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1 Complex numbers
1.1 Definition and basic theorems
We construct the complex numbers from ℝ by adding an element 𝑖 such that 𝑖2 = −1. By definition,
any complex number 𝑧 ∈ ℂ = 𝑥 + 𝑖𝑦 where 𝑥, 𝑦 ∈ ℝ. We use the notation 𝑥 = Re 𝑧 and 𝑦 = Im 𝑧 to
query the components of a complex number. The complex numbers contains the set of real numbers,
due to the fact that 𝑥 = 𝑥 + 𝑖0. We define the operations of addition and multiplication in familiar
ways, which lets us state that ℂ is a field.

We also define the complex conjugate 𝑧 as negating the imaginary part of 𝑧. Trivially we can see facts
such as (𝑧) = 𝑧; 𝑧 + 𝑤 = 𝑧 + 𝑤 and 𝑧𝑤 = 𝑧 ⋅ 𝑤.
The Fundamental TheoremofAlgebra states that a polynomial of degree𝑛 can bewritten as a product
of 𝑛 linear factors:

𝑐𝑛𝑧𝑛 +⋯+ 𝑐1𝑧1 + 𝑐0𝑧0 = 𝑐𝑛(𝑧 − 𝛼1)(𝑧 − 𝛼2)⋯ (𝑧 − 𝛼𝑛) (where 𝑐𝑖, 𝛼𝑖 ∈ ℂ)

We can reformulate this statement as follows: a polynomial of degree 𝑛 has 𝑛 solutions 𝛼𝑖, counting
repeats. This theorem is not proved in this course.

The modulus of complex numbers 𝑧1, 𝑧2 satisfies:
• (composition) |𝑧1𝑧2| = |𝑧1||𝑧2|, and
• (triangle inequality) |𝑧1 + 𝑧2| ≤ |𝑧1| + |𝑧2|

Proof. The composition property is trivial. To prove the triangle inequality, we square both sides and
compare.

LHS = |𝑧1 + 𝑧2|
2

= (𝑧1 + 𝑧2)(𝑧1 + 𝑧2)
= |𝑧1|

2 + 𝑧1𝑧2 + 𝑧1𝑧2 + |𝑧2|
2

RHS = |𝑧1|
2 + 2|𝑧1||𝑧2| + |𝑧2|

2

Note that

𝑧1𝑧2 + 𝑧1𝑧2 ≤ 2|𝑧1||𝑧2|

⟺ 1
2 (𝑧1𝑧2 + 𝑧1𝑧2) ≤ |𝑧1||𝑧2|
⟺ Re(𝑧1𝑧2) ≤ ||𝑧1𝑧2||

which is true.

We can alternatively use the map 𝑧2 → 𝑧2 − 𝑧1 to write the triangle inequality as

|𝑧2 − 𝑧1| ≥ |𝑧2| − |𝑧1|
or |𝑧2 − 𝑧1| ≥ |𝑧1| − |𝑧2|
∴ |𝑧2 − 𝑧1| ≥ ||𝑧2| − |𝑧1||
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De Moivre’s Theorem states that

(cos 𝜃 + 𝑖 sin 𝜃)𝑛 = cos𝑛𝜃 + 𝑖 sin𝑛𝜃 (∀𝑛 ∈ ℤ)

We can prove this using induction for 𝑛 ≥ 0. To show the negative case, simply use the positive result
and raise it to the power of −1.

1.2 Complex valued functions
For 𝑧 ∈ ℂ, we can define:

exp 𝑧 =
∞
∑
𝑛=0

1
𝑛!𝑧

𝑛

cos 𝑧 = 1
2 (𝑒

𝑖𝑧 + 𝑒−𝑖𝑧)

sin 𝑧 = 1
2𝑖 (𝑒

𝑖𝑧 − 𝑒−𝑖𝑧)

Bydefining log 𝑧 = 𝑤 s.t. 𝑒𝑤 = 𝑧, wehave a complex logarithm function. By expanding the definition,
we get that log 𝑧 = log 𝑟+𝑖𝜃where 𝑟 = |𝑧| and 𝜃 = arg 𝑧. Note that because the argument of a complex
number is multi-valued, so is the logarithm.

We can define exponentiation in the general case by defining 𝑧𝛼 = 𝑒𝛼 log𝑧. Depending on the choice
of 𝛼, we have three cases:

• If 𝛼 = 𝑝 ∈ ℤ then the result of 𝑧𝑝 is unambiguous because

𝑧𝑝 = 𝑒𝑝 log𝑧 = 𝑒𝑝(log 𝑟+𝑖𝜃+2𝜋𝑖𝑛)

which has a factor of 𝑒2𝜋𝑖𝑝𝑛 which is 1.
• For a similar reason, a rational exponent has finitely many values.

• But in the general case, there are infinitely many values.

We can calculate results such as the square root of a complex number, which have two results as you
might expect.

Note. We can’t use facts like 𝑧𝛼𝑧𝛽 = 𝑧𝛼+𝛽 in the complex case because the left and right hand sides
both have infinite sets of answers, which may not be the same.

1.3 Transformations and primitives
We can represent a line passing through 𝑥0 ∈ ℂ parallel to 𝑤 ∈ ℂ using the formula:

𝑧 = 𝑧0 + 𝜆𝑤 (𝜆 ∈ ℝ)

We can eliminate the dependency on 𝜆 by computing the conjugate of both sides:

𝑧 = 𝑧0 + 𝜆𝑤
𝑤𝑧 − 𝑤𝑧 = 𝑤𝑧0 − 𝑤𝑧0

We can also write the equation for a circle with centre 𝑐 ∈ ℂ and radius 𝜌 ∈ ℝ:

𝑧 = 𝑐 + 𝜌𝑒𝑖𝛼

5



or equivalently:
|𝑧 − 𝑐| = ||𝜌𝑒𝑖𝛼|| = 𝜌

or by squaring both sides:
|𝑧|2 − 𝑐𝑧 − 𝑐𝑧 = 𝜌2 − |𝑐|2

2 Vectors in three dimensions
We use the normal Euclidean notions of points, lines, planes, length, angles and so on. By choosing
an (arbitrary) origin point 𝑂, we may write positions as position vectors with respect to that origin
point.

2.1 Vector addition and scalar multiplication
We define vector addition using the shape of a parallelogram with points 0, a, a + b,b. We define
scalar multiplication of a vector using the line 𝑂𝐴 and setting the length to be multiplied by the
constant. Note that this vector space is an abelian group under addition.

Definition. a and b are defined to be parallel if and only if a = 𝜆b or b = 𝜆a for some
𝜆 ∈ ℝ. This is denoted a ∥ b. Note that the vectors may be zero, in particular the zero vector
is parallel to all vectors.

Definition. The span of a set of vectors is defined as span{a,b,⋯ , c} = {𝛼a+𝛽b+⋯+𝛾c ∶
𝛼, 𝛽, 𝛾 ∈ ℝ}. This is the line/plane/volume etc. containing the vectors. The span has an
amount of dimensions at most equal to the amount of vectors in the input set. For example,
the span of a set of two vectors may be a point, line or plane containing the vectors.

2.2 Scalar product

Definition. Given two vectors a,b, let 𝜃 be the angle between the two vectors. Then, we
define

a ⋅ b = |a||b| cos 𝜃
Note that if either of the vectors is zero, 𝜃 is undefined. However, the dot product is zero
anyway here, so this is irrelevant.

Definition. Two vectors a and b are defined to be parallel (or orthogonal) if and only if
a ⋅ b = 0. This is denoted a ⟂ b. This is true in two cases:
(i) cos 𝜃 = 0 ⟺ 𝜃 = 𝜋

2
mod 𝜋, or

(ii) a = 0 or b = 0.
Therefore, the zero vector is perpendicular to all vectors.
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Definition. We can decompose a vector b into components relative to a:

b = b∥ + b⟂

where b∥ is the component of b parallel to a, and b⟂ is the component of b perpendicular to
a. In particular, we have that

a ⋅ b = a ⋅ b∥

2.3 Vector product

Definition. Given two vectors a,b, let 𝜃 be the angle between the two vectorsmeasuredwith
respect to an arbitrary normal n̂. Then, we define

a ∧ b = a × b = |a||b|n̂ sin 𝜃

Note that by swapping the sign of n̂, 𝜃 changes to 2𝜋−𝜃, leaving the result unchanged. There
are two degenerate cases:

• 𝜃 is undefined if a or b is the zero vector, but the result is zero anyway because we
multiply by the magnitudes of both vectors.

• n̂ is undefined if a ∥ b, but here sin 𝜃 = 0 so the result is zero anyway.

We can provide several useful interpretations of the cross product:

• Themagnitude of a×b is the vector area of the parallelogram defined by the points 0, a, a+b,b.
• By fixing a vector a, we can consider the plane perpendicular to it. If x is another vector in the
plane, x↦ a × x rotates x by 𝜋

2
in the plane, scaling it by the magnitude of a.

Note that by resolving a vector b perpendicular to another vector a, we have that

a × b = a × b⟂

A final useful property of the cross product is that since the result is perpendicular to both input
vectors, we have

a ⋅ (a × b) = b ⋅ (a × b) = 0

2.4 Basis vectors
To represent vectors as some collection of numbers, we can choose some basis vectors e1, e2, e3 which
are ‘orthonormal’, i.e. they are unit vectors and pairwise orthogonal. Note that

e𝑖 ⋅ e𝑗 = {1 if 𝑖 = 𝑗
0 otherwise

The set {e1, e2, e3} is called a basis because any vector can bewritten uniquely as a linear combination
of the basis vectors. Because we have orthonormal basis vectors, we can reduce this to

a = ∑
𝑖
a𝑖e𝑖 ⟹ a𝑖 = e𝑖 ⋅ a

7



By representing a vector as a linear combination of basis vectors, it is very easy to evaluate the scalar
product algebraically. To calculate the vector product, we first need to define whether e1 × e2 = e3
or−e3. By convention, we assume that the basis vectors are right-handed, i.e. e1 × e2 = e3. Then we
can calculate the formula for the cross product in terms of the vectors’ components.

2.5 Scalar triple product
The scalar triple product is the scalar product of one vector with the cross product of twomore.

a ⋅ (b × c) = b ⋅ (c × a) = c ⋅ (a × b) = [a,b, c]

The result of the scalar triple product is the signed volume of the parallelepiped starting at the origin
with axes a, b, c. We can represent this triple product as the determinant of a matrix:

a ⋅ (b × c) =
|
|
|
|

a1 a2 a3
b1 b2 b3
c1 c2 c3

|
|
|
|

If the scalar triple product is greater than zero, then a,b, c is called a right handed set. If it is equal
to zero, then the vectors are all coplanar: c ∈ span{a,b}.

2.6 Vector triple product
The vector triple product is the cross product of three vectors. Note that this is non-associative. The
proof is covered in the subsequent lecture.

a × (b × c) = (a ⋅ c)b − (a ⋅ b)c

(a × b) × c = (a ⋅ c)b − (b ⋅ c)a

2.7 Lines
A line through a parallel to u is defined by

r = a + 𝜆u

where 𝜆 is some real parameter. We can eliminate lambda by using the cross product with u. This
will allow us to get a u × u term which will cancel to zero.

u × r = u × a

Informally, this is saying that r and a have the same components perpendicular to u. Note that we
can also reverse this process. Consider the equation

u × r = c

By using the dot product with u we can say

u ⋅ (u × r) = u ⋅ c

If u ⋅ c ≠ 0 then the equation is inconsistent. Otherwise, we can suppose that maybe r = u × c and
use the formula for the vector product to get the left hand side to be u× (u× c) = −|u|2c. Therefore,
by inspection, a = − 1

|u|2
(u× c) is a solution. Now, note that we can add any multiple of u to a and it

remains a solution. So the general solution is r = a + 𝜆u.
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2.8 Planes
The general point on a plane that passes through a and has directions u and v is

r = a + 𝜆u + 𝜇v

where u and v are not parallel, and 𝜆 and 𝜇 are real parameters. We can do a dot product with
n = (u × v) to eliminate both parameters.

n ⋅ r = 𝜅

where 𝜅 = n ⋅ a. Note that |𝜅|/|n| is the perpendicular distance from the origin to the plane.

2.9 Other vector equations
The equation of a sphere is given by a quadratic vector equation in r.

r2 + r ⋅ a = 𝑘

We can complete the square to give

(r + 1
2a)

2
= 1
4a

2 + 𝑘

which is clearly a sphere with centre − 1
2
a and radius ( 1

4
a2 + 𝑘)

1/2
.

Another example of a vector equation is

r + a × (b × r) = c (1)

where a,b, c are fixed. We can dot with a to eliminate the second term:

a ⋅ r = a ⋅ c (2)

Note that using the dot product loses information—this is simply a tool to make deductions; (2) does
not contain the full information of (1). Combining (1) and (2), and using the formula for the vector
triple product, we get

r + (a ⋅ r)b − (a ⋅ b)r = c (3)
⟹ r + (a ⋅ c)b − (a ⋅ b)r = c

This eliminates the dependency on r inside the dot product. Now, we can factorise, leaving

(1 − a ⋅ b)r = c − (a ⋅ c)b (4)

If 1 − a ⋅ b ≠ 0 then r has a single solution, a point. Otherwise, the right hand side must also be
zero (otherwise the equation is inconsistent). Therefore, c − (a ⋅ c)b = 0. We can now combine this
expression for c into (3), eliminating the (1 − a ⋅ b) term, to get

(a ⋅ r − a ⋅ c)b = 0

This shows us that (given that b is nonzero) the solutions to the equation are given by (2), which is
the equation of a plane.
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3 Index notation and the summation convention
3.1 Kronecker 𝛿 and Levi-Civita 𝜀
The Kronecker 𝛿 is defined by

𝛿𝑖𝑗 = {1 if 𝑖 = 𝑗
0 if 𝑖 ≠ 𝑗

Then e𝑖e𝑗 = 𝛿𝑖𝑗 . We can also use 𝛿 to rewrite indices: ∑𝑖 𝛿𝑖𝑗a𝑖 = a𝑗 . So

a ⋅ b = (∑
𝑖
a𝑖e𝑖) ⋅ (∑

𝑗
b𝑗e𝑗)

= ∑
𝑖𝑗
a𝑖b𝑗(e𝑖 ⋅ e𝑗)

= ∑
𝑖𝑗
a𝑖b𝑗𝛿𝑖𝑗

= ∑
𝑖
a𝑖b𝑖

The Levi-Civita 𝜀 is defined by

𝜀𝑖𝑗𝑘 =
⎧
⎨
⎩

+1 if 𝑖𝑗𝑘 is an even permutation of [1, 2, 3]
−1 if 𝑖𝑗𝑘 is an odd permutation of [1, 2, 3]
0 otherwise

Then

𝜀123 = 𝜀231 = 𝜀312 = +1
𝜀132 = 𝜀321 = 𝜀213 = −1

and all other permutations of [1, 2, 3] yield 0. This shows that 𝜀 is totally antisymmetric; exchanging
any pair of indices changes the sign. We now have:

e𝑖 × e𝑗 = ∑
𝑘
𝜀𝑖𝑗𝑘e𝑘

And:

a × b = (∑
𝑖
a𝑖e𝑖) × (∑

𝑗
b𝑗e𝑗)

a × b = ∑
𝑖𝑗
a𝑖b𝑗 (e𝑖 × e𝑗)

a × b = ∑
𝑖𝑗𝑘

a𝑖b𝑗𝜀𝑖𝑗𝑘e𝑘

So the individual terms of the cross product can be written

(a × b)𝑘 = ∑
𝑖𝑗
a𝑖b𝑗𝜀𝑖𝑗𝑘

We use the ‘summation convention’ to abbreviate the many summation symbols used throughout
linear algebra.
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(i) An index which occurs exactly once in some term, called a ‘free’ index, must appear once in
every term in that equation.

(ii) An indexwhich occurs exactly twice in a given term, called a ‘repeated’, ‘contracted’, or ‘dummy’
index, is implicitly summed over.

(iii) No index can occur more than twice in a given term.

3.2 Identities
The most general 𝜀𝜀 identity is as follows:

𝜀𝑖𝑗𝑘𝜀𝑝𝑞𝑟 = 𝛿𝑖𝑝𝛿𝑗𝑞𝛿𝑘𝑟 − 𝛿𝑗𝑝𝛿𝑖𝑞𝛿𝑘𝑟
+ 𝛿𝑗𝑝𝛿𝑘𝑞𝛿𝑖𝑟 − 𝛿𝑘𝑝𝛿𝑗𝑞𝛿𝑖𝑟
+ 𝛿𝑘𝑝𝛿𝑖𝑞𝛿𝑗𝑟 − 𝛿𝑖𝑝𝛿𝑘𝑞𝛿𝑗𝑟

This is, however, very verbose and not used often throughout the course. It is provable by noting the
total antisymmetry in 𝑖, 𝑗, 𝑘 and 𝑝, 𝑞, 𝑟 on both sides of the equation implies that both sides agree up
to a constant factor. We can check that this factor is 1 by substituting in values such as 𝑖 = 𝑝 = 1,
𝑗 = 𝑞 = 2 and 𝑘 = 𝑟 = 3.
The next most generic form is a very useful identity.

𝜀𝑖𝑗𝑘𝜀𝑝𝑞𝑘 = 𝛿𝑖𝑝𝛿𝑗𝑞 − 𝛿𝑖𝑞𝛿𝑗𝑝

This is essentially the first line of the above identity, noting that 𝑘 = 𝑟. We can prove this is true by
observing the antisymmetry, and that both sides vanish under 𝑖 = 𝑗 or 𝑝 = 𝑞. So it suffices to check
two cases: 𝑖 = 𝑝, 𝑗 = 𝑞 and 𝑖 = 𝑞, 𝑗 = 𝑝.
We can now continue making more indices equal to each other to get even more specific identit-
ies:

𝜀𝑖𝑗𝑘𝜀𝑝𝑗𝑘 = 2𝛿𝑖𝑝
This is easy to prove by noting that 𝛿𝑗𝑗 = ∑𝑗 𝛿𝑗𝑗 = 3, and using the 𝛿 rewrite rule.

Finally, we have
𝜀𝑖𝑗𝑘𝜀𝑖𝑗𝑘 = 6

No indices are free here, so the values of 𝑖, 𝑗, 𝑘 themselves are predetermined by the fact that we are
in three-dimensional space.

Using the summation convention (as will now be implied for the remainder of the course), we can
prove the vector triple product identity

[a × (b × c)]𝑖 = 𝜀𝑖𝑗𝑘a𝑗(b × c)𝑘
= 𝜀𝑖𝑗𝑘a𝑗𝜀𝑝𝑞𝑘b𝑝c𝑞
= 𝜀𝑖𝑗𝑘𝜀𝑝𝑞𝑘a𝑗b𝑝c𝑞
= (𝛿𝑖𝑝𝛿𝑗𝑞)a𝑗b𝑝c𝑞 − (𝛿𝑖𝑞𝛿𝑗𝑝)a𝑗b𝑝c𝑞
= (a ⋅ c)b𝑖 − (a ⋅ b)c𝑖
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4 Higher dimensional vectors
4.1 Multidimensional real space
We define multidimensional real space as follows:

ℝ𝑛 = {x = (𝑥1, 𝑥2,⋯ , 𝑥𝑛) ∶ 𝑥𝑖 ∈ ℝ}
We can define addition and scalar multiplication by mapping these operations over each term in the
tuple. Therefore, we have a notion of linear combinations of vectors and hence a concept of parallel
vectors. We can say, like before in ℝ3, that x ∥ y if and only if x = 𝜆y or y = 𝜆x.
We define an operator analogous to the scalar product in ℝ3. The inner product is defined as 𝑥 ⋅ 𝑦 =
𝑥𝑖𝑦𝑖. Directly from this definition, we can deduce some properties:

• (symmetric) x ⋅ y = y ⋅ x
• (bilinear) (𝜆x + 𝜆′x′) ⋅ y = 𝜆x ⋅ y + 𝜆′x′ ⋅ y
• (positive definite) x ⋅ x ≥ 0, and the equality holds if and only if x = 0.

We can define the norm of a vector (similar to the concept of length in three-dimension space), de-
noted |x|, by |x|2 = x ⋅ x. We can now define orthogonality as follows: x ⟂ y ⟺ x ⋅ y = 0.
We define the standard basis vectors e1, e2,… , e𝑛 by setting each element of the tuple e𝑖 to zero apart
from the 𝑖th element, which is set to one. Also, we redefine the Kronecker 𝛿 to be valid in higher-
dimensional space. Note that under this definition, the standard basis vectors are orthonormal be-
cause e𝑖 ⋅ e𝑗 = 𝛿𝑖𝑗 .

4.2 Cauchy–Schwarz inequality

Proposition. For vectors x, y in ℝ𝑛, |x ⋅ y| ≤ |x||y|, where the equality is true if and only if
x ∥ y.

Proof. If y = 0, then the result is immediate. So suppose that y ≠ 0, then for some 𝜆 ∈ ℝ, we have
|x − 𝜆y|2 = (x − 𝜆y) ⋅ (x − 𝜆y)

= |x|2 − 2𝜆x ⋅ y + 𝜆2|y|2 ≥ 0
As this is a positive real quadratic in 𝜆 that is always greater than zero, it has at most one real root.
Therefore the discriminant is less than or equal to zero.

(−2x ⋅ y)2 − 4|x|2|y|2 ≤ 0 ⟹ |x ⋅ y| ≤ |x||y|
where the equality only holds if x and y are parallel (i.e. when x − 𝜆y equals zero for some 𝜆).

4.3 Triangle inequality
Following from the Cauchy–Schwarz inequality,

|x + y|2 = |x|2 + 2(x ⋅ y) + |y|2

≤ |x|2 + 2|x||y| + |y|2

= (|x| + |y|)2
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where the equality holds under the same conditions as above.

4.4 Levi-Civita 𝜀 in higher dimensions
Note that the Levi-Civita 𝜀 has three indices in ℝ3. We can extend this 𝜀 to higher and lower dimen-
sions by increasing or reducing the amount of indices. It does notmake logical sense to use the same 𝜀
without changing the amount of indices to define, for example, a vector product in four-dimensional
space, since we would have unused indices. The expression (x× y)𝑘 = 𝜀𝑖𝑗𝑘a𝑖b𝑗 works because there
is one free index, 𝑘, on the right hand side, so we can use this to calculate the values of each element
of the result.

We can, however, use this 𝜀 to extend the notion of a scalar triple product to other dimensions, for
example two-dimensional space, with [a,b] ≔ 𝜀𝑖𝑗a𝑖b𝑗 . This is the signed area of the parallelogram
spanning a and b.

4.5 General real vector spaces
Vector spaces are not studied axiomatically in this course, but the axioms are given here for com-
pleteness. A real (as in, ℝ) vector space 𝑉 is a set of objects with two operators + ∶ 𝑉 × 𝑉 → 𝑉 and
⋅ ∶ ℝ × 𝑉 → 𝑉 such that

• (𝑉, +) is an abelian group
• 𝜆(𝑣 + 𝑤) = 𝜆𝑣 + 𝜆𝑤
• (𝜆 + 𝜇)𝑣 = 𝜆𝑣 + 𝜇𝑣
• 𝜆(𝜇𝑣) = (𝜆𝜇)𝑣
• 1𝑣 = 𝑣 (to exclude trivial cases for example 𝜆𝑣 = 0 for all 𝑣)

A subspace of a real vector space 𝑉 is a subset 𝑈 ⊆ 𝑉 that is a vector space. Equivalently, if all pairs
of vectors 𝑣, 𝑤 ∈ 𝑈 satisfy 𝜆𝑣 + 𝜇𝑤 ∈ 𝑈 , then 𝑈 is a subspace of 𝑉 . Note that the span generated
from a set of vectors is a subspace, as it is characterised by this equivalent definition. Also, note
that the origin must be part of any subspace, because multiplying a vector by zero must yield the
origin.

In some real vector space 𝑉 , let v1, v2⋯ v𝑟 be vectors in 𝑉 . Now consider the linear relation

𝜆1v1 + 𝜆2v2 +⋯+ 𝜆𝑟v𝑟 = 0

Then we call the set of vectors a linearly independent set if the only solution is where all 𝜆 values are
zero. Otherwise, it is a linearly dependent set.

4.6 Inner product spaces
An inner product is an extra structure that we can have on a real vector space 𝑉 , which is often
denoted by angle brackets or parentheses. It can also be characterised by axioms (specifically the
ones in Section 6.2). Features like the norm of a vector, and theorems like the Cauchy–Schwarz
inequality, follow from these axioms.

For example, let us consider the vector space

𝑉 = {𝑓 ∶ [0, 1] → ℝ ∶ 𝑓 smooth; 𝑓(0) = 𝑓(1) = 0}
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We can define the inner product to be

𝑓 ⋅ 𝑔 = ⟨𝑓, 𝑔⟩ = ∫
1

0
𝑓(𝑥)𝑔(𝑥) d𝑥

Then by the Cauchy–Schwarz inequality, we have

|⟨𝑓, 𝑔⟩| ≤ ‖𝑓‖ ⋅ ‖𝑔‖

∴
||||
∫

1

0
𝑓(𝑥)𝑔(𝑥) d𝑥

||||
≤
√√√
√

∫
1

0
𝑓(𝑥)2 d𝑥

√√√
√

∫
1

0
𝑔(𝑥)2 d𝑥

Lemma. In any real inner product space 𝑉 , if v1⋯𝑣𝑟 ≠ 0 are orthogonal, they are linearly
independent.

Proof. If∑𝑖 𝛼𝑖v𝑖 = 0, then

⟨v𝑗 ,∑
𝑖
𝛼𝑖v𝑖⟩ = 0

And because each vector that is not v𝑗 is orthogonal to it, those terms cancel, leaving

∴ ⟨v𝑗 , 𝛼𝑗v𝑗⟩ = 0
𝛼𝑗 ⟨v𝑗 , v𝑗⟩ = 0

𝛼𝑗 = 0

So they are linearly independent.

4.7 Bases and dimensions
In a vector space 𝑉 , a basis is a set ℬ = {e1⋯ e𝑛} such that

• ℬ spans 𝑉 ; and
• ℬ is linearly independent, which implies that the coefficients on these basis vectors are unique
for any vector in 𝑉 , since it is impossible to write one vector in terms of the others

Theorem. If {e1⋯ e𝑛} and {f1⋯ f𝑚} are bases for a real vector space 𝑉 , then 𝑛 = 𝑚, which
we call the dimension of 𝑉 .

Proof. This proof is non-examinable (without prompts). We can write each basis vector in terms of
the others, since they all span the same vector space. Thus:

f𝑎 = ∑
𝑖
𝐴𝑎𝑖e𝑖; e𝑖 = ∑

𝑎
𝐵𝑖𝑎f𝑎
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Note that indices 𝑖, 𝑗 span from 1 to 𝑛, while 𝑎, 𝑏 span from 1 to𝑚. We can substitute one expression
into the other, forming:

f𝑎 = ∑
𝑖
𝐴𝑎𝑖 (∑

𝑏
𝐵𝑖𝑏f𝑏)

f𝑎 = ∑
𝑏
(∑

𝑖
𝐴𝑎𝑖𝐵𝑖𝑏) f𝑏

Note that we have now written f𝑎 as a linear combination of f𝑏 for all valid 𝑏. But since they are
linearly independent, the coefficient of f𝑏 must be zero if 𝑎 ≠ 𝑏, and one of 𝑎 = 𝑏. Therefore, we
have

𝛿𝑎𝑏 = ∑
𝑖
𝐴𝑎𝑖𝐵𝑖𝑏

We can make a similar statement about e𝑖:

𝛿𝑖𝑗 = ∑
𝑎
𝐵𝑖𝑎𝐴𝑎𝑗 = ∑

𝑎
𝐴𝑎𝑗𝐵𝑖𝑎

Now, assigning 𝑎 = 𝑏 and 𝑖 = 𝑗, summing over both, and substituting into our two previous expres-
sions for 𝛿, we have:

∑
𝑖𝑎
𝐴𝑎𝑖𝐵𝑖𝑎 = ∑

𝑎
𝛿𝑎𝑎 = ∑

𝑖
𝛿𝑖𝑖

= 𝑚 = 𝑛

Note that {0} is a trivial subspace of all vector spaces, and it has dimension zero since it requires a
linear combination of no vectors.

Proposition. Let 𝑉 be a vector space with finite subsets 𝑌 = {w1,⋯ ,w𝑚} that spans 𝑉 , and
𝑋 = {u1,⋯ ,u𝑘} that is linearly independent. Let 𝑛 = dim𝑉 . Then:
(i) A basis can be found as a subset of 𝑌 by discarding vectors in 𝑌 as necessary, and that

𝑛 ≤ 𝑚.
(ii) 𝑋 can be extended to a basis by adding in additional vectors from 𝑌 as necessary, and

that 𝑘 ≤ 𝑛.

Proof. This proof is non-examinable (without prompts).

(i) If 𝑌 is linearly independent, then 𝑌 is a basis and 𝑚 = 𝑛. Otherwise, 𝑌 is not linearly inde-
pendent. So there exists some linear relation

𝑚
∑
𝑖=1

𝜆𝑖w𝑖 = 0

where there is some 𝑖 such that 𝜆𝑖 ≠ 0. Without loss of generality (because the order of elements
in 𝑌 does not matter) we will reorder 𝑌 such thatw𝑚 ≠ 0. So we have

w𝑚 = −1
𝜆𝑚

𝑚−1
∑
𝑖=1

𝜆𝑖w𝑖
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So span𝑌 = span(𝑌 ∖ {w𝑚}). We can repeat this process of eliminating vectors from 𝑌 until
linear independence is achieved. We know that this process will end because 𝑌 is a finite set.
Clearly, in this case, 𝑛 < 𝑚. So for all cases, 𝑛 ≤ 𝑚.

(ii) If 𝑋 spans 𝑉 , then 𝑋 is a basis and 𝑘 = 𝑛. Else, there exists some 𝑢𝑘+1 ∈ 𝑉 that is not in the
span of 𝑋 . Then, we will construct an arbitrary linear relation

𝑘+1
∑
𝑖=1

𝜇𝑖u𝑖 = 0

Note that this implies that 𝜇𝑘+1 = 0 because it is not in the span of 𝑋 , and that 𝜇𝑖 = 0 for all
𝑖 ≤ 𝑘 because the original 𝑋 was linearly independent. So we know that all the coefficients are
zero, and therefore 𝑋 ∪ {𝑢𝑘+1} is linearly independent.
Note that we can always choose this 𝑢𝑘+1 to be an element of 𝑌 because we just need to ensure
that 𝑢𝑘+1 ∉ span𝑋 . Suppose we cannot choose such a vector in 𝑌 . Then 𝑌 ⊆ span𝑋 ⟹
span𝑌 ⊆ span𝑋 ⟹ span𝑋 = 𝑉 , which is clearly false because 𝑋 does not span 𝑉 . This
is a contradiction, so we can always choose such a vector from 𝑌 . We can repeat this process
of taking vectors from 𝑌 and adding them to 𝑋 until we have a basis. This process will always
terminate in a finite amount of steps because we are taking new vectors from a finite set 𝑌 .
Therefore 𝑘 ≤ 𝑛, as we are adding vectors (increasing 𝑘) until 𝑘 = 𝑛.

It is perfectly possible to have a vector space that has infinite dimensionality. However, they will
be rarely touched upon in this course apart from specific examples, like the following example. Let
𝑉 = {𝑓 ∶ [0, 1] → ℝ ∶ 𝑓 smooth, 𝑓(0) = 𝑓(1) = 0}. Then let 𝑆𝑛(𝑥) = √2 sin(𝑛𝜋𝑥) where 𝑛 is a
natural number 1, 2,⋯. Clearly, 𝑆𝑛 ∈ 𝑉 for all 𝑛. The inner product of two of these 𝑆 functions is
given by

⟨𝑆𝑛, 𝑆𝑚⟩ = 2∫
1

0
sin(𝑛𝜋𝑥) sin(𝑚𝜋𝑥) d𝑥

= 𝛿𝑚𝑛

So 𝑆𝑛 are orthonormal and therefore linearly independent. So we can continue adding more vec-
tors until it becomes a basis. However, the set of all 𝑆𝑛 is already infinite—so 𝑉 must have infinite
dimensionality.

4.8 Multidimensional complex space
We define ℂ𝑛 by

ℂ𝑛 ≔ {z = (𝑧1, 𝑧2,⋯ , 𝑧𝑛) ∶ ∀𝑖, 𝑧𝑖 ∈ ℂ}
We define addition and scalar multiplication in obvious ways. Note that we have a choice over what
the scalars are allowed to be. If we only allow scalars that are real numbers, ℂ𝑛 can be considered
a real vector space with bases (0,⋯ , 1,⋯ , 0) and (0,⋯ , 𝑖,⋯ , 0) and dimension 2𝑛. Alternatively, if
we let the scalars be any complex numbers, we don’t need to have imaginary bases, thus giving us a
complex vector space with bases (0,⋯ , 1,⋯ , 0) and dimension 𝑛. We can say thatℂ𝑛 has dimension
2𝑛 over ℝ, and dimension 𝑛 over ℂ. From here on, unless stated otherwise, we treat ℂ𝑛 to be a
complex vector space.
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We can define the inner product by
⟨z,w⟩ ≔ ∑

𝑗
𝑧𝑗𝑤𝑗

The conjugate over the 𝑧 terms ensures that the inner product is positive definite. It has these prop-
erties, analogous to the properties of the inner product in the real vector space ℝ𝑛:

• (Hermitian) ⟨z,w⟩ = ⟨w, z⟩

• (linear/antilinear) ⟨z, 𝜆w + 𝜆′w′⟩ = 𝜆⟨z,w⟩ + 𝜆′⟨z,w′⟩ and ⟨𝜆z + 𝜆′z′, 𝑤⟩ = 𝜆⟨z,w⟩ + 𝜆′⟨z′,w⟩

• (positive definite) ⟨z, z⟩ = ∑𝑗 ||𝑧𝑗 ||
2 which is real and greater than or equal to zero, where the

equality holds if and only if z = 0.

We can also define the norm of z to satisfy |z| ≥ 0 and |z|2 = ⟨z, z⟩. Note that the standard basis for
ℂ𝑛 is orthonormal, since the inner product of any two basis vectors e𝑗 and e𝑘 is given by 𝛿𝑗𝑘.
Here is an example of the use of the complex inner product on ℂ1 = ℂ. Note first that ⟨𝑧, 𝑤⟩ = 𝑧𝑤.
Let 𝑧 = 𝑎1 + 𝑖𝑎2 and 𝑤 = 𝑏1 + 𝑖𝑏2 where 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ ℝ. Then

⟨𝑧, 𝑤⟩ = 𝑧𝑤
= (𝑎1𝑏1 + 𝑎2𝑏2) + 𝑖(𝑎1𝑏2 − 𝑎2𝑏1)
= (𝑧 ⋅ 𝑤) + 𝑖[𝑧, 𝑤]

We can therefore use the inner product to compute two different scalar products at the same time.

5 Linear maps
5.1 Introduction
A linear map (or linear transformation) is some operation 𝑇 ∶ 𝑉 → 𝑊 between vector spaces 𝑉 and
𝑊 preserving the core vector space structure (specifically, the linearity). It is defined such that

𝑇 (𝜆x + 𝜇y) = 𝜆𝑇(x) + 𝜇𝑇(y)

for all x, y ∈ 𝑉 where the scalars 𝜆 and 𝜇 match up with the scalar field that 𝑉 and𝑊 use (so this
could be ℝ or ℂ in our examples). Much of the language used for linear maps between vector spaces
is analogous to the language used for homomorphisms between groups.

Note that a linear map is completely determined by its action on a basis {e1,⋯ , e𝑛}where 𝑛 = dim𝑉 ,
since

𝑇 (∑
𝑖
𝑥𝑖e𝑖) = ∑

𝑖
𝑥𝑖𝑇(e𝑖)

We denote x′ = 𝑇(x) ∈ 𝑊 , and define x′ as the image of 𝑥 under 𝑇. Further, we define

Im(𝑇) = {x′ ∈ 𝑊 ∶ x′ = 𝑇(x) for some x ∈ 𝑉}

to be the image of 𝑇, and we define

ker(𝑇) = {x ∈ 𝑉 ∶ 𝑇(x) = 0}

to be the kernel of 𝑇.
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Lemma. ker𝑇 is a subspace of 𝑉 , and Im𝑇 is a subspace of𝑊 .

Proof. To verify that some subset is a subspace, it suffices to check that it is non-empty, and that it is
closed under linear combinations.

ker𝑇 is non-empty because 0 ∈ ker𝑇. For x, y ∈ ker𝑇, we have 𝑇(𝜆x+𝜇y) = 𝜆𝑇(x) + 𝜇𝑇(y) = 0 ∈
ker𝑇 as required.

Im𝑇 is non-empty because 0 ∈ Im𝑇. For x, y ∈ 𝑉 , let x′ = 𝑇(x) and y′ = 𝑇(y), therefore x′, y′ ∈
Im𝑇. Now, 𝜆x′ + 𝜇y′ = 𝑇(𝜆x + 𝜇y) so it is closed under linear combinations as required.

Here are some examples of images and kernels.

(i) The zero linear map x↦ 0 has:

Im𝑇 = {0}
ker𝑇 = 𝑉

(ii) The identity linear map x↦ x has:

Im𝑇 = 𝑉
ker𝑇 = {0}

(iii) Let 𝑇 ∶ ℝ3 → ℝ3, such that

𝑥′1 = 3𝑥1 − 𝑥2 + 5𝑥3
𝑥′2 = −𝑥1 − 2𝑥3
𝑥′3 = 2𝑥1 + 𝑥2 + 3𝑥 + 3

This map has

Im𝑇 = {𝜆(
3
−1
2
) + 𝜇(

1
0
1
) ∶ 𝜆, 𝜇 ∈ ℝ}

ker𝑇 = {𝜆(
2
−1
−1

) ∶ 𝜆 ∈ ℝ}

5.2 Rank and nullity
We define the rank of a linear map to be the dimension of its image, and the nullity of a linear map
to be the dimension of its kernel.

rank𝑇 = dim Im𝑇; null𝑇 = dimker𝑇

Note that therefore for 𝑇 ∶ 𝑉 → 𝑊 , we have rank𝑇 ≤ dim𝑊 and ker𝑇 ≤ dim𝑉 .
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Theorem. For some linear map 𝑇 ∶ 𝑉 → 𝑊 ,

rank𝑇 + null𝑇 = dim𝑉

Proof. This proof is non-examinable (without prompts). Let e1,⋯ , e𝑘 be a basis for ker𝑇, so 𝑇(e𝑖) =
0 for all valid 𝑖. We may extend this basis by adding more vectors e𝑖 where 𝑘 < 𝑖 ≤ 𝑛 until we have a
basis for𝑉 , where𝑛 = dim𝑉 . We claim that the setℬ = {𝑇(e𝑘+1),⋯ , 𝑇(e𝑛)} is a basis for Im𝑇. If this
is true, then clearly the result follows because 𝑘 = dimker𝑇 = null𝑇 and 𝑛−𝑘 = dim Im𝑇 = rank𝑇.
To prove the claim we need to show that ℬ spans Im𝑇 and that it is a linearly independent set.

• ℬ spans Im𝑇 because for any x = ∑𝑛
𝑖=1 𝑥𝑖e𝑖, we have

𝑇(x) =
𝑛
∑

𝑖=𝑘+1
𝑥𝑖𝑇(e𝑖) ∈ spanℬ

• ℬ is linearly independent. Consider a general linear combination of basis vectors:

𝑛
∑

𝑖=𝑘+1
𝜆𝑖𝑇(e𝑖) = 0 ⟹ 𝑇 (

𝑛
∑

𝑖=𝑘+1
𝜆𝑖e𝑖) = 0

so
𝑛
∑

𝑖=𝑘+1
𝜆𝑖e𝑖 ∈ ker𝑇

Because this is in the kernel, it may be written in terms of the basis vectors of the kernel. So,
we have

𝑛
∑

𝑖=𝑘+1
𝜆𝑖e𝑖 =

𝑘
∑
𝑖=1

𝜇𝑖e𝑖

This is a linear relation in terms of all basis vectors of 𝑉 . So all coefficients are zero.

5.3 Rotations
Linear maps are often used to describe geometrical transformations, such as rotations, reflections,
projections, dilations and shears. A convenient way to express these maps is by describing where the
basis vectors are mapped to. In ℝ2, we may describe a rotation anticlockwise around the origin by
angle 𝜃 with

e1 ↦ cos 𝜃e1 + sin 𝜃e2
e2 ↦ − sin 𝜃e1 + cos 𝜃e2

In ℝ3 we can construct a similar transformation for a rotation around the e3 axis with

e1 ↦ cos 𝜃e1 + sin 𝜃e2
e2 ↦ − sin 𝜃e1 + cos 𝜃e2
e3 ↦ e3

19



We can extend this to a general rotation in ℝ3 about an axis given by a unit normal vector n̂. For any
vector x ∈ ℝ3 we can resolve parallel and perpendicular to n̂ as follows.

x = x∥ + x⟂; x∥ = (x ⋅ n̂)n̂; x⟂ = x − (x ⋅ n̂)n̂

Note that n̂ resembles the e3 axis here, and x⟂ resembles the e1 axis. So we can compute the equival-
ent of e2 using the cross product, n̂ × x⟂ = n̂ × x. Now we may define the map with

x∥ ↦ x∥
x⟂ ↦ (cos 𝜃)x⟂ + (sin 𝜃)(n̂ × x)

So all together, we have

x↦ (cos 𝜃)x + (1 − cos 𝜃)(n̂ ⋅ x)n̂ + (sin 𝜃)(n̂ × x)

5.4 Reflections and projections
For a plane with normal n̂, we define a projection to be

x∥ ↦ 0
x⟂ ↦ x⟂
x↦ x⟂ = x − (x ⋅ n̂)n̂

and a reflection to be

x∥ ↦ −x∥
x⟂ ↦ x⟂
x↦ x⟂ − x∥ = x − 2(x ⋅ n̂)n̂

The same expressions also apply in ℝ2, where we replace the plane with a line.

5.5 Dilations
Given scale factors 𝛼, 𝛽, 𝛾 > 0, we define a dilation along the axes by

e1 ↦ 𝛼e1
e2 ↦ 𝛽e2
e3 ↦ 𝛾e3

5.6 Shears
Let a,b be orthogonal unit vectors inℝ3, i.e. |a| = |b| = 0 and a⋅b = 0, andwe define a real parameter
𝜆. A shear is defined as

x↦ x′ = x + 𝜆a(x ⋅ b)
a↦ a
b↦ b + 𝜆a

This definition holds equivalently in ℝ2.
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5.7 Matrices
Consider a linear map 𝑇 ∶ ℝ𝑛 → ℝ𝑚, with standard bases {e𝑖} ∈ ℝ𝑛, {f𝑎}, ∈ ℝ𝑚, and with 𝑇(x) = x′.
Let further

x = ∑
𝑖
𝑥𝑖e𝑖 =

⎛
⎜
⎜
⎝

𝑥1
𝑥2
⋮
𝑥𝑛

⎞
⎟
⎟
⎠
; 𝑥′ = ∑

𝑎
𝑥′𝑎f𝑎 =

⎛
⎜
⎜
⎝

𝑥′1
𝑥′2
⋮
𝑥′𝑚

⎞
⎟
⎟
⎠

Linearity implies that 𝑇 is fixed by specifying

𝑇(e𝑖) = e′𝑖 = C𝑖 ∈ ℝ𝑚

We take these C as columns of an𝑚× 𝑛 array or matrix𝑀, with rows denoted as R𝑎 ∈ ℝ𝑛.

(
↑ ↑
C1 ⋯ C𝑛
↓ ↓

) = 𝑀 = (
← R1 →

⋮
← R𝑚 →

)

𝑀 has entries𝑀𝑎𝑖 ∈ ℝ, where 𝑎 labels rows and 𝑖 labels columns, so

(C𝑖)𝑎 = 𝑀𝑎𝑖 = (R𝑎)𝑖

The action of 𝑇 is then given by the matrix𝑀 multiplying the vector x in the following way:

x′ = 𝑀x

defined by
𝑥′𝑎 = 𝑀𝑎𝑖𝑥𝑖

or explicitly:

⎛
⎜
⎜
⎝

𝑥′1
𝑥′2
⋮
𝑥′𝑚

⎞
⎟
⎟
⎠
=
⎛
⎜
⎜
⎝

𝑀11 𝑀12 ⋯ 𝑀1𝑛
𝑀21 𝑀22 ⋯ 𝑀2𝑛
⋮ ⋮ ⋱ ⋮

𝑀𝑚1 𝑀𝑚2 ⋯ 𝑀𝑚𝑛

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝑥1
𝑥2
⋮
𝑥𝑛

⎞
⎟
⎟
⎠
=
⎛
⎜
⎜
⎝

𝑀11𝑥1 +𝑀12𝑥2 +⋯+𝑀1𝑛𝑥𝑛
𝑀21𝑥1 +𝑀22𝑥2 +⋯+𝑀2𝑛𝑥𝑛

⋮
𝑀𝑚1𝑥1 +𝑀𝑚2𝑥2 +⋯+𝑀𝑚𝑛𝑥𝑛

⎞
⎟
⎟
⎠

To check that the matrix multiplication above gives the action of 𝑇, we can plug in a generic value x,
and we get

x′ = 𝑇 (∑
𝑖
𝑥𝑖e𝑖) = ∑

𝑖
𝑥𝑖𝑇(e𝑖) = ∑

𝑖
𝑥𝑖C𝑖

and by taking component 𝑎 of the vector, we have

𝑥′𝑎 = ∑
𝑖
𝑥𝑖(C𝑖)𝑎 = ∑

𝑖
𝑥𝑖𝑀𝑎𝑖

as required. Note also that
𝑥′𝑎 = 𝑀𝑎𝑖𝑥𝑖 = (R𝑎)𝑖𝑥𝑖 = R𝑎 ⋅ x

We can now regard the properties of 𝑇 as properties of𝑀 (suitably interpreted). For example:
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• Im(𝑇) = Im(𝑀) = span{C1,⋯ ,C𝑛}. In words, the image of a matrix is the span of its columns.
• ker(𝑇) = ker(𝑀) = {x ∶ ∀𝑎,R𝑎 ⋅ x = 0}. In some sense, the kernel of 𝑀 is the subspace
perpendicular to all of its rows.

Example. (i) The zero map ℝ𝑛 → ℝ𝑚 corresponds to the zero matrix

𝑀 = 0 with𝑀𝑎𝑖 = 0

(ii) The identity map ℝ𝑛 → ℝ𝑛 corresponds to the identity (or unit) matrix

𝑀 = 𝐼 with 𝐼𝑖𝑗 = 𝛿𝑖𝑗

(iii) The map ℝ3 → ℝ3 given by x′ = 𝑇(x) = 𝑀x with

𝑀 = (
3 1 5
−1 0 −2
2 1 3

)

gives

(
𝑥′1
𝑥′2
𝑥′3
) = (

3𝑥1 + 𝑥2 + 5𝑥3
−𝑥1 − 2𝑥3

2𝑥1 + 𝑥2 + 3𝑥3
)

In this case, we may read off the column vectors C𝑎 from the matrix. Note that since they form
a linearly dependent set, we have

Im(𝑇) = Im(𝑀) = span{C1,C2,C3} = span{C1,C2}

Here,R2×R3 = (2 −1 −1)⊺ = u is actually perpendicular to all rows as they form a linearly
dependent set. So

ker(𝑇) = ker(𝑀) = {𝜆u}

(iv) A rotation through 𝜃 in ℝ2 is given by (building from the images of the basis vectors):

(cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 )

(v) A dilation x′ = 𝑀x with scale factors 𝛼, 𝛽, 𝛾 along axes in ℝ3 is given by

(
𝛼 0 0
0 𝛽 0
0 0 𝛾

)

(vi) A reflection in a plane perpendicular to a unit vector n̂ is given by a matrix 𝐻 that must have
the property that

x′ = 𝐻x = x − 2(x − n̂)n̂
𝑥′𝑖 = 𝑥𝑖 − 2𝑥𝑗𝑛𝑗𝑛𝑖 = 𝐻𝑖𝑗𝑥𝑗

And by comparing coefficients of 𝑥𝑗 , and using 𝛿 to rewrite 𝑥𝑖 using the 𝑗 index, we have

𝐻𝑖𝑗 = 𝛿𝑖𝑗 − 2𝑛𝑖𝑛𝑗
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For example, with n̂ = 1
√3
(1 1 1), then 𝑛𝑖𝑛𝑗 =

1
3
for all 𝑖, 𝑗, so

𝐻 = 1
3 (

1 −2 −2
−2 1 −2
−2 −2 1

)

(vii) A shear is defined by a matrix 𝑆 such that

x′ = 𝑆x = x + 𝜆(b ⋅ x)a

where a, b are unit vectors with a ⟂ b, and where 𝜆 is a real scale factor. Therefore:

𝑥′𝑖 = 𝑥𝑖 + 𝜆𝑏𝑗𝑥𝑗𝑎𝑖 = 𝑆 𝑖𝑗𝑥𝑗
∴ 𝑆 𝑖𝑗 = 𝛿𝑖𝑗 + 𝜆𝑎𝑖𝑏𝑗

For example in ℝ2 with a = (10) and b = (01), we have

𝑆 = (1 𝜆
0 1)

(viii) A rotation matrix 𝑅 in ℝ3 with axis n̂ and angle 𝜃 must satisfy

x′ = 𝑅x = (cos 𝜃)x + (1 − cos 𝜃)(n̂ ⋅ x)n̂ + (sin 𝜃)(n̂ × x)
𝑥′𝑖 = (cos 𝜃)𝑥𝑖 + (1 − cos 𝜃)𝑛𝑗𝑥𝑗𝑛𝑖 − (sin 𝜃)𝜀𝑖𝑗𝑘𝑥𝑗𝑛𝑘 = 𝑅𝑖𝑗𝑥𝑗

∴ 𝑅𝑖𝑗 = 𝛿𝑖𝑗(cos 𝜃) − (1 − cos 𝜃)𝑛𝑖𝑛𝑗 − (sin 𝜃)𝜀𝑖𝑗𝑘𝑛𝑘

5.8 Matrix of a general linear map
Consider a linear map 𝑇 ∶ 𝑉 → 𝑊 between general real or complex vector spaces of dimension 𝑛,𝑚
respectively. We will choose bases {e𝑖} for 𝑉 and {f𝑎} for𝑊 . The matrix representing the linear map
𝑇 with respect to these bases is an 𝑚 × 𝑛 array with entries 𝑀𝑎𝑖 ∈ ℝ or ℂ as appropriate, defined
by

𝑇(e𝑖) = ∑
𝑎
f𝑎𝑀𝑎𝑖

Then
x′ = 𝑇(x) ⟺ 𝑥′𝑎 = ∑

𝑖
𝑀𝑎𝑖𝑥𝑖 = 𝑀𝑎𝑖𝑥𝑖

where
x = ∑

𝑖
𝑥𝑖e𝑖; x′ = ∑

𝑎
𝑥𝑎f𝑎

Note therefore that (in real vector spaces) given choices of bases {e𝑖} and {f𝑎}, 𝑉 is identified withℝ𝑛
in the sense that any vector has 𝑛 real components, and that 𝑊 is identified with 𝑅𝑚 analogously,
and that therefore 𝑇 is identified with an𝑚× 𝑛 real matrix𝑀. Note further that entries in column 𝑖
of𝑀 are components of 𝑇(e𝑖) with respect to basis {f𝑎}.

23



5.9 Linear combinations
If 𝑇 ∶ 𝑉 → 𝑊 and 𝑆 ∶ 𝑉 → 𝑊 , between real or complex vector spaces 𝑉,𝑊 of dimension 𝑛,𝑚
respectively, are linear, then

𝛼𝑇 + 𝛽𝑆 ∶ 𝑉 → 𝑊
is also a linear map, where

(𝛼𝑇 + 𝛽𝑆)(x) = 𝛼𝑇(x) + 𝛽𝑆(x)
for any x ∈ 𝑉 . So the set of linear maps is a vector space. If𝑀 and 𝑁 are the𝑚×𝑁 matrices for 𝑇, 𝑆
then 𝛼𝑀 + 𝛽𝑁 is the𝑚× 𝑛matrix for the linear combination above, where

(𝛼𝑀 + 𝛽𝑁)𝑎𝑖 + 𝛼𝑀𝑎𝑖 + 𝛽𝑁𝑎𝑖; 𝑎 = 1,⋯ ,𝑚; 𝑖 = 1,⋯ , 𝑛

with respect to the same bases.

5.10 Matrix multiplication
If 𝐴 is an𝑚×𝑛matrix with entries 𝐴𝑎𝑖, and 𝐵 is an 𝑛×𝑝matrix with entries 𝐵𝑖𝑟, then we define 𝐴𝐵
to be an𝑚× 𝑝matrix with entries

(𝐴𝐵)𝑎𝑟 = 𝐴𝑎𝑖𝐵𝑖𝑟; 𝑎 = 1,⋯ ,𝑚; 𝑖 = 1,⋯ , 𝑛; 𝑟 = 1,⋯ , 𝑝

The product is not defined unless the amount of columns of 𝐴 matches the number of rows of
𝐵.
Matrix multiplication corresponds to composition of linear maps. Consider linear maps:

𝑆 ∶ ℝ𝑝 → ℝ𝑛; 𝑆(x) = 𝐵x, x ∈ ℝ𝑝

𝑇 ∶ ℝ𝑛 → ℝ𝑚; 𝑇(x) = 𝐴x, x ∈ ℝ𝑛

⟹ 𝑇 ∘ 𝑆 ∶ ℝ𝑝 → ℝ𝑚; (𝑇 ∘ 𝑆)(x) = (𝐴𝐵)𝑥

since
[(𝐴𝐵)x]𝑎 = (𝐴𝐵)𝑎𝑟𝑥𝑟

and
𝐴(𝐵(x)) = 𝐴𝑎𝑖(𝐵x)𝑖 = 𝐴𝑎𝑖𝐵𝑖𝑟𝑥𝑟 = (𝐴𝐵)𝑎𝑟𝑥𝑟

as required. The definition of matrix multiplication ensures that these answers agree. Of course, this
proof works for complex or general vector spaces.

Whenever the products are defined, then for any scalars 𝜆 and 𝜇:
• (𝜆𝑀 + 𝜇𝑁)𝑃 = 𝜆𝑀𝑃 + 𝜇𝑁𝑃
• 𝑃(𝜆𝑀 + 𝜇𝑁) = 𝜆𝑃𝑀 + 𝜇𝑃𝑁
• (𝑀𝑁)𝑃 = 𝑀(𝑁𝑃)
• 𝐼𝑀 = 𝑀𝐼 = 𝑀 where 𝐼𝑖𝑗 = 𝛿𝑖𝑗

We may view matrix multiplication in the following ways.

(i) Regarding a vector x ∈ ℝ𝑛 as a column vector (an 𝑛 × 1 matrix), then the matrix-vector and
matrix-matrix multiplication rules agree.
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(ii) Consider the product𝐴𝐵where𝐴 is an𝑚×𝑛matrix and𝐵 is an𝑛×𝑝, with columnsC𝑟(𝐵) ∈ ℝ𝑛

and columns C𝑟(𝐴𝐵) ∈ ℝ𝑚, where 1 ≤ 𝑟 ≤ 𝑝. The columns are related by C𝑟(𝐴𝐵) = 𝐴C𝑟(𝐵).
Less formally, each column in the rightmatrix is acted on by the left matrix as if it were a vector,
then the resultant vectors are combined into the output matrix.

(iii) In terms of rows and columns,

𝐴𝐵 = (
⋮

← R𝑛(𝐴) →
⋮

)(
↑

⋯ C𝑟(𝐵) ⋯
↓

)

gives

(𝐴𝐵)𝑎𝑟 = [R𝑎(𝐴)]𝑖 [C𝑟(𝐵)]𝑖
= R𝑎(𝐴) ⋅ C𝑟(𝐵) for real matrices, where the ⋅ is the dot product in 𝑅𝑛

5.11 Matrix inverses
If 𝐴 is an𝑚×𝑛 then 𝐵, an 𝑛×𝑚matrix, is a left inverse of 𝐴 if 𝐵𝐴 = 𝐼 (the 𝑛× 𝑛 identity matrix). 𝐶
is a right inverse of 𝐴 if 𝐴𝐶 = 𝐼 (the𝑚×𝑚 identity matrix). If𝑚 = 𝑛 (𝐴 is square), then one of these
implies the other; there is no distinction between left and right inverses. We say that 𝐵 = 𝐶 = 𝐴−1,
the inverse of the matrix 𝐴, such that 𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼. Not every matrix has an inverse. If such an
inverse exists, 𝐴 is called invertible, or non-singular.

Consider x, x′ ∈ ℝ𝑛 orℂ𝑛, and𝑀 is an 𝑛×𝑛matrix. If𝑀−1 exists, we can solve the equation x′ = 𝑀x
for x, given x′, because we can apply the matrix inverse on the left. For example, where 𝑛 = 2, we
have

𝑀 = (𝑀11 𝑀12
𝑀21 𝑀22

)

and

𝑥′1 = 𝑀11𝑥1 +𝑀12𝑥2
𝑥′2 = 𝑀21𝑥1 +𝑀22𝑥2

We can solve these simultaneous equations to construct the general matrix inverse.

𝑀22𝑥′1 −𝑀12𝑥′2 = (det𝑀)𝑥1
−𝑀21𝑥′1 +𝑀11𝑥′2 = (det𝑀)𝑥2

where det𝑀 = 𝑀11𝑀22 − 𝑀12𝑀21, called the determinant of the matrix. Where the determinant is
nonzero, the matrix inverse

𝑀−1 = 1
det𝑀 ( 𝑀22 −𝑀12

−𝑀21 𝑀11
)

exists. Note that

C1 = 𝑀e1 = (𝑀11
𝑀21

)

C2 = 𝑀e2 = (𝑀12
𝑀22

)

⟺ det𝑀 = [C1,C2] = [𝑀e1,𝑀e2] in ℝ2
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So the determinant gives the signed factor by which areas are scaled under the action of𝑀. det𝑀 is
nonzero if and only if𝑀e1 and𝑀e2 are linearly independent, which is true if and only if the image
of𝑀 has dimension 2, i.e.𝑀 has maximal rank. For example, a shear

𝑆(𝜆) = (1 𝜆
0 1)

has determinant 1, so areas are preserved. In particular, in this case,

𝑆−1(𝜆) = (1 −𝜆
0 1 ) = 𝑆(−𝜆)

As another example, we know that a matrix 𝑅(𝜃) for a rotation about a fixed axis n̂ through angle 𝜃
has formula

𝑅(𝜃)𝑖𝑗𝑅(−𝜃)𝑗𝑘 = (𝛿𝑖𝑗 cos 𝜃 + (1 − cos 𝜃)𝑛𝑖𝑛𝑗 − 𝜀𝑖𝑗𝑝𝑛𝑝 sin 𝜃) × (𝛿𝑗𝑘 cos 𝜃 + (1 − cos 𝜃)𝑛𝑗𝑛𝑘 + 𝜀𝑗𝑘𝑞𝑛𝑞 sin 𝜃)

Expanding out, noting that 𝑛𝑖𝑛𝑖 = 1 as n̂ is a unit vector, and cancelling:

= 𝛿𝑖𝑘 cos2 𝜃 + 2 cos 𝜃(1 − cos 𝜃)𝑛𝑖𝑛𝑘 + (1 − cos 𝜃)2𝑛𝑖𝑛𝑘 − 𝜀𝑖𝑗𝑝𝜀𝑗𝑘𝑞𝑛𝑝𝑛𝑞 sin2 𝜃

By using an 𝜀𝜀 identity:

= 𝛿𝑖𝑘 cos2 𝜃 + (1 − cos2 𝜃)𝑛𝑖𝑛𝑘 + 𝛿𝑖𝑘𝑛𝑝𝑛𝑝 sin2 𝜃 − (sin2 𝜃)𝑛𝑖𝑛𝑘
= 𝛿𝑖𝑘 cos2 𝜃 + 𝛿𝑖𝑘𝑛𝑝𝑛𝑝 sin2 𝜃
= 𝛿𝑖𝑘 cos2 𝜃 + 𝛿𝑖𝑘 sin2 𝜃
= 𝛿𝑖𝑘

as required.

6 Transpose and Hermitian conjugate
6.1 Transpose
If𝑀 is an𝑚× 𝑛 (real or complex) matrix, the transpose𝑀⊺ is an 𝑛 × 𝑚matrix defined by

(𝑀⊺)𝑖𝑎 = 𝑀𝑎𝑖

which essentially exchanges rows and columns. Here are some key properties.

• (𝛼𝐴 + 𝛽𝐵)⊺ = 𝛼𝐴⊺ + 𝛽𝐵⊺ for 𝛼, 𝛽 scalars, and 𝐴, 𝐵 both𝑚× 𝑛matrices.
• (𝐴𝐵)⊺ = 𝐵⊺𝐴⊺, where 𝐴 is𝑚× 𝑛 and 𝐵 is 𝑛 × 𝑝. This is because

[(𝐴𝐵)⊺]𝑟𝑎 = (𝐴𝐵)𝑎𝑟
= 𝐴𝑎𝑖𝐵𝑖𝑟
= (𝐴⊺)𝑖𝑎(𝐵⊺)𝑟𝑖
= (𝐵⊺)𝑟𝑖(𝐴⊺)𝑖𝑎
= (𝐵⊺𝐴⊺)𝑟𝑎

• If x is a column vector (or an 𝑛 × 1matrix), x⊺ is the equivalent row vector (a 1 × 𝑛matrix).
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• The inner product in ℝ𝑛 can therefore be written x ⋅ y = x⊺y. Note that this is not equivalent
to xy⊺, which is known as the outer product, which results in a matrix not a scalar.

• If𝑀 is 𝑛 × 𝑛 (square) then𝑀 is:

– symmetric iff𝑀⊺ = 𝑀, or𝑀𝑖𝑗 = 𝑀𝑗𝑖

– antisymmetric iff𝑀⊺ = −𝑀, or𝑀𝑖𝑗 = −𝑀𝑗𝑖

• Any𝑀 which is square can be written as a sum of a symmetric and and an antisymmetric part

𝑀 = 𝑆 + 𝐴 where 𝑆 = 1
2(𝑀 +𝑀⊺); 𝐴 = 1

2(𝑀 −𝑀⊺)

as 𝑆 is symmetric and 𝐴 is antisymmetric by construction.

• If 𝐴 is 3 × 3 and antisymmetric, then we can write

𝐴𝑖𝑗 = 𝜀𝑖𝑗𝑘𝑎𝑘 where 𝐴 = (
0 𝑎3 −𝑎2
−𝑎3 0 𝑎1
𝑎2 −𝑎1 0

)

Then, we have
(𝐴x)𝑖 = 𝜀𝑖𝑗𝑘𝑎𝑘𝑥𝑗 = (x × a)𝑖

6.2 Hermitian conjugate
Let 𝑀 be an 𝑚 × 𝑛 matrix. Then the Hermitian conjugate (also known as the conjugate transpose)
𝑀† is an 𝑛 × 𝑚matrix defined by

(𝑀†)𝑖𝑎 = 𝑀𝑎𝑖

If 𝑀 is square, then 𝑀 is Hermitian if and only if 𝑀† = 𝑀, or alternatively 𝑀𝑖𝑎 = 𝑀𝑎𝑖; 𝑀 is anti-
Hermitian if 𝑀† = −𝑀, or alternatively 𝑀𝑖𝑎 = −𝑀𝑎𝑖. Similarly to above, if z is a column vector in
ℂ𝑛 (an 𝑛 × 1matrix), then the complex inner product is given by z ⋅w = z†w.

6.3 Trace
For a complex 𝑛 × 𝑛 (square) matrix𝑀, the trace of the matrix, denoted tr(𝑀), is defined by

tr(𝑀) = 𝑀𝑖𝑖 = 𝑀11 +𝑀22 +⋯+𝑀𝑛𝑛

It has a number of key properties.

• tr(𝛼𝑀 + 𝛽𝑁) = 𝛼 tr𝑀 + 𝛽 tr𝑁 where 𝛼 and 𝛽 are scalars, and𝑀 and 𝑁 are 𝑛 × 𝑛matrices.
• tr(𝑀𝑁) = tr(𝑁𝑀) where 𝑀 is 𝑚 × 𝑛 and 𝑁 is 𝑛 × 𝑚. 𝑀𝑁 and 𝑁𝑀 need not have the same
dimension, but their traces are identical. We can check this as follows: tr(𝑀𝑁) = (𝑀𝑁)𝑎𝑎 =
𝑀𝑎𝑖𝑁 𝑖𝑎 = 𝑁 𝑖𝑎𝑀𝑎𝑖 = (𝑁𝑀)𝑖𝑖 = tr(𝑁𝑀).

• tr(𝑀⊺) = tr(𝑀)
• tr(𝐼) = 𝛿𝑖𝑖 = 𝑛 where 𝑛 is the dimensionality of the vector space.
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• If 𝑆 is 𝑛 × 𝑛 and symmetric, let

𝑇 = 𝑆 − 1
𝑛 tr(𝑆)𝐼

or 𝑇𝑖𝑗 = 𝑆 𝑖𝑗 −
1
𝑛 tr(𝑆)𝛿𝑖𝑗

then tr(𝑇) = 𝑇𝑖𝑖 = 𝑆 𝑖𝑖 =
1
𝑛 tr(𝑆)𝛿𝑖𝑖

= tr(𝑆) − 1
𝑛 tr(𝑆) = 0

Then 𝑆 = 𝑇 + 1
𝑛
tr(𝑆)𝐼 where 𝑇 is traceless and the right hand term 1

𝑛
tr(𝑆)𝐼 is ‘pure trace’.

• If 𝐴 is 𝑛 × 𝑛 antisymmetric, tr(𝐴) = 𝐴𝑖𝑖 = 0.

6.4 Orthogonal matrices
A real 𝑛 × 𝑛matrix 𝑈 is orthogonal if and only if its transpose is its inverse.

𝑈⊺𝑈 = 𝑈𝑈⊺ = 𝐼

These conditions can be written
𝑈𝑘𝑖𝑈𝑘𝑗 = 𝑈 𝑖𝑘𝑈𝑗𝑘 = 𝛿𝑖𝑗

In words, the left hand side says that the columns of 𝑈 are orthonormal, and the middle part of the
equation says that the rows of 𝑈 are orthonormal.

𝑈⊺𝑈 = (
⋮

← C𝑖 →
⋮

)(
↑

⋯ C𝑗 ⋯
↓

) = (
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

)

For example, if 𝑈 = 𝑅(𝜃) is a rotation through 𝜃 around an axis n̂, then 𝑈⊺ = 𝑅(𝜃)⊺ = 𝑅(−𝜃) =
𝑅(𝜃)−1 = 𝑈−1. An equivalent definition for orthogonality is: 𝑈 is orthogonal if and only if it preserves
the inner product on ℝ𝑛.

(𝑈x) ⋅ (𝑈y) = x ⋅ y ∀x, y ∈ ℝ𝑛

To check equivalence:

(𝑈x) ⋅ (𝑈y) = (𝑈x)⊺(𝑈y)
= (x⊺𝑈⊺)(𝑈y)
= x⊺(𝑈⊺𝑈)y
= x⊺y
= x ⋅ y

which is true if and only if𝑈⊺𝑈 = 𝐼. Note that inℝ𝑛, the columns of𝑈 are𝑈e𝑖,⋯ ,𝑈e𝑛 so the inner
product is preserved when 𝑈 acts on the standard basis vectors if and only if

(𝑈e𝑖) ⋅ (𝑈e𝑗) = e𝑖 ⋅ e𝑗 = 𝛿𝑖𝑗

i.e. the columns of 𝑈 are orthonormal.
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Let us now try to find a general 2 × 2 orthogonal matrix. We begin by transforming the basis vectors.
e𝑖 = (10)must be transformed to a unit vector. Therefore, in the most general sense:

𝑈 (10) = (cos 𝜃sin 𝜃)

for someparameter 𝜃. Now, the other basis vector e2must be orthogonal to it, and so itmust be

𝑈 (01) = ±(− sin 𝜃cos 𝜃 )

So we have two cases:

𝑈 = 𝑅 = (cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ) ; 𝑈 = 𝐻 = (cos 𝜃 sin 𝜃

sin 𝜃 − cos 𝜃)

where 𝑅 is a rotation by 𝜃 and 𝐻 is a reflection in ℝ2, where

n̂ = (
− sin 𝜃

2
cos 𝜃

2

)

because

𝐻𝑖𝑗 = 𝛿𝑖𝑗 − 2𝑛𝑖𝑛𝑗∴ 𝐻 = (
1 − 2 sin2 𝜃

2
2 sin 𝜃

2
cos 𝜃

2
2 sin 𝜃

2
cos 𝜃

2
1 − 2 cos2 𝜃

2

)

which simplifies as required. Note that det𝑅 = +1, but det𝐻 = −1.

6.5 Unitary matrices
A complex 𝑛 × 𝑛matrix 𝑈 is called unitary if and only if

𝑈†𝑈 = 𝑈𝑈† = 𝐼

Equivalently, 𝑈 is unitary if and only if it preserves the complex inner product on ℂ𝑛:

⟨𝑈z, 𝑈w⟩ = ⟨z,w⟩ ∀z,w ∈ ℂ𝑛

To check equivalence:

⟨𝑈z, 𝑈w⟩ = (𝑈z)†(𝑈w)
= (z†𝑈†)(𝑈w)
= z†(𝑈†𝑈)w
= z†w

which of course matches if and only if 𝑈†𝑈 = 𝐼.
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7 Adjugates and alternating forms
7.1 Inverses in two dimensions
Consider a linearmap 𝑇 ∶ ℝ𝑛 → ℝ𝑛. If 𝑇 is invertible (i.e. bijective), then ker𝑇 = {0} as 𝑇 is injective,
and Im𝑇 = ℝ𝑛 as 𝑇 is surjective. These conditions are actually equivalent due to the rank-nullity
theorem. Conversely, if the conditions hold, then 𝑇(e1), 𝑇(e2),⋯ , 𝑇(e𝑛)must be a basis of the image,
sowe can just define𝑇−1 by defining its actions on the basis vectors𝑇(e1), 𝑇(e2)⋯𝑇(e𝑛), specifically
mapping them to the standard basis.

How can we test whether the conditions above hold for a matrix𝑀 representing 𝑇, and how can we
find𝑀−1 from𝑀 explicitly? For any 𝑛 × 𝑛 matrix𝑀 (not necessarily invertible), we will define the
adjugate matrix 𝑀̃ and the determinant det𝑀 such that

𝑀̃𝑀 = (det𝑀)𝐼 (∗)

Then if det𝑀 ≠ 0,𝑀 is invertible, where

𝑀−1 = 1
det𝑀𝑀̃

From 𝑛 = 2, recall that (∗) holds with

𝑀 = (𝑀11 𝑀21
𝑀12 𝑀22

) ; 𝑀̃ = ( 𝑀22 −𝑀21
−𝑀12 𝑀11

) ; det𝑀 = [𝑀e1,𝑀e2] = 𝜀𝑖𝑗𝑀𝑖1𝑀𝑗2

The determinant in this case is the factor by which areas scale under 𝑀. det𝑀 ≠ 0 if and only if
𝑀e1,𝑀e2 are linearly independent.

7.2 Three dimensions
For 𝑛 = 3, we will define similarly

det𝑀 = [𝑀e1,𝑀e2,𝑀e3] = 𝜀𝑖𝑗𝑘𝑀𝑖1𝑀𝑗2𝑀𝑘3

We define it like this because this is the factor by which volumes scale under𝑀 in three dimensions.
So

det𝑀 ≠ 0 ⟺ {𝑀e1,𝑀e2,𝑀e3} linearly independent, or Im𝑀 = ℝ3

Now we define 𝑀̃ from𝑀 using row/column notation.

R1(𝑀̃) = C2(𝑀) × C3(𝑀)
R2(𝑀̃) = C3(𝑀) × C1(𝑀)
R3(𝑀̃) = C1(𝑀) × C2(𝑀)

Note that therefore,

(𝑀̃𝑀)𝑖𝑗 = R𝑖(𝑀̃) ⋅ C𝑗(𝑀) = (C1(𝑀) × C2(𝑀) ⋅ C3(𝑀))⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
det𝑀

𝛿𝑖𝑗
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as claimed. For example, let us invert the following matrix.

𝑀 = (
1 3 0
0 −1 −2
4 1 −1

)

C2 × C3 = (
3
−1
1
) × (

0
2
−1

) = (
−1
3
6
)

C3 × C1 = (
0
2
−1

) × (
1
0
4
) = (

8
−1
−2

)

C1 × C2 = (
1
0
4
) × (

3
−1
1
) = (

4
11
−1

)

𝑀̃ = (
−1 3 6
8 −1 −2
4 11 −1

)

det𝑀 = C1 ⋅ C2 × C3 = 23
𝑀̃𝑀 = 23𝐼

7.3 Levi-Civita 𝜀 in higher dimensions
Recall (from IA Groups):

• A permutation𝜎 on the set {1, 2,⋯ , 𝑛} is a bijection from the set to itself, specified by an ordered
list 𝜎(1), 𝜎(2),⋯ , 𝜎(𝑛).

• Permutations form a group 𝑆𝑛, called the symmetric group of order 𝑛!
• A transposition 𝜏 = (𝑝, 𝑞) where 𝑝 ≠ 𝑞 is a permutation that swaps 𝑝 and 𝑞.
• Any permutation is a product of of 𝑘 transpositions, where 𝑘 is unique modulo 2 for a given 𝜎.
In this course, we will write 𝜀(𝜎) to mean the sign (or signature) of the permutation, (−1)𝑘. 𝜎
is even if the sign is 1, and odd if the sign is −1.

The alternating symbol 𝜀 in ℝ𝑛 or ℂ𝑛 is an 𝑛-index object (tensor) defined by

𝜀𝑖𝑗⋯𝑙⏟
𝑛 indices

=
⎧
⎨
⎩

+1 if 𝑖, 𝑗⋯ , 𝑙 is an even permutation of 1, 2,⋯ , 𝑛
−1 if 𝑖, 𝑗⋯ , 𝑙 is an odd permutation of 1, 2,⋯ , 𝑛
0 otherwise, i.e. if any indices take the same value

Thus if 𝜎 is any permutation, then
𝜀𝜎(1)⋯𝜎(𝑛) = 𝜀(𝜎)

So 𝜀𝑖𝑗⋯𝑙 is totally antisymmetric and changes sign whenever a pair of indices are exchanged.

Definition. Given vectors v1,⋯ v𝑛 ∈ ℝ𝑛 or ℂ𝑛, the alternating form combines them to give
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the scalar

[v1, v2,⋯ , v𝑛] = 𝜀𝑖𝑗⋯𝑙(v1)𝑖(v2)𝑗⋯(v𝑛)𝑙
= ∑

𝜎∈𝑆𝑛
𝜀(𝜎) ⋅ (v1)𝜎(1) ⋅ (v2)𝜎(2)⋯(v𝑛)𝜎(𝑛)

7.4 Properties
(i) The alternating form is multilinear.

[v1,⋯ , v𝑝−1, 𝛼u + 𝛽w, v𝑝+1⋯, v𝑛] = 𝛼[v1,⋯ , v𝑝−1,u, v𝑝+1⋯, v𝑛]
+ 𝛽[v1,⋯ , v𝑝−1,w, v𝑝+1⋯, v𝑛]

(ii) It is totally antisymmetric. [v𝜎(1), v𝜎(2),⋯ , v𝜎(𝑛)] = 𝜀(𝜎)[v1,⋯ , v𝑛]
(iii) Standard basis vectors give a positive result: [e𝑖,⋯ , e𝑛] = 1.
These three properties fix the alternating form completely, and they also imply

(iv) If v𝑝 = v𝑞 where 𝑝 ≠ 𝑞, then

[v1,⋯ , v𝑝,⋯ , v𝑞,⋯ , v𝑛] = 0

(v) If v𝑝 can be written as a non-trivial linear combination of the other vectors, then

[v1,⋯ , v𝑝,⋯ , v𝑛] = 0

Property (iv) follows from property (ii), where we swap v𝑝 and v𝑞. Property (v) follows from substi-
tuting the linear combination representation of v𝑝 into the alternating form expression, the using
properties (i) and (iv). To justify (ii) above, it suffices to check a transposition 𝜏 = (𝑝 𝑞) where
(without loss of generality) 𝑝 < 𝑞, then since transpositions generate all permutations the result
follows.

[v1,⋯ , v𝑝−1, v𝑞, v𝑝+1,⋯ , v𝑞−1, v𝑝, v𝑞+1,⋯ , v𝑛]
= ∑

𝜎
𝜀(𝜎)(v1)𝜎(1)⋯(v𝑝−1)𝜎(𝑝−1)(v𝑞)𝜎(𝑝)(v𝑝+1)𝜎(𝑝+1)

⋯(v𝑞−1)𝜎(𝑞−1)(v𝑝)𝜎(𝑞)(v𝑞+1)𝜎(𝑞+1)
= ∑

𝜎
𝜀(𝜎)(v1)𝜎′(1)⋯(v𝑝−1)𝜎′(𝑝−1)(v𝑞)𝜎′(𝑞)(v𝑝+1)𝜎′(𝑝+1)

⋯(v𝑞−1)𝜎′(𝑞−1)(v𝑝)𝜎′(𝑝)(v𝑞+1)𝜎′(𝑞+1)
where 𝜎′ = 𝜎𝜏

= −∑
𝜎′
𝜀(𝜎′)(v1)𝜎′(1)⋯(v𝑝−1)𝜎′(𝑝−1)(v𝑝)𝜎′(𝑝)(v𝑝+1)𝜎′(𝑝+1)

⋯(v𝑞−1)𝜎′(𝑞−1)(v𝑞)𝜎′(𝑞)(v𝑞+1)𝜎′(𝑞+1)
= −[v1,⋯ , v𝑝−1, v𝑝, v𝑝+1,⋯ , v𝑞−1, v𝑞, v𝑞+1,⋯ , v𝑛]

as required.
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Proposition. [v1, v2,⋯ , v𝑛] ≠ 0 if and only if v1, v2,⋯ , v𝑛 are linearly independent.

Proof. To show the forward implication, let us suppose that they are not linearly independent and use
property (v). Thenwe can express somev𝑝 as a linear combination of the others. Then [v1, v2,⋯ , v𝑛] =
0.
To show the other direction, note that v1, v2,⋯ , v3 means that they span, and if they span then each
of the standard basis vectors e𝑖 can be written as a linear combination of the v vectors, i.e. e𝑖 = 𝑈𝑎𝑖v𝑎.
Then

[e1, e2,⋯ , e𝑛] = [𝑈𝑎1v𝑎, 𝑈𝑏2v𝑏,⋯ ,𝑈𝑐𝑛v𝑐]
= 𝑈𝑎1𝑈𝑏2⋯𝑈𝑐𝑛[v𝑎, v𝑏,⋯ , v𝑐]
= 𝑈𝑎1𝑈𝑏2⋯𝑈𝑐𝑛𝜀𝑎𝑏⋯𝑐[v1, v2,⋯ , v𝑛]

By definition, the left hand side is +1, so [v1, v2,⋯ , v𝑛] is nonzero.

As an example of these ideas, let

v1 =
⎛
⎜
⎜
⎝

𝑖
0
0
2

⎞
⎟
⎟
⎠
; v2 =

⎛
⎜
⎜
⎝

0
0
5𝑖
0

⎞
⎟
⎟
⎠
; v3 =

⎛
⎜
⎜
⎝

3
2𝑖
0
0

⎞
⎟
⎟
⎠
; v4 =

⎛
⎜
⎜
⎝

0
0
𝑖
1

⎞
⎟
⎟
⎠
; where v𝑗 ∈ ℂ4

Then

[v1, v2, v3, v4] = 5𝑖[v1, e3, v3, v4]
= 5𝑖[𝑖e1 + 2e4, e3, 3e1 + 2𝑖e2, −𝑖e3 + e4]

By multilinearity, we can eliminate all e3 terms not in the second position because they will cancel
with it, giving

= 5𝑖[𝑖e1 + 2e4, e3, 3e1 + 2𝑖e2, e4]

And likewise with e4:

= 5𝑖[𝑖e1, e3, 3e1 + 2𝑖e2, e4]

And again with e1:

= 5𝑖[𝑖e1, e3, 2𝑖e2, e4]
= 5𝑖 ⋅ 2𝑖 ⋅ 𝑖[e1, e3, e2, e4]
= 10𝑖[e1, e2, e3, e4]
= 10𝑖
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8 Determinant
8.1 Definition
For an 𝑛 × 𝑛 matrix 𝑀 with columns C𝑎 = 𝑀e𝑎, then the determinant det(𝑀) = |𝑀| ∈ ℝ or ℂ is
given by any of the following equivalent definitions.

det𝑀 = [C1,C2,⋯ ,C𝑛]
= [𝑀e1,𝑀e2,⋯ ,𝑀e𝑛]
= 𝜀𝑖𝑗⋯𝑙𝑀𝑖1𝑀𝑗2⋯𝑀𝑙𝑛

= ∑
𝜎
𝜀(𝜎)𝑀𝜎(1)1𝑀𝜎(2)2⋯𝑀𝜎(𝑛)𝑛

Here are some examples.

(i) 𝑛 = 2
det𝑀 =∑

𝜎
𝑀𝜎(1)1𝑀𝜎(2)2 =

|||
𝑀11 𝑀21
𝑀12 𝑀22

||| = 𝑀11𝑀22 −𝑀12𝑀21

(ii) 𝑀 diagonal, i.e.𝑀𝑖𝑗 = 0 for 𝑖 ≠ 𝑗

𝑀 =
⎛
⎜
⎜
⎝

𝑀11 0 ⋯ 0
0 𝑀22 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑀𝑛𝑛

⎞
⎟
⎟
⎠
⟹ det𝑀 = 𝑀11𝑀22⋯𝑀𝑛𝑛

(iii) Let𝑀 be 𝑛 × 𝑛, 𝐴 be (𝑛 − 1) × (𝑛 − 1), where

𝑀 = ( 𝐴 0
0 1 )

We call𝑀 a matrix ‘in block form’. So𝑀𝑛𝑖 = 𝑀𝑖𝑛 = 0 if 𝑖 ≠ 𝑛. So we can restrict the permuta-
tion 𝜎 to only transmuting the first (𝑛 − 1) terms, i.e. 𝜎(𝑛) = 𝑛. So det𝑀 = det𝐴.

Proposition. If R𝑎 are the rows of𝑀, det𝑀 is given by

det𝑀 = [R1,R2,⋯ ,R𝑛]
= 𝜀𝑖𝑗⋯𝑙𝑀1𝑖𝑀2𝑗⋯𝑀𝑛𝑙

= ∑
𝜎
𝜀(𝜎)𝑀1𝜎(1)𝑀2𝜎(2)⋯𝑀𝑛𝜎(𝑛)

i.e. det𝑀 = det𝑀⊺.

Proof. Recall that (C𝑎)𝑖 = 𝑀𝑖𝑎 = (R𝑖)𝑎. We need to show that one of these definitions is equivalent to
one of the previous definitions, then all other equivalent definitions follow. We use the Σ definition
by considering the product𝑀1𝜎(1)𝑀2𝜎(2)⋯𝑀𝑛𝜎(𝑛). We may rewrite this product in a different order:
𝑀𝜌(1)1𝑀𝜌(2)2⋯𝑀𝜌(𝑛)𝑛. Then 𝜌 = 𝜎−1. But then 𝜀(𝜎) = 𝜀(𝜌), and a sum over 𝜎 is equivalent to a sum
over 𝜌.
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8.2 Expanding by rows or columns
For an 𝑛×𝑛matrix𝑀with entries𝑀𝑖𝑎, we define theminor𝑀𝑖𝑎 to be the (𝑛−1)×(𝑛−1) determinant
of the matrix obtained by deleting row 𝑖 and column 𝑎 from𝑀.

Proposition. The determinant of a generic 𝑛 × 𝑛matrix𝑀 is given by

det𝑀 =∑
𝑖
(−1)𝑖+𝑎𝑀𝑖𝑎𝑀𝑖𝑎 for a fixed 𝑎

= ∑
𝑎
(−1)𝑖+𝑎𝑀𝑖𝑎𝑀𝑖𝑎 for a fixed 𝑖

This process is known as expanding by row 𝑖 or by column 𝑎. As an example, let us take the following
4 × 4 complex matrix

𝑀 =
⎛
⎜
⎜
⎝

𝑖 0 3 0
0 0 2𝑖 0
0 5𝑖 0 −𝑖
2 0 0 1

⎞
⎟
⎟
⎠

Then, the determinant is given by (expanding by row 3)

det𝑀 = −5𝑖
|
|
|
|

𝑖 3 0
0 2𝑖 0
2 0 1

|
|
|
|
+ 𝑖

|
|
|
|

𝑖 0 3
0 0 2𝑖
2 0 0

|
|
|
|

= −5𝑖 [𝑖 |||
2𝑖 0
0 1

||| − 3 |||
0 0
2 1

|||] + 𝑖 [−2𝑖 |||
𝑖 0
2 0

|||]

= −5𝑖[𝑖 ⋅ 2𝑖 − 3 ⋅ 0] + 𝑖[−2𝑖 ⋅ 0]
= −5𝑖[−2] + 𝑖[0]
= 10𝑖

8.3 Row and column operations
Consider the following consequences of the properties of the determinant:

• (row and column scaling) If R𝑖 ↦ 𝜆R𝑖 for a fixed 𝑖, or C𝑎 ↦ 𝜆C𝑎, then det𝑀 ↦ 𝜆 det𝑀 by
multilinearity. If we scale all rows or columns, then𝑀 ↦ 𝜆𝑀, so det𝑀 ↦ 𝜆𝑛 det𝑀 where𝑀
is an 𝑛 × 𝑛matrix.

• (row and column operations) If R𝑖 ↦ R𝑖 + 𝜆R𝑗 where 𝑖 ≠ 𝑗 (or the corresponding conversion
with columns), then det𝑀 ↦ det𝑀.

• (row and column exchanges) If we swap R𝑖 and R𝑗 (or two columns), then det𝑀 ↦ − det𝑀.

For example, let us find the determinant of matrix 𝐴, where

𝐴 = (
1 1 𝑎
𝑎 1 1
1 𝑎 1

) ; 𝑎 ∈ ℂ
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Then:

det𝐴 =
|
|
|
|

1 1 𝑎
𝑎 1 1
1 𝑎 1

|
|
|
|

C1 ↦ C1 − C3 ∶ det𝐴 =
|
|
|
|

1 − 𝑎 1 𝑎
𝑎 − 1 1 1
0 𝑎 1

|
|
|
|

det𝐴 = (1 − 𝑎)
|
|
|
|

1 1 𝑎
−1 1 1
0 𝑎 1

|
|
|
|

C2 ↦ C2 − C3 ∶ det𝐴 = (1 − 𝑎)
|
|
|
|

1 1 − 𝑎 𝑎
−1 0 1
0 𝑎 − 1 1

|
|
|
|

det𝐴 = (1 − 𝑎)2
|
|
|
|

1 1 𝑎
−1 0 1
0 −1 1

|
|
|
|

R1 ↦ R1 + R2 + R3 ∶ det𝐴 = (1 − 𝑎)2
|
|
|
|

0 0 𝑎 + 2
−1 0 1
0 −1 1

|
|
|
|

det𝐴 = (1 − 𝑎)2(𝑎 + 2) |||
−1 0
0 −1

||| = (1 − 𝑎)2(𝑎 + 2)

8.4 Multiplicative property of determinants

Theorem. For 𝑛 × 𝑛matrices𝑀,𝑁, det(𝑀𝑁) = det𝑀 ⋅ det𝑁.

We can prove this using the following elaboration on the definition of the determinant:

Lemma.
𝜀𝑖1𝑖2⋯𝑖𝑛𝑀𝑖1𝑎1𝑀𝑖2𝑎2 ⋯𝑀𝑖𝑛𝑎𝑛 = (det𝑀)𝜀𝑎1𝑎2⋯𝑎𝑛

Proof. The left hand side and right hand side are each totally antisymmetric (alternating) in𝑎1, 𝑎2,⋯ , 𝑎𝑛,
so they must be related by a constant of proportionality. To fix the constant, we can simply consider
taking 𝑎𝑖 = 𝑖 and the result follows.

Now, we prove the above theorem.

Proof. Using the lemma above:

det𝑀𝑁 = 𝜀𝑖1𝑖2⋯𝑖𝑛(𝑀𝑁)𝑖11(𝑀𝑁)𝑖22⋯(𝑀𝑁)𝑖𝑛𝑛
= 𝜀𝑖1𝑖2⋯𝑖𝑛

𝑀𝑖1𝑘1
𝑁𝑘11

𝑀𝑖2𝑘2
𝑁𝑘22

⋯ 𝑀𝑖𝑛𝑘𝑛
𝑁𝑘𝑛𝑛

= (det𝑀)𝜀𝑎1𝑎2⋯𝑎𝑛𝑁𝑘11𝑁𝑘22⋯𝑁𝑘𝑛𝑛

= (det𝑀)(det𝑁)
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as required.

Note the following consequences.

(i) 𝑀−1𝑀 = 𝐼 ⟹ det(𝑀−1) det(𝑀) = det 𝐼 = 1. Therefore, det(𝑀−1) = (det𝑀)−1, so det𝑀
must be nonzero for𝑀 to be invertible.

(ii) For 𝑅 real and orthogonal, 𝑅⊺𝑅 = 𝐼 ⟹ det(𝑅⊺) det(𝑅) = 1. But det(𝑅⊺) = det𝑅, so (det𝑅)2 =
1, so det𝑅 = ±1.

(iii) For 𝑈 complex and unitary, 𝑈†𝑈 = 𝐼 ⟹ det(𝑈†) det(𝑈) = 1. But since 𝑈† = 𝑈⊺, we have
det𝑈 det𝑈 = 1, so ||(det𝑈)2|| = 1, so |det𝑈| = 1.

8.5 Cofactors and determinants
Consider a column of some 𝑛 × 𝑛matrix𝑀, written in the form

C𝑎 = ∑
𝑖
𝑀𝑖𝑎e𝑖

⟹ det𝑀 = [C1,⋯ ,C𝑎,⋯ ,C𝑛]
= [C1,⋯ ,C𝑎−1,∑

𝑖
𝑀𝑖𝑎e𝑖,C𝑎+1,⋯ ,C𝑛]

= ∑
𝑖
𝑀𝑖𝑎Δ𝑖𝑎

where

Δ𝑖𝑎 = [C1,⋯ ,C𝑎−1, e𝑖,C𝑎+1,⋯ ,C𝑛]

=

|
|
|
|
|
|
|
|
|
|

𝐴
0
⋮
0

𝐵
0 ⋯ 0 1 0 ⋯ 0

𝐶
0
⋮
0

𝐷

|
|
|
|
|
|
|
|
|
|

where the zero entries in the rows arise from antisymmetry, giving

= (−1)𝑛−𝑎⏟⎵⏟⎵⏟
amount of column transpositions

⋅ (−1)𝑛−𝑖⏟⎵⏟⎵⏟
amount of row transpositions

|||
𝐴 𝐵
𝐶 𝐷

|||

= (−1)𝑖+𝑎𝑀𝑖𝑎

where𝑀𝑖𝑎 is the minor in this position; the determinant of the matrix with this particular row and
column removed. We call Δ𝑖𝑎 the cofactor.

det𝑀 =∑
𝑖
𝑀𝑖𝑎Δ𝑖𝑎 = ∑

𝑖
(−1)𝑖+𝑎𝑀𝑖𝑎𝑀𝑖𝑎

Similarly, by considering rows,

det𝑀 =∑
𝑎
𝑀𝑖𝑎Δ𝑖𝑎 = ∑

𝑎
(−1)𝑖+𝑎𝑀𝑖𝑎𝑀𝑖𝑎
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8.6 Adjugates and inverses
Reasoning as above, consider C𝑏 = ∑𝑖𝑀𝑖𝑏e𝑖. Then,

[C1,⋯ ,C𝑎−1,C𝑏,C𝑎+1,⋯ ,C𝑛] = ∑
𝑖
𝑀𝑖𝑏Δ𝑖𝑎

If 𝑎 = 𝑏 then clearly this is det𝑀. Otherwise,C𝑏 is equal to one of the other columns, so∑𝑖𝑀𝑖𝑏Δ𝑖𝑎 =
0.

∑
𝑖
𝑀𝑖𝑏Δ𝑖𝑎 = (det𝑀)𝛿𝑎𝑏

Similarly,
∑
𝑎
𝑀𝑗𝑎Δ𝑖𝑎 = (det𝑀)𝛿𝑖𝑗

Now, letΔ be thematrix of cofactors (i.e. entriesΔ𝑖𝑎), andwedefine the adjugate 𝑀̃ = Δ⊺. Then

Δ𝑖𝑎𝑀𝑖𝑏 = 𝑀̃𝑎𝑖𝑀𝑖𝑏 = (𝑀̃𝑀)𝑎𝑏 = (det𝑀)𝛿𝑎𝑏
Therefore,

𝑀̃𝑀 = (det𝑀)𝐼
We can reach this result similarly considering the other index. Hence, if det𝑀 ≠ 0 then 𝑀−1 =

1
det𝑀

𝑀̃.

8.7 Systems of linear equations
Consider a system of 𝑛 linear equations in 𝑛 unknowns 𝑥𝑖 written in matrix-vector form:

𝐴x = b, x,b ∈ ℝ𝑛,

where 𝐴 is an 𝑛 × 𝑛matrix. There are three possibilities:
(i) det𝐴 ≠ 0 ⟹ 𝐴−1 exists so there is a unique solution x = 𝐴−1b
(ii) det𝐴 = 0 and 𝑏 ∉ Im𝐴means that there is no solution

(iii) det𝐴 = 0 and 𝑏 ∈ Im𝐴means that there are infinitely many solutions of the form

x = x0 + u

where u ∈ ker𝐴 and x0 is a particular solution
A solution therefore exists if and only if 𝐴x0 = b for some x0, which is true if and only if b ∈ Im𝐴.
Then x is also a solution if and only if u = x − x0 satisfies

𝐴u = 0

This equation is known as the equivalent homogeneous problem. Now, det𝐴 ≠ 0 ⟺ Im𝐴 =
ℝ𝑛 ⟺ ker𝐴 = {0}. So in case (i), there is always a unique solution for any b. But det𝐴 = 0 ⟺
rank(𝐴) < 𝑛 ⟺ null𝐴 > 0. Then either 𝑏 ∉ Im𝐴 as in case (ii), or 𝑏 ∈ Im𝐴 as in case (iii).
If u1,… ,u𝑘 is a basis for ker𝐴, then the general solution to the homogeneous problem is some linear
combination of these basis vectors, i.e.

u =
𝑘
∑
𝑖=1

𝜆𝑖u𝑖, 𝑘 = null𝐴
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This is similar to the complementary function and particular integral technique used to solve linear
differential equations.

For example, in 𝐴x = b, let

𝐴 = (
1 1 𝑎
𝑎 1 1
1 𝑎 1

) ; b = (
1
𝑐
1
) ; 𝑎, 𝑐 ∈ ℝ

We have previously found that det𝐴 = (𝑎 − 1)2(𝑎 + 2). So the cases are:
• (𝑎 ≠ 1, 𝑎 ≠ −2) det𝐴 ≠ 0 and 𝐴−1 exists; we previously found this to be

𝐴−1 = 1
(1 − 𝑎)(2 + 𝑎) (

1 1 + 𝑎 1
1 1 −1 − 𝑎

−1 − 𝑎 1 1
)

For these values of 𝑎, there is a unique solution for any 𝑐, demonstrating case (i) above:

x = 𝐴−1b = 1
(1 − 𝑎)(2 + 𝑎) (

2 − 𝑐 − 𝑐𝑎
𝑐 − 𝑎
𝑐 − 𝑎

)

Geometrically, this solution is simply a point.

• (𝑎 = 1) In this case, the matrix is simply

𝐴 = (
1 1 1
1 1 1
1 1 1

) ⟹ Im𝐴 = span {(
1
1
1
)} = {𝜆(

1
1
1
)} ; ker𝐴 = span {(

−1
1
0
) , (

−1
0
1
)}

Note that b ∈ Im𝐴 if and only if 𝑐 = 1, where a particular solution is

x0 = (
1
0
0
)

So the general solution is given by

x = x0 + u = (
1 − 𝜆 − 𝜇

𝜆
𝜇

)

In summary, for 𝑎 = 1, 𝑐 = 1 we have case (iii). Geometrically this is a plane. For 𝑎 = 1, 𝑐 ≠ 1,
we have case (ii) where there are no solutions.

• (𝑎 = −2) The matrix becomes

𝐴 = (
1 1 −2
−2 1 1
1 −2 1

) ⟹ Im𝐴 = span {(
1
−2
1
) , (

1
1
−2

)} ; ker𝐴 = {𝜆(
1
1
1
)}

Now, b ∈ Im𝐴 if and only if 𝑐 = −2, the particular solution is

x0 = (
1
0
0
)

39



The general solution is therefore

x = x0 + u = (
1 + 𝜆
𝜆
𝜆

)

In summary, for 𝑎 = −2 and 𝑐 = −2we have case (iii). Geometrically this is a line. For 𝑎 = −2,
𝑐 ≠ −2, we have case (ii) where there are no solutions.

8.8 Geometrical interpretation of solutions of linear equations
LetR1,R2,R3 be the rows of the 3×3matrix 𝐴. Then the rows represent the normals of planes. This
is clear by expanding the matrix multiplication of the homogeneous form:

𝐴u = 0 ⟺ R1 ⋅ u = 0
R2 ⋅ u = 0
R3 ⋅ u = 0

So the solution of the homogeneous problem (i.e. finding the general solution) amounts to determ-
ining where the planes intersect.

• (rank𝐴 = 3) The rows are linearly independent, so the three planes’ normals are linearly inde-
pendent and the planes intersect at 0 only.

• (rank𝐴 = 2) The normals span a plane, so the planes intersect in a line.
• (rank𝐴 = 1) The normals are parallel and therefore the planes coincide.
• (rank𝐴 = 0) The normals are all zero, so any vector in ℝ3 solves the equation.

Now, let us consider instead the original problem 𝐴x = b:

𝐴b = 0 ⟺ R1 ⋅ u = 𝑏1
R2 ⋅ u = 𝑏2
R3 ⋅ u = 𝑏3

The planes still have normalsR𝑖 as before, but they do not necessarily pass through the origin.

• (rank𝐴 = 3) The planes’ normals are linearly independent and the planes intersect at a point;
this is the unique solution.

• (rank𝐴 < 3) The existence of a solution depends on the value of b.
– (rank𝐴 = 2) The planes may intersect in a line as before, but they may instead form a
sheaf (the planes pairwise intersect in lines but they do not as a triple), or two planes
could be parallel and not intersect each other at all.

– (rank𝐴 = 1) The normals are parallel, so the planes may coincide or they might be paral-
lel. There is no solution unless all three planes coincide.
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9 Properties of matrices
9.1 Eigenvalues and eigenvectors
For a linear map 𝑇 ∶ 𝑉 → 𝑉 , a vector v ∈ 𝑉 with v ≠ 0 is called an eigenvector of 𝑇 with eigenvalue
𝜆 if 𝑇(v) = 𝜆v. If 𝑉 = ℝ𝑛 or ℂ𝑛, and 𝑇 is given by an 𝑛 × 𝑛matrix 𝐴, then

𝐴v = 𝜆𝑣 ⟺ (𝐴 − 𝜆𝐼)v = 0

and for a given 𝜆, this holds for some v ≠ 0 if and only if

det(𝐴 − 𝜆𝐼) = 0

This is called the characteristic equation for 𝐴. So 𝜆 is an eigenvalue if and only if it is a root of the
characteristic polynomial

𝜒𝐴(𝑡) = det(𝐴 − 𝑡𝐼) =
||||||

𝐴11 − 𝑡 𝐴12 ⋯ 𝐴1𝑛
𝐴21 𝐴22 − 𝑡 ⋯ 𝐴2𝑛
⋮ ⋮ ⋱ ⋮
𝐴𝑛1 𝐴𝑛2 ⋯ 𝐴𝑛𝑛 − 𝑡

||||||

We can look for eigenvalues as roots of the characteristic polynomial or characteristic equation, and
then determine the corresponding eigenvectors once we’ve deduced what the possibilities are. Here
are a few examples.

(i) 𝑉 = ℂ2:
𝐴 = ( 2 𝑖

−𝑖 2) ⟹ det(𝐴 − 𝜆𝐼) = (2 − 𝜆)2 − 1 = 0

So we have (2 − 𝜆)2 = 1 so 𝜆 = 1 or 3.
• (𝜆 = 1)

(𝐴 − 𝐼)v = ( 1 𝑖
−𝑖 1) (

𝑣1
𝑣2
) = 0 ⟹ v = 𝛼(1𝑖)

for any 𝛼 ≠ 0.
• (𝜆 = 3)

(𝐴 − 3𝐼)v = (−1 𝑖
−𝑖 −1) (

𝑣1
𝑣2
) = 0 ⟹ v = 𝛽 ( 1−𝑖)

for any 𝛽 ≠ 0.
(ii) 𝑉 = ℝ2:

𝐴 = (1 1
0 1) ⟹ det(𝐴 − 𝜆𝐼) = (1 − 𝜆)2 = 0

So 𝜆 = 1 only, a repeated root.

(𝐴 − 𝐼)v = (0 1
0 0) (

𝑣1
𝑣2
) = 0 ⟹ v = 𝛼(10)

for any 𝛼 ≠ 0. There is only one (linearly independent) eigenvector here.
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(iii) 𝑉 = ℝ2 or ℂ2:

𝑈 = (cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ) ⟹ 𝜒𝑈(𝑡) = det(𝑈 − 𝑡𝐼) = 𝑡2 − 2𝑡 cos 𝜃 + 1

The eigenvalues 𝜆 are 𝑒±𝑖𝜃. The eigenvectors are

v = 𝛼( 1∓𝑖) ; 𝛼 ≠ 0

So there are no real eigenvalues or eigenvectors except when 𝜃 = 𝑛𝜋.
(iv) 𝑉 = ℂ𝑛:

𝐴 =
⎛
⎜
⎜
⎝

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑛

⎞
⎟
⎟
⎠
⟹ 𝜒𝐴(𝑡) = det(𝐴 − 𝑡𝐼) = (𝜆1 − 𝑡)(𝜆2 − 𝑡)(𝜆3 − 𝑡)… (𝜆𝑛 − 𝑡)

So the eigenvalues are all the 𝜆𝑖, and the eigenvectors are v = 𝛼e𝑖 (𝛼 ≠ 0) for each 𝑖.

9.2 The characteristic polynomial
For an 𝑛 × 𝑛matrix 𝐴, the characteristic polynomial 𝜒𝐴(𝑡) has degree 𝑛:

𝜒𝐴(𝑡) =
𝑛
∑
𝑗=0

𝑐𝑗𝑡𝑗 = (−1)𝑛(𝑡 − 𝜆1)… (𝑡 − 𝜆𝑛)

(i) There exists at least one eigenvalue (solution to𝜒𝐴), due to the fundamental theoremof algebra,
or 𝑛 roots counted with multiplicity.

(ii) tr(𝐴) = 𝐴𝑖𝑖 = ∑𝑛
𝑖=1 𝜆𝑖, the sum of the eigenvalues. Compare terms of degree 𝑛 − 1 in 𝑡, and

from the determinant we get
(−𝑡)𝑛−1𝐴11 + (−𝑡)𝑛−1𝐴22 +⋯+ (−𝑡)𝑛−1𝐴𝑛𝑛

The overall sign matches with the expansion of (−1)𝑛(𝑡 − 𝜆1)(𝑡 − 𝜆2)… (𝑡 − 𝜆𝑛).

(iii) det(𝐴) = 𝜒𝐴(0) = ∏𝑛
𝑖=1 𝜆𝑖, the product of the eigenvalues.

(iv) If 𝐴 is real, then the coefficients 𝑐𝑖 in the characteristic polynomial are real, so 𝜒𝐴(𝜆) = 0 ⟺
𝜒𝐴(𝜆) = 0. So the non-real roots occur in conjugate pairs if 𝐴 is real.

9.3 Eigenspaces and multiplicities
For an eigenvalue 𝜆 of a matrix 𝐴, we define the eigenspace

𝐸𝜆 = {v ∶ 𝐴v = 𝜆v} = ker(𝐴 − 𝜆𝐼)
All nonzero vectors in this space are eigenvectors. The geometric multiplicity is

𝑚𝜆 = dim𝐸𝜆 = null(𝐴 − 𝜆𝐼)
equivalent to the number of linearly independent eigenvectors with the given eigenvalue 𝜆. The
algebraic multiplicity is

𝑀𝜆 = the multiplicity of 𝜆 as a root of 𝜒𝐴(𝑡)
i.e. 𝜒𝐴(𝑡) = (𝑡 − 𝜆)𝑀𝑡𝑓(𝑡), where 𝑓(𝜆) ≠ 0.
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Proposition. 𝑀𝜆 ≥ 𝑚𝜆 (and𝑚𝜆 ≥ 1 since 𝜆 is an eigenvalue). The proof of this proposition
is delayed until the next section where we will then have the tools to prove it.

Here are some examples.

(i)

𝐴 = (
−2 2 −3
2 1 −6
−1 −2 0

) ⟹ 𝜒𝐴(𝑡) = det(𝐴 − 𝑡𝐼) = (5 − 𝑡)(𝑡 + 3)2

So 𝜆 = 5,−3. 𝑀5 = 1,𝑀−3 = 2. We will now find the eigenspaces.

• (𝜆 = 5)

𝐸5 = {𝛼(
1
2
−1

)}

• (𝜆 = −3)

𝐸−3 = {𝛼(
−2
1
0
) + 𝛽 (

3
0
1
)}

Note that to compute the eigenvectors, we just need to solve the equation (𝐴−𝜆𝐼)x = 0. In the
case of 𝜆 = −3, for example, we then have

(
1 2 −3
2 4 −6
−1 −2 3

)(
𝑥1
𝑥2
𝑥3
) = 0

We can use the first line of the matrix to get a linear combination for 𝑥1, 𝑥2, 𝑥3, specifically
𝑥1 + 2𝑥2 = 3𝑥3 = 0, so we can eliminate one of the variables (here, 𝑥1) to get

x = (
−2𝑥2 + 3𝑥3

𝑥2
𝑥3

) = 0

Now, dim𝐸5 = 𝑚5 = 1 = 𝑀5. Similarly, dim𝐸−3 = 𝑚−3 = 2 = 𝑀−3.

(ii)

𝐴 = (
−3 −1 1
−1 −3 1
−2 −2 0

) ⟹ 𝜒𝐴(𝑡) = det(𝐴 − 𝑡𝐼) = −(𝑡 + 2)3

We have a root 𝜆 = −2 with𝑀−2 = 3. To find the eigenspace, we will look for solutions of:

(𝐴 + 2𝐼)x = (
−1 −1 1
−1 −1 1
−2 −2 2

)(
𝑥1
𝑥2
𝑥3
) = 0 ⟹ x = (

−𝑥2 + 𝑥3
𝑥2
𝑥3

)

So

𝐸−2 = {𝛼(
−1
1
0
) + 𝛽 (

1
0
1
)}

Further,𝑚−2 = 2 < 3 = 𝑀−2.
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(iii) A reflection in a plane through the origin with unit normal n̂ satisfies

𝐻n̂ = −n̂; ∀u ⟂ n̂, 𝐻u = u

The eigenvalues are therefore ±1 and 𝐸−1 = {𝛼n̂}, and 𝐸1 = {x ∶ x ⋅ n̂ = 0}. The multiplicities
are given by𝑀−1 = 𝑚−1 = 1,𝑀1 = 𝑚1 = 2.

(iv) A rotation about an axis n̂ through angle 𝜃 in ℝ3 satisfies

𝑅n̂ = n̂

So the axis of rotation is the eigenvector with eigenvalue 1. There are no other real eigenvalues
unless 𝜃 = 𝑛𝜋. The rotation restricted to the plane perpendicular to n̂ has eigenvalues 𝑒±𝑖𝜃 as
shown above.

9.4 Linear independence of eigenvectors

Proposition. Let v1,… , v𝑟 be eigenvectors of an 𝑛 × 𝑛 matrix 𝐴 with eigenvalues 𝜆1,… , 𝜆𝑟.
If the eigenvalues are distinct, then the eigenvectors are linearly independent.

Proof. Note that if we take some linear combinationw = ∑𝑟
𝑗=1 𝛼𝑗v𝑗 , then (𝐴−𝜆𝐼)w = ∑𝑟

𝑗=1 𝛼𝑗(𝜆𝑗 −
𝜆)v𝑗 . Here are two methods for getting this proof.
(i) Suppose the eigenvectors are linearly dependent, so there exist linear combinations w = 0

where some 𝛼 are nonzero. Let 𝑝 be the amount of nonzero 𝛼 values. So, 2 ≤ 𝑝 ≤ 𝑟. Now,
pick such a w for which 𝑝 is least. Without loss of generality, let 𝛼1 be one of the nonzero
coefficients. Then

(𝐴 − 𝜆1𝐼)w =
𝑟
∑
𝑗=2

𝛼𝑗(𝜆𝑗 − 𝜆1)v𝑗 = 0

This is a linear relation with 𝑝 − 1 nonzero coefficients #.
(ii) Alternatively, given a linear relationw = 0,

∏
𝑗≠𝑘

(𝐴 − 𝜆𝑗𝐼)w = 𝛼𝑘∏
𝑗≠𝑘

(𝜆𝑘 − 𝜆𝑗)v𝑘 = 0

for some fixed 𝑘. So 𝛼𝑘 = 0. So the eigenvectors are linearly independent as claimed.

Corollary. With conditions as in the proposition above, let ℬ𝜆𝑖 be a basis for the eigenspace
𝐸𝜆𝑖 . Then ℬ = ℬ𝜆1 ∪ ℬ𝜆2 ∪⋯ ∪ ℬ𝜆𝑟 is linearly independent.

Proof. Consider a general linear combination of all these vectors, it has the form

w = w1 +w2 +⋯+w𝑟

where eachw𝑖 ∈ 𝐸𝑖. Applying the same arguments as in the proposition, we find that
w = 0 ⟹ ∀𝑖w𝑖 = 0

So eachw𝑖 is the trivial linear combination of elements of ℬ𝜆𝑖 and the result follows.
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9.5 Diagonalisability

Proposition. For an 𝑛 × 𝑛 matrix 𝐴 acting on 𝑉 = ℝ𝑛 or ℂ𝑛, the following conditions are
equivalent:
(i) there exists a basis of eigenvectors of 𝐴 for 𝑉 , named v1, v2,… , v𝑛 which 𝐴v𝑖 = 𝜆𝑖v𝑖 for

each 𝑖; and
(ii) there exists an 𝑛 × 𝑛 invertible matrix 𝑃 with the property that

𝑃−1𝐴𝑃 = 𝐷 =
⎛
⎜
⎜
⎝

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑛

⎞
⎟
⎟
⎠

If either of these conditions hold, then 𝐴 is diagonalisable.

Proof. Note that for any matrix 𝑃, 𝐴𝑃 has columns 𝐴C𝑖(𝑃), and 𝑃𝐷 has columns 𝜆𝑖C𝑖(𝑃). Then (i)
and (ii) are related by choosing v𝑖 = C𝑖(𝑃). Then 𝑃−1𝐴𝑃 = 𝐷 ⟺ 𝐴𝑃 = 𝑃𝐷 ⟺ 𝐴v𝑖 = 𝜆𝑖v𝑖.
In essence, given a basis of eigenvectors as in (i), the relation above defines 𝑃, and if the eigenvectors
are linearly independent then 𝑃 is invertible. Conversely, given a matrix 𝑃 as in (ii), its columns are
a basis of eigenvectors.

Let’s try some examples.

(i) Let
𝐴 = (1 1

0 1) ⟹ 𝐸1 = {𝛼 (10)}

This is a single eigenvalue 𝜆 = 1with one linearly independent eigenvector. So there is no basis
of eigenvectors for ℝ2 or ℂ2, so 𝐴 is not diagonalisable.

(ii) Let
𝑈 = (cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃 ) ⟹ 𝐸𝑒𝑖𝜃 = {𝛼 ( 1−𝑖)} ; 𝐸𝑒−𝑖𝜃 = {𝛽 (1𝑖)}

which are two linearly independent complex eigenvectors. So,

𝑃 = ( 1 1
−𝑖 𝑖) ; 𝑃−1 = 1

2 (
1 𝑖
1 −𝑖) ; 𝑃−1𝑈𝑃 = (𝑒

𝑖𝜃 0
0 𝑒𝑖𝜃)

So 𝑈 is diagonalisable over ℂ2 but not over ℝ2.

9.6 Criteria for diagonalisability

Proposition. Consider an 𝑛 × 𝑛matrix 𝐴.
(i) 𝐴 is diagonalisable if it has 𝑛 distinct eigenvalues (sufficient condition).
(ii) 𝐴 is diagonalisable if and only if for every eigenvalue 𝜆,𝑀𝜆 = 𝑚𝜆 (necessary and suffi-

cient condition).

Proof. Use the proposition and corollary above.
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(i) If we have 𝑛 distinct eigenvalues, then we have 𝑛 linearly independent eigenvectors. Hence
they form a basis.

(ii) If 𝜆𝑖 are all the distinct eigenvalues, thenℬ𝜆1 ∪⋯∪ℬ𝜆𝑟 are linearly independent. The number
of elements in this new basis is∑𝑖𝑚𝜆𝑖 = ∑𝑖𝑀𝜆𝑖 = 𝑛 which is the degree of the characteristic
polynomial. So we have a basis.

Note that case (i) is just a specialisation of case (ii) where both multiplicities are 1.

Let us consider some examples.

(i) Let

𝐴 = (
−2 2 −3
2 1 −6
−1 −2 0

) ⟹ 𝜆 = 5,−3; 𝑀5 = 𝑚5 = 1; 𝑀−3 = 𝑚−3 = 2

So 𝐴 is diagonalisable by case (ii) above, and moreover

𝑃 = (
1 −2 3
2 1 0
−1 0 1

) ; 𝑃−1 = 1
8 (

1 2 −3
−2 4 6
1 2 5

) ⟹ 𝑃−1𝐴𝑃 = (
5 0 0
0 −3 0
0 0 −3

)

(ii) Let

𝐴 = (
−3 −1 1
−1 −3 1
−2 2 0

) ⟹ 𝜆 = −2; 𝑀−2 = 3 > 𝑚−2 = 2

So 𝐴 is not diagonalisable. As a check, if it were diagonalisable, then there would be some
matrix 𝑃 such that 𝑃−1𝐴𝑃 = −2𝐼 ⟹ 𝐴 = 𝑃(−2𝐼)𝑃−1 = −2𝐼 #.

9.7 Similarity
Matrices 𝐴 and 𝐵 (both 𝑛×𝑛) are similar if 𝐵 = 𝑃−1𝐴𝑃 for some invertible 𝑛×𝑛matrix 𝑃. This is an
equivalence relation.

Proposition. If 𝐴 and 𝐵 are similar, then
(i) tr𝐵 = tr𝐴
(ii) det𝐵 = det𝐴
(iii) 𝜒𝐵 = 𝜒𝐴

Proof. (i)

tr𝐵 = tr(𝑃−1𝐴𝑃)
= tr(𝐴𝑃𝑃−1)
= tr𝐴

(ii)

det𝐵 = det(𝑃−1𝐴𝑃)
= det𝑃−1 det𝐴 det𝑃
= det𝐴
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(iii)

det(𝐵 − 𝑡𝐼) = det(𝑃−1𝐴𝑃 − 𝑡𝐼)
= det(𝑃−1𝐴𝑃 − 𝑡𝑃−1𝑃)
= det(𝑃−1(𝐴 − 𝑡𝐼)𝑃)
= det𝑃−1 det(𝐴 − 𝑡𝐼) det𝑃
= det(𝐴 − 𝑡𝐼)

9.8 Real eigenvalues and orthogonal eigenvectors

Recall that an 𝑛×𝑛matrix𝐴 is hermitian if and only if𝐴† = 𝐴
⊺
= 𝐴, or𝐴𝑖𝑗 = 𝐴𝑗𝑖. If𝐴 is real, then it is

hermitian if and only if it is symmetric. The complex inner product for v,w ∈ ℂ𝑛 is v†w = ∑𝑖 𝑣𝑖𝑤𝑖,
and for v,w ∈ ℝ𝑛, this reduces to the dot product in ℝ𝑛, v⊺w.
Here is a key observation. If 𝐴 is hermitian, then

(𝐴v)†w = v†(𝐴w)

Theorem. For an 𝑛 × 𝑛matrix 𝐴 that is hermitian:
(i) Every eigenvalue 𝜆 is real;
(ii) Eigenvectorsv,wwith different eigenvalues 𝜆, 𝜇 respectively, are orthogonal, i.e.v†w =

0; and
(iii) If 𝐴 is real and symmetric, then for each eigenvalue 𝜆we can choose a real eigenvector,

and part (ii) becomes v ⋅w = 0.

Proof. (i) Using the observation above with v = w where v is any eigenvector with eigenvalue 𝜆,
we get

v†(𝐴v) = (𝐴v)†v
v†(𝜆v) = (𝜆v)†v
𝜆v†(v) = 𝜆(v)†v

As v is an eigenvector, it is nonzero, so v†v ≠ 0, so

𝜆 = 𝜆

(ii) Using the same observation,

v†(𝐴w) = (𝐴v)†w
v†(𝜇w) = (𝜆v)†w
𝜇v†w = 𝜆𝐯†w

Since 𝜆 ≠ 𝜇, v†w = 0, so the eigenvectors are orthogonal.
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(iii) Given 𝐴v = 𝜆v with v ∈ ℂ𝑛 but 𝐴 is real, let

v = u + 𝑖u′; u,u′ ∈ ℝ𝑛

Since v is an eigenvector, and this is a linear equation, we have

𝐴u = 𝜆u; 𝐴u′ = 𝜆u′

So u and u′ are eigenvectors. v ≠ 0 implies that at least one of u and u′ are nonzero, so there
is at least one real eigenvector with this eigenvalue.

Case (ii) is a stronger claim for hermitian matrices than just showing that eigenvectors are linearly
independent. Furthermore, previously we considered basesℬ𝜆 for each eigenspace 𝐸𝜆, and it is now
natural to choose basesℬ𝜆 to be orthonormal when we are considering hermitianmatrices. Here are
some examples.

(i) Let
𝐴 = ( 2 𝑖

−𝑖 2) ; 𝐴† = 𝐴; 𝜆 = 1, 3; u1 =
1
√2

(1𝑖) ; u2 =
1
√2

( 1−𝑖)

Wehave chosen coefficients for the vectorsu1 and u2 such that they are unit vectors. As shown
above, they are then orthonormal. We know that having distinct eigenvalues means that a
matrix is diagonalisable. So let us set

𝑃 = 1
√2

(1 1
𝑖 −𝑖) ⟹ 𝑃−1𝐴𝑃 = 𝐷 = (1 0

0 3)

Since the eigenvectors are orthonormal, so are the columns of 𝑃, so 𝑃−1 = 𝑃† (i.e. 𝑃 is unitary).
(ii) Let

𝐴 = (
0 1 1
1 0 1
1 1 0

)

𝐴 is real and symmetric, with eigenvalues 𝜆 = −1, 2 with𝑀−1 = 2,𝑀2 = 1. Further,

𝐸−1 = span{w1,w2}; w1 = (
1
−1
0
) ; w2 = (

1
0
−1

)

So 𝑚−1 = 2, and the matrix is diagonalisable. Let us choose an orthonormal basis for 𝐸−1 by
taking

u1 =
1

|w1|
w1 =

1
√2

(
1
−1
0
)

and we can consider

w′
2 = w2 − (u1 ⋅w2)u1 = (

1/2
1/2
−1

)
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so thatw′
2 is orthogonal to u1 by construction. We can then normalise this vector to get

u2 =
1

||w′
2||
w′

2 =
1
√6

(
1
1
−2

)

and therefore
ℬ−1 = {u1,u2}

is an orthonormal basis. For 𝐸2, let us choose ℬ2 = {u3} where

u3 =
1
√3

(
1
1
1
)

Together,

ℬ = { 1
√2

(
1
−1
0
) , 1

√6
(
1
1
−2

) , 1
√3

(
1
1
1
)}

is an orthonormal basis for ℝ3. Let 𝑃 be the matrix with columns u1,u2,u3, then 𝑃−1𝐴𝑃 = 𝐷
as required. Since we have chosen an orthonormal basis, 𝑃 is orthogonal, so 𝑃⊺𝐴𝑃 = 𝐷.

9.9 Unitary and orthogonal diagonalisation

Theorem. Any 𝑛 × 𝑛 hermitian matrix 𝐴 is diagonalisable.
(i) There exists a basis of eigenvectors u1,… ,u𝑛 ∈ ℂ𝑛 with 𝐴u𝑖 = 𝜆u𝑖; equivalently
(ii) There exists an 𝑛 × 𝑛 invertible matrix 𝑃 with 𝑃−1𝐴𝑃 = 𝐷 where 𝐷 is the matrix with

eigenvalues on the diagonal, where the columns of 𝑃 are the eigenvectors u𝑖.
In addition, the eigenvectors u𝑖 can be chosen to be orthonormal, so

u†𝑖 u𝑗 = 𝛿𝑖𝑗

or equivalently, the matrix 𝑃 can be chosen to be unitary,

𝑃† = 𝑃−1 ⟹ 𝑃†𝐴𝑃 = 𝐷

In the special case that the matrix 𝐴 is real, the eigenvectors can be chosen to be real, and so

u⊺u𝑗 = u𝑖 ⋅ u𝑗 = 𝛿𝑖𝑗

so 𝑃 is orthogonal, so
𝑃⊺ = 𝑃−1 ⟹ 𝑃⊺𝐴𝑃 = 𝐷

10 Quadratic forms
10.1 Simple example
Consider a function ℱ∶ ℝ2 → ℝ defined by

ℱ(x) = 2𝑥21 − 4𝑥1𝑥2 + 5𝑥22
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This can be simplified by writing
ℱ(x) = 𝑥′21 + 6𝑥′22

where
𝑥′1 =

1
√5

(2𝑥1 + 𝑥2); 𝑥′2 =
1
√5

(−𝑥1 + 2𝑥2)

This can be found by writing ℱ(x) = x⊺𝐴x where

𝐴 = ( 2 −2
−2 5 )

by inspection from the original equation, and then diagonalising 𝐴. We find the eigenvalues to be
𝜆 = 1, 6, with eigenvectors

1
√5

(21) ;
1
√5

(−12 )

10.2 Diagonalising quadratic forms
In general, a quadratic form is a function ℱ∶ ℝ𝑛 → ℝ given by

ℱ(x) = x⊺𝐴x ⟹ ℱ(x)𝑖𝑗 = 𝑥𝑖𝐴𝑖𝑗𝑥𝑗

where 𝐴 is a real symmetric 𝑛 × 𝑛matrix. Any antisymmetric part of 𝐴 would not contribute to the
result, so there is no loss of generality under this restriction. From the section above, we know we
can write 𝑃⊺𝐴𝑃 = 𝐷 where 𝐷 is a diagonal matrix containing the eigenvalues, and 𝑃 is constructed
from the eigenvectors, with orthonormal columns u𝑖. Setting x′ = 𝑃⊺x, or equivalently x = 𝑃x′, we
have

ℱ(x) = x⊺𝐴x
= (𝑃x′)⊺𝐴(𝑃x′)
= (x′)⊺𝑃⊺𝐴𝑃x′
= (x′)⊺𝐷x′

= ∑
𝑖
𝜆𝑖𝑥′2𝑖 = 𝜆1𝑥′21 + 𝜆2𝑥′22 +…

We say that ℱ has been diagonalised. Now, note that

x′ = 𝑥′1e1 +⋯+ 𝑥′𝑛e𝑛
x = 𝑥1e1 +⋯+ 𝑥𝑛e𝑛
= 𝑥′1u1 +⋯+ 𝑥′𝑛u𝑛

where the e𝑖 are the standard basis vectors, since

x′𝑖 = u𝑖 ⋅ x ⟺ x′ = 𝑃⊺x

Hence the x′𝑖 can be regarded as coordinates with respect to a new set of axes defined by the or-
thonormal eigenvector basis, known as the principal axes of the quadratic form. They are related to
the standard axes (given by basis vectors e𝑖) by the orthogonal transformation 𝑃.
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Example (two dimensions). Consider ℱ(x) = x⊺𝐴x with

𝐴 = (𝛼 𝛽
𝛽 𝛼)

The eigenvalues are 𝜆 = 𝛼 + 𝛽, 𝛼 − 𝛽 and

u1 =
1
√2

(11) ; u2 =
1
√2

(−11 )

So in terms of the standard basis vectors,

ℱ(x) = 𝛼𝑥21 + 2𝛽𝑥1𝑥2 + 𝛼𝑥22
And in terms of our new basis vectors,

ℱ(x) = (𝛼 + 𝛽)𝑥′21 + (𝛼 − 𝛽)𝑥′22
where

x′1 = u1 ⋅ x =
1
√2

(𝑥1 + 𝑥2)

x′2 = u2 ⋅ x =
1
√2

(−𝑥1 + 𝑥2)

Taking for example 𝛼 = 3
2
, 𝛽 = −1

2
, we have 𝜆1 = 1, 𝜆2 = 2. If we choose ℱ = 1, this represents an

ellipse in our new coordinate system:
𝑥′21 + 2𝑥′22 = 1

If instead we chose 𝛼 = −1
2
, 𝛽 = 3

2
. We now have 𝜆1 = 1, 𝜆2 = −2. The locus at ℱ = 1 gives a

hyperbola:
𝑥′21 − 2𝑥′22 = 1

Example (three dimensions). In ℝ3, note that if 𝜆1, 𝜆2, 𝜆3 are all strictly positive, then ℱ = 1 gives
an ellipsoid. This is analogous to the ℝ2 case above.

Let us consider an example. Earlier, we found that the eigenvalues of the matrix 𝐴 where

𝐴 = (
0 1 1
1 0 1
1 1 0

)

are 𝜆1 = 𝜆2 = −1, 𝜆3 = 2, where

u1 =
1
√2

(
1
−1
0
) ; u2 =

1
√6

(
1
1
−2

) ; u3 =
1
√3

(
1
1
1
)

Then

ℱ(x) = 2𝑥1𝑥2 + 2𝑥2𝑥3 + 2𝑥3𝑥1
= −𝑥′21 − 𝑥′22 + 2𝑥′23
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Now, ℱ = 1 corresponds to
2𝑥′23 = 1 + 𝑥′21 + 𝑥′22

So we can more clearly see that this is a hyperboloid of two sheets in ℝ3 with rotational symmetry
between the 𝑥1 and 𝑥2 axes. Further, ℱ = −1 corresponds to

1 + 2𝑥′23 = 𝑥′21 + 𝑥′22
Here, this is a hyperboloid of one sheet since for any fixed 𝑥3 coordinate, it defines a circle in the 𝑥1
and 𝑥2 axes.

10.3 Hessian matrix as a quadratic form
Consider a smooth function 𝑓∶ ℝ𝑛 → ℝ with a stationary point at x = a, i.e. 𝜕𝑓

𝜕𝑥𝑖
= 0 at x = a. By

Taylor’s theorem,
𝑓(a + h) + 𝑓(a) + ℱ(h) + 𝑂(|h|3)

where ℱ is a quadratic form with

𝐴𝑖𝑗 =
1
2

𝜕2𝑓
𝜕𝑥𝑖𝜕𝑥𝑗

all evaluated at x = a. Note that this𝐴 is half of the Hessianmatrix, and that the linear term vanishes
since we are at a stationary point. Rewriting this h in terms of the eigenvectors of 𝐴 (the principal
axes), we have

ℱ = 𝜆1ℎ′21 + 𝜆2ℎ′22 +⋯+ 𝜆𝑛ℎ′2𝑛
So clearly if 𝜆𝑖 > 0 for all 𝑖, then 𝑓 has a minimum at x = a. If 𝜆𝑖 < 0 for all 𝐼, then 𝑓 has a maximum
at x = a. Otherwise, it has a saddle point. Note that it is often sufficient to consider the trace and
determinant of 𝐴, since tr𝐴 = 𝜆1 + 𝜆2 and det𝐴 = 𝜆1𝜆2.

11 Cayley–Hamilton theorem
11.1 Matrix polynomials
If 𝐴 is an 𝑛 × 𝑛 complex matrix and

𝑝(𝑡) = 𝑐0 + 𝑐1𝑡 + 𝑐22 +⋯+ 𝑐𝑘𝑡𝑘

is a polynomial, then
𝑝(𝐴) = 𝑐0𝐼 + 𝑐1𝐴 + 𝑐2𝐴2 +⋯+ 𝑐𝑘𝐴𝑘

We can also define power series on matrices (subject to convergence). For example, the exponential
series which always converges:

exp(𝐴) = 𝐼 + 𝐴 + 1
2𝐴

2 +⋯+ 1
𝑟!𝐴

𝑟 +…

For a diagonal matrix, polynomials and power series can be computed easily since the power of a
diagonal matrix just involves raising its diagonal elements to said power. Therefore,

𝐷 =
⎛
⎜
⎜
⎝

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑛

⎞
⎟
⎟
⎠
⟹ 𝑝(𝐷) =

⎛
⎜
⎜
⎝

𝑝(𝜆1) 0 ⋯ 0
0 𝑝(𝜆2) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑝(𝜆𝑛)

⎞
⎟
⎟
⎠
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Therefore,

exp(𝐷) =
⎛
⎜
⎜
⎝

𝑒𝜆1 0 ⋯ 0
0 𝑒𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑒𝜆𝑛

⎞
⎟
⎟
⎠

If 𝐵 = 𝑃−1𝐴𝑃 (similar to 𝐴) where 𝑃 is an 𝑛 × 𝑛 invertible matrix, then
𝐵𝑟 = 𝑃−1𝐴𝑟𝑃

Therefore,
𝑝(𝐵) = 𝑝(𝑃−1𝐴𝑃) = 𝑃−1𝑝(𝐴)𝑃

Of special interest is the characteristic polynomial,
𝜒𝐴(𝑡) = det(𝐴 − 𝑡𝐼) = 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2 +⋯+ 𝑐𝑛𝑡𝑛

where 𝑐0 = det𝐴, and 𝑐𝑛 = (−1)𝑛.

Theorem (Cayley–Hamilton Theorem).

𝜒𝐴(𝐴) = 𝑐0𝐼 + 𝑐1𝐴 + 𝑐2𝐴2 +⋯+ 𝑐𝑛𝐴𝑛 = 0

Less formally, a matrix satisfies its own characteristic equation.

Remark. We can find an expression for the matrix inverse.
−𝑐0𝐼 = 𝐴(𝑐1 + 𝑐2𝐴 +⋯+ 𝑐𝑛𝐴𝑛−1)

If 𝑐0 = det𝐴 ≠ 0, then
𝐴−1 = −1

𝑐0
(𝑐1 + 𝑐2𝐴 +⋯+ 𝑐𝑛𝐴𝑛−1)

11.2 Proofs of special cases of Cayley–Hamilton theorem
Proof for a 2 × 2matrix. Let 𝐴 be a general 2 × 2matrix.

𝐴 = (𝑎 𝑏
𝑐 𝑑) ⟹ 𝜒𝐴(𝑡) = 𝑡2 − (𝑎 + 𝑑)𝑡 + (𝑎𝑑 − 𝑏𝑐)

We can check the theorem by substitution.
𝜒𝐴(𝐴) = 𝐴2 − (𝑎 + 𝑑)𝐴 − (𝑎𝑑 − 𝑏𝑐)𝐼

This is shown on the last example sheet.

Proof for diagonalisable 𝑛 × 𝑛matrices. Consider 𝐴 with eigenvalues 𝜆𝑖, and an invertible matrix 𝑃
such that 𝑃−1𝐴𝑃 = 𝐷, where 𝐷 is diagonal.

𝜒𝐴(𝐷) =
⎛
⎜
⎜
⎝

𝜒𝐴(𝜆1) 0 ⋯ 0
0 𝜒𝐴(𝜆2) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜒𝐴(𝜆𝑛)

⎞
⎟
⎟
⎠
= 0

since the 𝜆𝑖 are eigenvalues. Then
𝜒𝐴(𝐴) = 𝜒𝐴(𝑃𝐷𝑃−1) = 𝑃𝜒𝐴(𝐷)𝑃−1 = 0
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11.3 Proof in general case (non-examinable)
Proof. Let 𝑀 = 𝐴 − 𝑡𝐼. Then det𝑀 = det(𝐴 − 𝑡𝐼) = 𝜒𝐴(𝑡) = ∑𝑟=0 𝑐𝑟𝑡𝑟. We can construct the
adjugate matrix.

𝑀̃ =
𝑛−1
∑
𝑟=0

𝐵𝑟𝑡𝑟

Therefore,

𝑀̃𝑀 = (det𝑀)𝐼 = (
𝑛−1
∑
𝑟=0

𝐵𝑟𝑡𝑟) (𝐴 − 𝑡𝐼)

= 𝐵0𝐴 + (𝐵1𝐴 − 𝐵0)𝑡 + (𝐵2𝐴 − 𝐵1)𝑡2 +⋯+ (𝐵𝑛−1𝐴 − 𝐵𝑛−2)𝑡𝑛−1 − 𝐵𝑛−1𝑡

Now by comparing coefficients,

𝐶0𝐼 = 𝐵0𝐴
𝐶1𝐼 = 𝐵1𝐴 − 𝐵0
⋮

𝐶𝑛−1𝐼 = 𝐵𝑛−1𝐴 − 𝐵𝑛−2
𝐶𝑛𝐼 = −𝐵𝑛−1

Summing all of these coefficients, multiplying by the relevant powers,

𝐶0𝐼 + 𝐶1𝐴 + 𝐶2𝐴2 +⋯+ 𝐶𝑛𝐴𝑛
= 𝐵0𝐴 + (𝐵1𝐴2 − 𝐵0𝐴) + (𝐵2𝐴3 − 𝐵1𝐴2) +⋯ + (𝐵𝑛−1𝐴𝑛 − 𝐵𝑛−2𝐴𝑛−1) − 𝐵𝑛−1𝐴𝑛
= 0

12 Changing bases
12.1 Change of basis formula
Recall that given a linear map 𝑇 ∶ 𝑉 → 𝑊 where 𝑉 and 𝑊 are real or complex vector spaces, and
choices of bases {e𝑖} for 𝑖 = 1,… , 𝑛 and {f𝑎} for 𝑎 = 1,… ,𝑚, then the𝑚×𝑛matrix 𝐴 with respect to
these bases is defined by

𝑇(e𝑖) = ∑
𝑎
f𝑎𝐴𝑎𝑖

So the entries in column 𝑖 of 𝐴 are the components of 𝑇(e𝑖) with respect to the basis {f𝑎}. This is
chosen to ensure that the statement y = 𝑇(x) is equivalent to the statement that 𝑦𝑎 = 𝐴𝑎𝑖𝑥𝑖, where
y = ∑𝑎 𝑦𝑎f𝑎 and x = ∑𝑖 𝑥𝑖e𝑖. This equivalence holds since

𝑇 (∑
𝑖
𝑥𝑖e𝑖) = ∑

𝑖
𝑥𝑖𝑇(e𝑖) = ∑

𝑖
𝑥𝑖 (∑

𝑎
f𝑎𝐴𝑎𝑖) = ∑

𝑎
(∑

𝑖
𝐴𝑎𝑖𝑥𝑖)

⏟⎵⎵⏟⎵⎵⏟
𝑦𝑎

f𝑎

as required. For the same linear map 𝑇, there is a different matrix representation 𝐴′ with respect to
different bases {e′𝑖} and {f

′
𝑎}. To relate 𝐴 with 𝐴′, we need to understand how the new bases relate to
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the original bases. The change of base matrices 𝑃 (𝑛 × 𝑛) and 𝑄 (𝑚×𝑚) are defined by

e′𝑖 = ∑
𝑗
e𝑗𝑃𝑗𝑖; f′𝑎 = ∑

𝑏
f𝑏𝑄𝑏𝑎

The entries in column 𝑖 of 𝑃 are the components of the new basis e′𝑖 in terms of the old basis vectors
{e𝑗}, and similarly for 𝑄. Note, 𝑃 and 𝑄 are invertible, and in the relation above we could exchange
the roles of {e𝑖} and {e′𝑖} by replacing 𝑃 with 𝑃−1, and similarly for 𝑄.

Proposition (Change of base formula for a linear map). With the definitions above,

𝐴′ = 𝑄−1𝐴𝑃

First we will consider an example, then we will construct a proof. Let 𝑛 = 2,𝑚 = 3, and

𝑇(e1) = f1 + 2f2 − f3 = ∑
𝑎
f𝑎𝐴𝑎1

𝑇(e2) = −f1 + 2f2 + f3 = ∑
𝑎
f𝑎𝐴𝑎2

Therefore,

𝐴 = (
1 −1
2 2
−1 1

)

Consider a new basis for 𝑉 , given by

e′1 = e1 − e2 = ∑
𝑖
e𝑖𝑃𝑖1

e′2 = e1 + e2 = ∑
𝑖
e𝑖𝑃𝑖2

𝑃 = ( 1 1
−1 1)

Consider further a new basis for𝑊 , given by

f′1 = f1 − f3 = ∑
𝑎
f𝑎𝑄𝑎1

f′2 = f2 = ∑
𝑎
f𝑎𝑄𝑎2

f′3 = f1 + f3 = ∑
𝑎
f𝑎𝑄𝑎3

𝑄 = (
1 0 1
0 1 0
−1 0 1

)
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From the change of base formula,

𝐴′ = 𝑄−1𝐴𝑃

= (
1/2 0 −1/2
0 1 0
1/2 0 1/2

)(
1 −1
2 2
−1 1

) ( 1 1
−1 1)

= (
2 0
0 4
0 0

)

Now checking this result directly,

𝑇(e′1) = 2f1 − 2f3 = 2f′1
𝑇(e′2) = 4f2 = 4f′2

which matches the content of the matrix as required. Now, let us prove the proposition in gen-
eral.

Proof.

𝑇(e′𝑖) = 𝑇 (∑
𝑗
e𝑗𝑃𝑗𝑖)

= ∑
𝑗
𝑇(e𝑗)𝑃𝑗𝑖

= ∑
𝑗
(∑

𝑎
f𝑎𝐴𝑎𝑗)𝑃𝑗𝑖

= ∑
𝑗𝑎
f𝑎𝐴𝑎𝑗𝑃𝑗𝑖

But on the other hand,

𝑇(e′𝑖) = ∑
𝑏
f′𝑏𝐴

′
𝑏𝑖

= ∑
𝑏
(∑

𝑎
f𝑎𝑄𝑎𝑏)𝐴′

𝑏𝑖

= ∑
𝑎𝑏
f𝑎𝑄𝑎𝑏𝐴′

𝑏𝑖

which is a sum over the same set of basis vectors, so we may equate coefficients of f𝑎.

∑
𝑗
𝐴𝑎𝑗𝑃𝑗𝑖 = ∑

𝑏
𝑄𝑎𝑏𝐴′

𝑏𝑖

(𝐴𝑃)𝑎𝑖 = (𝑄𝐴′)𝑎𝑖

Therefore
𝐴𝑃 = 𝑄𝐴′ ⟹ 𝐴′ = 𝑄−1𝐴𝑃

as required.
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12.2 Changing bases of vector components
Here is another way to arrive at the formula 𝐴′ = 𝑄−1𝐴𝑃. Consider changes in vector compon-
ents

x = ∑
𝑖
𝑥𝑖e𝑖 = ∑

𝑗
𝑥′𝑗e′𝑗

= ∑
𝑖
(∑

𝑗
𝑃𝑖𝑗𝑥′𝑗) e𝑖

⟹ 𝑥𝑖 = 𝑃𝑖𝑗𝑥′𝑗
We will write

𝑋 = (
𝑥1
⋮
𝑥𝑛
) ; 𝑋 ′ = (

𝑥′1
⋮
𝑥′𝑛
)

Then 𝑋 = 𝑃𝑋 ′ or 𝑋 ′ = 𝑃−1𝑋 . Similarly,
y = ∑

𝑎
𝑦𝑎f𝑎 = ∑

𝑏
𝑦′𝑏f′𝑏

⟹ 𝑦𝑎 = 𝑄𝑎𝑏𝑦′𝑏
Then 𝑌 = 𝑄𝑌 ′ or 𝑌 ′ = 𝑄−1𝑌 . So the matrices are defined to ensure that

𝑌 = 𝐴𝑋; 𝑌 ′ = 𝐴′𝑋 ′

Therefore,
𝑄𝑌 ′ = 𝐴𝑃𝑋 ′ ⟹ 𝑌 ′ = (𝑄−1𝐴𝑃)𝑋 ′ ⟹ 𝐴′ = 𝑄−1𝐴𝑃

12.3 Specialisations of changes of basis
Now, let us consider some special cases (in increasing order of specialisation).

(i) Let 𝑉 = 𝑊 with e𝑖 = f𝑖 and e′𝑖 = f′𝑖. So 𝑃 = 𝑄 and the change of basis is

𝐴′ = 𝑃−1𝐴𝑃
Matrices representing the same linear map but with respect to different bases are similar. Con-
versely, if 𝐴,𝐴′ are similar, then we can construct an invertible change of basis matrix 𝑃 which
relates them, so they can be regarded as representing the same linear map. In an earlier sec-
tion we noted that tr(𝐴′) = tr(𝐴), det(𝐴′) = det(𝐴) and 𝜒𝐴(𝑡) = 𝜒𝐴′(𝑡). so these are intrinsic
properties of the linear map, not just the particular matrix we choose to represent it.

(ii) Let 𝑉 = 𝑊 = ℝ𝑛 or ℂ𝑛 where e𝑖 is the standard basis, with respect to which, 𝑇 has matrix 𝐴.
If there exists a basis of eigenvectors, e′𝑖 = v𝑖 with 𝐴v𝑖 = 𝜆𝑖v𝑖. Then

𝐴′ = 𝑃−1𝐴𝑃 = 𝐷 =
⎛
⎜
⎜
⎝

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑛

⎞
⎟
⎟
⎠

and
v𝑖 = ∑

𝑘
e𝑗𝑃𝑗𝑖

so the eigenvectors are the columns of 𝑃.
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(iii) Let 𝐴 be hermitian, i.e. 𝐴† = 𝐴, then we always have a basis of orthonormal eigenvectors
e′𝑖 = u𝑖. Then the relations in (ii) apply, and 𝑃 is unitary, 𝑃† = 𝑃−1.

12.4 Jordan normal form
Also known as the (Jordan) Canonical Form, this result classifies 𝑛 × 𝑛 complex matrices up to sim-
ilarity.

Proposition. Any 2 × 2 complex matrix 𝐴 is similar to one of the following:

(i) 𝐴′ = (𝜆1 0
0 𝜆2

) with 𝜆1 ≠ 𝜆2, so 𝜒𝐴(𝑡) = (𝑡 − 𝜆1)(𝑡 − 𝜆2).

(ii) 𝐴′ = (𝜆 0
0 𝜆), so 𝜒𝐴(𝑡) = (𝑡 − 𝜆)2.

(iii) 𝐴′ = (𝜆 1
0 𝜆), so 𝜒𝐴(𝑡) = (𝑡 − 𝜆)2 as in case (ii).

Proof. 𝜒𝐴(𝑡) has two roots over ℂ.
(i) For distinct roots 𝜆1, 𝜆2, we have 𝑀𝜆1 = 𝑚𝜆1 = 𝑀𝜆2 = 𝑚𝜆2 = 1. So the eigenvectors v1, v2

provide a basis. Hence 𝐴′ = 𝑃−1𝐴𝑃 with the eigenvectors as the columns of 𝑃.
(ii) For a repeated root 𝜆 with𝑀𝜆 = 𝑚𝜆 = 2, the same argument applies.
(iii) For a repeated root 𝜆with𝑀𝜆 = 2,𝑚𝜆 = 1, we do not have a basis of eigenvectors so we cannot

diagonalise the matrix. We only have one linearly independent eigenvector, which we will call
v. Letw be any other vector such that {v,w} are linearly independent. Then

𝐴v = 𝜆v
𝐴w = 𝛼v + 𝛽w

The matrix representing this linear map with respect to the basis vectors {v,w} is therefore

(𝜆 𝛼
0 𝛽)

Let us solve for some of these unknowns. We know that the characteristic polynomial of this
matrix must be (𝑡 − 𝜆)2, so 𝛽 = 𝜆. Also, 𝛼 ≠ 0, otherwise we have case (ii) above. So now we
can set u = 𝛼v, so

𝐴(𝛼v) = 𝜆(𝛼v)
𝐴w = 𝛼v + 𝛽w

So with respect to the basis {u,w} we get the matrix 𝐴 to be

𝐴′ = (𝜆 1
0 𝜆)
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Alternative Proof. Here is an alternative approach for case (iii). If 𝐴 has characteristic polynomial

𝜒𝐴(𝑡) = (𝑡 − 𝜆)2

but𝐴 ≠ 𝜆𝐼, then there exists some vectorw forwhichu = (𝐴−𝜆𝐼)w ≠ 0. So (𝐴−𝜆𝐼)u = (𝐴−𝜆𝐼)2w =
0 by the Cayley–Hamilton theorem. So

𝐴u = 𝜆u
𝐴w = u + 𝜆w

So with basis {u,w} we have the matrix

𝐴′ = (𝜆 1
0 𝜆)

Here is a concrete example using this alternative proof method.

𝐴 = ( 1 4
−1 5) ⟹ 𝜒𝐴(𝑡) = (𝑡 − 3)2

So
𝐴 − 3𝐼 = (−2 4

−1 2)

We will choose w = (10) and we find u = (𝐴 − 3𝐼)w = (−2−1). w is not an eigenvector, as required
for the construction. By the reasoning in the alternative argument above, u is an eigenvector by
construction.

𝐴u = 3u
𝐴w = u + 3w

So
𝑃 = (−2 1

−1 0) ⟹ 𝑃−1 = (0 −1
1 −2)

and we can check that
𝑃−1𝐴𝑃 = (3 1

0 3) = 𝐴′

12.5 Jordan normal forms in 𝑛 dimensions
To extend the arguments above to larger matrices, consider the 𝑛 × 𝑛matrix

𝑁 =
⎛
⎜
⎜
⎜
⎝

0 1 0 ⋯ 0
0 0 1 ⋯ 0
0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 0

⎞
⎟
⎟
⎟
⎠
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When applied to the standard basis vectors in ℂ𝑛, the action of this matrix sends e𝑛 ↦ e𝑛−1 ↦⋯↦
e1 ↦ 0. This is consistent with the property that 𝑁𝑛 = 0. The kernel of this matrix has dimension 1.
Now consider the matrix 𝐽 = 𝜆𝐼 + 𝑁, as follows:

𝑁 =
⎛
⎜
⎜
⎜
⎝

𝜆 1 0 ⋯ 0
0 𝜆 1 ⋯ 0
0 0 𝜆 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝜆

⎞
⎟
⎟
⎟
⎠

This matrix has
𝜒𝐽(𝑡) = (𝜆 − 𝑡)𝑛

with 𝑀𝜆 = 𝑛 and 𝑚𝜆 = 1, since the kernel of 𝐽 − 𝜆𝐼 = 𝑁 has dimension 1 as before. The general
result is as follows.

Theorem. Any 𝑛 × 𝑛 complex matrix 𝐴 is similar to a matrix of the form

𝐴′ =
⎛
⎜
⎜
⎝

𝐽𝑛1(𝜆1) 0 ⋯ 0
0 𝐽𝑛2(𝜆2) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐽𝑛𝑟(𝜆𝑟)

⎞
⎟
⎟
⎠

where each diagonal block is a Jordan block 𝐽𝑛𝑟(𝜆𝑟) which is an 𝑛𝑟 × 𝑛𝑟 matrix 𝐽 with ei-
genvalue 𝜆𝑟. 𝜆1,… , 𝜆𝑟 are eigenvalues of 𝐴 and 𝐴′, and the same eigenvalue may appear in
different blocks. Further, 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑟 = 𝑛 so we end up with an 𝑛 × 𝑛 matrix. 𝐴 is
diagonalisable if and only if 𝐴′ consists entirely of 1 × 1 blocks. The expression above is the
Jordan Normal Form.

The proof is non-examinable and depends on the Part IB courses Linear Algebra, and Groups, Rings
and Modules, so is not included here.

13 Conics and quadrics
13.1 Quadrics in general
A quadric in ℝ𝑛 is a hypersurface defined by an equation of the form

𝑄(x) = x⊺𝐴x + b⊺x + 𝑐 = 0

for some nonzero, symmetric, real 𝑛 × 𝑛matrix 𝐴, 𝑏 ∈ ℝ𝑛, 𝑐 ∈ ℝ. In components,

𝑄(x) = 𝐴𝑖𝑗𝑥𝑖𝑥𝑗 + 𝑏𝑖𝑥𝑖 + 𝑐 = 0

We will classify solutions for x up to geometrical equivalence, so we will not distinguish between
solutions here which are related by isometries in ℝ𝑛 (distance-preserving maps, i.e. translations and
orthogonal transformations about the origin).

Note that 𝐴 is invertible if and only if it has no zero eigenvalues. In this case, we can complete the
square in the equation 𝑄(x) = 0 by setting y = x + 1

2
𝐴−1b. This is essentially a translation isometry,
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moving the origin to 1
2
𝐴−1b.

y⊺𝐴y = (x + 1
2𝐴

−1b)⊺𝐴(x + 1
2𝐴

−1b)

= (x⊺ + 1
2b

⊺(𝐴−1)⊺)𝐴(x + 1
2𝐴

−1b)

= x⊺𝐴x + b⊺x + 1
4b

⊺𝐴−1b

since (𝐴⊺)−1 = (𝐴−1)⊺. Then,
𝑄(x) = 0 ⟺ ℱ(y) = 𝑘

with
ℱ(y) = y⊺𝐴y

which is a quadratic form with respect to a new origin y = 0, and where 𝑘 = 1
4
b⊺𝐴−1b − 𝑐. Now we

can diagonalise ℱ as in the above section, in particular, orthonormal eigenvectors give the principal
axes, and the eigenvalues of 𝐴 and the value of 𝑘 determine the geometrical nature of the solution of
the quadric. In ℝ3, the geometrical possibilities are (as we saw before):

(i) eigenvalues positive, 𝑘 positive gives an ellipsoid;
(ii) eigenvalues different signs, 𝑘 nonzero gives a hyperboloid

If 𝐴 has one or more zero eigenvalues, then the analysis we have just provided changes, since we can
no longer construct such a y vector, since 𝐴−1 does not exist. The simplest standard form of 𝑄 may
have both linear and quadratic terms.

13.2 Conics as quadrics
Quadrics inℝ2 are curves called conics. Let us first consider the case where det𝐴 ≠ 0. By completing
the square and diagonalising 𝐴, we get a standard form

𝜆1𝑥′1
2 + 𝜆2𝑥′2

2 = 𝑘

The variables𝑥′𝑖 correspond to the principal axes and theneworigin. Wehave the following cases.
• (𝜆1, 𝜆2 > 0) This is an ellipse for 𝑘 > 0, and a point for 𝑘 = 0. There are no solutions for 𝑘 < 0.
• (𝜆1 > 0, 𝜆2 < 0) This gives a hyperbola for 𝑘 > 0, and a hyperbola in the other axis if 𝑘 < 0. If
𝑘 = 0, this is a pair of lines. For instance, 𝑥′1

2 − 𝑥′2
2 = 0 ⟹ (𝑥′1 − 𝑥′2)(𝑥′1 + 𝑥′2) = 0.

If det𝐴 = 0, then there is exactly one zero eigenvalue since 𝐴 ≠ 0. Then:
• (𝜆1 > 0, 𝜆2 = 0) We will diagonalise 𝐴 in the original expression for the quadric. This gives

𝜆1𝑥′1
2 + 𝑏′1𝑥′1 + 𝑏′2𝑥′2 + 𝑐 = 0

This is a new equation in the coordinate system defined by 𝐴’s principal axes. Completing the
square here in the 𝑥′1 term, we have

𝜆1𝑥″1
2 + 𝑏′2𝑥′2 + 𝑐′ = 0
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where 𝑥″1 = 𝑥′1 +
1
2𝜆1

𝑏′1, and 𝑐′ = 𝑐 − 𝑏′1
2

4𝜆21
. If 𝑏′2 = 0, then 𝑥2 can take any value; and we get a

pair of lines if 𝑐′ < 0, a single line if 𝑐′ = 0, and no solutions if 𝑐′ > 0. Otherwise, 𝑏′2 ≠ 0, and
the equation becomes

𝜆1𝑥″1
2 + 𝑏′2𝑥″2 = 0

where 𝑥″2 = 𝑥′2 +
1
𝑏′2
𝑐′, and clearly this equation is a parabola.

All changes of coordinates correspond to translations (shifts of the origin) or orthogonal transforma-
tions, both of which preserve distance and angles.

13.3 Standard forms for conics
The general forms of conics can be written in terms of lengths 𝑎, 𝑏 (the semi-major and semi-minor
axes), or equivalently a length scale ℓ and a dimensionless eccentricity constant 𝑒.

• First, let us consider Cartesian coordinates. The formulas are:
conic formula eccentricity foci

ellipse 𝑥2

𝑎2
+ 𝑦2

𝑏2
= 1 𝑏2 = 𝑎2(1 − 𝑒2), and 𝑒 < 1 𝑥 = ±𝑎𝑒

parabola 𝑦2 = 4𝑎𝑥 one quadratic term vanishes, 𝑒 = 1 𝑥 = +𝑎
hyperbola 𝑥2

𝑎2
− 𝑦2

𝑏2
= 1 𝑏2 = 𝑎2(𝑒2 − 1), and 𝑒 > 1 𝑥 = ±𝑎𝑒

• Polar coordinates are a convenient alternative to Cartesian coordinates. In this coordinate sys-
tem, we set the origin to be at a focus. Then, the formulas are

𝑟 = ℓ
1 + 𝑒 cos 𝜃

– For the ellipse, 𝑒 < 1 and ℓ = 𝑎(1 − 𝑒2);
– For the parabola, 𝑒 = 1 and ℓ = 2𝑎; and
– For the hyperbola, 𝑒 > 1 and ℓ = 𝑎(𝑒2 − 1). There is only one branch for the hyperbola
given by this polar form.

13.4 Conics as sections of a cone
The equation for a cone in ℝ3 given by an apex c, an axis n̂, and an angle 𝛼 < 𝜋

2
, is

(x − c) ⋅ n̂ = |x − c| cos𝛼

Less formally, the angle of x away from n̂ must be 𝛼. By squaring this equation, we can essentially
define two cones which stretch out infinitely far and meet at the centre point c.

((x − c) ⋅ n̂)2 = |x − c|2 cos2 𝛼

Let us choose a set of coordinate axes so that our equations end up slightly easier. Let c = 𝑐e3, n̂ =
cos 𝛽e1 − sin 𝛽e3. Then essentially the cone starts at (0, 0, 𝑐) and points ‘downwards’ in the e1–e3
plane. Then the conic section is the intersection of this cone with the e1–e2 plane, i.e. 𝑥3 = 0.

(𝑥1 cos 𝛽 − 𝑐 sin 𝛽)2 = (𝑥21 + 𝑥22 + 𝑐2) cos2 𝛼
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⟺ (cos2 𝛼 − cos2 𝛽)𝑥21 + (cos2 𝛼)𝑥22 + 2𝑥1𝑐 sin 𝛽 cos 𝛽 = const.
Now we can compare the signs of the 𝑥21 and 𝑥22 terms. Clearly the 𝑥22 term is always positive, so we
consider the sign of the 𝑥21 term.

• If cos2 𝛼 > cos2 𝛽 (i.e. 𝛼 < 𝛽), then we have an ellipse.
• If cos2 𝛼 = cos2 𝛽 (i.e. 𝛼 = 𝛽), then we have a parabola.
• If cos2 𝛼 < cos2 𝛽 (i.e. 𝛼 > 𝛽), then we have a hyperbola.

14 Symmetries and transformation groups
14.1 Orthogonal transformations and rotations
We know that if a matrix 𝑅 is orthogonal, we have 𝑅⊺𝑅 = 𝐼 ⟺ (𝑅x) ⋅ (𝑅y) = x ⋅ y ⟺ the rows
or columns are orthonormal. The set of 𝑛 × 𝑛matrices 𝑅 forms the orthogonal group 𝑂𝑛 = 𝑂(𝑛). If
𝑅 ∈ 𝑂(𝑛) then det𝑅 = ±1. 𝑆𝑂𝑛 = 𝑆𝑂(𝑛) is the special orthogonal group, which is the subgroup of
𝑂(𝑛) defined by det𝑅 = 1. If some matrix 𝑅 is an element of 𝑂(𝑛), then 𝑅 preserves the modulus
of 𝑛-dimensional volume. If 𝑅 ∈ 𝑆𝑂(𝑛), then 𝑅 preserves not only the modulus but also the sign of
such a volume.

𝑆𝑂(𝑛) consists precisely of all rotations in ℝ𝑛. 𝑂(𝑛) ∖ 𝑆𝑂(𝑛) consists of all reflections. For some
specific 𝐻 ∈ 𝑂(𝑛) ∖ 𝑆𝑂(𝑛), any element of 𝑂(𝑛) can be written as a product of 𝐻 with some element
in 𝑆𝑂(𝑛), i.e. 𝑅 or 𝑅𝐻 with 𝑅 ∈ 𝑆𝑂(𝑛). For example, if 𝑛 is odd, we can choose 𝐻 = −𝐼.
Now, we can consider the transformation 𝑥′𝑖 = 𝑅𝑖𝑗𝑥𝑗 under two distinct points of view.

• (active) The rotation 𝑅 acts on the vector x and yields a new vector x′. The 𝑥′𝑖 are components
of the transformed vector in terms of the standard basis vectors.

• (passive) The 𝑥′𝑖 are components of the same vector x butwith respect to new orthonormal basis
vectors u𝑖. In general, x = ∑𝑖 𝑥𝑖e𝑖 = ∑𝑖 𝑥′𝑖u𝑖 which is true where u𝑖 = ∑𝑗 𝑅𝑖𝑗e𝑗 = ∑𝑗 e𝑗𝑃𝑗𝑖.
So 𝑃 = 𝑅−1 = 𝑅⊺ where 𝑃 is the change of basis matrix.

14.2 2DMinkowski space
Consider a new ‘inner product’ on ℝ2 given by

(x, y) = x⊺𝐽y; 𝐽 = (1 0
0 −1)

∴ ((𝑥0𝑥1
) , (𝑦0𝑦1

)) = 𝑥0𝑦0 − 𝑥1𝑦1

We start indexing these vectors from zero, not one. Here are some important properties.

• This ‘inner product’ is not positive definite. In fact, (x, x) = 𝑥20 − 𝑥21. (This is a quadratic form
for x with eigenvalues ±1.)

• It is bilinear and symmetric.

• Defining e0 = (10) and e1 = (01), they obey

(e0, e0) = −(e1, e1) = 1; (e0, e1) = 0
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This is similar to orthonormality, in this generalised sense.

This inner product is known as theMinkowskimetric onℝ2. ℝ2 with thismetric is calledMinkowski
space.

14.3 Lorentz transformations
Let us consider a matrix

𝑀 = (𝑀00 𝑀01
𝑀10 𝑀11

)

giving a map ℝ2 → ℝ2; this preserves the Minkowski metric if and only if (𝑀x,𝑀y) = (x, y) for any
vectors x, y. Expanded, this condition is

(𝑀x)⊺𝐽(𝑀y) = x⊺𝑀⊺𝐽𝑀y = x⊺𝐽y

⟹ 𝑀⊺𝐽𝑀 = 𝐽
The set of suchmatrices form a group. Also, det𝑀 = ±1 for the same reason as before. Furthermore,
|𝑀00|

2 ≥ 1, so either𝑀00 ≥ 1 or𝑀00 ≤ −1. The subgroup with det𝑀 = +1 and𝑀00 ≥ 1 is known
as the Lorentz group.

Let us find the general form of𝑀, by using the fact that the columns𝑀e0 and𝑀e𝑖 are orthonormal
with respect to the Minkowski metric.

(𝑀e0,𝑀e0) = 𝑀2
00 −𝑀2

10 = (e0, e0) = 1 (hence |𝑀00|
2 ≥ 1)

Taking𝑀00 ≥ 1, we can write
𝑀e0 = (cosh 𝜃sinh 𝜃)

for some real value 𝜃. For the other column,

(𝑀e0,𝑀e1) = 0; (𝑀e1,𝑀e1) = −1 ⟹ 𝑀e1 = ±(sinh 𝜃cosh 𝜃)

The sign is fixed to be positive by the condition that det𝑀 = +1.

𝑀 = (cosh 𝜃 sinh 𝜃
sinh 𝜃 cosh 𝜃)

The curves defined by (x, x) = 𝑘 where 𝑘 is a constant are hyperbolas. This is analogous to how
the curves defined by x ⋅ x = 𝑘 are circles. So applying 𝑀 to any vector on a given branch of a
hyperbola, the resultant vector remains on the hyperbola. Note that these matrices obey the rule
𝑀(𝜃1)𝑀(𝜃2) = 𝑀(𝜃1 + 𝜃2). This confirms that they form a group.

14.4 Application to special relativity
Let

𝑀(𝜃) = 𝛾(𝑣) (1 𝑣
𝑣 1) ; 𝑣 = tanh 𝜃; 𝛾 = (1 − 𝑣2)−

1
2

64



Here, 𝑣 lies in the range −1 < 𝑣 < 1. We will rename 𝑥0 to be 𝑡, which is now our time coordinate.
𝑥1 will just be written 𝑥, our one-dimensional space coordinate. Then,

x′ = 𝑀x ⟺ {𝑡
′ = 𝛾 ⋅ (𝑡 + 𝑣𝑥)
𝑥′ = 𝛾 ⋅ (𝑥 + 𝑣𝑡)

This is a Lorentz transformation, or ‘boost’, relating the time and space coordinates for observers
moving with relative velocity 𝑣 in Special Relativity, in units where the speed of light 𝑐 is taken to be
1. The 𝛾 factor in the Lorentz transformation gives rise to time dilation and length contraction effects.
The group property𝑀(𝜃3) = 𝑀(𝜃1)𝑀(𝜃2) with 𝜃3 = 𝜃1 + 𝜃2 corresponds to the velocities

𝑣𝑖 = tanh 𝜃𝑖 ⟹ 𝑣3 =
𝑣1 + 𝑣2
1 + 𝑣1𝑣2

This is consistent with the fact that all velocities are less than the speed of light, 1.
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