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I. Optimisation

Lectured in Easter 2021 by Dr. V. Jog
Many real-world problems involve finding optimal points of functions, for instance making
the most valuable products given limited resources, or finding the optimal way to transport
goods across a network. In this course, we study the theory behind optimisation, and pro-
duce various algorithms for computing optima in different environments.

An important class of functions is the convex functions. One can show that if a function is
convex, we can use local behaviour to make conclusions about global minima and maxima.
This helps guide our study of optimisation. Linear functions are convex, and the study of
optimising linear functions is called linear programming. We show that linear programs
can be solved computationally using the simplex method, allowing us to easily solve lots of
real-world optimisation problems.
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I. Optimisation

1. Introduction and convex functions
1.1. Outline and definitions
An optimisation problem is a problem in which we want to minimise some function 𝑓(x)
such that x ∈ 𝒳 ⊆ ℝ𝑛. We may have a set of constraints ℎ(x) = b where ℎ(x)∶ ℝ𝑛 → ℝ𝑚.
Note that we will only ever consider minimisation of functions since we can maximise a
function by minimising its negative. Such a problem is often written with notation such
as

minimise
x∈𝒳

𝑓(x)

subject to ℎ(x) = b

Definition. The following definitions will be used.

(i) The function 𝑓 that we want to minimise is called the objective function.

(ii) The components of the vector x are called the decision variables.

(iii) A constraint of the form ℎ(x) = b is called a functional constraint.

(iv) A constraint of the form x ∈ 𝒳 is called a regional constraint.

(v) The set 𝒳(b) = {x∶ x ∈ 𝒳, ℎ(x) = b} is called the feasible set.

(vi) If the feasible set is non-empty, the optimisation problem is called feasible. If the
feasible set is empty, the problem is infeasible.

(vii) The problem is called bounded if the minimum on 𝒳(b) is bounded.

(viii) A point x⋆ ∈ 𝒳(b) is optimal if it minimises 𝑓 over𝒳(b). The value 𝑓(x⋆) is called the
optimal cost.

We can convert an inequality constraint into an equality constraint with a regional con-
straint, for instance

ℎ(x) ≤ 𝑏⟶ ℎ(x) + 𝑠 = 𝑏; 𝑠 ≥ 0

1.2. Convexity
Definition. A set 𝑆 ⊆ ℝ𝑛 is convex if for all x, y ∈ 𝑆, the line segment from x to y lies
entirely inside 𝑆. In other words, for all 𝜆 ∈ [0, 1], x(1 − 𝜆) + y(𝜆) ∈ 𝑆.

Definition. A function 𝑓∶ 𝑆 → ℝ is convex if

• 𝑆 is convex, and

• for all x, y ∈ 𝑆,
𝑓((1 − 𝜆)x + 𝜆y) ≤ (1 − 𝜆)𝑓(x) + 𝜆𝑓(y)
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1. Introduction and convex functions

So informally, for a convex function, if we take two inputs, the chord connecting their out-
puts lies above the function’s curve. If the given inequality above is strict, the function is
called strictly convex. 𝑓 is (strictly) concave if −𝑓 is (strictly) convex. Note that if 𝑓 is linear,
𝑓 is convex and concave, since 𝑓 is linear in its input. Hence linear optimisation is a special
case of convex optimisation.

1.3. Unconstrained optimisation
The unconstrained optimisation problem is simply to minimise 𝑓(x), where 𝑓∶ ℝ𝑛 → ℝ is
a convex function. Convex functions allow you to generalise the behaviour of a function
in a small neighbourhood to global behaviour, so it becomes easier to solve optimisation
problems expressed in terms of convex functions.

1.4. First-order conditions for convexity
Suppose we have a tangent to a curve 𝑓∶ ℝ → ℝ at a given point 𝑥. If 𝑓 is convex, then 𝑓
must only touch the curve once, since if it touched twice we would contradict the definition
of convexity. In particular, we have the following necessary and sufficient condition for
convexity:

𝑓(𝑦) ≥ 𝑓(𝑥) + (𝑦 − 𝑥)𝑓′(𝑥)
In higher dimensions, we might guess that

𝑓(y) ≥ 𝑓(x) + (y − x) ⋅ ∇𝑓(x)

Theorem. A differentiable function 𝑓∶ ℝ𝑛 → ℝ is convex if and only if

∀x, y ∈ ℝ𝑛, 𝑓(y) ≥ 𝑓(x) + (y − x) ⋅ ∇𝑓(x) = 𝑓(x) + ∇𝑓(x)⊺(y − x)

Remark. If ∇𝑓(x) = 0 for some vector x, then the first-order condition implies that 𝑓(y) ≥
𝑓(x), so x is the global minimum of 𝑓. This is an example of howwe can use local properties
(the gradient of the function at x) to deduce global properties (the minimum value of the
function).

Proof. First, we will prove that convexity implies the first-order condition. By convexity, we
have

𝑓((1 − 𝜆)x + 𝜆y) ≤ (1 − 𝜆)𝑓(x) + 𝜆𝑓(y)
Initially, let 𝑛 = 1 so that we have the one-dimensional case. We have

𝑓(𝑦) ≥ 𝑓(𝑥) + 𝑓(𝑥 + 𝜆(𝑦 − 𝑥)) − 𝑓(𝑥)
𝜆 = 𝑓(𝑥) + 𝑓(𝑥 + 𝜆(𝑦 − 𝑥)) − 𝑓(𝑥)

𝜆(𝑦 − 𝑥) (𝑦 − 𝑥)

Hence, taking the limit as 𝜆 → 0, we have

𝑓(𝑦) ≥ 𝑓(𝑥) + 𝑓′(𝑥)(𝑦 − 𝑥)
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I. Optimisation

For the general case, we define a function 𝑔 such that 𝑔(𝜆) = 𝑓((1 − 𝜆)x + 𝜆y). Since 𝑓 is
convex, so is 𝑔. We can calculate

𝑔′(𝜆) = ∇𝑓((1 − 𝜆)x + 𝜆y) ⋅ (y − x)

Since 𝑔∶ [0, 1] → ℝ is convex, by the above argument for 𝑛 = 1 we have

𝑔(1) ≥ 𝑔(0) + 𝑔′(0)(1 − 0)
𝑓(y) ≥ 𝑓(x) + ∇𝑓(x) ⋅ (y − x)

Now we must prove the converse; if the first-order condition holds, then 𝑓 is convex. Let

x𝜆 = (1 − 𝜆)x + 𝜆y

The first-order condition shows that

𝑓(x) ≥ 𝑓(x𝜆) + ∇𝑓(x𝜆) ⋅ (x − x𝜆)
𝑓(y) ≥ 𝑓(x𝜆) + ∇𝑓(x𝜆) ⋅ (y − x𝜆)

Multiplying the first equation by 1 − 𝜆 and multiplying the second equation by 𝜆, we get

(1 − 𝜆)𝑓(x) + 𝜆𝑓(y) ≥ 𝑓(x𝜆) + ∇𝑓(x𝜆) ⋅ [(x − x𝜆)(1 − 𝜆) + (y − x𝜆)𝜆]
= 𝑓(x𝜆) + ∇𝑓(x𝜆) ⋅ [(x − (1 − 𝜆)x − 𝜆y)(1 − 𝜆) + (y − (1 − 𝜆)x − 𝜆y)𝜆]
= 𝑓(x𝜆) + ∇𝑓(x𝜆) ⋅ [(𝜆x − 𝜆y)(1 − 𝜆) + ((1 − 𝜆)y − (1 − 𝜆)x)𝜆]
= 𝑓(x𝜆) + ∇𝑓(x𝜆) ⋅ 0
= 𝑓(x𝜆)

Hence 𝑓 really is convex.

1.5. Second-order conditions for convexity
When 𝑛 = 1, we suspect that 𝑓″(𝑥) ≥ 0 is the condition for convexity. In higher dimensions,
the analogous operator to the double derivative is the Hessian matrix.

∇2𝑓(x) = H𝑓 =

⎛
⎜
⎜
⎜
⎜
⎝

𝜕2𝑓(x)
𝜕𝑥21

𝜕2𝑓(x)
𝜕𝑥1𝜕𝑥2

⋯ 𝜕2𝑓(x)
𝜕𝑥1𝜕𝑥𝑛

𝜕2𝑓(x)
𝜕𝑥2𝜕𝑥1

𝜕2𝑓(x)
𝜕𝑥22

⋯ 𝜕2𝑓(x)
𝜕𝑥2𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕2𝑓(x)
𝜕𝑥𝑛𝜕𝑥1

𝜕2𝑓(x)
𝜕𝑥𝑛𝜕𝑥2

⋯ 𝜕2𝑓(x)
𝜕𝑥2𝑛

⎞
⎟
⎟
⎟
⎟
⎠

Definition. An 𝑛 × 𝑛 matrix 𝐴 is positive semidefinite if for all x ∈ ℝ𝑛, we have x⊺𝐴x ≥ 0.
Equivalently, all eigenvalues of 𝐴 are non-negative. If 𝐴 is positive semidefinite, we write
𝐴 ⪰ 0.
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1. Introduction and convex functions

Note that the higher-dimensional analogue of the Taylor expansion of 𝑓(y) is

𝑓(y) = 𝑓(x) + ∇𝑓(x)⊺(y − x) + 1
2(y − x)⊺∇2𝑓(x)(y − x) +⋯

Theorem. A twice-differentiable function 𝑓∶ ℝ𝑛 → ℝ is convex if∇2𝑓(x) ⪰ 0 at all x. The
converse also holds, but it is not important for this course, so it will not be proven.

Proof. Using the Taylor expansion of 𝑓, we have

𝑓(y) = 𝑓(x) + ∇𝑓(x)⊺(y − x) + 1
2(y − x)⊺∇2𝑓(z)(y − x)

where z = (1 − 𝜆)x + 𝜆y for some 𝜆 ∈ [0, 1]. The rightmost term is positive, hence

𝑓(y) ≥ 𝑓(x) + ∇𝑓(x)⊺(y − x)

So the first-order conditions are satisfied, which imply convexity.
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I. Optimisation

2. Optimisation algorithms
2.1. Gradient descent
Consider minimising 𝑓(𝑥) such that 𝑓∶ ℝ𝑛 → ℝ is a convex function. Recall that a local
minimum of 𝑓 is also the global minimum. Consider the following ‘greedy’ method:

• Start at a point x0.

• Search for close points around x0 whose values of 𝑓 are smaller than 𝑓(x0).
– If such a point exists, let this be x1. Repeat the algorithm.

– If such a point does not exist, we have found a localminimum,which is the global
minimum.

Wecan find suchx1 points by considering theTaylor series expansion of𝑓 around apoint.

𝑓(x − 𝜀∇𝑓(x)) ≈ 𝑓(x) − 𝜀∇𝑓(x)⊺ ⋅ ∇𝑓(x) = 𝑓(x) − 𝜀‖∇𝑓(x)‖2 ≤ 𝑓(x)

Hence−∇𝑓(x) is called a descending direction. Although the gradient of the function is the
most natural way of decreasing a function, any vwith 𝑓(x) ⋅ v < 0 is a descending direction.
This gives us the gradient descent algorithm.

Algorithm 1: Gradient Descent Algorithm
Result: Global minimum of 𝑓(x)
start at a point x0;
𝑡 ← 0;
repeat

find a descending direction v𝑡, e.g. −∇𝑓(x);
choose a step size 𝜂𝑡;
x𝑡+1 ← x𝑡 + 𝜂𝑡v𝑡;

until ∇𝑓(x) = 0 or 𝑡 is large enough;

Different choices of v𝑡 and 𝜂𝑡 give rise to many different qualities of algorithm.

2.2. Smoothness assumption
Some restrictionsmust be applied to a function to let us prove that gradient descentworks.

Definition. A continuously differentiable function 𝑓∶ ℝ𝑛 → ℝ is 𝛽-smooth if ∇𝑓 is a 𝛽-
Lipschitz function:

‖∇𝑓(x) − ∇𝑓(y)‖ ≤ 𝛽‖x − y‖

In the following sections, we assume all functions 𝑓 are 𝛽-smooth. Further, if 𝑓 is twice dif-
ferentiable (i.e. the Hessian exists everywhere), then the 𝛽-smoothness assumption is equi-
valent to

∇2𝑓(x) ⪯ 𝛽𝐼

12



2. Optimisation algorithms

so all eigenvalues of ∇2𝑓(x) have 𝜆 ≤ 𝛽. Also,

u⊺∇2𝑓(x)u ≤ u⊺(𝛽𝐼)u = 𝛽‖u‖2

Definition. The linear approximation to 𝑓 at x is

𝑓(x) + ∇𝑓(x)⊺(y − x)

We might assume that the linear approximation is close to the actual function in a small
neighbourhood around 𝑥.
Claim. If 𝑓 is 𝛽-smooth, then

𝑓(y) ≤ 𝑓(x) + ∇𝑓(x)⊺(y − x) + 𝛽
2 ‖y − x‖2

Note that
𝑓(x) + ∇𝑓(x)⊺(y − x) ≤ 𝑓(y)

since 𝑓 is convex, so this claim would show that 𝑓 really is close to the actual function,
deviating by an arbitrarily small amount as we let x approach y.

Proof. By Taylor’s theorem,

𝑓(y) = 𝑓(x) + ∇𝑓(x)⊺(y − x) + 1
2(y − x)⊺∇2𝑓(z)(y − x)

≤ 𝑓(x) + ∇𝑓(x)⊺(y − x) + 1
2(y − x)⊺(𝛽𝐼)(y − x)

= 𝑓(x) + ∇𝑓(x)⊺(y − x) + 𝛽
2 ‖y − x‖2

Corollary. If we move by a step size of 1
𝛽
, we will descend by at least 1

2𝛽
‖∇𝑓(𝑥)‖2.

𝑓(x − 1
𝛽∇𝑓(x)) ≤ 𝑓(x) − 1

2𝛽‖∇𝑓(𝑥)‖
2

Proof. Consider
𝑓(x) + ∇𝑓(x)⊺(y − x) + 𝛽

2 ‖y − x‖2

as a function of y, and try to minimise it for a fixed x.

∇y(𝑓(x) + ∇𝑓(x)⊺(y − x) + 𝛽
2 ‖y − x‖2) = ∇𝑓(x) + 𝛽(y − x) = 0

13



I. Optimisation

Hence,

∇𝑓(x)
𝛽 = x − y

y = x − 1
𝛽∇𝑓(x)

Substituting into the claim above, we have

𝑓(𝑥 − 1
𝛽∇𝑓(x)) ≤ 𝑓(x) + ∇𝑓(x)⊺(−1𝛽 ∇𝑓(x)) + 𝛽

2
‖
‖‖
1
𝛽∇𝑓(x)

‖
‖‖
2

= 𝑓(x) − 1
𝛽‖∇𝑓(x)‖

2 + 1
2𝛽‖∇𝑓(x)‖

2

= 𝑓(x) − 1
2𝛽‖∇𝑓(x)‖

2

Claim (Improved first order condition).

𝑓(y) ≥ 𝑓(x) + ∇𝑓(x)⊺(y − x) + 1
2𝛽‖∇𝑓(x) − ∇𝑓(y)‖2

Proof. For any z, by the standard first order condition and the corollary above we have

𝑓(x) + ∇𝑓(x)⊺(z − x) ≤ 𝑓(z) ≤ 𝑓(y) + ∇𝑓(y)⊺(z − y) + 𝛽
2 ‖z − y‖2

This then implies

𝑓(x) − 𝑓(y) ≤ ∇𝑓(x)⊺(x − z) + ∇𝑓(y)⊺(z − y) + 𝛽
2 ‖z − y‖2

The left hand side is not dependent on z, so by minimising z we get the best bound for the
left hand side. We set the gradient of z to zero.

−∇𝑓(x) + ∇𝑓(𝑦) + 𝛽(z − y) = 0

⟹ z = ∇𝑓(x) − ∇𝑓(y)
𝛽 + y

Substituting back, we have

𝑓(x) − 𝑓(y) ≤ ∇𝑓(x)⊺(x − y) − 1
2𝛽‖∇𝑓(x) − ∇𝑓(y)‖2
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2. Optimisation algorithms

2.3. Strong convexity assumption
In general, a small gradient does not imply that we are close to the optimum value of the
function. We must therefore add an additional assumption in order to justify gradient des-
cent.

Definition. A function 𝑓∶ ℝ𝑛 → ℝ is called 𝛼-strongly convex if

𝑓(y) ≥ 𝑓(x) + ∇𝑓(x)⊺(y − x) + 𝛼
2 ‖y − x‖2

If 𝑓 is twice differentiable, then its Hessian satisfies

∇2𝑓(x) ⪰ 𝛼𝐼

for all x.

Claim. Let 𝑓 be 𝛼-strongly convex. Let 𝑝⋆ be the optimal cost; i.e. the minimum value of 𝑓.
Then for any x we have

𝑝⋆ ≥ 𝑓(x) − 1
2𝛼‖∇𝑓(x)‖

2

Remark. If ‖∇𝑓(x)‖ ≤ √2𝛼𝜀, then

𝑝⋆ ≤ 𝑓(x) ≤ 𝑝⋆ + 𝜀

So a small gradient means we are close to the optimum.

Proof. The 𝛼-strong convexity assumption gives

𝑓(y) ≥ 𝑓(x) + ∇𝑓(x)⊺(y − x) + 𝛼
2 ‖y − x‖2

Taking theminimumover y of both sides, the left hand side becomes𝑝⋆. Setting the gradient
of the right hand side to zero,

∇𝑓(x) − 𝛼(x − y) = 0
∇𝑓(x)
𝛼 = (x − y)

This gives

𝑝⋆ ≥ 𝑓(x) + ∇𝑓(x)⊺(−∇𝑓(x)𝛼 ) + 𝛼
2
‖
‖‖
∇𝑓(x)
𝛼

‖
‖‖
2

= 𝑓(x) − ‖∇𝑓(x)‖2
𝛼 + ‖∇𝑓(x)‖2

2𝛼

= 𝑓(x) − ‖∇𝑓(x)‖2
2𝛼

15
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Claim. Let x⋆ be the minimising value, i.e. 𝑓(x⋆) = 𝑝⋆. Then

‖x − x⋆‖ ≤ 2
𝛼‖∇(x)‖

So if a function is strongly convex, we can find a region in which we know the global max-
imum lies.

Proof. By the Cauchy–Schwarz inequality,

𝑓(x⋆) ≥ 𝑓(x) + ∇𝑓(x)⊺(x⋆ − x) + 𝛼
2 ‖x

⋆ − x‖2

≥ 𝑓(x) − ‖∇𝑓(x)‖‖x⋆ − x‖ + 𝛼
2 ‖x

⋆ − x‖2

Since 𝑓(x⋆) ≤ 𝑓(x), we have

0 ≥ 𝑓(x⋆) − 𝑓(x) ≥ −‖∇𝑓(x)‖‖x⋆ − x‖ + 𝛼
2 ‖x

⋆ − x‖2

Hence,

‖∇𝑓(x)‖‖x⋆ − x‖ ≥ 𝛼
2 ‖x

⋆ − x‖2

‖∇𝑓(x)‖ ≥ 𝛼
2 ‖x

⋆ − x‖

2.4. Proving gradient descent
Let 𝑓 be a 𝛽-smooth and 𝛼-strongly convex, where 0 < 𝛼 < 𝛽. Then

𝛼𝐼 ⪯ ∇2𝑓(x) ⪯ 𝛽𝐼

Theorem. Gradient descent with step size 1
𝛽
satisfies

𝑓(x𝑇) − 𝑓(x⋆) ≤ (1 − 𝛼
𝛽)

𝑇
(𝑓(x0) − 𝑓(x⋆))

≤ 𝑒−
𝛼𝑇
𝛽 (𝑓(x0) − 𝑓(x⋆))

≤ 𝑒−
𝛼𝑇
𝛽 𝛽
2 ‖x

⋆ − x0‖
2

Proof.

𝑓(x𝑡+1) − 𝑓(x⋆) ≤ 𝑓(x𝑡) − 𝑓(x⋆) − 1
2𝛽‖∇𝑓(x𝑡)‖

2

≤ 𝑓(x𝑡) − 𝑓(x⋆) − 𝛼
𝛽 (𝑓(x𝑡) − 𝑓(x⋆))

≤ (1 − 𝛼
𝛽)(𝑓(x𝑡) − 𝑓(x⋆))

16



2. Optimisation algorithms

Hence by induction,

𝑓(x𝑇) − 𝑓(x⋆) ≤ (1 − 𝛼
𝛽)

𝑇
(𝑓(x0) − 𝑓(x⋆))

The second line of the theorem is a consequence of the properties of the exponential function.
The last inequality in the theorem can be shown by 𝛽-smoothness.

𝑓(x0) ≤ 𝑓(x⋆) + ∇𝑓(x⋆)⊺(x0 − x⋆) + 𝛽
2 ‖x0 − x⋆‖2

𝑓(x0) − 𝑓(x⋆) ≤ 𝛽
2 ‖x0 − x⋆‖2

2.5. Rate of convergence
For example, suppose that we would like 𝑓(x𝑇) − 𝑓(x⋆) ≤ 0.1, and it takes 𝑘 steps to reach
this tolerance. Then, it would take around 2𝑘 steps to reach a tolerance of 0.01, since the
(1 − 𝛼

𝛽
)
𝑇
power might increase by a factor of 2. In general, the number of steps needed to

ensure that the error is less than 𝜀 is

𝑇 = 𝛽
𝛼 log(

𝑓(x0) − 𝑓(x⋆)
𝜀 )

This log(1/𝜀) term is called ‘linear convergence’, since for each extra order of magnitude of
accuracy, we need a linear amount of computation steps. Linear convergence is very fast,
and such algorithms are very useful.

