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1 Differentiation
1.1 Basic definitions

Definition (Differential Equation). A differential equation (DE) is an equation involving
derivatives of a function or several functions.

Definition (Limit, informally). If lim
𝑥→𝑥0

𝑓(𝑥) = 𝐴, then 𝑓(𝑥) can be made arbitrarily close to
𝐴 by making 𝑥 sufficiently close to 𝑥0.

Note that the definition of the limit does not specify behaviour of𝑓(𝑥) at𝑥 = 𝑥0; it is perfectly possible
that 𝑓(𝑥0) is undefined, or that it is some number not equal to 𝐴. Examples of this behaviour would
be 1/𝑥 (undefined at 0), or the Dirac 𝛿 function (infinite at 0).

Definition (One-Sided Limit). A left limit is notated lim
𝑥→𝑥−0

. It requires that the value 𝐴 rep-

resented by the limit is computed by setting 𝑥 to values smaller than 𝑥0. Analogously, a right
limit is notated lim

𝑥→𝑥+0
. In calculating this limit, 𝑥must be greater than 𝑥0.
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Definition (Derivative). We can use the definitions of limits to define the derivative of a
function 𝑓(𝑥) with respect to its argument (in this case, 𝑥):

d𝑓
d𝑥 = lim

ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ (1.1)

Pictorially, we can see that the definition of the derivative is basically the slope of the line between
two points that approach arbitrarily close to each other. In this example, 𝑥 is 0.5, and ℎ is 1.
Note that for the derivative to exist at a point 𝑥, we require that

lim
ℎ→0−

𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ = lim

ℎ→0+
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ

This excludes, for example, the derivative of |𝑥| at 𝑥 = 0, as this would have two conflicting answers
(−1 and 1).
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There are multiple ways of representing derivatives of functions. Here, we show the derivative of
𝑓(𝑥) in multiple notation systems:

• d𝑓
d𝑥 : Leibniz notation

• 𝑓′(𝑥): Lagrange notation
• ̇𝑓(𝑥): Newton notation

For sufficiently smooth functions (meaning that the derivative is valid at each step), we can define
derivatives recursively:

d
d𝑥 (

d𝑓
d𝑥) =

d2𝑓
d𝑥2

= 𝑓″(𝑥) = ̈𝑓(𝑥)

1.2 Rules for differentiation

Definition (Chain Rule). Consider a function 𝑓(𝑥) = 𝐹(𝑔(𝑥)). The derivative of 𝑓(𝑥) can be
written

d𝑓
d𝑥 = 𝐹′(𝑔(𝑥)) ⋅ 𝑔′(𝑥) = d𝐹

d𝑔
d𝑔
d𝑥 (1.2)

Definition (Product Rule). Consider a function 𝑓(𝑥) = 𝑢(𝑥)𝑣(𝑥). The derivative of 𝑓(𝑥) can
be written

d𝑓
d𝑥 = 𝑢′(𝑥)𝑣(𝑥) + 𝑢(𝑥)𝑣′(𝑥) = 𝑢′𝑣 + 𝑢𝑣′ (1.3)

Definition (Leibniz’ Rule). Consider a function 𝑓(𝑥) = 𝑢(𝑥)𝑣(𝑥). Recursive derivatives of
𝑓(𝑥) can be written

𝑓 = 𝑢𝑣 (1.4)
𝑓′ = 𝑢′𝑣 + 𝑢𝑣′
𝑓″ = 𝑢″𝑣 + 2𝑢′𝑣′ + 𝑢𝑣″
𝑓‴ = 𝑢‴𝑣 + 3𝑢″𝑣′ + 3𝑢′𝑣″ + 𝑢𝑣‴

This is analogous to Pascal’s triangle and the binomial expansion. The coefficients are

( 𝑛
𝑚 = 𝑛!

𝑚!(𝑛−𝑚)!
)

1.3 Order of magnitude
The goal of ‘order of magnitude’ functions is to compare the size of functions in the vicinity of certain
points.
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Definition (Little 𝑜). Given functions 𝑓(𝑥) and 𝑔(𝑥) such that

lim
𝑥→𝑥0

𝑓(𝑥)
𝑔(𝑥) = 0 (1.5)

we can say that 𝑓(𝑥) = 𝑜(𝑔(𝑥)) as 𝑥 → 𝑥0.

This is essentially saying that the function 𝑓(𝑥) is much ‘smaller’ than 𝑔(𝑥) as we approach the point
𝑥0. For example, 𝑥2 = 𝑜(𝑥) as 𝑥 → 0, because 𝑥2 becomes vanishingly small compared to 𝑥 near
zero.

Definition (Big 𝑂: 𝑥0 finite). Assume we have two functions 𝑓(𝑥) and 𝑔(𝑥), and a finite
number 𝑥0 where we are comparing the functions. If we can find two positive constants 𝑀
and 𝛿 such that

|𝑓(𝑥)| ≤ 𝑀|𝑔(𝑥)| (∀𝑥, |𝑥 − 𝑥0| < 𝛿) (1.6)

then 𝑓(𝑥) = 𝑂(𝑔(𝑥)) as 𝑥 → 𝑥0.

Informally, the function 𝑓 can be bounded by 𝑔 in a specific area around the point 𝑥0.
Unlike little 𝑜 notation, there is no requirement that 𝑓(𝑥) becomes vanishingly small compared to
𝑔(𝑥), just that it is smaller. Therefore, 𝑥2 ≠ 𝑜(𝑥2) but 𝑥2 = 𝑂(𝑥2) (both as 𝑥 → 0).
Some examples:

• 𝑥2 = 𝑂(𝑥) as 𝑥 → 0. Take𝑀 = 1, 𝛿 = 1.
• 𝑥 ≠ 𝑂(𝑥2) as 𝑥 → 0. This is because for any value of 𝑥 smaller than 1/𝑀, the value of 𝑔(𝑥) is
𝑀𝑥2 which is smaller than 𝑥.

• 𝑥2 = 𝑂(𝑥2) as 𝑥 → 0. Take𝑀 = 1, and choose an arbitrary 𝛿.
By convention, we usually pick the most restrictive𝑀 and 𝛿 possible.

Definition (Big 𝑂: 𝑥0 infinite). Assume we have two functions 𝑓(𝑥) and 𝑔(𝑥), and we want
to compare the functions’ behaviours at infinity. If we can find two positive constants𝑀 and
𝑥1 such that

|𝑓(𝑥)| ≤ 𝑀|𝑔(𝑥)| (∀𝑥 > 𝑥1) (1.7)

then 𝑓(𝑥) = 𝑂(𝑔(𝑥)) as 𝑥 → ∞.

This is basically the same as the previous definition—but obviously we can’t pick a value slightly less
than infinity to test, so we just provide a lower bound on 𝑥 where the condition holds true.
For example, 2𝑥3 + 4𝑥 + 12 = 𝑂(𝑥3) as 𝑥 → ∞. This is because the function is a cubic, so can be
bounded by a cubic as it shoots off to infinity. We can take, for example, 𝑀 = 3 and 𝑥1 = 3. Note
that we can’t just pick𝑀 = 2 even though asymptotically the function is close to 2𝑥3; there is a value
added to the 2𝑥3 so we’d need to pick a slightly larger number to guarantee that Equation (1.7) is
satisfied.
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1.4 Equation of a tangent
We can use little 𝑜 notation to construct the equation of a tangent to a function 𝑓(𝑥) at a given 𝑥 value,
𝑥0. This is the start of the formula for the Taylor series of 𝑓 at 𝑥0.
First, notice that 𝑜(𝑔(𝑥))/𝑔(𝑥) is zero, as 𝑜(𝑔(𝑥)) is vanishingly small compared to 𝑔(𝑥) near the con-
vergence point.

Using Equation (1.1), we can (informally) deduce:

d𝑓
d𝑥

|||𝑥=𝑥0
= 𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)

ℎ

= 𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)
ℎ + 𝑜(ℎ)

ℎ
∴ 𝑓(𝑥0 + ℎ) = 𝑓(𝑥0) +

d𝑓
d𝑥

|||𝑥=𝑥0
ℎ + 𝑜(ℎ)

If we now take 𝑥 = 𝑥0 + ℎ; 𝑦 = 𝑓(𝑥); 𝑦0 = 𝑓(𝑥0), we have

𝑦 = 𝑦0 +
d𝑓
d𝑥

|||𝑥=𝑥0
(𝑥 − 𝑥0) + 𝑜(ℎ)

This is the equation of the tangent to the curve at 𝑥0 if 𝑜(ℎ) = 0, and this is start of the equation for
the Taylor series.

1.5 Taylor series
Suppose that we want to approximate a function 𝑓(𝑥) using a polynomial of order 𝑛.

𝑓(𝑥) ≈ 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 +⋯+ 𝑎𝑛𝑥𝑛⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟
≡𝑝𝑛(𝑥)

By assuming that the equality holds, we may set 𝑥 = 0 to get the value of 𝑎0. By differentiating the
left and right hand sides 𝑘 times, we can evaluate both sides at 𝑥 = 0 to get the value of 𝑎𝑘. Therefore,
term 𝑎𝑘 is equivalent to 𝑓(𝑘)(0)/𝑘!

𝑓(𝑥) ≈ 𝑝𝑛(𝑥) = 𝑓(0) + 𝑥𝑓′(0) + 𝑥2
2 𝑓

″(0) +⋯ + 𝑥𝑛
𝑛! 𝑓

(𝑛)(0)

Alternatively, repeating the process at 𝑥0, we get the formula for the Taylor polynomial of degree 𝑛
of 𝑓(𝑥):

𝑓(𝑥) ≈ 𝑝𝑛(𝑥) = 𝑓(𝑥0) + (𝑥 − 𝑥0)𝑓′(𝑥0) +
(𝑥 − 𝑥0)2

2 𝑓″(𝑥0) +⋯ + (𝑥 − 𝑥0)𝑛
𝑛! 𝑓(𝑛)(𝑥0)

We can write
𝑓(𝑥) = 𝑝𝑛(𝑥) + 𝐸𝑛 (1.8)

where 𝐸𝑛 is the error at term 𝑛. Recall that 𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ𝑓′(𝑥) + 𝑜(ℎ) as ℎ → 0. We can
generalise this, provided that the first 𝑛 derivatives of 𝑓(𝑥) exist.

𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ𝑓′(𝑥) + ℎ2
2 𝑓

″(𝑥) +⋯ + ℎ𝑛
𝑛! 𝑓

(𝑛)(𝑥) + 𝑜(ℎ𝑛) (1.9)

Comparing Equations (1.8) and (1.9), we see that:
𝐸𝑛 = 𝑜(ℎ𝑛)
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Theorem (Taylor’s Theorem). 𝐸𝑛 = 𝑂(ℎ𝑛+1) as ℎ → 0 provided that 𝑓(𝑛+1)(𝑥) exists.

Note that the big 𝑂 notation in Taylor’s Theorem is a stronger statement than the little 𝑜 notation
above. For example, ℎ𝑛+𝑎 = 𝑜(ℎ𝑛) as ℎ → 0 ∀𝑎 ∈ (0, 1) since limℎ→0

ℎ𝑛+𝑎
ℎ𝑛

= limℎ→0 ℎ𝑎 = 0. How-
ever, ℎ𝑛+𝑎 ≠ 𝑂(ℎ𝑛+1) as ℎ → 0 for 𝑎 ∈ (0, 1) because we can’t bound ℎ𝑛+𝑎 using ℎ𝑛+1 everywhere in
the vicinity of 0.

1.6 L’Hôpital’s rule
Let 𝑓(𝑥) and 𝑔(𝑥) be differentiable functions at 𝑥 = 𝑥0, and that lim𝑥→𝑥0 𝑓(𝑥) = 𝑓(𝑥0) = 0 and
similarly for 𝑔(𝑥). L’Hôpital’s Rule states that

lim
𝑥→𝑥0

𝑓(𝑥)
𝑔(𝑥) = lim

𝑥→𝑥0

𝑓′(𝑥)
𝑔′(𝑥) if 𝑔

′(𝑥0) ≠ 0

Proof. As 𝑥 → 𝑥0:

𝑓(𝑥) = 𝑓(𝑥0) + (𝑥 − 𝑥0)𝑓′(𝑥0) + 𝑜(𝑥 − 𝑥0)
𝑔(𝑥) = 𝑔(𝑥0) + (𝑥 − 𝑥0)𝑔′(𝑥0) + 𝑜(𝑥 − 𝑥0)

But we know that 𝑓(𝑥0) = 𝑔(𝑥0) = 0 therefore

𝑓(𝑥)
𝑔(𝑥) =

𝑓′(𝑥0) +
𝑜(𝑥−𝑥0)
𝑥−𝑥0

𝑔′(𝑥0) +
𝑜(𝑥−𝑥0)
𝑥−𝑥0

By the definition of little 𝑜, 𝑜(ℎ)/ℎ tends to zero, so
𝑓(𝑥)
𝑔(𝑥) =

𝑓′(𝑥)
𝑔′(𝑥)

Note that l’Hôpital’s rule can be applied recursively, using higher-order derivatives. For example,
consider 𝑓(𝑥) = 3 sin𝑥 − sin 3𝑥; 𝑔(𝑥) = 2𝑥 − sin 2𝑥. The limit approaches 3 as 𝑥 → 0.

2 Integration
2.1 Definition of integration
We use a Riemann sum to approximate the area under a sufficiently well-behaved function 𝑓(𝑥) on
the real numbers.

𝑁−1
∑
𝑛=0

𝑓(𝑥𝑛)Δ𝑥 (2.1)

where Δ𝑥 = (𝑏 − 𝑎)/𝑁, and 𝑥𝑛 = 𝑎 + 𝑛Δ𝑥. How close is (2.1) to the area under 𝑓(𝑥) for large 𝑁?
Consider a specific rectangle in the Riemann sum by fixing 𝑛. The area under the curve in the 𝑛th
rectangle and the area of the rectangle itself differ by a value we denote here as 𝜀. By computing 𝜀’s
order of magnitude, we can show how much the total error deviates by.
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Theorem (Mean Value Theorem). For a continuous function 𝑓(𝑥),

∫
𝑥𝑛+1

𝑥𝑛
𝑓(𝑥) d𝑥 = 𝑓(𝑥𝑐) ⋅ (𝑥𝑛+1 − 𝑥𝑛) (2.2)

for some 𝑥𝑐 ∈ (𝑥𝑛, 𝑛𝑛+1).

We use the Taylor Series of 𝑓(𝑥) at 𝑥𝑛 to compute a value for 𝑥𝑐.

𝑓(𝑥𝑐) = 𝑓(𝑥𝑛) + 𝑂(𝑥𝑐 − 𝑥𝑛)

as 𝑥𝑐 − 𝑥𝑛 → 0. Since 𝑥𝑛 < 𝑥𝑐 < 𝑥𝑛+1, which implies |𝑥𝑛+1 − 𝑥𝑛| > |𝑥𝑐 − 𝑥𝑛|, we can make the
statement that

𝑓(𝑥𝑐) = 𝑓(𝑥𝑛) + 𝑂(𝑥𝑛+1 − 𝑥𝑛)
as 𝑥𝑛+1 − 𝑥𝑛 → 0. Thus, by (2.2)

∫
𝑥𝑛+1

𝑥𝑛
𝑓(𝑥) d𝑥 = [𝑓(𝑥𝑛) + 𝑂(𝑥𝑛+1 − 𝑥𝑛)] (𝑥𝑛+1 − 𝑥𝑛)

By defining Δ𝑥 = 𝑥𝑛+1 − 𝑥𝑛, we have

∫
𝑥𝑛+1

𝑥𝑛
𝑓(𝑥) d𝑥 = Δ𝑥𝑓(𝑥𝑛) + 𝑂(Δ𝑥2) (2.3)

By rearranging, we can compute 𝜀:

𝜀 =
||||
∫

𝑥𝑛+1

𝑥𝑛
𝑓(𝑥) d𝑥 − Δ𝑥𝑓(𝑥𝑛)

||||
= 𝑂(Δ𝑥2)

Therefore it follows that

∫
𝑏

𝑎
𝑓(𝑥) d𝑥 = lim

Δ𝑥→0
[(

𝑁−1
∑
𝑛=0

𝑓(𝑥𝑛)Δ𝑥) + 𝑂(𝑁Δ𝑥2)]

Note that 𝑂(𝑁Δ𝑥2) = 𝑂((𝑏−𝑎
𝑁
)2 ⋅ 𝑁) = 𝑂(1/𝑁), so

∫
𝑏

𝑎
𝑓(𝑥) d𝑥 = lim

𝑁→∞
[(

𝑁−1
∑
𝑛=0

𝑓(𝑥𝑛)Δ𝑥) + 𝑂(1/𝑁)]

Which gives our final result of

∫
𝑏

𝑎
𝑓(𝑥) d𝑥 = lim

𝑁→∞

𝑁−1
∑
𝑛=0

𝑓(𝑥𝑛)Δ𝑥 (2.4)
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2.2 Fundamental theorem of calculus
Let 𝐹(𝑥) = ∫𝑥

𝑎 𝑓(𝑡) d𝑡. From the definition of the derivative, we have

d𝐹
d𝑥 = lim

ℎ→0
1
ℎ [𝐹(𝑥 + ℎ) − 𝐹(𝑥)]

= lim
ℎ→0

1
ℎ [∫

𝑥+ℎ

𝑎
𝑓(𝑡) d𝑡 −∫

𝑥

𝑎
𝑓(𝑡) d𝑡]

= lim
ℎ→0

1
ℎ ∫

𝑥+ℎ

𝑥
𝑓(𝑡) d𝑡

Using (2.4):

= lim
ℎ→0

1
ℎ [ℎ𝑓(𝑥) + 𝑂(ℎ2)]

= lim
ℎ→0

[𝑓(𝑥) + 𝑂(ℎ)]

= 𝑓(𝑥)

Therefore:
d
d𝑥 [∫

𝑥

𝑎
𝑓(𝑡) d𝑡] = 𝑓(𝑥) (2.5)

2.3 Integration techniques
Three particularly important methods of integration are:

• 𝑢-substitution,
• trigonometric substitutions, and

• integration by parts.

Of particular note is the trigonometric substitution method, since it can be difficult to work out ex-
actly which substitution will yield the result. A table is provided below.

Identity Term in Integrand Substitution

cos2 𝜃 + sin2 𝜃 = 1 √1 − 𝑥2 𝑥 = sin 𝜃
1 + tan2 𝜃 = sec2 𝜃 1 + 𝑥2 𝑥 = tan 𝜃
cosh2 𝑢 − sinh2 𝑢 = 1 √𝑥2 − 1 𝑥 = cosh𝑢
cosh2 𝑢 − sinh2 𝑢 = 1 √𝑥2 + 1 𝑥 = sinh𝑢
1 − tanh2 𝑢 = sech2 𝑢 1 − 𝑥2 𝑥 = tanh𝑢

3 Multivariate functions
3.1 Partial derivatives
We define the partial derivative of a two-valued function 𝑓(𝑥, 𝑦) with respect to 𝑥 (for example)
by:

𝜕𝑓
𝜕𝑥

|||𝑦
= lim

𝛿𝑥→0

𝑓(𝑥 + 𝛿𝑥, 𝑦) − 𝑓(𝑥, 𝑦)
𝛿𝑥 (3.1)
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For example, if 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦3 + 𝑒𝑥𝑦2 , we have
𝜕𝑓
𝜕𝑥

|||𝑦
= 2𝑥 + 𝑦2𝑒𝑥𝑦2

𝜕2𝑓
𝜕𝑥2

|||𝑦
= 2 + 𝑦4𝑒𝑥𝑦2

We can also define ‘cross-derivatives’ by differentiating successively with respect to different vari-
ables, for example

𝜕
𝜕𝑦 (

𝜕𝑓
𝜕𝑥

|||𝑦
)
||||𝑥
= 2𝑦𝑒𝑥𝑦2 + 2𝑥𝑦3𝑒𝑥𝑦2

The order of computation of cross-derivatives is irrelevant, provided that the required derivatives all
exist.

