)(𝑡)

= −(ℎ − 𝑡)𝑛−1
(𝑛 − 1)! 𝑓

(𝑛)(𝑡)

Let

𝜙(𝑡) = 𝐹(𝑡) − [ℎ − 𝑡
ℎ ]

𝑝
𝐹(0)

where 𝑝 ∈ ℕ and 1 ≤ 𝑝 ≤ 𝑛. Then

𝜙(0) = 𝜙(ℎ) = 0

By Rolle’s theorem, there exists 𝜃 ∈ (0, 1) such that

𝜙′(𝜃ℎ) = 0

We can compute 𝜙′ to find

𝜙′(𝜃ℎ) = 𝐹′(𝜃ℎ) + 𝑝(1 − 𝜃)𝑝−1
ℎ 𝐹(0) = 0

Substituting everything back into 𝐹 gives

0 = −ℎ𝑛−1(1 − 𝜃)𝑛−1
(𝑛 − 1)! 𝑓(𝑛)(𝜃ℎ)+ 𝑝(1 − 𝜃)𝑝−1

ℎ [𝑓(ℎ) − 𝑓(0) − ℎ′(0) −⋯ − ℎ𝑛−1
(𝑛 − 1)!𝑓

(𝑛−1)(0)]

Hence

𝑓(ℎ) = 𝑓(0) + ℎ𝑓′(0) + ℎ2
2! 𝑓

″(0) +⋯ + ℎ𝑛−1
(𝑛 − 1)!𝑓

(𝑛−1)(0) + ℎ𝑛(1 − 𝜃)𝑛−1𝑓(𝑛)(𝜃ℎ)
(𝑛 − 1)! ⋅ 𝑝(1 − 𝜃)𝑝−1⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

𝑅𝑛

By letting 𝑝 = 𝑛, we get Lagrange’s remainder. If 𝑝 = 1, we get Cauchy’s remainder.
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8.2. Bounding error terms
Recall that Lagrange’s remainder is

𝑅𝑛 =
ℎ𝑛
𝑛! 𝑓

(𝑛)(𝑎 + 𝜃ℎ)

and Cauchy’s remainder is

𝑅𝑛 =
(1 − 𝜃)𝑛−1ℎ𝑛𝑓(𝑛)(𝑎 + 𝜃ℎ)

(𝑛 − 1)!

and that we can write
𝑓(ℎ) = 𝑃𝑛−1(ℎ) + 𝑅𝑛

where 𝑃𝑛−1 is the Taylor polynomial to (𝑛 − 1)th order. To get a Taylor series for a function
𝑓, we need to prove that the 𝑅𝑛 tend to zero as 𝑛 → ∞. In general, this requires estimates
for the 𝑅𝑛 and it could take a lot of effort to prove whether this limit is zero or not. Note also
that the theorems deducing the remainder terms work equally well in an interval [𝑎 + ℎ, 𝑎]
where ℎ < 0.

8.3. Binomial series
Proposition. Let

𝑓(𝑥) = (1 + 𝑥)𝑟

for some 𝑟 ∈ ℚ. If |𝑥| < 1, then

𝑓(𝑥) = 1 + (𝑟1)𝑥 +⋯+ (𝑟𝑛)𝑥
𝑛 +…

where
(𝑟𝑛) =

𝑟(𝑟 − 1)⋯ (𝑟 − 𝑛 + 1)
𝑛!

Proof. Clearly,
𝑓(𝑛)(𝑥) = 𝑟(𝑟 − 1)⋯ (𝑟 − 𝑛 + 1)(1 + 𝑥)𝑟−𝑛

These coefficients correspond exactly with that of the Taylor polynomial. If 𝑟 ∈ ℕ, then
𝑓(𝑟+1)(𝑥) ≡ 0, so clearly the 𝑅𝑛 are zero as 𝑛 → ∞. In general, using Lagrange’s form of the
remainder,

𝑅𝑛 =
𝑥𝑛
𝑛! 𝑓

(𝑛)(𝜃𝑥) = (𝑟𝑛)
𝑥𝑛

(1 + 𝜃𝑥)𝑛−𝑟

Note that in principle, 𝜃 depends both on 𝑥 and 𝑛. For 0 < 𝑥 < 1, (1 + 𝜃𝑥)𝑛−𝑟 > 1 for 𝑛 > 𝑟.
Now observe that the series given by

∑(𝑟𝑛)𝑥
𝑛
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is absolutely convergent for |𝑥| < 1. Indeed, we can apply the ratio test and find that

|||
𝑎𝑛+1
𝑎𝑛

||| =
|||
(𝑟 − 𝑛)𝑥
𝑛 + 1

|||

which tends to |𝑥| as 𝑛 → ∞. In particular therefore, the terms (𝑟
𝑛
)𝑥𝑛 tend to zero for |𝑥| < 1.

Hence for 𝑛 > 𝑟 and 0 < 𝑥 < 1, we have

|𝑅𝑛| ≤
|||(
𝑟
𝑛)𝑥

𝑛||| → 0

So the claim is proven in the range 0 ≤ 𝑥 < 1. If 𝑥 < 0, then the step when we compare
(1 + 𝜃𝑥)𝑛−𝑟 with 1 breaks down. Let us instead use the Cauchy form of the remainder to
bypass this step.

𝑅𝑛 =
(1 − 𝜃)𝑛−1𝑥𝑛𝑓(𝑛)(𝜃𝑥)

(𝑛 − 1)! = (1 − 𝜃)𝑛−1𝑟(𝑟 − 1)⋯ (𝑟 − 𝑛 + 1)(1 + 𝜃𝑥)𝑟−𝑛𝑥𝑛
(𝑛 − 1)!

By regrouping terms, we get

𝑅𝑛 =
𝑟(𝑟 − 1)⋯ (𝑟 − 𝑛 + 1)

(𝑛 − 1)! ⋅ (1 − 𝜃)𝑛−1
(1 + 𝜃𝑥)𝑛−𝑟𝑥

𝑛 = 𝑟(𝑟 − 1
𝑛 − 1)𝑥

𝑛(1 + 𝜃𝑥)𝑟−1
⎛
⎜⎜
⎝

1 − 𝜃
1 + 𝜃𝑥⏟⎵⏟⎵⏟

<1

⎞
⎟⎟
⎠

𝑛−1

Hence
|𝑅𝑛| ≤

|||𝑟(
𝑟 − 1
𝑛 − 1)𝑥

𝑛|||(1 + 𝜃𝑥)𝑟−1

This will then tend to zero, after a bit more effort; we can bound the (1 + 𝜃𝑥)𝑟−1 term by the
maximum of 1 and (1+𝑥)𝑟−1, which is independent of 𝑛, and then the result will follow.
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9. Power series
9.1. Complex differentiation
The complex derivative and the real derivative have the same core properties, for instance
linearity, the product rule and the chain rule. However, the complex derivative is signific-
antly more restrictive than the real derivative, since we can approach a point in any number
of directions. If we can find a function that is complex differentiable with this restriction,
we actually get a whole array of features for free. As an example of this restriction, consider
the function 𝑓(𝑧) = 𝑧. This function is actually nowhere differentiable. If it were differenti-
able, then any sequence tending to 𝑧 would yield the same limit when substituted into the
definition of the derivative. Consider first the sequence

𝑧𝑛 = 𝑧 + 1
𝑛 → 𝑧

Then
𝑓(𝑧𝑛) − 𝑓(𝑧)

𝑧𝑛 − 𝑧 =
𝑧 + 1

𝑛
− 𝑧

𝑧 + 1
𝑛
− 𝑧

= 1

Now consider the sequence
𝑧𝑛 = 𝑧 + 𝑖

𝑛 → 𝑧

Then
𝑓(𝑧𝑛) − 𝑓(𝑧)

𝑧𝑛 − 𝑧 =
𝑧 − 𝑖

𝑛
− 𝑧

𝑧 + 𝑖
𝑛
− 𝑧

= −1

Hence 𝑓(𝑧) is nowhere differentiable. On the other hand, the real function 𝑓(𝑥, 𝑦) = (𝑥, −𝑦)
is clearly real differentiable, since it is linear; but in the complex world the function 𝑧 ↦ 𝑧
is not linear.

9.2. Definition of power series
A power series is a series of the form

∞
∑
𝑛=0

𝑎𝑛𝑧𝑛

where 𝑧 ∈ ℂ, and the 𝑎𝑛 is a given sequence of complex numbers. We can also take a power
series of the form

∞
∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛

but for simplicity we will take 𝑧0 = 0 in all of the analysis we will conduct on power
series.
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9.3. Radius of convergence
Lemma. If the series

∞
∑
𝑛=0

𝑎𝑛𝑧𝑛1

converges for some point 𝑧1, and |𝑧| < |𝑧1|, then the series
∞
∑
𝑛=0

𝑎𝑛𝑧𝑛

also converges absolutely.

Proof. Since∑∞
𝑛=0 𝑎𝑛𝑧𝑛1 converges, 𝑎𝑛𝑧𝑛1 → 0. Thus the sequence 𝑎𝑛𝑧𝑛1 is bounded by some

𝑘 > 0, i.e. for all 𝑛, |𝑎𝑛𝑧𝑛1 | < 𝑘. Then

|𝑎𝑛𝑧𝑛| ≤ 𝑘|||
𝑧
𝑧1
|||
𝑛

Since the geometric series∑∞
0
|||
𝑧
𝑧1
|||
𝑛
converges, the lemma follows by comparison.

Using this lemma, we can find that there exists a radius inside which any given power series
converges absolutely. This radius might be zero, and it might be infinite.

Theorem. Any power series either

(i) converges absolutely for all 𝑧, or
(ii) converges absolutely for all 𝑧 where |𝑧| < 𝑅 and diverges for all 𝑧 where |𝑧| > 𝑅, or
(iii) converges for 𝑧 = 0 only.
The circle |𝑧| = 𝑅 is called the circle of convergence, and 𝑅 is called the radius of conver-
gence. Note that this theorem does not make any claim about the behaviour on the circle of
convergence, just the behaviour inside it.