2.6. Condition numbers and oscillation
Note that

1 − 𝛼
𝛽

is the term which controls the convergence of gradient descent. We call 𝛽/𝛼 the condition
number of 𝑓. Such a number is always greater than 1. If the condition number is very close
to 1, the convergence is fast. Consider the function

𝑓(𝑥1, 𝑥2) =
1
2(𝑥

2
1 + 100𝑥22)

The Hessian of 𝑓 at any point is

∇2𝑓(𝑥1, 𝑥2) = (1 0
0 100)

17



I. Optimisation

Hence, 𝛼 = 1, 𝛽 = 100 giving a condition number of 100. This function would optimise very
slowly, and we may continually overshoot in the 𝑥2 direction since the gradient points so
strongly in this direction. Wemay like to prevent this oscillation between over-guessing and
under-guessing certain coordinate components.

2.7. Newton’s method
In gradient descent, we have

x𝑡+1 = x𝑡 − 𝜂𝑡∇𝑓(x𝑡)
In Newton’s method, we replace this formula with

x𝑡+1 = x𝑡 − (∇2𝑓(x))−1∇𝑓(x𝑡)

Note that the second order approximation for 𝑓 is

𝑓(x) ≈ 𝑓(x𝑡) + ∇𝑓(x𝑡)⊺ +
1
2(x − x𝑡)⊺∇2𝑓(x𝑡)(x − x𝑡)

So if we instead try to minimise the right hand side of the second-order approximation with
respect to x, we have

x𝑡+1 = x𝑡 − (∇2𝑓(x))−1∇𝑓(x𝑡)
as given by Newton’s method. This ideally allows us to deal with ‘badly-proportioned’ co-
ordinates independently, by scaling each coordinate using the Hessian rather than by a con-
stant. Essentially, Newton’s method iteratively approximates the function with a parabola,
and thenmoves to theminimum point of this parabola. We can show that Newton’s method
converges according to

‖x𝑡+1 − x⋆‖ ≤ 𝑐‖x𝑡 − x⋆‖2

when x𝑡 − x⋆ is small enough. We can see here that the squared term provides very fast
convergence once we are in the neighbourhood of the optimum. Newton’s method can also
be used to find a root of a function. Suppose 𝑓∶ ℝ → ℝ, and define 𝑓′ = 𝑔.

𝑥𝑡+1 = 𝑥𝑡 −
𝑓′(𝑥𝑡)
𝑓″(𝑥𝑡)

= 𝑥𝑡 −
𝑔(𝑥𝑡)
𝑔′(𝑥𝑡)

So we can find the root of 𝑔 by computing the stationary point of 𝑓. We are essentially taking
a linear approximation at a point, and setting this linear approximation to zero.

2.8. Barrier methods
Suppose we impose a constraint on an optimisation problem, for instance minimising 𝑓(x)
such that 𝑓𝑖(x) ≤ 0 for 1 ≤ 𝑖 ≤ 𝑚. We can transform such a constrained problem into an
unconstrained problem. Let us minimise

𝑓(x) +
𝑚
∑
𝑖=1

𝜙(𝑓𝑖(x))

18
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where 𝜙(𝑦𝑖) = +∞ outside the feasible set, and 𝜙(𝑦𝑖) = 0 inside the feasible set. However,
this 𝜙 function is not differentiable, so this introduces even more problems. We instead
consider a logarithmic barrier function. Let us minimise the unconstrained problem

𝑡𝑓(x) −
𝑚
∑
𝑖=1

log(−𝑓𝑖(x)) ⟹ 𝜙(𝑥) = − log(−𝑥)

This barrier function is infinite for negative 𝑥, and gradually rises as 𝑥 → 0. When 𝑡 is chosen
to be very large, the optimum of this problem is very close to the optimum of the original
problem.

Algorithm 2: Barrier Method
Result: Global minimum of 𝑓(x)
start at a point x inside the feasible set;
set 𝑡 to be a positive real number;
repeat

solve the minimiser of 𝑡𝑓(x) − ∑𝑚
𝑖=1 log(−𝑓𝑖(x)) with x as the initial point using

Newton’s method giving x⋆;
x← x⋆;
𝑡 ← 𝛼𝑡 for some fixed 𝛼 > 1;

until 𝑡 is large enough;
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3. Lagrange multipliers
3.1. Introduction and Lagrange sufficiency
Consider minimising 𝑓(x) subject to x ∈ 𝒳, ℎ(x) = bwhere ℎ∶ ℝ𝑛 → ℝ𝑚. The Lagrangian
associated with this problem is

𝐿(x, 𝛌) = 𝑓(x) − 𝛌⊺(ℎ(x) − b)

where𝛌 ∈ ℝ𝑚 is the vector of Lagrangemultipliers. Wewant to insteadminimise𝐿(x, 𝛌), 𝑥 ∈
𝒳.
Theorem (Lagrange Sufficiency). Suppose we can find a 𝛌⋆ such that

(i) minx∈𝒳 𝐿(x, 𝛌⋆) = 𝐿(x⋆, 𝛌⋆)
(ii) x⋆ ∈ 𝒳(b) = {x∶ x ∈ 𝒳, ℎ(x) = b}

Then x⋆ is optimal for the original constrained problem, i.e.

min
x∈𝒳(b)

𝑓(x) = 𝑓(x⋆)

Proof. First, note that condition (ii) states that𝑓(x⋆) ≥ minx∈𝒳(b) 𝑓(x), because x⋆ is feasible.
Then,

min
x∈𝒳(b)

𝑓(x) = min
x∈𝒳(b)

𝑓(x) − (𝛌⋆)⊺(ℎ(x) − b)⏟⎵⎵⎵⏟⎵⎵⎵⏟
0 when x∈𝒳(b)

≥ min
x∈𝒳

𝑓(x) − (𝛌⋆)⊺(ℎ(x) − b)

= min
x∈𝒳

𝐿(x, 𝛌⋆)

= 𝐿(x⋆, 𝛌⋆)
= 𝑓(x⋆) − (𝛌⋆)⊺(ℎ(x⋆) − b)
= 𝑓(x⋆)

Example.

minimise
𝑥∈ℝ3

− 𝑥1 − 𝑥2 + 𝑥3
subject to 𝑥21 + 𝑥22 = 4

𝑥1 + 𝑥2 + 𝑥3 = 1

In this problem, we have

ℎ(x) = ( 𝑥21 + 𝑥22
𝑥1 + 𝑥2 + 𝑥3

) ; b = (41)
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Taking Lagrange multipliers, we have

𝐿(x, 𝛌) = (−𝑥1 − 𝑥2 + 𝑥3) − 𝜆1(𝑥21 + 𝑥22 − 4) − 𝜆2(𝑥1 + 𝑥2 + 𝑥3 − 1)
= (−(1 + 𝜆2)𝑥1 − 𝜆1𝑥21) + (−(1 + 𝜆2)𝑥2 − 𝜆1𝑥22) + (1 − 𝜆2)𝑥3 + 4𝜆1 + 𝜆2

We want to fix a value of 𝛌 and minimise 𝐿, only considering solutions such that x⋆ is finite.
Note that if 𝜆1 > 0, then the first bracket can be made as small as we like by picking very
small values of 𝑥1; this bracket would diverge to negative infinity so we cannot choose such
a 𝜆1. If 𝜆2 ≠ 1, the infimum is also negative infinity by considering the 𝑥3 term. So let us
consider 𝜆1 ≤ 0, 𝜆2 = 1. Setting the derivative of the first term to zero, we have

d
d𝑥1

(−(1 + 𝜆2)𝑥1 − 𝜆1𝑥21) = −(1 + 𝜆2) − 2𝜆1𝑥1 = 0

⟹ 𝑥1 =
−1 − 𝜆2
2𝜆1

= −2
2𝜆1

= −1
𝜆1

Setting the derivative of the second term to zero,
d
d𝑥1

(−(1 + 𝜆2)𝑥2 − 𝜆1𝑥22) = −(1 + 𝜆2) − 2𝜆1𝑥2 = 0

⟹ 𝑥2 =
−1
𝜆1

We now want to choose 𝜆1 such that 𝑥1, 𝑥2, 𝑥3 satisfy the constraints.

𝑥21 + 𝑥22 = 4 ⟹ 𝑥21 = 𝑥22 = 2 ⟹ 𝑥1 = 𝑥2 = √2

Note that 𝑥1, 𝑥2 > 0 since 𝜆1 ≤ 0, and correspondingly 𝜆1 =
−1
√2
. Further, we can now find

𝑥3 = 1 − 2√2. This solution optimises the original problem.

3.2. Using Lagrange multipliers in general
Consider the problem

minimise
x∈𝒳

𝑓(x)

subject to ℎ(x) ≤ b
We can solve this problem using the following steps.

(1) Add a slack variable s to transform the problem to

minimise
x∈𝒳

𝑓(x)

subject to ℎ(x) + s = b
s ≥ 0
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(2) Calculate the Lagrangian,

𝐿(x, 𝛌, s) = 𝑓(x) − 𝛌⊺(ℎ(x) + s − b)

(3) Let
𝚲 = {𝛌∶ inf

x∈𝒳; s≥0
𝐿(x, s, 𝛌) > −∞}

(4) For each 𝛌 ∈ 𝚲, find x⋆(𝛌), s⋆(𝛌) such that

min
x∈𝒳; s≥0

𝐿(x, s, 𝛌) = 𝐿(x⋆(𝛌), s⋆(𝛌), 𝛌)

(5) Find 𝛌⋆ ∈ 𝚲 such that (x⋆(𝛌), s⋆(𝛌)) is feasible, i.e.

ℎ(x⋆(𝛌⋆)) = b; s⋆(𝛌⋆) ≥ 0

3.3. Complementary slackness
In step (4) above, we want to minimise the Lagrangian, i.e.

minimise
x∈𝒳

𝑓(x) − 𝛌⊺(ℎ(x) − b) − 𝛌⊺s

subject to s ≥ 0

Suppose, for a particular value of 𝛌, that we solve this problem and arrive at x⋆(𝛌), s⋆(𝛌).
Let

𝛌 = (
𝜆1
⋮
𝜆𝑚

)

If 𝜆𝑖 > 0, then for some large s we can make 𝑓 → −∞, hence 𝛌 ∉ 𝚲. Hence, given 𝛌 ∈ 𝚲,
we must have 𝜆𝑖 ≤ 0. Now, if 𝜆𝑖 < 0 for some 𝑖, we would want to choose 𝑠𝑖 = 0 to minimise
the increase to the function caused by the slack variable. If 𝜆𝑖 = 0, then 𝑠𝑖 can be chosen
arbitrarily since it will have no increase on the value of 𝑓. With these choices of 𝑠𝑖, we can
make 𝛌⊺s = 0, thus making the slack variable not impact the value of 𝑓. So either

• ℎ(x)𝑖 = 𝑏𝑖 and 𝜆𝑖 ≤ 0, or

• ℎ(x)𝑖 ≥ 𝑏𝑖 and 𝜆𝑖 = 0.

Alternatively (less precisely),
𝜆𝑖𝑠𝑖 = 0

In other words, either the constraint inequality is tight (defined by an equality) and the
Lagrangemultipliers are slack (defined by an inequality), or the constraint inequality is slack
and the Lagrange multipliers are tight.
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Example.

minimise
x∈ℝ2

𝑥1 − 3𝑥2
subject to 𝑥21 + 𝑥22 ≤ 4

𝑥1 + 𝑥2 ≤ 2

Adding slack variables, we have

minimise
x∈ℝ2

𝑥1 − 3𝑥2
subject to 𝑥21 + 𝑥22 + 𝑠1 = 4

𝑥1 + 𝑥2 + 𝑠2 = 2
𝑠1 ≥ 0
𝑠2 ≥ 0

Taking the Lagrangian,

𝐿(x, s, 𝛌) = (𝑥1 − 3𝑥2) − 𝑥1(𝑥21 + 𝑥22 + 𝑠1 − 4) − 𝜆2(𝑥1 + 𝑥2 + 𝑠2 − 2)
= ((1 − 𝜆2)𝑥1 − 𝜆1𝑥21) + ((−3 − 𝜆2)𝑥2 − 𝜆1𝑥22) − 𝜆1𝑠1 − 𝜆2𝑠2 + (4𝜆1 + 2𝜆2)

We must have 𝜆1, 𝜆2 ≤ 0 by considering the slack variable. By complementary slackness,

𝜆1𝑠1 = 𝜆2𝑠2 = 0 at the optimum

Minimising each term independently, we have

1 − 𝜆2 − 2𝜆1𝑥1 = 0
−3 − 𝜆2 − 2𝜆1𝑥2 = 0

If 𝜆1 = 0, the above two equations are contradictory. Hence 𝜆1 < 0, giving 𝑠1 = 0. If 𝜆2 < 0,
then 𝑠2 = 0 by complementary slackness, so

1 − 𝜆2 − 2𝜆1𝑥1 = 0
−3 − 𝜆2 − 2𝜆1𝑥2 = 0

𝑥21 + 𝑥22 = 4
𝑥1 + 𝑥2 = 2

Solving the lower two equations give

(𝑥1, 𝑥2) = (0, 2), (2, 0)

If (𝑥1, 𝑥2) = (0, 2), solving the first two equations gives (𝜆1, 𝜆2) = (1, −3)which is impossible
since 𝜆1 must be negative. Similarly, if (𝑥1, 𝑥2) = (2, 0), solving the first two equations gives
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(𝜆1, 𝜆2) = (−1, 1) which is impossible again. We have ruled out every case apart from 𝜆1 <
0, 𝜆2 = 0. In this case,

1 − 2𝜆1𝑥1 = 0
−3 − 2𝜆1𝑥2 = 0

𝑥21 + 𝑥22 = 4
𝑥1 + 𝑥2 + 𝑠2 = 2

The first two equations give

𝑥1 =
1
2𝜆1

; 𝑥2 =
−3
2𝜆1

Substituting into the third equation,

𝜆21 =
5
8 ⟹ 𝜆1 = −√

5
8

Hence,

(𝑥1, 𝑥2) = (−√
2
5,−3√

2
5)

which is feasible using the fourth equation. By Lagrange sufficiency, this is the optimum for
the original problem.

3.4. Weak duality

We would like to solve a problem

minimise
x∈𝒳

𝑓(x)

subject to ℎ(x) = b

by constructing the Lagrangian

𝐿(x, 𝛌) = 𝑓(x) − 𝛌⊺(ℎ(x) − b)

We now define the quantity
𝑔(𝛌) = inf

x∈𝒳
𝐿(x, 𝛌)

Theorem (Weak duality theorem). If x ∈ 𝒳(b) and 𝛌 ∈ 𝚲, then 𝑓(x) ≥ 𝑔(𝛌). In particular,

inf
x∈𝒳(b)

𝑓(x) ≥ sup
𝛌∈𝚲

𝑔(𝛌)
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Proof.

inf
x∈𝒳(b)

𝑓(x) = inf
x∈𝒳(b)

𝑓(x) − 𝛌⊺(ℎ(x) − b)

≥ inf
x∈𝒳

𝑓(x) − 𝛌⊺(ℎ(x) − b)

= inf
x∈𝒳

𝐿(x, 𝛌)

= 𝑔(𝛌)

Using this weak duality property, if infx∈𝒳(b) 𝑓(x) is difficult to solve, we can first attempt
sup𝛌∈𝚲 𝑔(𝛌). The problem

maximise 𝑔(𝛌)
subject to 𝛌 ∈ 𝚲

is called the dual problem. The original is called the primal problem. The optimal cost of the
primal problem is always greater than or equal to the optimal cost of the dual problem. The
duality gap is the difference:

inf
x∈𝒳(b)

𝑓(x) − sup
𝛌∈𝚲

𝑔(𝛌)

If the duality gap is zero, then we say that strong duality holds. This strengthens the inequal-
ity into an equality.

3.5. Strong duality and the Lagrange method
If the Lagrange method works, then we know that

inf
x∈𝒳

𝐿(x, 𝛌) = inf
x∈𝒳(b)

𝐿(x, 𝛌)

So, taking such a 𝛌 in the proof above, we have equality instead of inequality. Hence the
problem has strong duality. Conversely, if the duality gap is zero, then there exists a 𝛌 such
that the inequality above is an equality. Hence, for this 𝛌,

inf
x∈𝒳

𝐿(x, 𝛌) = inf
x∈𝒳(b)

𝐿(x, 𝛌)

Hence this is the 𝛌which will solve the Lagrange method. In summary, strong duality holds
exactly when the Lagrange method works.

3.6. Hyperplane condition for strong duality
Definition. A function 𝜙∶ ℝ𝑚 → ℝ is said to have a supporting hyperplane at a point b if
there exists 𝛌 ∈ ℝ𝑚 such that for all c ∈ ℝ𝑚,

𝜙(c) ≥ 𝜙(b) + 𝛌⊺(c − b)
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Pictorially, 𝜙 has a supporting hyperplane if there is a plane passing through (b, 𝜙(b)), where
𝜙 is always above the plane. This could be, for example, a tangent plane at b.
Definition. We define a function 𝜙∶ ℝ𝑚 → ℝ associated with the primal problem by

𝜙(c) = inf
x∈𝒳(c)

𝑓(x)

This 𝜙 can be thought of as the optimal cost of a family of optimisation problems with dif-
ferent functional constraint values c. This is called the value function.

Theorem (Strong duality theorem). Strong duality holds if and only if the value function 𝜙
has a supporting hyperplane at b.

Proof. First, we show that a supporting hyperplane implies strong duality. We have 𝛌 such
that

𝜙(c) ≥ 𝜙(b) + 𝛌⊺(c − b)
Then, we have

𝑔(𝛌) = inf
x∈𝒳

𝑓(x) − 𝛌⊺(ℎ(x) − b)

= inf
c

inf
x∈𝒳(c)

𝑓(x) − 𝛌⊺(ℎ(x) − c)⏟⎵⎵⏟⎵⎵⏟
zero since we are extremising

−𝛌⊺(c − b)

= inf
c
𝜙(c) − 𝛌⊺(c − b)

≥ 𝜙(b)

By weak duality, we also have the reverse direction: 𝑔(𝛌) ≤ 𝜙(b) Hence, 𝑔(𝛌) = 𝜙(b) and
strong duality holds. Conversely, if strong duality holds, we want to show the existence of
such a hyperplane. We have We have 𝛌 such that 𝑔(𝛌) = 𝜙(b). For such a 𝛌, we have

𝜙(b) = 𝑔(𝛌) = inf
x∈𝒳

𝑓(x) − 𝛌⊺(ℎ(x) − b)

= inf
x∈𝒳

𝑓(x) − 𝛌⊺(ℎ(x) − c) − 𝛌⊺(c − b)

≤ 𝜙(c) − 𝛌⊺(c − b)

The last inequality holds due to weak duality. So 𝛌 gives a supporting hyperplane.

3.7. Strong duality and convex functions
We would now like to consider for which problems 𝜙(b) has a supporting hyperplane. The
following theorem is stated without proof.

Theorem. A function 𝜙∶ ℝ𝑚 → ℝ is convex if and only if every point b ∈ ℝ𝑚 has a
supporting hyperplane.

Now, for which problems do we have a convex value function?
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3. Lagrange multipliers

Theorem. Consider a minimisation problem

minimise
x∈𝒳

𝑓(x)

subject to ℎ(x) ≤ b

with value function 𝜙. Then 𝜙 is convex if:
(i) 𝒳 is convex;

(ii) 𝑓 is convex;
(iii) ℎ is convex.
This is proven in the example sheets.

3.8. Shadow prices interpretation of Lagrange multipliers
Suppose a factory owner produces 𝑛 types of products from 𝑚 types of raw materials. Sup-
pose the owner produces x = (𝑥1, 𝑥2,… , 𝑥𝑛) products, then the profit is some function 𝑓(x).
We then create ℎ𝑗(x) to be the amount of rawmaterial 𝑗 consumed whenmaking products x.
The owner wants to maximise 𝑓(x) subject to ℎ𝑖(x) ≤ 𝑏𝑖 where 𝑏𝑖 is the maximum amount
of raw material 𝑖 that is available.
Now, suppose a supplier offers some 𝛆 = (𝜀1, 𝜀2,… , 𝜀𝑚) extra raw materials to the factory
owner. We would like to calculate how much this 𝛆 is worth. The factory owner will try to
maximise this new problem, replacing b↦ b+𝛆. For a small enough 𝛆, this can be expressed
easily using the value function.

𝜙(b + 𝛆) − 𝜙(b) ≈
𝑚
∑
𝑗=1

𝜕𝜙
𝜕𝑏𝑗

𝜀𝑗

The quantity 𝜕𝜙
𝜕𝑏𝑗

is the price of material 𝑗, and∇𝜙(b) is the vector of prices. These are called
the ‘shadow prices’; they are hidden to the outside world but depend on the internal state of
the factory.