𝜕2𝑓
𝜕𝑥𝜕𝑦 = 𝜕

𝜕𝑥
𝜕𝑓
𝜕𝑦 = 𝜕

𝜕𝑦
𝜕𝑓
𝜕𝑥 = 𝜕2𝑓

𝜕𝑦𝜕𝑥 (3.2)

We use a subscript shorthand to denote partial differentiation. Where the point of evaluation of the
derivative is not stated, it is implied to be fixed. For example:

𝜕𝑓
𝜕𝑥

|||𝑦
= 𝜕𝑓
𝜕𝑥 = 𝑓𝑥

However, with a function 𝑓(𝑥, 𝑦, 𝑧):
𝜕𝑓
𝜕𝑥

|||𝑦𝑧
≠ 𝜕𝑓

𝜕𝑥
|||𝑦

because 𝑧 is not fixed.

3.2 Multivariate chain rule
In this section, all use of 𝑜 notation is defined to be where all required 𝛿 values approach 0. We define
the differential of a two-valued function 𝑓(𝑥, 𝑦) to be

𝛿𝑓 = 𝑓(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦) − 𝑓(𝑥, 𝑦) (3.3)

We can evaluate this differential by rewriting (3.3) as

𝛿𝑓 = 𝑓(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦) − 𝑓(𝑥 + 𝛿𝑥, 𝑦) +
𝑓(𝑥 + 𝛿𝑥, 𝑦) − 𝑓(𝑥, 𝑦)

We can move from (𝑥, 𝑦) to (𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦) along the path (𝑥, 𝑦) → (𝑥+𝛿𝑥, 𝑦) → (𝑥+𝛿𝑥, 𝑦 + 𝛿𝑦). If
wemove in this way, thenwe only need to worry about derivatives in the directions of our axes. From
here on in the derivation, the first line will always represent the path segment in the 𝑦 direction, and
the second line will represent the path segment in the 𝑥 direction.
Now that we’ve separated the differential into these two axes, we can use Taylor series, treating
each line as a single-valued function, to expand each of these path segments along the matching
axis.

𝛿𝑓 = 𝑓(𝑥 + 𝛿𝑥, 𝑦) + 𝛿𝑦𝜕𝑓𝜕𝑦 (𝑥 + 𝛿𝑥, 𝑦) + 𝑜(𝛿𝑦) − 𝑓(𝑥 + 𝛿𝑥, 𝑦) +

𝑓(𝑥, 𝑦) + 𝛿𝑥𝜕𝑓𝜕𝑥 (𝑥, 𝑦) + 𝑜(𝛿𝑥) − 𝑓(𝑥, 𝑦)
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We can now cancel the beginning and ending points of each segment of the path, leaving

𝛿𝑓 = 𝛿𝑦𝜕𝑓𝜕𝑦 (𝑥 + 𝛿𝑥, 𝑦) + 𝑜(𝛿𝑦)+

𝛿𝑥𝜕𝑓𝜕𝑥 (𝑥, 𝑦) + 𝑜(𝛿𝑥)

We can reduce the remaining 𝑥 + 𝛿𝑥 term to simply an 𝑥 term by performing another Taylor expan-
sion.

𝛿𝑓 = 𝛿𝑦 [𝜕𝑓𝜕𝑦 (𝑥, 𝑦) + 𝛿𝑥𝜕
2𝑓
𝜕𝑦2 (𝑥, 𝑦) + 𝑜(𝛿𝑥)] + 𝑜(𝛿𝑦) +

𝛿𝑥𝜕𝑓𝜕𝑥 (𝑥, 𝑦) + 𝑜(𝛿𝑥)

Expanding out this bracket leaves

𝛿𝑓 = 𝛿𝑦𝜕𝑓𝜕𝑦 (𝑥, 𝑦) + 𝛿𝑥𝛿𝑦𝜕
2𝑓
𝜕𝑦2 (𝑥, 𝑦) + 𝑜(𝛿𝑥𝛿𝑦) + 𝑜(𝛿𝑦) +

𝛿𝑥𝜕𝑓𝜕𝑥 (𝑥, 𝑦) + 𝑜(𝛿𝑥)

We will now change the meanings of each line. Now, we will group terms by factors.

𝛿𝑓 = 𝛿𝑥𝜕𝑓𝜕𝑥 (𝑥, 𝑦) + 𝑜(𝛿𝑥) +

𝛿𝑦𝜕𝑓𝜕𝑦 (𝑥, 𝑦) + 𝑜(𝛿𝑦) +

𝛿𝑥𝛿𝑦𝜕
2𝑓
𝜕𝑦2 (𝑥, 𝑦) + 𝑜(𝛿𝑥𝛿𝑦)

Because 𝑜(ℎ) is significantly smaller than ℎ, we can eliminate all the 𝑜 terms.

𝛿𝑓 = 𝛿𝑥𝜕𝑓𝜕𝑥 (𝑥, 𝑦) +

𝛿𝑦𝜕𝑓𝜕𝑦 (𝑥, 𝑦) +

𝛿𝑥𝛿𝑦𝜕
2𝑓
𝜕𝑦2 (𝑥, 𝑦)

Finally, we can eliminate the 𝛿𝑥𝛿𝑦 term because it is vanishingly small as they tend to zero.

𝛿𝑓 = 𝛿𝑥𝜕𝑓𝜕𝑥 (𝑥, 𝑦) + 𝛿𝑦𝜕𝑓𝜕𝑦 (𝑥, 𝑦) (3.4)

This is the differential form of the multivariate chain rule. We can take the result of this equation in
the limit to create the infinitesimal form:

d𝑓 = d𝑥 𝜕𝑓𝜕𝑥 (𝑥, 𝑦) + d𝑦 𝜕𝑓𝜕𝑦 (𝑥, 𝑦) (3.5)

By integrating (3.5), we get
∫ d𝑓 = ∫ 𝜕𝑓

𝜕𝑥 d𝑥 +∫ 𝜕𝑓
𝜕𝑦 d𝑦
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In definite integral form, we can write

𝑓(𝑥2 − 𝑥1, 𝑦2 − 𝑦1) = ∫
𝑥2

𝑥1

𝜕𝑓
𝜕𝑥 (𝑥, 𝑦1) d𝑥 +∫

𝑦2

𝑦1

𝜕𝑓
𝜕𝑦 (𝑥2, 𝑦) d𝑦

= ∫
𝑦2

𝑦1

𝜕𝑓
𝜕𝑦 (𝑥1, 𝑦) d𝑦 +∫

𝑥2

𝑥1

𝜕𝑓
𝜕𝑥 (𝑥, 𝑦2) d𝑥

≠ ∫
𝑥2

𝑥1

𝜕𝑓
𝜕𝑥 (𝑥, 𝑦1) d𝑥 +∫

𝑦2

𝑦1

𝜕𝑓
𝜕𝑦 (𝑥1, 𝑦) d𝑦

Note that the first two examples of a right hand side go along the paths (𝑥1, 𝑦1) → (𝑥2, 𝑦1) → (𝑥2, 𝑦2)
and (𝑥1, 𝑦1) → (𝑥1, 𝑦2) → (𝑥2, 𝑦2) by performing the integrals. However, the last example does not
follow a path from (𝑥1, 𝑦1) to (𝑥2, 𝑦2), so it is invalid.

3.3 Change of variables
We can transform derivatives into different coordinate systems to make problems easier to solve. For
example, let 𝑓(𝑥, 𝑦) be some function with a Cartesian coordinate input. We can rewrite it in terms
of polar coordinates (𝑟, 𝜃). First, rewrite 𝑓 as:

𝑓(𝑥(𝑟, 𝜃), 𝑦(𝑟, 𝜃))

then we can write the derivatives.
𝜕𝑓
𝜕𝑟 =

𝜕𝑓
𝜕𝑥

𝜕𝑥
𝜕𝑟 +

𝜕𝑓
𝜕𝑦

𝜕𝑦
𝜕𝑟

We can do similar evaluations for 𝜕𝑓
𝜕𝜃
, for example.

3.4 Implicit differentiation
Consider some surface defined by 𝑓(𝑥, 𝑦, 𝑧) = 𝑐. Then 𝑓 implicitly defines functions such as 𝑧(𝑥, 𝑦)
(provided the function is well-behaved). We can find, for example, 𝜕𝑧

𝜕𝑥
||𝑦 by using the multivariate

chain rule in three dimensions.

𝜕𝑓
𝜕𝑥

|||𝑦
= 𝜕𝑓

𝜕𝑥
|||𝑦𝑧

𝜕𝑥
𝜕𝑥
|||𝑦⏟

=1

+ 𝜕𝑓
𝜕𝑦
|||𝑥𝑧

𝜕𝑦
𝜕𝑥
|||𝑦⏟

=0

+ 𝜕𝑓
𝜕𝑧
|||𝑥𝑦

𝜕𝑧
𝜕𝑥
|||𝑦

Note that the 𝜕𝑦
𝜕𝑥

term is zero because we hold 𝑦 to be fixed. Simplifying, we get

𝜕𝑓
𝜕𝑥

|||𝑦
= 𝜕𝑓

𝜕𝑥
|||𝑦𝑧

+ 𝜕𝑓
𝜕𝑧
|||𝑥𝑦

𝜕𝑧
𝜕𝑥
|||𝑦

The left hand side is zero because on the surface 𝑧(𝑥, 𝑦), 𝑓 is always equivalent to 𝑐 so there is never
any 𝛿𝑓. The 𝜕𝑓

𝜕𝑥
||𝑦𝑧 term, however, is not zero in general because we are not going across the 𝑧(𝑥, 𝑦)

surface—just parallel to the 𝑥 axis, because we fixed both 𝑦 and 𝑧. Hence,

𝜕𝑧
𝜕𝑥
|||𝑦
=
− 𝜕𝑓

𝜕𝑥
||𝑦𝑧

𝜕𝑓
𝜕𝑧
||𝑥𝑦
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The reciprocal rule for derivatives applies also to partial derivatives so long as the same variables are
held fixed. For example, given the function 𝑓(𝑥(𝑟, 𝜃), 𝑦(𝑟, 𝜃)), we have

𝜕𝑟
𝜕𝑥
|||𝑦
= 1

𝜕𝑥
𝜕𝑟
||𝑦

But
𝜕𝑟
𝜕𝑥 ≠ 1

𝜕𝑥
𝜕𝑟

because the left hand side holds 𝑦 constant and the right hand side holds 𝜃 constant.

3.5 Differentiating an integral with respect to a parameter
Consider a family of function 𝑓(𝑥; 𝛼) where 𝛼 is some parameter. We can say that 𝛼 parametrises 𝑓.
An example of a parametrised function is the logarithm; 𝑓(𝑥; 𝛼) = log𝛼 𝑥. We define

𝐼(𝛼) = ∫
𝑏(𝛼)

𝑎(𝛼)
𝑓(𝑥; 𝛼) d𝑥

So, what is d𝐼
d𝛼
? By definition, we have

d𝐼
d𝛼 = lim

𝛿𝛼→0
𝐼(𝛼 + 𝛿𝛼) − 𝐼(𝛼)

𝛿𝛼

= lim
𝛿𝛼→0

1
𝛿𝛼 [∫

𝑏(𝛼+𝛿𝛼)

𝑎(𝛼+𝛿𝛼)
𝑓(𝑥; 𝛼 + 𝛿𝛼) d𝑥 −∫

𝑏(𝛼)

𝑎(𝛼)
𝑓(𝑥; 𝛼) d𝑥]

= lim
𝛿𝛼→0

1
𝛿𝛼 [∫

𝑏(𝛼)

𝑎(𝛼)
𝑓(𝑥; 𝛼 + 𝛿𝛼) − 𝑓(𝑥; 𝛼) d𝑥 −∫

𝑎(𝛼+𝛿)

𝑎(𝛼)
𝑓(𝑥; 𝛼 + 𝛿𝛼) d𝑥 +∫

𝑏(𝛼+𝛿)

𝑏(𝛼)
𝑓(𝑥; 𝛼 + 𝛿𝛼) d𝑥]

= ∫
𝑏(𝛼)

𝑎(𝛼)
lim
𝛿𝛼→0

𝑓(𝑥; 𝛼 + 𝛿𝛼) − 𝑓(𝑥; 𝛼)
𝛿𝛼 d𝑥 − 𝑓(𝑎; 𝛼) lim

𝛿𝛼→0
𝑎(𝛼 + 𝛿𝛼) − 𝑎(𝛼)

𝛿𝛼 + 𝑓(𝑏; 𝛼) lim
𝛿𝛼→0

𝑏(𝛼 + 𝛿𝛼) − 𝑏(𝛼)
𝛿𝛼

Therefore:
d𝐼
d𝛼 = d

d𝛼 ∫
𝑏(𝛼)

𝑎(𝛼)
𝑓(𝑥; 𝛼) d𝑥 = ∫

𝑏(𝛼)

𝑎(𝛼)

𝜕𝑓
𝜕𝛼 d𝑥 + 𝑓(𝑏; 𝛼)d𝑏d𝛼 − 𝑓(𝑎; 𝛼)d𝑎d𝛼

4 Linear ordinary differential equations
4.1 Eigenfunctions

Definition. The eigenfunction of an operator is a function that is unchanged by the action
of the operator (except for a multiplicative scaling).

From this definition, we can see that 𝑒𝜆𝑥 is the eigenfunction of the differential operator. The eigen-
value of this function is 𝜆, as this is the scaling factor.
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(i) Any linear homogeneous ODE with constant coefficients has solutions in the form 𝑒𝜆𝑥. For
example, in the equation 5𝑦′ − 3𝑦 = 0 we can try a solution of the form 𝑦 = 𝐴𝑒𝜆𝑥, and we get
5𝜆 − 3 = 0. This equation is known as the characteristic equation.

(ii) Any solution to a linear homogeneous ODE can be scaled to create more solutions. In particu-
lar, 𝑦 = 0 is a solution.

(iii) An 𝑛th order linear ODE has 𝑛 linearly independent solutions. In the case of constant coeffi-
cient equations, this follows from the Fundamental Theorem of Algebra. However, the proof
of this is outside the scope of this course. This implies that the above example has only one
solution: 𝑦 = 𝐴𝑒3𝑥/5.

(iv) An 𝑛th order ODE requires 𝑛 initial/boundary conditions to create a particular solution.

4.2 Solving first order ODEs
To solve a differential equation, we can use the following technique to break it apart into two smaller
functions:

𝑦 = 𝑦𝑝 + 𝑦𝑐
The function 𝑦𝑝 is called the particular integral; it is simply any solution the original equation. Nor-
mally this does not have any arbitrary constants in it. The other function 𝑦𝑐 is the complementary
function. This is a solution to the equivalent homogeneous equation, which is formed by setting the
right hand side (the side without the dependent variable) to zero. This is generally easier to solve
using the exponential function.

By adding the two together, we get the general solution. Alternatively, once we have computed the
particular integral, we can simply substitute the equation 𝑦 = 𝑦𝑝 + 𝑦𝑐 into the original differential
equation to get a new equation in terms of 𝑦𝑐.
Note that we refer to terms that do not depend on the dependent variable as ‘forcing functions’.

4.3 Constant forcing
If the equation is linear, has constant coefficients and a constant on the right hand side, we can set
𝑦′𝑝 = 0. For example, in the equation 5𝑦′ − 3𝑦 = 10, we can set 𝑦′ = 0 to get 𝑦𝑝 = −10/3.
Now we can insert this general solution into the differential equation. Note that all terms with 𝑦𝑝,
along with the right hand side, cancel out because it is a solution. This leaves 5𝑦′𝑐 − 3𝑦 = 0. We
can solve this normally (using methods such as trying 𝐴𝑒𝜆𝑥 or just directly solving the characteristic
equation) to give 𝑦𝑐 = 𝐴𝑒−3𝑥/5.
Combining the results, we get 𝑦 = 𝐴𝑒3𝑥/5 − 10/3.

4.4 Eigenfunction forcing
If the equation has a 𝑒𝑘𝑡 term as the only forcing function (where the independent variable here is 𝑡),
we can solve it in a similar way. Here is an example question involving this concept.

In a sample of rock, isotopeAdecays into isotope B at a rate proportional to 𝑎, the number
of nuclei of A, while B decays into isotope C at a rate proportional to 𝑏, the number of
nuclei of B. Find 𝑏(𝑡).
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We can formulate an equation as follows:

̇𝑎 = −𝑘𝑎𝑎 ⟹ 𝑎 = 𝑎0𝑒−𝑘𝑎𝑡
̇𝑏 = 𝑘𝑎𝑎 − 𝑘𝑏𝑏

∴ ̇𝑏 + 𝑘𝑏𝑏 = 𝑘𝑎𝑎0𝑒−𝑘𝑎𝑡

So we have a linear first order ODE with an eigenfunction as the forcing function. We can guess that
the particular integral is of the form 𝑏𝑝 = 𝜆𝑒−𝑘𝑎𝑡.

−𝑘𝑎𝜆𝑒−𝑘𝑎𝑡 + 𝑘𝑏𝜆𝑒−𝑘𝑎𝑡 = 𝑘𝑎𝑎0𝑒−𝑘𝑎𝑡
𝜆(𝑘𝑏 − 𝑘𝑎) = 𝑘𝑎𝑎0

∴ 𝜆 = 𝑘𝑎
𝑘𝑏 − 𝑘𝑎

𝑎0

We can form the complementary function by solving:

̇𝑏𝑐 + 𝑘𝑏𝑏𝑐 = 0
∴ 𝑏𝑐 = 𝐴𝑒−𝑘𝑏𝑡

So combining everything, we have

𝑏 = 𝑘𝑎
𝑘𝑏 − 𝑘𝑎

𝑎0𝑒−𝑘𝑎𝑡 + 𝐴𝑒−𝑘𝑏𝑡

In this instance, there is a special property that if 𝑏 = 0 at 𝑡 = 0, then we can divide 𝑏(𝑡)/𝑎(𝑡) and
completely eliminate 𝑎0, thus letting us calculate the age of a rock without knowing the original
amount of isotope A at all.

4.5 Non-constant coefficients
If we have a differential equation in standard form, i.e.

𝑦′ + 𝑝(𝑥)𝑦 = 𝑓(𝑥)

we can multiply the equation by an integrating factor 𝜇 to solve it. Ideally, we want the derivative of
𝜇 to be 𝜇𝑝(𝑥) so that the equation becomes

𝜇𝑦′ + 𝜇𝑝(𝑥)𝑦 = 𝜇𝑦′ + 𝜇′𝑦 = (𝜇𝑦)′ = 𝜇𝑓(𝑥)

So therefore 𝜇 = 𝑒∫𝑝(𝑥) d𝑥.