Proof. Let

𝑆 = {𝑥 ∈ ℝ∶ 𝑥 ≥ 0,
∞
∑
0
𝑎𝑛𝑥𝑛 converges}

Clearly, 0 ∈ 𝑆. By the above lemma, if 𝑥1 ∈ 𝑆, then [0, 𝑥1] ⊆ 𝑆. If 𝑆 = [0,∞), then we have
case (i) above due to the lemma.

If 𝑆 ≠ [0,∞), there exists a supremum 0 ≤ 𝑅 = sup 𝑆 < ∞.

We must now just deal with case (ii), which is 𝑅 > 0. For all 𝑧1 with |𝑧1| < 𝑅 there exists
𝑅0 such that |𝑧1| < 𝑅0 < 𝑅, and absolute convergence follows using the lemma. If |𝑧1| > 𝑅,
there exists 𝑅0 such that |𝑧1| > 𝑅0 > 𝑅. If the series with 𝑧1 converges, then by the lemma
the same would be true for 𝑅0. But 𝑅0 does not converge, so this is a contradiction.
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Lemma. If
|||
𝑎𝑛+1
𝑎𝑛

||| → ℓ

as 𝑛 → ∞, then 𝑅 = 1
ℓ
.

Proof. By the ratio test, we have absolute convergence if

|||
𝑎𝑛+1
𝑎𝑛

𝑧𝑛+1
𝑧𝑛

||| < 1

So we have absolute convergence if |𝑧| < 1
ℓ
and divergence if |𝑧| > 1

ℓ
as required.

Lemma. If
||𝑎1/𝑛𝑛 || → ℓ

as 𝑛 → ∞, then 𝑅 = 1
ℓ
.

This can be shown similarly using the root test.

Example. (i) Consider the series∑∞
0

𝑧𝑛

𝑛!
. Using the ratio test, the series converges abso-

lutely everywhere.

(ii) The geometric series ∑∞
0 𝑧𝑛 gives 𝑅 = 1 by the ratio test. In this case, |𝑧| = 1 gives

divergence.

(iii) The series∑∞
0 𝑛!𝑧𝑛 has 𝑅 = 0, which again can be seen using the ratio test.

(iv) Consider∑∞
1

𝑧𝑛

𝑛
. This also has 𝑅 = 1 by the ratio test. Note that the series diverges

for 𝑧 = 1 since we get the harmonic series. However, it converges when 𝑧 = −1 by
the alternating series test. To work out the behaviour at other points on the circle
of convergence, we could consider the series∑∞

1
𝑧𝑛

𝑛
(1 − 𝑧), which converges exactly

when the original series does. The partial sums are

𝑆𝑁 =
𝑁
∑
1
[𝑧𝑛 − 𝑧𝑛+1

𝑛 ]

=
𝑁
∑
1

𝑧𝑛
𝑛 −

𝑁
∑
1

𝑧𝑛+1
𝑛

=
𝑁
∑
1

𝑧𝑛
𝑛 −

𝑁+1
∑
2

𝑧𝑛
𝑛 − 1

= 𝑧 − 𝑧𝑁+1

𝑁 + 1 +
𝑁+1
∑
2

−𝑧𝑛
𝑛(𝑛 − 1)
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If |𝑧| = 1, then the term 𝑧𝑁+1

𝑁+1
will vanish as 𝑁 → ∞. If 𝑧 ≠ 1, the term∑𝑁+1

2
−𝑧𝑛

𝑛(𝑛−1)
converges as 𝑁 → ∞. So 𝑆𝑁 does indeed converge for |𝑧| = 1, 𝑧 ≠ 1.

(v) Now, consider∑∞
1

𝑧𝑛

𝑛2
. This has 𝑅 = 1 by the ratio test, but it converges for all 𝑧 with

|𝑧| = 1.
(vi) If we have∑∞

0 𝑛𝑧𝑛, we have 𝑅 = 1, but diverges for all |𝑧| = 1.
In conclusion, we cannot determine the behaviour at the boundary in the general case. In-
side the radius of convergence, power series will behave as if they were simply polynomials.

9.4. Infinite differentiability
Theorem. Let 𝑓(𝑧) = ∑∞

0 𝑎𝑛𝑧𝑛 have a radius of convergence 𝑅. Then 𝑓 is complex differ-
entiable at all points with |𝑧| < 𝑅, with

𝑓′(𝑧) =
∞
∑
1
𝑛𝑎𝑛𝑧𝑛−1

with the same radius of convergence as the original series.

This proof comprises the entire subsection. This whole subsection is non-examinable, but
included for completeness. First, we will state two lemmas.

Lemma. If∑∞
0 𝑎𝑛𝑧𝑛 has radius of convergence 𝑅, then both series

∞
∑
1
𝑛𝑎𝑛𝑧𝑛−1

and
∞
∑
2
𝑛(𝑛 − 1)𝑎𝑛𝑧𝑛−2

also have radius of convergence 𝑅.

Proof. Let𝑅0 be such that 0 < |𝑧| < 𝑅0 < 𝑅. Since 𝑎0𝑅𝑛0 → 0, the sequence 𝑎0𝑅𝑛0 is bounded.
In other words there exists a 𝑘 such that |𝑎𝑛𝑅𝑛0 | ≤ 𝑘 for all 𝑛 ≥ 0. Thus,

||𝑎𝑛𝑛𝑧𝑛−1|| =
𝑛
|𝑧| |𝑎𝑛𝑅

𝑛
0 |
|||
𝑧
𝑅0
|||
𝑛
≤ 𝑘𝑛
|𝑧|
|||
𝑧
𝑅0
|||
𝑛

But
∑𝑛|||

𝑧
𝑅0
|||
𝑛

converges by the ratio test, since the ratio is

𝑛 + 1
𝑛

|||
𝑧
𝑅0
|||
𝑛+1|||

𝑅0
𝑧
|||
𝑛
= 𝑛 + 1

𝑛
|||
𝑧
𝑅0
||| →

|||
𝑧
𝑅0
||| < 1
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Hence, the original series∑∞
1 𝑛𝑎𝑛𝑧𝑛−1 is absolutely bounded above by a convergent series,

and therefore is absolutely convergent. So it is known that the radius of convergence of this
derivative series is at least 𝑅. Now, if |𝑧| > 𝑅, the series diverges since |𝑎𝑛𝑧𝑛| is unbounded,
and hence |𝑛𝑎𝑛𝑧𝑛| is also unbounded. The same proof applies to the series for the second
derivative.

We will need this ‘second derivative’ condition in order to talk about the remainder term
after the first derivative, which is related to the second derivative.

Lemma. First, for all 2 ≤ 𝑟 ≤ 𝑛.

(𝑛𝑟) ≤ 𝑛(𝑛 − 1)(𝑛 − 2
𝑟 − 2)

Further, for all 𝑧 ∈ ℂ, ℎ ∈ ℂ,
||(𝑧 + ℎ)𝑛 − 𝑧𝑛 − 𝑛ℎ𝑧𝑛−1|| ≤ 𝑛(𝑛 − 1)(|𝑧| + |ℎ|)𝑛−2|ℎ|2

Proof. For the first part, we can expand the definitions to get

(𝑛
𝑟
)

(𝑛−2
𝑟−2

)
= 𝑛(𝑛 − 1)

𝑟(𝑟 − 1) ≤ 𝑛(𝑛 − 1)

as required. For the second part, we can apply the binomial expansion to cancel the other
two terms, and we get

(𝑧 + ℎ)𝑛 − 𝑧𝑛 − 𝑛ℎ𝑧𝑛−1 = (
𝑛
∑
𝑟=0

(𝑛𝑟)𝑧
𝑛−𝑟ℎ𝑟) − 𝑧𝑛 − 𝑛ℎ𝑧𝑛−1

=
𝑛
∑
𝑟=2

(𝑛𝑟)𝑧
𝑛−𝑟ℎ𝑟

∴ ||(𝑧 + ℎ)𝑛 − 𝑧𝑛 − 𝑛ℎ𝑧𝑛−1|| =
||||

𝑛
∑
𝑟=2

(𝑛𝑟)𝑧
𝑛−𝑟ℎ𝑟

||||

≤
𝑛
∑
𝑟=2

|||(
𝑛
𝑟)𝑧

𝑛−𝑟ℎ𝑟|||

=
𝑛
∑
𝑟=2

(𝑛𝑟)|𝑧|
𝑛−𝑟|ℎ|𝑟

≤ 𝑛(𝑛 − 1) [
𝑛
∑
𝑟=2

(𝑛 − 2
𝑟 − 2)|𝑧|

𝑛−𝑟|ℎ|𝑟−2]
⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟

(|𝑧|+|ℎ|)𝑛−2

|ℎ|2

= 𝑛(𝑛 − 1)(|𝑧| + |ℎ|)𝑛−2|ℎ|2

as required.
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Now, we can prove the original theorem.