Theorem. If 𝜙 is differentiable at b and has a supporting hyperplane given by 𝛌, then

𝛌 = ∇𝜙(b)

Proof. Let a = (𝑎1, 𝑎2,… , 𝑎𝑚) be an arbitrary vector. Then from the supporting hyperplane
condition, for some small 𝛿 > 0 we have

𝜙(b + 𝛿a)
𝛿 ≥ 𝛌⊺a

Since 𝜙 is differentiable, the limit can be taken to give

∇𝜙(b) ⋅ a ≥ 𝛌⊺a
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But awas arbitrary. This can only hold if 𝛌 = ∇𝜙(b) as required. So the Lagrange multiplier
𝛌 at b is equal to the gradient vector of 𝜙which is the gradient of partial derivatives and also
the vector of shadow prices.

Suppose that a particular raw material was not used up. Then there is a slack value in the
inequality. The shadow price is zero in this instance, since we do not need more of this
material. So the corresponding Lagrange multiplier is equal to zero. Conversely, if we are
paying something for this material, then we must have used up all of that material. This is
exactly the complementary slackness property seen earlier.

There is also an economics interpretation of the dual problem. Such a problem can be seen
from the perspective of the raw material seller. This seller charges a certain price 𝛌 for their
raw materials, and then buys the finished product from the factory. The profit of the raw
material seller is

𝛌⊺(ℎ(x) − b)⏟⎵⎵⏟⎵⎵⏟
cost of materials

− 𝑓(x)⏟
buying products

For every choice of 𝛌, the factory owner will try to maximise their profit, that is, find an x⋆

such that we maximise
𝑓(x)⏟

selling products
−𝛌⊺(ℎ(x) − b)⏟⎵⎵⏟⎵⎵⏟

cost of materials

28



4. Linear programming

4. Linear programming
4.1. Linear programs
A linear program is a specific case of a constrained optimisation problem in which the ob-
jective function and all constraints are linear functions. For instance, consider the prob-
lem

minimise
x∈ℝ4

2𝑥1 − 𝑥2 + 4𝑥3
subject to 𝑥1 + 𝑥2 + 𝑥4 ≤ 2

3𝑥2 − 𝑥3 = 5
𝑥3 + 𝑥4 ≥ 3
𝑥1 ≥ 0
𝑥3 ≤ 0

A general linear program is of the form

minimise
x∈ℝ𝑛

c⊺x

subject to a⊺𝑖 x ≥ 𝑏𝑖, 𝑖 ∈ 𝑀1

a⊺𝑖 x ≤ 𝑏𝑖, 𝑖 ∈ 𝑀2

a⊺𝑖 x = 𝑏𝑖, 𝑖 ∈ 𝑀3

𝑥𝑗 ≥ 0, 𝑗 ∈ 𝑁1
𝑥𝑗 ≤ 0, 𝑗 ∈ 𝑁2

Note that we can convert the first inequalities to the other direction by inverting the sign
of a. We can convert the ‘sign’ constraints (the last two constraints) by letting a be a one-
hot vector, thus writing them in terms of the first two inequality types. We call this process
reduction to an equivalent form. Two linear programs are equivalent if any feasible solution
for one problem can be converted into a feasible solution for the other, with the same cost.
We can reduce any linear problem into the form

minimise
x∈ℝ𝑛

c⊺x

subject to 𝐴x ≥ b

where

𝐴 =
⎛
⎜
⎜
⎝

⋯ a⊺1 ⋯
⋯ a⊺2 ⋯

⋮
⋯ a⊺𝑚 ⋯

⎞
⎟
⎟
⎠

; b =
⎛
⎜
⎜
⎝

𝑏1
𝑏2
⋮
𝑏𝑚

⎞
⎟
⎟
⎠
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This is known as the general form of a linear programming problem. We could alternatively
use a ‘less-than’ inequality, or simply an equality using a slack variable vector. A linear
problem is said to be in standard form if it is written as

minimise
x∈ℝ𝑛

c⊺x

subject to 𝐴x = b
x ≥ 0

This is a special case of the general form. However, we can always reduce any general-form
problem into a standard-formproblem. First, we add slack variables to convert the inequality
into an equality. Then we can convert each variable 𝑥𝑖 into the sum of 𝑥+𝑗 − 𝑥−𝑗 , where
𝑥+𝑗 , 𝑥−𝑗 ≥ 0. Then, we have the problem

minimise
x∈ℝ𝑛

c⊺(x+ − x−)

subject to 𝐴(x+ − x−) = b
x+, x− ≥ 0

Then by concatenating the vectors x+, x− into a larger vector z ∈ [0,∞)2𝑛, we have the
standard form as required.

4.2. Maximising convex functions
Solving linear programs can be seen as a special case of maximising a convex function, since
we can maximise c⊺x. Consider the problem

minimise 𝑓(x)
subject to 𝑥 ∈ 𝐶, 𝐶 convex

x ≥ 0

where 𝑓 is a convex function. Since 𝐶 is convex, if z = (1 − 𝜆)x + 𝜆y we have

𝑓(z) ≤ (1 − 𝜆)𝑓(x) + 𝜆𝑓(y) ≤ max {𝑓(x), 𝑓(y)}

If we wish tomaximise 𝑓 over𝐶, wemight guess that we only need to consider points on the
boundary. After all, any point not on the boundary can be written as the weighted average
of two points on the boundary. Considering those points will give a greater (or equal) value
for 𝑓.
Definition. Apoint x in a convex set𝐶 is an extreme point if it cannot be written as a convex
combination of two distinct points in 𝐶; that is,

(1 − 𝛿)y + 𝛿z

for 𝛿 ∈ (0, 1) and y ≠ z.

So, more precisely, convex functions on convex sets are maximised at extreme points.

30



4. Linear programming

4.3. Basic solutions and basic feasible solutions
Consider a linear problem in standard form.

minimise
x∈ℝ𝑛

c⊺x

subject to 𝐴x = b
x ≥ 0

where 𝐴 ∈ ℝ𝑚×𝑛, x ∈ ℝ𝑛,b ∈ ℝ𝑚.

Definition. A vector x is said to be a basic solution if it satisfies 𝐴x = b (that is, it is a
solution) and x has at most𝑚 nonzero entries. If also the nonzero entries are positive, then
this is called a basic feasible solution, since it lies in the feasible set x ≥ 0.
We will start the analysis of basic solutions by making three assumptions (one is defined
later).

A: All 𝑚 rows of 𝐴 are linearly independent. That is, {a⊺1,… , a⊺𝑚} is a linearly independ-
ent set. This assumption can be made without loss of generality since we can simply
remove linearly dependent constraints.

B: Every set of 𝑚 columns of 𝐴 is linearly independent. That is, any 𝑚-subset of the set
of columns {𝐴1,… , 𝐴𝑛} is a linearly independent set. This can also be made without
loss of generality by removing the linearly dependent variables.

To find a basic solution, we will start by choosing the coordinates 𝐵(1), 𝐵(2),… , 𝐵(𝑚) to be
the indices of x that are allowed to be nonzero. Now, 𝐴x is

(
⋮ ⋮
𝐴1 ⋯ 𝐴𝑛
⋮ ⋮

)

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
⋮

𝑥𝐵(1)
⋮

𝑥𝐵(2)
⋮

𝑥𝐵(𝑚)
⋮
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= (
⋮ ⋮

𝐴𝐵(1) ⋯ 𝐴𝐵(𝑚)
⋮ ⋮

)
⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

𝐵

⎛
⎜
⎜
⎝

𝑥𝐵(1)
𝑥𝐵(2)
⋮

𝑥𝐵(𝑚)

⎞
⎟
⎟
⎠

By setting 𝐴x = b, using the above assumptions, we can invert the matrix on the left-hand
side to get

⎛
⎜
⎜
⎝

𝑥𝐵(1)
𝑥𝐵(2)
⋮

𝑥𝐵(𝑚)

⎞
⎟
⎟
⎠

= (
⋮ ⋮

𝐴𝐵(1) ⋯ 𝐴𝐵(𝑚)
⋮ ⋮

)

−1

b = 𝐵−1b

We call 𝐵 the basis matrix. The indices 𝑥𝐵(1),… , 𝑥𝐵(𝑚) are called the basic variables. The
indices 𝐵(𝑖) are called the basic indices. The columns 𝐴𝐵(𝑖) are called the basic columns.
If 𝐵−1b ≥ 0, we have found a basic feasible solution. We now need to specify one further
assumption in order to continue to analyse basic solutions.
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C: Every basic solution has exactly 𝑚 nonzero entries. This assumption is known as the
non-degeneracy assumption. This assumption cannot be created without loss of gen-
erality, but it is far simpler to discuss problems with this assumptionmet. Throughout
this course, we will keep this assumption to be true.

4.4. Extreme points of the feasible set in standard form
Consider a linear program in standard form.

Theorem. x is an extreme point (of the set {x∶ 𝐴x = b, x ≥ 0}) if and only if x is a basic
feasible solution.

Remark. Since a linear program is optimised at extreme points, we only need to consider
the basic feasible solutions in order to solve the original problem. We will pick all possible
𝑚 columns of 𝐴 (there are (𝑛

𝑚
) such choices) to find all basic solutions. Filter to consider

only basic feasible solutions, then evaluate c⊺x to find the x which has the least cost. This
algorithm will always work, but the amount of choices to evaluate in higher dimensions
becomes too inefficient for real-world use.

Proof. First, suppose we know x is a basic feasible solution, and there exist feasible y, z such
that x = (1 − 𝛿)y + 𝛿z and 𝛿 ∈ (0, 1). We know x ≥ 0 and x has at most𝑚 nonzero entries.
Since y, z are positive, then y, zmust be zero in every index that xmust be zero. Specifically,
𝑦𝑗 = 𝑧𝑗 = 0 for 𝑗 ∉ {𝐵(1),… , 𝐵(𝑚)}. Now, we define

y𝐵 = (
𝑦𝐵(1)
⋮

𝑦𝐵(𝑚)

) ; z𝐵 = (
𝑧𝐵(1)
⋮

𝑧𝐵(𝑚)

)

We then have 𝐵y𝐵 = b; 𝐵z𝐵 = b because 𝐴y = 𝐴z = b. Hence, y𝐵 = z𝐵 = 𝐵−1b and so
x = y = z.

Conversely, suppose x is not a basic feasible solution. We wish to show it is not an extreme
point. Then x has an amount of nonzero indices greater than𝑚. Let such indices be 𝑖1,… , 𝑖𝑟
where 𝑟 > 𝑚. Consider the columns𝐴𝑖1 ,… , 𝐴𝑖𝑟 . Since the rank of𝐴 is only𝑚, these columns
form a linearly dependent set. Hence, we can find some weights, not all of which are zero,
which give zero when multiplied by the columns.

𝑤𝑖1𝐴𝑖1 + 𝑤𝑖2𝐴𝑖2 +⋯+𝑤𝑖𝑟𝐴𝑖𝑟 = 0

We now define the vectorw by

𝑤𝑖 = {0 𝑖 ∉ {𝑖1,… , 𝑖𝑟}
𝑤𝑖𝑗 𝑖 = 𝑖𝑗

So we have a nonzero vectorwwith 𝐴w = 0. We can consider the two points x±𝜀w, which
satisfy 𝐴(x ± 𝜀w) = 0. Such perturbed points only change the nonzero indices of x. So we
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can find an 𝜀 small enough such that both of x±𝜀w are in the feasible set, that is, x±𝜀w ≥ 0.
We therefore can express x as the midpoint of these two points, hence x is not an extreme
point.
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5. Duality in linear programming

5.1. Strong duality of linear programs

Theorem. If a linear program is bounded and feasible, then strong duality holds.

Proof. This is true since the value function is convex.

5.2. Duals of linear programs in standard form

Consider a linear program in standard form:

minimise c⊺x
subject to 𝐴x = b

x ≥ 0

The dual problem is therefore

maximise 𝑔(𝛌) = inf
x∈𝒳

𝐿(x, 𝛌)

subject to 𝛌 ∈ 𝚲

The function 𝑔 is given by

𝑔(𝛌) = inf
x≥0

c⊺x − 𝛌⊺(𝐴x − b)

= inf
x≥0

(c⊺ − 𝛌⊺𝐴)x + 𝛌⊺b

This is only bounded below where c⊺ − 𝛌⊺𝐴 ≥ 0. Hence

𝚲 = {𝛌∶ 𝛌⊺𝐴 ≤ c⊺}

Further, the minimum value of 𝑔 for 𝛌 ∈ 𝚲 is 𝛌⊺b. Therefore, the dual problem is

maximise 𝛌⊺b
subject to 𝛌⊺𝐴 ≤ c⊺

The dual of a linear program in standard form is a linear problem, but no longer in standard
form.
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5.3. Duals of linear programs in general form
Consider a linear program in general form:

minimise c⊺x
subject to 𝐴x ≥ b

We can introduce a slack variable s and write equivalently

minimise c⊺x
subject to 𝐴x − s = b

s ≥ 0

To calculate the dual, we need to calculate 𝑔(𝛌).

𝑔(𝛌) = inf
x,s≥0

c⊺x − 𝛌⊺(𝐴x − s − b)

= inf
x,s≥0

(c⊺ − 𝛌⊺𝐴)x + 𝛌⊺s + 𝛌⊺b

In this case, since xmay be any value, we must have c⊺ − 𝛌⊺𝐴 = 0. Further, since the slack
variable can be any positive value, 𝛌⊺ ≥ 0. The infimum is 𝛌⊺b since s may be set to zero.
Thus, the dual is

maximise 𝛌⊺b
subject to 𝛌⊺𝐴 = c⊺

𝛌 ≥ 0

The dual of a general linear program is a linear program in standard form.

5.4. Dual of dual program
The dual of a dual problem is the primal problem. Suppose the primal problem is in standard
form:

minimise c⊺x
subject to 𝐴x = b

x ≥ 0

We know the dual is

maximise 𝛌⊺b
subject to 𝛌⊺𝐴 ≤ c⊺
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Equivalently,
− minimise − 𝛌⊺b
subject to − 𝛌⊺𝐴 ≥ −c⊺

Defining �̃� = −𝛌⊺, we have
− minimise �̃�b
subject to �̃�𝐴 ≥ −c⊺

We can find the dual of this problem using the solution above.
− maximise − 𝛉⊺c
subject to 𝛉⊺𝐴⊺ = b⊺

𝛉 ≥ 0
This is equivalent to the primal problem.

5.5. Dual of arbitrary linear program
Consider the problem

minimise c⊺x
subject to a⊺𝑖 x ≥ b𝑖 𝑖 ∈ 𝑀1

a⊺𝑖 x ≤ b𝑖 𝑖 ∈ 𝑀2

a⊺𝑖 x = b𝑖 𝑖 ∈ 𝑀3

𝑥𝑗 ≥ 0 𝑗 ∈ 𝑁1
𝑥𝑗 ≤ 0 𝑗 ∈ 𝑁2
𝑥𝑗 free 𝑗 ∈ 𝑁3

The dual of this problem is
maximise p⊺b
subject to 𝑝𝑖 ≥ 0 𝑖 ∈ 𝑀1

𝑝𝑖 ≤ 0 𝑖 ∈ 𝑀2
𝑝𝑖 free 𝑖 ∈ 𝑀3
p⊺A𝑗 ≤ c𝑗 𝑗 ∈ 𝑁1
p⊺A𝑗 ≥ c𝑗 𝑗 ∈ 𝑁2
p⊺A𝑗 = c𝑗 𝑗 ∈ 𝑁3

This will be shown in the example sheets.
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5.6. Optimality conditions
If x is feasible for the primal, p is feasible for the dual, and complementary slackness holds,
then x is optimal for the primal and p is optimal for the dual.

Theorem (Fundamental Theorem of Linear Programming). Let x,p be feasible solutions
to the primal and dual problems respectively. Then x,p are optimal for these problems if
and only if

• 𝑝𝑖(a⊺𝑖 x − 𝑏𝑖) = 0 for all 𝑖, and
• (𝑐𝑗 − p⊺A𝑗)𝑥𝑗 = 0 for all 𝑗.

Proof. First, let us define 𝑢𝑖 = 𝑝𝑖(a⊺𝑖 x − 𝑏𝑖) and 𝑣𝑗 = (𝑐𝑗 − p⊺A𝑗)𝑥𝑗 . Observe that if x,p
are feasible, then 𝑢𝑖 ≥ 0 for all 𝑖, and 𝑣𝑗 ≥ 0 for all 𝑗. This can be seen by the signs of the
constraints on the primal and dual problems. Now,

∑𝑢𝑖 = ∑𝑝𝑖(a⊺𝑖 x − 𝑏𝑖) = p⊺𝐴x − p⊺b

Similarly,
∑𝑣𝑗 = ∑(𝑐𝑗 − p⊺A𝑗)𝑥𝑗 = c⊺x − p⊺𝐴x

Then,
∑𝑢𝑖 +∑𝑣𝑗 = c⊺x − p⊺b

which is the difference between the two objective functions in the primal and the dual.
Hence,

0 ≤ ∑𝑢𝑖 +∑𝑣𝑗 = c⊺x − p⊺b
So if complementary slackness holds, then 𝑢𝑖 = 0 and 𝑣𝑗 = 0 for all 𝑖, 𝑗. This then implies
that c⊺x = p⊺b. By weak duality, x and p must be optimal. Conversely, suppose x,p are
optimal. By strong duality, c⊺x = p⊺b.

0 ≤ ∑𝑢𝑖 +∑𝑣𝑗 = c⊺x − p⊺b = 0

Thus ∑𝑢𝑖 + ∑𝑣𝑗 = 0. Since all 𝑢𝑖, 𝑣𝑗 are non-negative, 𝑢𝑖 = 0 and 𝑣𝑗 = 0 for all 𝑖, 𝑗.
Equivalently, complementary slackness holds.

37



I. Optimisation

6. Simplex method
6.1. Introduction
Consider the problem

minimise c⊺x
subject to 𝐴x = b

x ≥ 0

The dual problem is

maximise 𝛌⊺b
subject to 𝛌⊺𝐴 ≤ c⊺

The optimality conditions are

• (primal feasibility) 𝐴x = b; x ≥ 0
• (dual feasibility) 𝐴⊺𝛌 ≤ c

• (complementary slackness) x⊺(c − 𝐴⊺𝛌) = 0
Suppose x is a basic feasible solution given by

x𝐵 = (𝑥𝐵(1),… , 𝑥𝐵(𝑚))

Substituting this x into the complementary slackness equation gives

x⊺𝐵c𝐵 − x⊺𝐵𝐵⊺𝛌 = 0 ⟹ x⊺𝐵(c𝐵 − 𝐵⊺𝛌) = 0

For a basic feasible solution, x𝐵 > 0. Hence,

c𝐵 − 𝐵⊺𝛌 = 0

Hence
𝛌 = (𝐵⊺)−1c𝐵

So for this x and this calculated 𝛌, primal feasibility and complementary slackness both hold.
What remains now is to check if dual feasibility holds. Equivalently,

𝐴⊺𝛌 ≤ c ⟹ 𝐴⊺(𝐵⊺)−1c𝐵 ≤ c

If this holds, then the optimality conditions are met. This means that we do not even need
to explicitly find 𝛌 in order to check optimality; it suffices to check whether this single in-
equality holds. We define

c = c − 𝐴⊺(𝐵⊺)−1c𝐵
This is called the vector of reduced costs. Then the inequality c ≥ 0 implies x is optimal.
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6.2. Feasibility of basic directions
Definition. Let 𝑃 = {x∶ 𝐴x = b, x ≥ 0} be the feasible set of a problem in standard form.
Further, let x ∈ 𝑃. A vector d ∈ ℝ𝑛 is called a feasible direction if there exists 𝜃 > 0 such
that x + 𝜃d ∈ 𝑃.
Let x be a basic feasible solution. Let 𝐵(1),… , 𝐵(𝑚) be the indices of the basic variables, and
let 𝐵 be the basis matrix [𝐴𝐵(1),… , 𝐴𝐵(𝑚)]. Let x𝐵 = (𝑥𝐵(1),… , 𝑥𝐵(𝑚))

⊺. Suppose we move
in a direction d such that 𝑑𝑗 = 1, and 𝑑𝑖 = 0 for all non-basic 𝑖 ≠ 𝑗, or more explicitly
𝑖 ∈ {1, 2,… , 𝑛} ∖ {𝐵(1),… , 𝐵(𝑚), 𝑗}. This direction d is called the 𝑗th basic direction, since it
moves in the direction of the 𝑗th basic variable. Note that we can write

d = (𝑑𝐵(1),… , 𝑑𝐵(𝑚), 0, 0,… , 1⏟
𝑗th entry

,… , 0, 0)

When we move in this direction, we want to move to a feasible point. This means that we
require

𝐴(x + 𝜃d) = b
𝐴d = 0

𝐵d𝐵 + 𝐴𝑗 = 0
d𝐵 = −𝐵−1𝐴𝑗

For the positivity condition, note that

x + 𝜃d = (𝑥𝐵(1) + 𝜃𝑑𝐵(1),… , 𝑥𝐵(𝑚) + 𝜃𝑑𝐵(𝑚), 0, 0,… , 𝜃⏟
𝑗th entry

,… , 0, 0)

For this x to be feasible, all 𝑥𝑖 must be non-negative. Since 𝑥𝐵(𝑖) > 0, there exists a small
enough 𝜃 such that x + 𝜃d ≥ 0. Hence, the 𝑗th basic direction is feasible.

6.3. Cost of basic directions
How does the cost change when x ↦ x + 𝜃d where d is the (feasible) 𝑗th basic direction?
The new cost is

c⊺(x + 𝜃d) = c⊺(x + 𝜃(−𝐵−1𝐴𝑗))
= c⊺x + 𝜃(𝑐𝑗 − c⊺𝐵𝐵−1𝐴𝑗)
= c⊺x + 𝜃𝑐𝑗

Theorem. Let x be a basic feasible solution associated with a basis matrix 𝐵, and let c be
the vector of reduced costs. Then x is optimal if and only if c ≥ 0.

Proof. This follows from the optimality conditions given previously.

Now, if 𝑐𝑗 ≥ 0 for all 𝑗, then this is an optimal solution. However, if any 𝑐𝑗 < 0, then we can
move in the 𝑗th direction and decrease the cost.
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6.4. Moving to basic feasible solutions

Suppose x is a basic feasible solution. If c ≥ 0, then this is the optimum and we can stop. If
𝑐𝑗 < 0 for some 𝑗, then moving in the 𝑗th feasible direction will reduce the cost by 𝜃𝑐𝑗 . The
amount by which the cost decreases is proportional to 𝜃, so we should choose the largest
possible value of 𝜃 while retaining feasibility. We denote this largest 𝜃 with 𝜃⋆. There are
two cases:

• If d ≥ 0, then 𝜃 is unbounded since x + 𝜃d ≥ 0 for all 𝜃 > 0. Therefore the optimal
cost of this problem is −∞.

• If 𝑑𝑖 < 0 for some 𝑖, then we need 𝑥𝑖 + 𝜃𝑑𝑖 ≥ 0, so 𝜃⋆ ≤ −𝑥𝑖
𝑑𝑖
. This then gives

𝜃⋆ = min
{𝑖 ∶ 𝑑𝑖<0}

−𝑥𝑖𝑑𝑖

or equivalently,

𝜃⋆ = min
{𝑖∈{1,…,𝑚}∶ 𝑑𝐵(𝑖)<0}

−
𝑥𝐵(𝑖)
𝑑𝐵(𝑖)

Suppose the optimal cost is bounded. Let ℓ be the index minimising 𝜃⋆, so

𝜃⋆ = −
𝑥𝐵(ℓ)
𝑑𝐵(ℓ)

Now, let us move in this direction by this amount.

Theorem. Let y = x+𝜃⋆d. y is feasible, and c⊺y < c⊺x. Then, y is a basic feasible solution
with basis matrix

𝐵 = (
⋮ ⋮ ⋮ ⋮ ⋮

𝐴𝐵(1) ⋯ 𝐴𝐵(ℓ−1) 𝐴𝑗 𝐴𝐵(ℓ+1) ⋯ 𝐴𝐵(𝑚)
⋮ ⋮ ⋮ ⋮ ⋮

)

Proof. We know that y has exactly𝑚 nonzero entries, since 𝑦𝐵(ℓ) = 0. We know it is feasible,
hence y is a basic feasible solution. 𝑗 becomes a basic variable and 𝐵(ℓ) is no longer.
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6.5. Simplex method

Algorithm 3: Simplex Method
Result: Global minimum of c⊺x
start at a basic feasible solution x with basis matrix 𝐵 = [𝐴𝐵(1),… , 𝐴𝐵(𝑚)];
repeat

choose 𝑗 such that 𝑐𝑗 < 0;
u← −𝐵−1𝐴𝑗 ;
if u ≤ 0 then cost is −∞ so terminate algorithm;
𝜃⋆ ← min 𝑥𝐵(𝑖)

𝑢𝑖
where 𝑖 ∈ {1,… ,𝑚} and 𝑢𝑖 > 0;

ℓ ← an index 𝑖 from the step above that gives the minimal value of 𝜃⋆;
x← x − 𝜃⋆u;

until c ≥ 0;
since c ≥ 0, x is optimal

6.6. Tableau implementation

The full tableau implementation of the simplexmethod is a convenient way of executing the
simplex algorithm without excessive computation. A simplex tableau contains four values
of information:

−c⊺𝐵 c

𝐵−1b 𝐵−1𝐴

The information is essentially

−cost reduced costs

vector to generate current basic feasible solution matrix to generate basic directions

In a more detailed form,
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−c⊺𝐵 𝑐1 𝑐2 ⋯ 𝑐𝑛

𝑥𝐵(1) ⋮ ⋮ ⋮

⋮ 𝐵−1𝐴1 𝐵−1𝐴2 ⋯ 𝐵−1𝐴𝑛

𝑥𝐵(𝑚) ⋮ ⋮ ⋮

To execute the simplex algorithm using this table, use the following algorithm.

Algorithm 4: Simplex Method (Tableau Implementation)
Result: Global minimum of c⊺x
start at a basic feasible solution x with basis matrix 𝐵 = [𝐴𝐵(1),… , 𝐴𝐵(𝑚)];
repeat

choose 𝑗 such that 𝑐𝑗 < 0;
u← −𝐵−1𝐴𝑗 ;
if u ≤ 0 then cost is −∞ so terminate algorithm;
𝜃⋆ ← min 𝑥𝐵(𝑖)

𝑢𝑖
where 𝑖 ∈ {1,… ,𝑚} and 𝑢𝑖 > 0;

ℓ ← an index 𝑖 from the step above that gives the minimal value of 𝜃⋆;
(∗) add to each row of the tableau a constant multiple of the ℓth row so that 𝑢ℓ
becomes 1 and all other entries of the pivot column are 0;

until c ≥ 0 (when all entries in the 0th row are non-negative);
since c ≥ 0, x is optimal

This is just the same as the simplex method discussed before, apart from step (∗). No proof
will be given for why this step achieves the same result as the full simplex algorithm.

Example. Consider the problem

minimise
x∈ℝ3

− 𝑥1 − 𝑥2 − 𝑥3
subject to 𝑥1 + 2𝑥2 + 2𝑥3 ≤ 10

2𝑥1 + 𝑥2 + 2𝑥3 ≤ 10
2𝑥1 + 2𝑥2 + 𝑥3 ≤ 20
𝑥1, 𝑥2, 𝑥3 ≥ 0
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By introducing slack variables, we can write this in standard form.

minimise
x∈ℝ6

− 𝑥1 − 𝑥2 − 𝑥3
subject to 𝑥1 + 2𝑥2 + 2𝑥3 + 𝑥4 = 10

2𝑥1 + 𝑥2 + 2𝑥3 + 𝑥5 = 10
2𝑥1 + 2𝑥2 + 𝑥3 + 𝑥6 = 20
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 ≥ 0

Observe that (0, 0, 0, 10, 10, 20) is a basic feasible solution. We will use this to initiate the
simplex algorithm. The corresponding basismatrix is the 3×3 identitymatrix. We construct
the simplex tableau by first constructing the 0th row:

• c𝐵 = 0 hence c⊺𝐵x𝐵 = 0.
• c = c.

We construct the tableau as follows.

0 −1 −1 −1 0 0 0

10 1 2 2 1 0 0

10 2 1 2 0 1 0

20 2 2 1 0 0 1

𝑐1 < 0, so we will descend in the 1st basic direction. Consider 10
1
, 10
2
, 20
2
. The smallest is

10
2
= 5, so the favourite element is the number 2 in the 1st column and 2nd row. We want to

change this column to (0, 0, 1, 0)⊺ by using row operations. Denoting the rows as 𝑅0,… , 𝑅3,
we want to perform the operations

𝑅0 ↦ 𝑅0 +
1
2𝑅2

𝑅1 ↦ 𝑅1 −
1
2𝑅2

𝑅2 ↦
1
2𝑅2

𝑅3 ↦ 𝑅3 − 𝑅2

The tableau now looks like this.
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5 0 −0.5 0 0 0.5 0

5 0 1.5 1 1 −0.5 0

5 1 0.5 1 0 0.5 0

10 0 1 −1 0 −1 1

Now, 𝑐2 < 0, so wewill descend in the 2nd basic direction. Consider 5
1.5
, 5
0.5
, 10
1
. The smallest

is 5
1.5
, so the favourite element is the 1.5 in the 1st row and 2nd column. Tomake the column

a one-hot vector, we perform

𝑅0 ↦ 𝑅0 +
1
3𝑅1

𝑅1 ↦
2
3𝑅1

𝑅2 ↦ 𝑅2 −
1
3𝑅1

𝑅3 ↦ 𝑅3 −
2
3𝑅1

This yields

20
3

0 0 1
3

1
3

1
3

0

10
3

0 1 2
3

2
3

− 3
4

0

10
3

1 0 2
3

− 1
3

2
3

0

20
3

0 0 − 5
3

−2
3

−2
3

1

Now, the 0th row has no negative values, so we are at the optimum. The optimal cost there-
fore is −20

3
. The solution is at ( 10

3
, 10
3
, 0, 0, 0, 20

3
).
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7. Game theory
7.1. Zero-sum games
Definition. A zero-sum two-person game is a scenario in which two players (denoted P1
and P2) have different actions they can take:

• P1 has𝑚 possible actions {1, 2,… ,𝑚}, and
• P2 has 𝑛 possible actions {1, 2,… , 𝑛}; such that

if P1 plays move 𝑖 and P2 plays move 𝑗, then we say P1 ‘wins’ an amount 𝑎𝑖𝑗 and P2 ‘loses’
the same amount 𝑎𝑖𝑗 . The matrix of results 𝐴 is called the payoff matrix. P1 chooses a row
of the matrix, and P2 chooses a column, and the intersection is the outcome of the game.

Suppose P1 plays first, and chooses row 𝑖. P1 knows that P2 will choose the column 𝑗 such
that 𝑎𝑖𝑗 is minimised, since that will maximise P2’s winnings. In particular, if P1 picks row
𝑖 then they can expect to win min𝑗∈{1,…,𝑚} 𝑎𝑖𝑗 . So P1 will try to solve the problem

maximise min
𝑗∈{1,…,𝑚}

𝑎𝑖𝑗

subject to 𝑖 ∈ {1,… , 𝑛}

If P2 plays first, they will try to solve the problem

minimise max
𝑖∈{1,…,𝑛}

𝑎𝑖𝑗

subject to 𝑗 ∈ {1,… ,𝑚}

Example. Suppose the payoff matrix is

𝐴 = (1 2
3 4)

P1 chooses a row, and P2 chooses a column. If P1 plays first, they choose row 2, then P2
chooses row 1, and the payoff is 3. If P2 plays first, they choose column 1, then P1 chooses
row 2, and the payoff is again 3. Since the solution is the same for both problems, this point
(2, 1) is called a saddle point. The value 𝑎21 = 3 is called the value of the game.
Example. Consider the payoff matrix

𝐴 = (4 2
1 3)

If P1 plays first, they choose row 1, then P2 chooses column 2, and the payoff is 2. If P2
plays first, they choose column 2, then P1 chooses row 2, and the payoff is 3. Here, both
players cannot play optimally simultaneously since different outcomeswill occur depending
on what they think their opponent will do.
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7.2. Mixed strategies

In a mixed strategy, the players are allowed to choose their action randomly. Such mixed
strategies are employed when we do not know what our opponent will pick; for example,
when both players choose their option at the same time. P1 picks action 𝑖 with probability
𝑝𝑖, and P2 picks action 𝑗 with probability 𝑞𝑗 , such that ∑𝑝𝑖 = ∑𝑞𝑗 = 1. Now, a player’s
strategy is encoded as a probability vector. If P1 picks the mixed strategy (𝑝1,… , 𝑝𝑚), then
the expected reward of P1 (if P2 picks a pure strategy 𝑗) is

∑
𝑖
𝑎𝑖𝑗𝑝𝑖

The optimisation problem for P1 is

maximise min
𝑗∈{1,…,𝑛}

∑
𝑖
𝑎𝑖𝑗𝑝𝑖

subject to ∑𝑝𝑖 = 1
p ≥ 0

Equivalently, where e = (1, 1,… , 1)⊺,

maximise 𝑣
subject to 𝐴⊺p ≥ 𝑣e

e⊺p = 1
p ≥ 0

This 𝑣 is the minimum value of 𝐴⊺p. P2’s optimisation problem is

minimise max
𝑖∈{1,…,𝑚}

∑
𝑖
𝑎𝑖𝑗𝑞𝑗

subject to ∑𝑞𝑗 = 1
q ≥ 0

or equivalently,

minimise 𝑤
subject to 𝐴q ≤ 𝑤e

e⊺q = 1
q ≥ 0
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7.3. Duality of mixed strategy problems
The two problems above are duals of each other. Adding slack variables, P2’s problem
is

minimise 𝑤
subject to 𝐴q + s = 𝑤e

e⊺q = 1
q ≥ 0
s ≥ 0

The Lagrangian of this problem is

𝐿(𝑤,q, s, 𝛌1, 𝜆2) = 𝑤 + 𝛌⊺1(𝐴q + s − 𝑤e) − 𝜆2(e⊺q − 1)
= 𝑤(1 − 𝛌⊺1e) + (𝛌⊺1𝐴 − 𝜆2e⊺)q + 𝛌⊺1s + 𝜆2

Thus,
𝚲 = {𝛌∶ 𝛌⊺1e = 1, 𝛌⊺1𝐴 − 𝜆2e⊺ ≥ 0, 𝛌1 ≥ 0}

When 𝛌 ∈ 𝚲,
inf𝐿 = 𝜆2

Hence the dual is

maximise 𝜆2
subject to 𝛌⊺1e = 1

𝛌⊺1𝐴 ≥ 𝜆2e⊺
𝛌1 ≥ 0

Note that 𝛌1 = p and 𝜆2 = 𝑣 in the above formulation of P1’s problem.
Theorem. A strategy p is optimal for P1 if there exist q, 𝑣 such that

• (primal feasibility) 𝐴⊺p ≥ 𝑣e, e⊺p = 1,p ≥ 0;
• (dual feasibility) 𝐴q ≤ 𝑣e, e⊺q = 1,q ≥ 0; and
• (complementary slackness) 𝑣 = p⊺𝐴q

Proof. (p, 𝑣) and (q, 𝑤) are optimal if

(𝐴q − 𝑤e)⊺p = 0;q⊺(𝐴⊺p − 𝑣e) = 0

which gives
𝑣 = 𝑤 = p⊺𝐴q
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7.4. Finding optimal strategies

There are a number of strategies for finding optimal strategies.

(i) We can search for saddle points in the payoff matrix. If such a saddle point is found, a
pure strategy aiming for this saddle point is optimal for both players.

(ii) We can search for dominating actions. Suppose there exist 𝑖, 𝑖′ such that 𝑎𝑖𝑗 ≥ 𝑎𝑖′𝑗 for
all 𝑗. Then 𝑖 dominates 𝑖′, so P1 will never play 𝑖′ and we can simply drop this row in
the matrix. A similar technique can be used to drop columns.

(iii) If these simplification techniques are not sufficient, we can simply solve the linear
program using (for instance) the simplex method.

Example. Suppose we have a payoff matrix

𝐴 = (
2 3 4
3 1 1

2
1 3 2

)

First, observe that there is no saddle point. Note that the first row dominates the last row, so
we can simplify the payoff matrix to

𝐴 = (
2 3 4
3 1 1

2
)

P1’s strategy is p = (𝑝, 1 − 𝑝, 0), and the optimisation problem is

maximise 𝑣
subject to 𝐴⊺p ≥ 𝑣e

e⊺p = 1
p ≥ 0

which is

maximise 𝑣
subject to 2𝑝 + 3(1 − 𝑝) ≥ 𝑣

3𝑝 + (1 − 𝑝) ≥ 𝑣

4𝑝 + 1
2(1 − 𝑝) ≥ 𝑣

0 ≤ 𝑝 ≤ 1
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and by simplifying,

maximise 𝑣
subject to 𝑣 ≤ 3 − 𝑝

𝑣 ≤ 1 + 2𝑝

𝑣 ≤ 1
2 +

7
2𝑝

0 ≤ 𝑝 ≤ 1

We can solve this graphically since it is a one-dimensional problem, or use the simplex
method. We arrive at the solution p = (2

3
, 1
3
, 0), i.e. 𝑝 = 2

3
. The payoff is 7

3
. Player 2 has

the dual optimisation problem, so we can use complementary slackness to compute P2’s
strategy. The first two constraints are tight, but the final constraint may not be (since it is
zero in P1’s strategy). Therefore 𝑞3 = 0, and P2’s strategy is q = (𝑞, 1 − 𝑞, 0). Since the value
of the game is 7

3
, we have

7
3 = p⊺𝐴q

which lets us find 𝑞. Alternatively, we can use complementary slackness. Since 𝑝1, 𝑝2 > 0,
the first two constraints in the dual problem must be tight.

2𝑞 + 3(1 − 𝑞) = 7
3 ⟹ 𝑞 = 2

3
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8. Network flows
8.1. Minimum cost flow
Definition. A directed graph (also known as a digraph) 𝐺 consists of a set of vertices and a
set of edges; 𝐺 = (𝑉, 𝐸). The edges are such that 𝐸 ⊆ 𝑉 ×𝑉 . Each edge (𝑖, 𝑗) can be thought
of as an edge pointing from vertex 𝑖 to vertex 𝑗. When 𝐸 is symmetric (that is, (𝑖, 𝑗) ∈ 𝐸 ⟺
(𝑗, 𝑖) ∈ 𝐸), we call 𝐺 an undirected graph.

Definition. Given a graph 𝐺 = (𝑉, 𝐸) on 𝑛 vertices, we associate to every (𝑖, 𝑗) ∈ 𝐸 the
number 𝑥𝑖𝑗 . This represents the flow of a quantity from vertex 𝑖 to vertex 𝑗. The collection
𝑥 of 𝑥𝑖𝑗 is called the flow. The flow 𝑥 is affected by
(i) A vector b ∈ ℝ𝑛, where 𝑏𝑖 is the amount of flow entering vertex 𝑖 from outside the

graph. If 𝑏𝑖 > 0, then vertex 𝑖 is called a source. If 𝑏𝑖 < 0, then vertex 𝑖 is called a sink.
(ii) The cost matrix 𝑐 ∈ ℝ𝑛×𝑛, which gives the cost 𝑐𝑖𝑗 per unit of flow on (𝑖, 𝑗) ∈ 𝐸.

If the flow along (𝑖, 𝑗) is 𝑥𝑖𝑗 , the cost for this flow is 𝑐𝑖𝑗𝑥𝑖𝑗 (without the summation
convention).

(iii) The lower bound matrix 𝑀 and the upper bound matrix 𝑀, which give lower and
upper bounds on 𝑥𝑖𝑗 . In particular, for all (𝑖, 𝑗) ∈ 𝐸, we require𝑚𝑖𝑗 ≤ 𝑥𝑖𝑗 ≤ 𝑚𝑖𝑗 .

Definition. Theminimum cost flow is the linear program

minimise ∑
(𝑖,𝑗)∈𝐸

𝑐𝑖𝑗𝑥𝑖𝑗

subject to 𝑚𝑖𝑗 ≤ 𝑥𝑖𝑗 ≤ 𝑚𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐸

𝑏𝑖 + ∑
(𝑗,𝑖)∈𝐸

𝑥𝑗𝑖 = ∑
(𝑖,𝑗)∈𝐸

𝑥𝑖𝑗 ∀𝑖 ∈ 𝑉

The second constraint is a conservation of flow equation. The amount of flow entering and
leaving the vertex must be equal. Note that in order for the problem to be feasible,∑𝑏𝑖 = 0;
since the graph has no storage capacity at any vertex, the amount of flow that enters the
graph must be the amount of flow that exits. Alternatively, we could prove this by finding
the sum of the conservation of flow equations for all 𝑖.
Definition. We can define the incidencematrix 𝐴∶ ℝ|𝑉|×|𝐸|. Each column of𝐴 is associated
with an edge (𝑖, 𝑗). We define that this column is filled with zeroes, except for+1 at position
𝑖 and −1 at position 𝑗. We can now rewrite the conservation of flow equation as

𝐴x = b

8.2. Transport problem
The transport problem is a special case of the minimum cost flow problem. Consider 𝑛
suppliers, and𝑚 consumers. Each supplier 𝑖 has some capacity 𝑠𝑖 for howmuch of this good
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they can satisfy, and each consumer 𝑗 has some demand 𝑑𝑗 that they want to be fulfilled. We
will assume that there is exactly as much supply as demand; that is,∑𝑠𝑖 = ∑𝑑𝑗 . The cost
of transporting one unit of this good from supplier 𝑖 to consumer 𝑗 is 𝑐𝑖𝑗 . For this problem,
the graph 𝐺 is a bipartite graph; it can be separated into a set of sources and a set of sinks,
and the edges are only from the sources to the sinks. The optimisation problem is

minimise
𝑛
∑
𝑖=1

𝑚
∑
𝑗=1

𝑐𝑖𝑗𝑥𝑖𝑗

subject to
𝑚
∑
𝑗=1

𝑥𝑖𝑗 = 𝑠𝑖 ∀𝑖 ∈ {1,… , 𝑛}

𝑚
∑
𝑖=1

𝑥𝑖𝑗 = 𝑑𝑗 ∀𝑗 ∈ {1,… ,𝑚}

which is a special case of the minimum flow problem.

8.3. Sufficiency of transport problem
Theorem. Every minimum cost flow problem with either finite capacities or non-negative
capacities can be translated into an equivalent transport problem.

Proof. Consider the minimum cost flow problem on a graph 𝐺 = (𝑉, 𝐸). We may assume
without loss of generality that𝑚𝑖𝑗 = 0 for all (𝑖, 𝑗) ∈ 𝐸, because wemaywrite 𝑥𝑖𝑗 = 𝑚𝑖𝑗+ ̃𝑥𝑖𝑗
where ̃𝑥𝑖𝑗 > 0. Then the conservation equation becomes

̃𝑏𝑖 + ∑
(𝑗,𝑖)∈𝐸

̃𝑥𝑗𝑖 = ∑
(𝑖,𝑗)∈𝐸

̃𝑥𝑖𝑗

where ̃𝑏𝑖 = ∑(𝑗,𝑖)∈𝐸𝑚𝑗𝑖 −∑(𝑖,𝑗)∈𝐸𝑚𝑖𝑗 . The regional constraints are now

0 ≤ ̃𝑥𝑖𝑗 ≤ 𝑚𝑖𝑗 −𝑚𝑖𝑗

We assume that𝑚𝑖𝑗 ≡ 0 from now. If all the costs are non-negative and a particular capacity
is infinite, then we can replace that capacity by a large number e.g. ∑|𝑏𝑖|, which is the
maximum amount of flow that could possibly travel along this edge. This transformation
does not change the optimal solution. We have now reduced to the case where all capacities
are finite.

Now, for each such minimum cost flow problem, we will construct an equivalent transport
problem that has the same feasible solutions and the same costs. For each vertex 𝑖, we create
a consumer with demand∑(𝑖,𝑗)∈𝐸𝑚𝑖𝑘 − 𝑏𝑖. For every edge (𝑖, 𝑗), we create a supplier with
supply 𝑚𝑖𝑗 . The total supply and the total demand are equal, since ∑𝑖 𝑏𝑖 = 0. We now
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define the cost of moving from (𝑖, 𝑗) → 𝑖 is zero. We further define the cost of moving from
(𝑖, 𝑗) → 𝑗 is 𝑐𝑖𝑗 .
Now, suppose 𝑥𝑖𝑗 flows from (𝑖, 𝑗) → 𝑗. Then 𝑚𝑖𝑗 − 𝑥𝑖𝑗 flows from (𝑖, 𝑗) → 𝑖, since the
total incoming and outgoing flow from (𝑖, 𝑗) must balance. Then, since the demand at 𝑖 is
∑(𝑖,𝑗)∈𝐸𝑚𝑖𝑘 − 𝑏𝑖, the total flow into 𝑖 satisfies

∑
(𝑖,𝑘)∈𝐸

(𝑚𝑖𝑘 − 𝑥𝑖𝑘) + ∑
(𝑘,𝑖)∈𝐸

𝑥𝑘𝑖 = ∑
(𝑖,𝑗)∈𝐸

𝑚𝑖𝑘 − 𝑏𝑖

which simplifies to the conservation equation for the minimum cost flow problem. We can
easily check that 0 ≤ 𝑥𝑖𝑗 ≤ 𝑚𝑖𝑗 . So this mapping between the minimum cost flow problem
and the transport problem preserves feasibility of solutions.

It now suffices to show that the costs of the two feasible solutions for the two problems are
the same; since then we will have demonstrated a mapping between the two problems. The
cost in the transport problem is ∑(𝑖,𝑗)∈𝐸 𝑥𝑖𝑗𝑐𝑖𝑗 since the edge from (𝑖, 𝑗) to 𝑖 has zero cost.
This is identical to the cost in the minimum cost flow problem.

8.4. Optimality conditions for transport problem
Recall that for a linear program, there are three optimality conditions: primal feasibility,
dual feasibility, and complementary slackness. These have various interpretations in the
context of a transport problem.

Theorem. If for some feasible 𝑥 we have dual variables 𝛌 ∈ ℝ𝑛 (for suppliers) and 𝛍 ∈ ℝ𝑚

(for consumers), such that:

(i) 𝜆𝑖 + 𝜇𝑗 ≤ 𝑐𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐸; and
(ii) (𝑐𝑖𝑗 − (𝜆𝑖 + 𝜇𝑗))𝑥𝑖𝑗 = 0 ∀(𝑖, 𝑗) ∈ 𝐸

then 𝑥 is an optimal solution.

Proof. The Lagrangian of the transport problem is

𝐿(𝑥, 𝛌, 𝛍) =
𝑛
∑
𝑖=1

𝑚
∑
𝑗=1

𝑐𝑖𝑗𝑥𝑖𝑗 −
𝑛
∑
𝑖=1

𝜆𝑖(
𝑚
∑
𝑗=1

𝑥𝑖𝑗 − 𝑠𝑖) −
𝑚
∑
𝑗=1

𝜇𝑗(
𝑛
∑
𝑖=1

𝑥𝑖𝑗 − 𝑑𝑗)

=
𝑛
∑
𝑖=1

𝑚
∑
𝑗=1

(𝑐𝑖𝑗 − 𝜆𝑖 − 𝜇𝑗)𝑥𝑖𝑗 +
𝑛
∑
𝑖=1

𝜆𝑖𝑠𝑖 +
𝑚
∑
𝑗=1

𝜇𝑗𝑑𝑗

(𝛌, 𝛍) is dual feasible if 𝜆𝑖 + 𝜇𝑗 ≤ 𝑐𝑖𝑗 for all 𝑖, 𝑗. We have primal feasibility, dual feasibility,
and complementary slackness, so optimality holds.

Note that if 𝛌, 𝛍 are optimal, then 𝛌+𝑘, 𝛍−𝑘 are also optimal, since (𝜆𝑖+𝑘)+(𝜇𝑗−𝑘) = 𝜆𝑖+𝜇𝑗 .
So for simplicity, we can always choose 𝜆1 = 0. This gives 𝑚 + 𝑛 − 1 remaining Lagrange
multipliers.
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9. The transport algorithm
9.1. Transportation tableaux
Analogously to the simplex tableaux, for the transport problemwe can create transportation
tableaux. This is a convenient format for storing all relevant information for the transport
problem while solving it. The transportation tableau is as follows:

𝜇1 𝜇2 ⋯ 𝜇𝑚

𝜆1
𝜆1 + 𝜇1 𝜆1 + 𝜇2 ⋯ 𝜆1 + 𝜇𝑚 𝑠1𝑥11 𝑐11 𝑥12 𝑐12 𝑥1𝑚 𝑐1𝑚

𝜆2
𝜆2 + 𝜇1 𝜆2 + 𝜇2 ⋯ 𝜆2 + 𝜇𝑚 𝑠2𝑥21 𝑐21 𝑥22 𝑐22 𝑥2𝑚 𝑐2𝑚

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝜆𝑛
𝜆𝑛 + 𝜇1 𝜆𝑛 + 𝜇2 ⋯ 𝜆𝑛 + 𝜇𝑚 𝑠𝑛𝑥𝑛1 𝑐𝑛1 𝑥𝑛2 𝑐𝑛2 𝑥𝑛𝑚 𝑐𝑛𝑚
𝑑1 𝑑2 ⋯ 𝑑𝑚

Like with the simplex method, we must begin with a basic feasible solution to construct the
initial tableau. We can construct such a basic feasible solution by using the first supplier to
satisfy the first consumer, then gradually using the next suppliers and consumers as we run
out of supply or demand. 𝛌 and 𝛍 can be deduced by considering complementary slackness.
That is, if 𝑥𝑖𝑗 > 0 then 𝜆𝑖+𝜇𝑗 = 𝑐𝑖𝑗 . For instance, consider this problemwith three suppliers
and four consumers. The general transportation tableau would look like this:

𝜇1 𝜇2 𝜇3 𝜇4

𝜆1
𝜆1 + 𝜇1 𝜆1 + 𝜇2 𝜆1 + 𝜇3 𝜆1 + 𝜇4 𝑠1𝑥11 𝑐11 𝑥12 𝑐12 𝑥13 𝑐13 𝑥14 𝑐14

𝜆2
𝜆2 + 𝜇1 𝜆2 + 𝜇2 𝜆2 + 𝜇3 𝜆2 + 𝜇4 𝑠2𝑥21 𝑐21 𝑥22 𝑐22 𝑥23 𝑐23 𝑥24 𝑐24

𝜆3
𝜆3 + 𝜇1 𝜆3 + 𝜇2 𝜆3 + 𝜇3 𝜆3 + 𝜇4 𝑠3𝑥31 𝑐31 𝑥32 𝑐32 𝑥33 𝑐33 𝑥34 𝑐34
𝑑1 𝑑2 𝑑3 𝑑4

We will consider the problem given by

s = (
14
10
9
) ; d =

⎛
⎜
⎜
⎝

12
5
8
8

⎞
⎟
⎟
⎠

; 𝐶 = (
5 3 4 6
2 7 4 1
5 6 2 4

)
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A basic feasible solution is given by

𝑋 = (
12 2 0 0
0 3 7 0
0 0 1 8

)

Complementary slackness gives

𝜆1 + 𝜇1 = 5
𝜆1 + 𝜇2 = 3
𝜆2 + 𝜇2 = 7
𝜆2 + 𝜇3 = 4
𝜆3 + 𝜇3 = 2
𝜆3 + 𝜇4 = 4

This is a system of seven equations for six unknowns. However, since we can always set
𝜆1 = 0, we can reduce this to a system of six equations for six unknowns.

𝜇1 = 5
𝜇2 = 3

𝜆2 + 𝜇2 = 7
𝜆2 + 𝜇3 = 4
𝜆3 + 𝜇3 = 2
𝜆3 + 𝜇4 = 4

Hence,

𝛌 = (
0
4
2
) ; 𝛍 =

⎛
⎜
⎜
⎝

5
3
0
2

⎞
⎟
⎟
⎠

Theorem. When constructing a basic feasible solution in this way, the set of edges with
strictly positive flow form a connected graph with no cycles. In particular, this graph is a
spanning tree 𝑇 with exactly𝑚+𝑛−1 edges. This allows us to always construct a system of
equations as above.
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No proof is given.
5 3 0 2

0 5 3 0 2 14
12 5 2 3 0 4 0 6

4 9 7 4 6 10
0 2 3 7 7 4 0 1

2 7 5 2 4 9
0 5 0 6 1 2 8 4
12 5 8 8

9.2. Updating the transportation tableau
First, we check if 𝑐𝑖𝑗 ≥ 𝜆𝑖 + 𝜇𝑗 for all 𝑖, 𝑗. If this is true, then our solution is optimal. In our
example 𝑐21 ≥ 𝜆2 + 𝜇1, so we are not at an optimal solution. If (𝑖, 𝑗) ∉ 𝑇 (where 𝑇 is the
spanning tree above, i.e. 𝑥𝑖𝑗 = 0) and 𝑐𝑖𝑗 < 𝜆𝑖+𝜇𝑗 , then (𝑖, 𝑗) and the edges of 𝑇 form a loop.
We then increase 𝑥𝑖𝑗 as much as possible until another flow 𝑥𝑖′𝑗′ is forced to be zero. Then
we update the dual variables 𝛌, 𝛍 and repeat.
In our example, we will introduce a flow of 𝑥21 = 𝜃. This will change the amount of flow
along some nonzero edges. Doing this will force an update 𝑥11 ↦ 𝑥11−𝜃 due to constrained
demand, 𝑥12 ↦ 𝑥12 + 𝜃 due to supply, and 𝑥22 ↦ 𝑥22 − 𝜃 due to demand. We can then
increase 𝜃 to a maximum value of 3. Now,

𝑥 = (
9 5 0 0
3 0 7 0
0 0 1 8

)

We now recalculate 𝛌, 𝛍 in the same way as above, which will give

𝛌 = (
0
−3
−5

) ; 𝛍 =
⎛
⎜
⎜
⎝

5
3
7
9

⎞
⎟
⎟
⎠

Reconstructing the tableau gives

5 3 7 9

0 5 3 7 9 14
9 5 3 3 0 4 0 6

−3 2 0 4 6 10
3 2 0 7 7 4 0 1

5 0 −2 2 4 9
0 5 0 6 1 2 8 4
12 5 8 8
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Once again there is an edge where 𝑐𝑖𝑗 < 𝜆𝑖 + 𝜇𝑗 , notably (𝑖, 𝑗) = (2, 4), with zero flow. If
𝑥𝑖𝑗 = 𝜃, then 𝑥23 ↦ 𝑥23 − 𝜃, 𝑥34 ↦ 𝑥34 − 𝜃, 𝑥33 ↦ 𝑥33 + 𝜃. We can increase 𝜃 only to 7.
Once again, updating the tableau gives

5 3 2 4

0 5 3 2 4 14
9 5 5 3 0 4 0 6

−3 2 0 −1 1 10
3 2 0 7 0 4 7 1

0 5 3 2 4 9
0 5 0 6 8 2 1 4
12 5 8 8

In this current table, all optimality conditions are satisfied. So the solution is

𝑥 = (
9 5 0 0
3 0 0 7
0 0 8 1

)
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10. Maximum flow, minimum cut

10.1. Introduction

Consider the problem

maximise 𝛿
subject to ∑

{𝑗 ∶ (𝑖,𝑗)∈𝐸}
𝑥𝑖𝑗 − ∑

{𝑗 ∶ (𝑗,𝑖)∈𝐸}
𝑥𝑗𝑖 = 0 for all 𝑖 ≠ 1, 𝑖 ≠ 𝑛

∑
{𝑗 ∶ (1,𝑗)∈𝐸}

𝑥1𝑗 − ∑
{𝑗 ∶ (𝑗,1)∈𝐸}

𝑥𝑗1 = 𝛿

∑
{𝑗 ∶ (𝑛,𝑗)∈𝐸}

𝑥𝑛𝑗 − ∑
{𝑗 ∶ (𝑗,𝑛)∈𝐸}

𝑥𝑗𝑛 = −𝛿

0 ≤ 𝑥𝑖𝑗 ≤ 𝑐𝑖𝑗 for all (𝑖, 𝑗) ∈ 𝐸

This is a graph where vertex 1 is a source and vertex 𝑛 is a sink, and 𝛿 is the flow from vertex
1 to vertex 𝑛. We want to maximise the total amount of flow on the graph, constrained by a
certain maximum flow 𝑐𝑖𝑗 on each edge.

10.2. Cuts and flows

Definition. A cut of a graph 𝐺 = (𝑉, 𝐸) is a partition of its vertices into two sets (𝑆, 𝑉 ∖ 𝑆).
The capacity of a cut is given by

𝐶(𝑆) = ∑
{(𝑖,𝑗)∈𝐸∶ 𝑖∈𝑆,𝑗∈𝑉∖𝑆}

𝑐𝑖𝑗

Theorem. For any feasible flow 𝑥 with value 𝛿, then for any cut (𝑆, 𝑉 ∖ 𝑆) such that 1 ∈
𝑆, 𝑛 ∈ 𝑉 ∖ 𝑆, we have

𝛿 ≤ 𝐶(𝑆)

Proof. For any sets 𝑋, 𝑌 ⊆ 𝑉 , we define the function

𝑓𝑥(𝑋, 𝑌) = ∑
{(𝑖,𝑗)∈𝐸∶ 𝑖∈𝑋,𝑗∈𝑌}

𝑥𝑖𝑗

Note that 𝑋, 𝑌 need not be disjoint. Let (𝑆, 𝑉 ∖ 𝑆) be a cut such that 1 ∈ 𝑆, 𝑛 ∈ 𝑉 ∖ 𝑆. We
have

𝛿 = ∑
𝑖∈𝑆

( ∑
{𝑗 ∶ (𝑖,𝑗)∈𝐸}

𝑥𝑖𝑗 − ∑
{𝑗 ∶ (𝑗,𝑖)∈𝐸}

𝑥𝑗𝑖)
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since for 𝑖 = 1 the bracket is 𝛿 and for all others it is zero. Therefore,

𝛿 = 𝑓𝑥(𝑆, 𝑉) − 𝑓𝑥(𝑉, 𝑆)
= 𝑓𝑥(𝑆, 𝑆) + 𝑓𝑥(𝑆, 𝑉 ∖ 𝑆) − 𝑓𝑥(𝑆, 𝑆) − 𝑓𝑥(𝑉 ∖ 𝑆, 𝑆)
= 𝑓𝑥(𝑆, 𝑉 ∖ 𝑆) − 𝑓𝑥(𝑉 ∖ 𝑆, 𝑆)⏟⎵⎵⏟⎵⎵⏟

≥0

≤ 𝑓𝑥(𝑆, 𝑉 ∖ 𝑆)
≤ 𝐶(𝑆)

10.3. Max-flowmin-cut theorem
Theorem. Let 𝛿⋆ be the value of the maximum flow. Then we have

𝛿⋆ = min {𝐶(𝑆)∶ 1 ∈ 𝑆, 𝑛 ∈ 𝑉 ∖ 𝑆}

So the value of the maximum flow is equal to the cut of smallest capacity.

Proof. A path 𝑣0, 𝑣1,… , 𝑣𝑘 is a sequence of vertices such that every pair of adjacent vertices
is connected by an edge, either in the forward direction or in the reverse direction. A path
is called an augmenting path if

𝑥𝑣𝑖𝑣𝑖+1 < 𝑐𝑣𝑖𝑣𝑖+1 for all forward edges;
𝑥𝑣𝑖𝑣𝑖+1 > 0 for all backward edges

So each forward edge must have remaining capacity, and reverse edges must have some
flow. This definition allows us to state that augmenting paths are actually all paths such
that altering the flow on all edges in the path can increase the total flow from 1 to 𝑛, while
keeping the amount of flow into each vertex the same (excluding the first and last vertices
in the path). Therefore, an optimal flow 𝑥 cannot have an augmenting path from vertex 1 to
vertex 𝑛. Now, suppose 𝑥 is optimal. We define a cut:

𝑆 = {1} ∪ {𝑖 ∶ ∃ an augmenting path 1 → 𝑖}

Therefore 𝑛 ∈ 𝑉 ∖ 𝑆, since there is no augmenting path from 1 to 𝑛. Then,

𝛿⋆ = 𝑓𝑥(𝑆, 𝑉 ∖ 𝑆) − 𝑓𝑥(𝑉 ∖ 𝑆, 𝑆)

But we can show that 𝑓𝑥(𝑉 ∖ 𝑆, 𝑆) = 0, so

𝛿⋆ = 𝑓𝑥(𝑆, 𝑉 ∖ 𝑆) = 𝐶(𝑆)

as required.
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10.4. Ford–Fulkerson algorithm

The above proof provides a convenient method for finding an optimal flow.

Algorithm 5: Ford–Fulkerson Algorithm
Result: Optimal flow 𝑥
start with a feasible flow, such as 𝑥 = 0;
repeat

choose an augmenting path from 1 to 𝑛, and increase the flow along this path as
much as possible;

until no augmenting paths from 1 to 𝑛;

Example. Note that typically such graphs are represented pictorially, but due to difficulty of
typesetting abstract diagrams, a matrix is substituted here. Consider a graph given by the
capacity matrix

𝐶 =

𝑐𝑖𝑗 1 𝑎 𝑏 𝑐 𝑑 𝑛
1 5 5
𝑎 1 4
𝑏 5
𝑐 2
𝑑 5
𝑛

First consider the feasible flow of 𝑥 = 0. There exists an augmenting path 1, 𝑎, 𝑏, 𝑛. We
increase the flow by 1 in all edges, saturating edge (𝑎, 𝑏), giving the flow matrix

𝑥 =

𝑥𝑖𝑗 1 𝑎 𝑏 𝑐 𝑑 𝑛
1 1
𝑎 1
𝑏 1
𝑐
𝑑
𝑛

The path 1, 𝑎, 𝑑, 𝑛 is now augmenting. We can increase the flow by 4 to saturate the edge
(𝑎, 𝑑):

𝑥 =

𝑥𝑖𝑗 1 𝑎 𝑏 𝑐 𝑑 𝑛
1 5
𝑎 1 4
𝑏 1
𝑐
𝑑 4
𝑛
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The path 1, 𝑐, 𝑑, 𝑛 is augmenting. Increasing by 1,

𝑥 =

𝑥𝑖𝑗 1 𝑎 𝑏 𝑐 𝑑 𝑛
1 5 1
𝑎 1 4
𝑏 1
𝑐 1
𝑑 5
𝑛

There are no augmenting paths. We can also check that the cut ({1}, {𝑎, 𝑏, 𝑐, 𝑑, 𝑛}) gives the
capacity 6, equivalent to the value at 𝑛 so this must be optimal. We now have 𝛿⋆ = 6.

Example. Consider a graph given by the capacity matrix

𝐶 =

𝑐𝑖𝑗 1 𝑎 𝑏 𝑐 𝑑 𝑛
1 10 10
𝑎 4 2 8
𝑏 10
𝑐 9
𝑑 6 10
𝑛

The path 1, 𝑎, 𝑑, 𝑛 is augmenting. We can increase the (currently zero) flow by 8.

𝑥 =

𝑥𝑖𝑗 1 𝑎 𝑏 𝑐 𝑑 𝑛
1 8
𝑎 8
𝑏
𝑐
𝑑 8
𝑛

The path 1, 𝑐, 𝑑, 𝑛 is also augmenting. We increase the flow by 2.

𝑥 =

𝑥𝑖𝑗 1 𝑎 𝑏 𝑐 𝑑 𝑛
1 8 2
𝑎 8
𝑏
𝑐 2
𝑑 10
𝑛

Now, the path 1, 𝑐, 𝑑, 𝑎, 𝑏, 𝑛 is augmenting. (𝑏, 𝑎) here is a reverse edge. Here, we can in-
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crease the flow by 4. This will decrease the (𝑎, 𝑏) by 4.

𝑥 =

𝑥𝑖𝑗 1 𝑎 𝑏 𝑐 𝑑 𝑛
1 8 6
𝑎 4 4
𝑏 4
𝑐 6
𝑑 10
𝑛

The path 1, 𝑎, 𝑑, 𝑏, 𝑛 is augmenting, with all forward edges. Increasing by 2,

𝑥 =

𝑥𝑖𝑗 1 𝑎 𝑏 𝑐 𝑑 𝑛
1 10 6
𝑎 4 6
𝑏 6
𝑐 6
𝑑 2 10
𝑛

Finally, 1, 𝑐, 𝑑, 𝑏, 𝑛 is augmenting, with all forward edges. Increasing by 3,

𝑥 =

𝑥𝑖𝑗 1 𝑎 𝑏 𝑐 𝑑 𝑛
1 10 9
𝑎 4 6
𝑏 9
𝑐 9
𝑑 5 10
𝑛

The flow 𝛿 is now 19. The cut given by {1, 𝑐} has capacity 19, so we are at the optimum.

10.5. Termination of Ford–Fulkerson
If all capacities are integers, then the algorithm will always find the optimal flow. The
same argument can be used for rational numbers. At each step, the flow increases by a
positive integer value, so after a finite amount of steps it will stop, as the maximum flow is
bounded.

10.6. Bipartite matching problem
A 𝑘-regular bipartite graph is a graph with 𝑛

2
vertices on the left and 𝑛

2
vertices on the right,

where each vertex on both the left and right has exactly 𝑘 edges. Suppose we want to match
up the vertices on the left and right, such that each pair (𝑎, 𝑏) is joined with an edge that
already exists in this graph.
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Theorem. Every 𝑘-regular bipartite graph has a perfect matching.

Proof. First, we construct a new graph with extra vertices 1, 𝑛. We construct edges from
vertex 1 to all vertices 𝑎 on the left, with capacity 1. We then construct edges from all vertices
𝑏 on the right to vertex 𝑛, also with capacity 1. The original edges in the graph will be given
capacity∞. Then by using the cut given by 1, 𝛿⋆ < 𝑛

2
. We can easily achieve the value 𝛿⋆ by

attaching a flow 1
𝑘
to every edge from the left to the right, and of course sending a flow of 1

along each new edge. So the maximum flow for this new graph is 𝑛
2
.

Now, we know that the Ford–Fulkerson algorithm will terminate, when given the initial
flow 𝑥 = 0. But with this algorithm, all edge weights are always integers, since all capacities
are integral or infinite. The only way for all edge weights to be integer values are when we
have a perfect matching. So this algorithm will generate a perfect matching.

62



II. Variational Principles

Lectured in Easter 2021 by Dr. M. Dunajski
In this course, we solve problems of the form ‘find the optimal function such that…’. Ex-
amples include ‘find the shortest path between points 𝐴 and 𝐵 on surface Σ’, or ‘find the
shape of a wire under the influence of gravity between points 𝐴 and 𝐵 in the plane’. The
latter is called the brachistochrone problem, and is of central importance in motivating the
subject.

In the sameway that turning points of functions can often be located by setting the derivative
to zero, optimal functions can be located by setting the functional derivative to zero. This
is called the Euler–Lagrange equation, and is a main tool that we use to find solutions to
such problems. An application of the Euler–Lagrange equation is Noether’s theorem, which
roughly states that any symmetry of a physical system gives rise to a conserved quantity. For
example, uniformity of space in the laws of physics shows thatmomentum is conserved, and
uniformity of time shows that energy is conserved.
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II. Variational Principles

1. History and motivation
1.1. The brachistochrone problem
Consider a particle sliding on a wire under the influence of gravity between two fixed points
in the plane. What is the shape of the wire that produces the shortest travel time between
the end points, given that the particle starts at rest? This problem is known as the brachisto-
chrone problem, an archetypical variational problem. Suppose the end points are labelled
𝐴 and 𝐵, where 𝐴 is the origin, i.e. (𝑥1, 𝑦1) = (0, 0), and where 𝐵 has coordinates (𝑥2, 𝑦2).
Note that 𝑦2 < 0 in order that the particle has sufficient energy to reach the destination. The
travel time 𝑇 is given by

𝑇 = ∫ d𝑡 = ∫
𝐵

𝐴

dℓ
𝑣(𝑥, 𝑦)

Note that the kinetic energy and the potential energy sum to a constant.
1
2𝑚𝑣

2 +𝑚𝑔𝑦 = 𝑚𝑔𝑦1 = 0 ⟹ 𝑣 = √2𝑔√−𝑦

So we must find the function 𝑦 that minimises

𝑇[𝑦] = 1
√2𝑔

∫
𝑥2

0

√1 + 𝑦′2
√−𝑦

d𝑥

subject to 𝑦0 = 0, 𝑦(𝑥2) = 𝑦2. This problem’s solution will be explored in a later lec-
ture.

1.2. Geodesics
A geodesic is the shortest path 𝛾 between two points on a surface Σ, assuming such a path
exists. Initially, let Σ = ℝ2. On this plane, the Pythagorean theorem for measuring dis-
tances holds. Using a Cartesian coordinate system, we can say that a point𝐴 has coordinates
(𝑥1, 𝑦1), and a point 𝐵 has coordinates (𝑥2, 𝑦2). The distance from 𝐴 to 𝐵 along any path 𝛾
can be computed using a line integral.

𝐷[𝑦] = ∫
𝐵

𝐴
dℓ = ∫

𝑥2

𝑥1
√1 + 𝑦′2 d𝑥

In this case, we have defined 𝑦 as a function of 𝑥, and we seek to minimise 𝐷 by varying the
path 𝛾 on which we are moving.

1.3. Calculus of variations
A variational problem involves minimising an object of the form

𝐹[𝑦] = ∫
𝑥2

𝑥1
𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥)) d𝑥
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subject to fixed values of 𝑦 at the end points. We call such an𝐹 a functional; it is a function on
the space of functions. Calculus applied to functionals is called the calculus of variations; we
would like to find minima and maxima of functionals. In order to talk about functionals rig-
orously, we must define first the space of functions we are operating on; analogously to how
we must define the domain of a function we are analysing when dealing with real or com-
plex analysis. We write 𝐶(ℝ) for the space of continuous functions on ℝ, and 𝐶𝑘(ℝ) for the
space of functions with continuous 𝑘th derivatives on ℝ. Sometimes, the notation 𝐶𝑘

(𝛼,𝛽)(ℝ)
is used to denote 𝐶𝑘(ℝ) such that 𝑓(𝛼) and 𝑓(𝛽) are fixed, typically fixed to zero.

1.4. Variational principles
We can now define what variational principles are: they are such principles where laws
follow from finding the minima or maxima of functionals. An introductory example is
Fermat’s principle, which states that light that travels between two points takes the path
which requires the least travel time. There is also the principle of least action. Consider a
particle moving under some potential 𝑉(x), and let 𝑇 = 1

2
𝑚|ẋ|2 be its kinetic energy. We

can define

𝑆[𝛾] = ∫
𝑡2

𝑡1
(𝑇 − 𝑉) d𝑡

where 𝛾 represents the path along which the particle travels. The left hand side 𝑆[𝛾] is called
the action, and the principle of least action states that the action is minimised along paths
of motion. Then, Newton’s laws of motion should follow from this principle by minimising
action.
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2. Calculus for functions on ℝ𝑛

2.1. Introduction
Let 𝑓 ∈ 𝐶2(ℝ𝑛), so 𝑓∶ ℝ𝑛 → ℝ with all continuous second partial derivatives. We say that
the point a ∈ ℝ𝑛 is stationary if

∇𝑓(a) = 0

Consider a Taylor series expansion near a stationary point.

𝑓(x) = 𝑓(a) + 1
2(𝑥𝑖 − 𝑎𝑖)(𝑥𝑗 − 𝑎𝑗) 𝜕2𝑖𝑗𝑓

|||a
+ 𝑂(‖x − a‖2)

The Hessian matrix is defined as 𝐻𝑖𝑗 = 𝜕𝑖𝜕𝑗𝑓 = 𝐻𝑗𝑖, where 𝜕𝑖 ≡
𝜕
𝜕𝑥𝑖

. For convenience, we
will shift the origin to let a = 0. TheHessian, evaluated at 0, written𝐻(0), is a real symmetric
matrix and hence can be diagonalised using an orthogonal transformation.

𝐻′ = 𝑅⊺𝐻(0)𝑅 =
⎛
⎜
⎜
⎝

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑛

⎞
⎟
⎟
⎠

Then
𝑓(x′) − 𝑓(0) = 1

2 ∑𝜆𝑖(𝑥′𝑖)2 + 𝑂(‖x‖2)

We can characterise the stationary point using the eigenvalues of the Hessian.

(i) If all 𝜆𝑖 > 0, then 𝑓(x′) > 𝑓(0) so 𝑓(x′) is a local minimum.

(ii) If all 𝜆𝑖 < 0, then 𝑓(x′) < 𝑓(0) so 𝑓(x′) is a local maxmimum.

(iii) If the eigenvalues have mixed signs, this is a saddle point. 𝑓(x′) increases in some
directions, but decreases in other directions.

(iv) If some eigenvalues are zero, we must consider higher-order terms of the Taylor ex-
pansion.

When 𝑛 = 2, this is a special case. We can compute properties of the eigenvalues using the
trace and determinant of the matrix.

det𝐻 = 𝜆1𝜆2; tr𝐻 = 𝜆1 + 𝜆2

(i) If det𝐻 > 0, tr𝐻 > 0 then we have a local minimum.

(ii) If det𝐻 > 0, tr𝐻 < 0 then we have a local maximum.

(iii) If det𝐻 < 0 then we have a saddle point.

(iv) If det𝐻 = 0 we need to consider higher-order terms.
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Note that if 𝑓∶ 𝐷 → ℝ where 𝐷 ⊂ ℝ𝑛, it is possible that we have a local maximum which
is not the global maximum, if such a global maximum actually lies on the boundary and is
not a stationary point.

Now, let us suppose that 𝑓 is harmonic, i.e. ∇2𝑓(x) = 0 on 𝐷 ⊂ ℝ2. Hence, tr𝐻 = 0 which
implies that if there exists a turning point it is a saddle point. The minimum or maximum
of a harmonic function must therefore occur on the boundary.

Example. Let
𝑓(𝑥, 𝑦) = 𝑥3 + 𝑦3 − 3𝑥𝑦

∇𝑓(x) = (3𝑥
2 − 3𝑦

3𝑦2 − 3𝑥) = (00) ⟹ (𝑥𝑦) = (00) or (
1
1)

The Hessian is

𝐻 = (6𝑥 −3
−3 6𝑦) ⟹ 𝐻(0) = ( 0 −3

−3 0 ) ; 𝐻 (11) = ( 6 −3
−3 6 )

The determinant is negative at zero, giving us a saddle point. At the other point, the determ-
inant is positive and the trace is positive, giving a local minimum.

2.2. Constraints and Lagrange multipliers
Example. Find the circle centered at (0, 0)with smallest radius that intersects the parabola
𝑦 = 𝑥2 − 1. There are essentially two approaches.

• First, we consider the ‘direct’ method. We solve the constraints directly, which in this
case means solving the equations

𝑓 = 𝑥2 + 𝑦2
𝑦 = 𝑥2 − 1

for minimal 𝑓. This gives

𝑓 = 𝑥2 + (𝑥2 − 1)2 = 𝑥4 − 𝑥2 + 1

Then by setting 𝜕𝑥𝑓 = 0 we have

4𝑥3 − 2𝑥 = 0 ⟹ 𝑥 ∈ {0, 1
√2

, −1
√2

}

which gives

𝑥 = ±1
√2

⟹ 𝑦 = −1
2 ; 𝑟 = √3

2
The other solution for 𝑥 yields a larger radius. Thismethodworks fine for simple prob-
lems like this where the constraints are solvable. Therefore, we present an alternative
method that works in the more general case.
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• This method uses ‘Lagrange multipliers’. We define a new function

ℎ(𝑥, 𝑦, 𝜆) = 𝑓(𝑥, 𝑦) − 𝜆𝑔(𝑥, 𝑦)

where 𝑔(𝑥, 𝑦) is defined such that 𝑔 = 0 is the constraint. 𝜆 is called the Lagrange
multiplier. In this example,

ℎ(𝑥, 𝑦, 𝜆) = 𝑥2 + 𝑦2 − 𝜆(𝑦 − 𝑥2 + 1)

We now extremise ℎ over all free variables without constraints.

∇ℎ = (
𝜕ℎ/𝜕𝑥
𝜕ℎ/𝜕𝑦
𝜕ℎ/𝜕𝜆

) = (
2𝑥 + 2𝜆𝑥
2𝑦 − 𝜆

𝑦 − 𝑥2 + 1
)

Solving ∇ℎ = 0, we have

2𝑥 + 4𝑥𝑦 = 0 ⟹ 𝑥 = 0 or 𝑦 = −1
2

and the same results follow as before by substitution.

2.3. Geometric justification of Lagrange multipliers
Consider a curve given by 𝑔 = 0. At each point on this curve, there is a normal to the curve
of gradient ∇𝑔. In particular, ∇𝑔 is perpendicular to 𝑔 = 0. The function 𝑓 has gradient
perpendicular to the function 𝑓 = 𝑐 for some constant 𝑐. So at the extremum, ∇𝑓 ∝ ∇𝑔,
so ∇𝑓 − 𝜆𝑔 = 0 for some 𝜆. This guides the creation of the new function ℎ, for which we
can optimise without constraints. This same reasoning generalises to functions in higher
dimensions and with multiple constraints.
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3. Euler–Lagrange equation
3.1. Fundamental lemma of calculus of variations
Consider again the functional

𝐹[𝑦] = ∫
𝛽

𝛼
𝑓(𝑥, 𝑦, 𝑦′) d𝑥

where 𝑓 is given, and 𝑓(𝛼, ⋅ , ⋅ ) and 𝑓(𝛽, ⋅ , ⋅ ) are fixed. Consider a small perturbation

𝑦 ↦ 𝑦 + 𝜀𝜂(𝑥); 𝜂(𝛼) = 𝜂(𝛽) = 0

In order to compute the functional for this new function, we first need an additional lemma.

Lemma (Fundamental lemma of calculus of variations). If 𝑔∶ [𝛼, 𝛽] → ℝ is continuous on
this interval, and is such that

∀𝜂 continuous, 𝜂(𝛼) = 𝜂(𝛽) = 0, ∫
𝛽

𝛼
𝑔(𝑥)𝜂(𝑥) d𝑥 = 0

Then
∀𝑥 ∈ (𝛼, 𝛽), 𝑔(𝑥) ≡ 0

Proof. Suppose that there exists a value 𝑥 ∈ (𝛼, 𝛽) such that 𝑔(𝑥) ≠ 0. Without loss of
generality suppose that this value is positive. Then, by continuity, there exists a sub-interval
[𝑥1, 𝑥2] ⊂ (𝛼, 𝛽) where 𝑔(𝑥) > 𝑐 for some positive real 𝑐 in this sub-interval. So we will
construct an 𝜂 such that 𝜂 > 0 in [𝑥1, 𝑥2] and 𝜂 = 0 outside this interval, for example

𝜂(𝑥) = {(𝑥 − 𝑥1)(𝑥2 − 𝑥) 𝑥 ∈ [𝑥1, 𝑥2]
0 otherwise

Then the integrand is non-negative everywhere, and is lower bounded by a positive number:

∫
𝛽

𝛼
𝑔(𝑥)𝜂(𝑥) > 𝑐∫

𝑥2

𝑥1
(𝑥 − 𝑥1)(𝑥2 − 𝑥) d𝑥 > 0

So this leads to a contradiction.

Remark. We call such an 𝜂 function a ‘bump function’. In general it is possible to construct
a 𝐶𝑘 bump function, e.g.

𝜂 = {[(𝑥 − 𝑥1)(𝑥2 − 𝑥)]𝑘+1 𝑥 ∈ [𝑥1, 𝑥2]
0 otherwise
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3.2. Euler–Lagrange equation
Now, we can evaluate the original functional. Using a Taylor expansion,

𝐹[𝑦 + 𝜀𝜂] = ∫
𝛽

𝛼
𝑓(𝑥, 𝑦 + 𝜀𝜂, 𝑦′ + 𝜀𝜂′)

= 𝐹[𝑦] + 𝜀∫
𝛽

𝛼
(𝜕𝑓𝜕𝑦 𝜂 +

𝜕𝑓
𝜕𝑦′ 𝜂

′) d𝑥 + 𝑂(𝜀2)

For an extremum,
d𝐹
d𝜀
|||𝜀=0

= 0

So we want the first order term to vanish, so

𝜀∫
𝛽

𝛼
(𝜕𝑓𝜕𝑦 𝜂 +

𝜕𝑓
𝜕𝑦′ 𝜂

′) d𝑥 = 0

Integrating by parts, we have

0 = ∫
𝛽

𝛼
(𝜕𝑓𝜕𝑦 𝜂 −

d
d𝑥(

𝜕𝑓
𝜕𝑦′ 𝜂)) d𝑥 + [ 𝜕𝑓𝜕𝑦′ 𝜂]

𝛽

𝛼

= ∫
𝛽

𝛼
(𝜕𝑓𝜕𝑦 𝜂 −

d
d𝑥(

𝜕𝑓
𝜕𝑦′ 𝜂)) d𝑥

= ∫
𝛽

𝛼
(𝜕𝑓𝜕𝑦 −

d
d𝑥(

𝜕𝑓
𝜕𝑦′ ))⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

𝑔(𝑥)

𝜂 d𝑥

Wecan apply the lemma above, showing that a necessary condition for the optimum is

d
d𝑥(

𝜕𝑓
𝜕𝑦′ ) −

𝜕𝑓
𝜕𝑦 = 0

This is the Euler–Lagrange equation.

Remark. Note that

• This can be seen as a second-order differential equation for 𝑦(𝑥) with boundary con-
ditions at 𝛼 and 𝛽.

• The left hand side of the Euler–Lagrange equation is called a ‘functional derivative’ of
𝑦, and is written

𝛿𝐹[𝑦]
𝛿𝑦(𝑥)

Sometimes, the notation
𝛿𝑦 = 𝜀𝜂(𝑥)
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3. Euler–Lagrange equation

is used, but is not used in this course. Note that in this notation,

𝐹[𝑦 + 𝛿𝑦] = 𝐹[𝑦] + 𝛿𝐹[𝑦]; 𝛿𝐹[𝑦] = ∫
𝛽

𝛼
[𝛿𝐹[𝑦]𝛿𝑦(𝑥)𝛿𝑦(𝑥)] d𝑥

• Other boundary conditions, such as 𝜕𝑓
𝜕𝑦′

|||𝛼,𝛽
can be used.

• Note that when computing the derivatives, we regard 𝑥, 𝑦, 𝑦′ as independent;
𝜕𝑓
𝜕𝑦 = 𝜕𝑓

𝜕𝑦
|||𝑥,𝑦′

We can also compute a total derivative, for instance
d
d𝑥 = 𝜕

𝜕𝑥 +
𝜕
𝜕𝑦𝑦

′ + 𝜕
𝜕𝑦′ 𝑦

″

Note that these give different results. As an example, let 𝑓(𝑥, 𝑦, 𝑦′) = 𝑥[(𝑦′)2 − 𝑦2].
Then

𝜕𝑓
𝜕𝑥 = (𝑦′)2 − 𝑦2; 𝜕𝑓

𝜕𝑦 = −2𝑥𝑦; 𝜕𝑓
𝜕𝑦′ = 2𝑥𝑦′

Hence
d𝑓
d𝑥 = (𝑦′)2 − 𝑦2 − 2𝑥𝑦𝑦′ + 2𝑥𝑦′𝑦″

3.3. First integral of Euler–Lagrange equation (eliminating 𝑦)
In some cases, we can integrate the Euler–Lagrange equation to give a first-order ordinary
differential equation. Suppose 𝑓 does not explicitly depend on 𝑦. Then

𝜕𝑓
𝜕𝑦 = 0 ⟹ d

d𝑥(
𝜕𝑓
𝜕𝑦′ ) = 0

Hence,
𝜕𝑓
𝜕𝑦′ = 𝑐; 𝑐 ∈ ℝ

Example. Consider geodesics onℝ2; we want to find curves on which the length is minim-
ised.

𝐹[𝑦] = ∫
𝛽

𝛼
√d𝑥2 + d𝑦2 = ∫

𝛽

𝛼 √1+ d𝑦
d𝑥

2

⏟⎵⎵⏟⎵⎵⏟
𝑓(𝑦′)

d𝑥

We can apply this ‘first integral’ form of the Euler–Lagrange equation to get
𝑦′

√1 + (𝑦′)2
= 𝑐

Hence 𝑦′ is a constant, so let 𝑦′ = 𝑚 for𝑚 ∈ ℝ. Hence 𝑦 = 𝑚𝑥 + 𝑐.
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II. Variational Principles

3.4. Geodesics on a sphere
Consider the unit sphere 𝑆2 ⊂ ℝ3, and two points 𝐴, 𝐵 ∈ 𝑆2 which we wish to connect by
a path of minimal length, where the path is constrained to the sphere. We will parametrise
the sphere with spherical polar coordinates:

𝑥 = sin 𝜃 sin𝜙
𝑦 = sin 𝜃 cos𝜙
𝑧 = cos 𝜃

where 𝜃 ∈ [0, 𝜋]; 𝜙 ∈ [0, 2𝜋]. We can calculate the length of a path using the Pythagorean
theorem:

d𝑠2 = d𝑥2 + d𝑦2 + d𝑧2 = d𝜃2 + sin2 𝜃 d𝜙2

We will parametrise the path by thinking of 𝜙 as a function of 𝜃. This gives

d𝑠 = √1 + sin2 𝜃(𝜙′)2 d𝜃

We wish to extremise the functional 𝐹, given by

𝐹[𝜙] = ∫
𝜃2=𝛽

𝜃1=𝛼
d𝑠 = ∫

𝜃2

𝜃1
d𝑠 = √1 + sin2 𝜃(𝜙′)2 d𝜃

The integrand does not depend on 𝜙 but only on its derivative; so d𝑓
d𝜙

= 0. Using the first
integral form of the Euler–Lagrange equation, we have

𝜕𝑓
𝜕𝜙′ = 𝑘

Now, we have

sin2 𝜃𝜙′

√1+ sin2 𝜃(𝜙′)2
= 𝑘

sin4 𝜃(𝜙′)2 = 𝑘2(1 + sin2 𝜃(𝜙′)2)

(𝜙′)2 = 𝑘2

sin2 𝜃(sin2 𝜃 − 𝑘2)
d𝜙
d𝜃 = ±

√
𝑘2

sin2 𝜃(sin2 𝜃 − 𝑘2)

𝜙 = ±∫ 𝑘 d𝜃
sin 𝜃√sin2 𝜃 − 𝑘2
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3. Euler–Lagrange equation

The two solutions correspond to the two directions in which we can trace the path. We then
can arrive at

±√1 − 𝑘2
𝑘 cos(𝜙 − 𝜙0) = cot 𝜃

Wewill be able to see that this corresponds to a great circle; that is, the intersection of a plane
through the origin with the sphere. We will show later that geodesics on a sphere are only
segments of a great circle.

3.5. First integral of Euler–Lagrange equation (eliminating 𝑥)
For any 𝑓(𝑥, 𝑦, 𝑦′), consider the quantity

d
d𝑥(𝑓 − 𝑦′ 𝜕𝑓𝜕𝑦′ )

This is exactly

d
d𝑥(𝑓 − 𝑦′ 𝜕𝑓𝜕𝑦′ ) =

𝜕𝑓
𝜕𝑥 + 𝑦′ 𝜕𝑓𝜕𝑦 + 𝑦″ 𝜕𝑓𝜕𝑦′ − 𝑦″ 𝜕𝑓𝜕𝑦′ − 𝑦′ dd𝑥(

𝜕𝑓
𝜕𝑦′ )

= 𝜕𝑓
𝜕𝑥 + 𝑦′ 𝜕𝑓𝜕𝑦 − 𝑦′ dd𝑥(

𝜕𝑓
𝜕𝑦′ )

= 𝑦′ (𝜕𝑓𝜕𝑦 −
d
d𝑥

𝜕𝑓
𝜕𝑦′ )⏟⎵⎵⎵⏟⎵⎵⎵⏟

zero by Euler–Lagrange

+𝜕𝑓𝜕𝑥

= 𝜕𝑓
𝜕𝑥

So, in the case that 𝑓 does not depend explicitly on 𝑥 (that is, 𝜕𝑓
𝜕𝑥

≡ 0), then we have another
first integral condition from the Euler–Lagrange equation:

𝑓 − 𝑦′ 𝜕𝑓𝜕𝑦′ = constant

3.6. Solving the brachistochrone problem
Consider a curve in the plane with a fixed endpoint at the origin and another fixed endpoint
at 𝑥 = 𝛽. We want to find a path such that the time taken for a particle to travel along this
curve is minimised. We previously computed that the travel time is given by

𝐹[𝑦] = 1
√2𝑔

∫
𝛽

0

√1 + (𝑦′)2
√−𝑦

d𝑥
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II. Variational Principles

This does not depend on 𝑥, so we can write (ignoring the 1
√2𝑔

factor)

𝑓 − 𝑦′ 𝜕𝑓𝜕𝑦′ =
√1 + (𝑦′)2
√−𝑦

− 𝑦′ 𝑦′

√1 + (𝑦′)2√−𝑦
= 𝑘

This gives

1
√1 + (𝑦′)2

= 𝑘√−𝑦

𝑦′ = ±√1 + 𝑘2𝑦2
𝑘√−𝑦

𝑥 = ±𝑘∫ √−𝑦
√1 + 𝑘2𝑦

d𝑦

We will parametrise further:

𝑦 = −1
𝑘2 sin

2 𝜃
2 ⟹ d𝑦 = −1

𝑘2 sin
𝜃
2 cos

𝜃
2

Hence,

𝑥 = ±𝑘∫ −1
𝑘2

sin2 𝜃
2
cos 𝜃

2

√1− sin2 𝜃
2

d𝜃

= ∓ 1
2𝑘2 ∫(1 − cos 𝜃) d𝜃

= ∓ 1
2𝑘2 (𝜃 − sin 𝜃) + 𝑐

The initial condition at (0, 0) gives

𝜃0 = 0 ⟹ 𝑐 = 0

Taking the positive solution, we have

𝑥 = 𝜃 − sin 𝜃
2𝑘2

𝑦 = −1
𝑘2 sin

2 𝜃
2

This can be shown to be a parametrised equation of a cycloid.

76



3. Euler–Lagrange equation

3.7. Fermat’s principle
Fermat’s principle states that as light travels between two points, it takes the path of least
time. Let a ray of light be represented by a path 𝑦(𝑥). The speed of light is given by a function
𝑐(𝑥, 𝑦) since it depends on the material it is in. Then the time taken is

𝐹[𝑦] = ∫ dℓ
𝑐 = ∫

𝛽

𝛼

√1 + (𝑦′)2
𝑐(𝑥, 𝑦) d𝑥

In this general form, 𝑓 depends on 𝑥, 𝑦, 𝑦′. Now, let us assume 𝑐 depends only on 𝑥 and not
on 𝑦. Then we can use a first integral form to get

𝜕𝑓
𝜕𝑦′ = constant

This gives
𝑦′

𝑐(𝑥)√1 + (𝑦′)2
= constant

Suppose that at 𝛼, the light ray’s path has an angle 𝜃1 with the 𝑥-axis, and at 𝛽 the angle is
𝜃2. Note that 𝜃1 = arctan 𝑦′|𝛼 and the corresponding result for 𝛽. Then,

sin 𝜃1
𝑐(𝑥1)

= sin 𝜃
𝑐(𝑥)

This is known as Snell’s law.

Suppose we have a material in which 𝑐 increases with 𝑥. In such a material, we then have
that 𝜃 increases with 𝑥. In a material in which 𝑐 decreases as 𝑥 increases, 𝜃 naturally de-
creases.

Now, suppose we have a slow material with 𝑐 = 𝑐𝑆 and a fast material with 𝑐 = 𝑐𝐹 adjacent
to each other. We might like to find the path that light takes in its path between points that
cross the material boundary. Snell’s law can be used to determine that the ratio between the
sine of the angle and the speed of light remains constant along the light ray’s path.
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II. Variational Principles

4. Extensions to the Euler–Lagrange equation
4.1. Euler–Lagrange equation with constraints

Given a functional 𝐹[𝑦] = ∫𝛽
𝛼 𝑓(𝑥, 𝑦, 𝑦′) d𝑥, we would like to extremise 𝐹 subject to 𝐺[𝑦] =

∫𝛽
𝛼 𝑔(𝑥, 𝑦, 𝑦′) d𝑥 = 𝑘 for some constant 𝑘. We can use the method of Lagrange multipliers.
Instead of extremising 𝐹, we will extremise

Φ[𝑦; 𝜆] = 𝐹[𝑦] − 𝜆𝐺[𝑦]

Thus, we replace 𝑓 in the Euler–Lagrange equation with 𝑓 − 𝜆𝑔, giving
d
d𝑥(

𝜕
𝜕𝑦′ (𝑓 − 𝜆𝑔)) − 𝜕

𝜕𝑦(𝑓 − 𝜆𝑔) = 0

4.2. Dido’s isoparametric problem
Given a fixed perimeter, we wish to find the simple and closed plane curve whichmaximises
the enclosed area. We can restrict ourselves to convex curves. This is because any concave
curve can be transformed into a convex curve with greater area and equal perimeter, by
reflecting the non-convex region. Wewill parametrise the curve inℝ2 by letting theminimal
and maximal values of 𝑥 be 𝛼, 𝛽. Then, as we trace out the curve, 𝑥monotonically increases
from 𝛼 to 𝛽, and then monotonically decreases as we return from 𝛽 to 𝛼. This induces two
functions 𝑦1, 𝑦2 on (𝛼, 𝛽)where 𝑦2 > 𝑦1. The infinitesimal area is given by d𝐴 = (𝑦2−𝑦1) d𝑥.
Thus, the area functional is given by

𝐴[𝑦] = ∫
𝛽

𝛼
(𝑦2(𝑥) − 𝑦1(𝑥)) d𝑥 = ∮

𝐶
𝑦(𝑥) d𝑦

The constraint functional is

𝐿[𝑦] = ∮
𝐶
dℓ = ∮

𝐶
√1+ (𝑦′)2 d𝑥 = 𝐿

where 𝐿 is the fixed perimeter. Using Lagrange multipliers, we can define

ℎ = 𝑦 − 𝜆√1 + (𝑦′)2

Note thatwedonot need to consider a boundary term in the derivation of theEuler–Lagrange
equation, since the curve has no boundary. Using a first integral form of the Euler–Lagrange
equation on ℎ, we have

𝑘 = ℎ − 𝑦′ dℎd𝑦′ = 𝑦 − 𝜆√1 + (𝑦′)2 + 𝑦′𝜆 𝑦′

√1 + (𝑦′)2
= 𝑦 − 𝜆

√1 + (𝑦′)2

for some constant 𝑘. Hence,
(𝑦′)2 = 𝜆2

(𝑦 − 𝑘)2 − 1
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4. Extensions to the Euler–Lagrange equation

A solution here is the circle of radius 𝜆:
(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 = 𝜆2

Here, 𝐿 = 2𝜋𝜆 so we can write the solution in terms of 𝐿 instead, giving

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 =
𝐿2
4𝜋2

4.3. The Sturm–Liouville problem
Let 𝜌(𝑥), 𝜎(𝑥) be defined for 𝑥 ∈ [𝛼, 𝛽], and let 𝜌(𝑥) > 0 on this interval. Consider the
functional

𝐹[𝑦] = ∫
𝛽

𝛼
[𝜌(𝑦′)2 + 𝜎𝑦2] d𝑥

Let us extremise 𝐹 subject to the constraint

𝐺[𝑦] = ∫
𝛽

𝛼
𝑦2 d𝑥 = 1

We have
Φ[𝑦; 𝜆]𝐹[𝑦] − 𝜆(𝐺[𝑦] − 1)

This induces the integrand

ℎ = 𝜌(𝑦′)2 + 𝜎𝑦2 − 𝜆(𝑦2 − 1
𝛽 − 𝛼)

We consider the derivatives for the Euler–Lagrange equation:
𝜕ℎ
𝜕𝑦′ = 2𝜌𝑦′; 𝜕ℎ

𝜕𝑦 = 2𝜎𝑦 − 2𝜆𝑦

Hence,
− d
d𝑥(𝜌𝑦

′) + 𝜎𝑦 = 𝜆𝑦
We can write this asℒ(𝑦) = 𝜆𝑦, where theℒ is known as the Sturm–Liouville operator. This
is essentially an eigenvalue problem, since ℒ is a linear operator. For example, if 𝜌 = 1, this
eigenvalue problem is exactly the time-independent Schrödinger equation where 𝜎 is the
quantum-mechanical potential.

Suppose 𝜎 > 0. Then the functional 𝐹[𝑦] is also greater than zero. Then, the positive min-
imum of 𝐹 (if it exists) is the lowest eigenvalue.

Proof. Using the result from the Euler–Lagrange equation, we can multiply by 𝑦 and integ-
rate by parts giving

−𝑦 d
d𝑥(𝜌𝑦

′) + 𝜎𝑦2 = 𝜆𝑦2

𝐹[𝑦] − [𝑦𝑦′𝜌]𝛽𝛼⏟⎵⏟⎵⏟
zero

= 𝜆𝐺[𝑦]⏟
one

Thus, the lowest eigenvalue is the minimum of 𝐹[𝑦]/𝐺[𝑦].
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4.4. Multiple dependent variables
Suppose we have some vector

y(𝑥) = (𝑦1(𝑥), 𝑦2(𝑥),… , 𝑦𝑛(𝑥))

Suppose we want to extremise the functional

𝐹[y] = ∫
𝛽

𝛼
𝑓(𝑥, 𝑦1,… , 𝑦𝑛, 𝑦′1,… , 𝑦′𝑛) d𝑥

If there is some critical point y, we perturb by a small amount 𝜀𝛈 = 𝜀(𝜂1(𝑥),… , 𝜂𝑛(𝑥)), where
𝛈(𝛼) = 𝛈(𝛽) = 0. Following the derivation of the one-dimensional Euler–Lagrange equation,
we can deduce that

𝐹[y + 𝜀𝛈] − 𝐹[y] = ∫
𝛽

𝛼

𝑛
∑
𝑖=1

𝜂𝑖(
d
d𝑥

𝜕𝑓
𝜕𝑦′𝑖

− 𝜕𝑓
𝜕𝑦𝑖

) d𝑥 + boundary term + 𝑂(𝜀2)

We can apply the fundamental lemma, choosing 𝜂𝑖 in a useful way, we can show that a
necessary condition for a critical point is

d
d𝑥

𝜕𝑓
𝜕𝑦′𝑖

− 𝜕𝑓
𝜕𝑦𝑖

= 0

for all 𝑖. This is a second-order system of 𝑛 ODEs that we can solve. If 𝑓 does not depend on
one of the 𝑦𝑖, then we have a first integral form for this particular equation. In particular,
if 𝜕𝑓

𝜕𝑦𝑗
≡ 0 then 𝜕𝑓

𝜕𝑦′𝑗
= constant. If 𝑓 does not depend on 𝑥, then we have 𝑓 − ∑𝑖 𝑦′𝑖

𝜕𝑓
𝜕𝑦′𝑖

=
constant.

4.5. Geodesics on surfaces
Consider a surface Σ in ℝ3, given by

Σ = {x∶ 𝑔(x) = 0}

Consider two points 𝐴, 𝐵 on Σ. What are the geodesics (the shortest paths on the surface)
between the two points, if one exists at all? Consider a parametrisation of such a path given
by 𝑡 ∈ [0, 1] where 𝐴 = x(0), 𝐵 = x(1). We wish to extremise

Φ[x, 𝜆] = ∫
1

0
{√ ̇𝑥2 + ̇𝑦2 + ̇𝑧2 − 𝜆(𝑡)𝑔(x)} d𝑡

The Lagrange multiplier, a function of 𝑡, since we want the entire curve (for all 𝑡) to lie on
Σ. We substitute the integrand ℎ in the Euler–Lagrange equation. Considering the variation
with respect to 𝜆, we have

d
d𝑡
𝜕ℎ
𝜕 ̇𝜆

− 𝜕ℎ
𝜕𝜆 = 0
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4. Extensions to the Euler–Lagrange equation

But ℎ does not depend on ̇𝜆, hence 𝜕ℎ
𝜕𝜆

= 0, giving 𝑔(x) = 0 for all x. Considering the
variation with respect to 𝑥𝑖, we have

d
d𝑡

𝜕ℎ
𝜕 ̇𝑥𝑖

− 𝜕ℎ
𝜕𝑥𝑖

= 0

Hence
d
d𝑡(

̇𝑥𝑖

√ ̇𝑥21 + ̇𝑥22 + ̇𝑥23
) + 𝜆 𝜕𝑔𝜕𝑥𝑖

= 0

We could alternatively solve the constraint 𝑔 = 0, and parametrise the surface according to
this solution.

4.6. Multiple independent variables
In the most general case, we may have multiple independent variables in a variational prob-
lem. This converts the Euler–Lagrange equation into a partial differential equation. Suppose
𝜙∶ ℝ𝑛 → ℝ𝑚. If 𝑛 = 3, for example, we have

𝐹[𝜙] =∭
𝒟
𝑓(𝑥, 𝑦, 𝑧⏟
independent

, 𝜙, 𝜙𝑥, 𝜙𝑦, 𝜙𝑧) d𝑥 d𝑦 d𝑧

where𝒟 ⊂ ℝ3, and 𝜙𝑥𝑖 ≔ 𝜕𝜙/𝜕𝑥𝑖 . Suppose there exists some extremum 𝜙, and consider a
small variation 𝜙 ↦ 𝜙(𝑥, 𝑦, 𝑧) + 𝜀𝜂(𝑥, 𝑦, 𝑧)where 𝜂 = 0 on 𝜕𝒟. Evaluating the functional on
this perturbed 𝜙 gives

𝐹[𝜙 + 𝜀𝜂] − 𝐹[𝜙] = 𝜀∭
𝒟
{𝜂𝜕𝑓𝜕𝜙 + 𝜂𝑥

𝜕𝑓
𝜕𝜙𝑥

+ 𝜂𝑦
𝜕𝑓
𝜕𝜙𝑦

+ 𝜂𝑧
𝜕𝑓
𝜕𝜙𝑧

} d𝑥 d𝑦 d𝑧 + 𝑂(𝜀2)

= 𝜀∭
𝒟

⎧⎪
⎨⎪
⎩

𝜂𝜕𝑓𝜕𝜙 + ∇ ⋅ (𝜂( 𝜕𝑓𝜕𝜙𝑥
, 𝜕𝑓𝜕𝜙𝑦

, 𝜕𝑓𝜕𝜙𝑧
))

⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
apply divergence theorem since 𝜂 vanishes on 𝜕𝒟

−𝜂∇ ⋅ ( 𝜕𝑓𝜕𝜙𝑥
, 𝜕𝑓𝜕𝜙𝑦

, 𝜕𝑓𝜕𝜙𝑧
)
⎫⎪
⎬⎪
⎭

d𝑥 d𝑦 d𝑧 + 𝑂(𝜀2)

= 𝜀∭
𝒟
𝜂{𝜕𝑓𝜕𝜙 − ∇ ⋅ ( 𝜕𝑓𝜕𝜙𝑥

, 𝜕𝑓𝜕𝜙𝑦
, 𝜕𝑓𝜕𝜙𝑧

)} d𝑥 d𝑦 d𝑧 + 𝑂(𝜀2)

Now,we can apply the fundamental lemma to give the Euler–Lagrange equation formultiple
independent variables.

𝜕𝑓
𝜕𝜙 − ∇ ⋅ ( 𝜕𝑓𝜕𝜙𝑥

, 𝜕𝑓𝜕𝜙𝑦
, 𝜕𝑓𝜕𝜙𝑧

) = 0

Or, in suffix notation (with the summation convention),
𝜕𝑓
𝜕𝜙 − 𝜕𝑖

𝜕𝑓
𝜕(𝜕𝑖𝜙)

= 0

This result applies for any𝑛. Note that this is nowa partial differential equation for𝜙, instead
of an ordinary differential equation.
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II. Variational Principles

4.7. Potential energy and the Laplace equation
Consider the functional

𝐹[𝜙] =∬
𝒟⊂ℝ2

1
2[𝜙

2
𝑥 + 𝜙2𝑦] d𝑥 d𝑦

Note that 𝜕𝑓
𝜕𝜙

= 0 and 𝜕𝑓
𝜕𝜙𝑥

= 𝜙𝑥;
𝜕𝑓
𝜕𝜙𝑦

= 𝜙𝑦. The Euler–Lagrange equation becomes

𝜕
𝜕𝑥𝜙𝑥 +

𝜕
𝜕𝑦𝜙𝑦 = 0 ⟹ 𝜙𝑥𝑥 + 𝜙𝑦𝑦 = 0

This produces the Laplace equation.

4.8. Minimal surfaces
Consider minimising the area of a surface Σ ⊂ ℝ3, where we want the surface to have two
boundaries defined by fixed closed curves. This is sometimes known as Plateau’s problem.
We will let Σ = {x = ℝ3∶ 𝑘(𝑥, 𝑦, 𝑧) = 0}, and assume there exists a parametrisation of Σ
given by 𝑧 = 𝜙(𝑥, 𝑦). The line element is given by

d𝑠2 = d𝑥2 + d𝑦2 + d𝑧2

We have d𝑧 = 𝜙𝑥 d𝑥 + 𝜙𝑦 d𝑦 hence

d𝑠2 = (1 + 𝜙2𝑥) d𝑥2 + (1 + 𝜙2𝑦) d𝑦2 + 2𝜙𝑥𝜙𝑦 d𝑥 d𝑦

This is a quadratic form in the differentials d𝑥 , d𝑦, known as the first fundamental form
(also the Riemannian metric). Alternatively,

d𝑠2 = 𝑔𝑖𝑗 d𝑥𝑖 d𝑥𝑗

where
𝑔 = (1 + 𝜙2𝑥 𝜙𝑥𝜙𝑦

𝜙𝑥𝜙𝑦 1 + 𝜙2𝑦
)

From this, we can compute the area element, which is defined as

d𝐴 = √det 𝑔 d𝑥 d𝑦

We will extremise the area functional

𝐴[𝜙] = ∫
𝒟
√1+ 𝜙2𝑥 + 𝜙2𝑦 d𝑥 d𝑦

Let the integrand be ℎ, and apply the Euler–Lagrange equation.

𝜕ℎ
𝜕𝜙𝑥

= 𝜙𝑥

√1+ 𝜙2𝑥 + 𝜙2𝑦
; 𝜕ℎ

𝜕𝜙𝑦
=

𝜙𝑦

√1+ 𝜙2𝑥 + 𝜙2𝑦
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4. Extensions to the Euler–Lagrange equation

Hence

𝜕𝑥(
𝜙𝑥

√1+ 𝜙2𝑥 + 𝜙2𝑦
) + 𝜕𝑦(

𝜙𝑥

√1+ 𝜙2𝑥 + 𝜙2𝑦
) = 0

which can be expanded to give

(1 + 𝜙2𝑦)𝜙𝑥𝑥 + (1 + 𝜙2𝑥)𝜙𝑦𝑦 − 2𝜙𝑥𝜙𝑦𝜙𝑥𝑦 = 0

This is known as the minimal surface equation. We will solve a special case, where there is
circular (cylindrical) symmetry, so 𝑧 = 𝜙(𝑟). Since 𝑟 = √𝑥2 + 𝑦2, we can find that

𝜙𝑥 = 𝑧′𝑥𝑟 ; 𝜙𝑦 = 𝑧′ 𝑦𝑟

and we can analogously compute 𝜙𝑥𝑥, 𝜙𝑦𝑦, 𝜙𝑥𝑦. This gives

𝑟𝑧″ + 𝑧′ + (𝑧′)3 = 0

We can integrate this by first setting 𝑧′ = 𝑤 and multiplying through by 𝑤.

1
2𝑟

d
d𝑟𝑤

2 + 𝑤2 + 𝑤4 = 0

Now let 𝑤2 = 𝑢 to make this a separable equation for 𝑢. Solving this, we can find that the
solution surface is given by

𝑟 = 𝑟0 cosh (
𝑧 − 𝑧0
𝑟0

)

This is known as the catenoid. At themaximal andminimal values of 𝑧, we have the circular
boundaries with radii 𝑅. At 𝑧 = 𝑧0, the radius is minimal, and the circle here has radius 𝑟0.
Supposing 𝑧0 = 0 and that the maximal value of 𝑧 is 𝐿, we have

𝑅
𝐿 = 𝑟0

𝐿 cosh ( 𝐿𝑟0
)

Let 𝐿 = 1 without loss of generality. This essentially chooses a scale for the coordinate
system. This gives

𝑅 = 𝑟0 cosh
1
𝑟0

Plotting 𝑅 as a function of 𝑟0, there exists a minimum point 𝑟0 = 𝜇 ≈ 0.833 which gives
𝑅 ≈ 1.5. So if 𝑅 > 1.5, there exist two distinct minimal surfaces, one with 𝑟0 > 𝜇 and one
with 𝑟0 < 𝜇. The ‘tighter’ minimal surface (with 𝑟0 < 𝜇) is unstable, but the ‘looser’ sur-
face is stable (however this cannot be shown from our current understanding of variational
principles).
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II. Variational Principles

4.9. Higher derivatives
Consider the functional

𝐹[𝑦] = ∫
𝛽

𝛼
𝑓(𝑥, 𝑦, 𝑦′,… , 𝑦(𝑛)) d𝑥

We can find an analogous Euler–Lagrange equation to extremise this functional. Let 𝜂 be a
variation where 𝜂(𝑘) = 0 for 𝑘 ∈ {1,… , 𝑛 − 1} at the endpoints 𝛼, 𝛽. Now,

𝐹[𝑦 + 𝜀𝜂] − 𝐹[𝑦] = 𝜀∫
𝛽

𝛼
(𝜕𝑓𝜕𝑦 𝜂 +

𝜕𝑓
𝜕𝑦′ 𝜂

′ +⋯+ 𝜕𝑓
𝜕𝑦(𝑛) 𝜂

(𝑛)) d𝑥 + 𝑂(𝜀2)

We can repeatedly integrate each term by parts, integrating the 𝜂(𝑘) term 𝑘 times. Many
of these terms will vanish due to the boundary conditions we specified for 𝜂. This then
gives

𝐹[𝑦 + 𝜀𝜂] − 𝐹[𝑦] = 𝜀∫
𝛽

𝛼
(𝜕𝑓𝜕𝑦 𝜂 −

d
d𝑥

𝜕𝑓
𝜕𝑦′ 𝜂 +⋯+ (−1)𝑛 d𝑛

d𝑥𝑛
𝜕𝑓
𝜕𝑦(𝑛) 𝜂) d𝑥 + 𝑂(𝜀2)

Applying the fundamental lemma of calculus of variations, we have

𝜕𝑓
𝜕𝑦 −

d
d𝑥

𝜕𝑓
𝜕𝑦′ +⋯+ (−1)𝑛 d𝑛

d𝑥𝑛
𝜕𝑓
𝜕𝑦(𝑛) = 0

This is the Euler–Lagrange equation in the context of a function with higher derivatives.
The alternating signs come from the negative signs produced in the iterated integration by
parts.

4.10. First integral for 𝑛 = 2

Suppose 𝑛 = 2. If 𝜕𝑓
𝜕𝑦

= 0, we have

d
d𝑥

𝜕𝑓
𝜕𝑦′ −

d2
d𝑥2

𝜕𝑓
𝜕𝑦″ = 0

Hence
𝜕𝑓
𝜕𝑦′ −

d
d𝑥

𝜕𝑓
𝜕𝑦″ = constant

Example. Extremise the functional

𝐹[𝑦] = ∫
1

0
(𝑦″)2 d𝑥

subject to the conditions

𝑦(0) = 𝑦′(0) = 0; 𝑦(1) = 0; 𝑦′(1) = 1
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4. Extensions to the Euler–Lagrange equation

Using the above first integral form, we have

d
d𝑥(2𝑦

″) = constant ⟹ 𝑦‴ = 𝑘

for some 𝑘 ∈ ℝ. Imposing the boundary conditions on this cubic gives

𝑦 = 𝑥3 − 𝑥2

Now, we are going to show that this is an absolute minimum of the functional, not just a
stationary point. Let 𝑦0 = 𝑥2−𝑥2. Consider a variation 𝜂 of 𝑦0, where all relevant endpoints
of 𝜂 are zero. In this case, we are not going to assume that 𝜂 is small; we will simply look at
all possible variations.

𝐹[𝑦0 + 𝜂] − 𝐹[𝑦0] = ∫
1

0
(𝜂″)2 d𝑥

⏟⎵⎵⏟⎵⎵⏟
>0

+2∫
1

0
𝑦″0𝜂″ d𝑥

Substituting for 𝑦0, given that 𝜂 ≢ 0,

𝐹[𝑦0 + 𝜂] − 𝐹[𝑦0] > 4∫
1

0
(3𝑥 − 1)𝜂″ d𝑥

= 4{[−𝜂′]10 +∫
1

0
[ dd𝑥(3𝑥𝜂

′) − 𝜂′] d𝑥}

= 4{∫
1

0
[ dd𝑥(3𝑥𝜂

′) − 𝜂′] d𝑥}

= 4{[3𝑥𝜂′]10 − [3𝜂]10}
= 0

Hence 𝑦0 is an absoluteminimum of 𝐹. This method of showing 𝑦0 is an absoluteminimum
is easier than calculating second variations, where we know the solution 𝑦0.

4.11. Principle of least action
Consider a particle moving in ℝ3 with kinetic energy 𝑇 and potential energy 𝑉 . We define
the Lagrangian to be

𝐿(x, ẋ, 𝑡) = 𝑇 − 𝑉
We now define the action to be

𝑆[x] = ∫
𝑡2

𝑡1
𝐿 d𝑡

We can now formulate the principle of least (or stationary) action: on the path of motion of
a particle,

𝛿𝑆
𝛿x = 0
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II. Variational Principles

Equivalently, 𝐿 satisfies the Euler–Lagrange equations:
𝜕𝐿
𝜕𝑥𝑖

− d
d𝑡

𝜕𝐿
𝜕 ̇𝑥𝑖

= 0

Consider
𝑇 = 1

2𝑚|ẋ|
2; 𝑉 = 𝑉(x)

The Euler–Lagrange equations are now

d
d𝑡

𝜕𝐿
𝜕 ̇𝑥𝑖

= 𝜕𝐿
𝜕𝑥𝑖

𝑚 ̈𝑥𝑖 = −𝜕𝑉𝜕𝑥𝑖
⟹ 𝑚ẍ = −∇𝑉

This is exactly Newton’s second law, derived from the principle of stationary action.

4.12. Central forces
Example. Consider a central force in the plane. The Lagrangian is

𝐿 = 𝑇 − 𝑉 = 1
2𝑚( ̇𝑟

2 + 𝑟2 ̇𝜃2) − 𝑉(𝑟)

The Euler–Lagrange equation gives

d
d𝑡
𝜕𝐿
𝜕 ̇𝑟 −

𝜕𝐿
𝜕𝑟 = 0

d
d𝑡
𝜕𝐿
𝜕 ̇𝜃

− 𝜕𝐿
𝜕𝜃 = 0

Since 𝜕𝐿
𝜕𝜃

= 0, we have a first integral form:

𝜕𝐿
𝜕 ̇𝜃

= 𝑚𝑟2 ̇𝜃 = constant

This can be interpreted physically as the law of conservation of angularmomentum. Further,
we have 𝜕𝐿

𝜕𝑡
= 0 so we have another first integral:

̇𝑟 𝜕𝐿𝜕 ̇𝑟 +
̇𝜃 𝜕𝐿
𝜕 ̇𝜃

− 𝐿 = constant

𝑚 ̇𝑟2 +𝑚𝑟2 ̇𝜃2 − 1
2𝑚 ̇𝑟2 − 1

2𝑚𝑟
2 ̇𝜃2 + 𝑉(𝑟) = constant

1
2𝑚( ̇𝑟

2 + 𝑟2 ̇𝜃2) + 𝑉(𝑟) = constant

The left hand side is the total energy of the system, denoted𝐸. This is the law of conservation
of energy.
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4. Extensions to the Euler–Lagrange equation

4.13. Configuration space and generalised coordinates
Example. Consider 𝑁 particles moving in ℝ3. Typically we represent each point as a dis-
tinct vector in ℝ3 that changes over time. We can alternatively consider a point in ℝ3𝑁 ,
which contains the information about every point. This is called the configuration space.
The Lagrangian in configuration space is

𝐿 = 𝐿(𝑞𝑖, ̇𝑞𝑖, 𝑡)

where q is the combined position vector of all 𝑁 points, and likewise q̇ is the combined
velocity.
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II. Variational Principles

5. Noether’s theorem

5.1. Statement and proof

Consider a functional

𝐹[y] = ∫
𝛽

𝛼
𝑓(𝑦𝑖, 𝑦′𝑖, 𝑥) d𝑥 ; 𝑖 = 1,… , 𝑛

Suppose there exists a one-parameter family of transformations

𝑦𝑖(𝑥) ↦ 𝑌 𝑖(𝑥, 𝑠); 𝑌 𝑖(𝑥, 0) = 𝑦𝑖(𝑥)

This can be thought of as a change of variables parametrised by 𝑠 ∈ ℝ, where 𝑠 = 0 implies
no change of variables. This family is called a continuous symmetry of the Lagrangian 𝑓
if

d
d𝑠𝑓(𝑌 𝑖(𝑥, 𝑠), 𝑌 ′

𝑖 (𝑥, 𝑠), 𝑥) = 0

In this course, we only consider continuous symmetries, so they may be abbreviated as just
‘symmetries’.

Theorem (Noether’s Theorem). Given a continuous symmetry 𝑌 𝑖(𝑥, 𝑠) of 𝑓,

𝜕𝑓
𝜕𝑦′𝑖

𝜕𝑌 𝑖
𝜕𝑠

|||𝑠=0

is a first integral of the Euler–Lagrange equation (where the summation convention applies).

Proof.

0 = d
d𝑠𝑓

|||𝑠=0
= 𝜕𝑓

𝜕𝑦𝑖
d𝑌 𝑖
d𝑠

|||𝑠=0
+ 𝜕𝑓
𝜕𝑦′𝑖

𝜕𝑌 ′
𝑖

𝜕𝑠
|||𝑠=0

= [ dd𝑥(
𝜕𝑓
𝜕𝑦′𝑖

)d𝑌 𝑖
d𝑠 + 𝜕𝑓

𝜕𝑦′𝑖
d
d𝑥(

d𝑌 𝑖
d𝑠 )]

|||𝑠=0
= d
d𝑥 [ 𝜕𝑓𝜕𝑦′𝑖

𝜕𝑌 𝑖
𝜕𝑠 ]

|||𝑠=0
∴ constant = 𝜕𝑓

𝜕𝑦′𝑖
𝜕𝑌 𝑖
𝜕𝑠
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5. Noether’s theorem

5.2. Conservation of momentum
Example. Consider a vector y = (𝑦, 𝑧) and the function

𝑓 = 1
2𝑦

′2 + 1
2𝑧

′2 − 𝑉(𝑦 − 𝑧)

Consider the symmetry

𝑌 = 𝑦 + 𝑠 ⟹ 𝑌 ′ = 𝑦′
𝑍 = 𝑧 + 𝑠 ⟹ 𝑍 = 𝑧′

∴ 𝑉(𝑌 − 𝑍) = 𝑉(𝑦 − 𝑧) ⟹ d
d𝑠𝑓 = 0

Then from Noether’s theorem,

constant = [ 𝜕𝑓𝜕𝑦′
d𝑌
d𝑠 +

𝜕𝑓
𝜕𝑧′

d𝑍
d𝑠 ]

|||𝑠=0
= 𝑦′ + 𝑧′

This can be thought of as a conserved momentum in the 𝑦 + 𝑧 direction.

5.3. Conservation of angular momentum under central force

Example. Suppose Θ = 𝜃 + 𝑠, 𝑅 = 𝑟. Our space is isotropic, so d𝐿
d𝑠
= 0, hence

[𝜕𝐿
𝜕 ̇𝜃

𝜕Θ
𝜕𝑠 +

𝜕𝐿
𝜕 ̇𝑟

𝜕𝑅
𝜕𝑠 ]

|||𝑠=0
= 𝑚𝑟2 ̇𝜃

which shows that angular momentum is conserved.
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II. Variational Principles

6. Convexity and the Legendre transform
6.1. Convex functions
This subsection is covered by Lecture 1 of the IB Optimisation course.

Definition. A set 𝑆 ⊂ ℝ𝑛 is convex if ∀x, y ∈ 𝑆, ∀𝑡 ∈ [0, 1], (1 − 𝑡)x + 𝑡y ∈ 𝑆.
Definition. The graphof a function𝑓∶ ℝ𝑛 → ℝ is the surface {(x, 𝑧) ∈ ℝ𝑛+1∶ 𝑧 − 𝑓(x) = 0}.
Definition. A chord of a function 𝑓∶ ℝ𝑛 → ℝ is a line segment connecting two points on
the graph of 𝑓.
Definition. A function 𝑓∶ ℝ𝑛 → ℝ is convex if

(i) the domain of 𝑓 is a convex set; and
(ii) ∀x, y ∈ 𝑆, ∀𝑡 ∈ (0, 1), 𝑓((1 − 𝑡)x + 𝑡y) ≤ (1 − 𝑡)𝑓(x) + 𝑡𝑓(y)

Equivalently, 𝑓 is convex if the graph of 𝑓 lies below (or on) all of its chords. We say that
𝑓 is concave if 𝑓 lies above (or on) all of its chords. Clearly, 𝑓 is convex if and only if −𝑓 is
concave. We say 𝑓 is strictly convex (or concave) if the inequality in (ii) becomes strict.
Example. Consider the function 𝑓∶ ℝ → ℝ defined by

𝑓(𝑥) = 𝑥2

The domain is clearly convex. To show convexity, we need

𝑓((1 − 𝑡)𝑥 + 𝑡𝑦) − (1 − 𝑡)𝑓(𝑥) − 𝑡𝑓(𝑦) ≤ 0

We have

[(1−𝑡)𝑥+𝑡𝑦]2−(1−𝑡)𝑥2−𝑡𝑦2 = 𝑥2(1−𝑡)(−𝑡)+𝑡𝑦2(1−𝑡)+2(1−𝑡)𝑡𝑥𝑦 = −(1−𝑡)𝑡(𝑥−𝑦)2 < 0

as required. Hence 𝑓(𝑥) = 𝑥2 is a strictly convex function.
Example. Consider

𝑓(𝑥) = 1
𝑥

where the domain is ℝ ∖ {0}. This domain is not convex, so 𝑓 is not convex. However, re-
stricted to the domain {𝑥 ∈ ℝ∶ 𝑥 > 0}, 𝑓 can be shown to be convex.

6.2. Conditions for convexity
Proofs for these conditions, where appropriate, are given in Lecture 1 of the IB Optimisation
course.

Theorem. If 𝑓 is a once-differentiable function, then 𝑓 is convex if and only if

𝑓(y) ≥ 𝑓(x) + (y − x) ⋅ ∇𝑓(x)
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6. Convexity and the Legendre transform

Corollary. If 𝑓 is convex, and has a stationary point, then it is a global minimum.

Proof. Suppose the stationary point is at x0, so ∇𝑓(x0) = 0. We then have

𝑓(y) ≥ 𝑓(x0) + (y − x0) ⋅ 0

which is larger than 𝑓(x0) as required.

Theorem. If 𝑓 is a once-differentiable function, then 𝑓 is convex if

(∇𝑓(y) − ∇𝑓(x)) ⋅ (y − x) ≥ 0

This can be thought of as stating that 𝑓′ is monotonically increasing.
Theorem. If 𝑓 is a twice-differentiable function, then 𝑓 is convex if and only if

∇2𝑓 ⪰ 0

i.e. all eigenvalues of the Hessian matrix are non-negative. Note that ∇2𝑓 ≻ 0 implies strict
convexity.

Example. Consider the function
𝑓(𝑥, 𝑦) = 1

𝑥𝑦
for 𝑥 > 0, 𝑦 > 0. Then the Hessian is

𝐻 = 1
𝑥𝑦 (

2
𝑥2

1
𝑥𝑦

1
𝑥𝑦

2
𝑦2
)

Then,
det𝐻 = 3

𝑥3𝑦3 > 0

tr𝐻 > 0
Hence the eigenvalues are both positive. So 𝑓 is strictly convex.

6.3. Legendre transform
Definition. The Legendre transform of a function 𝑓∶ ℝ𝑛 → ℝ is a function 𝑓⋆ given by

𝑓⋆(p) = sup
x
(p ⋅ x − 𝑓(x))

The domain of 𝑓⋆ is such that the supremum provided is finite. In one dimension, we can
consider 𝑓⋆(𝑝) to be the maximum vertical distance between the graphs of 𝑦 = 𝑓(𝑥) and
𝑦 = 𝑝𝑥.
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II. Variational Principles

Example. Consider the function 𝑓(𝑥) = 𝑎𝑥2, which is convex where 𝑎 > 0. Computing the
derivative of the right hand side and setting it to zero,

𝑓⋆(𝑝) = sup
𝑥
(𝑝𝑥 − 𝑎𝑥2)

= 𝑝( 𝑝2𝑎) − 𝑎( 𝑝2𝑎)
2

= 𝑝2
4𝑎

We can apply the Legendre transform twice:

𝑓⋆⋆(𝑠) = sup
𝑝
(𝑠𝑝 − 𝑓⋆(𝑝)) = 𝑎𝑠2 = 𝑓(𝑠)

In fact, if 𝑓 is convex, then we always have 𝑓⋆⋆ = 𝑓. If 𝑎 < 0, the supremum does not exist
so 𝑓⋆ has an empty domain, and thus 𝑓⋆⋆ ≠ 𝑓.

Proposition. If the domain of 𝑓⋆ is non-empty, it is a convex set, and 𝑓⋆ is convex.

Proof. Given p,q in the domain of 𝑓⋆,

𝑓⋆((1 − 𝑡)p + 𝑡q) = sup
x
[(1 − 𝑡)p ⋅ x + 𝑡q ⋅ x − 𝑓(x)]

= sup
x
[(1 − 𝑡)(p ⋅ x − 𝑓(x)) + 𝑡(q ⋅ x − 𝑓(x))]

≤ sup
x
[(1 − 𝑡)(p ⋅ x − 𝑓(x))] + sup

x
[𝑡(q ⋅ x − 𝑓(x))]

< ∞

as required.

In practice, if 𝑓 is convex and differentiable, we compute 𝑓⋆(p) by considering the derivat-
ive:

∇(p ⋅ x − 𝑓(x)) = 0 ⟹ p = ∇𝑓

If 𝑓 is strictly convex, the condition p = ∇𝑓 has a unique inverse to give x as a function of p,
so 𝑓⋆(p) = p ