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1 Probability spaces
1.1 Probability spaces and 𝜎-algebras

Definition. SupposeΩ is a set, and ℱ is a collection of subsets ofΩ. We call ℱ a 𝜎-algebra if
(i) Ω ∈ ℱ
(ii) if 𝐴 ∈ ℱ, then 𝐴𝑐 ∈ ℱ
(iii) for any countable collection (𝐴𝑛)𝑛≥1 with 𝐴𝑛 ∈ ℱ for all 𝑛, we must also have that

⋃𝑛 𝐴𝑛 ∈ ℱ

Definition. Suppose that ℱ is a 𝜎-algebra on Ω. A function ℙ∶ ℱ → [0, 1] is called a prob-
ability measure if
(i) ℙ (Ω) = 1
(ii) for any countable disjoint collection of sets (𝐴𝑛)𝑛≥1 in ℱ (𝐴𝑛 ∈ ℱ for all 𝑛), then

ℙ (⋃𝑛≥1 𝐴𝑛) = ∑𝑛≥1 ℙ (𝐴𝑛) (this is called ‘countable additivity’)
We say that ℙ (𝐴) is ‘the probability of 𝐴’. We call (Ω,ℱ, ℙ) a probability space, where Ω is
the sample space, ℱ is the 𝜎-algebra, and ℙ is the probability measure.

Remark. When Ω is countable, we take ℱ to be all subsets of Ω, i.e. ℱ = 𝒫(Ω), its power set.

Definition. The elements ofΩ are called outcomes, and the elements of ℱ are called events.

Note that ℙ is dependent on ℱ but not on Ω. We talk about probabilities of events, not probabilities
of outcomes. For example, if you pick a uniform number from the interval [0, 1]; then the probability
of getting any specific outcome is zero—but we can define useful events that have nonzero probabil-
ities.

1.2 Properties of the probability measure
• ℙ (𝐴𝑐) = 1 − ℙ (𝐴), since 𝐴 and 𝐴𝑐 are disjoint sets, whose union is Ω
• ℙ (∅) = 0, since it is the complement of Ω
• if 𝐴 ⊆ 𝐵, then ℙ (𝐴) ≤ ℙ (𝐵)
• ℙ (𝐴 ∪ 𝐵) = ℙ (𝐴) + ℙ (𝐵) − ℙ (𝐴 ∩ 𝐵) using the inclusion-exclusion theorem

Example. Consider the following examples of probability spaces and probability measures.
• Rolling a fair 6-sided die:

– Ω = {1, 2, 3, 4, 5, 6}
– ℱ = 𝒫(Ω)

– ∀𝜔 ∈ Ω,ℙ ({𝜔}) = 1
6
, and if 𝐴 ⊆ Ω then ℙ (𝐴) = |𝐴|

6

• Equally likely outcomes (more generally). SupposeΩ is some finite set, e.g. Ω = {𝜔1, 𝜔2,… , 𝜔𝑛}.
Then we define ℙ (𝐴) = |𝐴|

|Ω|
. In classical probability, this models picking a random element of

Ω.
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• Picking balls from a bag. Suppose we have 𝑛 balls with 𝑛 labels from the set {1,… , 𝑛}, indistin-
guishable by touching. Let us pick 𝑘 ≤ 𝑛 balls at random from the bag, without replacement.
Here, ‘at random’ just means that all possible outcomes are equally likely, and their probability
measures should be equal.

We will take Ω = {𝐴 ⊆ {1,… , 𝑛} ∶ |𝐴| = 𝑘}. Then |Ω| = (𝑛
𝑘
). Then of course ℙ ({𝜔}) = 1

|Ω|
,

since all outcomes (combinations, in this case) are equally likely.

• Consider a well-shuffled deck of 52 cards, i.e. it is equally likely that each possible permutation
of the 52 cards will appear. Ω = {all permutations of 52 cards}, and |Ω| = 52!

The probability that the top two cards are aces is therefore 4×3×50!
52!

= 1
221
, since there are 4 ×

3 × 50! outcomes that produce such an event.
• Consider a string of 𝑛 random digits from {0,… , 9}. Then Ω = {0,… , 9}𝑛, and |Ω| = 10𝑛. We
define 𝐴𝑘 = {no digit exceeds 𝑘}, and 𝐵𝑘 = {largest digit is 𝑘}. Then ℙ (𝐵𝑘) =

|𝐵𝑘|
|Ω|

. Notice that

𝐵𝑘 = 𝐴𝑘 ∖ 𝐴𝑘−1. |𝐴𝑘| = (𝑘 + 1)𝑛, so |𝐵𝑘| = (𝑘 + 1)𝑛 − 𝑘𝑛, so ℙ (𝐵𝑘) =
(𝑘+1)𝑛−𝑘𝑛

10𝑛
.

• The birthday problem. There are 𝑛 people; what is the probability that at least two of them
share a birthday? We assume that each year has exactly 365 days, i.e. nobody is born on 29th of
February, and that the probabilities of being born on any given day are equal.

Let Ω = {1,… , 365}𝑛, and ℱ = 𝒫(Ω). Since all outcomes are equally likely, we take ℙ ({𝜔}) =
1

365𝑛
. Let𝐴 = {at least two people share the same birthday}. 𝐴𝑐 = {all 𝑛 birthdays are different}.

Since ℙ (𝐴) = 1 − ℙ (𝐴𝑐), it suffices to calculate ℙ (𝐴𝑐), which is |𝐴𝑐|
|Ω|

= 365!
(365−𝑛)!365𝑛

. So the an-

swer is ℙ (𝐴) = 1 − 365!
(365−𝑛)!365𝑛

.

Note that at 𝑛 = 22, ℙ (𝐴) ≈ 0.476 and at 𝑛 = 23, ℙ (𝐴) ≈ 0.507. So when there are at least 23
people in a room, the probability that two of them share a birthday is around 50%.

1.3 Combinatorial analysis
Let Ω be a finite set, and suppose |Ω| = 𝑛. We want to partition Ω into 𝑘 disjoint subsets Ω1,… ,Ω𝑘
with |Ω𝑖| = 𝑛𝑖 and ∑

𝑘
𝑖=1 𝑛𝑖 = 𝑛. How many ways of doing such a partition are there? The result

is
( 𝑛𝑛1

)
⏟

choose first set

(𝑛 − 𝑛1
𝑛2

)
⏟⎵⏟⎵⏟

choose second set

…(𝑛 − (𝑛1 + 𝑛2 +⋯+ 𝑛𝑘−1)
𝑛𝑘

)
⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟

choose last set

= 𝑛!
𝑛1!𝑛2!…𝑛𝑘!

So we will write
( 𝑛
𝑛1,… , 𝑛𝑘

) = 𝑛!
𝑛1!𝑛2!…𝑛𝑘!

Now, let 𝑓∶ {1,… , 𝑘} → {1,… , 𝑛}. 𝑓 is strictly increasing if 𝑥 < 𝑦 ⟹ 𝑓(𝑥) < 𝑓(𝑦). 𝑓 is increasing
if 𝑥 < 𝑦 ⟹ 𝑓(𝑥) ≤ 𝑓(𝑦). How many strictly increasing functions 𝑓 exist? Note that if we
know the range of 𝑓, the function is completely determined. The range is a subset of {1,… , 𝑛} of
size 𝑘, i.e. a 𝑘-subset of an 𝑛-set, which yields (𝑛

𝑘
) choices, and thus there are (𝑛

𝑘
) strictly increasing

functions.
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Howmany increasing functions 𝑓 exist? Let us define a bijection from the set of increasing functions
{𝑓∶ {1,… , 𝑘} → {1,… , 𝑛}} to the set of strictly increasing functions {𝑔∶ {1,… , 𝑘} → {1,… , 𝑛+ 𝑘− 1}}.
For any increasing function 𝑓, we define 𝑔(𝑖) = 𝑓(𝑖) + 𝑖 − 1. Then 𝑔 is clearly strictly increasing,
and takes values in the range {1,… , 𝑛 + 𝑘− 1}. By extension, we can define an increasing function 𝑓
from any strictly increasing function 𝑔. So the total number of increasing functions 𝑓∶ {1,… , 𝑘} →
{1,… , 𝑛} is (𝑛+𝑘−1

𝑘
).

1.4 Stirling’s formula
Let (𝑎𝑛) and (𝑏𝑛) be sequences. We will write 𝑎𝑛 ∼ 𝑏𝑛 if

𝑎𝑛
𝑏𝑛

→ 1 as 𝑛 → ∞. This is asymptotic
equality.

Theorem (Stirling’s Formula). 𝑛! ∼ 𝑛𝑛√2𝜋𝑛 𝑒−𝑛 as 𝑛 → ∞.

Let us first prove the weaker statement log(𝑛!) ∼ 𝑛 log𝑛.

Proof. Let us define 𝑙𝑛 = log(𝑛!) = log 2 + log 3 +⋯+ log𝑛. For 𝑥 ∈ ℝ, we write ⌊𝑥⌋ for the integer
part of 𝑥. Note that

log⌊𝑥⌋ ≤ log𝑥 ≤ log⌊𝑥 + 1⌋
Let us integrate this from 1 to 𝑛.

𝑛−1
∑
𝑘=1

log 𝑘 ≤ ∫
𝑛

1
log𝑥 d𝑥 ≤

𝑛
∑
𝑘=2

log 𝑘

𝑙𝑛−1 ≤ 𝑛 log𝑛 − 𝑛 + 1 ≤ 𝑙𝑛
For all 𝑛, therefore:

𝑛 log𝑛 − 𝑛 + 1 ≤ 𝑙𝑛 ≤ (𝑛 + 1) log(𝑛 + 1) − (𝑛 + 1) + 1

Dividing through by 𝑛 log𝑛, we get
𝑙𝑛

𝑛 log𝑛 → 1

as 𝑛 → ∞.

The following complete proof is non-examinable.

Proof. For any twice-differentiable function 𝑓, for any 𝑎 < 𝑏 we have

∫
𝑏

𝑎
𝑓(𝑥) d𝑥 = 𝑓(𝑎) + 𝑓(𝑏)

2 (𝑏 − 𝑎) − 1
2 ∫

𝑏

𝑎
(𝑥 − 𝑎)(𝑏 − 𝑥)𝑓″(𝑥) d𝑥

Now let 𝑓(𝑥) = log𝑥, 𝑎 = 𝑘 and 𝑏 = 𝑘 + 1. Then

∫
𝑘+1

𝑘
log𝑥 d𝑥 = log 𝑘 + log(𝑘 + 1)

2 + 1
2 ∫

𝑘+1

𝑘

(𝑥 − 𝑘)(𝑘 + 1 − 𝑥)
𝑥2 d𝑥

= log 𝑘 + log(𝑘 + 1)
2 + 1

2 ∫
1

0

𝑥(1 − 𝑥)
(𝑥 + 𝑘)2 d𝑥

7



Let us take the sum for 𝑘 = 1,… , 𝑛 − 1 of the equality.

∫
𝑛

1
log𝑥 d𝑥 = log((𝑛 − 1)!) + log(𝑛!)

2 + 1
2
𝑛−1
∑
𝑘=1

∫
1

0

𝑥(1 − 𝑥)
(𝑥 + 𝑘)2 d𝑥

𝑛 log𝑛 − 𝑛 + 1 = log(𝑛!) − log𝑛
2 +

𝑛−1
∑
𝑘=1

𝑎𝑘; 𝑎𝑘 =
1
2 ∫

1

0

𝑥(1 − 𝑥)
(𝑥 + 𝑘)2 d𝑥

log(𝑛!) = 𝑛 log𝑛 − 𝑛 + log𝑛
2 + 1 −

𝑛−1
∑
𝑘=1

𝑎𝑘

𝑛! = 𝑛𝑛 𝑒−𝑛√𝑛 exp (1 −
𝑛−1
∑
𝑘=1

𝑎𝑘)

Now, note that

𝑎𝑘 ≤
1
2 ∫

1

0

𝑥(1 − 𝑥)
𝑘2 d𝑥 = 1

12𝑘2

So the sum of all 𝑎𝑘 converges. We set

𝐴 = exp (1 −
∞
∑
𝑘=1

𝑎𝑘)

and then

𝑛! = 𝑛𝑛 𝑒−𝑛√𝑛𝐴 exp
⎛
⎜
⎜
⎜
⎝

∞
∑
𝑘=𝑛

𝑎𝑘
⏟⎵⏟⎵⏟

converges to zero

⎞
⎟
⎟
⎟
⎠

Therefore,
𝑛! ∼ 𝑛𝑛√𝑛 𝑒−𝑛 𝐴

To finish the proof, we must show that 𝐴 = √2𝜋. We can utilise the fact that 𝑛! ∼ 𝑛𝑛√𝑛 𝑒−𝑛 𝐴.

2−2𝑛(2𝑛𝑛 ) = 2−2𝑛 ⋅ 2𝑛!
(𝑛!)2

∼ 2−2𝑛 (2𝑛)2𝑛 ⋅ √2𝑛 ⋅ 𝐴 ⋅ 𝑒−2𝑛
𝑛𝑛 𝑒−𝑛√𝑛𝐴𝑛𝑛 𝑒−𝑛√𝑛𝐴

= √2
𝐴√𝑛

Using a different method, we will prove that 2−2𝑛(2𝑛
𝑛
) ∼ 1

√𝜋𝑛
, which then forces 𝐴 = √2𝜋. Consider

𝐼𝑛 = ∫
𝜋
2

0
(cos 𝜃)𝑛 d𝜃 ; 𝑛 ≥ 0

So 𝐼0 =
𝜋
2
and 𝐼1 = 1. By integrating by parts,

𝐼𝑛 =
𝑛 − 1
𝑛 𝐼𝑛−2

8



Therefore,
𝐼2𝑛 =

2𝑛 − 1
2𝑛 𝐼2𝑛−2 =

(2𝑛 − 1)(2𝑛 − 3)… (3)(1)
(2𝑛)(2𝑛 − 2)… (2) 𝐼0

Multiplying the numerator and denominator by the denominator, we have

𝐼2𝑛 =
(2𝑛)!

(𝑛! ⋅ 2𝑛)2 ⋅
𝜋
2 = 2−2𝑛 2𝑛𝑛 ⋅ 𝜋2

In the same way, we can deduce that

𝐼2𝑛+1 =
(2𝑛)(2𝑛 − 2)… (2)

(2𝑛 + 1)(2𝑛 − 1)… (3)(1) 𝐼1 =
1

2𝑛 + 1 (2
−2𝑛(2𝑛𝑛 ))

−1

From 𝐼𝑛 =
𝑛−1
𝑛
𝐼𝑛−2, we get that

𝐼𝑛
𝐼𝑛−2

→ 1

as 𝑛 → ∞. We nowwant to show that 𝐼2𝑛
𝐼2𝑛+1

→ 1. We see from the definition of 𝐼𝑛 that 𝐼 is a decreasing
function of 𝑛. Therefore,

𝐼2𝑛
𝐼2𝑛+1

≤ 𝐼2𝑛−1
𝐼2𝑛+1

→ 1

and also
𝐼2𝑛
𝐼2𝑛+1

≥ 𝐼2𝑛
𝐼2𝑛−2

→ 1

So
𝐼2𝑛
𝐼2𝑛+1

→ 1

which means that

2−2𝑛(2𝑛
𝑛
)𝜋
2

(2−2𝑛(2𝑛
𝑛
))
−1 1

2𝑛+1

→ 1 ⟹ (2−2𝑛(2𝑛𝑛 ))
2
𝜋
2 (2𝑛 + 1) → 1

Therefore,

(2−2𝑛(2𝑛𝑛 ))
2

∼ 2
𝜋(2𝑛 + 1) ∼

1
𝜋𝑛

Finally,
𝐴 = √2𝜋

completes the proof.

1.5 Countable subadditivity
Let (Ω,ℱ, ℙ) be a probability space, and let (𝐴𝑛)𝑛≥1 be a (not necessarily disjoint) sequence of events
in ℱ. Then

ℙ(
∞

⋃
𝑛=1

𝐴𝑛) ≤
∞
∑
𝑛=1

ℙ (𝐴𝑛)
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Proof. Let us define a new sequence 𝐵1 = 𝐴1 and 𝐵𝑛 = 𝐴𝑛 ∖(𝐴1∪𝐴2∪⋯∪𝐴𝑛−1). So by construction,
the sequence 𝐵𝑛 is a disjoint sequence of events in ℱ. Note further that the union of all 𝐵𝑛 is equal
to the union of all 𝐴𝑛. So

ℙ(
∞

⋃
𝑛=1

𝐴𝑛) = ℙ(
∞

⋃
𝑛=1

𝐵𝑛)

By the countable additivity axiom,

ℙ(
∞

⋃
𝑛=1

𝐵𝑛) =
∞
∑
𝑛=1

ℙ (𝐵𝑛)

But 𝐵𝑛 ⊆ 𝐴𝑛. So ℙ (𝐵𝑛) ≤ ℙ (𝐴𝑛). Therefore,

ℙ(
∞

⋃
𝑛=1

𝐴𝑛) ≤
∞
∑
𝑛=1

ℙ (𝐴𝑛)

1.6 Continuity of probability measures
Let (Ω,ℱ, ℙ) be a probability space. Let (𝐴𝑛)𝑛≥1 be an increasing sequence in ℱ, i.e. 𝐴𝑛 ∈ ℱ, and
𝐴𝑛 ⊆ 𝐴𝑛+1. Then ℙ (𝐴𝑛) ≤ ℙ (𝐴𝑛+1). We want to show that

lim
𝑛→∞

ℙ (𝐴𝑛) = ℙ(⋃
𝑛
𝐴𝑛)

Proof. Let 𝐵1 = 𝐴1, and for all 𝑛 ≥ 2, let 𝐵𝑛 = 𝐴𝑛 ∖ (𝐴1 ∪𝐴2 ∪⋯∪𝐴𝑛−1). Then the union over 𝐵𝑖 up
to 𝑛 is equal to the union over 𝐴𝑖 up to 𝑛. So

ℙ (𝐴𝑛) = ℙ(
𝑛

⋃
𝑘=1

𝐵𝑘) =
𝑛
∑
𝑘=1

ℙ (𝐵𝑘) →
∞
∑
𝑘=1

ℙ (𝐵𝑘) = ℙ(⋃
𝑛
𝐵𝑛) = ℙ(⋃

𝑛
𝐴𝑛)

We can say that probability measures are continuous; an increasing sequence of events has a prob-
ability which tends to some limit. Similarly, if (𝐴𝑛) is decreasing, then the limit probability is the
probability of the intersection of all 𝐴𝑛.

2 Inclusion-exclusion
2.1 Inclusion-exclusion formula
Suppose that𝐴, 𝐵 ∈ ℱ. Thenℙ (𝐴 ∪ 𝐵) = ℙ (𝐴)+ℙ (𝐵)−ℙ (𝐴 ∩ 𝐵). Now let also𝐶 ∈ ℱ. Then

ℙ (𝐴 ∪ 𝐵 ∪ 𝐶) = ℙ (𝐴 ∪ 𝐵) + ℙ (𝐶) − ℙ ((𝐴 ∪ 𝐵) ∩ 𝐶)
= ℙ (𝐴) + ℙ (𝐵) + ℙ (𝐶)
− ℙ (𝐴 ∩ 𝐵) − ℙ (𝐴 ∩ 𝐶) − ℙ (𝐵 ∩ 𝐶)
+ ℙ (𝐴 ∩ 𝐵 ∩ 𝐶)
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Let 𝐴1,… , 𝐴𝑛 be events in ℱ. Then

ℙ(
𝑛

⋃
𝑖=1

𝐴𝑖) =
𝑛
∑
𝑖=1

ℙ (𝐴𝑖)

− ∑
1≤𝑖1<𝑖2≤𝑛

ℙ (𝐴𝑖1 ∩ 𝐴𝑖2)

+ ∑
1≤𝑖1<𝑖2<𝑖3≤𝑛

ℙ (𝐴𝑖1 ∩ 𝐴𝑖2 ∩ 𝐴𝑖3)

−⋯
+ (−1)𝑛+1ℙ (𝐴1 ∩⋯ ∩ 𝐴𝑛)

Or more concisely,

ℙ(
𝑛

⋃
𝑖=1

𝐴𝑖) =
𝑛
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<𝑖2<⋯<𝑖𝑘≤𝑛

ℙ (𝐴𝑖1 ∩⋯ ∩ 𝐴𝑖𝑘)

Proof. The case for 𝑛 = 2 has been verified, so we can use induction on 𝑛. Now, let us assume this
holds for 𝑛 − 1 events.

ℙ(
𝑛

⋃
𝑖=1

𝐴𝑖) = ℙ((
𝑛−1

⋃
𝑖=1

𝐴𝑖) ∪ 𝐴𝑛)

= ℙ(
𝑛−1

⋃
𝑖=1

𝐴𝑖) + ℙ (𝐴𝑛) − ℙ((
𝑛−1

⋃
𝑖=1

𝐴𝑖) ∩ 𝐴𝑛)

= ℙ(
𝑛−1

⋃
𝑖=1

𝐴𝑖) + ℙ (𝐴𝑛) − ℙ(
𝑛−1

⋃
𝑖=1

(𝐴𝑖 ∩ 𝐴𝑛))

Let 𝐵𝑖 = 𝐴𝑖 ∩ 𝐴𝑛 for all 𝑖. By the inductive hypothesis, we have

ℙ(
𝑛

⋃
𝑖=1

𝐴𝑖) = ℙ(
𝑛−1

⋃
𝑖=1

𝐴𝑖) + ℙ (𝐴𝑛) − ℙ(
𝑛−1

⋃
𝑖=1

𝐵𝑛)

=
𝑛−1
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<⋯<𝑖𝑘≤𝑛−1

ℙ (𝐴𝑖1 ∩⋯ ∩ 𝐴𝑖𝑘)

−
𝑛−1
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<⋯<𝑖𝑘≤𝑛−1

ℙ (𝐵𝑖1 ∩⋯ ∩ 𝐵𝑖𝑘)

+ ℙ (𝐴𝑛)

which gives the claim as required.

Let (Ω,ℱ, ℙ) be a probability space with |Ω| < ∞ and ℙ (𝐴) = |𝐴|
|Ω|
. Let 𝐴1,… , 𝐴𝑛 ∈ ℱ. Then

|𝐴1 ∪⋯ ∪ 𝐴𝑛| =
𝑛
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<⋯<𝑖𝑘≤𝑛

||𝐴𝑖1 ∩⋯ ∩ 𝐴𝑖𝑘 ||
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2.2 Bonferroni inequalities
Truncating the sum in the inclusion-exclusion formula at the 𝑟th term yields an estimate for the
probability. The Bonferroni inequalities state that if 𝑟 is odd, it is an overestimate, and if 𝑟 is even, it
is an underestimate.

𝑟 odd ⟹ ℙ(
𝑛

⋃
𝑖=1

𝐴𝑖) ≤
𝑟
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<⋯<𝑖𝑘≤𝑛

ℙ (𝐴𝑖1 ∩⋯ ∩ 𝐴𝑖𝑘)

𝑟 even ⟹ ℙ(
𝑛

⋃
𝑖=1

𝐴𝑖) ≥
𝑟
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<⋯<𝑖𝑘≤𝑛

ℙ (𝐴𝑖1 ∩⋯ ∩ 𝐴𝑖𝑘)

Proof. Again, we will use induction. The 𝑛 = 2 case is trivial. Suppose that 𝑟 is odd. Then

ℙ(
𝑛

⋃
𝑖=1

𝐴𝑖) = ℙ(
𝑛−1

⋃
𝑖=1

𝐴𝑖) + ℙ (𝐴𝑛) − ℙ(
𝑛

⋃
𝑖=1

𝐵𝑖) (∗)

where 𝐵𝑖 = 𝐴𝑖 ∩ 𝐴𝑛. Since 𝑟 is odd,

ℙ(
𝑛−1

⋃
𝑖=1

𝐴𝑖) ≤
𝑟
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<⋯<𝑖𝑘≤𝑛−1

ℙ (𝐴𝑖1 ∩⋯ ∩ 𝐴𝑖𝑘)

Since 𝑟 − 1 is even, we can apply the inductive hypothesis to ℙ (⋃𝑛−1
𝑖=1 𝐵𝑖).

ℙ(
𝑛−1

⋃
𝑖=1

𝐵𝑖) ≥
𝑟−1
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<⋯<𝑖𝑘≤𝑛−1

ℙ (𝐵𝑖1 ∩⋯ ∩ 𝐵𝑖𝑘)

We can substitute both bounds into (∗) to get an overestimate.

2.3 Counting using inclusion-exclusion
Wecan apply the inclusion-exclusion formula to count various things. Howmany functions𝑓∶ {1,… , 𝑛} →
{1,… ,𝑚} are surjective? Let Ω be the set of such functions, and 𝐴 = {𝑓 ∈ Ω ∶ 𝑓 is a surjection}. For
all 𝑖 ∈ {1,… ,𝑚}, we define𝐴𝑖 = {𝑓 ∈ Ω ∶ 𝑖 ∉ {𝑓(1), 𝑓(2),… , 𝑓(𝑛)}}. Then𝐴 = 𝐴1

𝑐∩𝐴2
𝑐∩⋯∩𝐴𝑚

𝑐 =
(𝐴1 ∪ 𝐴2 ∪⋯ ∪ 𝐴𝑚)

𝑐. Then

|𝐴| = |Ω| − |𝐴1 ∪⋯ ∪ 𝐴𝑚| = 𝑚𝑛 − |𝐴1 ∪⋯ ∪ 𝐴𝑚|

Now, let us use the inclusion-exclusion formula.

|𝐴1 ∪⋯ ∪ 𝐴𝑚| =
𝑛
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<⋯<𝑖𝑘≤𝑛

||𝐴𝑖1 ∩⋯ ∩ 𝐴𝑖𝑘 ||
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Note that 𝐴𝑖1 ∩ ⋯ ∩ 𝐴𝑖𝑘 is the set of functions where 𝑘 distinct numbers are not included in the
function’s range. There are (𝑚 − 𝑘)𝑛 such functions.

|𝐴1 ∪⋯ ∪ 𝐴𝑚| =
𝑛
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<⋯<𝑖𝑘≤𝑛

(𝑚 − 𝑘)𝑛

=
𝑛
∑
𝑘=1

(−1)𝑘+1(𝑚𝑘)(𝑚 − 𝑘)𝑛

|𝐴| = 𝑚𝑛 −
𝑛
∑
𝑘=1

(−1)𝑘+1(𝑚𝑘)(𝑚 − 𝑘)𝑛

|𝐴| =
𝑛
∑
𝑘=0

(−1)𝑘(𝑚𝑘)(𝑚 − 𝑘)𝑛

2.4 Counting derangements
A derangement is a permutation which has no fixed point, i.e. ∀𝑖, 𝜎(𝑖) ≠ 𝑖. We will letΩ be the set of
permutations of {1,… , 𝑛}, i.e.𝑆𝑛. Let𝐴 be the set of derangements inΩ. Let us pick a permutation𝜎 at
random fromΩ. What is the probability that it is a derangement? We define 𝐴𝑖 = {𝑓 ∈ Ω∶ 𝑓(𝑖) = 𝑖},
then 𝐴 = 𝐴𝑐

1 ∩ ⋯ ∩ 𝐴𝑐
𝑛 = (⋃𝑛

𝑖=1 𝐴𝑖)
𝑐
, so ℙ (𝐴) = 1 − ℙ (⋃𝑛

𝑖=1 𝐴𝑖). By the inclusion-exclusion
formula,

ℙ(
𝑛

⋃
𝑖=1

𝐴𝑖) =
𝑛
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<𝑖2<⋯<𝑖𝑘≤𝑛

ℙ (𝐴𝑖1 ∩⋯ ∩ 𝐴𝑖𝑘)

=
𝑛
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<𝑖2<⋯<𝑖𝑘≤𝑛

(𝑛 − 𝑘)!
|Ω|

=
𝑛
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1<𝑖2<⋯<𝑖𝑘≤𝑛

(𝑛 − 𝑘)!
𝑛!