Proof. By the first lemma, we may define 𝑓′(𝑧) to be

𝑓′(𝑧) =
∞
∑
1
𝑛𝑎𝑛𝑧𝑛−1

We now just need to prove that

lim
ℎ→0

𝐼 = 0; 𝐼 = 𝑓(𝑧 + ℎ) − 𝑓(𝑧) − ℎ𝑓′(𝑧)
ℎ

We can substitute the expressions we have found for each power series:

𝐼 =
∑∞

0 𝑎𝑛(𝑧 + ℎ)𝑛 −∑∞
0 𝑎𝑛𝑧𝑛 − ℎ∑∞

1 𝑛𝑎𝑛𝑧𝑛−1
ℎ

= 1
ℎ

∞
∑
0
[𝑎𝑛(𝑧 + ℎ)𝑛 − 𝑎𝑛𝑧𝑛 − ℎ𝑛𝑎𝑛𝑧𝑛−1]

= 1
ℎ

∞
∑
0
𝑎𝑛 [(𝑧 + ℎ)𝑛 − 𝑧𝑛 − ℎ𝑛𝑧𝑛−1]

|𝐼| = 1
|ℎ|

||||
lim
𝑁→∞

𝑁
∑
0
𝑎𝑛 [(𝑧 + ℎ)𝑛 − 𝑧𝑛 − ℎ𝑛𝑧𝑛−1]

||||

Since the modulus function is continuous,

|𝐼| = 1
|ℎ| lim𝑁→∞

||||

𝑁
∑
0
𝑎𝑛 [(𝑧 + ℎ)𝑛 − 𝑧𝑛 − ℎ𝑛𝑧𝑛−1]

||||

≤ 1
|ℎ| lim𝑁→∞

𝑁
∑
0
||𝑎𝑛 [(𝑧 + ℎ)𝑛 − 𝑧𝑛 − ℎ𝑛𝑧𝑛−1]||

= 1
|ℎ|

∞
∑
0
|𝑎𝑛| ⋅ ||(𝑧 + ℎ)𝑛 − 𝑧𝑛 − ℎ𝑛𝑧𝑛−1||

By the second part of the second lemma above,

|𝐼| ≤ 1
|ℎ|

∞
∑
0
|𝑎𝑛| ⋅ 𝑛(𝑛 − 1)(|𝑧| + |ℎ|)𝑛−2|ℎ|2

= |ℎ|
∞
∑
0
|𝑎𝑛| ⋅ 𝑛(𝑛 − 1)(|𝑧| + |ℎ|)𝑛−2
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For |ℎ| small enough, (|𝑧| + |ℎ|) < 𝑅. Therefore, by the first lemma above,

∞
∑
0
|𝑎𝑛| ⋅ 𝑛(𝑛 − 1)(|𝑧| + |ℎ|)𝑛−2

converges to some 𝐴(ℎ). But 𝐴(ℎ) is monotonically decreasing, so

|𝐼| ≤ |ℎ|𝐴(ℎ) ≤ |ℎ|𝐴(𝑟)

for some 𝑟 such that |𝑧| + 𝑟 < 𝑅. We can now let ℎ → 0, giving

|𝐼| → 0

as required.

9.5. Defining standard functions

We can now use this differentiability property to cleanly define the standard exponential,
logarithmic and trigonometric functions. Let 𝑒∶ ℂ → ℂ be defined by

𝑒(𝑧) =
∞
∑
0

𝑧𝑛
𝑛!

We have already seen that it has infinite radius of convergence. Straight from the above
theorem, 𝑒 is infinitely differentiable everywhere, and it is its own derivative. Note that if
a function 𝐹 ∶ ℂ → ℂ has 𝐹′(𝑧) = 0 for all 𝑧 ∈ ℂ, then 𝐹 is constant. Indeed, consider
𝑔(𝑡) = 𝐹(𝑡𝑧) = 𝑢(𝑡) + 𝑖𝑣(𝑡) where 𝑡, 𝑢, 𝑣 ∈ ℝ. Then by the chain rule, 𝑔′(𝑡) = 𝐹′(𝑡𝑧)𝑧 = 0
and hence 𝑢′(𝑡) + 𝑖𝑣′(𝑡) = 0, giving 𝑢′(𝑡) = 0 and 𝑣′(𝑡) = 0 everywhere. We can now apply
the real-valued case, showing that 𝑢 and 𝑣 (and hence 𝐹) are constant everywhere. Now, let
𝑎, 𝑏 ∈ ℂ, and consider

𝐹(𝑧) = 𝑒(𝑎 + 𝑏 − 𝑧)𝑒(𝑧)

Then
𝐹′(𝑧) = −𝑒(𝑎 + 𝑏 − 𝑧)𝑒(𝑧) + 𝑒(𝑎 + 𝑏 − 𝑧)𝑒(𝑧) = 0

Hence 𝑒(𝑎 + 𝑏 − 𝑧)𝑒(𝑧) is constant for all 𝑧, hence

𝑒(𝑎 + 𝑏 − 𝑧)𝑒(𝑧) = 𝑒(𝑎 + 𝑏 − 0)𝑒(0) = 𝑒(𝑎 + 𝑏)

Since 𝑧 is arbitrary, we can set 𝑧 = 𝑏 to recover the familiar relation

𝑒(𝑎 + 𝑏 − 𝑏)𝑒(𝑏) = 𝑒(𝑎 + 𝑏) ⟹ 𝑒(𝑎)𝑒(𝑏) = 𝑒(𝑎 + 𝑏)
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9.6. Exponential and logarithmic functions
Last lecture, we covered the power series form of the exponential function 𝑒∶ ℂ → ℂ. Note
that if we input a real number, the output is also real. Hence, 𝑒∶ ℝ → ℝ. This restricted
definition of the function has the following properties.

Theorem. (i) 𝑒∶ ℝ → ℝ is everywhere differentiable, and 𝑒′(𝑥) = 𝑒(𝑥).
(ii) 𝑒(𝑥 + 𝑦) = 𝑒(𝑥)𝑒(𝑦).
(iii) 𝑒(𝑥) > 0.
(iv) 𝑒 is strictly increasing.
(v) 𝑒(𝑥) → ∞ as 𝑥 → ∞, and 𝑒(𝑥) → 0 as 𝑥 → −∞.

(vi) 𝑒∶ ℝ → (0,∞) is a bijection.

Proof. The first two properties follow from the last lecture.

(iii) Clearly, 𝑒(𝑥) > 0 for all 𝑥 ≥ 0 by considering the power series, which contains only
positive terms for 𝑥 > 0, and also 𝑒(0) = 1. Also, 𝑒(0) = 𝑒(𝑥 − 𝑥) = 𝑒(𝑥)𝑒(−𝑥), hence
for all negative 𝑥, 𝑒(𝑥) > 0.

(iv) Since 𝑒′(𝑥) = 𝑒(𝑥), 𝑒′(𝑥) = 𝑒(𝑥) > 0 everywhere.
(v) By considering partial sums, if 𝑥 > 0 we have 𝑒(𝑥) > 1 + 𝑥, so if 𝑥 → ∞, 𝑒(𝑥) → ∞.

When 𝑥 → −∞, 𝑒(𝑥) = 1
𝑒(𝑥)

→ 0.

(vi) Injectivity follows from being strictly increasing. For surjectivity, we need to show
that given any 𝑦 ∈ (0,∞) there exists some 𝑥 such that 𝑒(𝑥) = 𝑦. Due to property (v)
above, we can certainly find real numbers 𝑎 and 𝑏 such that 𝑒(𝑎) < 𝑦 < 𝑒(𝑏). By the
intermediate value theorem, there exists 𝑥 ∈ ℝ such that 𝑒(𝑥) = 𝑦.

Remark. We have essentially proven that 𝑒∶ (ℝ,+) → ((0,∞), ×) is a group isomorphism.
This is exactly the same as showing that it is a bijection. Since 𝑒 is a function, there exists an
inverse function ℓ∶ ((0,∞), ×) → (ℝ,+).
Theorem. (i) ℓ∶ (0,∞) → ℝ is a bijection, and ℓ(𝑒(𝑥)) = 𝑥 for all 𝑥 ∈ ℝ, and 𝑒(ℓ(𝑥)) =

𝑥 for all 𝑥 ∈ (0,∞).

(ii) ℓ is differentiable and its derivative is ℓ′(𝑡) = 1
𝑡
.

(iii) ℓ(𝑥𝑦) = ℓ(𝑥) + ℓ(𝑦).

Proof. (i) This first property is obvious from the definition.

(ii) By the inverse function theorem, ℓ is differentiable everywhere and ℓ′(𝑡) = 1
𝑡
as re-

quired.
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(iii) From IA Groups, if 𝑒 is an isomorphism, so is its inverse.

9.7. Real numbered exponents
We will now define for 𝛼 ∈ ℝ and 𝑥 > 0 the function

𝑟𝛼(𝑥) = 𝑒(𝛼ℓ(𝑥))

This can be taken as the definition of 𝑥 raised to the power 𝛼.

Theorem. Suppose 𝑥, 𝑦 > 0 and 𝛼, 𝛽 ∈ ℝ. Then

(i) 𝑟𝛼(𝑥𝑦) = 𝑟𝛼(𝑥)𝑟𝛼(𝑦)

(ii) 𝑟𝛼+𝛽(𝑥) = 𝑟𝛼(𝑥)𝑟𝛽(𝑥)

(iii) 𝑟𝛼(𝑟𝛽(𝑥)) = 𝑟𝛼𝛽(𝑥)

(iv) 𝑟1(𝑥) = 𝑥, and 𝑟0(𝑥) = 1

Proof. (i) 𝑟𝛼(𝑥𝑦) = 𝑒(𝛼ℓ(𝑥𝑦)) = 𝑒(𝛼ℓ(𝑥) + 𝛼ℓ(𝑦)) = 𝑒(𝛼ℓ(𝑥))𝑒(𝛼ℓ(𝑦)) = 𝑟𝛼(𝑥)𝑟𝛼(𝑦)

(ii) 𝑟𝛼+𝛽(𝑥) = 𝑒((𝛼 + 𝛽)ℓ(𝑥)) = 𝑒(𝛼ℓ(𝑥) + 𝛽ℓ(𝑥)) = 𝑒(𝛼ℓ(𝑥))𝑒(𝛽ℓ(𝑥)) = 𝑟𝛼(𝑥)𝑟𝛽(𝑥)

(iii) 𝑟𝛼(𝑟𝛽(𝑥)) = 𝑒(𝛼ℓ[𝑒(𝛽ℓ(𝑥))]) = 𝑒(𝛼𝛽ℓ(𝑥)) = 𝑟𝛼𝛽(𝑥)

(iv) 𝑟1(𝑥) = 𝑒(ℓ(𝑥)) = 𝑥, and 𝑟0(𝑥) = 𝑒(0ℓ(𝑥)) = 𝑒(0) = 1

Suppose we want to compute 𝑟𝑛(𝑥), where 𝑛 ∈ ℤ. Then 𝑟𝑛(𝑥) = 𝑟1+⋯+1(𝑥) = 𝑥⋯𝑥,
so we have agreement between 𝑟𝑛(𝑥) and our previous definition of 𝑥𝑛. Similarly, since

𝑟1(𝑥)𝑟−1(𝑥) = 1, we have 𝑟−1(𝑥) =
1
𝑥
. Further, 𝑟 1

𝑞
(𝑥) = 𝑥

1
𝑞 . Therefore, 𝑟𝑝

𝑞
(𝑥) = 𝑥

𝑝
𝑞 . So this

definition is simply a more general definition for exponentiation by a real number.

From now, we will let exp(𝑥) ≡ 𝑒(𝑥), log(𝑥) ≡ ℓ(𝑥), and 𝑥𝛼 ≡ 𝑟𝛼(𝑥). In fact, exp(𝑥) = 𝑒𝑥 for
a suitable number 𝑒, since 𝑒(𝑥) = 𝑒(𝑥 log(𝑒)) = 𝑟𝑥(𝑒) = 𝑒𝑥 where 𝑒 ≔ 𝑒(1) = ∑∞

0
1
𝑛!
.

Finally, we can compute the derivative of 𝑥𝛼 using the chain rule.

(𝑥𝛼)′ = (𝑒𝛼 log𝑥)′ = 𝑒𝛼 log𝑥𝛼1𝑥 = 𝛼𝑥𝛼𝑥−1 = 𝛼𝑥𝛼−1

as expected. Further, if 𝑓(𝑥) = 𝑎𝑥, we can find

𝑓′(𝑥) = (𝑒𝑥 log𝑎)′ = 𝑒𝑥 log𝑎 log 𝑎 = 𝑎𝑥 log 𝑎
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9.8. Trigonometric functions
We define

cos 𝑧 = 1 − 𝑧2
2! +

𝑧4
4! −

𝑧6
6! +⋯ =

∞
∑
0

(−1)𝑘𝑧2𝑘
(2𝑘)!

sin 𝑧 = 𝑧 − 𝑧3
3! +

𝑧5
5! −

𝑧7
7! +⋯ =

∞
∑
0

(−1)𝑘𝑧2𝑘+1
(2𝑘 + 1)!

Both power series have infinite radius of convergence, by the ratio test (the same proof from
the exponential function can be used here). Hence cos 𝑧 and sin 𝑧 are differentiable, and
d
d𝑧
cos 𝑧 = − sin 𝑧 and d

d𝑧
sin 𝑧 = cos 𝑧 as expected, by termwise differentiation. Further, we

can deduce that

𝑒𝑖𝑧 =
∞
∑
0

(𝑖𝑧)𝑛
𝑛! =

∞
∑
0

(𝑖𝑧)2𝑘
(2𝑘)! +

∞
∑
0

(𝑖𝑧)2𝑘+1
(2𝑘 + 1)!

Note that
(𝑖𝑧)2𝑘 = (−1)𝑘𝑧2𝑘; (𝑖𝑧)2𝑘+1 = 𝑖(−1)𝑘𝑧2𝑘+1

Hence,
𝑒𝑖𝑧 = cos 𝑧 + 𝑖 sin 𝑧

Similarly,
𝑒−𝑖𝑧 = cos 𝑧 − 𝑖 sin 𝑧

We can then write

cos 𝑧 = 1
2(𝑒

𝑖𝑧 + 𝑒−𝑖𝑧); sin 𝑧 = 1
2𝑖 (𝑒

𝑖𝑧 − 𝑒−𝑖𝑧)

Many common trigonometric identities follow from this, such as the identity cos2 𝑧+sin2 𝑧 ≡
1. However, we have not deduced the period of the functions. Now, restricted to the real case,
sin𝑥, cos𝑥 ∈ ℝ, and the identity cos2 𝑧 + sin2 𝑧 ≡ 1 gives that |sin𝑥| ≤ 1 and |cos𝑥| ≤ 1 for
all real 𝑥.

9.9. Circle constants
Proposition. There is a smallest positive number 𝜋 such that

cos 𝜋2 = 0

and we have√2 < 𝜋
2
< √3.
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Proof. If 0 < 𝑥 < 2,
sin𝑥 = (𝑥 − 𝑥3

3! ) + (𝑥
5

5! −
𝑥7
7! ) +⋯

For this range of values, each parenthesised block is positive, so sin𝑥 > 0. So in this range,

d
d𝑥 cos𝑥 < 0

Hence, cos𝑥 is a strictly decreasing function on this interval. Now,

cos√2 = 1 − √2
2

2! + (√2
4

4! − √2
6

6! ) +⋯ > 0

since each bracketed block is positive.

cos√3 = 1 − √3
2

2! + √3
4

4! − (√3
6

6! − √3
8

8! ) +⋯ < 0

since all the bracketed terms are positive, and being subtracted from a negative number. By
the intermediate value theorem, the existence of such a 𝜋 follows.

Corollary. We have that sin 𝜋
2
= 1.

Proof. We know that cos2 𝜋
2
+ sin2 𝜋

2
= 1, and sin 𝜋

2
> 0, so the result follows.

Theorem. The following standard properties about the periodicity of trigonometric func-
tions hold.

(i) sin(𝑧 + 𝜋
2
) = cos 𝑧, and cos(𝑧 + 𝜋

2
) = − sin 𝑧

(ii) sin(𝑧 + 𝜋) = − sin 𝑧, and cos(𝑧 + 𝜋) = − cos 𝑧
(iii) sin(𝑧 + 2𝜋) = sin 𝑧, and cos(𝑧 + 2𝜋) = cos 𝑧
The proofs are immediate from the angle addition formulae. This then implies that

𝑒𝑖𝑧+2𝜋𝑖 = 𝑒𝑖𝑧

Hence 𝑒𝑧 is periodic with period 2𝜋𝑖.
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10. Integration
10.1. Geometry of trigonometric functions
Recall that given any two vectors x and y in ℝ2, we can define the dot (scalar) product
by

x ⋅ y = (𝑥1, 𝑥2) ⋅ (𝑦1, 𝑦2) = 𝑥1𝑦1 + 𝑥2𝑦2
By the Cauchy–Schwarz inequality, we have

|x ⋅ y| ≤ ‖x‖‖y‖

where we define the Euclidean norm in the normal way. Thus, for x ≠ 0, y ≠ 0, we
have

−1 ≤ x ⋅ y
‖x‖‖y‖ ≤ 1

We now define the angle between two vectors x and y as exactly the unique number 𝜃 ∈
[0, 𝜋] such that

cos 𝜃 = x ⋅ y
‖x‖‖y‖

10.2. Hyperbolic functions
We define the functions cosh and sinh as follows.

cosh 𝑧 = 1
2(𝑒

𝑧 + 𝑒−𝑧)

sinh 𝑧 = 1
2(𝑒

𝑧 − 𝑒−𝑧)

Hence
cosh 𝑧 = cos(𝑖𝑧); sinh 𝑧 = −𝑖 sin(𝑖𝑧)

We can then show that

d
d𝑧 cosh 𝑧 = sinh 𝑧; d

d𝑧 sinh 𝑧 = cosh 𝑧

and further,
cosh2 𝑧 − sinh2 𝑧 ≡ 1

10.3. Defining the Riemann integral
Definition. A dissection or partition𝒟 of [𝑎, 𝑏] is a finite subset of [𝑎, 𝑏] containing the end
points 𝑎 and 𝑏. We write

𝒟 = {𝑥0, 𝑥1,… , 𝑥𝑛}
with 𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏.
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Definition. We define the upper sum of a bounded function 𝑓 associated with a partition
𝒟 by

𝑆(𝑓,𝒟) =
𝑛
∑
𝑗=1

(𝑥𝑗 − 𝑥𝑗−1) sup
𝑥∈[𝑥𝑗−1,𝑥𝑗]

𝑓(𝑥)

The lower sum is defined similarly,

𝑠(𝑓,𝒟) =
𝑛
∑
𝑗=1

(𝑥𝑗 − 𝑥𝑗−1) inf
𝑥∈[𝑥𝑗−1,𝑥𝑗]

𝑓(𝑥)

Clearly then 𝑆 ≥ 𝑠 for all𝒟.
Lemma. If𝒟 and𝒟′ are dissections with𝒟′ ⊇ 𝒟 (𝒟′ is a refinement of𝒟), then

𝑆(𝑓,𝒟) ≥
(i)
𝑆(𝑓,𝒟′) ≥

(ii)
𝑠(𝑓,𝒟′) ≥

(iii)
𝑠(𝑓,𝒟)

Proof. Inequality (ii) is obvious, we have already shown this to be true. Now, suppose 𝒟′

contains a single extra point 𝑦 compared to𝒟, where 𝑦 ∈ (𝑥𝑟−1, 𝑥𝑟). Clearly,
sup

𝑥∈[𝑥𝑟−1,𝑦]
𝑓(𝑥), sup

𝑥∈[𝑦,𝑥𝑟]
𝑓(𝑥) ≤ sup

𝑥∈[𝑥𝑟−1,𝑥𝑟]

Then

(𝑥𝑟 − 𝑥𝑟−1) sup
𝑥∈[𝑥𝑟−1,𝑥𝑟]

𝑓(𝑥) ≥ (𝑦 − 𝑥𝑟−1) sup
𝑥∈[𝑟𝑟−1,𝑦]

𝑓(𝑥) + (𝑥𝑟 − 𝑦) sup
𝑥∈[𝑦,𝑟]

𝑓(𝑥)

Hence,
𝑆(𝑓,𝒟) ≥ 𝑆(𝑓,𝒟′)

The same proof holds for inequality (iii), and inductively we can show that this works for
any amount of extra points.

Lemma. If𝒟1, 𝒟2 are arbitrary dissections, then

𝑆(𝑓,𝒟1) ≥ 𝑆(𝑓,𝒟1 ∪ 𝒟2) ≥ 𝑠(𝑓,𝒟1 ∪ 𝒟2) ≥ 𝑠(𝑓,𝒟2)
In particular, 𝑆(𝑓,𝒟1) ≥ 𝑠(𝑓,𝒟2).