5 Discrete equations
A discrete equation (for our purposes) is an equation involving a function that is evaluated at a dis-
crete set of points.
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5.1 Numerical integration
We can consider a discrete representation of 𝑦(𝑥); let 𝑥1 ↦ 𝑦1, 𝑥2 ↦ 𝑦2 etc. We can approximate the
derivative with

d𝑦
d𝑥

|||𝑥𝑛
≊ 𝑦𝑛+1 − 𝑦𝑛

ℎ
This is called the ‘Forward Euler’ approximation of the derivative. It isn’t the best, but it is asymptot-
ically equal. We can solve the differential equation 5𝑦′ − 3𝑦 = 0 as follows:

5𝑦𝑛+1 − 𝑦𝑛
ℎ − 3𝑦𝑛 = 0

This is known as a difference equation. We can transform this into a recurrence relation as fol-
lows:

𝑦𝑛+1 = (1 + 3
5ℎ) 𝑦𝑛

We can apply this iteratively, to get

𝑦𝑛+1 = (1 + 3
5ℎ) 𝑦𝑛

= (1 + 3
5ℎ)

2
𝑦𝑛−1

= (1 + 3
5ℎ)

𝑛
𝑦0

So in the limit, this approaches the desired solution. Note that due to the approximation we used for
the derivative, for finite 𝑛 the solution we get will be less than the actual answer.

5.2 Series solutions
Series solutions are a powerful tool for solving ordinary differential equations. We can express the
solution in terms of an infinite power series, i.e. we let

𝑦(𝑥) =
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛

Let us try this on our original differential equation, 5𝑦′ − 3𝑦 = 0. We have:

𝑦(𝑥) =
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛 𝑦′(𝑥) =
∞
∑
𝑛=0

𝑛𝑎𝑛𝑥𝑛−1

Multiplying by 𝑥 to eliminate the power of 𝑛 − 1, we have

𝑥𝑦(𝑥) =
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛+1 𝑥𝑦′(𝑥) =
∞
∑
𝑛=0

𝑛𝑎𝑛𝑥𝑛

Matching the limits of the sums and powers of 𝑥:

𝑥𝑦(𝑥) =
∞
∑
𝑛=1

𝑎𝑛−1𝑥𝑛 𝑥𝑦′(𝑥) =
∞
∑
𝑛=1

𝑛𝑎𝑛𝑥𝑛
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We can now combine this into one equation.

5𝑦′ − 3𝑦 = 0 ⟹ 5
∞
∑
𝑛=1

𝑛𝑎𝑛𝑥𝑛 − 3
∞
∑
𝑛=1

𝑎𝑛−1𝑥𝑛 = 0 ⟹
∞
∑
𝑛=1

[5𝑛𝑎𝑥𝑛 − 3𝑎𝑛−1𝑥𝑛] = 0

Note that this holds for all 𝑥, so we can remove the sum and the 𝑥𝑛 term, and solve generically for
𝑎𝑛.

5𝑛𝑎𝑛 − 3𝑎𝑛−1 = 0

⟹ 𝑎𝑛 =
3
5𝑛𝑎𝑛−1

= (35)
2 1
𝑛(𝑛 − 1)𝑎𝑛−2

= (35)
𝑛 1
𝑛!𝑎0

We now have an explicit equation for 𝑦 as a power series.

5.3 Nonlinear first order ODEs
Let us consider the equation

𝑄(𝑥, 𝑦)d𝑦d𝑥 + 𝑃(𝑥, 𝑦) = 0

If it can be written in the form
𝑞(𝑦) d𝑦 = 𝑝(𝑥) d𝑥

then by integrating both sides we can find a solution. This is known as a separable equation.

Alternatively, if 𝑄(𝑥, 𝑦) d𝑦 + 𝑃(𝑥, 𝑦) d𝑥 is an exact differential of some multivariate function 𝑓(𝑥, 𝑦),
then we call this an exact equation. Specifically, due to themultivariate chain rule, we can get

d𝑓 = 𝜕𝑓
𝜕𝑥 d𝑥 +

𝜕𝑓
𝜕𝑦 d𝑦

So we want 𝑃(𝑥, 𝑦) = 𝜕𝑓
𝜕𝑥

and 𝑄(𝑥, 𝑦) = 𝜕𝑓
𝜕𝑦
. We can exploit cross derivatives to check whether this is

truly is an exact equation without having to integrate both 𝑃 and 𝑄.

𝜕2𝑓
𝜕𝑦𝜕𝑥 = 𝜕2𝑓

𝜕𝑥𝜕𝑦
𝜕𝑃
𝜕𝑦 = 𝜕𝑄

𝜕𝑥

This is the key condition to check for an exact equation. More specifically, if 𝜕𝑃
𝜕𝑦

= 𝜕𝑄
𝜕𝑥

throughout
a simply connected domain 𝒟, then 𝑃 d𝑥 + 𝑄 d𝑦 is an exact differential of a single valued function
𝑓(𝑥, 𝑦) in𝒟. A simply connected domain is essentially a domain without holes.

We can find 𝑓 by integrating 𝑃 and 𝑄, since they are the partial derivatives of 𝑓. As an example, let
us solve

6𝑦(𝑦 − 𝑥)d𝑦d𝑥 + (2𝑥 − 3𝑦2) = 0
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So here, 𝑃 = 2𝑥 − 3𝑦2 and 𝑄 = 6𝑦(𝑦 − 𝑥). We can check that indeed

𝜕𝑃
𝜕𝑦 = −6𝑦 𝜕𝑄

𝜕𝑥 = −6𝑦

So we have an exact equation as required. Now, we have

𝜕𝑓
𝜕𝑥

|||𝑦
= 𝑃 = 2𝑥 − 3𝑦2

⟹ 𝑓 = 𝑥2 − 3𝑥𝑦2 + ℎ(𝑦)

where ℎ is a constant with respect to 𝑥, so it must be some function of 𝑦. We can differentiate our
new definition for 𝑓 with respect to 𝑦, and substitute back into what we know for 𝑄.

𝜕𝑓
𝜕𝑦
|||𝑥
= −6𝑥𝑦 + dℎ

d𝑦

But also, from the definition of 𝑄,

𝜕𝑓
𝜕𝑦
|||𝑥
= 𝑄 = 6𝑦(𝑦 − 𝑥)

So by comparing the two things which we know are equal, we get dℎ
d𝑦

= 6𝑦2 so ℎ = 2𝑦3 + 𝑐. We plug
this back into our value for 𝑓, leaving

𝑓 = 𝑥2 − 3𝑥𝑦2 + 2𝑦3 + 𝑐

So our general solution is
𝑥2 − 3𝑥𝑦2 + 2𝑦3 = 𝑑

6 Isoclines and solution curves
6.1 Solution curves
Nonlinear differential equations are not guaranteed to have closed form solutions. However, we can
analyse the behaviour of such an equation without actually having to solve the equation. In this
lecture, we consider only equations of the form

d𝑦
d𝑡 = ̇𝑦 = 𝑓(𝑦, 𝑡)

Each initial condition to this function will generate a different solution curve. Note that these curves
may not cross. Suppose that two curves did cross at some point (𝑦, 𝑡). Then d𝑦

d𝑡
||𝑦 would have two

different values; the gradient of each curve would have to be different. But 𝑦(𝑡) is a single-valued
function, so the derivative is also single-valued. So the solution curves can never cross.

Let us consider an example which we can, in fact, solve directly.

d𝑦
d𝑡 = ̇𝑦 = 𝑓(𝑡) = 𝑡(1 − 𝑦2)
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This is separable, and we may solve the equation to give

𝑦 = 𝐴 − 𝑒−𝑡2

𝐴 + 𝑒−𝑡2

This general solution produces a family of solution curves parametrised by 𝐴. Can we sketch and
describe these solutions without using this explicit solution for 𝑦(𝑡)?

6.2 Isoclines
An isocline is a curve along which 𝑓 = ̇𝑦 is constant. To draw these isoclines, we need to work out
when 𝑓 takes certain values.

𝑓 = 0 for 𝑦 = ±1, 𝑡 = 0
𝑓 < 0 for 𝑦 > 1, 𝑦 < −1
𝑓 > 0 for − 1 < 𝑦 < 1

0 0.5 1 1.5 2−2

−1

0

1

2

𝑡

𝑦

Let us now draw some such isoclines on a graph,
here drawn in grey. On the outermost two lines,
the value of 𝑓, and hence the derivative, is −1.
On the lines in the centre, the value of 𝑓 is 1 and
0.5, both of which are drawn so that it is easier
to imagine the infinite set of isoclines. The two
horizontal lines at 1 and −1 have 𝑓 = 0. So
any solution curve that passes through these iso-
clines must have this gradient at the moment
it intersects the line. We can therefore visu-
ally interpolate what the gradient should be in
between these known points.

Two such solution curves are drawn on this
graph; the one intersecting zero has 𝐴 = 1 in the solution for 𝑦, and the one above it has 𝐴 = −1.
Note how, as they intersect the isoclines in red, they have exactly the gradient defined by the isocline.
Particularly, the lower solution curve intersects the same isocline twice, and therefore has this ex-
act gradient at two distinct points—we observe these points as the intersection points between the
solution curve and the isocline.

Note also that the solutions 𝑦 = 1 and 𝑦 = −1 lie on these isoclines for all 𝑡. This is because the
isoclines specify that the function has zero gradient on such a straight line, so it makes sense that the
function and isocline coincide.

6.3 Fixed points and perturbation analysis
Points such that 𝑦 is fixed for all 𝑡 are called fixed points, or equilibrium points. In our example above,
𝑦 = 1 and 𝑦 = −1 are examples of fixed points. Note that the solutions above seemed to gravitate
towards 𝑦 = 1 over time; we call such a fixed point ‘stable’ because any slight perturbation from the
value will return back to the fixed point over time. The same is not, however, true for the −1 fixed
point. It is considered ‘unstable’ as any small perturbation will cause 𝑦 to drift further and further
away from −1. We can analyse this more rigorously using perturbation analysis.
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Let 𝑦 = 𝑎 be a fixed point of ̇𝑦 = 𝑓(𝑦, 𝑡) such that 𝑓(𝑎, 𝑡) = 0. Then, consider some small perturbation
𝜀 from this fixed point. Now, 𝑦 = 𝑎+ 𝜀(𝑡). By setting the initial value of 𝜀(0) to some arbitrarily small
amount, we want to see the behaviour of 𝜀(𝑡) as 𝑡 tends to infinity. This way, if 𝜀(𝑡) goes to zero, then
𝑦will tend towards the fixed point 𝑎, so the point is stable. If 𝜀(𝑡) goes to any other value, then 𝑦 does
not tend to 𝑎, so the point is unstable.

d𝑦
d𝑡 =

d𝜀
d𝑡 = 𝑓(𝑎 + 𝜀, 𝑡)

Expanding 𝑓(𝑎 + 𝜀, 𝑡) as a multivariate Taylor series around (𝑎, 𝑡), we have

= 𝑓(𝑎, 𝑡)⏟⏟⏟
= 0 by definition

+𝜀𝜕𝑓𝜕𝑦 (𝑎, 𝑡) + 𝑂(𝜀2)

as 𝜀 tends to zero. So for small 𝜀, we have

d𝜀
d𝑡 ≈ 𝜀𝜕𝑓𝜕𝑦 (𝑎, 𝑡)

which is a linear ordinary differential equation for 𝜀 in terms of 𝑡, as 𝜕𝑓
𝜕𝑦
(𝑎, 𝑡) is an expression purely

in terms of 𝑎 and 𝑡. If (as 𝑡 → ∞) 𝜀 tends to zero then the point is stable, otherwise 𝜀 will tend to
±∞ and the point is considered unstable. This does not imply that 𝑦 itself tends to ±∞, just that the
𝑂(𝑛2) term now becomes important because 𝜀 does not tend to zero.

Note that if 𝜕𝑓
𝜕𝑦

= 0, then we will need to consider the next term in the Taylor expansion, and so on,
to make sure that we have an equation that lets us compute 𝜀. In this case, however, the equation for
𝜀 will be nonlinear, as we need to consider the 𝜀2 term, or the 𝜀3 term, or so on.

In our example, we can deduce that 𝜕𝑓
𝜕𝑦

= −2𝑦𝑡, so we have:

• (𝑦 = 1)

̇𝜀 = −2(1)𝑡𝜀
= −2𝑡𝜀

∴ 𝜀 = 𝜀0𝑒−𝑡
2

lim
𝑡→∞

𝜀0𝑒−𝑡
2 = 0

so this point is stable.

• (𝑦 = 1)

̇𝜀 = −2(−1)𝑡𝜀
= 2𝑡𝜀

∴ 𝜀 = 𝜀0𝑒𝑡
2

lim
𝑡→∞

𝜀0𝑒𝑡
2 = ±∞

so this point is unstable.
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6.4 Autonomous differential equations
A special case of this is that of autonomous equations, which are defined to be differential equations
of the form ̇𝑦 = 𝑓(𝑦). Specifically, the derivative of 𝑦 does not depend on 𝑡. Therefore, near a fixed
point 𝑦 = 𝑎, we have:

𝑦 = 𝑎 + 𝜀(𝑡)
∴

𝑑𝑜𝑡𝜀 = 𝜀d𝑓d𝑦 (𝑎) = 𝜀𝑘

where 𝑘 is the constant value d𝑓
d𝑦
(𝑎). Note that we can use normal derivatives in place of partial

derivatives because 𝑓 depends only on 𝑦. So the solution is

𝜀 = 𝜀0𝑒𝑘𝑡

So, if 𝑘 = 𝑓′(𝑎) < 0 then the point is stable, and if 𝑘 = 𝑓′(𝑎) > 0 then the point is unstable. This
special case is useful, but it is probably only worth memorising the general case to avoid confusion,
since it is simple to derive as needed.

7 Phase portraits
7.1 Phase portraits

𝑎0 𝑏0

𝑐

̇𝑐

𝑎0 𝑏0

Another way to analyse solutions to a differen-
tial equation is using a geometrical representa-
tion of the solution, called a phase portrait. For
example,

NaOH +HCl→ H2O +NaCl

where the amount of molecules of sodium hy-
droxide is given by 𝑎(𝑡), the amount of mo-
lecules of hydrochloric acid is given by 𝑏(𝑡), the
amount of molecules of water is given by 𝑐(𝑡),
and the amount of molecules of sodium chlor-
ide is given by 𝑑(𝑡). We canmodel this using the
equation d𝑐

d𝑡
= 𝜆𝑎𝑏. As atoms are conserved, we

have 𝑎 = 𝑎0 − 𝑐 and 𝑏 = 𝑏0 = 𝑐. Then:

d𝑐
d𝑡 = 𝜆(𝑎0 − 𝑐)(𝑏0 − 𝑐)

This is an autonomous nonlinear first order ordinary differential equation. We can create a phase
portrait by mapping out d𝑐

d𝑡
as a function of 𝑐, as shown in the first diagram here, which is known as

a 2D phase portrait. The second diagram, known as a 1D phase portrait, shows similar information
but helps us see the behaviour of fixed points—essentially the arrows point in the direction ofmotion
of 𝑐; if ̇𝑐 is positive then the arrows point to the right, if ̇𝑐 is negative they point to the left.
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0
𝜆

𝑦

̇𝑦

0 𝜆

Another example is a populationmodel. Let 𝑦(𝑡)
denote the population. Let 𝛼𝑦 denote the birth
rate, and 𝛽𝑦 be the death rate. Then, we can
model this using a linear model by:

d𝑦
d𝑡 = 𝛼𝑦 − 𝛽𝑦 ∴ 𝑦 = 𝑦0𝑒(𝛼−𝛽)𝑡

If 𝛼 > 𝛽 then we have exponential growth; if
𝛼 < 𝛽 then we have exponential decay. This is
an unrealistic model, so we can use a nonlinear
model to increase accuracy.

d𝑦
d𝑡 = (𝛼 − 𝛽)𝑦 − 𝛾𝑦2

When 𝑦 is sufficiently large, the 𝛾 term becomes more relevant; here, the 𝛾𝑦2 term models the in-
creased death rate at high populations. Equivalently, we can write

̇𝑦 = 𝑟𝑦 (1 − 𝑦
𝜆)

7.2 Fixed points in discrete equations
Consider a first order discrete (or difference) equation of the form

𝑥𝑛+1 = 𝑓(𝑥𝑛)

We define the fixed points of the equation to be any value of 𝑥𝑛 where 𝑥𝑛+1 = 𝑥𝑛 or equivalently
𝑓(𝑥𝑛) = 𝑥𝑛. We can analyse fixed points’ stability just like we can with differential equations, by
using perturbation analysis. Let 𝑥𝑓 denote a fixed point, and then we will perturb this by a small
quantity 𝜀.

𝑓(𝑥𝑓 + 𝜀) = 𝑓(𝑥𝑓)⏟
=𝑥𝑓

+𝜀 d𝑓d𝑥
|||𝑥𝑓

+ 𝑂(𝜀2)

If we let 𝑥𝑛 = 𝑥𝑓 + 𝜀, then

𝑥𝑛+1 ≈ 𝑓(𝑥𝑛) = 𝑓(𝑥𝑓 + 𝜀) = 𝑥𝑓 + 𝜀 d𝑓d𝑥
|||𝑥𝑓

𝑥𝑓 is stable if
|||
d𝑓
d𝑥
||𝑥𝑓

||| < 1, and unstable if this value is greater than 1. This is because if the value is
less than 1, 𝑥𝑛+1 is closer to 𝑥𝑓 than 𝑥𝑛 was.

7.3 Logistic map
This is an extended example of analysis of discrete equations. Let 𝑥𝑛 be the population at generation
𝑛. Then, we use the model 𝑥𝑛+1 − 𝑥𝑛

Δ𝑡 = 𝜆𝑥𝑛 − 𝛾𝑥2𝑛
We could contrast this with a nonlinear ordinary differential equation; the left hand side of this equa-
tion is analogous to d𝑥

d𝑡
. Alternatively, grouping all 𝑥𝑛 terms on the right hand side, we have

𝑥𝑛+1 = (𝜆Δ𝑡 + 1)𝑥𝑛 − 𝛾Δ𝑡𝑥2𝑛
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Wewill actually use a slightly simplifiedmodel for this, by unifying the 𝛾 and𝜆 terms as follows:

𝑥𝑛+1 = 𝑟𝑥𝑛(1 − 𝑥𝑛) = 𝑓(𝑥𝑛)

This is knownas the ‘logisticmap’. Wewill analyse the fixed points of this equation by solving𝑓(𝑥𝑛) =
𝑥𝑛. We have two solutions, 𝑥𝑛 = 0 and 𝑥𝑛 = 1− 1

𝑟
. We can analyse their stability using perturbation

analysis as before. By letting 𝑓(𝑥) = 𝑟𝑥(1 − 𝑥), thus removing the 𝑛 index, we have

d𝑓
d𝑥 = 𝑟(1 − 2𝑥)

At 𝑥𝑛 = 0, d𝑓
d𝑥

= 𝑟. When 0 < 𝑟 < 1, the point is stable because the next point produced by the
perturbation analysis is closer to the fixed point. If 𝑟 > 1 then the point is unstable.

At 𝑥𝑛 = 1 − 1
𝑟
, d𝑓
d𝑥

= 2 − 𝑟. For 0 < 𝑟 < 1, the value of 𝑥𝑛 is greater than 1, so it is unphysical so we
discard it. For 𝑟 < 1 < 3, the point is stable. When 𝑟 > 3, the point is unstable.

8 Higher order linear ODEs
8.1 Linear 2nd order ODEs with constant coefficients
The general form of an equation of this type is

𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = 𝑓(𝑥)

To solve equations like this, we are going to exploit two facts: the linearity of the differential operator
together with the principle of superposition. From the definition of the derivative, we have

d
d𝑥(𝑦1 + 𝑦2) = 𝑦′1 + 𝑦′2

And similarly,
d2

d𝑥2
(𝑦1 + 𝑦2) = 𝑦″1 + 𝑦″2

For a linear differential operator𝐷 built from a linear combination of derivatives, for example

𝐷 = [𝑎 d2

d𝑥2
+ 𝑏 d

d𝑥 + 𝑐]

it then follows that
𝐷(𝑦1 + 𝑦2) = 𝐷(𝑦1) + 𝐷(𝑦2)

We will then solve the above general equation in three steps.

(i) Find the complementary functions 𝑦1 and 𝑦2 which satisfy the equivalent homogeneous equa-
tion 𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = 0.

(ii) Find a particular integral 𝑦𝑝 which solves the original equation.
(iii) If 𝑦1 and 𝑦2 are linearly independent, then 𝑦1 + 𝑦𝑝 and 𝑦2 + 𝑦𝑝 are each linearly independent

solutions, which follows from the fact that 𝐷(𝑦1) = 𝐷(𝑦2) = 0 and 𝐷(𝑦𝑝) = 𝑓(𝑥).
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8.2 Eigenfunctions for 2nd order ODEs

𝑒𝜆𝑥 is the eigenfunction of d
d𝑥
, and it is also the eigenfunction of d2

d𝑥2
, but with eigenvalue 𝜆2. More

generally, it is the eigenfunction of d𝑛

d𝑥𝑛
with eigenvalue 𝜆𝑛. In fact, 𝑒𝜆𝑥 is the eigenfunction of any

linear differential operator 𝐷. The equation 𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = 0 can be written

[𝑎 d2

d𝑥2
+ 𝑏 d

d𝑥 + 𝑐]
⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

≡ 𝐷

𝑦 = 0

Therefore, solutions to this take the form

𝑦𝑐 = 𝐴𝑒𝜆𝑥

and by substituting, we have
𝑎𝜆2 + 𝑏𝜆 + 𝑐 = 0

This is known as the characteristic (or auxiliary) equation. From the fundamental theoremof algebra,
this must have two real or complex solutions. Now, let 𝜆1, 𝜆2 be these roots.
In the case that 𝜆1 ≠ 𝜆2, 𝑦1 = 𝐴𝑒𝜆1𝑥; 𝑦2 = 𝐵𝑒𝜆2𝑥. In this case, the two are linearly independent
and complete; they form a basis of solution space. Therefore any other solution to this differential
equation can be written as a linear combination of 𝑦1 and 𝑦2. In general, 𝑦𝑐 = 𝐴𝑒𝜆1𝑥 + 𝐵𝑒𝜆2𝑥.

8.3 Detuning
In the case that 𝜆1 = 𝜆2, this is known as a degenerate case as we have repeated eigenvalues; 𝑦1
and 𝑦2 are linearly dependent and not complete. Let us take as an example the differential equation
𝑦″ − 4𝑦′ + 4𝑦 = 0. We try 𝑦𝑐 = 𝑒2𝑥 as 𝜆 = 2 in this case. We will consider a slightly modified
(‘detuned’) equation to rectify the degeneracy.

𝑦″ − 4𝑦′ + (4 − 𝜀2)𝑦 = 0 where 𝜀 ≪ 1

Again we will try 𝑦𝑐 = 𝑒𝜆𝑥, giving
𝜆2 − 4𝜆 + (4 − 𝜀2) = 0

So we have 𝜆 = 2 ± 𝜀. The complementary function therefore is 𝑦𝑐 = 𝐴𝑒(2+𝜀)𝑥 + 𝐵𝑒(2−𝜀)𝑥 =
𝑒2𝑥 (𝐴𝑒𝜀𝑥 + 𝐵𝑒−𝜀𝑥). We will expand this in a Taylor series for small 𝜀, giving

𝑦𝑐 = 𝑒2𝑥 [(𝐴 + 𝐵) + 𝜀𝑥(𝐴 − 𝐵) + 𝑂(𝜀2)]

and by taking the limit, we have

lim
𝜀→0

𝑦𝑐 ≈ 𝑒2𝑥 [(𝐴 + 𝐵) + 𝜀𝑥(𝐴 − 𝐵)]

Now consider applying initial conditions to 𝑦𝑐 at 𝑥 = 0.

𝑦𝑐
|||𝑥=0

= 𝐶 𝑦′𝑐
|||𝑥=0

= 𝐷

and therefore
𝐶 = 𝐴 + 𝐵; 𝐷 = 2𝐶 + 𝜀(𝐴 − 𝐵)
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hence
𝐴 + 𝐵 = 𝑂(1); 𝐴 − 𝐵 = 𝑂 (1𝜀 )

in order that 𝐷 is a constant. Now, let 𝛼 = 𝐴 + 𝐵; 𝛽 = 𝜀(𝐴 − 𝐵), so that we can get constants of 𝑂(1)
magnitude. Hence,

lim
𝜀→0

𝑦𝑐 = 𝑒2𝑥 [𝛼 + 𝛽𝑥]

In general, if 𝑦1(𝑥) is a degenerate complementary function for linear ODEs with constant coeffi-
cients, then 𝑦2 = 𝑥𝑦1 is a linearly independent complementary function.

8.4 Reduction of order
Consider a homogeneous second-order linear ODEwith non-constant coefficients. The general form
of such an equation is

𝑦″ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0 (8.1)
Our objective is to use one solution to this equation (here denoted 𝑦1) to find the other solution 𝑦2.
The general idea is to look for a solution of the form

𝑦2(𝑥) = 𝑣(𝑥)𝑦1(𝑥) (8.2)

First, note that

𝑦′2 = 𝑣′𝑦1 + 𝑣𝑦′1
𝑦″2 = 𝑣″𝑦1 + 2𝑣′𝑦′1 + 𝑣𝑦″1

If 𝑦2 is a solution to (8.1), then
𝑦″2 + 𝑝(𝑥)𝑦′2 + 𝑞(𝑥)𝑦2 = 0

We can use (8.2) and collect terms, to get

𝑣 ⋅ (𝑦″1 + 𝑝𝑦′1 + 𝑞𝑦1)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
0 since 𝑦1 is a solution to (8.1)

+𝑣′ ⋅ (2𝑦′1 + 𝑝𝑦1) + 𝑣″ ⋅ 𝑦1 = 0

Hence
𝑣′ ⋅ (2𝑦′1 + 𝑝𝑦1) + 𝑣″ ⋅ 𝑦1 = 0

This is a first order differential equation for 𝑣′(𝑥). Let 𝑢 = 𝑣′. Then

𝑢′𝑦1 + 𝑢(2𝑦′1 + 𝑝𝑦1) = 0

This is a separable first order ODE for 𝑢(𝑥). So we can solve for 𝑢(𝑥) and deduce 𝑣(𝑥) by integra-
tion.

8.5 Solution space
An 𝑛th order linear ODE written

𝑝(𝑥)𝑦(𝑛) + 𝑞(𝑥)𝑦(𝑛−1) +⋯+ 𝑟(𝑥)𝑦 = 𝑓(𝑥)

can be used to write 𝑦(𝑛)(𝑥) in terms of lower derivatives of 𝑦. For example, the oscillations of a mass
on a spring in a damped system can be modelled as

𝑚 ̈𝑦 = −𝑘𝑦 − 𝐿 ̇𝑦
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Therefore the state of the system can be described by an 𝑛-dimensional solution vector

Y(𝑥) ≡
⎛
⎜
⎜
⎝

𝑦(𝑥)
𝑦′(𝑥)
⋮

𝑦(𝑛−1)(𝑥)

⎞
⎟
⎟
⎠

(8.3)

For example, an undamped oscillator modelled by 𝑦″ + 4𝑦 = 0 has solutions

𝑦1 = cos 2𝑥; 𝑦2 = sin 2𝑥

and has derivatives
𝑦′1 = −2 sin 2𝑥; 𝑦′2 = 2 cos 2𝑥

and therefore two solution vectors are

Y1(𝑥) = (𝑦1𝑦′1
) = ( cos 2𝑥

−2 sin 2𝑥)

and
Y2(𝑥) = (𝑦2𝑦′2

) = ( sin 2𝑥2 cos 2𝑥)

𝑦

̇𝑦

Wecanplot the paths of these two solutions using a two-dimensional
phase portrait. In this case, both solutions follow an elliptical path.
Since Y1 and Y2 are linearly independent for all 𝑥, any point in solu-
tion space (𝑦, 𝑦′) can bewritten as a linear combination of these solu-
tions.

Solutions 𝑦1, 𝑦2,⋯ , 𝑦𝑛 are linearly independent for any ODE if their
solution vectors Y1,Y2,⋯ ,Y𝑛 are linearly independent. A set of 𝑛
linearly independent solution vectors forms a basis for the solution
space of an 𝑛th order ODE.

8.6 Initial conditions
Consider initial conditions for a second order homogeneous
ODE.

𝑦(0) = 𝑎, 𝑦′(0) = 𝑏

If the general solution is
𝑦(𝑥) = 𝐴𝑦1(𝑥) + 𝐵𝑦2(𝑥)

then we have the following linear system of equations

𝐴𝑦1(0) + 𝐵𝑦2(0) = 𝑎
𝐴𝑦′1(0) + 𝐵𝑦′2(0) = 𝑏

which is a system of two equations for two unknowns. Or alternatively,

(𝑦1(0) 𝑦2(0)
𝑦′1(0) 𝑦′2(0)

)
⏟⎵⎵⎵⏟⎵⎵⎵⏟

≡𝑀

(𝐴𝐵) = (𝑎𝑏)

Unique solutions for 𝐴 and 𝐵 exist if det𝑀 ≠ 0.
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8.7 The fundamental matrix and theWrońskian
The fundamental matrix is a matrix formed by placing solution vector Y𝑖 in the 𝑖th column. The
Wrońskian, denoted𝑊(𝑥), is the determinant of the fundamental matrix.

𝑊(𝑥) ≡
|
|
|
|

⋮ ⋮ ⋮
Y1 Y2 ⋯ Y𝑛
⋮ ⋮ ⋮

|
|
|
|
=
||||||

𝑦1 𝑦2 ⋯ 𝑦𝑛
𝑦′1 𝑦′2 ⋯ 𝑦′𝑛
⋮ ⋮ ⋱ ⋮

𝑦(𝑛−1)1 𝑦(𝑛−1)2 ⋯ 𝑦(𝑛−1)𝑛

||||||

For a second order ODE:
𝑊(𝑥) = |||

𝑦1 𝑦2
𝑦′1 𝑦′2

||| = 𝑦1𝑦′2 − 𝑦2𝑦′1 (8.4)

The solution vectors are linearly independent if 𝑊(𝑥) ≠ 0. This is a convenient test for the linear
independence of two solution vectors. In our example above, we had

𝑊(𝑥) = |||
cos 2𝑥 sin 2𝑥

−2 sin 2𝑥 2 cos 2𝑥
||| = 2 cos2 2𝑥 + 2 sin2 2𝑥 = 2 ≠ 0

So the solution vectors are linearly independent for all 𝑥.
If Y1 and Y2 are linearly dependent, then 𝑊(𝑥) = 0. Suppose that a third solution 𝑦(𝑥) is a linear
combination of 𝑦1(𝑥) and 𝑦2(𝑥). Then the solution vectors Y,Y1,Y2 are a linearly dependent set.
Hence

|
|
|
|

𝑦 𝑦1 𝑦2
𝑦′ 𝑦′1 𝑦′2
𝑦″ 𝑦″1 𝑦″2

|
|
|
|
= 0

For 𝑦1 = cos 2𝑥 and 𝑦2 = sin 2𝑥, we can deduce the original differential equation that produced these
solutions by solving for 𝑦.

|
|
|
|

𝑦 cos 2𝑥 sin 2𝑥
𝑦′ −2 sin 2𝑥 2 cos 2𝑥
𝑦″ −4 cos 2𝑥 −4 sin 2𝑥

|
|
|
|
= 0

⟹ 𝑦(8 sin2 2𝑥 + 8 cos2 2𝑥)
−𝑦′(−4 cos 2𝑥 sin 2𝑥 + 4 cos 2𝑥 sin 2𝑥)

+𝑦″(2 cos2 2𝑥 + 2 sin2 2𝑥) = 0
⟹ 𝑦″ + 4𝑦 = 0

Note that if𝑊(𝑥) = 0, this does not necessarily imply linear dependence.

8.8 Abel’s theorem
Consider a second order homogeneous ODE:

𝑦″ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0

Theorem (Abel’s Theorem). If 𝑝(𝑥) and 𝑞(𝑥) are continuous on an interval 𝐼, then the
Wrońskian𝑊(𝑥) is either zero or nonzero for all 𝑥 ∈ 𝐼.
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Proof. Let 𝑦1, 𝑦2 be solutions to the equation. Then

𝑦2(𝑦″1 + 𝑝(𝑥)𝑦′1 + 𝑞(𝑥)𝑦1) = 0 (8.5)
𝑦1(𝑦″2 + 𝑝(𝑥)𝑦′2 + 𝑞(𝑥)𝑦2) = 0 (8.6)

Now, calculating (8.6) − (8.5), we get

(𝑦1𝑦″2 − 𝑦2𝑦″1) + 𝑝(𝑥)(𝑦1𝑦′2 − 𝑦2𝑦′1) = 0 (8.7)

As we are solving a second order equation,𝑊(𝑥) = 𝑦1𝑦′2 − 𝑦2𝑦′1 and therefore

d𝑊
d𝑥 = 𝑦1𝑦″2 + 𝑦′1𝑦′2 − 𝑦′2𝑦′1 − 𝑦2𝑦″1 = 𝑦1𝑦″2 − 𝑦2𝑦″1

Note that these are the coefficients in (8.7). We have therefore

𝑊 ′ + 𝑝𝑊 = 0 (8.8)

Then by separating variables:

d𝑊
𝑊 = −𝑝(𝑥) d𝑥

∫
𝑥

𝑥0

d𝑊
𝑊 = −∫

𝑥

𝑥0
𝑝(𝑢) d𝑢

𝑊(𝑥) = 𝑊(𝑥0)𝑒
−∫𝑥𝑥0 𝑝(𝑢)d𝑢

This last equation is known as Abel’s Identity, and is very important. Since 𝑝(𝑥) is continuous on
𝐼 with 𝑥 ∈ 𝐼, it is bounded and therefore integrable. Therefore 𝑒−∫𝑥𝑥0 𝑝(𝑢)d𝑢 ≠ 0. It follows that
if 𝑊(𝑥0) = 0 then 𝑊(𝑥) = 0 for all 𝑥. Likewise, if 𝑊(𝑥0) ≠ 0, then 𝑊(𝑥) ≠ 0 for all 𝑥 (on the
interval).

Corollary. If 𝑝(𝑥) = 0, then𝑊 = 𝑊0 which is a constant.

Note that we can use this to find𝑊(𝑥) without actually solving the differential equation itself. For
example, Bessel’s Equation

𝑥2𝑦″ + 𝑥𝑦′ + (𝑥2 − 𝑛2)𝑦 = 0
has no closed form solutions, but the Wrońskian can be calculated be rewriting it as

𝑦″ + 1
𝑥𝑦

′ + 𝑥2 − 𝑛2
𝑥2 𝑦 = 0

and by Abel’s Identity,

𝑊(𝑥) = 𝑊0𝑒
−∫𝑥𝑥0

1
𝑢 d𝑢

= 𝑊0𝑒− ln𝑥

= 𝑊0
𝑥
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We can find a second solution 𝑦2 given a solution 𝑦1 using a reduction of order method, but we can
also use Abel’s Identity.

𝑦1𝑦′2 − 𝑦2𝑦′1 = 𝑊0𝑒
−∫𝑥𝑥0 𝑝(𝑢)d𝑢

This is a first order ODE for 𝑦2 which we can now solve:

𝑦1𝑦′2 − 𝑦2𝑦′1
𝑦21

= 𝑊0
𝑦21

𝑒−∫𝑥𝑥0 𝑝(𝑢)d𝑢

The left hand side is exactly the quotient rule, giving
d
d𝑥

𝑦2
𝑦1

= 𝑊0
𝑦21

𝑒−∫𝑥𝑥0 𝑝(𝑢)d𝑢

which can be solved to give 𝑦2 as a function of 𝑦1 and𝑊 .

We can use Abel’s theorem in higher dimensions. Any linear 𝑛th order ODE can be written

Y′ + 𝐴(𝑥)Y = 0

where 𝐴 is a matrix; this converts an 𝑛th order ODE into a system of 𝑛 first order ODEs. This will be
discussed later in the course. It can be shown that this generalisation of Abel’s Identity

𝑊 ′ + tr(𝐴)𝑊 = 0

holds, and hence
𝑊 ′ = 𝑊0𝑒

−∫𝑥𝑥0 tr(𝐴)d𝑢

and Abel’s theorem holds. This is shown on example sheet 3, Question 7.

8.9 Equidimensional equations
An ODE is equidimensional if the differential operator is unaffected by a multiplicative scaling. For
example, rescaling

𝑥 ↦ 𝑋 = 𝛼𝑥
where 𝛼 ∈ ℝ. The general form for a second order equidimensional equation is

𝑎𝑥2𝑦″ + 𝑏𝑥𝑦′ + 𝑐𝑦 = 𝑓(𝑥) (8.9)

where 𝑎, 𝑏, 𝑐 are constant. Note, d
d𝑋

= 1
𝛼

d
d𝑥
, and d2

d𝑋2 =
1
𝛼2

d
d𝑥2

, so plugging this into (8.9) gives

𝑎𝑋2 d2𝑦
d𝑋2 + 𝑏𝑋 d𝑦

d𝑋 + 𝑐𝑦 = 𝑓 (𝑋𝛼 )

The left hand side was unaffected by this rescaling, so the equation is equidimensional.

There are two main methods for solving equidimensional equations.

(i) Note that 𝑦 = 𝑥𝑘 is an eigenfunction of the differential operator 𝑥 d
d𝑥
. Inspired by this, to solve

(8.9) we will look for solutions of the form 𝑦 = 𝑥𝑘, so we have

𝑎𝑘(𝑘 − 1) + 𝑏𝑘 + 𝑐 = 0

We can simply solve this quadratic for two roots 𝑘1 and 𝑘2. If 𝑘1 ≠ 𝑘2, then the complementary
function is

𝑦𝑐 = 𝐴𝑥𝑘1 + 𝐵𝑥𝑘2
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(ii) If 𝑘1 = 𝑘2, then the substitution 𝑧 = ln𝑥 turns (8.9) into an equation with constant coefficients.

𝑎d
2𝑦
d𝑧2

+ (𝑏 − 𝑎)d𝑦d𝑧 + 𝑐𝑦 = 𝑓(𝑒𝑧)

Because this has constant coefficients, our complementary functionswill be of the form 𝑦 = 𝑒𝜆𝑧,
which can be solved as usual.

𝑦𝑐 = 𝐴𝑒𝜆1𝑧 + 𝐵𝑒𝜆2𝑧 = 𝐴𝑥𝜆1 + 𝐵𝑥𝜆2

which is the same form as above. In this form, it is easier to see that if the two solutions 𝜆1, 𝜆2
are the same, then

𝑦𝑐 = 𝐴𝑒𝜆1𝑧 + 𝐵𝑧𝑒𝜆1𝑧 = 𝐴𝑥𝑘1 + 𝐵𝑥𝑘1 ln𝑥

9 Forced second order ODEs
We want to find methods for finding the particular integral of forced second order ODEs.

9.1 Guesswork
Here, 𝑓(𝑥) is the forcing term.

Form of 𝑓(𝑥) Form of 𝑦𝑝(𝑥)
𝑒𝑚𝑥 𝐴𝑒𝑚𝑥

sin(𝑘𝑥) or cos(𝑘𝑥) 𝐴 sin(𝑘𝑥) + 𝐵 cos(𝑘𝑥)
𝑥𝑛 or an 𝑛th degree polynomial 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 +⋯+ 𝑎0

In general:

(i) Insert our guess into the equation;

(ii) Equate coefficients of functions;

(iii) Solve for unknown coefficients.