=
𝑛
∑
𝑘=1

(−1)𝑘+1(𝑛𝑘)
(𝑛 − 𝑘)!
𝑛!

=
𝑛
∑
𝑘=1

(−1)𝑘+1 𝑛!
𝑘!(𝑛 − 𝑘)! ⋅

(𝑛 − 𝑘)!
𝑛!

=
𝑛
∑
𝑘=1

(−1)𝑘+1 1𝑘!

So

ℙ (𝐴) = 1 − ℙ(
𝑛

⋃
𝑖=1

𝐴𝑖) = 1 −
𝑛
∑
𝑘=1

(−1)𝑘+1
𝑘! =

𝑛
∑
𝑘=0

(−1)𝑘
𝑘!

As 𝑛 → ∞, this value tends to 𝑒−1 ≈ 0.3678.
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3 Independence and dependence of events
3.1 Independence of events

Definition. Let (Ω,ℱ, ℙ) be a probability space. Let 𝐴, 𝐵 ∈ ℱ. 𝐴 and 𝐵 are called independ-
ent if

ℙ (𝐴 ∩ 𝐵) = ℙ (𝐴) ⋅ ℙ (𝐵)
We write 𝐴 ⟂ 𝐵, or 𝐴 ⟂⟂ 𝐵. A countable collection of events (𝐴𝑛) is said to be independent if
for all distinct 𝑖1,… , 𝑖𝑘, we have

ℙ (𝐴𝑖1 ∩⋯ ∩ 𝐴𝑖𝑘) =
𝑘
∏
𝑗=1

ℙ (𝐴𝑖𝑗 )

Remark. To show that a collection of events is independent, it is insufficient to show that events are
pairwise independent. For example, consider tossing a fair coin twice, soΩ = {(0, 0), (0, 1), (1, 0), (1, 1)}.
ℙ ({𝜔}) = 1

4
. Consider the events 𝐴, 𝐵, 𝐶 where

𝐴 = {(0, 0), (0, 1)}; 𝐵 = {(0, 0), (1, 0)}; 𝐶 = {(1, 0), (0, 1)}

ℙ (𝐴) = ℙ (𝐵) = ℙ (𝐶) = 1
2

ℙ (𝐴 ∩ 𝐵) = ℙ ({(0, 0)}) = 1
4 = ℙ (𝐴) ⋅ ℙ (𝐵)

ℙ (𝐴 ∩ 𝐶) = ℙ ({(0, 1)}) = 1
4 = ℙ (𝐴) ⋅ ℙ (𝐶)

ℙ (𝐵 ∩ 𝐶) = ℙ ({(1, 0)}) = 1
4 = ℙ (𝐵) ⋅ ℙ (𝐶)

ℙ (𝐴 ∩ 𝐵 ∩ 𝐶) = ℙ (∅) = 0

Claim. If 𝐴 ⟂ 𝐵, then 𝐴 ⟂ 𝐵𝑐.

Proof.

ℙ (𝐴 ∩ 𝐵𝑐) = ℙ (𝐴) − ℙ (𝐴 ∩ 𝐵)
= ℙ (𝐴) − ℙ (𝐴) ⋅ ℙ (𝐵)
= ℙ (𝐴) (1 − ℙ (𝐵))
= ℙ (𝐴)ℙ (𝐵𝑐)

as required.
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3.2 Conditional probability

Definition. Let (Ω,ℱ, ℙ) be a probability space. Let 𝐵 ∈ ℱ with ℙ (𝐵) > 0. We define the
conditional probability of 𝐴 given 𝐵, written ℙ (𝐴 ∣ 𝐵), as

ℙ (𝐴 ∣ 𝐵) = ℙ (𝐴 ∩ 𝐵)
ℙ (𝐵)

Note that if 𝐴 and 𝐵 are independent, then

ℙ (𝐴 ∣ 𝐵) = ℙ (𝐴 ∩ 𝐵)
ℙ (𝐵) = ℙ (𝐴) ⋅ ℙ (𝐵)

ℙ (𝐵) = ℙ (𝐴)

Claim. Suppose that (𝐴𝑛) is a disjoint sequence in ℱ. Then

ℙ (⋃𝐴𝑛 || 𝐵) = ∑
𝑛
ℙ (𝐴𝑛 ∣ 𝐵)

This is the countable additivity property for conditional probability.

Proof.

ℙ (⋃𝐴𝑛 || 𝐵) =
ℙ ((⋃𝐴𝑛) ∩ 𝐵)

ℙ (𝐵)

=
ℙ (⋃(𝐴𝑛 ∩ 𝐵))

ℙ (𝐵)

By countable additivity, since the (𝐴𝑛 ∩ 𝐵) are disjoint,

= ∑
𝑛

ℙ (𝐴𝑛 ∩ 𝐵)
ℙ (𝐵)

= ∑
𝑛
ℙ (𝐴𝑛 ∣ 𝐵)

We can think of ℙ ( ⋅ ∣ 𝐵) as a new probability measure for the same Ω.

3.3 Law of total probability

Claim. Suppose (𝐵𝑛) is a disjoint collection of events in ℱ, such that⋃𝐵 = Ω, and for all 𝑛,
we have ℙ (𝐵𝑛) > 0. If 𝐴 ∈ ℱ then

ℙ (𝐴) = ∑
𝑛
ℙ (𝐴 ∣ 𝐵𝑛) ⋅ ℙ (𝐵𝑛)

15



Proof.

ℙ (𝐴) = ℙ (𝐴 ∩ Ω)
= ℙ (𝐴 ∩ (⋃𝐵𝑛))
= ℙ (⋃(𝐴 ∩ 𝐵𝑛))

By countable additivity,

= ∑
𝑛
ℙ (𝐴 ∩ 𝐵𝑛)

= ∑
𝑛
ℙ (𝐴 ∣ 𝐵𝑛) ℙ (𝐵𝑛)

3.4 Bayes’ formula

Claim. Suppose (𝐵𝑛) is a disjoint sequence of events with⋃𝐵𝑛 = Ω and ℙ (𝐵𝑛) > 0 for all 𝑛.
Then

ℙ (𝐵𝑛 ∣ 𝐴) =
ℙ (𝐴 ∣ 𝐵𝑛) ℙ (𝐵𝑛)

∑𝑘 ℙ (𝐴 ∣ 𝐵𝑘) ℙ (𝐵𝑘)

Proof.

ℙ (𝐵𝑛 ∣ 𝐴) =
ℙ (𝐵𝑛 ∩ 𝐴)
ℙ (𝐴)

= ℙ (𝐴 ∣ 𝐵𝑛) ℙ (𝐵𝑛)
ℙ (𝐴)

By the law of total probability,

= ℙ (𝐴 ∣ 𝐵𝑛) ℙ (𝐵𝑛)
∑𝑘 ℙ (𝐴 ∣ 𝐵𝑘) ℙ (𝐵𝑘)

Note that on the right hand side, the numerator appears somewhere in the denominator. This
formula is the basis of Bayesian statistics. It allows us to reverse the direction of a conditional
probability—knowing the probabilities of the events (𝐵𝑛), and given a model of ℙ (𝐴 ∣ 𝐵𝑛), we can
calculate the posterior probabilities of 𝐵𝑛 given that 𝐴 occurs.

3.5 Bayes’ formula for medical tests
Consider the probability of getting a false positive on a test for a rare condition. Suppose 0.1% of the
population have condition 𝐴, and we have a test which is positive for 98% of the affected population,
and 1% of those unaffected by the disease. Picking an individual at random, what is the probability
that they suffer from 𝐴, given that they have a positive test?
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We define 𝐴 to be the set of individuals suffering from the condition, and 𝑃 is the set of individuals
testing positive. Then by Bayes’ formula,

ℙ (𝐴 ∣ 𝑃) = ℙ (𝑃 ∣ 𝐴)ℙ (𝐴)
ℙ (𝑃 ∣ 𝐴)ℙ (𝐴) + ℙ (𝑃 ∣ 𝐴𝑐) ℙ (𝐴𝑐) =

0.98 ⋅ 0.001
0.98 ⋅ 0.001 + 0.01 ⋅ 0.999 ≈ 0.09 = 9%

Why is this so low? We can rewrite this instance of Bayes’ formula as

ℙ (𝐴 ∣ 𝑃) = 1
1 + ℙ(𝑃∣𝐴𝑐)ℙ(𝐴𝑐)

ℙ(𝑃∣𝐴)ℙ(𝐴)

Here, ℙ (𝐴𝑐) ≈ 1, ℙ (𝑃 ∣ 𝐴) ≈ 1. So

ℙ (𝐴 ∣ 𝑃) ≈ 1
1 + ℙ(𝑃∣𝐴𝑐)

ℙ(𝐴)

So this is low because ℙ (𝑃 ∣ 𝐴𝑐) ≫ ℙ (𝐴). Suppose that there is a population of 1000 people and
about 1 suffers from the disease. Among the 999 not suffering from 𝐴, about 10 will test positive. So
there will be about 11 people who test positive, and only 1 out of 11 (9%) of those actually has the
disease.

3.6 Probability changes under extra knowledge
Consider these three statements:

(a) I have two children, (at least) one of whom is a boy.

(b) I have two children, and the eldest one is a boy.

(c) I have two children, one of whom is a boy born on a Thursday.

What is the probability that I have two boys, given 𝑎, 𝑏 or 𝑐? Since no further information is given,
we will assume that all outcomes are equally likely. We define:

• 𝐵𝐺 is the event that the elder sibling is a boy, and the younger is a girl;

• 𝐺𝐵 is the event that the elder sibling is a girl, and the younger is a boy;
• 𝐵𝐵 is the event that both children are boys; and
• 𝐺𝐺 is the event that both children are girls.

Now, we have

(a) ℙ (𝐵𝐵 ∣ 𝐵𝐵 ∪ 𝐵𝐺 ∪ 𝐺𝐵) = 1
3

(b) ℙ (𝐵𝐵 ∣ 𝐵𝐵 ∪ 𝐵𝐺) = 1
2

(c) Let us define 𝐺𝑇 to be the event that the elder sibling is a girl, and the younger is a boy born
on a Thursday, and define 𝑇𝑁 to be the event that the elder sibling is a boy born on a Thursday
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and the younger is a boy not born on a Thursday, and other events are defined similarly. So

ℙ (𝑇𝑇 ∪ 𝑇𝑁 ∪ 𝑁𝑇 ∣ 𝐺𝑇 ∪ 𝑇𝐺 ∪ 𝑇𝑇 ∪ 𝑇𝑁 ∪ 𝑁𝑇) = ℙ (𝑇𝑇 ∪ 𝑇𝑁 ∪ 𝑁𝑇)
ℙ (𝐺𝑇 ∪ 𝑇𝐺 ∪ 𝑇𝑇 ∪ 𝑇𝑁 ∪ 𝑁𝑇)

=
1
2
1
7
1
2
1
7
+ 2 ⋅ 1

2
1
7
1
2
6
7

2 ⋅ 1
2
1
2
1
7
+ 1

2
1
7
1
2
1
7
+ 2 ⋅ 1

2
1
7
1
2
6
7

= 13
27 ≈ 48%

3.7 Simpson’s paradox
Consider admissions by men and women from state and independent schools to a university given
by the tables

All applicants Admitted Rejected % Admitted
State 25 25 50%

Independent 28 22 56%

Men only Admitted Rejected % Admitted
State 15 22 41%

Independent 5 8 38%

Women only Admitted Rejected % Admitted
State 10 3 77%

Independent 23 14 62%
This is seemingly a paradox; both women and men are more likely to be admitted if they come from
a state school, but when looking at all applicants, they are more likely to be admitted if they come
from an independent school. This is called Simpson’s paradox; it arises when we aggregate data
from disparate populations. Let 𝐴 be the event that an individual is admitted, 𝐵 be the event that
an individual is a man, and 𝐶 be the event that an individual comes from a state school. We see
that

ℙ (𝐴 ∣ 𝐵 ∩ 𝐶) > ℙ (𝐴 ∣ 𝐵 ∩ 𝐶𝑐)
ℙ (𝐴 ∣ 𝐵𝑐 ∩ 𝐶) > ℙ (𝐴 ∣ 𝐵𝑐 ∩ 𝐶𝑐)

ℙ (𝐴 ∣ 𝐶) < ℙ (𝐴 ∣ 𝐶𝑐)

First, note that

ℙ (𝐴 ∣ 𝐶) = ℙ (𝐴 ∩ 𝐵 ∣ 𝐶) + ℙ (𝐴 ∩ 𝐵𝑐 ∣ 𝐶)

= ℙ (𝐴 ∩ 𝐵 ∩ 𝐶)
ℙ (𝐶) + ℙ (𝐴 ∩ 𝐵𝑐 ∩ 𝐶)

ℙ (𝐶)

= ℙ (𝐴 ∣ 𝐵 ∩ 𝐶)ℙ (𝐵 ∩ 𝐶)
ℙ (𝐶) + ℙ (𝐴 ∣ 𝐵𝑐 ∩ 𝐶)ℙ (𝐵𝑐 ∩ 𝐶)

ℙ (𝐶)
= ℙ (𝐴 ∣ 𝐵 ∩ 𝐶)ℙ (𝐵 ∣ 𝐶) + ℙ (𝐴 ∣ 𝐵𝑐 ∩ 𝐶)ℙ (𝐵𝑐 ∣ 𝐶)
> ℙ (𝐴 ∣ 𝐵 ∩ 𝐶𝑐) ℙ (𝐵 ∣ 𝐶) + ℙ (𝐴 ∣ 𝐵𝑐 ∩ 𝐶𝑐) ℙ (𝐵𝑐 ∣ 𝐶)
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Let us also assume that ℙ (𝐵 ∣ 𝐶) = ℙ (𝐵 ∣ 𝐶𝑐). Then
ℙ (𝐴 ∣ 𝐶) > ℙ (𝐴 ∣ 𝐵 ∩ 𝐶𝑐) ℙ (𝐵 ∣ 𝐶𝑐) + ℙ (𝐴 ∣ 𝐵𝑐 ∩ 𝐶𝑐) ℙ (𝐵𝑐 ∣ 𝐶𝑐)

= ℙ (𝐴 ∣ 𝐶𝑐)
So we needed to further assume that ℙ (𝐵 ∣ 𝐶) = ℙ (𝐵 ∣ 𝐶𝑐) in order for the ‘intuitive’ result to hold.
The assumption was not valid in the example, so the result did not hold.

4 Discrete distributions
4.1 Discrete distributions
In a discrete probability distribution on a probability space (Ω,ℱ, ℙ), Ω is either finite or countable,
i.e. Ω = {𝜔1, 𝜔2,… }, and as stated before, ℱ is the power set of Ω. If we know ℙ ({𝜔𝑖}), then this
completely determines ℙ. Indeed, let 𝐴 ⊆ Ω, then

ℙ (𝐴) = ℙ( ⋃
𝑖 ∶ 𝜔𝑖∈𝐴

{𝜔𝑖}) = ∑
𝑖 ∶ 𝜔𝑖∈𝐴

ℙ ({𝜔𝑖})

by countable additivity. We will see later that this is not true if Ω is uncountable. We write 𝑝𝑖 =
ℙ ({𝜔𝑖}), and we then call this a discrete probability distribution. It has the following key proper-
ties:

• 𝑝𝑖 ≥ 0
• ∑𝑖 𝑝𝑖 = 1

4.2 Bernoulli distribution
We model the outcome of a test with two outcomes (e.g. the toss of a coin) with the Bernoulli distri-
bution. Let Ω = {0, 1}. We will denote 𝑝 = 𝑝1, then clearly 𝑝0 = 1 − 𝑝.

4.3 Binomial distribution
The binomial distribution 𝐵 has parameters𝑁 ∈ ℤ+, 𝑝 ∈ [0, 1]. This distribution models a sequence
of 𝑁 independent Bernoulli distributions of parameter 𝑝. We then count the amount of ‘successes’,
i.e. trials in which the result was 1. Ω = {0, 1,… ,𝑁}.

ℙ ({𝑘}) = 𝑝𝑘 = (𝑁𝑘)𝑝
𝑘(1 − 𝑝)𝑁−𝑘

4.4 Multinomial distribution
The multinomial distribution is a generalisation of the binomial distribution. 𝑀 has parameters
𝑁 ∈ ℤ+ and 𝑝1, 𝑝2,⋯ ∈ [0, 1] where ∑𝑘

𝑖=1 𝑝𝑖 = 1. This models a sequence of 𝑁 independent
trials in which a number from 1 to 𝑁 is selected, where the probability of selecting 𝑖 is 𝑝𝑖. Ω =
{(𝑛1,… , 𝑛𝑘) ∈ ℕ𝑘 ∶ ∑𝑘

𝑖=1 𝑛𝑖 = 𝑁}, in other words, ordered partitions of 𝑁. Therefore

ℙ (𝑛1 outcomes had value 1,… , 𝑛𝑘 outcomes had value 𝑘) = ℙ ((𝑛1,… , 𝑛𝑘))

= ( 𝑁
𝑛1,… , 𝑛𝑘

)𝑝𝑛11 …𝑝𝑛𝑘𝑘
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4.5 Geometric distribution
Consider a Bernoulli distribution of parameter 𝑝. The geometric distribution models running this
trial many times independently until the first ‘success’ (i.e. the first result of value 1). Then Ω =
{1, 2,… } = ℤ+. Then

𝑝𝑘 = (1 − 𝑝)𝑘−1𝑝
We can compute the infinite geometric series∑𝑝𝑘 which gives 1. We could alternatively model the
distribution using Ω′ = {0, 1,… } = ℕ which records the amount of failures before the first success.
Then

𝑝′𝑘 = (1 − 𝑝)𝑘𝑝
Again, the sum converges to 1.

4.6 Poisson distribution
This is used to model the number of occurrences of an event in a given interval of time. Ω =
{0, 1, 2,… } = ℕ. This distribution has one parameter 𝜆 ∈ ℝ. We have

𝑝𝑘 = 𝑒−𝜆 𝜆
𝑘

𝑘!
Then

∞
∑
𝑘=0

𝑝𝑘 = 𝑒−𝜆
∞
∑
𝑘=0

𝜆𝑘
𝑘! = 𝑒−𝜆 ⋅ 𝑒𝜆 = 1

Suppose customers arrive into a shop during the time interval [0, 1]. We will subdivide [0, 1] into
𝑁 intervals [ 𝑖−1

𝑁
, 𝑖
𝑁
]. In each interval, a single customer arrives with probability 𝑝, independent of

other time intervals. In this example,

ℙ (𝑘 customers arrive) = (𝑁𝑘)𝑝
𝑘(1 − 𝑝)𝑁−𝑘

Let 𝑝 = 𝜆
𝑁
for 𝜆 > 0. We will show that as 𝑁 → ∞, this binomial distribution converges to the

Poisson distribution.

(𝑁𝑘)𝑝
𝑘(1 − 𝑝)𝑁−𝑘 = 𝑁!

𝑘!(𝑁 − 𝑘)! (
𝜆
𝑛)

𝑘
⋅ (1 − 𝜆

𝑛)
𝑁−𝑘

= 𝜆𝑘
𝑘! ⋅

𝑁!
𝑁𝑘(𝑁 − 𝑘)! ⋅ (1 −

𝜆
𝑁 )

𝑁−𝑘

→ 𝜆𝑘
𝑘! ⋅ 1 ⋅ 𝑒

−𝜆

which matches the Poisson distribution.

5 Discrete random variables
5.1 Random variables
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Definition. Consider the probability space (Ω,ℱ, ℙ). A random variable 𝑋 is a function
𝑋 ∶ Ω → ℝ satisfying

{𝜔 ∈ Ω∶ 𝑋(𝜔) ≤ 𝑥} ∈ ℱ
for any given 𝑥.

Suppose 𝐴 ⊆ ℝ. Then typically we write

{𝑋 ∈ 𝐴} = {𝜔∶ 𝑋(𝜔) ∈ 𝐴}

as shorthand. Given 𝐴 ∈ ℱ, we define the indicator of 𝐴 to be

1𝐴(𝜔) = 1(𝜔 ∈ 𝐴) = {1 if 𝜔 ∈ 𝐴
0 otherwise

Because 𝐴 ∈ ℱ, 1𝐴 is a random variable. Suppose 𝑋 is a random variable. We define the probability
distribution function of 𝑋 to be

𝐹𝑋 ∶ ℝ → [0, 1]; 𝐹𝑋(𝑥) = ℙ (𝑋 ≤ 𝑥)

Definition. (𝑋1,… , 𝑋𝑛) is called a random variable in ℝ𝑛 if (𝑋1,… , 𝑋𝑛)∶ Ω → ℝ𝑛, and for
all 𝑥1,… , 𝑥𝑛 ∈ ℝ we have

{𝑋1 ≤ 𝑥1,… , 𝑋𝑛 ≤ 𝑥𝑛} = {𝜔∶ 𝑋1(𝜔) ≤ 𝑥1,… , 𝑋𝑛(𝜔) ≤ 𝑥𝑛} ∈ ℱ

This definition is equivalent to saying that 𝑋1,… , 𝑋𝑛 are all random variables in ℝ. Indeed,

{𝑋1 ≤ 𝑥1,… , 𝑋𝑛 ≤ 𝑥𝑛} = {𝑋1 ≤ 𝑥1} ∩ ⋯ ∩ {𝑋𝑛 ≤ 𝑥𝑛}

which, since ℱ is a 𝜎-algebra, is an element of ℱ.

Definition. A random variable 𝑋 is called discrete if it takes values in a countable set. Sup-
pose 𝑋 takes values in the countable set 𝑆. For every 𝑥 ∈ 𝑆, we write

𝑝𝑥 = ℙ (𝑋 = 𝑥) = ℙ ({𝜔∶ 𝑋(𝜔) = 𝑥})

We call (𝑝𝑥)𝑥∈𝑆 the probabilitymass function of𝑋 , or the distribution of𝑋 . If (𝑝𝑥) is Bernoulli
for example, then we say that 𝑋 is a Bernoulli (or such) random variable, or that 𝑋 has the
Bernoulli distribution.

Definition. Suppose 𝑋1,… , 𝑋𝑛 are discrete random variables taking variables in 𝑆1,… , 𝑆𝑛.
We say that the random variables 𝑋1,… , 𝑋𝑛 are independent if

ℙ (𝑋1 = 𝑥1,… , 𝑋𝑛 = 𝑥𝑛) = ℙ (𝑋1 = 𝑥1)⋯ℙ (𝑋𝑛 = 𝑥𝑛) ∀𝑥1 ∈ 𝑆1,… , 𝑥𝑛 ∈ 𝑆𝑛

As an example, suppose we toss a 𝑝-biased coin 𝑛 times independently. Let Ω = {0, 1}𝑛. For every
𝜔 ∈ Ω,

𝑝𝜔 =
𝑛
∏
𝑘=1

𝑝𝜔𝑘(1 − 𝑝)1−𝜔𝑘 ; where we write 𝜔 = (𝜔1,… , 𝜔𝑛)
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We define a set of discrete random variables 𝑋𝑘(𝜔) = 𝜔𝑘. Then 𝑋𝑘 gives the output of the 𝑘th toss.
We have

ℙ (𝑋𝑘 = 1) = ℙ (𝜔𝑘 = 1) = 𝑝; ℙ (𝑋𝑘 = 0) = ℙ (𝜔𝑘 = 0) = 1 − 𝑝
So 𝑋𝑘 has the Bernoulli distribution with parameter 𝑝. We can also show that the 𝑋𝑖 are independent.
Let 𝑥1,… , 𝑥𝑛 ∈ {0, 1}. Then

ℙ (𝑋1 = 𝑥1,… , 𝑋𝑛 = 𝑥𝑛) = ℙ (𝜔 = (𝑥1,… , 𝑥𝑛))
= 𝑝(𝑥1,…,𝑥𝑛)

=
𝑁
∏
𝑘=1

𝑝𝑥𝑘(1 − 𝑝)1−𝑥𝑘

=
𝑁
∏
𝑘=1

ℙ (𝑋𝑘 = 𝑥𝑘)

as required. Now, we define 𝑆𝑛(𝜔) = 𝑋1(𝜔) + ⋯ + 𝑋𝑛(𝜔). This is the number of heads in 𝑁 tosses.
So 𝑆𝑛 ∶ Ω → {0,… ,𝑁}, and

ℙ (𝑆𝑛 = 𝑘) = (𝑛𝑘)𝑝
𝑘(1 − 𝑝)𝑛−𝑘

So 𝑆𝑛 has the binomial distribution with parameters 𝑛 and 𝑝.

5.2 Expectation
Let (Ω,ℱ, ℙ) be a probability space such that Ω is countable. Let 𝑋 ∶ Ω → ℝ be a random variable,
which is necessarily discrete. We say that 𝑋 is non-negative if 𝑋 ≥ 0. We define the expectation of 𝑋
to be

𝔼 [𝑋] = ∑
𝜔
𝑋(𝜔) ⋅ ℙ ({𝜔})

We will write
Ω𝑋 = {𝑋(𝜔)∶ 𝜔 ∈ Ω}

So
Ω = ⋃

𝑥∈Ω𝑋

{𝑋 = 𝑥}

So we have partitioned Ω using 𝑋 . Note that

𝔼 [𝑋] = ∑
𝜔
𝑋(𝜔)ℙ ({𝜔})

= ∑
𝑥∈Ω𝑋

∑
𝜔∈{𝑋=𝑥}

𝑋(𝜔)ℙ ({𝜔})

= ∑
𝑥∈Ω𝑋

∑
𝜔∈{𝑋=𝑥}

𝑥ℙ ({𝜔})

= ∑
𝑥∈Ω𝑋

𝑥ℙ ({𝑋 = 𝑥})

which matches the more familiar definition of the expectation; the average of the values taken by 𝑋 ,
weighted by the probability of the event occurring. So

𝔼 [𝑋] = ∑
𝑥∈Ω𝑋

𝑥𝑝𝑥
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5.3 Expectation of binomial distribution
Let 𝑋 ∼ Bin(𝑁, 𝑝). Then

∀𝑘 = 0,… ,𝑁, ℙ (𝑋 = 𝑘) = (𝑁𝑘)𝑝
𝑘(1 − 𝑝)𝑁−𝑘

So using the second definition,

𝔼 [𝑋] =
𝑁
∑
𝑘=0

𝑘ℙ (𝑋 = 𝑘)

=
𝑁
∑
𝑘=0

𝑘(𝑛𝑘)𝑝
𝑘(1 − 𝑝)𝑁−𝑘

=
𝑁
∑
𝑘=0

𝑘 ⋅ 𝑁!
𝑘! ⋅ (𝑁 − 𝑘)!𝑝

𝑘(1 − 𝑝)𝑁−𝑘

=
𝑁
∑
𝑘=1

(𝑁 − 1)! ⋅ 𝑁 ⋅ 𝑝
(𝑘 − 1)! ⋅ (𝑁 − 𝑘)!𝑝

𝑘−1(1 − 𝑝)𝑁−𝑘

= 𝑁𝑝
𝑁
∑
𝑘=1

(𝑁 − 1
𝑘 − 1)𝑝

𝑘−1(1 − 𝑝)𝑁−𝑘

= 𝑁𝑝
𝑁−1
∑
𝑘=0

(𝑁 − 1
𝑘 )𝑝𝑘(1 − 𝑝)𝑁−1−𝑘

= 𝑁𝑝(𝑝 + 1 − 𝑝)𝑁−1

= 𝑁𝑝

5.4 Expectation of Poisson distribution
Let 𝑋 ∼ Poi(𝜆), so

ℙ (𝑋 = 𝑘) = 𝑒−𝜆 𝜆
𝑘

𝑘!
Hence

𝔼 [𝑋] =
∞
∑
𝑘=0

𝑘𝑒−𝜆 𝜆
𝑘

𝑘!