Proof. Let𝒟′ = 𝒟1 ∪𝒟2, which is a refinement of both𝒟1 and𝒟2, and apply the previous
lemma.

Definition. The upper integral of 𝑓 is
𝐼⋆(𝑓) = inf

𝒟
𝑆(𝑓,𝒟)

Note that such an integral always exists, since the upper sums are always bounded below by
an arbitrary lower sum. Hence the infimum does indeed exist and is finite. Similarly,

𝐼⋆(𝑓) = sup
𝒟

𝑠(𝑓,𝒟)
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Then by the lemmas above, 𝐼⋆(𝑓) ≥ 𝐼⋆(𝑓), since 𝑆(𝑓,𝒟2) ≥ 𝑠(𝑓,𝒟1) for arbitrary dissections
𝒟1 and𝒟2.

Definition. A bounded function 𝑓∶ [𝑎, 𝑏] → ℝ is (Riemann) integrable if 𝐼⋆(𝑓) = 𝐼⋆(𝑓). If
this equality holds, we write

∫
𝑏

𝑎
𝑓(𝑥) d𝑥 = 𝐼⋆(𝑓) = 𝐼⋆(𝑓) = ∫

𝑏

𝑎
𝑓

10.4. Determining integrability
Theorem. A function 𝑓∶ [𝑎, 𝑏] → ℝ is Riemann integrable if and only if given 𝜀 > 0, there
exists𝒟 such that

𝑆(𝑓,𝒟) − 𝑠(𝑓,𝒟) < 𝜀

Proof. For every dissection𝒟, we have that 0 ≤ 𝐼⋆(𝑓)−𝐼⋆(𝑓) ≤ 𝑆(𝑓,𝒟)−𝑠(𝑓,𝒟). If the given
condition holds, 0 ≤ 𝐼⋆(𝑓) − 𝐼⋆(𝑓) ≤ 𝑆(𝑓,𝒟) − 𝑠(𝑓,𝒟) < 𝜀 for all 𝜀 > 0. This immediately
implies that 𝑓 is Riemann integrable since the upper integral and the lower integral match.
Conversely, if 𝑓 is integrable, by the definition of the supremum and infimum, there are
partitions𝒟1 and𝒟2 such that

∫
𝑏

𝑎
𝑓 − 𝜀

2 = 𝐼⋆(𝑓) −
𝜀
2 < 𝑠(𝑓,𝒟1)

Also,

∫
𝑏

𝑎
𝑓 + 𝜀

2 = 𝐼⋆(𝑓) + 𝜀
2 > 𝑆(𝑓,𝒟2)

From last lecture, we can use the fact that 𝒟1 ∪ 𝒟2 is a refinement of both 𝒟1 and 𝒟2 to
show that

𝑆(𝑓,𝒟1 ∪ 𝒟2) − 𝑠(𝑓,𝒟1 ∪ 𝒟2) ≤ 𝑆(𝑓,𝒟2) − 𝑠(𝑓,𝒟1)
Now,

𝑆(𝑓,𝒟2) − 𝑠(𝑓,𝒟1) < ∫
𝑏

𝑎
𝑓 + 𝜀

2 −∫
𝑏

𝑎
𝑓 + 𝜀

2 = 𝜀

as required.

10.5. Monotonic and continuous functions
We can use this theorem to show that monotonic and continuous functions are integrable.
Note that monotonic and continuous functions (defined on a closed interval) are always
bounded.

Theorem. Suppose a function 𝑓∶ [𝑎, 𝑏] → ℝ is monotonic. Then 𝑓 is integrable.
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Proof. Suppose 𝑓 is increasing. Then

sup
𝑥∈[𝑥𝑗−1−𝑥𝑗]

𝑓(𝑥) = 𝑓(𝑥𝑗)

and similarly
inf

𝑥∈[𝑥𝑗−1−𝑥𝑗]
𝑓(𝑥) = 𝑓(𝑥𝑗−1)

Thus,

𝑆(𝑓,𝒟) − 𝑠(𝑓,𝒟) =
𝑛
∑
𝑗=1

(𝑥𝑗 − 𝑥𝑗−1) [𝑓(𝑥𝑗) − 𝑓(𝑥𝑗−1)]

Let us choose the dissection

𝒟 = {𝑎, 𝑎 + 𝑏 − 𝑎
𝑛 , 𝑎 + 2𝑏 − 𝑎

𝑛 +⋯+ 𝑏}

giving
𝑥𝑗 = 𝑎 + 𝑗𝑏 − 𝑎

𝑛
for 0 ≤ 𝑗 ≤ 𝑛. In this case,

𝑆(𝑓,𝒟) − 𝑠(𝑓,𝒟) = 𝑏 − 𝑎
𝑛

𝑛
∑
𝑗=1

[𝑓(𝑥𝑗) − 𝑓(𝑥𝑗−1)] =
𝑏 − 𝑎
𝑛 [𝑓(𝑏) − 𝑓(𝑎)] → 0

so then using the above theorem, 𝑓 is integrable.

To prove an analogous result for continuous function, we must first prove the following
lemma.

Lemma (Uniform Continuity). Suppose a function 𝑓∶ [𝑎, 𝑏] → ℝ is continuous. Then
given 𝜀 > 0, ∃𝛿 > 0 such that if |𝑥 − 𝑦| < 𝛿, we have |𝑓(𝑥) − 𝑓(𝑦)| < 𝜀.
Note that in this lemma, we are saying that there exists such a 𝛿 that works for every pair of
points within 𝛿. The definition of continuity only provides a 𝛿 that depends on 𝑥, so this is
stronger than the definition of continuity, and this property does not hold for all continuous
functions.

Proof. Suppose there does not exist such a 𝛿. Then there exists some 𝜀 > 0 such that for all
𝛿 > 0 there exist 𝑥, 𝑦 ∈ [𝑎, 𝑏] such that |𝑥 − 𝑦| < 𝛿 but |𝑓(𝑥) − 𝑓(𝑦)| ≥ 𝜀. Let 𝛿 = 1

𝑛
. For

this choice, we can find sequences 𝑥𝑛 and 𝑦𝑛 with |𝑥𝑛 − 𝑦𝑛| <
1
𝑛
but |𝑓(𝑥𝑛) − 𝑓(𝑦𝑛)| ≥ 𝜀. By

the Bolzano–Weierstrass theorem, since we are working in a closed bounded interval, the 𝑥𝑛
and 𝑦𝑛 have convergent subsequences that tend to 𝑐 and 𝑑. Then by the triangle inequality,

||𝑦𝑛𝑘 − 𝑐|| ≤ ||𝑦𝑛𝑘 − 𝑥𝑛𝑘 || + ||𝑥𝑛𝑘 − 𝑐|| → 0

So 𝑐 = 𝑑. But ||𝑓(𝑥𝑛𝑘) − 𝑓(𝑦𝑛𝑘)|| ≥ 𝜀, and by continuity as 𝑘 → ∞, |𝑓(𝑐) − 𝑓(𝑐)| ≥ 𝜀 which is
a contradiction.
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Theorem. Suppose a function 𝑓∶ [𝑎, 𝑏] → ℝ is continuous. Then 𝑓 is integrable.

Proof. Weknow that given 𝜀 > 0, there exists𝛿 > 0 such that |𝑥 − 𝑦| < 𝛿 ⟹ |𝑓(𝑥) − 𝑓(𝑦)| <
𝜀. So now, let

𝒟 = {𝑎, 𝑎 + 𝑏 − 𝑎
𝑛 , 𝑎 + 2𝑏 − 𝑎

𝑛 +⋯+ 𝑏}

where 𝑛 is chosen large enough such that 𝑏−𝑎
𝑛

< 𝛿. Then, for any 𝑥, 𝑦 ∈ [𝑥𝑗−1, 𝑥𝑗], we have
that |𝑓(𝑥) − 𝑓(𝑦)| < 𝜀. We can now write

max
𝑥∈[𝑥𝑗−1,𝑥𝑗]

𝑓(𝑥) − min
𝑥∈[𝑥𝑗−1,𝑥𝑗]

𝑓(𝑥) = 𝑓(𝑝) − 𝑓(𝑞) < 𝜀

Therefore, the upper sums and lower sums differ by at most (𝑏 − 𝑎)𝜀. Hence, 𝑓 is integrable.

10.6. Complicated integrable functions
In principle, many functions that are not continuous or monotonic can be integrated using
the Riemann integral. For example, the function 𝑓∶ [0, 1] → ℝ defined by

𝑓(𝑥) = {
1
𝑞

𝑥 = 𝑝
𝑞
∈ (0, 1] in its lowest form

0 otherwise

is Riemann integrable. We know that 𝑠(𝑓,𝒟) = 0 for all 𝒟, since any interval will contain
irrational numbers. We will show that given 𝜀 > 0, there exists𝒟 such that 𝑆(𝑓,𝒟) < 𝜀. If
this is true, then this function 𝑓 really is Riemann integrable, with ∫𝑓 = 0. We will choose
𝑁 ∈ ℕ such that 1

𝑁
< 𝜀

2
. Then

𝑆 = {𝑥 ∈ [0, 1]∶ 𝑓(𝑥) ≥ 1
𝑁 } = {𝑝𝑞 ∶ 1 ≤ 𝑞 ≤ 𝑁, 1 ≤ 𝑝 ≤ 𝑞}

This set 𝑆 is a finite set, hence

𝑆 = {0, 𝑡1,… , 𝑡𝑅}; 0 < 𝑡1 < ⋯ < 𝑡𝑅 = 1

Consider a dissection𝒟 such that

(1) Each 𝑡𝑘 is in some interval [𝑥𝑗−1, 𝑥𝑗], and

(2) For all 𝑘, the unique interval containing 𝑡𝑘 has length at most
𝜀
2𝑅
.

Such a dissection can certainly be constructed. Then, in any interval that does not contain
a 𝑡𝑘, 𝑓 in this interval is less than

1
𝑁
. In any interval that does contain a 𝑡𝑘, 𝑓 ≥

1
𝑁
but 𝑓 < 1

everywhere. Since there are 𝑅 such intervals, each of which with length 𝜀
2𝑅
, we have

𝑆(𝑓,𝒟) ≤ 1
𝑁 + 𝜀

2 < 𝜀
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10.7. Properties of Riemann integral
Consider functions 𝑓 and 𝑔 which are bounded and integrable on [𝑎, 𝑏].
(1) If 𝑓 ≤ 𝑔 on [𝑎, 𝑏], then ∫𝑓 ≤ ∫𝑔.
(2) 𝑓 + 𝑔 is integrable on [𝑎, 𝑏], and ∫(𝑓 + 𝑔) = ∫𝑓 + ∫𝑔.
(3) For any constant 𝑘, 𝑘𝑓 is integrable, and ∫𝑘𝑓 = 𝑘∫𝑓.
(4) |𝑓| is integrable, and |∫ 𝑓| ≤ ∫ |𝑓|.
(5) 𝑓𝑔 is integrable.

Proof. We will see proofs for some of these properties.

(1) If 𝑓 ≤ 𝑔, then
∫𝑓 = 𝐼⋆(𝑓) ≤ 𝑆(𝑓,𝒟) ≤ 𝑆(𝑔,𝒟)

Hence,
∫𝑓 = 𝐼⋆(𝑓) ≤ 𝐼⋆(𝑔) = ∫𝑔

(2) We have
sup

[𝑥𝑗−1,𝑥𝑗]
(𝑓 + 𝑔) ≤ sup

[𝑥𝑗−1,𝑥𝑗]
𝑓 + sup

[𝑥𝑗−1,𝑥𝑗]
𝑔

Therefore,
𝑆(𝑓 + 𝑔,𝒟) ≤ 𝑆(𝑓,𝒟) + 𝑆(𝑔,𝒟)

Now, consider two dissections𝒟1, 𝒟2. Now,

𝐼⋆(𝑓 + 𝑔) ≤ 𝑆(𝑓 + 𝑔,𝒟1 ∪𝒟2) ≤ 𝑆(𝑓,𝒟1 ∪𝒟2) + 𝑆(𝑔,𝒟1 ∪𝒟2) ≤ 𝑆(𝑓,𝒟1) + 𝑆(𝑔,𝒟2)

We can then fix𝒟1 and take the infimum over𝒟2 to get

𝐼⋆(𝑓 + 𝑔) ≤ 𝑆(𝑓,𝒟1) + 𝐼⋆(𝑔)

Taking the infimum over𝒟1 gives

𝐼⋆(𝑓 + 𝑔) ≤ 𝐼⋆(𝑓) + 𝐼⋆(𝑔) = ∫𝑓 +∫𝑔

A completely similar argument will show that

𝐼⋆(𝑓 + 𝑔) ≥ ∫𝑓 +∫𝑔

Combining this, 𝑓 + 𝑔must be integrable, since 𝐼⋆(𝑓 + 𝑔) ≥ 𝐼⋆(𝑓 + 𝑔). This integral is
then exactly ∫𝑓 + ∫𝑔.

568



10. Integration

(4) Consider first 𝑓+(𝑥) = max(𝑓(𝑥), 0). We want to show that 𝑓+ is integrable. We can
check that

sup
[𝑥𝑗−1,𝑥𝑗]

𝑓+ − inf
[𝑥𝑗−1,𝑥𝑗]

𝑓+ ≤ sup
[𝑥𝑗−1,𝑥𝑗]

𝑓 − sup
[𝑥𝑗−1,𝑥𝑗]

𝑓

We know that given 𝜀 > 0, there exists𝒟 such that

𝑆(𝑓,𝒟) − 𝑠(𝑓,𝒟) < 𝜀

Hence,
𝑆(𝑓+, 𝒟) − 𝑠(𝑓+, 𝒟) ≤ 𝑆(𝑓,𝒟) − 𝑠(𝑓,𝒟) < 𝜀

Therefore 𝑓+ is integrable. But |𝑓| = 2𝑓+ − 𝑓, hence |𝑓| is integrable by properties (2)
and (3). Since −|𝑓| ≤ 𝑓 ≤ |𝑓|, we can use monotonicity from (1) to find that

|||∫𝑓||| ≤ ∫ |𝑓|

as claimed.

(5) Let 𝑓 be integrable and positive. Then we can check that

sup
[𝑥𝑗−1,𝑥𝑗]

𝑓2 =

⎛
⎜
⎜
⎜
⎜
⎝

sup
[𝑥𝑗−1,𝑥𝑗]

𝑓
⏟⎵⎵⏟⎵⎵⏟

𝑀𝑗

⎞
⎟
⎟
⎟
⎟
⎠

2

; inf
[𝑥𝑗−1,𝑥𝑗]

𝑓2 =
⎛
⎜
⎜
⎜
⎝

inf
[𝑥𝑗−1,𝑥𝑗]

𝑓
⏟⎵⎵⏟⎵⎵⏟

𝑚𝑗

⎞
⎟
⎟
⎟
⎠

2

Then,

𝑆(𝑓2, 𝒟) − 𝑠(𝑓2, 𝒟) =
𝑛
∑
𝑗=1

(𝑥𝑗 − 𝑥𝑗−1)(𝑀2
𝑗 −𝑚2

𝑗 )

=
𝑛
∑
𝑗=1

(𝑥𝑗 − 𝑥𝑗−1)(𝑀𝑗 −𝑚𝑗)(𝑀𝑗 +𝑚𝑗)

The function 𝑓 is bounded by some constant 𝑘, therefore the bracket (𝑀𝑗 + 𝑚𝑗) is
bounded by 2𝑘, which gives

𝑆(𝑓2, 𝒟) − 𝑠(𝑓2, 𝒟) ≤ 2𝑘(𝑆(𝑓,𝒟) − 𝑠(𝑓,𝒟))

So 𝑓2 is integrable. Now, considering any 𝑓, |𝑓| ≥ 0 is a non-negative integrable func-
tion. Since 𝑓2 = ||𝑓2||, we deduce that 𝑓2 is integrable for any integrable 𝑓. Finally, for
𝑓𝑔, note that

4𝑓𝑔 = (𝑓 + 𝑔)2 − (𝑓 − 𝑔)2

The right hand side is integrable, so the left hand side is integrable.
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11. Fundamental theorem of calculus
11.1. Breaking an interval
Let 𝑓 be integrable on [𝑎, 𝑏]. If 𝑎 < 𝑐 < 𝑏, then 𝑓 is integrable over [𝑎, 𝑐] and [𝑐, 𝑏],
with

∫
𝑏

𝑎
𝑓 = ∫

𝑐

𝑎
𝑓 +∫

𝑏

𝑐
𝑓

Conversely, if 𝑓 is integrable on [𝑎, 𝑐] and [𝑐, 𝑏], then 𝑓 is integrable over [𝑎, 𝑏] and the same
equality holds for the combination of the integrals.

Proof. We first make two observations. First, if𝒟1 is a dissection of [𝑎, 𝑐] and𝒟2 is a dissec-
tion of [𝑐, 𝑏], then𝒟 = 𝒟1 ∪ 𝒟2 is a dissection of [𝑎, 𝑏], and

𝑆(𝑓,𝒟1 ∪ 𝒟2) = 𝑆(𝑓|||[𝑎,𝑐]
, 𝒟1) + 𝑆(𝑓|||[𝑐,𝑏]

, 𝒟2) (∗)

Also, if𝒟 is a dissection of [𝑎, 𝑏], then

𝑆(𝑓,𝒟) ≥ 𝑆(𝑓,𝒟 ∪ {𝑐}) = 𝑆(𝑓|||[𝑎,𝑐]
, 𝒟1) + 𝑆(𝑓|||[𝑐,𝑏]

, 𝒟2) (†)

Now,

(∗) ⟹ 𝐼⋆(𝑓) ≤ 𝐼⋆(𝑓|||[𝑎,𝑐]
) + 𝐼⋆(𝑓|||[𝑐,𝑏]

)

Further,

(†) ⟹ 𝐼⋆(𝑓) ≥ 𝐼⋆(𝑓|||[𝑎,𝑐]
) + 𝐼⋆(𝑓|||[𝑐,𝑏]

)

Hence,

𝐼⋆(𝑓) = 𝐼⋆(𝑓|||[𝑎,𝑐]
) + 𝐼⋆(𝑓|||[𝑐,𝑏]

)

This argument also applies for the lower integral, therefore

0 ≤ 𝐼⋆(𝑓) − 𝐼⋆(𝑓) = 𝐼⋆(𝑓|||[𝑎,𝑐]
) − 𝐼⋆(𝑓

|||[𝑎,𝑐]
)

⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
𝐴

+ 𝐼⋆(𝑓|||[𝑐,𝑏]
) + 𝐼⋆(𝑓

|||[𝑐,𝑏]
)

⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
𝐵

Note that 𝐴, 𝐵 ≥ 0. If 𝑓 is integrable on [𝑎, 𝑐] and [𝑐, 𝑏], then 𝐴 = 𝐵 = 0, hence 𝐼⋆(𝑓) = 𝐼⋆(𝑓)
and it is integrable on [𝑎, 𝑏]. If 𝑓 is integrable on [𝑎, 𝑏], then we know 𝐼⋆(𝑓) = 𝐼⋆(𝑓), so
𝐴 = 𝐵 = 0 so 𝑓 is integrable on [𝑎, 𝑐] and [𝑐, 𝑏].

Note that we take the following convention:

∫
𝑏

𝑎
𝑓 = −∫

𝑎

𝑏
𝑓
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11. Fundamental theorem of calculus

and if 𝑎 = 𝑏, then this value is zero. With this convention, if 𝑓 is bounded with |𝑓| ≤ 𝑘,
then

||||
∫

𝑏

𝑎
𝑓
||||
≤ 𝑘|𝑏 − 𝑎|

11.2. Fundamental theorem of calculus
Suppose a function 𝑓∶ [𝑎, 𝑏] → ℝ is bounded and integrable. Then since it is integrable on
any sub-interval, we can define

𝐹(𝑥) = ∫
𝑥

𝑎
𝑓(𝑡) d𝑡

for 𝑥 ∈ [𝑎, 𝑏].