9.2 Variation of parameters
This is a method for finding the particular integral 𝑦𝑝 given complementary functions 𝑦1, 𝑦2, which
are assumed to be linearly independent, with solution vectors

Y1 = (𝑦1𝑦′1
) ; Y2 = (𝑦2𝑦′2

)

Suppose that the solution vector for 𝑦𝑝 satisfies

Y𝑝 = (𝑦𝑝𝑦′𝑝
) = 𝑢(𝑥)Y1 + 𝑣(𝑥)Y2 (9.1)

This is not a linear combination of Y1 and Y2, but we can treat it as a linear combination at a fixed
𝑥 point (just as a way to visualise it). We want to find equations for 𝑢(𝑥) and 𝑣(𝑥). By comparing
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components of the vectors on the left and right, we have

𝑦𝑝 = 𝑢𝑦1 + 𝑣𝑦2 (a)
𝑦′𝑝 = 𝑢𝑦′1 + 𝑣𝑦′2 (b)

So therefore,
d
d𝑥(a) ⟹ 𝑦′𝑝 = 𝑢′𝑦1 + 𝑢𝑦′1 + 𝑣′𝑦2 + 𝑣𝑦′2 (c)

(c) − (b) ⟹ 𝑢′𝑦1 + 𝑣′𝑦2 = 0 (d)

Now:
d
d𝑥(b) ⟹ 𝑦″𝑝 = 𝑢𝑦″1 + 𝑢′𝑦′1 + 𝑣′𝑦′2 + 𝑣𝑦″2 (e)

If 𝑦″𝑝 + 𝑝(𝑥)𝑦′𝑝 + 𝑞(𝑥)𝑦𝑝 = 𝑓(𝑥), then

(e) + 𝑝(b) + 𝑞(a) = 𝑓(𝑥)

But also, 𝑦1 and 𝑦2 satisfy the differential equation

𝑦″𝑐 + 𝑝𝑦′𝑐 + 𝑞𝑦𝑐 = 0 𝑦𝑐 ∈ {𝑦1, 𝑦2}

After we substitute in and cancel a lot of terms, we have

𝑢′𝑦′1 + 𝑣′𝑦′2 = 𝑓(𝑥) (f)

Combining (d) and (f), we can deduce 𝑢 and 𝑣.

(𝑦1 𝑦2
𝑦′1 𝑦′2

)
⏟⎵⎵⏟⎵⎵⏟

fundamental matrix

(𝑢
′

𝑣′) = (0𝑓)

So as long as 𝑦1 and 𝑦2 are linearly independent, i.e. the Wrońskian is nonzero, we can write an
equation for 𝑢′ and 𝑣′.

(𝑢
′

𝑣′) =
1

𝑊(𝑥) (
𝑦′2 −𝑦2
𝑦′1 𝑦1

) (0𝑓)

or explicitly,

𝑢′ = −𝑦2𝑓
𝑊

𝑣′ = 𝑦1𝑓
𝑊

and therefore
𝑦𝑝 = 𝑦2∫

𝑥 𝑦1(𝑡)𝑓(𝑡)
𝑊(𝑡) d𝑡 − 𝑦1∫

𝑥 𝑦2(𝑡)𝑓(𝑡)
𝑊(𝑡) d𝑡
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9.3 Forced oscillating systems: transients and damping
Many physical systems have a restoring force and damping (e.g. friction). For example, the suspen-
sion of a car could be modelled with 𝑦(𝑡), where 𝑦 is the height of the wheel, given by

𝑀 ̈𝑦 = 𝐹(𝑡) − 𝑘𝑦⏟
spring

− 𝐿 ̇𝑦⏟
damper

In standard form, we have
̈𝑦 + 𝐿

𝑀 ̇𝑦 + 𝑘
𝑀𝑦 = 𝐹(𝑡)

𝑀

Let 𝜏 = √
𝑘
𝑀
𝑡. Then we can rewrite this equation using a single parameter:

𝑦″ + 2𝐾𝑦′ + 𝑦 = 𝑓(𝜏)

where 𝑦′ = d𝑦
d𝜏
, 𝐾 = 𝐿

2√𝑘𝑀
, 𝑓 = 𝐹

𝑘
. Our unforced system is described here by one parameter 𝐾.

In the case of the unforced response (also known as the free or natural response), we have 𝑓 = 0,
so

𝑦″ + 2𝐾𝑦′ + 𝑦 = 0
Solving by the characteristic equation, we see

𝜆 = −𝐾 ± √𝐾2 − 1

There are a number of cases here.

(i) (𝐾 < 1) This produces a decaying oscillation, knownas ‘underdamped’. 𝜆1, 𝜆2 are both complex,
and therefore

𝑦 = 𝑒−𝐾𝜏 [𝐴 sin(√1 − 𝐾2𝜏) + 𝐵 cos(√1 − 𝐾2𝜏)]

The period is 2𝜋
√1−𝐾2

. As 𝐾 tends to 1, the period tends to∞.

(ii) (𝐾 = 1) This is the degenerate case, 𝜆1 = 𝜆2 = −𝐾. We can use detuning to deduce

𝑦 = 𝑒−𝐾𝜏(𝐴 + 𝐵𝜏)

(iii) (𝐾 > 1) Here, we have two negative real roots 𝜆1, 𝜆2; this situation is known as ‘overdamped’.

𝑦 = 𝐴𝑒𝜆1𝜏 + 𝐵𝑒𝜆2𝜏

Note that the unforced response decays in all cases.

9.4 Sinusoidal forcing
Let

̈𝑦 + 𝜇 ̇𝑦 + 𝜔20𝑦 = sin𝜔𝑡
Now let us guess 𝑦𝑝 = 𝐴 sin𝜔𝑡 + 𝐵 cos𝜔𝑡. Equating coefficients of sin𝜔𝑡 gives

−𝐴𝜔2 − 𝐵𝜇𝜔 + 𝜔20𝐴 = 1 (a)
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and equating cos𝜔𝑡 gives
−𝐵𝜔2 + 𝐴𝜇𝜔 + 𝜔20𝐵 = 0 (b)

Then:
(b) ⟹ 𝐴 = 𝐵𝜔

2 − 𝜔20
𝜇𝜔

(a) ⟹ 𝐴(𝜔20 − 𝜔2) = 1 + 𝐵𝜇𝜔
So

𝐴 = 𝜔20 − 𝜔2
(𝜔20 − 𝜔2)2 + 𝜇2𝜔2

𝐵 = −𝜇𝜔
(𝜔20 − 𝜔2)2 + 𝜇2𝜔2

Altogether, we have

𝑦𝑝 =
1

(𝜔20 − 𝜔2)2 + 𝜇2𝜔2
[(𝜔20 − 𝜔2) sin𝜔𝑡 − 𝜇𝜔 cos𝜔𝑡]

Drawing an example of this kind of particular integral (with the complementary function in grey),
we can see the following:

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

𝑡

𝑦

And adding both together to form a particular solution gives:

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

𝑡

𝑦

Let us make a few comments about these forced oscillations.

• The complementary function gives us the transient (short-term) response to the initial condi-
tions.

• The particular integral gives the long-term response to the forcing term.

• In some sense, the system ‘forgets’ about the initial conditions over time due to the damping
term.
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9.5 Resonance in undamped systems
What happens if 𝜔 = 𝜔0? If 𝜇 ≠ 0 (i.e. it is a damped system), then

lim
𝜔→𝜔0

𝑦𝑝 =
− cos𝜔0𝑡
𝜇𝜔0

This is a finite amplitude oscillation. Note that the amplitude increases with decreasing 𝜇, so clearly
this solution has a problem at 𝜇 = 0. To work with this, we’ll let

̈𝑦 + 𝜔20𝑦 = sin𝜔0𝑡
We will use detuning to get solutions for this equation. Consider instead

̈𝑦 + 𝜔20𝑦 = sin𝜔𝑡
where 𝜔 ≠ 𝜔0. We will guess that the particular integral is of the form 𝑦𝑝 = 𝐶 sin𝜔𝑡 since by
inspection there cannot be any cosine terms.

𝐶(−𝜔2 + 𝜔20) = 1

∴ 𝑦𝑝 =
1

𝜔20 − 𝜔2
sin𝜔𝑡

As the system is linear in 𝑦 and its derivatives, we can freely add somemultiple of the complementary
function and it will remain a solution.

𝑦𝑝 =
1

𝜔20 − 𝜔2
sin𝜔𝑡 + 𝐴 sin𝜔0𝑡

Now let us pick 𝐴 = −1
𝜔2
0−𝜔2 , so

𝑦𝑝 =
sin𝜔𝑡 − sin𝜔0𝑡

𝜔20 − 𝜔2
Rewriting this using angle addition and subtraction identities:

𝑦𝑝 =
2

𝜔20 − 𝜔2
[cos (𝜔 + 𝜔0

2 𝑡) sin (𝜔 − 𝜔0
2 𝑡)]

For convenience, let Δ𝜔 ≡ 𝜔0 − 𝜔, and therefore 𝜔+𝜔0
2

= 𝑤0 −
1
2
Δ𝜔.

𝑦𝑝 =
−2

Δ𝜔(𝜔0 + 𝜔) [cos ((𝜔0 −
Δ𝜔
2 ) 𝑡) sin Δ𝜔𝑡2 ]

In the following diagram, 𝑦𝑝 is drawn in grey, with the sine term acting as an envelope for the higher-
frequency cosine term. The phenomenon visible here is known as ‘beating’, as an oscillator with
a fundamental frequency slightly different to the forcing frequency will begin oscillating then stop,
and repeat this cycle.

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

𝑡

𝑦 𝑝
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As we reduce Δ𝜔 to zero, we have

lim
Δ𝜔→0

sin (Δ𝜔2 𝑡) ≈ Δ𝜔
2 𝑡

So

lim
Δ𝜔→0

≈ −2
Δ𝜔(𝜔0 + 𝜔0)

cos(𝜔0𝑡) (
Δ𝜔
2 𝑡)

≈ −2𝑡
𝜔0

cos𝜔0𝑡

This is linear growth in amplitude over time. This increase is unbounded an in undamped system.
Note that 𝑦𝑝 takes the form of one of the complementary functions multiplied by the independent
variable.

9.6 Impulses and point forces
Consider a system that experiences a sudden force, for example a car’s suspension when driving over
a speed bump. Let us define 𝑦 to be the displacement from the undisturbed height of the suspension.
Let the car’smass be𝑀. In a small finitewindow 𝜀 around some time𝑇, the excess force𝐹 (the forcing
term) on the system is greater than zero. As 𝜀 tends to zero, the force becomes a sudden impulse. Let
us model this using the equation

𝑀 ̈𝑦 = 𝐹(𝑡) − 𝑘𝑦 − 𝐿 ̇𝑦
We can see that before time 𝑇, 𝑦 = 0. After this point, there is some kind of oscillation. Note that the
value of 𝑦 is always continuous (otherwise this would violatemany laws of physics), but the derivative
is not necessarily continuous at the point 𝑇. Let us integrate the equation above in time from 𝑇 − 𝜀
to 𝑇 + 𝜀.

lim
𝜀→0

⎡
⎢
⎢
⎢
⎣

𝑀[ ̇𝑦]𝑇+𝜀𝑇−𝜀 = ∫
𝑇+𝜀

𝑇−𝜀
𝐹(𝑡) d𝑡 − 𝑘 ∫

𝑇+𝜀

𝑇−𝜀
𝑦 d𝑡

⏟⎵⎵⏟⎵⎵⏟
0 if 𝑦 is finite

−𝐿 [𝑦]𝑇+𝜀𝑇−𝜀⏟⏟⏟
0 if 𝑦 is continuous

⎤
⎥
⎥
⎥
⎦

(9.2)

We now can define the impulse 𝐼 to be

𝐼 = lim
𝜀→0

∫
𝑇+𝜀

𝑇−𝜀
𝐹(𝑡) d𝑡

Hence
(9.2) ⟹ 𝐼 = lim

𝜀→0
𝑀[ ̇𝑦]𝑇+𝜀𝑇−𝜀

So if the impulse is nonzero, the velocity ̇𝑦 experiences a sudden change, so it is discontinuous at 𝑇.
The value of this sudden change in velocity depends on the integral of the force.

10 Impulse forcing
10.1 Dirac 𝛿 function
First let us consider a family of functions 𝐷(𝑡; 𝜀) defined by

lim
𝜀→0

𝐷(𝑡; 𝜀) = 0; ∀𝑡 ≠ 0
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∫
∞

−∞
𝐷(𝑡; 𝜀) d𝑡 = 1

For example,

𝐷(𝑡; 𝜀) = 1
𝜀√𝜋

𝑒
−𝑡2
𝜀2

We can now define the Dirac delta function 𝛿(𝑡) = lim𝜀→0 𝐷(𝑡; 𝜀). It has a number of interesting
properties:

• 𝛿(𝑥) = 0 for all nonzero 𝑥
• ∫∞

−∞ 𝛿(𝑡) d𝑡 = 1
• (sampling property) For a continuous function 𝑔(𝑥):

∫
∞

−∞
𝑔(𝑥)𝛿(𝑥) d𝑥 = 𝑔(0)∫

∞

−∞
𝛿(𝑥) d𝑥 = 𝑔(0)

And more generally,

∫
𝑏

𝑎
𝑔(𝑥)𝛿(𝑥 − 𝑥0) d𝑥 = {𝑔(𝑥0) 𝑎 ≤ 𝑥0 ≤ 𝑏

0 otherwise

10.2 Heaviside step function
Exploiting the definition of the 𝛿 function, we will define the Heaviside step function𝐻(𝑥) by

𝐻(𝑥) ≡ ∫
𝑥

−∞
𝛿(𝑡) d𝑡

Here are some of its properties:

• 𝐻(𝑥) = 0 for 𝑥 < 0
• 𝐻(𝑥) = 1 for 𝑥 > 0
• 𝐻(0) is undefined

10.3 Ramp function
We define the ramp function 𝑟(𝑥) by

𝑟(𝑥) ≡ ∫
𝑥

−∞
𝐻(𝑡) d𝑡

This function is shaped like a ramp:

𝑟(𝑥) = {0 𝑥 < 0
𝑥 𝑥 ≥ 0

These functions get ‘smoother’ the more times we integrate.
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10.4 Delta function forcing
Consider a linear second order ODE of the form

𝑦″ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 𝛿(𝑥) (10.1)

The key principle is that the highest order derivative ‘inherits’ the level of discontinuity from the
forcing term, since if any other derivative were to contain the discontinuous function, then the next
higher derivative would only be more discontinuous. So, 𝑦″ behaves somewhat like 𝛿. Here, we will
denote this 𝑦″ ∼ 𝛿—this is extremely non-standard notation, however.

Now, since 𝛿(𝑥) = 0 for all nonzero 𝑥, then

𝑦″ + 𝑝𝑦′ + 𝑞𝑦 = 0 for 𝑥 < 0, 𝑥 > 0

We will essentially have two solutions for 𝑦; one for before the impulse and one after. We need to
combine these together somehow to create the resultant 𝑦 solution. But this leaves four constants of
integration, so surely we can’t solve it. Luckily, 𝑦 satisfies certain ‘jump conditions’ (the analogous
concept to initial conditions in this context):

• 𝑦(𝑥) is continuous at 𝑥 = 0 because 𝑦″ ∼ 𝛿 ⟹ 𝑦′ ∼ 𝐻 ⟹ 𝑦 ∼ 𝑟. More precisely:

lim
𝜀→0

[𝑦]𝑥=𝜀𝑥=−𝜀 = 0

• 𝑦′(𝑥) is has a jump of 1 at 𝑥 = 0 because 𝑦″ ∼ 𝛿 ⟹ 𝑦′ ∼ 𝐻. Again we can formulate this
intuition more precisely by integrating (10.1) around a small window 𝜀:

lim
𝜀→0

∫
𝜀

−𝜀
𝑦″ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 d𝑥 = lim

𝜀→0
∫

𝜀

−𝜀
𝛿(𝑥) d𝑥

lim
𝜀→0

[𝑦′]𝑥=𝜀𝑥=−𝜀 = 1

As a more concrete example, let us solve

𝑦″ − 𝑦 = 3𝛿 (𝑥 − 𝜋
2 )

where
𝑥 = 0, 𝑥 = 𝜋 ⟹ 𝑦 = 0

First, let us solve the interval 0 ≤ 𝑥 < 𝜋
2
.

𝑦″ − 𝑦 = 0
𝑦 = 𝐴𝑒𝑥 + 𝐵𝑒−𝑥

or 𝑦 = 𝐴 sinh𝑥 + 𝐵 cosh𝑥 redefining 𝐴, 𝐵
(𝑦 = 0 at 𝑥 = 0) ⟹ 𝑦 = 𝐴 sinh𝑥

Similarly, between 𝜋
2
< 𝑥 ≤ 𝜋 (since the equation is invariant under the transformation 𝑥 ↦ 𝜋 −

𝑥):
𝑦 = 𝐶 sinh(𝜋 − 𝑥)

Now, we can apply two jump conditions to solve for these constants:

38



• Integrating the differential equation over a small region:

lim
𝜀→0

[𝑦]
𝑥=𝜋

2 +𝜀
𝑥=𝜋

2 −𝜀
= 3

Hence, taking the derivatives of our two solutions:

−𝐴 cosh 𝜋2 − 𝐶 cosh 𝜋2 = 3

• Since the 𝑦 term is continuous:

[𝑦]
𝑥=𝜋

2
𝑥=𝜋

2 −𝜀
= 0

𝐴 sinh 𝜋2 = 𝐶 sinh 𝜋2 ⟹ 𝐴 = 𝐶

Using both jump conditions, we have 𝐴 = 𝐶 = −3
2 cosh 𝜋

2
. So our general solution is

𝑦 = {
−3 sinh𝑥
2 cosh 𝜋

2
0 ≤ 𝑥 < 𝜋

2
−3 sinh(𝜋−𝑥)
2 cosh 𝜋

2

𝜋
2
< 𝑥 ≤ 𝜋

Note that often when working with limits as 𝜀 → 0, we simply elide the limit sign since it is so
ubiquitous.

10.5 Heaviside function forcing
Consider

𝑦″ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 𝐻(𝑥 − 𝑥0) (10.2)

Now, 𝑦(𝑥) satisfies

𝑦″ + 𝑝𝑦′ + 𝑞𝑦 = 0 (𝑥 < 𝑥0) (10.3)
𝑦″ + 𝑝𝑦′ + 𝑞𝑦 = 1 (𝑥 > 𝑥0) (10.4)

Evaluating (10.2) on either side of 𝑥0, we have

[𝑦″]𝑥
+
0

𝑥−0 + 𝑝(𝑥0)[𝑦′]
𝑥+0
𝑥−0 + 𝑞(𝑥0)

𝑥+0
𝑥−0 = 1

If 𝑦″ ∼ 𝐻 then 𝑦′ ∼ 𝑟 and then 𝑦 ∼ ∫ 𝑟. Hence, 𝑦′ and 𝑦 are both continuous. So our jump conditions
are

• [𝑦′]𝑥
+
0

𝑥−0 = 0

• [𝑦]𝑥
+
0

𝑥−0 = 0
We can use the two initial or boundary conditions, along with the two jump conditions, to find the
four constants in the solutions to (10.3) and (10.4).
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11 Discrete equations and the method of Frobenius
11.1 Higher order discrete equations
The general form of an𝑚th order linear discrete equation with constant coefficients is

𝑎𝑚𝑦𝑛+𝑚 + 𝑎𝑚−1𝑦𝑛+𝑚−1 +⋯+ 𝑎1𝑦𝑛+1 + 𝑎0𝑦𝑛 = 𝑓𝑛 (11.1)

To solve such an equation, we will exploit some principles used to solve higher order differential
equations.

To apply eigenfunction properties, we will define a difference operator 𝐷[𝑦𝑛] = 𝑦𝑛+1. Then, 𝐷 has
eigenfunction 𝑦𝑛 = 𝑘𝑛 for 𝑘 constant, since 𝐷[𝑘𝑛] = 𝑘𝑛+1 = 𝑘 ⋅ 𝑘𝑛 = 𝑘𝑦𝑛.

To apply linearity, notice that (11.1) is linear in 𝑦, so the general solution 𝑦𝑛 = 𝑦(𝑐)𝑛 + 𝑦(𝑝)𝑛 where 𝑦(𝑐)
is the complementary function and 𝑦(𝑝) is the particular integral.
As an example, let us consider a second order difference equation

𝑎2𝑦𝑛+2 + 𝑎1𝑦𝑛+1 + 𝑎0𝑦𝑛 = 𝑓𝑛

We will first try to solve the homogeneous equation, letting 𝑓 = 0.

𝑎2𝑦𝑛+2 + 𝑎1𝑦𝑛+1 + 𝑎0𝑦𝑛 = 0

We will look for solutions of the form of the eigenfunction: 𝑦𝑛 = 𝑘𝑛.

𝑎2𝑘2 + 𝑎1𝑘 + 𝑎0 = 0

This quadratic may be solved to give 𝑘1 and 𝑘2. Then our complementary function is

𝑦(𝑐)𝑛 = {𝐴𝑘
𝑛
1 + 𝐵𝑘𝑛2 𝑘1 ≠ 𝑘2

𝐴𝑘𝑛 + 𝐵𝑛𝑘𝑛 𝑘1 = 𝑘2 = 𝑘

To solve the particular integral, let us consult this table:

Form of 𝑓𝑛 Form of 𝑦(𝑝)𝑛

𝑘𝑛 𝐴𝑘𝑛 if 𝑘 ≠ 𝑘1, 𝑘2
𝑘𝑛1 , 𝑘𝑛2 𝐴𝑛𝑘𝑛1 + 𝐵𝑛𝑘𝑛2
𝑛𝑝 𝐴𝑛𝑝 + 𝐵𝑛𝑝−1 +⋯+ 𝐶𝑛 + 𝐷

11.2 Fibonacci sequence
The Fibonacci sequence is given by

𝑦𝑛 = 𝑦𝑛−1 + 𝑦𝑛−2
with initial conditions 𝑦0 = 𝑦1 = 1. In standard form, we have

𝑦𝑛+2 − 𝑦𝑛+1 − 𝑦𝑛 = 0

We will look for solutions of the form 𝑦 = 𝑘𝑛. Then

𝑘2 − 𝑘 − 1 = 0
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So we have

𝑘1 = 𝜙 = 1 + √5
2 ; 𝑘2 = −𝜙−1 = 1 − √5

2
Solving for the initial conditions gives

𝑦𝑛 =
1
√5

𝜙 + 1
√5

𝜙−1 = 𝜙𝑛+1 − (−𝜙−1)𝑛+1

√5

So we can deduce that
lim
𝑛→∞

𝑦𝑛+1
𝑦𝑛

= lim
𝑛→∞

𝜙𝑛+2 − (−𝜙−1)𝑛+2
𝜙𝑛+1 − (−𝜙−1)𝑛+1 = 𝜙

11.3 Method of Frobenius
TheMethod of Frobenius is a way of computing series solutions to linear homogeneous second order
ODEs. The general form is

𝑝(𝑥)𝑦″ + 𝑞(𝑥)𝑦′ + 𝑟(𝑥)𝑦 = 0
We will seek a power series expansion about some point 𝑥 = 𝑥0. First, we must classify the point
𝑥0:

• (ordinary point) 𝑥 = 𝑥0 is an ordinary point if the Taylor series of 𝑞/𝑝 and 𝑟/𝑝 converge in some
region around 𝑥0; i.e. 𝑞/𝑝 and 𝑟/𝑝 are analytic.

• (singular point) If 𝑥0 is not ordinary, it is singular. There are two types of singular points:
– (regular singular point) If the original ODE can be written as

𝑃(𝑥)(𝑥 − 𝑥0)2𝑦″ + 𝑄(𝑥)(𝑥 − 𝑥0)𝑦′ + 𝑅(𝑥)𝑦 = 0

and 𝑄
𝑃
and 𝑅

𝑃
are analytic, then 𝑥 = 𝑥0 is a regular singular point. Note that

𝑄
𝑃
= (𝑥 −

𝑥0)
𝑞
𝑝
; 𝑅
𝑃
(𝑥 − 𝑥0)2

𝑟
𝑝
.

– (irregular singular point) Otherwise, 𝑥 = 𝑥0 is an irregular singular point.
Here are some examples.

(i) (1−𝑥2)𝑦″−2𝑥𝑦′+2𝑦 = 0. We have 𝑞/𝑝 = −2𝑥
1−𝑥2

, so 𝑥 = ±1 are singular points. But𝑄/𝑃 = 2𝑥
1+𝑥

which is regular at 𝑥 = 1; a similar argument holds for −1.
(ii) 𝑦″ sin𝑥+𝑦′ cos𝑥+2𝑦 = 0. We have 𝑞/𝑝 = cot𝑥, 𝑟/𝑝 = 2 csc𝑥. So where 𝑥 = 𝑛𝜋where 𝑛 ∈ ℤ,

we have regular singular points.

(iii) (1 + √𝑥)𝑦″ − 2𝑥𝑦′ + 2𝑦 = 0. We have 𝑞/𝑝 = −2𝑥
1+√𝑥

. Around 𝑥 = 0, the second derivative is
undefined, so this is an irregular singular point.

11.4 Fuch’s theorem

Theorem. (i) If 𝑥0 is an ordinary point, then there are two linearly independent solutions
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of the form

𝑦 =
∞
∑
𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛

This series is convergent in some region around 𝑥0.
(ii) If 𝑥0 is a regular singular point, then there is at least one solution of the form

𝑦 =
∞
∑
𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛+𝜎

where 𝜎 is real and 𝑎0 ≠ 0.

Example. Here is an example of case 1.

(1 − 𝑥2)𝑦″ − 2𝑥𝑦′ + 2𝑦 = 0 (11.2)

We will try to find series solutions about 𝑥0 = 0, an ordinary point. We will therefore try solutions of
the form

𝑦 =
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛

𝑦′ =
∞
∑
𝑛=1

𝑛𝑎𝑛𝑥𝑛−1

𝑦″ =
∞
∑
𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2

Now, to make all powers of 𝑥 at least 𝑛, we will multiply (11.2) by 𝑥2 for convenience.

(1 − 𝑥2)𝑥2𝑦″ − 2𝑥3𝑦′ + 2𝑥2𝑦 = 0

(1 − 𝑥2)𝑥2
∞
∑
𝑛=2

𝑛(𝑛 − 1)𝑎𝑛(𝑥 − 𝑥0)𝑛−2 − 2𝑥3
∞
∑
𝑛=1

𝑛𝑎𝑛(𝑥 − 𝑥0)𝑛−1 + 2𝑥2
∞
∑
𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛 = 0

(1 − 𝑥2)
∞
∑
𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛 − 2𝑥2
∞
∑
𝑛=1

𝑛𝑎𝑛𝑥𝑛 + 2𝑥2
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛 = 0

∞
∑
𝑛=2

𝑎𝑛[𝑛(𝑛 − 1)(1 − 𝑥2)]𝑥𝑛 − 2
∞
∑
𝑛=1

𝑎𝑛(𝑛𝑥2)𝑥𝑛 + 2
∞
∑
𝑛=0

𝑎𝑛(𝑥2)𝑥𝑛 = 0

Now, for 𝑛 ≥ 2, equating the 𝑥𝑛 coefficients we have

𝑎𝑛[𝑛(𝑛 − 1)] − 𝑎𝑛−2[(𝑛 − 2)(𝑛 − 3)] − 2𝑎𝑛−2(𝑛 − 2) + 2𝑎𝑛−2 = 0

This is a discrete equation. Rewritten in a more standard form, we have

𝑛(𝑛 − 1)𝑎𝑛 = (𝑛2 − 3𝑛)𝑎𝑛−2
or

𝑎𝑛 =
𝑛 − 3
𝑛 − 1𝑎𝑛−2 (11.3)
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This is known as the recurrence relation. The values of 𝑎0 and 𝑎1 are the unknown constants to be
found via initial or boundary conditions. Note that 𝑎3 = 0 from (11.3). Therefore, any odd power of
𝑥 of higher order than 𝑥1 is zero. For even 𝑛, we have

𝑎𝑛 =
𝑛 − 3
𝑛 − 1𝑎𝑛−2

𝑎𝑛 =
𝑛 − 3
𝑛 − 1

𝑛 − 5
𝑛 − 3𝑎𝑛−4 =

𝑛 − 5
𝑛 − 1𝑎𝑛−4

𝑎𝑛 =
𝑛 − 5
𝑛 − 1

𝑛 − 7
𝑛 − 5𝑎𝑛−6 =

𝑛 − 7
𝑛 − 1𝑎𝑛−6

∴ 𝑎𝑛 =
−1
𝑛 − 1𝑎0

Therefore
𝑦 = 𝑎1𝑥 + 𝑎0 [1 − 𝑥2 − 𝑥4

3 − 𝑥6
5 − 𝑥8

7 −…]

Note that
ln(1 ± 𝑥) = ±𝑥 − 𝑥2

2 ± 𝑥3
3 −…

Therefore
ln(1 + 𝑥

1 − 𝑥) = ln(1 + 𝑥) − ln(1 − 𝑥) = 2𝑥 + 2𝑥
3

3 + 2𝑥
5

5 +…

Hence,
𝑦 = 𝑎1𝑥 + 𝑎0 [1 −

𝑥
2 ln (

1 + 𝑥
1 − 𝑥)]

Note the behaviour of this function near the singular points of the original differential equation.

Example. Consider the following differential equation:

4𝑥𝑦″ + 2(1 − 𝑥2)𝑦′ − 𝑥𝑦 = 0 (11.4)

We want to find series solutions about 𝑥 = 0. In this case, 𝑞
𝑝
is undefined at 𝑥 = 0, so it is a singular

point, but it is regular. We will try solutions of the form

𝑦 =
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛+𝜎

𝑦′ =
∞
∑
𝑛=0

(𝑛 + 𝜎)𝑎𝑛𝑥𝑛+𝜎−1

𝑦″ =
∞
∑
𝑛=0

(𝑛 + 𝜎)(𝑛 + 𝜎 − 1)𝑎𝑛𝑥𝑛+𝜎−2

where 𝑎0 ≠ 0. For convenience we will multiply (11.4) by 𝑥:

4𝑥2𝑦″ + 2(1 − 𝑥2)𝑥𝑦′ − 𝑥2𝑦 = 0

4𝑥2
∞
∑
𝑛=0

(𝑛 + 𝜎)(𝑛 + 𝜎 − 1)𝑎𝑛𝑥𝑛+𝜎−2 + 2(1 − 𝑥2)𝑥
∞
∑
𝑛=0

(𝑛 + 𝜎)𝑎𝑛𝑥𝑛+𝜎−1 − 𝑥2
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛+𝜎
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Hence,
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛+𝜎 [4(𝑛 + 𝜎)(𝑛 + 𝜎 − 1) + 2 (1 − 𝑥2) (𝑛 + 𝜎) − 𝑥2] = 0 (11.5)

We will equate coefficients of 𝑥𝑛+𝜎 for 𝑛 ≥ 2, since here all terms will make some contribution to the
coefficient.

𝑎𝑛 [4(𝑛 + 𝜎)(𝑛 + 𝜎 − 1) + 2(𝑛 + 𝜎)] + 𝑎𝑛−2 [−2(𝑛 − 2 + 𝜎) − 1] = 0
Therefore,

2(𝑛 + 𝜎)(2𝑛 + 2𝜎 − 1)𝑎𝑛 = (2𝑛 + 2𝜎 − 3)𝑎𝑛−2 (11.6)
This is the recurrence relation, which we can use to compute the 𝑎𝑛. A general technique to find
𝜎 is to equate the coefficients of the lowest power of 𝑥 in (11.5). By setting 𝑛 = 0, we can equate
coefficients of 𝑥𝜎, giving

𝑎0(4𝜎(𝜎 − 1)) + 𝑎02𝜎 = 0
But since 𝑎0 ≠ 0 in Fuch’s Theorem, we have

4𝜎(𝜎 − 1) + 2𝜎 = 0

So either 𝜎 = 0 or 𝜎 = 1
2
. We must consider these two cases individually.

• (𝜎 = 0) Equate coefficients of the lowest powers of 𝑥 in (11.5).
– (𝑛 = 0) The coefficient of 𝑥0 gives

𝑎0[4(0)(−1)] + 𝑎0[2(0)] = 0

which is true for all 𝑎0. So 𝑎0 is an arbitrary constant.
– (𝑛 = 1) The coefficient of 𝑥1 gives

𝑎1[4(1)(0)] + 𝑎1[2(1)] = 0

so 𝑎1 = 0.
From the recurrence relation (11.6) which is valid for 𝑛 ≥ 2, plugging in 𝜎 = 0 gives

2𝑛(2𝑛 − 1)𝑎𝑛 = (2𝑛 − 3)𝑎𝑛−2 (11.7)

Since 𝑎1 = 0, clearly all 𝑎𝑘 = 0 for odd 𝑘. Therefore, using the recurrence relation (11.7) we
have

𝑦 = 𝑎0 (1 +
𝑥2
4 ⋅ 3 +

5𝑥4
8 ⋅ 7 ⋅ 4 ⋅ 3 + …)

• (𝜎 = 1
2
) This time we will start with the recurrence relation (11.6) with 𝜎 = 1

2
, relabelling 𝑎 to

𝑏 to avoid confusion.
(2𝑛 + 1)(2𝑛)𝑏𝑛 = (2𝑛 − 2)𝑏𝑛−2 (11.8)

Now let us analyse the coefficients of the lowest powers of 𝑥, substituting into (11.5).

– (𝑛 = 0) The coefficient of 𝑥
1
2 gives

𝑏0 [4 (
1
2) (

−1
2 )] + 𝑏0 [2 (

1
2)] = 0

which is true for all 𝑏0. So 𝑏0 is an arbitrary constant.
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– (𝑛 = 1) The coefficient of 𝑥
3
2 gives

𝑏1 [4 (
3
2) (

1
2)] + 𝑏1 [2 (

3
2)] = 0

so 𝑏1 = 0.
As before, all 𝑏𝑘 = 0 where 𝑘 is odd. Therefore, using the recurrence relation (11.8), we have

𝑦 = 𝑏0𝑥
1
2 [1 + 𝑥2

2 ⋅ 5 +
3𝑥4

2 ⋅ 5 ⋅ 4 ⋅ 9 + …]

So we have found two linearly independent solutions to the differential equation, given by boundary
conditions 𝑎0 and 𝑏0. Note that Fuch’s Theorem only specifies that there will be at least one, but we
have found two in this case.

11.5 Special cases of indicial equation
Before looking at some examples of the method of Frobenius, we will first look at special cases of the
indicial equation provided by Fuch’s theorem. Consider an expansion about the point 𝑥 = 𝑥0. Let
𝜎1, 𝜎2 be the roots of this equation. There are two cases:

• (𝜎1 − 𝜎2 ∉ ℤ) We have two linearly independent solutions. So our solution is of the form

𝑦 = (𝑥 − 𝑥0)𝜎1
∞
∑
𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛 + (𝑥 − 𝑥0)𝜎2
∞
∑
𝑛=0

𝑏𝑛(𝑥 − 𝑥0)𝑛

Note that the limit as 𝑥 → 𝑥0, 𝑦 ∼ (𝑥 − 𝑥0)min(𝜎1,𝜎2).
• (𝜎1 − 𝜎2 ∈ ℤ) There is one solution of the form

𝑦1 = (𝑥 − 𝑥0)𝜎2
∞
∑
𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛

The other solution is of the form

𝑦2 = (𝑥 − 𝑥0)𝜎1
∞
∑
𝑛=0

𝑏𝑛(𝑥 − 𝑥0)𝑛 + 𝑐𝑦1 ln(𝑥 − 𝑥0)

where 𝑐may or may not equal zero. If the two solutions are linearly independent without the
𝑐 term, then 𝑐 = 0. Else, without loss of generality, we can let 𝑐 = 1 since we’re dealing with
homogeneous equations.

• (𝜎1 = 𝜎2 = 𝜎) Here, 𝑐 ≠ 0. So our solutions are of the form

𝑦1 = (𝑥 − 𝑥0)𝜎
∞
∑
𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛

𝑦2 = (𝑥 − 𝑥0)𝜎
∞
∑
𝑛=0

𝑏𝑛(𝑥 − 𝑥0)𝑛 + 𝑦1 ln(𝑥 − 𝑥0)
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Example. Let us solve the equation
𝑥2𝑦″ − 𝑥𝑦 = 0 (11.9)

where we want series solutions about 𝑥 = 0. Note that this is a regular singular point. We will try
solutions of the form

𝑦 =
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛+𝜎

Therefore, we have
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛+𝜎 [(𝑛 + 𝜎)(𝑛 + 𝜎 − 1) − 𝑥] = 0 (11.10)

Equating coefficients of 𝑥𝑛+𝜎 for 𝑛 ≥ 1:

(𝑛 + 𝜎)(𝑛 + 𝜎 − 1)𝑎𝑛 = 𝑎𝑛−1 (11.11)

By equating the coefficients of the lowest powers of 𝑥 (here 𝑛 = 0, so we equate coefficients of 𝑥𝜎),
we get an indicial equation for 𝜎:

𝜎(𝜎 − 1)𝑎0 = 0
So either 𝜎 = 0 or 𝜎 = 1, since 𝑎0 ≠ 0. So the values of 𝜎 differ by an integer.

• (𝜎 = 1) (11.11) implies that
𝑎𝑛 =

𝑎𝑛−1
𝑛(𝑛 − 1) =

𝑎0
(𝑛 + 1)(𝑛!)2

So we have
𝑦1 = 𝑎0𝑥 (1 +

𝑥
2 +

𝑥2
12 +

𝑥3
144 +…)

• (𝜎 = 0) (11.11) now gives
𝑛(𝑛 − 1)𝑏𝑛 = 𝑏𝑛−1

Normally we could find 𝑏1 in terms of 𝑏0 using this relation, but this just reduces to 0𝑏1 = 0,
so we can’t deduce it here. When 𝑛 = 1, we can equate coefficients of 𝑥 in (11.10) (relabelling
𝑎 to 𝑏) to get

𝑏1(1)(1 − 1) = 0
So 𝑏1 is arbitrary. Then of course we can find 𝑏2 and so on in terms of smaller 𝑏𝑖 values. It
turns out that

𝑏𝑖 = 𝑎𝑖−1
And therefore 𝑦2(𝑥) is linearly dependent on the previous 𝑦1(𝑥). So we now need to use that
logarithmic term to achieve linear independence, so 𝑦 here is of the form

𝑦2 = 𝑦1 ln𝑥 +
∞
∑
𝑥=0

𝑏𝑛𝑥𝑛

Why do we have specifically a logarithmic term? We can try the reduction of order method to
find the other solution given the existence of 𝑦1. Let 𝑦2(𝑥) = 𝑣(𝑥)𝑦1(𝑥) for some function 𝑣.
Then we have

𝑥2(𝑣″𝑦1 + 2𝑣′𝑦′1) = 0
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Let 𝑢 = 𝑣′, then
𝑢′𝑦1 + 2𝑢𝑦1 = 0

𝑢′
𝑢 = −2𝑦

′
1
𝑦1

ln𝑢 = ln(𝑦−21 ) + ln𝐵

𝑢 = 𝑣′ = 𝐵
𝑦21

𝑣′ = 𝐵
𝑎20𝑥2

(1 + 𝑥
2 +

𝑥2
12 +

𝑥3
144 +…)

−2

Note that the constant of integration gives a constant multiple of 𝑦1, and since the equation
is homogeneous the constant does not matter. We will expand this now using the binomial
theorem, continually redefining constants since they are arbitrary, to give

𝑣′ = 𝐵
𝑎20

( 1𝑥2 −
1
𝑥 +

∞
∑
𝑛=0

𝐵𝑛𝑥𝑛)

for some constants 𝐵𝑛. Then integrating with respect to 𝑥,

𝑣 = −𝐵
𝑎20

1
𝑥 − 𝐵

𝑎20
ln𝑥 +

∞
∑
𝑛=1

𝐶𝑛𝑥𝑛

𝑦2 = 𝑣𝑦1 =
−𝐵
𝑎0

− 𝐵
2𝑎0

𝑥 +
∞
∑
𝑛=2

𝐷𝑛𝑥𝑛 + 𝐶𝑦1 ln𝑥

=
∞
∑
𝑛=0

𝑏𝑛𝑥𝑛 + 𝑐𝑦1 ln𝑥

So the appearance of ln𝑥 is natural here.
Example. Let us revisit (11.2).

(1 − 𝑥2)𝑦″ − 2𝑥𝑦′ + 2𝑦 = 0
Instead of expanding around 𝑥 = 0, let us now consider expanding around 𝑥 = −1, a singular point.
We will redefine the independent variable, let

𝑧 = 1 + 𝑥 ⟹ 𝑧(2 − 𝑧)𝑦″ − 2(𝑧 − 1)𝑦′ + 2𝑦 = 0
Now we will expand around 𝑧 = 0. We know that 𝑧 = 0 is a regular singular point, so we will try
solutions of the form

𝑦 =
∞
∑
𝑛=0

𝑎𝑛𝑧𝑛+𝜎; 𝑎0 ≠ 0

We have
∞
∑
𝑛=0

𝑎𝑛𝑧𝑛+𝜎−1 [(𝑛 + 𝜎)(𝑛 + 𝜎 − 1)(2 − 𝑧) − 2(𝑛 + 𝜎)(𝑧 − 1) + 2𝑧] = 0

As before, we will equate the coefficients of the lowest power of 𝑧 (for 𝑛 = 0, these are the coefficients
of 𝑧𝜎−1) to get the indicial equation and recursion relation.

2𝜎(𝜎 − 1)𝑎0 + 2𝜎𝑎0 = 0 ⟹ 𝜎2 = 0
So 𝜎 = 0 is a repeated root. Note that we need a term of the form 𝑦1 ln(𝑥 − 𝑥0) in this problem. We
will not complete this example here.
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12 Multivariate calculus
12.1 Gradient vector
Consider a function 𝑓(𝑥, 𝑦), and some small displacement ds. We want to find the rate of change of
𝑓 in this direction. Recall that the multivariate chain rule tells us that a change in 𝑓, given a change
in 𝑥 and 𝑦, is given by

d𝑓 = 𝜕𝑓
𝜕𝑥 d𝑥 +

𝜕𝑓
𝜕𝑦 d𝑦

= (d𝑥 , d𝑦) ⋅ (𝜕𝑓𝜕𝑥 ,
𝜕𝑓
𝜕𝑦 )

= ds ⋅ ∇𝑓

where ds = (d𝑥 , d𝑦); ∇𝑓 = (𝜕𝑓
𝜕𝑥
, 𝜕𝑓
𝜕𝑦
). We call ∇𝑓 the ‘gradient vector’, in this case in Cartesian

coordinates. If we let ds = d𝑠 ̂s where | ̂s| = 1, then we can write

d𝑓 = d𝑠 ( ̂s ⋅ ∇𝑓)

We define the directional derivative by
d𝑓
d𝑠 = ̂s ⋅ ∇𝑓

This is the rate of change of 𝑓 in the direction given by ̂s.
(i) The magnitude of the gradient vector ∇𝑓 is the maximum rate of change of 𝑓(𝑥, 𝑦).

|∇𝑓| = max
∀𝜃

(d𝑓d𝑠 )

(ii) The direction of ∇𝑓 is the direction in which 𝑓 increases most rapidly.

|||
d𝑓
d𝑠
||| = |∇𝑓| cos 𝜃

where 𝜃 is the angle between ∇𝑓 and ̂s, which follows from the definition of the directional
derivative.

(iii) If ds (and ̂s) are parallel to contours of 𝑓, then

d𝑓
d𝑠 = ̂s ⋅ ∇𝑓 = 0

Hence the gradient vector is perpendicular to contours of 𝑓, and |∇𝑓| is the slope in the ‘uphill’
direction.

12.2 Stationary points
In general, there is always at least one direction in which the directional derivative is zero, since we
can just choose a direction perpendicular to the gradient vector, or equivalently parallel to contours
of 𝑓. At stationary points, d𝑓

d𝑠
= 0 for all directions, so ∇𝑓 = 0. Stationary points may have multiple

types:
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• Minimum points, where the function is a minimum point in both directions;

• Maximum points, where the function is a maximum point in both directions; and

• Saddle points, where the function is a minimum point in one direction but a maximum point
in another direction.

Note:

• Near minima and maxima, the contours of 𝑓 are elliptical.
• Near a saddle, the contours of 𝑓 are hyperbolic.
• Contours of 𝑓 can only cross at saddle points.

12.3 Taylor series for multivariate functions
Let us expand a function 𝑓(𝑥, 𝑦) around a point s0, and evaluate it at some point s0 + 𝛿s, where
𝛿s = 𝛿𝑠 ̂s. The Taylor series expansion in the direction of ̂s is

𝑓(𝑠0 + 𝛿𝑠) = 𝑓(𝑠0) + 𝛿𝑠 d𝑓d𝑠
|||𝑠0

+ 1
2(𝛿𝑠)

2 d2𝑓
d𝑠2

|||𝑠0
+…

Further, by the definition of the directional derivative,

d
d𝑠 = ̂s ⋅ ∇

Hence
𝛿𝑠 dd𝑠 = 𝛿s ⋅ ∇

Now we can rewrite this Taylor series as follows:

𝑓(𝑠0 + 𝛿𝑠) = 𝑓(𝑠0) + (𝛿𝑠)( ̂s ⋅ ∇) 𝑓|||𝑠0
+ 1
2(𝛿𝑠)

2( ̂s ⋅ ∇)( ̂s ⋅ ∇) 𝑓|||𝑠0
+…

𝑓(𝑠0 + 𝛿𝑠) = 𝑓(𝑠0) + (𝛿s ⋅ ∇) 𝑓|||𝑠0⏟⎵⎵⏟⎵⎵⏟
(1)

+ 1
2(𝛿s ⋅ ∇)(𝛿s ⋅ ∇) 𝑓

|||𝑠0⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
(2)

+…

Expressing this in Cartesian coordinates:

s0 = (𝑥0, 𝑦0); 𝛿s = (𝛿𝑥, 𝛿𝑦); 𝑥 = 𝑥0 + 𝛿𝑥; 𝑦 = 𝑦0 + 𝛿𝑦
Therefore,

(1) = 𝛿𝑥𝜕𝑓𝜕𝑥 (𝑥0, 𝑦0) + 𝛿𝑦𝜕𝑓𝜕𝑦 (𝑥0, 𝑦0)

(2) = 1
2 (𝛿𝑥

𝜕
𝜕𝑥 + 𝛿𝑦 + 𝜕

𝜕𝑦) (𝛿𝑥
𝜕
𝜕𝑥 + 𝛿𝑦 + 𝜕

𝜕𝑦) 𝑓
|||𝑥0,𝑦0

= 1
2 (𝛿𝑥

2𝑓𝑥𝑥 + 𝛿𝑥𝛿𝑦𝑓𝑦𝑥 + 𝛿𝑦𝛿𝑥𝑓𝑥𝑦 + 𝛿𝑦2𝑓𝑦𝑦)
|||𝑥0,𝑦0

= 1
2 (𝛿𝑥 𝛿𝑦) (𝑓𝑥𝑥 𝑓𝑥𝑦

𝑓𝑦𝑥 𝑓𝑦𝑦
) |||𝑥0,𝑦0

(𝛿𝑥𝛿𝑦)
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The matrix
𝐻 = (𝑓𝑥𝑥 𝑓𝑥𝑦

𝑓𝑦𝑥 𝑓𝑦𝑦
) = ∇(∇𝑓)

as used in the second derivative above, is called the Hessian matrix.

Putting this together, in 2D Cartesian Coordinates, we have

𝑓(𝑥, 𝑦) = 𝑓(𝑥0, 𝑦0) + (𝑥 − 𝑥0) 𝑓𝑥
|||𝑥0,𝑦0

+ (𝑦 − 𝑦0) 𝑓𝑦
|||𝑥0,𝑦0

+ 1
2 [(𝑥 − 𝑥0)2 𝑓𝑥𝑥

|||𝑥0,𝑦0
+ (𝑦 − 𝑦0)2 𝑓𝑦𝑦

|||𝑥0,𝑦0
+ 2(𝑥 − 𝑥0)(𝑦 − 𝑦0) 𝑓𝑥𝑦

|||𝑥0,𝑦0
] +…

And in the general coordinate-independent form:

𝑓(x) = 𝑓(x0) + 𝛿x ⋅ ∇𝑓(x0) +
1
2𝛿x ⋅ [∇(∇𝑓)]

|||𝑥0
⋅ 𝛿x⊺ +…

12.4 Classifying stationary points
Since∇𝑓 = 0 defines a stationary point, the Taylor series expansion around a stationary point x = x𝑠
is

𝑓(x) ≈ 𝑓(x𝑠) +
1
2𝛿x ⋅ 𝐻

|||x𝑠
⋅ 𝛿x⊺

So the nature of the stationary point depends on the Hessian matrix 𝐻. Consider a function in 𝑛-
dimensional space

𝑓 = 𝑓(𝑥1, 𝑥2,… , 𝑥𝑛)
Then the 𝑛-dimensional Hessian matrix is given by

𝐻 =
⎛
⎜
⎜
⎝

𝑓𝑥1𝑥1 𝑓𝑥1𝑥2 ⋯ 𝑓𝑥1𝑥𝑛
𝑓𝑥2𝑥1 𝑓𝑥2𝑥2 ⋯ 𝑓𝑥2𝑥𝑛
⋮ ⋮ ⋱ ⋮

𝑓𝑥𝑛𝑥1 𝑓𝑥𝑛𝑥2 ⋯ 𝑓𝑥𝑛𝑥𝑛

⎞
⎟
⎟
⎠

If all of these derivatives are defined, 𝑓𝑥1𝑥2 = 𝑓𝑥2𝑥1 etc, so 𝐻 = 𝐻⊺, i.e. 𝐻 is symmetric, and therefore
it can be diagonalised with respect to its principal axes.

𝛿x ⋅ 𝐻 ⋅ 𝛿x⊺ = (𝛿𝑥1 𝛿𝑥2 ⋯ 𝛿𝑥𝑛)
⎛
⎜
⎜
⎝

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑛

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝛿𝑥1
𝛿𝑥2
⋯
𝛿𝑥𝑛

⎞
⎟
⎟
⎠

where the 𝜆𝑖 are eigenvalues of 𝐻 and the 𝛿𝑥𝑖 is the displacement along the principal axis (eigen-
vector) 𝑖. Therefore

𝛿x ⋅ 𝐻 ⋅ 𝛿x⊺ = 𝜆1𝛿𝑥21 + 𝜆2𝛿𝑥22 +⋯+ 𝜆𝑛𝛿𝑥2𝑛
(i) At a minimum point, 𝛿x ⋅ 𝐻 ⋅ 𝛿x⊺ > 0 for any 𝛿x (moving in any direction, we go ‘downhill’).

So all the 𝜆𝑖 > 0. So 𝐻 is positive definite.

(ii) At a maximum point, 𝛿x ⋅ 𝐻 ⋅ 𝛿x⊺ < 0 for any 𝛿x. So all the 𝜆𝑖 < 0. 𝐻 is negative definite.

(iii) At a saddle point, 𝐻 is indefinite.

12.5 Signature of Hessian
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Definition. The signature of 𝐻 is the pattern of the signs of its subdeterminants.

For a function 𝑓(𝑥1, 𝑥2,… , 𝑥𝑛), we want the signs of

||𝑓𝑥1𝑥1 ||⏟
|𝐻1|

, |||
𝑓𝑥1𝑥1 𝑓𝑥1𝑥2
𝑓𝑥2𝑥1 𝑓𝑥2𝑥2

|||⏟⎵⎵⎵⏟⎵⎵⎵⏟
|𝐻2|

,… ,
||||||

𝑓𝑥1𝑥1 𝑓𝑥1𝑥2 ⋯ 𝑓𝑥1𝑥𝑛
𝑓𝑥2𝑥1 𝑓𝑥2𝑥2 ⋯ 𝑓𝑥2𝑥𝑛
⋮ ⋮ ⋱ ⋮

𝑓𝑥𝑛𝑥1 𝑓𝑥𝑛𝑥2 ⋯ 𝑓𝑥𝑛𝑥𝑛

||||||⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
|𝐻1|

We know from Vectors and Matrices that if a symmetric matrix 𝐻 is positive (or negative) definite,
then 𝐻1, 𝐻2,… ,𝐻𝑛−1 are positive (or negative) definite. This is known as Sylvester’s Criterion. In
other words, a minimum (or maximum) point in 𝑛-dimensional space is also a minimum (or max-
imum) in any subspace containing this point. Now let us list the signs of subdeterminants to see the
types of signatures.

(i) At a minimum point (𝜆𝑖 > 0), the signature is +,+,+,+,…
(ii) At a maximum point (𝜆𝑖 < 0), the signature is −,+,−,+,…

If |𝐻| = 0, we need higher order terms in the Taylor series.

12.6 Contours near stationary points
Consider a coordinate system aligned with the principal axes of the Hessian 𝐻 in two-dimensional
space, so

𝐻 = (𝜆1 0
0 𝜆2

)

Let 𝛿x = (x − x𝑠) = (𝜉, 𝜂) where x𝑠 is the stationary point we’re considering. In a small region near
x𝑠, the contours of 𝑓 satisfy

𝑓 = constant (since 𝑓 is a contour) ≈ 𝑓(x𝑠) =
1
2𝛿x ⋅ 𝐻 ⋅ 𝛿x⊺

∴ 𝜆1𝜉2 + 𝜆2𝜂2 ≈ constant (12.1)
Near a minimum or maximum point, 𝜆1 and 𝜆2 have the same sign. (12.1) implies that the contours
of 𝑓 are elliptical. Near a saddle point, 𝜆1 and 𝜆2 have opposite sign so (12.1) shows that the contours
of 𝑓 are hyperbolic. As an example, let us consider

𝑓(𝑥, 𝑦) = 4𝑥3 − 12𝑥𝑦 + 𝑦2 + 10𝑦 + 6
Let us first identify the stationary points.

𝑓𝑥 = 𝑓𝑦 = 0
After solving this, we get

(𝑥, 𝑦) = (1, 1), (5, 25)
To get the Hessian matrix:

𝑓𝑥𝑥 = 24𝑥
𝑓𝑥𝑦 = 𝑓𝑦𝑥 = −12

𝑓𝑦𝑦 = 2
Now considering the stationary points separately:
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• (1, 1):
𝐻 = ( 24 −12

−12 2 ) ⟹ |𝐻1| = 24; |𝐻| = 48 − 144

The signature is +,−, so this is a saddle point.
• (5, 25):

𝐻 = (120 −12
−12 2 ) ⟹ |𝐻1| = 120; |𝐻| = 240 − 144

The signature is +,+, so this is a minimum point.

13 Systems of ODEs
13.1 Systems of linear ODEs
Consider two functions 𝑦1(𝑡), 𝑦2(𝑡) which satisfy

̇𝑦1 = 𝑎𝑦1 + 𝑏𝑦2 + 𝑓1(𝑡)
̇𝑦2 = 𝑐𝑦1 + 𝑑𝑦2 + 𝑓2(𝑡)

This is a set of coupled differential equationswhichwemust solve simultaneously. In vector form,

Ẏ = 𝑀Y + F

where
Y = (𝑦1𝑦2

) ; 𝑀 = (𝑎 𝑏
𝑐 𝑑) ; F = (𝑓1𝑓2

)

Any 𝑛th order differential equation can be written as a system of 𝑛 first order ODEs. For example,
the standard form for a second order linear ODE is

̈𝑦 + 𝑎 ̇𝑦 + 𝑏𝑦 = 𝑓

Let 𝑦1 = 𝑦, 𝑦2 = ̇𝑦. Then
Y = (𝑦̇𝑦)

Hence our two equations are
̇𝑦1 = 𝑦2

̇𝑦2 + 𝑎𝑦2 + 𝑏𝑦1 = 𝑓 ⟹ ̇𝑦2 = −𝑎𝑦2 − 𝑏𝑦1 + 𝑓
And in vector form,

Ẏ = ( 0 1
−𝑏 −𝑎)Y + (0𝑓)

13.2 Matrix methods
To solve a system of 𝑛 first-order linear ODEs,

Ẏ = 𝑀Y + F (13.1)

we need the following steps.
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(i) Write Y = Y𝑐 + Y𝑝 where Y𝑐 satisfies the homogeneous version of (13.1):

Ẏ𝑐 = 𝑀Y𝑐 (13.2)

(ii) Seek solutions of Y𝑐 in the form v𝑒𝜆𝑡.

(13.2) ⟹ 𝜆v = 𝑀v

So the vectors v are the eigenvectors, with eigenvalues 𝜆.
(iii) Find Y𝑝 based on the form of F.
As a quick example, let us consider

Ẏ − (−4 24
1 −2)Y = (41) 𝑒

𝑡 (13.3)

We will try Y𝑐 = v𝑒𝜆𝑡, and we can compute that the eigenvalues and eigenvectors are

𝜆1 = 2, v1 = (41) ; 𝜆2 = −8, v2 = (−61 )

Hence,
Y𝑐 = 𝐴(41) 𝑒

2𝑡 + 𝐵 (−61 ) 𝑒
−8𝑡

Now, to solve the particular integral, we will try a Y𝑝 of the form

Y𝑝 = (𝑢1𝑢2
) 𝑒𝑡

We have

(13.3) ⟹ (𝑢1𝑢2
) − (−4 24

1 −2) (
𝑢1
𝑢2
) = (41)

𝐼 (𝑢1𝑢2
) − (−4 24

1 −2) (
𝑢1
𝑢2
) = (41)

( 5 −24
−1 3 ) (𝑢1𝑢2

) = (41)

(𝑢1𝑢2
) = (−4−1)

So the general solution is

Y = 𝐴(41) 𝑒
2𝑡 + 𝐵 (−61 ) 𝑒

−8𝑡 − (41) 𝑒
𝑡

If the forcing term matches one of the complementary functions, we would try Y𝑝 = u𝑡𝑒𝜆𝑡.

53



13.3 Decoupling ODEs
From a linear system of 𝑛 first order ODEs, we can construct 𝑛 uncoupled 𝑛th order ODEs. For the
above example (13.3),

̇𝑦1 = −4𝑦1 + 24𝑦2 + 4𝑒𝑡 (13.4)
̇𝑦2 = 𝑦1 − 2𝑦2 + 𝑒𝑡 (13.5)

We will create a linear equation for ̈𝑦. First, we will take the derivative of (13.4).

̈𝑦1 = −4 ̇𝑦1 + 24 ̇𝑦2 + 4𝑒𝑡

Now we will substitute in (13.5) for ̇𝑦2.

̈𝑦1 = −4 ̇𝑦1 + 24(𝑦1 − 2𝑦2 + 𝑒𝑡) + 4𝑒𝑡

Now we can substitute back in the original equation (13.4) to remove the 𝑦2 term.

̈𝑦1 = −4 ̇𝑦1 + 24 (𝑦1 −
1
12( ̇𝑦1 + 4𝑦1 − 4𝑒𝑡) + 𝑒𝑡) + 4𝑒𝑡

̈𝑦1 = −4 ̇𝑦1 + 24𝑦1 − 2 ̇𝑦1 − 8𝑦1 + 8𝑒𝑡 + 28𝑒𝑡

̈𝑦1 + 6 ̇𝑦1 − 16𝑦1 = 36𝑒𝑡

which we can solve as normal. The general solution matches the first component of the general
solution vector from above. We can of course construct an analogous equation for 𝑦2, which would
match the second component of the solution vector.

13.4 Phase portraits
For some complementary function Y𝑐 (or equivalently, a solution to a homogeneous system of linear
first order ODEs) satisfying

Ẏ𝑐 = 𝑀Y𝑐 (13.6)

Therefore,
Y𝑐 = 𝐴v1𝑒𝜆1𝑡 + 𝐵v2𝑒𝜆2𝑡

Let us consider three cases.

(i) 𝜆1, 𝜆2 real and opposite sign. Without loss of generality, let 𝜆1 > 0. The origin here is known
as a ‘saddle node’ as the solution curves for 𝐴 = 0 and 𝐵 = 0 cross at the origin.

(ii) 𝜆1, 𝜆2 real and same sign. let us say that without loss of generality that |𝜆1| > |𝜆2|. If they are
both negative, Here the origin is a stable node as all solution curves tend towards it. If 𝜆1, 𝜆2
are both positive, The origin here is an unstable node as the curves tend away from it.

(iii) 𝜆1, 𝜆2 form a complex conjugate pair. If the real parts are negative, This is a stable spiral; the
curves tend towards zero. If the real parts are positive we have an unstable spiral. If the real
part is zero, the solution curves are circles. This is known as a centre.

Note that to find the direction of rotations in these phase portraits, we would need to evaluate the
system of equations at a given point to find the signs of the derivatives ̇𝑦1, ̇𝑦2.
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13.5 Nonlinear systems of ODEs
Consider an autonomous system of two nonlinear first order ODEs:

̇𝑥 = 𝑓(𝑥, 𝑦) (13.7)
̇𝑦 = 𝑔(𝑥, 𝑦) (13.8)

where ‘nonlinear’ means that 𝑓 and 𝑔 are nonlinear functions of 𝑥 and 𝑦, and where ‘autonomous’
means that the independent variable 𝑡 does not explicitly show up in these equations. We will con-
sider the equilibrium points, or fixed points. Let (𝑥0, 𝑦0) be a fixed point, i.e.

̇𝑥 = ̇𝑦 = 0 ⟹ 𝑓(𝑥0, 𝑦0) = 𝑔(𝑥0, 𝑦0) = 0

at this point. We may want to understand the stability of such fixed points by perturbation analysis,
like before. Let us consider a small perturbation away from the fixed point.

(𝑥, 𝑦) = (𝑥0 + 𝜉(𝑡), 𝑦0 + 𝜂(𝑡))

We have
(13.7) ⟹ ̇𝜉 = 𝑓(𝑥0 + 𝜉, 𝑦0 + 𝜂)

We can expand this in a multivariate Taylor series, keeping the first three terms—the constant term
and the two linear terms.

̇𝜉 ≈ 𝑓(𝑥0, 𝑦0) + 𝜉𝑓𝑥(𝑥0, 𝑦0) + 𝜂𝑓𝑦(𝑥0, 𝑦0)
= 𝜉𝑓𝑥(𝑥0, 𝑦0) + 𝜂𝑓𝑦(𝑥0, 𝑦0)
̇𝜂 ≈ 𝑔(𝑥0, 𝑦0) + 𝜉𝑔𝑥(𝑥0, 𝑦0) + 𝜂𝑔𝑦(𝑥0, 𝑦0)
= 𝜉𝑔𝑥(𝑥0, 𝑦0) + 𝜂𝑔𝑦(𝑥0, 𝑦0)

Hence,
(
̇𝜉
̇𝜂) = (𝑓𝑥 𝑓𝑦

𝑔𝑥 𝑔𝑦
) |||𝑥0,𝑦0

(𝜉𝜂)

This is a homogeneous linear system of ODEs. The eigenvalues of 𝑀, which we will call 𝜆1, 𝜆2, de-
termine the stability and behaviour. This is just the same as the phase portrait analysis above to
determine whether the perturbed point tends to the origin or not, and exactly how this movement
happens.

13.6 Lotka–Volterra equations
This is a worked example of a coupled set of differential equations, which model a predator-prey sys-
tem. Let the quantity of prey be represented by 𝑥, and the quantity of the predator be 𝑦. Then

̇𝑥 = 𝛼𝑥 − 𝛽𝑥𝑦 = 𝑓(𝑥, 𝑦)
̇𝑦 = 𝛿𝑥𝑦 − 𝛾𝑦 = 𝑔(𝑥, 𝑦)

where 𝛼, 𝛽, 𝛾, 𝛿 are positive real constants. We will start by analysing the fixed points, where ̇𝑥 = ̇𝑦 =
0.

̇𝑥 = 0 ⟹ 𝑥 = 0 or 𝑦 = 𝛼
𝛽

̇𝑦 = 0 ⟹ 𝑦 = 0 or 𝑥 = 𝛾
𝛿
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Therefore,
(𝑥0, 𝑦0) = (0, 0), ( 𝛾𝛿 ,

𝛼
𝛽 )

Using matrix methods,

𝑀 = (𝑓𝑥 𝑓𝑦
𝑔𝑥 𝑔𝑦

) = (𝛼 − 𝛽𝑦 −𝛽𝑥
𝛿𝑦 𝛿𝑥 − 𝛾)

Now we can analyse the stability of these fixed points by perturbation analysis.

• At the fixed point (0, 0), we have

(
̇𝜉
̇𝜂) = (𝛼 0

0 −𝛾) (
𝜉
𝜂)

We can read off the eigenvalues to be 𝛼 and −𝛾. This is a saddle node, since one direction will
increase (𝑥) and one will decrease (𝑦).

• At the fixed point ( 𝛾
𝛿
, 𝛼
𝛽
), we have

(
̇𝜉
̇𝜂) = (

0 −𝛽 𝛾
𝛿

𝛿𝛼
𝛽

0 ) (𝜉𝜂)

The characteristic equation is 𝜒𝑀(𝜆) = 𝜆2 + 𝛼𝜆 = 0, so 𝜆 = ±√−𝛼𝛾. Since 𝛼𝛾 > 0, it is more
convenient to write 𝜆 = ±𝑖√𝛼𝛾. Since the real part is zero, this gives a centre node. To work
out the direction of rotation, let us consider the 𝑥 direction,

̇𝜉 = −𝛽 𝛾𝛿𝜂

If 𝜂 > 0, then ̇𝜉 < 0, so we have anticlockwise rotation.
Now we can sketch a graph taking into account both of these fixed points, visually interpolating the
values between them.

13.7 First order wave equation and method of characteristics
We will define a partial differential equation to be a differential equation with multiple independ-
ent variables. Here, we will consider three examples, starting with the first order wave equation.
Consider a function 𝑦(𝑥, 𝑡) where

𝜕𝑦
𝜕𝑡 − 𝑐𝜕𝑦𝜕𝑥 = 0 (13.9)

where 𝑐 is a constant. Wewill solve this equationwith themethod of characteristics. Imaginemoving
a ‘probe’ along a path 𝑥(𝑡). Then 𝑦 is a function 𝑦(𝑥(𝑡), 𝑡), where now the only independent variable
is 𝑡. Using the multivariate chain rule,

d𝑦
d𝑡 =

𝜕𝑦
𝜕𝑡 +

𝜕𝑦
𝜕𝑥

d𝑥
d𝑡

Comparing this with (13.9), we note that if d𝑥
d𝑡

= −𝑐, then d𝑦
d𝑡

= 0. So we have found a path along
which the ‘probe’ is at a constant height, i.e. along 𝑥(𝑡) = 𝑥0 − 𝑐𝑡, 𝑦 is a constant. We can update
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our graph now showing the ‘characteristics’ we have just shown to exist. If 𝑦(𝑥, 𝑡 = 0) = 𝑓(𝑥), then
𝑦 = 𝑓(𝑥0) along the characteristics. Hence, our general solution is

𝑦 = 𝑓(𝑥 + 𝑐𝑡)

Let us consider some examples of wave equations 𝑓.
(i) (unforced wave equation) Let 𝑦(𝑥, 0) = 𝑥2 − 3 in (13.9). Then

𝑦(𝑥, 𝑡) = (𝑥 + 𝑐𝑡)2 − 3

(ii) (forced wave equation) Let
𝜕𝑦
𝜕𝑡 + 5𝜕𝑦𝜕𝑥 = 𝑒−𝑡

and
𝑦(𝑥, 0) = 𝑒−𝑥2

Then along paths with d𝑥
d𝑡
= 5 or 𝑥 = 𝑥0 + 5𝑡,

d𝑦
d𝑡 = 𝑒−𝑡

So by integration,
𝑦 = 𝐴 − 𝑒−𝑡

along these paths. Applying our initial condition at 𝑡 = 0, our ‘probe’ is at 𝑥0 and 𝑦(𝑥, 0) =
𝐴 − 1 = 𝑒−𝑥20 . Hence, 𝐴 = 1 + 𝑒−𝑥20 . So

𝑦 = 1 + 𝑒−𝑥20 − 𝑒−𝑡

along the path given by 𝑥0. Substituting back for a general 𝑥, we can create a formula for the
general solution of 𝑦 (not necessarily on a given path):

𝑦 = 1 + 𝑒−(𝑥−5𝑡)2 − 𝑒−𝑡

14 More PDEs
14.1 Second order wave equation
This equation is typically known as just ‘the wave equation’, but here we are referring to it as the
‘second order’ wave equation to distinguish it from the first order equation found in the previous
lecture.

𝜕2𝑦
𝜕𝑡𝑡 − 𝑐2 𝜕

2𝑦
𝜕𝑥2 = 0 (14.1)

We will factor out the differential operator:

( 𝜕𝜕𝑡 − 𝑐 𝜕𝜕𝑥) (
𝜕
𝜕𝑡 + 𝑐 𝜕𝜕𝑥) 𝑦 = 0

The two operators commute, hence we have either

( 𝜕𝜕𝑡 − 𝑐 𝜕𝜕𝑥) 𝑦 = 0; or ( 𝜕𝜕𝑡 + 𝑐 𝜕𝜕𝑥) 𝑦 = 0
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These are both instances of the first order wave equation (13.9).

𝑦 = 𝑓(𝑥 + 𝑐𝑡); 𝑦 = 𝑔(𝑥 − 𝑐𝑡)

Since (14.1) is linear in 𝑦, our general solution is the sum of these two solutions.

𝑦 = 𝑓(𝑥 + 𝑐𝑡) + 𝑔(𝑥 − 𝑐𝑡)

As an example, let us solve
𝑦𝑡𝑡 − 𝑐2𝑦𝑥𝑥 = 0

subject to
𝑦 = 1

1 + 𝑥2 ; 𝑦𝑡 = 0 at 𝑡 = 0

and further, 𝑦 → 0 as 𝑥 → ±∞. Our solution is of the form

𝑦 = 𝑓(𝑥 + 𝑐𝑡) + 𝑔(𝑥 − 𝑐𝑡)

We will use the initial conditions to find 𝑓, 𝑔.

𝑓(𝑥) + 𝑔(𝑥) = 1
1 + 𝑥2

𝑐𝑓′(𝑥) − 𝑐𝑔′(𝑥) = 0
The second equation shows that 𝑓′ = 𝑔′, or 𝑓 = 𝑔 + 𝐴.

2𝑔(𝑥) + 𝐴 = 1
1 + 𝑥2

𝑔(𝑥) = 1
2 (

1
1 + 𝑥2 ) −

𝐴
2

𝑓(𝑥) = 1
2 (

1
1 + 𝑥2 ) +

𝐴
2

Even though we have a constant of integration 𝐴 here, since 𝑦 = 𝑓 + 𝑔 the constant vanishes in the
general solution. So the constant does not affect the solution and it really is arbitrary. So without loss
of generality here we can let 𝐴 = 0. So our solution is

𝑦(𝑥, 𝑡) = 1
2

⎡⎢⎢⎢
⎣

1
1 + (𝑥 + 𝑐𝑡)2⏟⎵⎵⎵⏟⎵⎵⎵⏟

moves left

+ 1
1 + (𝑥 − 𝑐𝑡)2⏟⎵⎵⎵⏟⎵⎵⎵⏟

moves right

⎤⎥⎥⎥
⎦

14.2 Derivation of diffusion equation
Wewill consider randomwalks to derive the diffusion equation. Imagine a particle located at position
𝑥 at time 𝑡. After some change in time Δ𝑡, the particle may move to the left or to the right, i.e. 𝑥+Δ𝑥
ot 𝑥 − Δ𝑥. Let 𝑐(𝑥, 𝑡) be the number of particles at 𝑥, 𝑡. After a discrete time interval Δ𝑡, let

• The probability of moving right one step is 𝑝;
• The probability of moving left one step is 𝑝; and
• The probability of staying at x is 1 − 2𝑝.

58



Considering a large amount of particles,

𝑐(𝑥, 𝑡 + Δ𝑡) = (1 − 2𝑝)𝑐(𝑥, 𝑡) + 𝑝 (𝑐(𝑥 + Δ𝑥, 𝑡) + 𝑐(𝑥 − Δ𝑥, 𝑡)) (14.2)

We will now expand these terms as Taylor series through time and space, for small Δ𝑥 and Δ𝑡. We’ll
put three terms in the expansion in space since the linear term will cancel when we combine the +
and − terms.

𝑐(𝑥, 𝑡 + Δ𝑡) = 𝑐(𝑥, 𝑡) + Δ𝑡𝜕𝑐𝜕𝑡 (𝑥, 𝑡) + 𝑂(Δ𝑡2)

𝑐(𝑥 ± Δ𝑥, 𝑡) = 𝑐(𝑥, 𝑡) ± Δ𝑥 𝜕𝑐𝜕𝑥(𝑥, 𝑡) +
Δ𝑥2
2

𝜕2𝑐
𝜕𝑥2 (𝑥, 𝑡) + 𝑂(Δ𝑥3)

Now, substituting into (14.2), we have

𝑐 + Δ𝑡𝜕𝑐𝜕𝑡 + 𝑂(Δ𝑡2) = (1 − 2𝑝)𝑐 + 𝑝 (2𝑐 + Δ𝑥2 𝜕
2𝑐
𝜕𝑥2 + 𝑂(Δ𝑥3))

𝜕𝑐
𝜕𝑡 + 𝑂(Δ𝑡) = 𝑝Δ𝑥

2

Δ𝑡
𝜕2𝑐
𝜕𝑥2 + 𝑂 (Δ𝑥

3

Δ𝑡 )

We will take the limit as Δ𝑥, Δ𝑡 → 0 such that Δ𝑥2

Δ𝑡
is constant. This will make some things easier.

Note that Δ𝑥
3

Δ𝑡
= Δ𝑥2

Δ𝑡
⋅ Δ𝑥 → 0.

𝜕𝑥
𝜕𝑡 = 𝜅 𝜕

2𝑐
𝜕𝑥2 ; 𝑘 ≡ lim

Δ𝑥,Δ𝑡→0
𝑝Δ𝑥

2

Δ𝑡
This is the diffusion equation. Here, 𝜅 is the diffusion coefficient.

14.3 Solving the diffusion equation
For example, consider

𝜕𝑦
𝜕𝑡 = 𝜅𝜕

2𝑦
𝜕𝑥2

subject to the initial condition
𝑦(𝑥, 0) = 𝛿(𝑥)

where 𝛿(𝑥) is the Dirac delta function, and where 𝑦 → 0 as 𝑥 → ±∞. We will convert this PDE into
an ODE by constructing a similarity variable

𝜂 ≡ 𝑥2
4𝜅𝑡

This form of similarity variable can be motivated by observing units on both sides of the PDE, since
𝜅must have units 𝑥2/𝑡 to conserve dimensions. We will seek solutions of the form

𝑦 = 𝑡−𝛼𝑓(𝜂)

where 𝛼, 𝑓 are to be determined. We will now compute some derivatives:

𝑦𝑡 = −𝛼𝑡−𝛼−1𝑓 + 𝑡−𝛼𝑓𝜂𝜂𝑡
𝑦𝑥 = 𝑡−𝛼𝑓𝜂𝜂𝑥
𝑦𝑥𝑥 = 𝑡−𝛼𝑓𝜂𝜂(𝜂𝑥)2 + 𝑡−𝛼𝑓𝜂𝜂𝑥𝑥
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Plugging these into the diffusion equation gives

−𝛼
𝑡 𝑓 + 𝑓′𝜂𝑡 = 𝜅𝑓″(𝜂𝑥)2 + 𝜅𝑓′𝜂𝑥𝑥 (14.3)

where 𝑓′ = 𝑓𝜂, 𝑓″ = 𝑓𝜂𝜂.

𝜂𝑡 =
−𝑥2
4𝜅𝑡2 =

−𝜂
𝑡

𝜂𝑥 =
2𝑥
4𝜅𝑡 ⟹ (𝜂𝑥)2 =

4𝑥2
16𝜅2𝑡2 =

𝜂
𝜅𝑡

𝜂𝑥𝑥 =
2
4𝜅𝑡

Plugging these results into (14.3) gives

𝛼𝑓 + 𝑓′𝜂 + 𝑓″𝜂 + 𝑓′
2 = 0

𝜂 dd𝜂(𝑓 + 𝑓′) + 1
2(𝑓

′ + 2𝛼𝑓) = 0 (14.4)

This is an ODE for 𝑓(𝜂). We have not yet defined what 𝛼 is, and it is currently arbitrary, so we can let
it be 1

2
so that it cancels some terms.

(14.4) ⟹ 𝜂d𝐹d𝜂 + 𝐹
2 = 0; 𝐹 ≔ 𝑓 + 𝑓′

One solution is that 𝐹 = 0 for all 𝜂. This is nontrivial because then 𝑓 + 𝑓′ = 0. So 𝑓 = 𝐴𝑒−𝜂.
Then

𝑦 = 𝐴𝑡−
1
2 𝑒−

𝑥2
4𝜅𝑡

We can use the delta function initial condition to find 𝐴.

𝛿(𝑥) = lim
𝜀→0

[ 1
𝜀√𝜋

𝑒−
𝑥2
𝜀2 ]

So if we let 𝜀2 = 4𝜅𝑡, then as 𝑡 → 0, we get 𝑦(𝑥) = 𝛿(𝑥). So

1
𝜀√𝜋

= 1
√4𝜋𝜅

𝑡−
1
2

Hence,
𝐴 = 1

√4𝜋𝜅
Therefore we have

𝑦(𝑥, 𝑡) = 1
√4𝜋𝜅

𝑡−
1
2 𝑒−

𝑥2
4𝜅𝑡
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