=
∞
∑
𝑘=1

𝑒−𝜆 𝜆𝑘−1𝜆
(𝑘 − 1)!

= 𝑒−𝜆 ⋅ 𝑒𝜆 ⋅ 𝜆
= 𝜆

5.5 Expectation of a general random variable
Let 𝑋 be a general (not necessarily non-negative) discrete random variable. Then we define

𝑋+ = max(𝑋, 0); 𝑋− = max(−𝑋, 0)
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Then 𝑋 = 𝑋+ − 𝑋−. Note that 𝑋+ and 𝑋− are non-negative random variables, which has a well-
defined expectation. So if at least one of 𝔼 [𝑋+] , 𝔼 [𝑋−] is finite, we define

𝔼 [𝑋] = 𝔼 [𝑋+] − 𝔼 [𝑋−]

If both are infinite, then we say that the expectation of 𝑋 is not defined. Whenever we write 𝔼 [𝑋], it
is assumed to be well-defined. If 𝔼 [|𝑋|] < ∞, we say that 𝑋 is integrable. When 𝔼 [𝑋] is well-defined,
we have again that

𝔼 [𝑋] = ∑
𝑥∈Ω𝑥

𝑥 ⋅ ℙ (𝑋 = 𝑥)

5.6 Properties of the expectation
The following properties follow immediately from the definition.

(i) If 𝑋 ≥ 0, then 𝔼 [𝑋] ≥ 0.
(ii) If 𝑋 ≥ 0 and 𝔼 [𝑋] = 0, then ℙ (𝑋 = 0) = 1.
(iii) If 𝑐 ∈ ℝ, then 𝔼 [𝑐𝑋] = 𝑐𝔼 [𝑋], and 𝔼 [𝑐 + 𝑋] = 𝑐 + 𝔼 [𝑋].
(iv) If 𝑋 , 𝑌 are two integrable random variables, then 𝔼 [𝑋 + 𝑌] = 𝔼 [𝑋] + 𝔼 [𝑌].
(v) More generally, let 𝑐1,… , 𝑐𝑛 ∈ ℝ and 𝑋1,… , 𝑋𝑛 integrable random variables. Then

𝔼 [𝑐1𝑋1 +⋯+ 𝑐𝑛𝑋𝑛] = 𝑐1𝔼 [𝑋1] +⋯ + 𝑐𝑛𝔼 [𝑋𝑛]

So the expectation is a linear operator over finitely many inputs.

5.7 Countable additivity for the expectation
Suppose 𝑋1, 𝑋2,… are non-negative random variables. Then

𝔼 [∑
𝑛
𝑋𝑛] = ∑

𝑛
𝔼 [𝑋𝑛]

The non-negativity constraint allows us to guarantee that the sums are well-defined; they could be
infinite, but at least their values are well-defined. We will construct a proof assuming thatΩ is count-
able, however the result holds regardless of the choice of Ω.

Proof.

𝔼 [∑
𝑛
𝑋𝑛] = ∑

𝜔
∑
𝑛
𝑋𝑛(𝜔)ℙ ({𝜔})

= ∑
𝑛
∑
𝜔
𝑋𝑛(𝜔)ℙ ({𝜔})

= ∑
𝑛
𝔼 [𝑋𝑛]

We are allowed to rearrange the sums since all relevant terms are non-negative.
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5.8 Expectation of indicator function
If 𝑋 = 1(𝐴) where 𝐴 ∈ ℱ, then 𝔼 [𝑋] = ℙ (𝐴). This is obvious from the second definition of the
expectation.

5.9 Expectation under function application
If 𝑔∶ ℝ → ℝ, we can define 𝑔(𝑋) to be the random variable given by

𝑔(𝑋)(𝜔) = 𝑔(𝑋(𝜔))
Then

𝔼 [𝑔(𝑋)] = ∑
𝑥∈Ω𝑋

𝑔(𝑥) ⋅ ℙ (𝑋 = 𝑥)

Proof. Let 𝑌 = 𝑔(𝑋). Then
𝔼 [𝑌] = ∑

𝑦∈Ω𝑌

𝑦 ⋅ ℙ (𝑌 = 𝑦)

Note that
{𝑌 = 𝑦} = {𝜔∶ 𝑌(𝜔) = 𝑦}

= {𝜔∶ 𝑔(𝑋(𝜔)) = 𝑦}
= {𝜔∶ 𝑋(𝜔) ∈ 𝑔−1({𝑦})}
= {𝑋 ∈ 𝑔−1({𝑦})}

where 𝑔−1({𝑦}) is the set of all 𝑥 such that 𝑔(𝑥) ∈ {𝑦}. So
𝔼 [𝑌] = ∑

𝑦∈Ω𝑦

𝑦 ⋅ ℙ (𝑋 ∈ 𝑔−1({𝑦}))

= ∑
𝑦∈Ω𝑌

𝑦 ⋅ ∑
𝑥∈𝑔−1({𝑦})

ℙ (𝑋 = 𝑥)

= ∑
𝑦∈Ω𝑌

∑
𝑥∈𝑔−1({𝑦})

𝑔(𝑥)ℙ (𝑋 = 𝑥)

= ∑
𝑥∈Ω𝑋

𝑔(𝑥)ℙ (𝑋 = 𝑥)

5.10 Calculating expectation with cumulative probabilities
If 𝑋 ≥ 0 and takes integer values, then

𝔼 [𝑋] =
∞
∑
𝑘=1

ℙ (𝑋 ≥ 𝑘) =
∞
∑
𝑘=0

ℙ (𝑋 > 𝑘)

Proof. Since 𝑋 takes non-negative integer values,

𝑋 =
∞
∑
𝑘=1

1(𝑋 ≥ 𝑘) =
∞
∑
𝑘=0

1(𝑋 > 𝑘)

This represents the fact that any integer is the sum of that many ones, e.g. 4 = 1+1+1+1+0+0+…
to infinity. Taking the expectation of the above formula, using that 𝔼 [1(𝐴)] = ℙ (𝐴) and countable
additivity, we have the result as claimed.

25



5.11 Inclusion-exclusion formula with indicators
We can provide another proof of the inclusion-exclusion formula, using some basic properties of
indicator functions.

• 1(𝐴𝑐) = 1 − 1(𝐴)
• 1(𝐴 ∩ 𝐵) = 1(𝐴) ⋅ 1(𝐵)
• Following from the above, 1(𝐴 ∪ 𝐵) = 1 − (1 − 1(𝐴))(1 − 1(𝐵)).

More generally,

1(𝐴1 ∪⋯ ∪ 𝐴𝑛) = 1 −
𝑛
∏
𝑖=1

(1 − 1(𝐴𝑖))

which gives the inclusion-exclusion formula. Taking the expectation of both sides, we can see that

ℙ (𝐴1 ∪⋯ ∪ 𝐴𝑛) =
𝑛
∑
𝑖=1

ℙ (𝐴𝑖) − ∑
𝑖1<𝑖2

ℙ (𝐴𝑖1 ∩ 𝐴𝑖2) +⋯ + (−1)𝑛+1ℙ (𝐴1 ∩⋯ ∩ 𝐴𝑛)

which is the result as previously found.

6 Variance and covariance
6.1 Variance
Let 𝑋 be a random variable, and 𝑟 ∈ ℕ. If it is well-defined, we call 𝔼 [𝑋𝑟] the 𝑟th moment of 𝑋 . We
define the variance of 𝑋 by

Var (𝑋) = 𝔼 [(𝑋 − 𝔼 [𝑋])2]
If the variance is small, 𝑋 is highly concentrated around 𝔼 [𝑋]. If the variance is large, 𝑋 has a wide
distribution including values not necessarily near 𝔼 [𝑋]. We call √Var (𝑋) the standard deviation of
𝑋 , denoted with 𝜎. The variance has the following basic properties:

• Var (𝑋) ≥ 0, and if Var (𝑋) = 0, ℙ (𝑋 = 𝔼 [𝑋]) = 1.
• If 𝑐 ∈ ℝ, then Var (𝑐𝑋) = 𝑐2 Var (𝑋), and Var (𝑋 + 𝑐) = Var (𝑋).

• Var (𝑋) = 𝔼 [𝑋2] − 𝔼 [𝑋]2. This follows since

𝔼 [(𝑋 − 𝔼 [𝑋])2] = 𝔼 [𝑋2 − 2𝑋𝔼 [𝑋] + 𝔼 [𝑋]2]
= 𝔼 [𝑋2] − 2𝔼 [𝑋] 𝔼 [𝑋] + 𝔼 [𝑋]2

= 𝔼 [𝑋2] − 𝔼 [𝑋]2

• Var (𝑋) = min𝑐∈ℝ 𝔼 [(𝑋 − 𝑐)2], and this minimum is achieved at 𝑐 = 𝔼 [𝑋]. Indeed, if we let
𝑓(𝑐) = 𝔼 [(𝑋 − 𝑐)2], then 𝑓(𝑐) = 𝔼 [𝑋2]−2𝑐𝔼 [𝑋]+𝑐2. Minimising 𝑓, we get 𝑓(𝔼 [𝑋]) = Var (𝑋)
as required.

As an example, consider 𝑋 ∼ Bin(𝑛, 𝑝). Then 𝔼 [𝑋] = 𝑛𝑝, as we found before. Note that we can also
represent this binomial distribution as the sum of 𝑛 Bernoulli distributions of parameter 𝑝 to get the
same result. The variance of 𝑋 is

Var (𝑋) = 𝔼 [𝑋2] − 𝔼 [𝑋]2
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In fact, in order to compute 𝔼 [𝑋2] it is easier to find 𝔼 [𝑋(𝑋 − 1)].

𝔼 [𝑋(𝑋 − 1)] =
𝑛
∑
𝑘=2

𝑘 ⋅ (𝑘 − 1) ⋅ (𝑛𝑘) ⋅ 𝑝
𝑘 ⋅ (1 − 𝑝)𝑛−𝑘

=
𝑛
∑
𝑘=2

𝑘(𝑘 − 1)𝑛!𝑝𝑘(1 − 𝑝)𝑛−𝑘
(𝑛 − 𝑘)!𝑘!

=
𝑛
∑
𝑘=2

𝑛!𝑝𝑘(1 − 𝑝)𝑛−𝑘
((𝑛 − 2) − (𝑘 − 2))!(𝑘 − 2)!

= 𝑛(𝑛 − 1)𝑝2
𝑛
∑
𝑘=2

(𝑛 − 2
𝑘 − 2)𝑝

𝑘−2(1 − 𝑝)𝑛−𝑘

= 𝑛(𝑛 − 1)𝑝2

Hence,

Var (𝑋) = 𝔼 [𝑋(𝑋 − 1)] + 𝔼 [𝑋] − 𝔼 [𝑋]2 = 𝑛(𝑛 − 1)𝑝2 + 𝑛𝑝 − (𝑛𝑝)2 = 𝑛𝑝(1 − 𝑝)

As a second example, if 𝑋 ∼ Poi(𝜆), we have 𝔼 [𝑋] = 𝜆. Because of the factorial term, it is easier to
use 𝑋(𝑋 − 1) than 𝑋2.

𝔼 [𝑋(𝑋 − 1)] =
∞
∑
𝑘=2

𝑘(𝑘 − 1)𝑒−𝜆 𝜆
𝑘

𝑘!

= 𝑒−𝜆
∞
∑
𝑘=2

𝜆𝑘−2
(𝑘 − 2)! ⋅ 𝜆

2

= 𝜆2

Hence,
Var (𝑋) = 𝜆2 + 𝜆 − 𝜆2 = 𝜆

6.2 Covariance

Definition. Let 𝑋 and 𝑌 be random variables. Their covariance is defined

Cov (𝑋, 𝑌) = 𝔼 [(𝑋 − 𝔼 [𝑋])(𝑌 − 𝔼 [𝑌])]

It is a measure of how dependent 𝑋 and 𝑌 are.

Immediately we can deduce the following properties.

• Cov (𝑋, 𝑌) = Cov (𝑌, 𝑋)
• Cov (𝑋, 𝑋) = Var (𝑋)
• Cov (𝑋, 𝑌) = 𝔼 [𝑋𝑌]−𝔼 [𝑋] ⋅ 𝔼 [𝑌]. Indeed, (𝑋 −𝔼 [𝑋])(𝑌 −𝔼 [𝑌]) = 𝑋𝑌 −𝑋𝔼 [𝑌]−𝑌𝔼 [𝑋]+
𝔼 [𝑋] 𝔼 [𝑌] and the result follows.

• Let 𝑐 ∈ ℝ. Then Cov (𝑐𝑋, 𝑌) = 𝑐Cov (𝑋, 𝑌), and Cov (𝑐 + 𝑋, 𝑌) = Cov (𝑋, 𝑌).
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• Var (𝑋 + 𝑌) = Var (𝑋) + Var (𝑌) + 2Cov (𝑋, 𝑌). Indeed, we have
Var (𝑋 + 𝑌) = 𝔼 [(𝑋 − 𝔼 [𝑋] + 𝑌 − 𝔼 [𝑌])2] which gives
𝔼 [(𝑋 − 𝔼 [𝑋])2] + 𝔼 [(𝑌 − 𝔼 [𝑌])2] + 2𝔼 [(𝑋 − 𝔼 [𝑋])(𝑌 − 𝔼 [𝑌])] as required.

• For all 𝑐 ∈ ℝ, Cov (𝑐, 𝑋) = 0
• If 𝑋 , 𝑌 , 𝑍 are random variables, then Cov (𝑋 + 𝑌, 𝑍) = Cov (𝑋, 𝑍)+Cov (𝑌 , 𝑍). More generally,
for 𝑐1,… , 𝑐𝑛, 𝑑1,… , 𝑑𝑚 real numbers, and for 𝑋1,… , 𝑋𝑛, 𝑌1,… , 𝑌𝑚 random variables, we have

Cov(
𝑛
∑
𝑖=1

𝑐𝑖𝑋𝑖,
𝑚
∑
𝑗=1

𝑑𝑗𝑌 𝑗) =
𝑛
∑
𝑖=1

𝑚
∑
𝑗=1

𝑐𝑖𝑑𝑗 Cov (𝑋𝑖, 𝑌 𝑗)

In particular, if we apply this to 𝑋𝑖 = 𝑌 𝑖, and 𝑐𝑖 = 𝑑𝑖 = 1, then we have

Var (
𝑛
∑
𝑖=1

𝑋𝑖) =
𝑛
∑
𝑖=1

Var (𝑋𝑖) +∑
𝑖≠𝑗

Cov (𝑋𝑖, 𝑋𝑗)

6.3 Expectation of functions of a random variable
Recall that 𝑋 and 𝑌 are independent if for all 𝑥 and 𝑦,

ℙ (𝑋 = 𝑥, 𝑌 = 𝑦) = ℙ (𝑋 = 𝑥) ⋅ ℙ (𝑌 = 𝑦)

We would like to prove that given positive functions 𝑓, 𝑔∶ ℝ → ℝ+, if 𝑋 and 𝑌 are independent we
have

𝔼 [𝑓(𝑋)𝑔(𝑌)] = 𝔼 [𝑓(𝑋)] ⋅ 𝔼 [𝑔(𝑌)]

Proof.

𝔼 [𝑓(𝑋)𝑔(𝑌)] = ∑
(𝑥,𝑦)

𝑓(𝑥)𝑔(𝑦)ℙ (𝑋 = 𝑥, 𝑌 = 𝑦)

= ∑
(𝑥,𝑦)

𝑓(𝑥)𝑔(𝑦)ℙ (𝑋 = 𝑥)ℙ (𝑌 = 𝑦)

= ∑
𝑥
𝑓(𝑥)ℙ (𝑋 = 𝑥) ⋅∑

𝑦
𝑔(𝑦)ℙ (𝑌 = 𝑦)

= 𝔼 [𝑓(𝑋)] ⋅ 𝔼 [𝑔(𝑌)]

The same result holds for general functions, provided the required expectations exist.

6.4 Covariance of independent variables
Suppose 𝑋 and 𝑌 are independent. Then

Cov (𝑋, 𝑌) = 0
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This is because

Cov (𝑋, 𝑌) = 𝔼 [(𝑋 − 𝔼 [𝑋])(𝑌 − 𝔼 [𝑌])]
= 𝔼 [𝑋 − 𝔼 [𝑋]] ⋅ 𝔼 [𝑌 − 𝔼 [𝑌]]
= 0 ⋅ 0
= 0

In particular, we can deduce that

Var (𝑋 + 𝑌) = Var (𝑋) + Var (𝑌)
Note, however, that the covariance being equal to zero does not imply independence. For instance,
let 𝑋1, 𝑋2, 𝑋3 be independent Bernoulli random variables with parameter 1

2
. Let us now define 𝑌1 =

2𝑋1 − 1, 𝑌2 = 2𝑋2 − 1, and 𝑍1 = 𝑋3𝑌1, 𝑍2 = 𝑋3𝑌2. Now, we have
𝔼 [𝑌1] = 𝔼 [𝑌2] = 𝔼 [𝑍1] = 𝔼 [𝑍2] = 0

We can find that

Cov (𝑍1, 𝑍2) = 𝔼 [𝑍1 ⋅ 𝑍2] = 𝔼 [𝑋2
3𝑌1𝑌2] = 𝔼 [𝑋2

3 ] ⋅ 0 ⋅ 0 = 0
However, 𝑍1 and 𝑍2 are in fact not independent. Since 𝑌1, 𝑌2 are never zero,

ℙ (𝑍1 = 0, 𝑍2 = 0) = ℙ (𝑋3 = 0) = 1
2

But also

ℙ (𝑍1 = 0) = ℙ (𝑍2 = 0) = ℙ (𝑋3 = 0) = 1
2 ⟹ ℙ(𝑍1 = 0) ⋅ ℙ (𝑍2 = 0) = 0

So the events are not independent.

7 Inequalities for random variables
7.1 Markov’s inequality
The following useful inequality, and the others derived from it, hold in the discrete and the continu-
ous case.

Theorem. Let 𝑋 ≥ 0 be a non-negative random variable. Then for all 𝑎 > 0,

ℙ (𝑋 ≥ 𝑎) ≤ 𝔼 [𝑋]
𝑎

Proof. Observe that 𝑋 ≥ 𝑎 ⋅ 1(𝑋 ≥ 𝑎). This can be seen to be true simply by checking both cases,
𝑋 < 𝑎 and 𝑋 ≥ 𝑎. Taking expectations, we get

𝔼 [𝑋] ≥ 𝔼 [𝑎 ⋅ 1(𝑋 ≥ 𝑎)] = 𝔼 [𝑎 ⋅ ℙ (𝑋 ≥ 𝑎)] = 𝑎 ⋅ ℙ (𝑋 ≥ 𝑎)
and the result follows.

7.2 Chebyshev’s inequality
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Theorem. Let 𝑋 be a random variable with finite expectation. Then for all 𝑎 > 0,

ℙ (|𝑋 − 𝔼 [𝑋]| ≥ 𝑎) ≤ Var (𝑋)
𝑎2

Proof. Note thatℙ (|𝑋 − 𝔼 [𝑋]| ≥ 𝑎) = ℙ (|𝑋 − 𝔼 [𝑋]|2 ≥ 𝑎2). Thenwe can applyMarkov’s inequality
to this non-negative random variable to get

ℙ (|𝑋 − 𝔼 [𝑋]|2 ≥ 𝑎2) ≤
𝔼 [(𝑋 − 𝔼 [𝑋])2]

𝑎2 = Var (𝑋)
𝑎2

7.3 Cauchy–Schwarz inequality

Theorem. If 𝑋 and 𝑌 are random variables, then

|𝔼 [𝑋𝑌]| ≤ √𝔼 [𝑋2] ⋅ 𝔼 [𝑌2]

Proof. It suffices to prove this statement for 𝑋 and 𝑌 which have finite second moments, i.e. 𝔼 [𝑋2]
and 𝔼 [𝑋2] are finite. Clearly if they are infinite, then the upper bound is infinite which is trivially
true. We need to show that |𝔼 [𝑋𝑌]| is finite. Here we can apply the additional assumption that 𝑋
and 𝑌 are non-negative, since we are taking the absolute value:

𝑋𝑌 ≤ 1
2 (𝑋

2 + 𝑌 2) ⟹ 𝔼[𝑋𝑌] ≤ 1
2 (𝔼 [𝑋

2] + 𝔼 [𝑌2])

Now, we can assume 𝔼 [𝑋2] > 0 and 𝔼 [𝑌2] > 0. If this were not the case, the result is trivial since if
at least one of themwere equal to zero, the corresponding random variable would be identically zero.
Let 𝑡 ∈ ℝ and consider

0 ≤ (𝑋 − 𝑡𝑌)2 = 𝑋2 − 2𝑡𝑋𝑌 + 𝑡2𝑌 2

Hence
𝔼 [𝑋2] − 2𝑡𝔼 [𝑋𝑌] + 𝑡2𝔼 [𝑌2] ≥ 0

We can view this left hand side as a function 𝑓(𝑡). The minimum value of this function is achieved
at 𝑡∗ =

𝔼[𝑋𝑌]
𝔼[𝑌2]

. Then

𝑓(𝑡∗) ≥ 0 ⟹ 𝔼[𝑋2] − 2𝔼 [𝑋𝑌]
𝔼 [𝑌2] + 𝔼 [𝑋𝑌]2

𝔼 [𝑌2] ≥ 0

Hence,
𝔼 [𝑋𝑌]2 ≤ 𝔼 [𝑋2] ⋅ 𝔼 [𝑌2]

and the result follows.

Note that we also have

𝔼 [|𝑋𝑌|] ≤ √𝔼 [𝑋2] ⋅ 𝔼 [𝑌2]
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This is because we can redefine 𝑋 ↦ |𝑋| and 𝑌 ↦ |𝑌|, giving

|𝔼 [|𝑋| ⋅ |𝑌 |]| ≤ √𝔼 [𝑋2] ⋅ 𝔼 [𝑌2]
𝔼 [|𝑋𝑌|] ≤ √𝔼 [𝑋2] ⋅ 𝔼 [𝑌2]

7.4 Equality in Cauchy–Schwarz
In what cases do we get equality in the Cauchy–Schwarz inequality? Recall that the inequality
states

|𝔼 [𝑋𝑌]| ≤ √𝔼 [𝑋2] ⋅ 𝔼 [𝑌2]
Recall that in the proof, we considered the random variable (𝑋 − 𝑡𝑌)2 where 𝑋 and 𝑌 were non-
negative, and had finite second moments. The expectation of this random variable was called 𝑓(𝑡),
and we found that 𝑓(𝑡) was minimised when 𝑡 = 𝔼[𝑋𝑌]

𝔼[𝑌2]
. We have equality exactly when 𝑓(𝑡) = 0 for

this value of 𝑡. But (𝑋 − 𝑡𝑌)2 is a non-negative random variable, with expectation zero, so it must be
zero with probability 1. So we have equality if and only if 𝑋 is exactly 𝑡𝑌 .

7.5 Jensen’s inequality

Definition. A function 𝑓∶ ℝ → ℝ is called convex if ∀𝑥, 𝑦 ∈ ℝ and for all 𝑡 ∈ [0, 1],

𝑓(𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑡𝑓(𝑥) + (1 − 𝑡)𝑓(𝑦)

This can be visualised as linearly interpolating the values of the function at two points, 𝑥 and
𝑦. The linear interpolation of those points is always greater than the function applied to the
linear interpolation of the input points.

Theorem. Let 𝑋 be a random variable, and let 𝑓 be a convex function. Then

𝔼 [𝑓(𝑋)] ≥ 𝑓(𝔼 [𝑋])

Wecan remember the direction of this inequality by considering the variance: Var (𝑋) = 𝔼 [(𝑋 − 𝔼 [𝑋])2]
which is non-negative. Further, Var (𝑋) = 𝔼 [𝑋2] − 𝔼 [𝑋]2 hence 𝔼 [𝑋2] ≥ 𝔼 [𝑋]2. Squaring is an
example of a convex function, so Jensen’s inequality holds in this case. We will first prove a basic
lemma about convex functions.

Lemma. Let 𝑓∶ ℝ → ℝ be a convex function. Then 𝑓 is the supremum of all the lines lying
below it. More formally, ∀𝑚 ∈ ℝ, ∃𝑎, 𝑏 ∈ ℝ such that 𝑓(𝑚) = 𝑎𝑚 + 𝑏 and 𝑓(𝑥) ≥ 𝑎𝑥 + 𝑏 for
all 𝑥.

Proof. Let𝑚 ∈ ℝ. Let 𝑥 < 𝑚 < 𝑦. Then we can express𝑚 as 𝑡𝑥 + (1 − 𝑡)𝑦 for some 𝑡 in the interval
[0, 1]. By convexity,

𝑓(𝑚) ≤ 𝑡𝑓(𝑥) + (1 − 𝑡)𝑓(𝑦)
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And hence,

𝑡𝑓(𝑚) + (1 − 𝑡)𝑓(𝑚) ≤ 𝑡𝑓(𝑥) + (1 − 𝑡)𝑓(𝑦)
𝑡(𝑓(𝑚) − 𝑓(𝑥)) ≤ (1 − 𝑡)(𝑓(𝑦) − 𝑓(𝑚))
𝑓(𝑚) − 𝑓(𝑥)

𝑚 − 𝑥 ≤ 𝑓(𝑦) − 𝑓(𝑚)
𝑦 − 𝑚

So the slope of the line joining 𝑚 to a point on its left is smaller than the slope of the line joining 𝑚
to a point on its right. So we can produce a value 𝑎 ∈ ℝ given by

𝑎 = sup
𝑥<𝑚

𝑓(𝑚) − 𝑓(𝑥)
𝑚 − 𝑥

such that
𝑓(𝑚) − 𝑓(𝑥)

𝑚 − 𝑥 ≤ 𝑎 ≤ 𝑓(𝑦) − 𝑓(𝑚)
𝑦 − 𝑚

for all 𝑥 < 𝑚 < 𝑦. We can rearrange this to give

𝑓(𝑥) ≥ 𝑎(𝑥 − 𝑚) + 𝑓(𝑚) = 𝑎𝑥 + (𝑓(𝑚) − 𝑎𝑚)

for all 𝑥.

We may now prove Jensen’s inequality.

Proof. Set𝑚 = 𝔼 [𝑋]. Then from the lemma above, there exists 𝑎, 𝑏 ∈ ℝ such that

𝑓(𝑚) = 𝑎𝑚 + 𝑏 ⟹ 𝑓(𝔼 [𝑋]) = 𝑎𝔼 [𝑋] + 𝑏 (∗)

and for all 𝑥, we have
𝑓(𝑥) ≥ 𝑎𝑥 + 𝑏

We can now apply this inequality to 𝑋 to get

𝑓(𝑋) ≥ 𝑎𝑋 + 𝑏

Taking the expectation, by (∗) we get

𝔼 [𝑓(𝑋)] ≥ 𝑎𝔼 [𝑋] + 𝑏 = 𝑓(𝔼 [𝑋])

as required.

Like the Cauchy–Schwarz inequality, we would like to consider the cases of equality. Let 𝑋 be a
random variable, and 𝑓 be a convex function such that if𝑚 = 𝔼 [𝑋], then ∃𝑎, 𝑏 ∈ ℝ such that

𝑓(𝑚) = 𝑎𝑚 + 𝑏; ∀𝑥 ≠ 𝑚, 𝑓(𝑥) > 𝑎𝑥 + 𝑏

We know that 𝑓(𝑋) ≥ 𝑎𝑋 +𝑏, since 𝑓 is convex. Then 𝑓(𝑋)− (𝑎𝑋 +𝑏) ≥ 0 is a non-negative random
variable. Taking expectations,

𝔼 [𝑓(𝑋) − (𝑎𝑋 + 𝑏)] ≥ 0
But 𝔼 [𝑎𝑋 + 𝑏] = 𝑎𝑚 + 𝑏 = 𝑓(𝑚) = 𝑓(𝔼 [𝑋]). We assumed that 𝔼 [𝑓(𝑋)] = 𝑓(𝔼 [𝑋]), hence
𝔼 [𝑎𝑋 + 𝑏] = 𝔼 [𝑓(𝑋)] and 𝔼 [𝑓(𝑋) − (𝑎𝑋 + 𝑏)] = 0. But since 𝑓(𝑋) ≥ 𝑎𝑋 + 𝑏, this forces 𝑓(𝑋) =
𝑎𝑋 + 𝑏 everywhere. By our assumption, for all 𝑥 ≠ 𝑚, 𝑓(𝑥) > 𝑎𝑥 + 𝑏. This forces 𝑋 = 𝑚 with
probability 1.
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7.6 Arithmetic mean and geometric mean inequality
Let 𝑓 be a convex function. Suppose 𝑥1,… , 𝑥𝑛 ∈ ℝ. Then, from Jensen’s inequality,

1
𝑛

𝑛
∑
𝑘=1

𝑓(𝑥𝑘) ≥ 𝑓 (1𝑛
𝑛
∑
𝑘=1

𝑥𝑘)

Indeed, we can define a random variable 𝑋 to take values 𝑥1,… , 𝑥𝑛 all with equal probability. Then,
𝔼 [𝑓(𝑋)] gives the left hand side, and 𝑓(𝔼 [𝑋]) gives the right hand side. Now, let 𝑓(𝑥) = − log𝑥. This
is a convex function as required. Hence

−1𝑛
𝑛
∑
𝑘=1

log𝑥𝑘 ≥ − log (1𝑛
𝑛
∑
𝑘=1

𝑥𝑘)

(
𝑛
∏
𝑘=1

𝑥𝑘)

1
𝑛

≤ 1
𝑛

𝑛
∑
𝑘=1

𝑥𝑘

Hence the geometric mean is less than or equal to the arithmetic mean.

8 Combinations of random variables
8.1 Conditional expectation and law of total expectation
Recall that if 𝐵 ∈ ℱ with ℙ (𝐵) ≥ 0, we defined

ℙ (𝐴 ∣ 𝐵) = ℙ (𝐴 ∩ 𝐵)
ℙ (𝐵)

Now, let 𝑋 be a random variable, and let 𝐵 be an event as above with nonzero probability. We can
then define

𝔼 [𝑋 ∣ 𝐵] = 𝔼 [𝑋 ⋅ 1(𝐵)]
ℙ (𝐵)

The numerator is notably zero when 1(𝐵) = 0, so in essence we are excluding the case where 𝑋 is not
𝐵.

Theorem (law of total expectation). Suppose𝑋 ≥ 0. Let (Ω𝑛) be a partition ofΩ into disjoint
events, so Ω = ⋃𝑛Ω𝑛. Then

𝔼 [𝑋] = ∑
𝑛
𝔼 [𝑋 ∣ Ω𝑛] ⋅ ℙ (Ω𝑛)

Proof. We can write 𝑋 = 𝑋 ⋅ 1(Ω), where

1(Ω) = ∑
𝑛
1(Ω𝑛)

Taking expectations, we get

𝔼 [𝑋] = 𝔼 [∑
𝑛
𝑋 ⋅ 1(Ω𝑛)]
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By countable additivity of expectation, we have

𝔼 [𝑋] = ∑
𝑛
𝔼 [𝑋 ⋅ 1(Ω𝑛)] = ∑

𝑛
𝔼 [𝑋 ∣ Ω𝑛] ⋅ ℙ (Ω𝑛)

as required.

8.2 Joint distribution

Definition. Let 𝑋1,… , 𝑋𝑛 be discrete random variables. Their joint distribution is defined
as

ℙ (𝑋1 = 𝑥1,… , 𝑋𝑛 = 𝑥𝑛)
for all 𝑥𝑖 ∈ Ω𝑖.

Now, we have

ℙ (𝑋1 = 𝑥1) = ℙ({𝑋1 = 𝑥1} ∩
𝑛

⋃
𝑖=2

⋃
𝑥𝑖
{𝑋𝑖 = 𝑥𝑖}) = ∑

𝑥2,…,𝑥𝑛
ℙ (𝑋1 = 𝑥1, 𝑋2 = 𝑥2,… , 𝑋𝑛 = 𝑥𝑛)

In general,
ℙ (𝑋𝑖 = 𝑥𝑖) = ∑

𝑥1,𝑥2,…,𝑥𝑖−1,𝑥𝑖+1,…,𝑥𝑛
ℙ (𝑋1 = 𝑥1, 𝑋2 = 𝑥2,… , 𝑋𝑛 = 𝑥𝑛)

We call (ℙ (𝑋𝑖 = 𝑥𝑖))𝑖 the marginal distribution of 𝑋𝑖. Let 𝑋, 𝑌 be random variables. The conditional
distribution of 𝑋 given 𝑌 = 𝑦 where 𝑦 ∈ Ω𝑦 is defined to be

ℙ (𝑋 = 𝑥 ∣ 𝑌 = 𝑦) = ℙ (𝑋 = 𝑥, 𝑌 = 𝑦)
ℙ (𝑌 = 𝑦)

We can find

ℙ (𝑋 = 𝑥) = ∑
𝑦
ℙ (𝑋 = 𝑥, 𝑌 = 𝑦) = ∑

𝑦
ℙ (𝑋 = 𝑥 ∣ 𝑌 = 𝑦)ℙ (𝑌 = 𝑦)

which is the law of total probability.

8.3 Convolution
Let𝑋 and 𝑌 be independent, discrete random variables. Wewould like to findℙ (𝑋 + 𝑌 = 𝑧). Clearly
this is

ℙ (𝑋 + 𝑌 = 𝑧) = ∑
𝑦
ℙ (𝑋 + 𝑌 = 𝑧, 𝑌 = 𝑦)

= ∑
𝑦
ℙ (𝑋 = 𝑧 − 𝑦, 𝑌 = 𝑦)

= ∑
𝑦
ℙ (𝑋 = 𝑧 − 𝑦) ⋅ ℙ (𝑌 = 𝑦)
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This last sum is called the convolution of the distributions of 𝑋 and 𝑌 . Similarly,

ℙ (𝑋 + 𝑌 = 𝑧) = ∑
𝑥
ℙ (𝑋 = 𝑥) ⋅ ℙ (𝑌 = 𝑧 − 𝑥)

As an example, let 𝑋 ∼ Poi(𝜆) and 𝑌 ∼ Poi(𝜇) be independent. Then

ℙ (𝑋 + 𝑌 = 𝑛) =
𝑛
∑
𝑟=0

ℙ (𝑋 = 𝑟) ℙ (𝑌 = 𝑛 − 𝑟)

=
𝑛
∑
𝑟=0

𝑒−𝜆 𝜆
𝑟

𝑟! ⋅ 𝑒
−𝜇 𝜇𝑛−𝑟
(𝑛 − 𝑟)!

= 𝑒−(𝜆+𝜇)
𝑛
∑
𝑟=0

𝜆𝑟𝜇𝑛−𝑟
𝑟!(𝑛 − 𝑟)!

= 𝑒−(𝜆+𝜇)
𝑛!

𝑛
∑
𝑟=0

𝜆𝑟𝜇𝑛−𝑟 ⋅ 𝑛!
𝑟!(𝑛 − 𝑟)!

= 𝑒−(𝜆+𝜇)
𝑛!

𝑛
∑
𝑟=0

(𝑛𝑟)𝜆
𝑟𝜇𝑛−𝑟

= 𝑒−(𝜆+𝜇)
𝑛! (𝜆 + 𝜇)𝑛

which is the probability mass function of a Poisson random variable with parameter 𝜆 + 𝜇. In other
words, 𝑋 + 𝑌 ∼ Poi(𝜆 + 𝜇).

8.4 Conditional expectation
Let 𝑋 and 𝑌 be discrete random variables. Then the conditional expectation of 𝑋 given that 𝑌 = 𝑦
is

𝔼 [𝑋 ∣ 𝑌 = 𝑦] = 𝔼 [𝑋 ⋅ 1(𝑌 = 𝑦)]
ℙ (𝑌 = 𝑦)

= 1
ℙ (𝑌 = 𝑦) ∑𝑥

𝑥 ⋅ ℙ (𝑋 = 𝑥, 𝑌 = 𝑦)

= ∑
𝑥
𝑥 ⋅ ℙ (𝑋 = 𝑥 ∣ 𝑌 = 𝑦)

Observe that for every 𝑦 ∈ Ω𝑦, this expectation is purely a function of 𝑦. Let 𝑔(𝑦) = 𝔼 [𝑋 ∣ 𝑌 = 𝑦].
Now, we define the conditional expectation of 𝑋 given 𝑌 as 𝔼 [𝑋 ∣ 𝑌] = 𝑔(𝑌). Note that 𝔼 [𝑋 ∣ 𝑌] is a
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random variable, dependent only on 𝑌 . We have

𝔼 [𝑋 ∣ 𝑌] = 𝑔(𝑌) ⋅ 1
= 𝑔(𝑌)∑

𝑦
1(𝑌 = 𝑦)

= ∑
𝑦
𝑔(𝑌) ⋅ 1(𝑌 = 𝑦)

= ∑
𝑦
𝑔(𝑦) ⋅ 1(𝑌 = 𝑦)

= ∑
𝑦
𝔼 [𝑋 ∣ 𝑌 = 𝑦] ⋅ 1(𝑌 = 𝑦)

This is perhaps a clearer way to see that it depends only on 𝑌 . As an example, let us consider tossing
a 𝑝-biased coin 𝑛 times independently. We write 𝑋𝑖 for the indicator function that the 𝑖th toss was a
head. Let 𝑌𝑛 = 𝑋1+⋯+𝑋𝑛. What is 𝔼 [𝑋1 ∣ 𝑌𝑛]? Let 𝑔(𝑦) = 𝔼 [𝑋1 ∣ 𝑌𝑛 = 𝑦]. Then 𝔼 [𝑋1 ∣ 𝑌𝑛] = 𝑔(𝑌𝑛).
We therefore need to find 𝑔. Let 𝑦 ∈ {0,… , 𝑛}, then

𝑔(𝑦) = 𝔼 [𝑋1 ∣ 𝑌𝑛 = 𝑦]
= ℙ (𝑋1 = 1 ∣ 𝑌𝑛 = 𝑦)

Clearly if 𝑦 = 0, then ℙ (𝑋1 = 1 ∣ 𝑌𝑛 = 0) = 0. Now, suppose 𝑦 ≠ 0. We have

ℙ (𝑋1 = 1 ∣ 𝑌𝑛 = 𝑦) = ℙ (𝑋1 = 1, 𝑌𝑛 = 𝑦)
ℙ (𝑌𝑛 = 𝑦)

= ℙ (𝑋1 = 1, 𝑋2 +⋯+ 𝑋𝑛 = 𝑦 − 1)
ℙ (𝑌𝑛 = 𝑦)

= ℙ (𝑋1 = 1) ⋅ ℙ (𝑋2 +⋯+ 𝑋𝑛 = 𝑦 − 1)
ℙ (𝑌𝑛 = 𝑦)

=
𝑝 ⋅ (𝑛−1

𝑦−1
) ⋅ 𝑝𝑦−1(1 − 𝑝)𝑛−𝑦

ℙ (𝑌𝑛 = 𝑦)

=
(𝑛−1
𝑦−1

) ⋅ 𝑝𝑦(1 − 𝑝)𝑛−𝑦

(𝑛
𝑦
)𝑝𝑦(1 − 𝑝)𝑛−𝑦

=
(𝑛−1
𝑦−1

)
(𝑛
𝑦
)

= 𝑦
𝑛

Hence
𝑔(𝑦) = 𝑦

𝑛
We can then find that

𝔼 [𝑋1 ∣ 𝑌𝑛] = 𝑔(𝑌𝑛) =
𝑌𝑛
𝑛

which is indeed a random variable dependent only on 𝑌𝑛.
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8.5 Properties of conditional expectation
The following properties hold.

• For all 𝑐 ∈ ℝ, 𝔼 [𝑐𝑋 ∣ 𝑌] = 𝑐𝔼 [𝑋 ∣ 𝑌], and 𝔼 [𝑐 ∣ 𝑌] = 𝑐.
• Let 𝑋1,… , 𝑋𝑛 be random variables. Then 𝔼 [∑𝑛

𝑖=1 𝑋𝑖 ∣ 𝑌] = ∑𝑛
𝑖=1 𝔼 [𝑋𝑖 ∣ 𝑌].

• 𝔼 [𝔼 [𝑋 ∣ 𝑌]] = 𝔼 [𝑋].
The last property is not obvious from the definition, so it warrants its own proof. We can see by the
standard properties of the expectation that

𝔼 [𝑋 ∣ 𝑌] = ∑
𝑦
1(𝑌 = 𝑦)𝔼 [𝑋 ∣ 𝑌 = 𝑦]

∴ 𝔼 [𝔼 [𝑋 ∣ 𝑌]] = ∑
𝑦
𝔼 [1(𝑌 = 𝑦)] 𝔼 [𝑋 ∣ 𝑌 = 𝑦]

= ∑
𝑦
ℙ (𝑌 = 𝑦) 𝔼 [𝑋 ∣ 𝑌 = 𝑦]

= ∑
𝑦
ℙ (𝑌 = 𝑦) 𝔼 [𝑋 ⋅ 1(𝑌 = 𝑦)]

ℙ (𝑌 = 𝑦)

= ∑
𝑦
𝔼 [𝑋 ⋅ 1(𝑌 = 𝑦)]

= 𝔼 [∑
𝑦
𝑋 ⋅ 1(𝑌 = 𝑦)]

= 𝔼[𝑋∑
𝑦
1(𝑌 = 𝑦)]

= 𝔼 [𝑋]

Alternatively, we could expand the inner expectation as a sum:

∑
𝑦
𝔼 [𝑋 ∣ 𝑌 = 𝑦] ⋅ ℙ (𝑌 = 𝑦) = ∑

𝑥
∑
𝑦
𝑥 ⋅ ℙ (𝑋 = 𝑥 ∣ 𝑌 = 𝑦) ⋅ ℙ (𝑌 = 𝑦)

and the result follows as required. The final property relates conditional probability to independence.
Let 𝑋 and 𝑌 be independent. Then 𝔼 [𝑋 ∣ 𝑌] = 𝔼 [𝑋]. Indeed,

𝔼 [𝑋 ∣ 𝑌] = ∑
𝑦
1(𝑌 = 𝑦)𝔼 [𝑋 ∣ 𝑌 = 𝑦]

= ∑
𝑦
1(𝑌 = 𝑦)𝔼 [𝑋]

= 𝔼 [𝑋]
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Proposition. Suppose 𝑌 and 𝑍 are independent random variables. Then

𝔼 [𝔼 [𝑋 ∣ 𝑌] ∣ 𝑍] = 𝔼 [𝑋]

Proof. Let 𝔼 [𝑋 ∣ 𝑌] = 𝑔(𝑌) be a random variable that is a function only of 𝑌 . Since 𝑌 and 𝑍 are
independent, 𝑓(𝑌) is also independent of 𝑍 for any function 𝑓. Then 𝔼 [𝑔(𝑌) ∣ 𝑍] = 𝔼 [𝑔(𝑌)] =
𝔼 [𝑋].

Proposition. Suppose ℎ∶ ℝ → ℝ is a function. Then

𝔼 [ℎ(𝑌) ⋅ 𝑋 ∣ 𝑌] = ℎ(𝑌) ⋅ 𝔼 [𝑋 ∣ 𝑌]

We can ‘take out what is known’, since we know what 𝑌 is.

Proof. Note that

𝔼 [ℎ(𝑌) ⋅ 𝑋 ∣ 𝑌 = 𝑦] = 𝔼 [ℎ(𝑦) ⋅ 𝑋 ∣ 𝑌 = 𝑦] = ℎ(𝑦) ⋅ 𝔼 [𝑋 ∣ 𝑌 = 𝑦]

Then
𝔼 [ℎ(𝑌) ⋅ 𝑋 ∣ 𝑌] = ℎ(𝑦) ⋅ 𝔼 [𝑋 ∣ 𝑌]

as required.

Corollary. 𝔼 [𝔼 [𝑋 ∣ 𝑌] ∣ 𝑌] = 𝔼 [𝑋 ∣ 𝑌], and 𝔼 [𝑋 ∣ 𝑋] = 𝑋 .

Let 𝑋𝑖 = 1(𝑖th toss is a head), and 𝑌𝑛 = 𝑋1 + ⋯ + 𝑋𝑛. We found before that 𝔼 [𝑋1 ∣ 𝑌𝑛] =
𝑌𝑛
𝑛
. By

symmetry, for all 𝑖 we have 𝔼 [𝑋𝑖 ∣ 𝑌𝑛] = 𝔼 [𝑋1 ∣ 𝑌𝑛]. Hence

𝔼 [𝑌𝑛 ∣ 𝑌𝑛] = 𝔼 [
𝑛
∑
𝑖=1

𝑋𝑖 ∣ 𝑌𝑛] =
𝑛
∑
𝑖=1

𝔼 [𝑋𝑖 ∣ 𝑌𝑛] = 𝑛 ⋅ 𝔼 [𝑋1 ∣ 𝑌𝑛]

which yields the same result.

9 Randomwalks
9.1 Definition
A randomprocess, also known as a stochastic process, is a sequence of random variables𝑋𝑛 for 𝑛 ∈ ℕ.
A random walk is a random process that can be expressed as

𝑋𝑛 = 𝑥 + 𝑌1 +⋯+ 𝑌𝑛
where the 𝑌 𝑖 are independent and identically distributed, and 𝑥 is a deterministic number. We will
focus on the simple random walk on ℤ, which is defined by taking

ℙ (𝑌 𝑖 = 1) = 𝑝; ℙ (𝑌 𝑖 = −1) = 1 − 𝑝 = 𝑞

This can be thought of as a specific case of a Markov chain; it has the property that the path to 𝑋𝑖
does not matter, all that matters is the value that we are at, at any point in time.
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9.2 Gambler’s ruin estimate
What is the probability that 𝑋𝑛 reaches some value 𝑎 before it falls to 0? We will write ℙ𝑥 for the
probability measure ℙ with the condition that 𝑋0 = 𝑥, i.e.

ℙ𝑥 (𝐴) = ℙ (𝐴 ∣ 𝑋0 = 𝑥)

We define ℎ(𝑥) = ℙ𝑥 ((𝑋𝑛) hits 𝑎 before hitting 0). We can define a recurrence relation. By the law
of total probability, we have, for 0 < 𝑥 < 𝑎,

ℎ(𝑥) = ℙ𝑥 ((𝑋𝑛) hits 𝑎 before hitting 0 ∣ 𝑌1 = 1) ⋅ ℙ𝑥 (𝑌1 = 1)
+ ℙ𝑥 ((𝑋𝑛) hits 𝑎 before hitting 0 ∣ 𝑌1 = −1) ⋅ ℙ𝑥 (𝑌1 = −1)
= 𝑝 ⋅ ℎ(𝑥 + 1) + 𝑞 ⋅ ℎ(𝑥 − 1)

Note that
ℎ(0) = 0; ℎ(𝑎) = 1

There are two cases; 𝑝 = 𝑞 = 1
2
and 𝑝 ≠ 𝑞. If 𝑝 = 𝑞 = 1

2
, then

ℎ(𝑥) − ℎ(𝑥 + 1) = ℎ(𝑥 − 1) − ℎ(𝑥)

We can then solve this to find
ℎ(𝑥) = 𝑥

𝑎
If 𝑝 ≠ 𝑞, then

ℎ(𝑥) = 𝑝ℎ(𝑥 + 1) + 𝑞ℎ(𝑥 − 1)
We can try a solution of the form 𝜆𝑥. Substituting gives

𝑝𝜆2 − 𝜆 + 𝑞 = 0 ⟹ 𝜆 = 1, 𝑞𝑝

The general solution can be found by using the boundary conditions.

ℎ(𝑥) = 𝐴 + 𝐵 (𝑞𝑝)
𝑥
⟹ ℎ(𝑥) =

( 𝑞
𝑝
)
𝑥
− 1

( 𝑞
𝑝
)
𝑎
− 1

This is known as the ‘gambler’s ruin’ estimate, since it determines whether a gambler will reach a
target before going bankrupt.

9.3 Expected time to absorption
Let us define 𝑇 to be the first time that 𝑥 = 0 or 𝑥 = 𝑎. Then 𝑇 = min{𝑛 ≥ 0∶ 𝑋𝑛 ∈ {0, 𝑎}}. We want
to find 𝔼𝑥 [𝑇] = 𝜏𝑥. We can apply a condition on the first step, and use the law of total expectation to
give

𝜏𝑥 = 𝑝𝔼𝑥 [𝑇 ∣ 𝑌1 = 1] + 𝑞𝔼𝑥 [𝑇 ∣ 𝑌1 = −1]
Hence

𝜏𝑥 = 𝑝(𝜏𝑥+1 + 1) + 𝑞(𝜏𝑥−1 + 1)
We can deduce that, for 0 < 𝑥 < 𝑎,

𝜏𝑥 = 1 + 𝑝𝜏𝑥+1 + 𝑞𝜏𝑥−1
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and 𝜏0 = 𝜏𝑎 = 0. If 𝑝 = 𝑞 = 1
2
, then we can try a solution of the form 𝐴𝑥2.

𝐴𝑥2 = 1 + 1
2𝐴(𝑥 + 1)2 + 1

2𝐴(𝑥 − 1)2

This gives a general solution of the form

𝐴 = −1 ⟹ 𝜏𝑥 = −𝑥2 + 𝐵𝑥 + 𝐶 ⟹ 𝜏𝑥 = 𝑥(𝑎 − 𝑥)

If 𝑝 ≠ 𝑞, then we will try a solution of the form 𝐶𝑥, giving

𝐶 = 1
𝑞 − 𝑝

The general solution has the form

𝜏𝑥 =
𝑥

𝑞 − 𝑝 + 𝐴 + 𝐵 (𝑞𝑝)
𝑥
⟹ 𝜏𝑥 =

𝑥
𝑞 − 𝑝 − 𝑞

𝑞 − 𝑝 ⋅
( 𝑞
𝑝
)
𝑥
− 1

( 𝑞
𝑝
)
𝑎
− 1

10 Probability generating functions
10.1 Definition
Let 𝑋 be a random variable with values in the positive integers, ℕ. Let 𝑝𝑟 = ℙ (𝑋 = 𝑟) be the probab-
ility mass function. Then the probability generating function is defined to be

𝑝(𝑧) =
∞
∑
𝑟=0

𝑝𝑟𝑧𝑟 = 𝔼 [𝑧𝑋] for |𝑧| ≤ 1

When |𝑧| ≤ 1, the probability generating function converges absolutely, since ||∑∞
𝑟=0 𝑝𝑟𝑧𝑟|| ≤ ∑∞

𝑟=0 𝑝𝑟 =
1. So 𝑝(𝑧) is well-defined and has a radius of convergence of at least 1.

Theorem. The probability generating function of 𝑋 uniquely determines the distribution of
𝑋 .

Proof. Suppose (𝑝𝑟) and (𝑞𝑟) are two probability mass functions with
∞
∑
𝑟=0

𝑝𝑟𝑧𝑟 =
∞
∑
𝑟=0

𝑞𝑟𝑧𝑟, ∀|𝑧| ≤ 1

Wewill show that 𝑝𝑟 = 𝑞𝑟 for all 𝑟. First, set 𝑧 = 0, then clearly 𝑝0 = 𝑞0. Then by induction, suppose
that 𝑝𝑟 = 𝑞𝑟 for all 𝑟 ≤ 𝑛. Then we would like to show that 𝑝𝑛+1 = 𝑞𝑛+1. We know that

∞
∑

𝑟=𝑛+1
𝑝𝑟𝑧𝑟 =

∞
∑

𝑟=𝑛+1
𝑞𝑟𝑧𝑟

Hence, dividing by 𝑧𝑛+1, and taking the limit as 𝑧 → 0, we have 𝑝𝑛+1 = 𝑞𝑛+1 as required.

10.2 Finding moments and probabilities
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Theorem.
lim
𝑧→1−

𝑝′(𝑧) = 𝑝′(1−) = 𝔼 [𝑋]

Proof. We will first assume that 𝔼 [𝑋] is finite; we will then extend the proof to the infinite case. Let
0 < 𝑧 < 1, then since the series 𝑝(𝑧) is absolutely convergent, we can interchange the sum and the
derivative operators, giving

𝑝′(𝑧) =
∞
∑
𝑟=0

𝑟𝑝𝑟𝑧𝑟−1

We can make an upper bound for this sum:

∞
∑
𝑟=0

𝑟𝑝𝑟𝑧𝑟−1 ≤
∞
∑
𝑟=0

𝑟𝑝𝑟 = 𝔼 [𝑋]

Since 0 < 𝑧 < 1, we see that 𝑝′(𝑧) is an increasing function of 𝑧. This implies that there exists a limit
of 𝑝′(𝑧) as 𝑧 → 1−, which is upper bounded by 𝔼 [𝑋]. Now, let 𝜀 > 0 and let 𝑁 be an integer large
enough such that

𝑁
∑
𝑟=0

𝑟𝑝𝑟 ≥ 𝔼 [𝑋] − 𝜀

We have further that, since 0 < 𝑧 < 1,

𝑝′(𝑧) ≥
𝑁
∑
𝑟=1

𝑟𝑝𝑟𝑧𝑟−1

So

lim
𝑧→1−

𝑝′(𝑧) ≥
𝑁
∑
𝑟=1

𝑟𝑝𝑟 ≥ 𝔼 [𝑋] − 𝜀

which is true for any 𝜀. Therefore lim𝑧→1− 𝑝′(𝑧) = 𝔼 [𝑋]. Now, in the case that 𝔼 [𝑋] is infinite, for
any𝑀 we can find a sufficiently large 𝑁 such that

𝑁
∑
𝑟=0

𝑟𝑝𝑟 ≥ 𝑀

From above, we know that

lim
𝑧→1−

𝑝′(𝑧) ≥
𝑁
∑
𝑟=1

𝑟𝑝𝑟 ≥ 𝑀

Since this is true for any𝑀, this limit is equal to∞.

In exactly the same way, we can prove that

𝑝″(1−) = 𝔼 [𝑋(𝑋 − 1)]

and in general,
𝑝(𝑘)(1−) = 𝔼 [𝑋(𝑋 − 1)⋯ (𝑋 − 𝑘 + 1)]
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In particular,
Var (𝑋) = 𝑝″(1−) + 𝑝′(1−) − 𝑝′(1−)2

Further,
ℙ (𝑋 = 𝑛) = 1

𝑛!
d𝑛
d𝑧𝑛𝑝(𝑧)

|||𝑧=0

10.3 Sums of random variables
Suppose that 𝑋1,… , 𝑋𝑛 are independent random variables with probability generating functions
𝑞1,… , 𝑞𝑛 respectively. Then

𝑝(𝑧) = 𝔼 [𝑧𝑋1+⋯+𝑋𝑛]
Recall that if 𝑋 and 𝑌 are independent, then for all functions 𝑓 and 𝑔, we have 𝔼 [𝑓(𝑋)𝑔(𝑌)] =
𝔼 [𝑓(𝑋)] 𝔼 [𝑔(𝑌)]. Therefore,

𝑝(𝑧) = 𝔼 [𝑧𝑋1𝑧𝑋2 ⋯𝑧𝑋𝑛] = 𝔼 [𝑧𝑋1]⋯𝔼 [𝑧𝑋𝑛] = 𝑞1(𝑧)⋯𝑞𝑛(𝑧)

So the probability generating function factorises into its independent parts. In particular, if all the 𝑋𝑖
are independent and identically distributed, then

𝑝(𝑧) = 𝑞(𝑧)𝑛

10.4 Common probability generating functions
Suppose that 𝑋 ∼ Bin(𝑛, 𝑝). Then

𝑝(𝑧) = 𝔼 [𝑧𝑋]

=
𝑛
∑
𝑟=0

𝑧𝑟(𝑛𝑟)𝑝
𝑟(1 − 𝑝)𝑛−𝑟

=
𝑛
∑
𝑟=0

(𝑛𝑟)(𝑝𝑧)
𝑟(1 − 𝑝)𝑛−𝑟

= (𝑝𝑧 + 1 − 𝑝)𝑛

Now, let 𝑋 ∼ Bin(𝑛, 𝑝), 𝑌 ∼ Bin(𝑚, 𝑝) be independent random variables. Then the probability
generating function of 𝑋 + 𝑌 is

(𝑝𝑧 + 1 − 𝑝)𝑛 ⋅ (𝑝𝑧 + 1 − 𝑝)𝑚 = (𝑝𝑧 + 1 − 𝑝)𝑛+𝑚

which is the probability generating function of a binomial distribution where the number of trials is
𝑛 + 𝑚. Now, suppose that 𝑋 ∼ Geo(𝑝). Then

𝑝(𝑧) = 𝔼 [𝑧𝑋]

=
𝑛
∑
𝑟=0

𝑧𝑟(1 − 𝑝)𝑟𝑝

= 𝑝
1 − 𝑧(1 − 𝑝)
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Now, suppose that 𝑋 ∼ Poi(𝜆). Then

𝑝(𝑧) = 𝔼 [𝑧𝑋]

=
𝑛
∑
𝑟=0

𝑧𝑟𝑒−𝜆 𝜆
𝑟

𝑟!
= 𝑒𝜆(𝑧−1)

10.5 Random sums of random variables
Consider the sumof a randomnumber of randomvariables. Let𝑋1,… be independent and identically
distributed, and let 𝑁 be an independent random variable with values in ℕ. Now, we can define the
random variables 𝑆𝑛 to be

𝑆𝑛 = 𝑋1 +⋯+ 𝑋𝑛
Then

𝑆𝑁 = 𝑋1 +⋯+ 𝑋𝑁
is a random variable dependent on 𝑁. For all 𝜔 ∈ Ω,

𝑆𝑁(𝜔) = 𝑋1(𝜔) +⋯+ 𝑋𝑁(𝜔)(𝜔)

=
𝑁(𝜔)
∑
𝑖=1

𝑋𝑖(𝜔)

Now, let 𝑞 be the probability generating function of 𝑁, and 𝑝 be the probability generating function
of 𝑋1 (or equivalently, any 𝑋𝑖). Then let

𝑟(𝑧) = 𝔼 [𝑧𝑆𝑁 ]
= ∑

𝑛
𝔼 [𝑧𝑋1+⋯+𝑋𝑁 ⋅ 1(𝑁 = 𝑛)]

= ∑
𝑛
𝔼 [𝑧𝑋1+⋯+𝑋𝑛 ⋅ 1(𝑁 = 𝑛)]

= ∑
𝑛
𝔼 [𝑧𝑋1+⋯+𝑋𝑛] 𝔼 [1(𝑁 = 𝑛)]

= ∑
𝑛
𝔼 [𝑧𝑋1+⋯+𝑋𝑛] ℙ (𝑁 = 𝑛)

= ∑
𝑛
𝔼 [𝑧𝑋1]𝑛 ℙ (𝑁 = 𝑛)

= ∑
𝑛
𝑝(𝑧)𝑛ℙ (𝑁 = 𝑛)

= 𝑞(𝑝(𝑧))

Here is an alternative proof using conditional expectation.

𝑟(𝑧) = 𝔼 [𝑧𝑆𝑁 ]
= 𝔼 [𝔼 [𝑧𝑆𝑁 ∣ 𝑁]]
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We can see that

𝔼 [𝑧𝑆𝑁 ∣ 𝑁 = 𝑛] = 𝔼 [𝑧𝑆𝑛 ∣ 𝑁 = 𝑛]
= 𝔼 [𝑧𝑋1]𝑛

= 𝑝(𝑧)𝑛

Therefore,

𝑟(𝑧) = 𝔼 [𝑝(𝑧)𝑁]
= 𝑞(𝑝(𝑧))

Using this expression for 𝑟, we can find that

𝔼 [𝑆𝑁] = 𝑟′(1−) = 𝑞′(𝑝(1−)) ⋅ 𝑝′(1−) = 𝑞′(1−) ⋅ 𝑝′(1−) = 𝔼 [𝑁] 𝔼 [𝑋1]

Similarly,
Var (𝑆𝑁) = 𝔼 [𝑁]Var (𝑋1) + Var (𝑁) (𝔼 [𝑋1])

2

11 Branching processes
11.1 Introduction
Let (𝑋𝑛 ∶ 𝑛 ≥ 0) be a random process, where 𝑋𝑛 is the number of individuals in generation 𝑛,
and 𝑋0 = 1. The individual in generation 0 produces a random number of offspring with distri-
bution

𝑔𝑘 = ℙ (𝑋1 = 𝑘)
Then every individual in generation 1 produces an independent number of offspring with the same
distribution. This is called a branching process. We can write a recursive formula for 𝑋𝑛. First, let
(𝑌 𝑘,𝑛 ∶ 𝑘 ≥ 1, 𝑛 ≥ 0) be an independent and identically distributed sequence with distribution (𝑔𝑘)𝑘.
So 𝑌 𝑘,𝑛 is the number of offspring of the 𝑘th individual in generation 𝑛.

𝑋𝑛+1 = {𝑌1,𝑛 +⋯+ 𝑌 𝑋𝑛,𝑛 when 𝑋𝑛 ≥ 1
0 otherwise

11.2 Expectation of generation size

Theorem.
𝔼 [𝑋𝑛] = 𝔼 [𝑋1]

𝑛
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Proof. Inductively,

𝔼 [𝑋𝑛+1] = 𝔼 [𝔼 [𝑋𝑛+1 ∣ 𝑋𝑛]]
𝔼 [𝑋𝑛+1 ∣ 𝑋𝑛 = 𝑚] = 𝔼 [𝑌1,𝑛 +⋯+ 𝑌 𝑋𝑛,𝑛 ∣ 𝑋𝑛 = 𝑚]

= 𝔼 [𝑌1,𝑛 +⋯+ 𝑌𝑚,𝑛 ∣ 𝑋𝑛 = 𝑚]
= 𝑚𝔼 [𝑌1,𝑛]
= 𝑚𝔼 [𝑋1]

∴ 𝔼 [𝑋𝑛+1 ∣ 𝑋𝑛] = 𝑋𝑛 ⋅ 𝔼 [𝑋1]
∴ 𝔼 [𝑋𝑛+1] = 𝔼 [𝑋𝑛 ⋅ 𝔼 [𝑋1]]

= 𝔼 [𝑋𝑛] ⋅ 𝔼 [𝑋1]

11.3 Probability generating functions

Theorem. Let 𝐺(𝑧) = 𝔼 [𝑧𝑋1] be the probability generating function of 𝑋1, and 𝐺𝑛(𝑧) =
𝔼 [𝑧𝑋𝑛] be the probability generating function of 𝑋𝑛. Then

𝐺𝑛+1(𝑧) = 𝐺(𝐺𝑛(𝑧)) = 𝐺(𝐺(⋯𝐺(𝑧)⋯)) = 𝐺𝑛(𝐺(𝑧))

Proof.

𝐺𝑛+1(𝑧) = 𝔼 [𝑧𝑋𝑛+1]
= 𝔼 [𝔼 [𝑧𝑋𝑛+1 ∣ 𝑋𝑛]]

𝔼 [𝑧𝑋𝑛+1 ∣ 𝑋𝑛 = 𝑚] = 𝔼 [𝑧𝑌1,𝑛+⋯+𝑌𝑚,𝑛 ∣ 𝑋𝑛 = 𝑚]
= 𝔼 [𝑧𝑋1]𝑚

= 𝐺(𝑧)𝑚

∴ 𝔼 [𝔼 [𝑧𝑋𝑛+1 ∣ 𝑋𝑛]] = 𝔼 [𝐺(𝑧)𝑋𝑛]
= 𝐺𝑛(𝐺(𝑧))

11.4 Probability of extinction
We define the extinction probability 𝑞 as the probability that 𝑋𝑛 = 0 for some 𝑛 ≥ 1, and 𝑞𝑛 =
ℙ (𝑋𝑛 = 0). It is clear that 𝑋𝑛 = 0 implies that 𝑋𝑛+1 = 0. So the sequence of events (𝐴𝑛) = ({𝑋𝑛 = 0})
is an increasing sequence of events. So by the continuity of the probabilitymeasure,ℙ (𝐴𝑛) converges
to ℙ (⋃𝐴𝑛) as 𝑛 → ∞. Note that the event⋃𝐴𝑛 is the event that there will be extinction. Therefore,
𝑞𝑛 → 𝑞 as 𝑛 → ∞.

Claim. 𝑞𝑛+1 = 𝐺(𝑞𝑛) and 𝑞 = 𝐺(𝑞).
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Proof. Using the above theorem on 𝑞,

𝑞𝑛+1 = ℙ (𝑋𝑛+1 = 0)
= 𝐺𝑛+1(0)
= 𝐺(𝐺𝑛(0))
= 𝐺(𝑞𝑛)

Since 𝐺 is continuous, taking the limit as 𝑛 → ∞ and using that 𝑞𝑛 → 𝑞 gives 𝐺(𝑞) = 𝑞.

We can form another proof for the first part of the above claim.

Proof. Instead of conditioning on the previous generation, let us condition on the first generation,
i.e. 𝑋1 = 𝑚. Note that after the first generation, we will have 𝑚 independent subtrees on the family
tree. Each tree is identically distributed to the entire tree as a whole. Hence,

𝑋𝑛+1 = 𝑋(1)
𝑛 +⋯+ 𝑋(𝑚)

𝑛

where the 𝑋(𝑗)
𝑖 are independent and identically distributed random processes each with the same

offspring distribution. By the law of total probability,

𝑞𝑛+1 = ℙ (𝑋𝑛+1 = 0)
= ∑

𝑚
ℙ (𝑋𝑛+1 = 0 ∣ 𝑋1 = 𝑚) ⋅ ℙ (𝑋1 = 𝑚)

= ∑
𝑚
ℙ (𝑋(1)

𝑛 = 0,… , 𝑋(𝑚)
𝑛 = 0) ⋅ ℙ (𝑋1 = 𝑚)

= ∑
𝑚
ℙ (𝑋(1)

𝑛 = 0)
𝑚
⋅ ℙ (𝑋1 = 𝑚)

= ∑
𝑚
𝑞𝑚𝑛 ⋅ ℙ (𝑋1 = 𝑚)

= 𝐺(𝑞𝑛)

Theorem. The extinction probability 𝑞 is the minimal non-negative solution to 𝐺(𝑡) = 𝑡.
Further, supposing that ℙ (𝑋1 = 1) < 1, we have that 𝑞 < 1 if and only if 𝔼 [𝑋1] > 1.

Proof. First, wewill prove theminimality of 𝑞. Let 𝑡 be the smallest non-negative solution to𝐺(𝑡) = 𝑡.
We will prove inductively that 𝑞𝑛 ≤ 𝑡 for all 𝑛, and then by taking limits we have that 𝑞 ≤ 𝑡. Since 𝑞
is a solution, this will imply that 𝑞 = 𝑡. Now, as a base case, 𝑞0 = 0 = ℙ (𝑋0 = 0) ≤ 𝑡. Inductively let
us suppose that 𝑞𝑛 ≤ 𝑡. We know that 𝑞𝑛+1 = 𝐺(𝑞𝑛). 𝐺 is an increasing function on [0, 1], and since
𝑞𝑛 ≤ 𝑡 we have 𝑞𝑛+1 = 𝐺(𝑞𝑛) ≤ 𝐺(𝑡) = 𝑡.
Now, we can take ℙ (𝑋1 = 1) < 1. Let us use the notation 𝑔𝑟 = ℙ (𝑋1 = 𝑟) for simplicity. Consider
the function 𝐻(𝑧) = 𝐺(𝑧) − 𝑧. Let us assume further that 𝑔0 + 𝑔1 < 1, since otherwise we cannot
possibly ever increase the amount of individuals in future generations, as 𝔼 [𝑋1] = ℙ (𝑋1 = 1) < 1.
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In this case, 𝐺(𝑧) = 𝑔0 + 𝑔1𝑧 = 1 − 𝔼 [𝑋1] + 𝔼 [𝑋1] ⋅ 𝑧, and solving 𝐺(𝑧) = 𝑧 we would get only 𝑧 = 1
since 𝔼 [𝑋1] < 1. Now,

𝐻″(𝑧) =
∞
∑
𝑟=2

𝑟(𝑟 − 1)𝑔𝑟𝑧𝑟−2 > 0 ∀𝑧 ∈ (0, 1)

This implies that 𝐻′(𝑧) is a strictly increasing function in (0, 1). Hence, 𝐻(𝑧) has at most one root
different from 1 in (0, 1), which follows from Rolle’s theorem; indeed, if it had two roots different
from 1, then 𝐻′ would be zero once in (𝑧1, 𝑧2) and once in (𝑧2, 1), which contradicts the fact that 𝐻′

is strictly increasing.

Let us first consider the case where 𝐻 has no other root apart from 1. In this case, 𝐻(1) = 0 and
𝐻(0) = 𝑔0 ≥ 0 ⟹ 𝐻(𝑧) ≥ 0 for all 𝑧 ∈ [0, 1]. We can find that

𝐻′(1−) = lim
𝑧→1−

𝐻(𝑧) − 𝐻(1)
𝑧 − 1 = 𝐻(𝑧)

𝑧 − 1 < 0

since the numerator is positive, and the denominator is negative. We know that𝐻′(1−) = 𝐺′(1−)−1,
and 𝐻′(1−) ≤ 0 ⟹ 𝐺′(1−) ≤ 1, and 𝐺′(1−) = 𝔼 [𝑋1]. So when 𝑞 = 1, then 𝔼 [𝑋1] ≤ 1.
In the other case, 𝐻 has one other root 𝑟 < 1 as well as 1. We have that 𝐻(𝑟) = 0 and 𝐻(1) = 0. By
Rolle’s theorem, there exists 𝑧 ∈ (𝑟, 1) such that 𝐻′(𝑧) = 0. Further, 𝐻′(𝑥) = 𝐺′(𝑥) − 1 therefore
𝐺′(𝑧) = 1. Now,

𝐺′(𝑥) =
∞
∑
𝑟=1

𝑟𝑔𝑟𝑥𝑟−1 ⟹ 𝐻″(𝑥) = 𝐺″(𝑥) =
∞
∑
𝑟=2

𝑟(𝑟 − 1)𝑔𝑟𝑥𝑟−2

Under the assumption that 𝑔0 + 𝑔1 < 1, we have that 𝐺″(𝑥) > 0 for all 𝑥 ∈ (0, 1), hence 𝐺′ is strictly
increasing for all 𝑥 ∈ (0, 1). Therefore, 𝐺′(1−) > 𝐺′(𝑧) = 1 giving 𝔼 [𝑋1] > 1. So if 𝑞 < 1, then
𝔼 [𝑋1] > 1.

12 Continuous random variables
12.1 Probability distribution function
Let (Ω,ℱ, ℙ) be a probability space. Then, as defined before,𝑋 ∶ Ω → ℝ is a randomvariable if

∀𝑥 ∈ ℝ, {𝑋 ≤ 𝑥} = {𝜔∶ 𝑋(𝜔) ≤ 𝑥} ∈ ℱ

We define the probability distribution function 𝐹 ∶ ℝ → [0, 1] as

𝐹(𝑥) = ℙ (𝑋 ≤ 𝑥)

Theorem. The following properties hold.
(i) If 𝑥 ≤ 𝑦, then 𝐹(𝑥) ≤ 𝐹(𝑦).
(ii) For all 𝑎 < 𝑏, ℙ (𝑎 < 𝑥 ≤ 𝑏) = 𝐹(𝑏) − 𝐹(𝑎).
(iii) 𝐹 is a right continuous function, and left limits always exist. In other words,

𝐹(𝑥+) = lim
𝑦→𝑥+

𝐹(𝑦) = 𝐹(𝑥); 𝐹(𝑥−) = lim
𝑦→𝑥−

𝐹(𝑦) ≤ 𝐹(𝑥)

(iv) For all 𝑥 ∈ ℝ, 𝐹(𝑥−) = ℙ (𝑋 < 𝑥).
(v) We have lim𝑥→∞ 𝐹(𝑥) = 1 and lim𝑥→−∞ 𝐹(𝑥) = 0.
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Proof. (i) The first statement is immediate from the definition of the probability measure.

(ii) We can deduce

ℙ (𝑎 < 𝑋 ≤ 𝑏) = ℙ ({𝑎 < 𝑋} ∩ {𝑋 ≤ 𝑏})
= ℙ (𝑋 ≤ 𝑏) − ℙ ({𝑋 ≤ 𝑏} ∩ {𝑋 ≤ 𝑎})
= ℙ (𝑋 ≤ 𝑏) − ℙ (𝑋 ≤ 𝑎)
= 𝐹(𝑏) − 𝐹(𝑎)

(iii) For right continuity, wewant to prove lim𝑛→∞ 𝐹(𝑥 + 1
𝑛
) = 𝐹(𝑥). Wewill define𝐴𝑛 = {𝑥 < 𝑋 ≤ 𝑥 + 1

𝑛
}.

Then the 𝐴𝑛 are decreasing events, and the intersection of all 𝐴𝑛 is the empty set∅. Hence, by
continuity of the probabilitymeasure,ℙ (𝐴𝑛) → 0 as𝑛 → ∞. Butℙ (𝐴𝑛) = ℙ (𝑥 < 𝑋 ≤ 𝑥 + 1

𝑛
) =

𝐹(𝑥 + 1
𝑛
) − 𝐹(𝑥), hence 𝐹(𝑥 + 1

𝑛
) → 𝐹(𝑥) as required. Now, we want to show that left limits

always exist. This is clear since 𝐹 is an increasing function, and is always bounded above by 1.

(iv) We know 𝐹(𝑥−) = lim𝑛→∞ 𝐹(𝑥 − 1
𝑛
). Consider 𝐵𝑛 = {𝑋 ≤ 𝑥 − 1

𝑛
}. Then the 𝐵𝑛 is an increas-

ing sequence of events, and their union is {𝑋 < 𝑥}. Hence ℙ (𝐵𝑛) converges to ℙ (𝑋 < 𝑥), so
𝐹(𝑥−) = ℙ (𝑋 < 𝑥).

(v) This is evident from the properties of the probability measure.

12.2 Defining a continuous random variable
For a discrete random variable, 𝐹 is a step function, which of course is right continuous with left
limits.

Definition. A random variable 𝑋 is called continuous if 𝐹 is a continuous function. In this
case, clearly left limits and right limits give the same value, and ℙ (𝑋 = 𝑥) = 0 for all 𝑥 ∈ ℝ.

In this course, we will consider only absolutely continuous random variables. A continuous random
variable is absolutely continuous if 𝐹 is differentiable. We will make the convention that 𝐹′(𝑥) =
𝑓(𝑥), where 𝑓(𝑥) is called the probability density function of 𝑋 . The following immediate properties
hold.

(i) 𝑓 ≥ 0
(ii) ∫+∞

−∞ 𝑓(𝑥) d𝑥 = 1

(iii) 𝐹(𝑥) = ∫𝑥
−∞ 𝑓(𝑡) d𝑡

(iv) For 𝑆 ⊆ ℝ, ℙ (𝑋 ∈ 𝑆) = ∫𝑆 𝑓(𝑥) d𝑥
Here is an intuitive explanation of the probability density function. Suppose Δ𝑥 is a small quantity.
Then

ℙ (𝑥 < 𝑋 ≤ 𝑥 + Δ𝑥) = ∫
𝑥+Δ𝑥

𝑥
𝑓(𝑦) d𝑦 ≈ 𝑓(𝑥) ⋅ Δ𝑥

So we can think of 𝑓(𝑥) as the continuous analogy to ℙ (𝑋 = 𝑥).
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12.3 Expectation
Consider a continuous random variable 𝑋 ∶ Ω → ℝ, with probability distribution function 𝐹(𝑥) and
probability density function 𝑓(𝑥) = 𝐹′(𝑥). We define the expectation of such a non-negative random
variable as

𝔼 [𝑋] = ∫
∞

0
𝑥𝑓(𝑥) d𝑥

In this case, the expectation is either non-negative and finite, or positive infinity. Now, let 𝑋 be a gen-
eral continuous random variable, that is not necessarily non-negative. Suppose 𝑔 ≥ 0. Then,

𝔼 [𝑔(𝑋)] = ∫
∞

−∞
𝑔(𝑥)𝑓(𝑥) d𝑥

We can define 𝑋+ = max(𝑋, 0) and 𝑋− = max(−𝑋, 0). If at least one of 𝔼 [𝑋+] or 𝔼 [𝑋−] is finite, then
clearly

𝔼 [𝑋] ≔ 𝔼 [𝑋+] − 𝔼 [𝑋−] = ∫
∞

−∞
𝑥𝑓(𝑥) d𝑥

It is easy to verify that the expectation is a linear function, due to the linearity property of the integ-
ral.

12.4 Computing the expectation

Claim. Let 𝑋 ≥ 0. Then
𝔼 [𝑋] = ∫

∞

0
ℙ (𝑋 ≥ 𝑥) d𝑥

Proof. Using the definition of the expectation,

𝔼 [𝑋] = ∫
∞

0
𝑥𝑓(𝑥) d𝑥

= ∫
∞

0
(∫

𝑥

0
d𝑦) 𝑓(𝑥) d𝑥

= ∫
𝑥

0
d𝑦∫

∞

𝑦
𝑓(𝑥) d𝑥

= ∫
∞

0
d𝑦 (1 −∫

𝑦

−∞
𝑓(𝑥) d𝑥)

= ∫
∞

0
d𝑦 ℙ (𝑋 ≥ 𝑦)

Here is an alternative proof.
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Proof. For every 𝜔 ∈ Ω, we can write

𝑋(𝜔) = ∫
∞

0
1(𝑋(𝜔) ≥ 𝑥) d𝑥

Taking expectations, we get

𝔼 [𝑋] = 𝔼 [∫
∞

0
1(𝑋(𝜔) ≥ 𝑥) d𝑥]

We will interchange the integral and the expectation, although this step is not justified or rigorous.

𝔼 [𝑋] = ∫
∞

0
𝔼 [1(𝑋(𝜔) ≥ 𝑥)] d𝑥

= ∫
∞

0
ℙ (𝑋 ≥ 𝑥) d𝑥

12.5 Variance
We define the variance of a continuous random variable as

Var (𝑋) = 𝔼 [(𝑋 − 𝔼 [𝑋])2] = 𝔼 [𝑋2] − 𝔼 [𝑋]2

12.6 Uniform distribution
Consider the uniform distribution defined by 𝑎, 𝑏 ∈ ℝ.

𝑓(𝑥) = {
1

𝑏−𝑎
𝑥 ∈ [𝑎, 𝑏]

0 otherwise

We write 𝑋 ∼ 𝑈[𝑎, 𝑏]. For some 𝑥 ∈ [𝑎, 𝑏], we can write

ℙ (𝑋 ≤ 𝑥) = ∫
𝑥

𝑎
𝑓(𝑦) d𝑦 = 𝑥 − 𝑎

𝑏 − 𝑎

Hence, for 𝑥 ∈ [𝑎, 𝑏],

𝐹(𝑥) =
⎧
⎨
⎩

1 𝑥 > 𝑏
𝑥−𝑎
𝑏−𝑎

𝑥 ∈ [𝑎, 𝑏]
0 𝑥 < 𝑎

Then,

𝔼 [𝑋] = ∫
𝑏

𝑎

𝑥
𝑏 − 𝑎 d𝑥 =

𝑎 + 𝑏
2

12.7 Exponential distribution
The exponential distribution is defined by𝑓(𝑥) = 𝜆𝑒−𝜆𝑥 for 𝜆 > 0, 𝑥 > 0. Wewrite𝑋 ∼ Exp(𝜆).

𝐹(𝑥) = ℙ (𝑋 ≤ 𝑥) = ∫
𝑥

0
𝜆𝑒−𝜆𝑦 d𝑦 = 1 − 𝑒−𝜆𝑥
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Further,

𝔼 [𝑋] = ∫
∞

0
𝜆𝑥𝑒−𝜆𝑥 d𝑥 = 1

𝜆
We can view the exponential distribution as a limit of geometric distributions. Suppose that 𝑇 ∼
Exp(𝜆), and let 𝑇𝑛 = ⌊𝑛𝑇⌋ for all 𝑛 ∈ ℕ. We have

ℙ (𝑇𝑛 ≥ 𝑘) = ℙ (𝑇 ≥ 𝑘
𝑛) = 𝑒−𝜆𝑘/𝑛 = (𝑒−𝜆/𝑛)𝑘

Hence 𝑇𝑛 is a geometric distribution with parameter 𝑝𝑛 = 𝑒−𝜆/𝑛. As 𝑛 → ∞, 𝑝𝑛 ∼ 𝜆
𝑛
, and 𝑇𝑛

𝑛
∼

𝑇. Hence the exponential distribution is the limit of a scaled version of the geometric distribu-
tion. A key property of the exponential distribution is that it has no memory. If 𝑇 ∼ Exp(𝜆),
ℙ (𝑇 > 𝑡 + 𝑠 ∣ 𝑇 > 𝑠) = ℙ (𝑇 > 𝑡). In fact, the distribution is uniquely characterised by this prop-
erty.

Proposition. Let 𝑇 be a positive continuous random variable not identically zero or infinity.
Then 𝑇 has the memoryless property ℙ (𝑇 > 𝑡 + 𝑠 ∣ 𝑇 > 𝑠) = ℙ (𝑇 > 𝑡) if and only if 𝑇 ∼
Exp(𝜆) for some 𝜆 > 0.

Proof. Clearly if 𝑇 ∼ Exp(𝜆), then ℙ (𝑇 > 𝑡 + 𝑠 ∣ 𝑇 > 𝑠) = 𝑒−𝜆𝑡 = ℙ (𝑇 > 𝑡) as required. Now, given
that 𝑇 has this memoryless property, for all 𝑠 and 𝑡, we have ℙ (𝑇 > 𝑡 + 𝑠) = ℙ (𝑇 > 𝑡) ℙ (𝑇 > 𝑠). Let
𝑔(𝑡) = ℙ (𝑇 > 𝑡); we would like to show that 𝑔(𝑡) = 𝑒−𝜆𝑡. Then 𝑔 satisfies 𝑔(𝑡+𝑠) = 𝑔(𝑡)𝑔(𝑠). Then for
all 𝑚 ∈ ℕ, 𝑔(𝑚𝑡) = (𝑔(𝑡))𝑚. Setting 𝑡 = 1, 𝑔(𝑚) = 𝑔(1)𝑚. Now, 𝑔(𝑚/𝑛)𝑛 = 𝑔(𝑚𝑛/𝑛) = 𝑔(𝑚) hence
𝑔(𝑚/𝑛) = 𝑔(1)𝑚/𝑛. So for all rational numbers 𝑞 ∈ ℚ, 𝑔(𝑞) = 𝑔(1)𝑞.
Now, 𝑔(1) = ℙ (𝑇 > 1) ∈ (0, 1). Indeed, 𝑔(1) ≠ 0 since in this case, for any rational number 𝑞 we
would have 𝑔(𝑞) = 0 contradicting the assumption that 𝑇 was not identically zero, and 𝑔(1) ≠ ∞
because in this case 𝑇 would be identically infinity. Now, let 𝜆 = − logℙ (𝑇 > 1) > 0. We have now
proven that 𝑔(𝑡) = 𝑒−𝜆𝑡 for all 𝑡 ∈ ℚ.
Let 𝑡 ∈ ℝ+. Then for all 𝜀 > 0, there exist 𝑟, 𝑠 ∈ ℚ such that 𝑟 ≤ 𝑡 ≤ 𝑠 and |𝑟 − 𝑠| ≤ 𝜀. In this case,
𝑒−𝜆𝑠 = ℙ (𝑇 > 𝑠) ≤ ℙ (𝑇 > 𝑡) ≤ ℙ (𝑇 > 𝑟) = 𝑒−𝜆𝑟. Sending 𝜀 → 0 finishes the proof, showing that
𝑔(𝑡) = 𝑒−𝜆𝑡 for all positive reals.

12.8 Functions of continuous random variables

Theorem. Suppose that 𝑋 is a continuous random variable with density 𝑓. Let 𝑔 be a mono-
tonic continuous function (either strictly increasing or strictly decreasing), such that 𝑔−1 is
differentiable. Then 𝑔(𝑋) is a continuous random variable with density 𝑓𝑔−1(𝑥)||

d
d𝑥
𝑔−1(𝑥)||.

Proof. Suppose that 𝑔 is strictly increasing. We have

ℙ (𝑔(𝑋) ≤ 𝑥) = ℙ (𝑋 ≤ 𝑔−1(𝑥)) = 𝐹(𝑔−1(𝑥))

Hence,
d
d𝑥ℙ (𝑔(𝑋) ≤ 𝑥) = 𝐹′(𝑔−1(𝑥)) ⋅ d

d𝑥𝑔
−1(𝑥) = 𝑓(𝑔−1(𝑥)) dd𝑥𝑔

−1(𝑥)
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Note that since 𝑔 is strictly increasing, so is 𝑔−1. Now, suppose the 𝑔 is strictly decreasing. Since the
random variable is continuous,

ℙ (𝑔(𝑋) ≤ 𝑥) = ℙ (𝑋 ≥ 𝑔−1(𝑥)) = 1 − 𝐹(𝑔−1(𝑥))

Hence,
d
d𝑥ℙ (𝑔(𝑋) ≤ 𝑥) = −𝐹′(𝑔−1(𝑥)) ⋅ d

d𝑥𝑔
−1(𝑥) = 𝑓(𝑔−1(𝑥))|||

d
d𝑥𝑔

−1(𝑥)|||
Likewise, in this case, 𝑔 is strictly decreasing.

12.9 Normal distribution
The normal distribution is characterised by 𝜇 ∈ ℝ and 𝜎 > 0. We define

𝑓(𝑥) = 1
√2𝜋𝜎2

exp {−(𝑥 − 𝜇)2
2𝜎2 }

𝑓(𝑥) is indeed a probability density function:

𝐼 = ∫
∞

−∞
𝑓(𝑥) d𝑥 = ∫

∞

−∞

1
√2𝜋𝜎2

exp {−(𝑥 − 𝜇)2
2𝜎2 } d𝑥

Applying the substitution 𝑥 ↦ 𝑥−𝜇
𝜎
, we have

𝐼 = 1
√2𝜋

∫
∞

−∞
exp {−𝑥

2

2 } d𝑥

We can evaluate this integral by considering 𝐼2.

𝐼2 = 2
𝜋 ∫

∞

0
∫

∞

0
𝑒
−(𝑢2−𝑣2)

2 d𝑢 d𝑣

Using polar coordinates 𝑢 = 𝑟 cos 𝜃 and 𝑣 = 𝑟 sin 𝜃, we have

𝐼2 = 2
𝜋 ∫

∞

0
d𝑟∫

𝜋
2

0
d𝜃 𝑟𝑒−

𝑟2
2 = 1 ⟹ 𝐼 = ±1

But clearly 𝐼 > 0, so 𝐼 = 1. Hence𝑓 really is a probability density function. Now, if𝑋 ∼ N(𝜇, 𝜎2),

𝔼 [𝑋] = ∫
∞

−∞

𝑥
√2𝜋𝜎2

exp {−(𝑥 − 𝜇)2
2𝜎2 } d𝑥

= ∫
∞

−∞

𝑥 − 𝜇
√2𝜋𝜎2

exp {−(𝑥 − 𝜇)2
2𝜎2 } d𝑥

⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
odd function around 𝜇 hence 0

+𝜇 ∫
∞

−∞

1
√2𝜋𝜎2

exp {−(𝑥 − 𝜇)2
2𝜎2 } d𝑥

⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
𝐼=1 by above

= 𝜇

52



We can also compute the variance, using the substitution 𝑢 = 𝑥−𝜇
𝜎
, giving

Var (𝑋) = ∫
∞

−∞

(𝑥 − 𝜇)2

√2𝜋𝜎2
exp {−(𝑥 − 𝜇)2

2𝜎2 } d𝑥

= 𝜎2∫
∞

−∞

𝑢2

√2𝜋
exp {−𝑢

2

2 } d𝑢

= 𝜎2

In particular, when 𝜇 = 0 and 𝜎2 = 1, we call the distribution N(𝜇, 𝜎2) = N(0, 1) the standard normal
distribution. We define

Φ(𝑥) = ∫
𝑥

−∞

1
√2𝜋

𝑒−
𝑢2
2 d𝑢 ; 𝜙(𝑥) = Φ′(𝑥) = 1

√2𝜋
𝑒−

𝑥2
2

Hence Φ(𝑥) = ℙ (𝑋 ≤ 𝑥) if 𝑋 has the standard normal distribution. Since 𝜙(𝑥) = 𝜙(−𝑥), we have
Φ(𝑥) + Φ(−𝑥) = 1, hence ℙ (𝑋 ≤ 𝑥) = 1 − ℙ (𝑋 ≤ −𝑥).

13 Multivariate density functions
13.1 Standardising normal distributions
Suppose 𝑋 ∼ N(𝜇, 𝜎2). Let 𝑎 ≠ 0, 𝑏 ∈ ℝ, and let 𝑔(𝑥) = 𝑎𝑥 + 𝑏. We define 𝑌 = 𝑔(𝑋) = 𝑎𝑋 + 𝑏. We
can find the density 𝑓𝑌 of 𝑌 , by noting that 𝑔 is a monotonic function and the inverse has a derivative.
We can then use the theorem in the last lecture to show that

𝑓𝑌 (𝑦) = 𝑓𝑋(𝑔−1(𝑦)) ⋅
|||
d
d𝑦𝑔

−1(𝑦)|||

= 1
√2𝜋𝜎2

exp(−
(𝑦−𝑏

𝑎
− 𝜇)2

2𝜎2 ) ⋅ 1
2𝑎

= 1
√2𝜋𝑎2𝜎2

exp(−(𝑦 − 𝑎𝜇 + 𝑏)2
2𝑎2𝜎2 )

Hence 𝑌 ∼ N(𝑎𝜇 + 𝑏, 𝑎2𝜎2). In particular, 𝑋−𝜇
𝜎

is exactly the standard normal distribution.

Definition. Suppose 𝑋 is a continuous random variable. Then the median of 𝑋 , denoted by
𝑚, is the number satisfying

ℙ (𝑋 ≤ 𝑚) = ℙ (𝑋 ≥ 𝑚) = 1
2

If 𝑋 ∼ N(𝜇, 𝜎2), then ℙ (𝑋 ≤ 𝜇) = Φ(0) = 1
2
hence 𝜇 is the median of the normal distribution.

13.2 Multivariate density functions
Suppose 𝑋 = (𝑋1,… , 𝑋𝑛) ∈ ℝ𝑛 is a random variable. We say that 𝑋 has density 𝑓 if

ℙ (𝑋1 ≤ 𝑥1,… , 𝑋𝑛 ≤ 𝑥𝑛) = ∫
𝑥1

−∞
…∫

𝑥𝑛

−∞
𝑓(𝑦1,… , 𝑦𝑛) d𝑦1… d𝑦𝑛
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Then,
𝑓(𝑥1,… , 𝑥𝑛) =

𝜕𝑛
𝜕𝑥1…𝜕𝑥𝑛

𝐹(𝑥1,… , 𝑥𝑛)

This generalises the fact that for all (reasonable) 𝐵 ⊆ ℝ𝑛,

ℙ ((𝑋1,… , 𝑋𝑛) ∈ 𝐵) = ∫
𝐵
𝑓(𝑦1,… , 𝑦𝑛) d𝑦1… d𝑦𝑛

13.3 Independence of events
In the continuous case, we can no longer use the definition

ℙ (𝑋 = 𝑎, 𝑌 = 𝑏) = ℙ (𝑋 = 𝑎)ℙ (𝑌 = 𝑏)

since the probability of a random variable being a specific value is always zero. Instead, we define
that 𝑋1,… , 𝑋𝑛 are independent if for all 𝑥1,… , 𝑥𝑛 ∈ ℝ,

ℙ (𝑋1 ≤ 𝑥1,… , 𝑋𝑛 ≤ 𝑥𝑛) = ℙ (𝑋1 ≤ 𝑥1)⋯ℙ (𝑋𝑛 ≤ 𝑥𝑛)

Theorem. Suppose 𝑋 = (𝑋1,… , 𝑋𝑛) has density 𝑓.
(a) Suppose 𝑋1,… , 𝑋𝑛 are independent with densities 𝑓1,… , 𝑓𝑛. Then 𝑓(𝑥1,… , 𝑥𝑛) =

𝑓1(𝑥1)⋯𝑓𝑛(𝑥𝑛).
(b) Suppose that 𝑓 factorises as 𝑓(𝑥1,… , 𝑥𝑛) = 𝑓1(𝑥1)⋯𝑓𝑛(𝑥𝑛) for some non-negative func-

tions 𝑓1,… , 𝑓𝑛. Then𝑋1,… , 𝑋𝑛 are independent with densities proportional to 𝑓1,… , 𝑓𝑛.
(In order to have a density function, we require that it integrates to 1, so we choose a
scaling factor such that this requirement holds.)

In other words, 𝑓 factorises if and only if it is comprised of independent events.

Proof. (a) We know that

ℙ (𝑋1 ≤ 𝑥1,… , 𝑋𝑛 ≤ 𝑥𝑛) = ℙ (𝑋1 ≤ 𝑥1)⋯ℙ (𝑋𝑛 ≤ 𝑥𝑛)

= ∫
𝑥1

−∞
𝑓1(𝑦1) d𝑦1⋯∫

𝑥𝑛

−∞
𝑓𝑛(𝑦𝑛) d𝑦𝑛

= ∫
𝑥1

−∞
…∫

𝑥𝑛

−∞

𝑛
∏
𝑖=1

𝑓𝑖(𝑦𝑖) d𝑦𝑖

So the density of (𝑋1,… , 𝑋𝑛) is the product of the (𝑓𝑖).
(b) Suppose 𝑓 factorises. Let 𝐵1,… , 𝐵𝑛 ⊆ ℝ. Then

ℙ (𝑋1 ∈ 𝐵1,… , 𝑋𝑛 ∈ 𝐵𝑛) = ∫
𝐵1
⋯∫

𝐵𝑛
𝑓1(𝑥1)⋯𝑓𝑛(𝑥𝑛) d𝑦1⋯ d𝑦𝑛

Now, let 𝐵𝑗 = ℝ for all 𝑗 ≠ 𝑖. Then

ℙ (𝑋𝑖 ∈ 𝐵𝑖) = ℙ (𝑋𝑖 ∈ 𝐵𝑖, 𝑋𝑗 ∈ 𝐵𝑗 ∀𝑗 ≠ 𝑖) = ∫
𝐵𝑖
𝑓𝑖(𝑦𝑖) d𝑦𝑖 ⋅∏

𝑗≠1
∫
𝐵𝑗
𝑓𝑗(𝑥𝑗) d𝑦𝑗
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Since 𝑓 is a density function,

∫
∞

−∞
⋯∫

∞

−∞
𝑓(𝑥1,… , 𝑥𝑛) d𝑥1⋯ d𝑥𝑛 = 1

But 𝑓 is the product of the 𝑓𝑖, so

∏
𝑗
∫

∞

−∞
𝑓𝑗(𝑦) d𝑦 = 1 ⟹ ∏

𝑗≠𝑖
∫

∞

−∞
𝑓𝑗(𝑦) d𝑦 =

1
∫∞
−∞ 𝑓𝑖(𝑦) d𝑦

Hence,

ℙ (𝑋𝑖 ∈ 𝐵𝑖) =
∫𝐵𝑖 𝑓𝑖(𝑦) d𝑦
∫∞
−∞ 𝑓𝑖(𝑦) d𝑦

This shows that the density of 𝑋𝑖 is
𝑓𝑖

∫∞
−∞ 𝑓𝑖(𝑦) d𝑦

The 𝑋𝑖 are independent, since

ℙ (𝑋1 ≤ 𝑥1,… , 𝑋𝑛 ≤ 𝑥𝑛) =
∫𝑥1
−∞ 𝑓1(𝑦1) d𝑦1⋯∫𝑥𝑛

−∞ 𝑓𝑛(𝑦𝑛) d𝑦𝑛
∫∞
−∞ 𝑓1(𝑦1) d𝑦1⋯∫∞

−∞ 𝑓𝑛(𝑦𝑛) d𝑦𝑛
= ℙ (𝑋1 ≤ 𝑥1)⋯ℙ (𝑋𝑛 ≤ 𝑥𝑛)

13.4 Marginal density
Suppose that (𝑋1,… , 𝑋𝑛) has density 𝑓. Nowwe can compute themarginal density as follows.

ℙ (𝑋1 ≤ 𝑥) = ℙ (𝑋1 ≤ 𝑥, 𝑋2 ∈ ℝ,… , 𝑋𝑛 ∈ ℝ)

= ∫
𝑥

−∞
∫

∞

−∞
⋯∫

∞

−∞
𝑓(𝑥1,… , 𝑥𝑛) d𝑥1⋯ d𝑥𝑛

= ∫
𝑥

−∞
d𝑥1 (∫

∞

−∞
⋯∫

∞

−∞
𝑓(𝑥1,… , 𝑥𝑛) d𝑥2⋯ d𝑥𝑛)

⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
marginal density of 𝑋1

13.5 Sum of random variables
Recall that in the discrete case, for independent random variables 𝑋 and 𝑌 we have

ℙ (𝑋 + 𝑌 = 𝑧) = ∑
𝑦
ℙ (𝑋 + 𝑌 = 𝑧, 𝑌 = 𝑦)

= ∑
𝑦
ℙ (𝑋 = 𝑧 − 𝑦)ℙ (𝑌 = 𝑦)

= ∑
𝑦
𝑝𝑥(𝑧 − 𝑦)𝑝𝑦(𝑦)
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which was called the convolution. In the continuous case,

ℙ (𝑋 + 𝑌 ≤ 𝑧) =∬
{𝑥+𝑦≤𝑧}

𝑓𝑋,𝑌 (𝑥, 𝑦) d𝑥 d𝑦

= ∫
∞

−∞
∫

𝑧−𝑥

−∞
𝑓𝑋(𝑥)𝑓𝑌 (𝑦) d𝑥 d𝑦

= ∫
∞

−∞
(∫

𝑧

−∞
𝑓𝑋(𝑥)𝑓𝑌 (𝑦 − 𝑥) d𝑦) d𝑥 (using 𝑦 ↦ 𝑦 + 𝑥)

= ∫
𝑧

−∞
d𝑦 (∫

∞

−∞
𝑓𝑌 (𝑦 − 𝑥)𝑓𝑋(𝑥) d𝑥)

⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
𝑔(𝑦)

Hence the density of 𝑋 + 𝑌 is 𝑔(𝑦), where

𝑔(𝑦) = ∫
∞

−∞
𝑓𝑌 (𝑦 − 𝑥)𝑓𝑋(𝑥) d𝑥

Definition. Let 𝑓, 𝑔 be density functions. Then the convolution of 𝑓 and 𝑔 is

(𝑓 ⋆ 𝑔)(𝑦) = ∫
∞

−∞
𝑓𝑌 (𝑦 − 𝑥)𝑓𝑋(𝑥) d𝑥

Here is a non-rigorous argument, which can be used as a heuristic.

ℙ (𝑋 + 𝑌 ≤ 𝑧) = ∫
∞

−∞
ℙ (𝑋 + 𝑌 ≤ 𝑧, 𝑌 ∈ d𝑦)

= ∫
∞

−∞
ℙ (𝑋 + 𝑌 ≤ 𝑧, 𝑌 ∈ d𝑦)

= ∫
∞

−∞
ℙ (𝑋 ≤ 𝑧 − 𝑦)ℙ (𝑌 ∈ d𝑦)

= ∫
∞

−∞
ℙ (𝑋 ≤ 𝑧 − 𝑦) 𝑓𝑌 (𝑦) d𝑦

= ∫
∞

−∞
𝐹𝑋(𝑧 − 𝑦)𝑓𝑌 (𝑦) d𝑦

d
d𝑧ℙ (𝑋 + 𝑌 ≤ 𝑧) = ∫

∞

−∞

d
d𝑧𝐹𝑋(𝑧 − 𝑦)𝑓𝑌 (𝑦) d𝑦

= ∫
∞

−∞
𝑓𝑋(𝑧 − 𝑦)𝑓𝑌 (𝑦) d𝑦

13.6 Conditional density
We will now define the conditional density of a continuous random variable, given the value of an-
other continuous random variable. Let 𝑋 and 𝑌 be continuous random variables with joint density
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𝑓𝑋,𝑌 andmarginal densities 𝑓𝑋 and 𝑓𝑌 . Then we define the conditional density of 𝑋 given that 𝑌 = 𝑦
is defined as

𝑓𝑋∣𝑌 (𝑥 ∣ 𝑦) =
𝑓𝑋,𝑌 (𝑥, 𝑦)
𝑓𝑌 (𝑦)

Then we can find the law of total probability in the continuous case.

𝑓𝑋(𝑥) = ∫
∞

−∞
𝑓𝑋𝑌 (𝑥, 𝑦) d𝑦

= ∫
∞

−∞
𝑓𝑋∣𝑌 (𝑥 ∣ 𝑦)𝑓𝑌 (𝑦) d𝑦

13.7 Conditional expectation
We want to define 𝔼 [𝑋 ∣ 𝑌] to be some function 𝑔(𝑌) for some function 𝑔. We will define

𝑔(𝑦) = ∫
∞

−∞
𝑥𝑓𝑋∣𝑌 (𝑥 ∣ 𝑦) d𝑥

which is the analogous expression to𝔼 [𝑋 ∣ 𝑌 = 𝑦] from the discrete case. Thenwe just set𝔼 [𝑋 ∣ 𝑌] =
𝑔(𝑌) to be the conditional expectation.

13.8 Transformations of multidimensional random variables

Theorem. Let 𝑋 be a continuous random variable with values in 𝐷 ⊆ ℝ𝑑, with density 𝑓𝑋 .
Now, let 𝑔 be a bijection 𝐷 to 𝑔(𝐷) which has a continuous derivative, and det 𝑔′(𝑥) ≠ 0 for
all 𝑥 ∈ 𝐷. Then the random variable 𝑌 = 𝑔(𝑋) has density

𝑓𝑌 (𝑦) = 𝑓𝑋(𝑥) ⋅ |𝐽| where 𝑥 = 𝑔−1(𝑦)

where 𝐽 is the Jacobian

𝐽 = det (( 𝜕𝑥𝑖𝜕𝑦𝑗
)
𝑑

𝑖,𝑗=1
)

No proof will be given for this theorem. As an example, let 𝑋 and 𝑌 be independent continuous
randomvariableswith the standard normal distribution. The point (𝑋, 𝑌) inℝ2 has polar coordinates
(𝑅, Θ). What are the densities of 𝑅 and Θ? We have 𝑋 = 𝑅 cosΘ and 𝑌 = 𝑅 sinΘ. The Jacobian
is

𝐽 = det (cos 𝜃 −𝑟 sin 𝜃
sin 𝜃 𝑟 cos 𝜃 ) = 𝑟

Hence,

𝑓𝑅,Θ(𝑟, 𝜃) = 𝑓𝑋,𝑌 (𝑟 cos 𝜃, 𝑟 sin 𝜃)|𝐽|
= 𝑓𝑋,𝑌 (𝑟 cos 𝜃, 𝑟 sin 𝜃)𝑟
= 𝑓𝑋(𝑟 cos 𝜃)𝑓𝑌 (𝑟 sin 𝜃)𝑟

= 1
√2𝜋

𝑒−
𝑟2 cos2 𝜃

2 ⋅ 1
√2𝜋

𝑒−
𝑟2 sin2 𝜃

2 ⋅ 𝑟

= 1
2𝜋𝑒

− 𝑟2
2 ⋅ 𝑟
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for all 𝑟 > 0 and 𝜃 ∈ [0, 2𝜋]. Note that the joint density factorises into marginal densities:

𝑓𝑅,Θ(𝑟, 𝜃) =
1
2𝜋⏟
𝑓Θ

𝑟𝑒−
𝑟2
2⏟

𝑓𝑅

so the random variables 𝑅 and Θ are independent, where Θ ∼ 𝑈[0, 2𝜋] and 𝑅 has density 𝑟𝑒
−𝑟2
2 on

(0,∞).

13.9 Order statistics of a random sample
Let𝑋1,… , 𝑋𝑛 be independent and identically distributed randomvariableswith distribution function
𝐹 and density function 𝑓. We can put them in increasing order:

𝑋(1) ≤ 𝑋(2) ≤ ⋯ ≤ 𝑋(𝑛)

and let 𝑌 𝑖 = 𝑋(𝑖). The (𝑌 𝑖) are the order statistics.

ℙ (𝑌1 ≤ 𝑥) = ℙ (min(𝑋1,… , 𝑋𝑛) ≤ 𝑥)
= 1 − ℙ (min(𝑋1,… , 𝑋𝑛) > 𝑥)
= 1 − ℙ (𝑋1 > 𝑥)⋯ℙ (𝑋𝑛 > 𝑥)
= 1 − (1 − 𝐹(𝑥))𝑛

Further,

𝑓𝑌1(𝑥) =
d
d𝑥 (1 − (1 − 𝐹(𝑥))𝑛)

= 𝑛(1 − 𝐹(𝑥))𝑛−1𝑓(𝑥)

We can compute an analogous result for the maximum.

ℙ (𝑌𝑛 ≤ 𝑥) = (𝐹(𝑥))𝑛
𝑓𝑌𝑛(𝑥) = 𝑛(𝐹(𝑥))𝑛−1𝑓(𝑥)

What are the densities of the other random variables? First, let 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛. Then, we can first
find the joint distribution ℙ (𝑌1 ≤ 𝑥1,… , 𝑌𝑛 ≤ 𝑥𝑛). Note that this is simply the sum over all possible
permutations of the (𝑋𝑖) of ℙ (𝑋1 ≤ 𝑥1,… , 𝑋𝑛 ≤ 𝑥𝑛). But since the variables are independent and
identically distributed, these probabilities are the same. Hence,

ℙ (𝑌1 ≤ 𝑥1,… , 𝑌𝑛 ≤ 𝑥𝑛) = 𝑛! ⋅ ℙ (𝑋1 ≤ 𝑥1,… , 𝑋𝑛 ≤ 𝑥𝑛, 𝑋1 < ⋯ < 𝑋𝑛)

= 𝑛!∫
𝑥1

−∞
∫

𝑥2

𝑢1
⋯∫

𝑥𝑛

𝑢𝑛−1
𝑓(𝑢1)⋯𝑓(𝑢𝑛) d𝑢1⋯ d𝑢𝑛

∴ 𝑓𝑌1,…,𝑌𝑛(𝑥1,… , 𝑥𝑛) = 𝑛!𝑓(𝑥1)⋯𝑓(𝑥𝑛)

when 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛, and the joint density is zero otherwise. Note that this joint density does
not factorise as a product of densities, since we must always consider the indicator function that
𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛.
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13.10 Order statistics on exponential distribution
Let𝑋 ∼ Exp(𝜆),𝑌 ∼ Exp(𝜇) be independent continuous randomvariables. Let𝑍 = min(𝑋, 𝑌).

ℙ (𝑍 ≥ 𝑧) = ℙ (𝑋 ≥ 𝑧, 𝑌 ≥ 𝑧) = ℙ (𝑋 ≥ 𝑧)ℙ (𝑌 ≥ 𝑧) = 𝑒−𝜆𝑧 ⋅ 𝑒−𝜇𝑧 = 𝑒−(𝜆+𝜇)𝑧

Hence 𝑍 has the exponential distribution with parameter 𝜆 + 𝜇. More generally, if 𝑋1,… , 𝑋𝑛 are
independent continuous random variables with 𝑋𝑖 ∼ Exp(𝜆𝑖), then 𝑍 = min(𝑋1,… , 𝑋𝑛) has distribu-
tion Exp (∑𝑛

𝑖=1 𝜆𝑖). Now, let 𝑋1,… , 𝑋𝑛 be independent identically distributed random variables with
distribution Exp(𝜆), and let 𝑌 𝑖 be their order statistics. Then

𝑍1 = 𝑌1; 𝑍2 = 𝑌2 − 𝑌1; 𝑍𝑖 = 𝑌 𝑖 − 𝑌 𝑖−1

So the 𝑍𝑖 are the ‘durations between consecutive results’ from the 𝑋𝑖. What is the density of these 𝑍𝑖?
First, note that

𝑍 = (
𝑍1
⋮
𝑍𝑛
) = 𝐴(

𝑌1
⋮
𝑌𝑛
) ; 𝐴 =

⎛
⎜
⎜
⎜
⎝

1 0 0 ⋯ 0
−1 1 0 ⋯ 0
0 −1 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1

⎞
⎟
⎟
⎟
⎠

Note that det𝐴 = 1, and 𝑍 = 𝐴𝑌 , and note further that

𝑦𝑗 =
𝑗
∑
𝑖=1

𝑧𝑖

Now,

𝑓(𝑍1,…,𝑍𝑛)(𝑧1,… , 𝑧𝑛) = 𝑓(𝑌1,…,𝑌𝑛)(𝑦1,… , 𝑦𝑛) |𝐴|⏟
=1

= 𝑛!𝑓(𝑦1)⋯𝑓(𝑦𝑛)
= 𝑛!(𝜆𝑒−𝜆𝑦1)⋯ (𝜆𝑒−𝜆𝑦𝑛)
= 𝑛!𝜆𝑛𝑒−𝜆(𝑛𝑧1+(𝑛−1)𝑧2+⋯+𝑧𝑛)

=
𝑛
∏
𝑖=1

(𝑛 − 𝑖 + 1)𝜆𝑒−𝜆(𝑛−𝑖+1)𝑧𝑖

The density function of the vector 𝑍 factorises into functions of the 𝑧𝑖, so 𝑍1,… , 𝑍𝑛 are independent
and 𝑍𝑖 ∼ Exp(𝜆(𝑛 − 𝑖 + 1)).

14 Moment generating functions
14.1 Moment generating functions
Consider a continuous random variable 𝑋 with density 𝑓. Then the moment generating function of
𝑋 is defined as

𝑚(𝜃) = 𝔼 [𝑒𝜃𝑋] = ∫
∞

−∞
𝑒𝜃𝑥𝑓(𝑥) d𝑥

whenever this integral is finite. Note that𝑚(0) = 1.
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Theorem. The moment generating function uniquely determines the distribution of a con-
tinuous random variable, provided that it is defined on some open interval (𝑎, 𝑏) of values of
𝜃.

No proof will be given.

Theorem. Suppose themoment generating function is defined on an open interval of values
of 𝜃. Then

d𝑟
d𝜃𝑟𝑚(𝜃)

|||𝜃=0
= 𝔼 [𝑋𝑟]

Theorem. Suppose 𝑋1,… , 𝑋𝑛 are independent random variables. Then

𝑚(𝜃) = 𝔼 [𝑒𝜃(𝑋1+⋯+𝑋𝑛)] =
𝑛
∏
𝑖=1

𝔼 [𝑒𝜃𝑋𝑖 ]

Proof. Since the 𝑋𝑖 are independent, we can move the product outside of the expectation.

14.2 Gamma distribution
Let 𝑋 be a random variable with density

𝑓(𝑥) = 𝑒−𝜆𝑥 𝜆
𝑛𝑥𝑛−1
(𝑛 − 1)!

where 𝜆 > 0, 𝑛 ∈ ℕ, 𝑥 ≥ 0. We can say that 𝑋 ∼ Γ(𝑛, 𝜆). First, we check that 𝑓 is indeed a
density.

𝐼𝑛 = ∫
∞

0
𝑓(𝑥) d𝑥

= ∫
∞

0
𝜆𝑒−𝜆𝑥 𝜆

𝑛𝑥𝑛−1
(𝑛 − 1)! d𝑥

= ∫
∞

0

𝑒−𝜆𝑥𝜆𝑛−1(𝑛 − 1)𝑥𝑛−2
(𝑛 − 1)! d𝑥

= ∫
∞

0

𝑒−𝜆𝑥𝜆𝑛−1𝑥𝑛−2
(𝑛 − 2)! d𝑥

= 𝐼𝑛−1 = ⋯ = 𝐼1

Note that for 𝑛 = 1, 𝑓(𝑥) = 𝜆𝑒−𝜆𝑥 which is the density of the exponential distribution. Therefore,
𝐼𝑛 = 1 as required, so 𝑓 really is a density. Now,

𝑚(𝜃) = ∫
∞

0

𝑒𝜃𝑥𝑒−𝜆𝑥𝜆𝑛𝑥𝑛−1
(𝑛 − 1)! d𝑥
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If 𝜆 > 𝜃, then we have a finite integral. If 𝜆 ≤ 𝜃, then the exponential term 𝑒𝜃𝑥 will dominate and we
will have an infinite integral. So, let 𝜆 > 𝜃.

𝑚(𝜃) = ∫
∞

0

𝑒𝜃𝑥𝑒−𝜆𝑥𝜆𝑛𝑥𝑛−1
(𝑛 − 1)! d𝑥

= ( 𝜆
𝜆 − 𝜃)

𝑛
∫

∞

0

𝑒−(𝜆−𝜃)𝑥(𝜆 − 𝜃)𝑛𝑥𝑛−1
(𝑛 − 1)! d𝑥

The integral on the right hand side is the probability distribution function of a random variable 𝑌 ∼
Γ(𝑛, 𝜆 − 𝜃), which gives 1 since the integral is taken over the entire domain. Hence,

𝑚(𝜃) = ( 𝜆
𝜆 − 𝜃)

𝑛

Now, let 𝑋 ∼ Γ(𝑛, 𝜆) and 𝑌 ∼ Γ(𝑚, 𝜆) be independent continuous random variables. Then

𝑚(𝜃) = 𝔼 [𝑒𝜃(𝑋+𝑌)] = 𝔼 [𝑒𝜃𝑋] 𝔼 [𝑒𝜃𝑌 ] = ( 𝜆
𝜆 − 𝜃)

𝑛+𝑚

So by the uniqueness property we saw earlier, we get that 𝑋 + 𝑌 ∼ Γ(𝑛 + 𝑚, 𝜆). In particular, this
implies that if 𝑋1,… , 𝑋𝑛 are independent and identically distributed with the distribution Exp(𝜆) =
Γ(1, 𝜆), then

𝑋1 +⋯+ 𝑋𝑛 ∼ Γ(𝑛, 𝜆)
We could alternatively consider Γ(𝛼, 𝜆) for 𝛼 > 0 by replacing (𝑛 − 1)! with

Γ(𝛼) = ∫
∞

0
𝑒−𝑥𝑥𝛼−1 d𝑥

which agrees with this factorial function for integer values of 𝛼.

14.3 Moment generating function of the normal distribution
Recall that

𝑓(𝑥) = 1
√2𝜋𝜎2

exp(−(𝑥 − 𝜇)2
2𝜎2 )

Now,

𝑚(𝜃) = ∫
∞

0
𝑒𝜃𝑥 1

√2𝜋𝜎2
exp(−(𝑥 − 𝜇)2

2𝜎2 ) d𝑥 = ∫
∞

0

1
√2𝜋𝜎2

exp(𝜃𝑥 − (𝑥 − 𝜇)2
2𝜎2 ) d𝑥

Note that

𝜃𝑥 − (𝑥 − 𝜇)2
2𝜎2 = 𝜃𝜇 + 𝜃2𝜎2

2 −
(𝑥 − (𝜇 + 𝜃𝜎2))2

2𝜎2
Hence,

𝑚(𝜃) = ∫
∞

0

1
√2𝜋𝜎2

exp(𝜃𝜇 + 𝜃2𝜎2
2 −

(𝑥 − (𝜇 + 𝜃𝜎2))2

2𝜎2 ) d𝑥

= exp(𝜃𝜇 + 𝜃2𝜎2
2 )∫

∞

0

1
√2𝜋𝜎2

exp(−
(𝑥 − (𝜇 + 𝜃𝜎2))2

2𝜎2 ) d𝑥
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Note that the integral on the right hand side has the form of the probability distribution function of
a variable 𝑌 ∼ N(𝜇 + 𝜃𝜎2, 𝜎2), hence it integrates to 1.

𝑚(𝜃) = exp(𝜃𝜇 + 𝜃2𝜎2
2 )

Recall that if 𝑋 ∼ N(𝜇, 𝜎2), then 𝑎𝑋 + 𝑏 ∼ N(𝑎𝜇 + 𝑏, 𝑎2𝜎2). We can then deduce that

𝔼 [𝑒𝜃(𝑎𝑋+𝑏)] = exp(𝜃(𝑎𝜇 + 𝑏) + 𝜃2𝑎2𝜎2
2 )

Now, suppose that 𝑋 ∼ N(𝜇, 𝜎2) and 𝑌 ∼ N(𝜈, 𝜏2) are independent. Then

𝔼 [𝑒𝜃(𝑋+𝑌)] = 𝔼 [𝑒𝜃𝑋] 𝔼 [𝑒𝜃𝑌 ]

= exp(𝜃𝜇 + 𝜃2𝜎2
2 ) exp(𝜃𝜈 + 𝜃2𝜏2

2 )

= exp(𝜃(𝜇 + 𝜈) + 𝜃2(𝜎2 + 𝜏2)
2 )

Hence 𝑋 + 𝑌 ∼ N(𝜇 + 𝜈, 𝜎2 + 𝜏2).

14.4 Cauchy distribution
Suppose that a continuous random variable 𝑋 has density

𝑓(𝑥) = 1
𝜋(1 + 𝑥2)

where 𝑥 ∈ ℝ. Now,

𝑚(𝜃) = 𝔼 [𝑒𝜃𝑋] = ∫
∞

−∞

𝑒𝜃𝑥
𝜋(1 + 𝑥2) = {∞ 𝜃 ≠ 0

1 𝜃 = 0
Suppose 𝑋 ∼ 𝑓. Then 𝑋, 2𝑋, 3𝑋,… have the samemoment generating function, but they do not have
the same distribution. This is because𝑚(𝜃) is not finite on an open interval.

14.5 Multivariate moment generating functions
Let 𝑋 = (𝑋1,… , 𝑋𝑛) be a random variable with values in ℝ𝑛. Then the moment generating function
of 𝑋 is defined as

𝑚(𝜃) = 𝔼 [𝑒𝜃⊺𝑋] = 𝔼 [𝑒𝜃1𝑋1+⋯+𝜃𝑛𝑋𝑛] ; 𝜃 = (
𝜃1
⋮
𝜃𝑛
)

Theorem. If the moment generating function is finite for a range of values of 𝜃, it uniquely
determines the distribution of 𝑋 . Also,

𝜕𝑟𝑚
𝜕𝜃𝑟𝑖

|||𝜃=0
= 𝔼 [𝑋𝑟

𝑖 ]

62



and
𝜕𝑟+𝑠𝑚
𝜕𝜃𝑟𝑖 𝜕𝜃𝑠𝑗

|
|
|𝜃=0

= 𝔼 [𝑋𝑟
𝑖 𝑋𝑠

𝑗 ]

Further,

𝑚(𝜃) =
𝑛
∏
𝑖=1

𝔼 [𝑒𝜃𝑖𝑋𝑖 ]

if and only if 𝑋1,… , 𝑋𝑛 are independent.

No proof is provided.

15 Limit theorems
15.1 Convergence in distribution

Definition. Let (𝑋𝑛 ∶ 𝑛 ∈ ℕ) be a sequence of randomvariables and let𝑋 be another random
variable. We say that 𝑋𝑛 converges to 𝑋 in distribution, written 𝑋𝑛

𝑑−→ 𝑋 , if

𝐹𝑋𝑛(𝑥) → 𝐹𝑋(𝑥)

for all 𝑥 ∈ ℝ that are continuity points of 𝐹𝑋 .

Theorem (Continuity property for moment generating functions). Let 𝑋 be a continuous
random variable with 𝑚(𝜃) < ∞ for some 𝜃 ≠ 0. Suppose that 𝑚𝑛(𝜃) → 𝑚(𝜃) for all 𝜃 ∈ ℝ,
where𝑚𝑛(𝜃) = 𝔼 [𝑒𝜃𝑋𝑛], and𝑚(𝜃) = 𝔼 [𝑒𝜃𝑋]. Then 𝑋𝑛

𝑑−→ 𝑋 .

15.2 Weak law of large numbers

Theorem. Let (𝑋𝑛 ∶ 𝑛 ∈ ℕ) be a sequence of independent and identically distributed ran-
dom variables, with 𝜇 = 𝔼 [𝑋1] < ∞. Let 𝑆𝑛 = 𝑋1 +⋯+ 𝑋𝑛. Then for all 𝜀 > 0,

ℙ(|||
𝑆𝑛
𝑛 − 𝜇||| > 𝜀) → 0

as 𝑛 → ∞.

We will give a proof assuming that the variance of 𝑋1 is finite.
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Proof. By Chebyshev’s inequality,

ℙ(|||
𝑆𝑛
𝑛 − 𝜇||| > 𝜀) = ℙ (|𝑆𝑛 − 𝑛𝜇| > 𝜀𝑛)

≤ Var (𝑆𝑛)
𝜀2𝑛2

= 𝑛𝜎2
𝜀2𝑛2

→ 0

15.3 Types of convergence

Definition. A sequence (𝑋𝑛) converges to 𝑋 in probability, written 𝑋𝑛
ℙ−→ 𝑋 as 𝑛 → ∞ if for

all 𝜀 > 0,
ℙ (|𝑋𝑛 − 𝑋| > 𝜀) → 0; 𝑛 → ∞

Definition. A sequence (𝑋𝑛) converges to 𝑋 almost surely (with probability 1), if

ℙ( lim
𝑛→∞

𝑋𝑛 = 𝑋) = 1

This second definition is a stronger form of convergence. If a sequence (𝑋𝑛) converges to zero almost
surely, then 𝑋𝑛

ℙ−→ 0 as 𝑛 → ∞.

Proof. Wewant to show that given any 𝜀 > 0,ℙ (|𝑋𝑛| > 𝜀) → 0 as𝑛 → ∞, or equivalently,ℙ (|𝑋𝑛| ≤ 𝜀) →
1.

ℙ (|𝑋𝑛| ≤ 𝜀) ≥ ℙ
⎛
⎜
⎜
⎜
⎝

∞

⋂
𝑚=𝑛

{|𝑋𝑚| ≤ 𝜀}
⏟⎵⎵⎵⏟⎵⎵⎵⏟

𝐴𝑛

⎞
⎟
⎟
⎟
⎠

Note that 𝐴𝑛 is an increasing sequence of events, and

⋃
𝑛
𝐴𝑛 = {|𝑋𝑚| ≤ 𝜀 for all𝑚 sufficiently large}

Hence, as 𝑛 → ∞,
ℙ (𝐴𝑛) → ℙ (⋃𝐴𝑛)

Therefore,
lim
𝑛→∞

ℙ (|𝑋𝑛| ≤ 𝜀) ≥ lim
𝑛→∞

ℙ (𝐴𝑛) = ℙ (⋃𝐴𝑛) ≥ ℙ ( lim
𝑛→∞

𝑋𝑛 = 0)

Since 𝑋𝑛 converges to zero almost surely, this event on the right hand side has probability 1, so in
particular the limit on the left has probability 1, as required.
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15.4 Strong law of large numbers

Theorem. Let (𝑋𝑛)𝑛∈ℕ be an independent and identically distributed sequence of random
variables, with 𝜇 = 𝔼 [𝑋1] finite. Let 𝑆𝑛 = 𝑋1 +⋯+ 𝑋𝑛. Then

𝑆𝑛
𝑛 → 𝜇 as 𝑛 → ∞ almost surely

In other words,
ℙ( lim

𝑛→∞
𝑆𝑛
𝑛 → 𝜇) = 1

The following proof, made under the assumption of a finite fourth moment, is non-examinable. A
proof can be formulated without this assumption, but it is more complicated.

Proof. Let 𝑌 𝑖 = 𝑋𝑖 −𝜇. Then 𝔼 [𝑌 𝑖] = 0, and 𝔼 [𝑌4
𝑖 ] ≤ 24(𝔼 [𝑋4

𝑖 ]+𝜇4) < ∞. It then suffices to show
that

𝑆𝑛
𝑛 → 0 a.s.

where 𝑆𝑛 = ∑𝑛
1 𝑋𝑖 and 𝔼 [𝑋𝑖] = 0, 𝔼 [𝑋4

𝑖 ] < ∞. First,

𝑆4𝑛 = (
𝑛
∑
𝑖=1

𝑋𝑖)
4

=
𝑛
∑
𝑖=1

𝑋4
𝑖 + (42)

𝑛
∑
𝑖=1

𝑋2
𝑖 𝑋2

𝑗 + 𝑅

where 𝑅 is a sum of terms of the form 𝑋2
𝑖 𝑋𝑗𝑋𝑘 or 𝑋3

𝑖 𝑋𝑗 or 𝑋𝑖𝑋𝑗𝑋𝑘𝑋ℓ for 𝑖, 𝑗, 𝑘, 𝑙 distinct. Once we
take expectations, each term in 𝑅 will have no contribution to the result, since they all contain an
𝔼 [𝑋𝑖] = 0 term.

𝔼 [𝑆4𝑛] = 𝑛𝔼 [𝑋4
𝑖 ] + (42)

𝑛(𝑛 − 1)
2 𝔼 [𝑋2

𝑖 𝑋2
𝑗 ] + 𝔼 [𝑅]

= 𝑛𝔼 [𝑋4
1 ] + 3𝑛(𝑛 − 1)𝔼 [𝑋2

1 ] 𝔼 [𝑋2
1 ]

≤ 𝑛𝔼 [𝑋4
1 ] + 3𝑛(𝑛 − 1)𝔼 [𝑋4

1 ]
= 3𝑛2𝔼 [𝑋4

1 ]

by Jensen’s inequality. Now,

𝔼 [
∞
∑
𝑛=1

(𝑆𝑛𝑛 )
4
] ≤

∞
∑
𝑛=1

3
𝑛2𝔼 [𝑋

4
1 ] < ∞

Hence,
∞
∑
𝑛=1

(𝑆𝑛𝑛 )
4
< ∞ with probability 1

Then since the sum of infinitely many positive terms is finite, the terms must converge to zero.

lim
𝑛→∞

𝑆𝑛
𝑛 → 0 a.s.
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15.5 Central limit theorem
Suppose, like before, that we have a sequence of independent and identically distributed random
variables 𝑋𝑛, and suppose further that 𝔼 [𝑋1] = 𝜇, and Var (𝑋1) = 𝜎2 < ∞.

Var (𝑆𝑛𝑛 − 𝜇) = 𝜎2
𝑛

We can normalise this new random variable 𝑆𝑛
𝑛
− 𝜇 by dividing by its standard deviation.

𝑆𝑛
𝑛
− 𝜇

√Var (𝑆𝑛
𝑛
− 𝜇)

=
𝑆𝑛
𝑛
− 𝜇
𝜎
√𝑛

= 𝑆𝑛 − 𝑛𝜇
𝜎√𝑛

Theorem. For all 𝑥 ∈ ℝ,

ℙ(𝑆𝑛 − 𝑛𝜇
𝜎√𝑛

≤ 𝑥) → Φ(𝑥) = ∫
𝑥

−∞

𝑒−
𝑦2
2

√2𝜋
d𝑦

In other words,
𝑆𝑛 − 𝑛𝜇
𝜎√𝑛

𝑑−→ 𝑍

where 𝑍 is the standard normal distribution.

Less formally, we might say that the central limit theorem shows that, for a large 𝑛,

𝑆𝑛 ≈ 𝑛𝜇 + 𝜎√𝑛𝑍 ∼ 𝑁(𝑛𝜇, 𝑛𝜎2)

Proof. Consider 𝑌 𝑖 =
𝑋𝑖−𝜇
𝜎

. Then the 𝑌 𝑖 have zero expectation and unit variance. It then suffices
to prove the central limit theorem when the 𝑋𝑖 have zero expectation and unit variance. We assume
further that there exists 𝛿 > 0 such that

𝔼 [𝑒𝛿𝑋1] < ∞; 𝔼 [𝑒−𝛿𝑋1] < ∞

We will show that
𝑆𝑛
𝑛

𝑑−→ N(0, 1)

By the continuity property of moment generating functions, it is sufficient to show that for all 𝜃 ∈ ℝ,

lim
𝑛→∞

𝔼 [𝑒
𝜃𝑆𝑛
𝑛 ] = 𝔼 [𝑒𝜃𝑍] = 𝑒

𝜃2
2

Let𝑚(𝜃) = 𝔼 [𝑒𝜃𝑋1]. Then

𝔼 [𝑒
𝜃𝑆𝑛
𝑛 ] = 𝔼 [𝑒

𝜃
√𝑛

𝑋1]
𝑛

= (𝑚( 𝜃
√𝑛

))
𝑛

We now need to show that

lim
𝑛→∞

(𝑚( 𝜃
√𝑛

))
𝑛

= 𝑒
𝜃2
2
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Now, let |𝜃| < 𝛿
2
. In this case,

𝑚(𝜃) = 𝔼 [𝑒𝜃𝑋1]

= 𝔼 [1 + 𝜃𝑋1 +
𝜃2
2 𝑋

2
1 +

∞
∑
𝑘=3

𝜃𝑘
𝑘! 𝑋

𝑘
1 ]

= 𝔼 [1] + 𝔼 [𝜃𝑋1] + 𝔼 [𝜃
2

2 𝑋
2
1] + 𝔼 [

∞
∑
𝑘=3

𝜃𝑘
𝑘! 𝑋

𝑘
1 ]

= 1 + 𝜃2
2 + 𝔼[

∞
∑
𝑘=3

𝜃𝑘
𝑘! 𝑋

𝑘
1 ]

Now, it suffices to prove that |||𝔼 [∑
∞
𝑘=3

𝜃𝑘

𝑘!
𝑋𝑘
1 ]||| = 𝑜(𝜃2) as 𝜃 → 0. Indeed, if we have this bound, then

𝑚( 𝜃
√𝑛
) = 1 + 𝜃2

2𝑛
+ 𝑜(𝜃

2

𝑛
), and hence lim𝑛→∞ (𝑚( 𝜃

√𝑛
))

𝑛
= 𝑒

𝜃2
2 . To find this bound, we know that

||||
𝔼 [

∞
∑
𝑘=3

𝜃𝑘
𝑘! 𝑋

𝑘
1 ]
||||
≤ 𝔼 [

∞
∑
𝑘=3

|𝜃|𝑘|𝑋1|
𝑘

𝑘! ]

= 𝔼 [|𝜃𝑋1|
3

∞
∑
𝑘=0

|𝜃𝑋1|
𝑘

(𝑘 + 3)!]

≤ 𝔼 [|𝜃𝑋1|
3

∞
∑
𝑘=0

|𝜃𝑋1|
𝑘

𝑘! ]

Since |𝜃| ≤ 𝛿
2
,

𝔼 [|𝜃𝑋1|
3

∞
∑
𝑘=0

|𝜃𝑋1|
𝑘

𝑘! ] ≤ 𝔼 [|𝜃𝑋1|
3𝑒

𝛿
2
|𝑋1|]

Now,

|𝜃𝑋1|
3𝑒

𝛿
2
|𝑋1| = |𝜃|3

(𝛿
2
|𝑋1|)

3

3! ⋅ 3!

(𝛿
2
)
3 ⋅ 𝑒

𝛿
2
|𝑋1|

Note that
(𝛿
2
|𝑋1|)

3

3! ≤
∞
∑
𝑘=0

(𝛿
2
|𝑋1|)

𝑘

𝑘! = 𝑒
𝛿
2
|𝑋1|

Hence,

|𝜃𝑋1|
3𝑒

𝛿
2
|𝑋1| ≤ |𝜃|3𝑒

𝛿
2
|𝑋1| ⋅ 3!

(𝛿
2
)
3 ⋅ 𝑒

𝛿
2
|𝑋1| = 3!|𝜃|3

(𝛿
2
)
3 𝑒𝛿|𝑋1| = 3!(2|𝜃|𝛿 )

3
𝑒𝛿|𝑋1|

Therefore,
𝑒𝛿|𝑋1| ≤ 𝑒𝛿𝑋1 + 𝑒−𝛿𝑋1

So finally,

𝔼 [|𝜃𝑋1|
3

∞
∑
𝑘=0

|𝜃𝑋1|
𝑘

𝑘! ] ≤ 3!(2|𝜃|𝛿 )
3
𝔼 [𝑒𝛿𝑋1 + 𝑒−𝛿𝑋1] = 𝑜(|𝜃|2)

as 𝜃 → 0.
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15.6 Applications of central limit theorem
We can use the central limit theorem to approximate the binomial distribution using the normal
distribution. Suppose that 𝑆𝑛 ∼ Bin(𝑛, 𝑝). Then 𝑆𝑛 = ∑𝑛

𝑖=1 𝑋𝑖, where the 𝑋𝑖 have the Bernoulli
distribution with parameter 𝑝. We know that 𝔼 [𝑆𝑛] = 𝑛𝑝, and Var (𝑆𝑛) = 𝑛𝑝(1 − 𝑝). Therefore, in
particular,

𝑆𝑛 ≈ N(𝑛𝑝, 𝑛𝑝(1 − 𝑝))
for 𝑛 large. Note that we showed before that

Bin(𝑛, 𝜆𝑛) → Poi(𝜆)

Note that with this approximation to the binomial, we let the parameter 𝑝 depend on 𝑛. Since this is
the case, we can no longer apply the central limit theorem, and we get a Poisson distributed approx-
imation.

We can, however, use the central limit theorem to find a normal approximation for a Poisson random
variable 𝑆𝑛 ∼ Poi(𝑛), since 𝑆𝑛 can be written as∑

𝑛
𝑖=1 𝑋𝑖 where the 𝑋𝑖 ∼ Poi(1). Then

𝑆𝑛 ≈ N(𝑛, 𝑛)

15.7 Sampling error via central limit theorem
Suppose individuals independently vote ‘yes’ (with probability 𝑝) or ‘no’ (with probability 1 − 𝑝).
We can sample the population to find an approximation for 𝑝. Pick 𝑁 individuals at random, and let
̂𝑝𝑁 = 𝑆𝑁

𝑁
, where 𝑆𝑛 is the number of individuals who voted ‘yes’. Wewould like to find theminimum

𝑁 such that | ̂𝑝𝑁 − 𝑝| ≤ 4% with probability at least 99%. We have

𝑆𝑁 ∼ Bin(𝑁, 𝑝) ≈ 𝑁𝑝 +√𝑁𝑝(1 − 𝑝)𝑍; 𝑍 ∼ N(0, 1)

Hence,
𝑆𝑁
𝑁 ≈ 𝑝 +√

𝑝(1 − 𝑝)
𝑁 𝑍 ⟹ | ̂𝑝𝑁 − 𝑝| ≈ √

𝑝(1 − 𝑝)
𝑁 |𝑍|

We then want to find 𝑁 such that

ℙ(√
𝑝(1 − 𝑝)

𝑁 |𝑍| ≤ 0.04) ≥ 0.99

Wecan compute this from the tables of the standardnormal distribution. If 𝑧 = 2.58, thenℙ (|𝑍| ≥ 2.58) =
0.01, hence we need an 𝑁 such that

0.04
√

𝑁
𝑝(1 − 𝑝) ≥ 2.58

In the worst case scenario, 𝑝 = 1
2
would give the largest 𝑁. So we need 𝑁 ≥ 1040 to get a good result

for all 𝑝.
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15.8 Buffon’s needle
Consider a set of parallel lines on a plane, all a distance 𝐿 apart. Imagine dropping a needle of length
ℓ ≤ 𝐿 onto this plane at random. What is the probability that it intersects at least one line?

We will interpret a random drop to be represented by independent values 𝑥 and 𝜃, where 𝑥 is the
perpendicular distance from the lower end of the needle to the nearest line above it, and 𝜃 is the angle
between the horizontal and the needle, where a value of 𝜃 = 0 means that the needle is horizontal,
and higher values of 𝜃 mean that the needle has been rotated 𝜃 radians anticlockwise. We assume
thatΘ ∼ U[0, 𝜋], and 𝑋 ∼ U[0, 𝐿], and that they are independent. The needle intersects a line if and
only if ℓ sin 𝜃 ≥ 𝑥. We have

ℙ (intersection) = ℙ (𝑋 ≤ ℓ sinΘ)

= ∫
𝐿

0
∫

𝜋

0

1
𝜋𝐿1(𝑥 ≤ ℓ sin 𝜃) d𝑥 d𝜃

= 2ℓ
𝜋𝐿

Let this probability be denoted by 𝑝. So we can compute an approximation to 𝜋 by finding

𝜋 = 2ℓ
𝑝𝐿

We can use the sampling error calculation above to find the amount of needles required to get a good
approximation to 𝜋 (within 0.1%) with probability ast least 99%, so we want

ℙ (|�̂�𝑛 − 𝜋| ≤ 0.001) ≥ 0.99

Let 𝑆𝑛 be the number of needles intersecting a line. Then 𝑆𝑛 ∼ Bin(𝑛, 𝑝). So by the central limit
theorem,

𝑆𝑛 ≈ 𝑛𝑝 +√𝑛𝑝(1 − 𝑝)𝑍 ⟹ ̂𝑝𝑛 =
𝑆𝑛
𝑛 = 𝑝 +√

𝑝(1 − 𝑝)
𝑛 𝑍

Hence,

̂𝑝𝑛 − 𝑝 ≈√
𝑝(1 − 𝑝)

𝑛 𝑍

Now, let 𝑓(𝑥) = 2ℓ/𝑥𝐿. Then 𝑓(𝑝) = 𝜋, 𝑓′(𝑝) = −𝜋
𝑝
, and �̂�𝑛 = 𝑓( ̂𝑝𝑛). We can then use a Taylor

expansion to find

�̂�𝑛 = 𝑓( ̂𝑝𝑛) ≈ 𝑓(𝑝) + ( ̂𝑝𝑛 − 𝑝)𝑓′(𝑝) ⟹ �̂�𝑛 ≈ 𝜋 − ( ̂𝑝𝑛 − 𝑝)𝜋𝑝

Hence,

�̂�𝑛 − 𝜋 ≈ −𝜋𝑝√
𝑝(1 − 𝑝)

𝑛 = −𝜋
√

1 − 𝑝
𝑝𝑛 𝑍

We want

ℙ(𝜋
√

1 − 𝑝
𝑝𝑛 |𝑍| ≤ 0.001) ≥ 0.99

So using tables, we find in theworst case scenario that 𝑛 ≈ 3.75×107. So this approximation becomes
good very slowly.
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15.9 Bertrand’s paradox
Consider a circle of radius 𝑟, and draw a random chord on the circle. What is the probability that its
length 𝐶 is less than 𝑟? There are two interpretations of the words ‘random chord’, that give different
results. This is Bertrand’s paradox.

(i) First, let us interpret ‘random chord’ as follows. Let 𝑋 ∼ U[0, 𝑟], and then we draw a chord
perpendicular to a radius, such that it intersects the radius at a distance of 𝑋 from the origin.
Then we have formed a triangle between this intersection point, one end of the chord, and the
circle’s centre. By Pythagoras’ theorem, the length of the chord is then twice the height of this
triangle, so 𝐶 = 2√𝑟2 − 𝑋2. Hence,

ℙ (𝐶 ≤ 𝑟) = ℙ (2√𝑟2 − 𝑋2 ≤ 𝑟)
= ℙ (4(𝑟2 − 𝑋2) ≤ 𝑟2)

= ℙ(𝑋 ≥ √3
2 𝑟)

= 1 − √3
2 ≈ 0.134

(ii) Instead, let us fix one end point of the chord 𝐴, and let Θ ∼ U[0, 2𝜋]. Let the other end point
𝐵 be such that the angle between the radii 𝑂𝐴 and 𝑂𝐵 is Θ. Then if Θ ∈ [0, 𝜋], the length of
the chord can be found by splitting this triangle in two by dropping a perpendicular from the
centre, giving

𝐶 = 2𝑟 sin Θ2
If Θ ∈ [𝜋, 2𝜋], then

𝐶 = 2𝑟 sin 2𝜋 − Θ
2 = 2𝑟 sin Θ2

as before. Now,

ℙ (𝐶 ≤ 𝑟) = ℙ (2𝑟 sin Θ2 ≤ 𝑟)

= ℙ (sin Θ2 ≤ 1
2)

= ℙ (Θ ≤ 𝜋
3 ) + ℙ (Θ ≥ 5𝜋

3 )

= 1
6 +

1
6

= 1
3 ≈ 0.333

Clearly, the two probabilities do not match.

16 Gaussian vectors
16.1 Multidimensional Gaussian random variables
Recall that a random variable 𝑋 with values in ℝ is called Gaussian (or normal) if

𝑋 = 𝜇 + 𝜎𝑍; 𝜇 ∈ ℝ, 𝜎 ≥ 0, 𝑍 ∼ N(0, 1)
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The density function of 𝑋 is

𝑓(𝑥) = 1
√2𝜋𝜎2

exp(−(𝑥 − 𝜇)2
2𝜎2 )

Now, let 𝑋 = (𝑋1,… , 𝑋𝑛)⊺ with values in ℝ𝑛. Then we define that 𝑋 is a Gaussian vector (also called
Gaussian) if

∀𝑢 = (
𝑢1
⋮
𝑢𝑛
) ∈ ℝ𝑛, 𝑢⊺𝑋 =

𝑛
∑
𝑖=1

𝑢𝑖𝑋𝑖 = 𝜇 + 𝜎𝑍

so any linear combination of the 𝑋𝑖 is Gaussian. This does not require that the 𝑋𝑖 are independent,
just that their sum is always Gaussian.

Let 𝑋 be Gaussian in ℝ𝑛. Suppose that 𝐴 is an 𝑚 × 𝑛 matrix, and 𝑏 ∈ ℝ𝑚. Then 𝐴𝑋 + 𝑏 is also
Gaussian. Indeed, let 𝑢 ∈ ℝ𝑚, and let 𝑣 = 𝐴⊺𝑢. Then

𝑢⊺(𝐴𝑋 + 𝑏) = 𝑢⊺𝐴𝑋 + 𝑢⊺𝑏 = 𝑣⊺𝑋 + 𝑢⊺𝑏

Since 𝑋 is Gaussian, 𝑣⊺𝑋 is also Gaussian. An additive constant preserves this property, so the entire
expression is Gaussian.

16.2 Expectation and variance
We define the mean of a Gaussian vector 𝑋 as

𝜇 = 𝔼 [𝑋] = (
𝔼 [𝑋1]
⋮

𝔼 [𝑋𝑛]
) ; 𝜇𝑖 = 𝔼 [𝑋𝑖]

We further define

𝑉 = Var (𝑋) = 𝔼 [(𝑋 − 𝜇)(𝑋 − 𝜇)⊺]

=
⎛
⎜
⎜
⎝

𝔼 [(𝑋1 − 𝜇1)2] 𝔼 [(𝑋1 − 𝜇1)(𝑋2 − 𝜇2)] ⋯ 𝔼 [(𝑋1 − 𝜇1)(𝑋𝑛 − 𝜇𝑛)]
𝔼 [(𝑋2 − 𝜇2)(𝑋1 − 𝜇1)] 𝔼 [(𝑋2 − 𝜇2)2] ⋯ 𝔼 [(𝑋2 − 𝜇2)(𝑋𝑛 − 𝜇𝑛)]

⋮ ⋮ ⋱ ⋮
𝔼 [(𝑋𝑛 − 𝜇𝑛)(𝑋1 − 𝜇1)] 𝔼 [(𝑋𝑛 − 𝜇1)(𝑋𝑛 − 𝜇2)] ⋯ 𝔼 [(𝑋𝑛 − 𝜇𝑛)2]

⎞
⎟
⎟
⎠

Hence the components of 𝑉 are
𝑉 𝑖𝑗 = Cov (𝑋𝑖, 𝑋𝑗)

In particular, 𝑉 is a symmetric matrix, and

𝔼 [𝑢⊺𝑋] = 𝔼 [
𝑛
∑
𝑖=1

𝑢𝑖𝑋𝑖] =
𝑛
∑
𝑖=1

𝑢𝑖𝜇𝑖 = 𝑢⊺𝜇

and

Var (𝑢⊺𝑋) = Var (
𝑛
∑
𝑖=1

𝑢𝑖𝑋𝑖) =
𝑛
∑
𝑖,𝑗=1

𝑢𝑖 Cov (𝑋𝑖, 𝑋𝑗) 𝑢𝑗 = 𝑢⊺𝑉𝑢

Hence 𝑢⊺𝑋 ∼ N(𝑢⊺𝜇, 𝑢⊺𝑉𝑢). Further, 𝑉 is a non-negative definite matrix. Indeed, let 𝑢 ∈ ℝ𝑛. Then
Var (𝑢⊺𝑋) = 𝑢⊺𝑉𝑢. Since Var (𝑢⊺𝑋) ≥ 0, we have 𝑢⊺𝑉𝑢 ≥ 0.
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16.3 Moment generating function
We define the moment generating function of 𝑋 by

𝑚(𝜆) = 𝔼 [𝑒𝜆⊺𝑋]

where 𝜆 ∈ ℝ𝑛. Then, we know that 𝜆⊺𝑋 ∼ N(𝜆⊺𝜇, 𝜆⊺𝑉𝜆). Hence 𝑚(𝜆) is the moment generating
function of a normal random variable with the above mean and variance, applied to the parameter
𝜃 = 1.

𝑚(𝜆) = exp(𝜆⊺𝜇 + 𝜆⊺𝑉𝜆
2 )

Since the moment generating function uniquely characterises the distribution, it is clear that a Gaus-
sian vector is uniquely characterised by its mean vector 𝜇 and variance matrix 𝑉 . In this case, we
write 𝑋 ∼ N(𝜇, 𝑉).

16.4 Constructing Gaussian vectors
Given a 𝜇 and a 𝑉 matrix, we might like to create a Gaussian vector that has this mean and variance.
Let 𝑍1,… , 𝑍𝑛 be a list of independent and identically distributed standard normal random variables.
Let 𝑍 = (𝑍1,… , 𝑍𝑛)⊺. Then 𝑍 is a Gaussian vector.

Proof. For any vector 𝑢 ∈ ℝ𝑛, we have

𝑢⊺𝑍 =
𝑛
∑
𝑖=1

𝑢𝑖𝑍𝑖

Because the 𝑍𝑖 are independent, it is easy to take the moment generating function to get

𝔼 [exp(𝜆
𝑛
∑
𝑖=1

𝑢𝑖𝑧𝑖)] = 𝔼[
𝑛
∏
𝑖=1

exp(𝜆𝑢𝑖𝑍𝑖)]

=
𝑛
∏
𝑖=1

𝔼 [exp(𝜆𝑢𝑖𝑍𝑖)]

=
𝑛
∏
𝑖=1

exp((𝜆𝑢𝑖)
2

2 )

= exp(𝜆
2|𝑢|2
2 )

So 𝑢⊺𝑍 ∼ N(0, |𝑢|2), which is normal as required.

Now, 𝔼 [𝑍] = 0, andVar (𝑍) = 𝐼, the identitymatrix. We thenwrite𝑍 ∼ N(0, 𝐼). Now, let 𝜇 ∈ ℝ𝑛, and
𝑉 be a non-negative definite matrix. We want to construct a Gaussian vector 𝑋 such that its mean
is 𝜇 and its expectation is 𝑉 , by using 𝑍. In the one-dimensional case, this is easy, since 𝜇 is a single
value, and 𝑉 contains only one element, 𝜎2. In this case therefore, 𝑍 ∼ N(0, 1) so 𝜇 + 𝜎𝑍 ∼ N(𝜇, 𝜎2).
In the general case, since 𝑉 is non-negative definite, we can write

𝑉 = 𝑈⊺𝐷𝑈
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where 𝑈−1 = 𝑈⊺, and 𝐷 is a diagonal matrix with diagonal entries 𝜆𝑖 ≥ 0. We define the square root
of the matrix 𝑉 to be

𝜎 = 𝑈⊺√𝐷𝑈
where√𝐷 is the diagonal matrix with diagonal entries√𝜆𝑖. Then clearly,

𝜎2 = 𝑈⊺√𝐷𝑈𝑈⊺√𝐷𝑈 = 𝑈⊺√𝐷√𝐷𝑈 = 𝑈⊺𝐷𝑈 = 𝑉

Now, let 𝑋 = 𝜇 + 𝜎𝑍. We now want to show that 𝑋 ∼ N(𝜇, 𝑉).

Proof. 𝑋 is certainly Gaussian, since it is generated by a linear multiple of the Gaussian vector 𝑍,
with an added constant. By linearity,

𝔼 [𝑋] = 𝜇
and

Var (𝑋) = 𝔼 [(𝑋 − 𝜇)(𝑋 − 𝜇)⊺]
= 𝔼 [(𝜎𝑍)(𝜎𝑍)⊺]
= 𝔼 [𝜎𝑍𝑍⊺𝜎⊺]
= 𝜎𝔼 [𝑍𝑍⊺] 𝜎⊺
= 𝜎𝜎⊺
= 𝜎𝜎
= 𝑉

16.5 Density
We can calculate the density of such a Gaussian vector 𝑋 ∼ N(𝜇, 𝑉). First, consider the case where
𝑉 is positive definite. Recall that in the one-dimensional case,

𝑓𝑋(𝑥) = 𝑓𝑍(𝑧)|𝐽|; 𝑥 = 𝜇 + 𝜎𝑧

In general, since𝑉 is positive definite, 𝜎 is invertible. So𝑥 = 𝜇+𝜎𝑧 gives 𝑧 = 𝜎−1(𝑥−𝜇). Hence,

𝑓𝑋(𝑥) = 𝑓𝑍(𝑧)|𝐽|

=
𝑛
∏
𝑖=1

exp(−𝑧2𝑖
2
)

√2𝜋
||det𝜎−1||

= 1
(2𝜋)𝑛/2 exp(−

|𝑧|2
2 ) ⋅ 1

√det𝑉
= 1
√(2𝜋)𝑛 det𝑉

exp(−𝑧
⊺𝑧
2 )

Now,

𝑧⊺𝑧 = (𝜎−1(𝑥 − 𝜇))⊺(𝜎−1(𝑥 − 𝜇))
= (𝑥 − 𝜇)⊺(𝜎−1)⊺𝜎−1(𝑥 − 𝜇)
= (𝑥 − 𝜇)⊺𝜎−2(𝑥 − 𝜇)
= (𝑥 − 𝜇)⊺𝑉−1(𝑥 − 𝜇)
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Hence,
𝑓𝑋(𝑥) =

1
√(2𝜋)𝑛 det𝑉

exp(−(𝑥 − 𝜇)⊺𝑉−1(𝑥 − 𝜇)
2 )

In the case where 𝑉 is just non-negative definite (so it could have some zero eigenvalues), we can
make an orthogonal change of basis, and assume that

𝑉 = (𝑈 0
0 0) ; 𝜇 = (𝜆𝜈)

where 𝑈 is an 𝑚 ×𝑚 positive definite matrix, where 𝑚 < 𝑛, and where 𝜆 ∈ ℝ𝑚, 𝜈 ∈ ℝ𝑛−𝑚. For 𝑈 ,
we can then apply the result above. We can write

𝑋 = (𝑌𝜈)

where 𝑌 has density

𝑓𝑌 (𝑦) =
1

√(2𝜋)𝑛 det𝑈
exp(−(𝑦 − 𝜆)⊺𝑈−1(𝑦 − 𝜆)

2 )

16.6 Diagonal variance
Note that if a Gaussian vector𝑋 = (𝑋1,… , 𝑋𝑛) is comprised of independent normal randomvariables,
then 𝑉 is a diagonal matrix. Indeed, since the 𝑋𝑖 are independent then Cov (𝑋𝑖, 𝑋𝑗) = 0 for all 𝑖 ≠ 𝑗,
so 𝑉 is diagonal.

Lemma. If 𝑉 is diagonal, then the 𝑋𝑖 are independent.

Note that zero covariance does not in general imply independence, as we saw earlier in the course,
but in this specific case with Gaussian variables, this is true.

Proof. Since 𝑉 is diagonal with diagonal entries 𝜆𝑖, we have

(𝑥 − 𝜇)⊺𝑉−1(𝑥 − 𝜇) =
𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇𝑖)2
𝜆𝑖

Hence,

𝑓𝑋(𝑥) =
1

√(2𝜋)𝑛 det𝑉
exp(−

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇𝑖)2
2𝜆𝑖

)

So 𝑓𝑋 factorises into a product. Hence the 𝑋𝑖 are independent.

We can construct an alternative proof using moment generating functions.

Proof.

𝑚(𝜃) = 𝔼 [𝑒𝜃⊺𝑋]

= exp(𝜃⊺𝜇 + 𝜃⊺𝑉𝜃
2 )

= exp(
𝑛
∑
𝑖=1

𝜃𝑖𝜇𝑖 +
1
2

𝑛
∑
𝑖=1

𝜃2𝑖 𝜆𝑖)
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Hence𝑚(𝜃) factorises into themoment generating functions of Gaussian random variables inℝ.

In summary, forGaussian vectors, wehave (𝑋1,… , 𝑋𝑛) independent if and only if𝑉 is diagonal.

16.7 Bivariate Gaussian vectors
A bivariate Gaussian is a Gaussian vector of two variables (𝑛 = 2). Let 𝑋 = (𝑋1, 𝑋2). Let 𝜇𝑘 = 𝔼 [𝑋𝑘]
and 𝜎2𝑘 = Var (𝑋𝑘). We further define the correlation

𝜌 = Corr (𝑋1, 𝑋2) =
Cov (𝑋1, 𝑋2)

√Var (𝑋1)Var (𝑋2)
Note that due to the Cauchy–Schwarz inequality, we have 𝜌 ∈ [−1, 1]. We can write the variance
matrix as

𝑉 = ( 𝜎21 𝜌𝜎1𝜎2
𝜌𝜎1𝜎2 𝜎22

)

This matrix 𝑉 is non-negative definite. Indeed, let 𝑢 = (𝑢1𝑢2
), then

𝑢⊺𝑉𝑢 = (1 − 𝜌)(𝜎21𝑢21 + 𝜎22𝑢22) + 𝜌(𝜎1𝑢1 + 𝜎2𝑢2)2

= (1 + 𝜌)(𝜎21𝑢21 + 𝜎22𝑢22) − 𝜌(𝜎1𝑢1 − 𝜎2𝑢2)2

Since 𝜌 ∈ [−1, 1], this is non-negative for all choices of 𝜌.

16.8 Density of bivariate Gaussian
When 𝜌 = 0 and 𝜎1, 𝜎2 > 0, we have

𝑓𝑋1,𝑋2(𝑥1, 𝑥2) =
2
∏
𝑖=1

1

√2𝜋𝜎2𝑘
exp(−(𝑥𝑘 − 𝜇𝑘)2

2𝜎2𝑘
)

So 𝑋1 and 𝑋2 are independent in this case.

16.9 Conditional expectation
Let (𝑋1, 𝑋2) be a bivariate Gaussian vector. Then let 𝑎 ∈ ℝ, and consider 𝑋2 − 𝑎𝑋1. We have

Cov (𝑋2 − 𝑎𝑋1, 𝑋1) = Cov (𝑋2, 𝑋1) − 𝑎Cov (𝑋1, 𝑋1) = Cov (𝑋2, 𝑋1) − 𝑎Var (𝑋1) = 𝜌𝜎1𝜎2 − 𝑎𝜎21
Now, let 𝑎 = 𝜌𝜎2

𝜎1
, so Cov (𝑋2 − 𝑎𝑋1, 𝑋1) = 0. Since 𝑌 = 𝑋2 − 𝑎𝑋1 is Gaussian, (𝑋1, 𝑌) is a Gaussian

vector, and so 𝑌 and 𝑋1 are independent. Now, we can find
𝔼 [𝑋2 ∣ 𝑋1] = 𝔼 [𝑌 + 𝑎𝑋1 ∣ 𝑋1]

= 𝔼 [𝑌] + 𝑎𝔼 [𝑋1 ∣ 𝑋1]
= 𝔼 [𝑋2 − 𝑎𝑋1] + 𝑎𝑋1

In particular, since 𝑋2 = (𝑋2 − 𝑎𝑋1) + 𝑎𝑋1, we can say that given 𝑋1,
𝑋2 ∼ N(𝜇2 − 𝑎𝜇1 + 𝑎𝑋1,Var (𝑋2 − 𝑎𝑋1))

and
Var (𝑋2 − 𝑎𝑋1) = Var (𝑋2) + 𝑎2 Var (𝑋1) − 2𝑎Cov (𝑋1, 𝑋2)
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16.10 Multivariate central limit theorem
This subsection is non-examinable, but included for completeness. Let 𝑋 be a random vector in ℝ𝑘

with 𝜇 = 𝔼 [𝑋] and covariance matrix Σ. Let 𝑋1, 𝑋2,… be independent and identically distributed
with the same distribution as 𝑋 . Then

𝑆𝑛 =
1
√𝑛

𝑛
∑
𝑖=1

𝑋𝑖 − 𝔼 [𝑋𝑖]
𝑑−→ N(𝜇, Σ)

Convergence in distribution here means that for all reasonable 𝐵 ⊆ ℝ𝑘, we have

ℙ (𝑆𝑛 ∈ 𝐵) → ℙ (N(𝜇, Σ) ∈ 𝐵)

17 Simulation of random variables
17.1 Sampling from uniform distribution
It is easy for a computer to generate a random number in the interval [0, 1).
We can use this as a source of randomness to simulate a random variable with an arbitrary density.
Let 𝑈 ∼ U[0, 1], then let 𝑋 = − log𝑈 . Then

ℙ (𝑋 ≤ 𝑥) = ℙ (log𝑈 ≤ 𝑥) = ℙ (𝑈 ≥ 𝑒−𝑥) = 1 − 𝑒−𝑥

So 𝑋 is exponentially distributed with parameter 1. More generally, we have the following.

Theorem. Let 𝑋 be a continuous random variable with distribution function 𝐹. Then, if
𝑈 ∼ U[0, 1], then 𝐹−1(𝑈) ∼ 𝐹.

Proof. Set 𝑌 = 𝐹−1(𝑈). Then

ℙ (𝑌 ≤ 𝑥) = ℙ (𝐹−1(𝑈) ≤ 𝑥)
= ℙ (𝑈 ≤ 𝐹(𝑥))
= 𝐹(𝑥)

One way of thinking of this function 𝐹−1 function is that it takes an input probability 𝑝, and outputs
the 𝑥 value such that ℙ (𝑋 ≤ 𝑥) = 𝑝. Then, if𝑈 is uniformly distributed, we are essentially sampling
a random 𝑝.

17.2 Rejection sampling
In certain cases, finding such an 𝐹−1 function is difficult, if not impossible, especially where this
function has jumps or has a higher dimension. Here is an alternative sampling method. Suppose
𝐴 ⊂ [0, 1]𝑑. We then define

𝑓(𝑥) = 1(𝑥 ∈ 𝐴)
|𝐴|
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where |𝐴| is the size or volume of this set 𝐴. Let 𝑋 have density function 𝑓. How can we simulate 𝑋?
Let (𝑈𝑛) be an independent and identically distributed sequence of 𝑑-dimensional uniform random
variables, i.e.

𝑈𝑛 = (𝑈𝑘,𝑛 ∶ 𝑘 ∈ {1,… , 𝑑}); (𝑈𝑘,𝑛) ∼ U[0, 1] i.i.d.
Now, let

𝑁 = min {𝑛 ≥ 1∶ 𝑈𝑛 ∈ 𝐴}
So we keep generating random numbers until a𝑈𝑛 lies in𝐴, and reject all other possibilities. We now
show that 𝑈𝑁 ∼ 𝑓. In particular, we want to show that for all 𝐵 ⊆ [0, 1]𝑑,

ℙ (𝑈𝑛 ∈ 𝐵) = ∫
𝐵
𝑓(𝑥) d𝑥

We have

ℙ (𝑈𝑛 ∈ 𝐵) =
∞
∑
𝑛=1

ℙ (𝑈𝑁 ∈ 𝐵,𝑁 = 𝑛)

=
∞
∑
𝑛=1

ℙ (𝑈𝑛 ∈ 𝐴 ∩ 𝐵,𝑈𝑛−1 ∉ 𝐴,… ,𝑈1 ∉ 𝐴)

=
∞
∑
𝑛=1

ℙ (𝑈𝑛 ∈ 𝐴 ∩ 𝐵)ℙ (𝑈𝑛−1 ∉ 𝐴)⋯ℙ (𝑈1 ∉ 𝐴)

=
∞
∑
𝑛=1

|𝐴 ∩ 𝐵|(1 − |𝐴|)𝑛−1

= |𝐴 ∩ 𝐵|
|𝐴|

= ∫
𝐴

1(𝑥 ∈ 𝐵)
|𝐴| d𝑥

= ∫
𝐵
𝑓(𝑥) d𝑥

Now suppose that 𝑓 is a density on [0, 1]𝑑−1 which is bounded by 𝜆 > 0. We can use rejection
sampling to sample a random variable 𝑋 with this density. Consider the set

𝐴 = {(𝑥1,… , 𝑥𝑑) ∈ [0, 1]𝑑 ∶ 𝑥𝑑 ≤
𝑓(𝑥1,… , 𝑥𝑑−1)

𝜆 }

From the above, we can generate a uniform random variable 𝑌 = (𝑋1,… , 𝑋𝑑) on 𝐴. Let 𝑋 =
(𝑋1,… , 𝑋𝑑−1), then we will show that 𝑋 ∼ 𝑓. In particular, we want to show that for all 𝐵 ⊆
[0, 1]𝑑−1,

ℙ (𝑋 ∈ 𝐵) = ∫
𝐵
𝑓(𝑥) d𝑥
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We find that

ℙ (𝑋 ∈ 𝐵) = ℙ ((𝑋1,… , 𝑋𝑑−1) ∈ 𝐵)
= ℙ ((𝑋1,… , 𝑋𝑑) ∈ (𝐵 × [0, 1]) ∩ 𝐴)

= |(𝐵 × [0, 1]) ∩ 𝐴|
|𝐴|

|(𝐵 × [0, 1]) ∩ 𝐴| = ∫⋯∫1((𝑋1,… , 𝑋𝑑) ∈ (𝐵 × [0, 1]) ∩ 𝐴) d𝑥1… d𝑥𝑑

= ∫⋯∫1((𝑋1,… , 𝑋𝑑−1) ∈ 𝐵) ⋅ 1(𝑥𝑑 ≤
𝑓(𝑥1,… , 𝑥𝑑−1)

𝜆 ) d𝑥1… d𝑥𝑑

= ∫⋯∫1((𝑋1,… , 𝑋𝑑−1) ∈ 𝐵) ⋅ 𝑓(𝑥1,… , 𝑥𝑑−1)
𝜆 d𝑥1… d𝑥𝑑−1

= 1
𝜆 ∫⋯∫1((𝑋1,… , 𝑋𝑑−1) ∈ 𝐵) ⋅ 𝑓(𝑥1,… , 𝑥𝑑−1) d𝑥1… d𝑥𝑑−1

= 1
𝜆 ∫𝐵

𝑓(𝑥) d𝑥

|𝐴| = 1
𝜆 ∫[0,1]𝑑−1

𝑓(𝑥) d𝑥

= 1
𝜆

∴ ℙ (𝑋 ∈ 𝐵) = ∫
𝐵
𝑓(𝑥) d𝑥
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