Theorem. 𝐹 is continuous.

Proof. We know that

𝐹(𝑥 + ℎ) − 𝐹(𝑥) = ∫
𝑥+ℎ

𝑥
𝑓(𝑡) d𝑡

We want this quantity to vanish as ℎ → 0. We find, given that 𝑓 is bounded by 𝑘,

|𝐹(𝑥 + ℎ) − 𝐹(𝑥)| =
||||
∫

𝑥+ℎ

𝑥
𝑓(𝑡) d𝑡

||||
≤ 𝑘|ℎ|

So the result follows as ℎ → 0.

Theorem. If in addition 𝑓 is continuous at 𝑥, then 𝐹 is differentiable, with 𝐹′(𝑥) = 𝑓(𝑥).

Proof. Consider
|||
𝐹(𝑥 + ℎ) − 𝐹(𝑥)

ℎ − 𝑓(𝑥)|||
If this tends to zero, then the theorem holds.

|||
𝐹(𝑥 + ℎ) − 𝐹(𝑥)

ℎ − 𝑓(𝑥)||| =
1
|ℎ|

||||
∫

𝑥+ℎ

𝑥
𝑓(𝑡) d𝑡 − ℎ𝑓(𝑥)

||||
= 1
|ℎ|

||||
∫

𝑥+ℎ

𝑥
[𝑓(𝑡) − 𝑓(𝑥)] d𝑡

||||

Since 𝑓 is continuous at 𝑥, given 𝜀 > 0, ∃𝛿 > 0 such that |𝑡 − 𝑥| − 𝛿 ⟹ |𝑓(𝑡) − 𝑓(𝑥)| < 𝜀.
If |ℎ| < 𝛿, then the integrand is bounded by 𝜀. Hence,

|||
𝐹(𝑥 + ℎ) − 𝐹(𝑥)

ℎ − 𝑓(𝑥)||| ≤
1
|ℎ| |ℎ𝜀| = 𝜀

So we can make this value as small as we like. So the theorem holds.
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VIII. Analysis I

For example, consider the function

𝑓(𝑥) = {−1 𝑥 ∈ [−1, 0]
1 𝑥 ∈ (0, 1]

This is a bounded, integrable function, with

𝐹(𝑥) = −1 + |𝑥|

Note that this 𝐹 is not differentiable at 𝑥 = 0.
Corollary. If 𝑓 = 𝑔′ is a continuous function on [𝑎, 𝑏], then

∫
𝑥

𝑎
𝑓(𝑡) d𝑡 = 𝑔(𝑥) − 𝑔(𝑎)

is a differentiable function on [𝑎, 𝑏].

Proof. From above, 𝐹−𝑔 has zero derivative in [𝑎, 𝑏], hence 𝐹−𝑔 is constant. Since 𝐹(𝑎) = 0,
we get 𝐹(𝑥) = 𝑔(𝑥) − 𝑔(𝑎).

Note that every continuous function𝑓 has an ‘indefinite’ integral (or ‘antiderivative’) written
∫𝑓(𝑥) d𝑥, which is determined uniquely up to the addition of a constant. Note further that
we have now essentially solved the differential equation

{ 𝑦′(𝑥) = 𝑓(𝑥)
𝑦(𝑎) = 𝑦0

and shown that there is a unique solution to this ordinary differential equation.
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12. Integration techniques

12. Integration techniques
12.1. Integration by parts
We can use the fundamental theorem of calculus to deduce familiar integration techniques,
such as integration by parts, and integration by substitution.

Corollary. Suppose 𝑓′, 𝑔′ exist and are continuous on [𝑎, 𝑏]. Then

∫
𝑏

𝑎
𝑓′𝑔 = 𝑓𝑔|||

𝑏

𝑎
−∫

𝑏

𝑎
𝑓𝑔′

Proof. By the product rule, we have

(𝑓𝑔)′ = 𝑓′𝑔 + 𝑓𝑔′

Then by the fundamental theorem of calculus,

∫
𝑏

𝑎
(𝑓𝑔)′ = 𝑓𝑔|||

𝑏

𝑎
= ∫

𝑏

𝑎
𝑓′𝑔 +∫

𝑏

𝑎
𝑓𝑔′

and the result follows.

12.2. Integration by substitution
Corollary. Let 𝑔∶ [𝛼, 𝛽] → [𝑎, 𝑏]with 𝑔(𝛼) = 𝑎, 𝑔(𝛽) = 𝑏 and let 𝑔′ exist and be continuous
on [𝛼, 𝛽]. Let 𝑓∶ [𝑎, 𝑏] → ℝ be continuous. Then

∫
𝑏

𝑎
𝑓(𝑥) d𝑥 = ∫

𝛽

𝛼
𝑓(𝑔(𝑡))𝑔′(𝑡) d𝑡

Proof. Let 𝐹(𝑥) = ∫𝑥
𝑎 𝑓(𝑡) d𝑡. Then let ℎ(𝑡) = 𝐹(𝑔(𝑡)). This is well defined since 𝑔 takes

values in [𝑎, 𝑏]. Then,

∫
𝛽

𝛼
𝑓(𝑔(𝑡))𝑔′(𝑡) d𝑡 = ∫

𝛽

𝛼
𝐹′(𝑔(𝑡))𝑔′(𝑡) d𝑡

= ∫
𝛽

𝛼
ℎ′(𝑡) d𝑡

= ℎ(𝛽) − ℎ(𝛼)
= 𝐹(𝑏) − 𝐹(𝑎)
= 𝐹(𝑏)

= ∫
𝑏

𝑎
𝑓(𝑥) d𝑥
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VIII. Analysis I

13. Integrals in Taylor’s theorem
13.1. Integral remainder form of Taylor’s theorem
Theorem. Let 𝑓 such that 𝑓(𝑛)(𝑥) is continuous for 𝑥 ∈ [0, ℎ]. Then

𝑓(ℎ) = 𝑓(0) +⋯+ ℎ𝑛−1𝑓(𝑛−1)(0)
(𝑛 − 1)! + 𝑅𝑛

where

𝑅𝑛 =
ℎ𝑛

(𝑛 − 1)! ∫
1

0
(1 − 𝑡)𝑛−1𝑓(𝑛)(𝑡ℎ) d𝑡

Note that for this formulation of Taylor’s theorem, we require continuity of 𝑓(𝑛)(𝑥), whereas
with the previous remainders, the 𝑛th derivative need not be continuous.

Proof. First, by substituting 𝑢 = 𝑡ℎ, we can see that it is sufficient to show

𝑅𝑛 =
1

(𝑛 − 1)! ∫
ℎ

0
(ℎ − 𝑢)𝑛−1𝑓(𝑛)(𝑢) d𝑢

Now, integrating by parts, we have

𝑅𝑛 =
−ℎ𝑛−1𝑓(𝑛−1)(0)

(𝑛 − 1)! + 1
(𝑛 − 2)! ∫

ℎ

0
(ℎ − 𝑢)𝑛−2𝑓(𝑛−1)(𝑢) d𝑢

= −ℎ𝑛−1𝑓(𝑛−1)(0)
(𝑛 − 1)! + 𝑅𝑛−1

Hence,

𝑅𝑛 = −ℎ
𝑛−1𝑓(𝑛−1)(0)
(𝑛 − 1)! − ℎ𝑛−2𝑓(𝑛−2)(0)

(𝑛 − 2)! −⋯ − ∫
ℎ

0
𝑓′(𝑢) d𝑢

⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝑓(ℎ)−𝑓(0)

which is exactly all the other terms in the Taylor polynomial as required.

13.2. Mean value theorem for integrals
Theorem. Let 𝑓, 𝑔∶ [𝑎, 𝑏] → ℝ be continuous with 𝑔(𝑥) ≠ 0 for all 𝑥 ∈ (𝑎, 𝑏). Then

∃𝑐 ∈ (𝑎, 𝑏) s.t. ∫
𝑏

𝑎
𝑓(𝑥)𝑔(𝑥) d𝑥 = 𝑓(𝑐)∫

𝑏

𝑎
𝑔(𝑥) d𝑥

Note that if we let 𝑔(𝑥) = 1, we get

∫
𝑏

𝑎
𝑓(𝑥) d𝑥 = 𝑓(𝑐)(𝑏 − 𝑎)
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13. Integrals in Taylor’s theorem

Proof. We will use Cauchy’s mean value theorem to get this result. Let

𝐹(𝑥) = ∫
𝑥

𝑎
𝑓𝑔; 𝐺(𝑥) = ∫

𝑥

𝑎
𝑔

Then there exists an intermediate point 𝑐 such that

(𝐹(𝑏) − 𝐹(𝑎))𝐺′(𝑐) = 𝐹′(𝑐)(𝐺(𝑏) − 𝐺(𝑎))

By the fundamental theorem of calculus,

(∫
𝑏

𝑎
𝑓𝑔)𝑔(𝑐) = 𝑓(𝑐)𝑔(𝑐)(∫

𝑏

𝑎
𝑔)

Now, since 𝑔 ≠ 0 everywhere,

∫
𝑏

𝑎
𝑓𝑔 = 𝑓(𝑐)∫

𝑏

𝑎
𝑔

13.3. Deriving Lagrange’s and Cauchy’s remainders for Taylor’s theorem
We can use this new mean value theorem to recover the other forms of the remainders in
Taylor’s theorem. We have

𝑅𝑛 =
ℎ𝑛

(𝑛 − 1)! ∫
1

0
(1 − 𝑡)𝑛−1𝑓(𝑛)(𝑡ℎ) d𝑡

and we want to show that this is equal to

ℎ𝑛
𝑛! 𝑓

(𝑛)(𝑎 + 𝜃ℎ); (1 − 𝜃)𝑛−1ℎ𝑛𝑓(𝑛)(𝑎 + 𝜃ℎ)
(𝑛 − 1)!

First, let us apply the above mean value theorem with 𝑔 ≡ 1 and the entire integrand in 𝑅𝑛
as 𝑓. Then

𝑅𝑛 =
ℎ𝑛

(𝑛 − 1)! ∫
1

0
(1 − 𝑡)𝑛−1𝑓(𝑛)(𝑡ℎ) d𝑡 = ℎ𝑛

(𝑛 − 1)! (1 − 𝜃)𝑛−1𝑓(𝑛)(𝜃ℎ)

as required for Cauchy’s remainder. To find Lagrange’s remainder, we need to use the above
mean value theorem with 𝑔 = (1 − 𝑡)𝑛−1, which is positive everywhere in (0, 1), and 𝑓 =
𝑓(𝑛)(𝑡ℎ). Then

𝑅𝑛 =
ℎ𝑛

(𝑛 − 1)!𝑓
(𝑛)(𝜃ℎ)∫

1

0
(1 − 𝑡)𝑛−1 d𝑡

This integral is simple to find by inspection:

𝑅𝑛 =
ℎ𝑛

(𝑛 − 1)!𝑓
(𝑛)(𝜃ℎ) 1𝑛 = ℎ𝑛

𝑛! 𝑓
(𝑛)(𝜃ℎ)

as required.
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14. Uses of integration
14.1. Improper integration
Definition. Suppose 𝑓∶ [𝑎,∞) → ℝ is integrable (and therefore bounded) on every inter-
val of the form [𝑎, 𝑅], and further, as 𝑅 → ∞, we have ∫𝑅

𝑎 𝑓 → ℓ.

Then we say that the integral ∫∞
𝑎 𝑓 exists (or converges), and its value is ℓ. If this integral

does not tend to a limit, we say that ∫∞
𝑎 𝑓 diverges.

We can similarly define the integral∫𝑎
−∞ 𝑓. If∫∞

𝑎 𝑓 = ℓ1 and∫
𝑎
−∞ 𝑓 = ℓ2, we canwrite

∫
∞

−∞
𝑓 = ℓ1 + ℓ2

Note that this last condition is not the same as saying that lim𝑅→∞ ∫𝑅
−𝑅 𝑓 exists. For this two-

sided improper integral to exist, we need the stronger condition that the one-sided improper
integrals exist on either side. For example, consider 𝑓(𝑥) = 𝑥. Clearly ∫𝑅

−𝑅 𝑓 = 0, but this
function is not improper integrable. For example, consider

∫
∞

1

d𝑥
𝑥𝑘

This converges if and only if 𝑘 > 1. Indeed, if 𝑘 ≠ 1,

∫
𝑅

1

d𝑥
𝑥𝑘 = 𝑥1−𝑘

1 − 𝑘
|||

𝑅

1
= 𝑅1−𝑘 − 1

1 − 𝑘

which is clearly finite in the limit if and only if 𝑘 > 1. If 𝑘 = 1, then we can find

∫
𝑅

1

d𝑥
𝑥 = log𝑅 → ∞

as expected. Note the following observations.

(1) 1
√𝑥

is continuous (and bounded) on [𝛿, 1] for all 𝛿 > 0, and

∫
1

𝛿

d𝑥
√𝑥

= 2√𝑥|||
1

𝛿
= 2 − 2√𝛿

So as 𝛿 → 0, this integral tends to 2. This integral is defined, even though the value of
the function at zero is unbounded. So we commonly write

∫
1

0

d𝑥
√𝑥

= 2
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14. Uses of integration

(2) Similarly, we write

∫
1

0

d𝑥
𝑥 = lim

𝛿→0
∫

1

𝛿

d𝑥
𝑥 = lim

𝛿→0
log𝑥|||

1

𝛿
= lim

𝛿→0
(log 1 − log 𝛿)

Since this limit does not exist, the integral ∫1
0

d𝑥
𝑥
does not exist.

(3) If 𝑓 ≥ 0 and 𝑔 ≥ 0 for 𝑥 ≥ 𝑎, and 𝑓(𝑥) ≤ 𝑘𝑔(𝑥), where 𝑘 is a constant for 𝑥 ≥ 𝑎, then

∫
∞

𝑎
𝑔 converges ⟹ ∫

∞

𝑎
𝑓 converges, and ∫

∞

𝑎
𝑓 ≤ ∫

∞

𝑎
𝑔

This is similar to the comparison test for series. First, note that ∫𝑅
𝑎 𝑓 ≤ 𝑘∫𝑅

𝑎 𝑔. Fur-
ther, ∫𝑅

𝑎 𝑓 is an increasing function of 𝑅 since 𝑓 ≥ 0, and bounded above, since ∫∞
𝑎 𝑔

converges. Let

ℓ = sup
𝑅≥𝑎

∫
𝑅

𝑎
𝑓 < ∞

Then we want to show that lim𝑅→∞ ∫𝑅
𝑎 𝑓 = ℓ. Given 𝜀 > 0, by the definition of the

supremum ∃𝑅0 such that

∫
𝑅0

𝑎
𝑓 ≥ ℓ − 𝜀

Thus for all 𝑅 ≥ 𝑅0 we have

∫
𝑅

𝑎
𝑓 ≥ ∫

𝑅0

𝑎
𝑓 ≥ ℓ − 𝜀

Hence,

0 ≤ ℓ −∫
𝑅

𝑎
𝑓 ≤ 𝜀

As an example, consider the integral

∫
∞

0
exp(−𝑥

2

2 ) d𝑥

Now, for 𝑥 ≥ 1, we can bound the integrand by exp(−𝑥
2
), and the integral of this bound

is clearly bounded. Hence the original integral converges.

(4) If∑𝑎𝑛 converges, then 𝑎𝑛 → 0. However, with improper integrals, this is not neces-
sarily the case. Consider a convergent series 𝑎𝑛, where 0 < 𝑎𝑛 < 1 for all 𝑛. Then
define the function 𝑓 defined by

𝑓(𝑛 + 𝑟) = {1 if 𝑟 < 𝑎𝑛
0 otherwise
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where the input 𝑥 is split into the integer part 𝑛 and the remainder 𝑟. This function
is essentially a sequence of rectangles of height 1 and width 𝑎𝑛, spaced so that each
rectangle starts at an integer value of 𝑥. Clearly, we have

∫
𝑛

0
𝑓 =

𝑛
∑
0
𝑎𝑛

where 𝑛 is an integer. So the integral converges, but the integrand does not tend to
zero.

14.2. Integral test for series convergence
Theorem. Let 𝑓(𝑥) be a positive decreasing function for 𝑥 ≥ 1. Then,
(1) The integral ∫∞

1 𝑓(𝑥) d𝑥 and the series∑∞
1 𝑓(𝑥) both converge or diverge. (Note that

such a function is always Riemann integrable on a closed interval since it is bounded
and decreasing.)

(2) As 𝑛 → ∞,∑𝑛
𝑟=1 𝑓(𝑟) − ∫𝑛

1 𝑓(𝑥) d𝑥 tends to a limit ℓ such that 0 ≤ ℓ ≤ 𝑓(1).

Proof. If 𝑛 − 1 ≤ 𝑥 ≤ 𝑛, then
𝑓(𝑛 − 1) ≥ 𝑓(𝑥) ≥ 𝑓(𝑛)

Hence,

𝑓(𝑛 − 1) ≥ ∫
𝑛

𝑛−1
𝑓(𝑥) d𝑥 ≥ 𝑓(𝑛)

Adding up such integrals, we get

𝑛−1
∑
1
𝑓(𝑟) ≥ ∫

𝑛

1
𝑓(𝑥) d𝑥 ≥

𝑛
∑
2
𝑓(𝑟)

Then the first claim is obvious. For the second claim, let

𝜙(𝑛) =
𝑛
∑
1
𝑓(𝑟) −∫

𝑛

1
𝑓(𝑥) d𝑥

Then, using the inequalities established above,

𝜙(𝑛) − 𝜙(𝑛 − 1) = 𝑓(𝑛) −∫
𝑛

𝑛−1
𝑓(𝑥) d𝑥 ≤ 0

So 𝜙 is a decreasing sequence. Further,

0 ≤ 𝜙(𝑛) ≤ 𝑓(1)

𝜙 is bounded, so it converges to some limit ℓ.
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Example. First, consider the sum∑∞
1

1
𝑛𝑘
. By the integral test, this converges if and only if

𝑘 > 1. As a more complicated example, consider∑∞
2

1
𝑛 log𝑛

. Let 𝑓(𝑥) = 1
𝑥 log𝑥

, and

∫
𝑅

2

d𝑥
𝑥 log𝑥 = log(log𝑥)|||

𝑅

2

which diverges, so by the integral test the series diverges.

Corollary (Euler–Mascheroni Constant). As 𝑛 → ∞,

𝑛
∑
1

1
𝑛 −∫

𝑛

1

1
𝑛 = 1 + 1

2 +⋯+ 1
𝑛 − log𝑛 → 𝛾

where 𝛾 ∈ [0, 1]. This is known as the Euler–Mascheroni constant. It is unknown whether
𝛾 is irrational.

14.3. Piecewise continuous functions
Definition. A function 𝑓∶ [𝑎, 𝑏] → ℝ is piecewise continuous if there is a dissection 𝒟
such that 𝑓 is continuous on all intervals defined by this dissection, and that the one-sided
limits

lim
𝑥→𝑥+𝑗−1

𝑓(𝑥); lim
𝑥→𝑥−𝑗−1

𝑓(𝑥)

exist.

We can extend the class of Riemann integrable functions to include piecewise continuous
functions as well. This is true since we use this dissection to construct the upper and lower
sums. The one-sided limits are here to ensure that the function is bounded near these dis-
continuities. We might now ask how large the discontinuity set is allowed to be in order
for 𝑓 to still be Riemann integrable. As we have seen from examples before, it is possible to
have a function which has countably many discontinuity points, but is still Riemann integ-
rable.
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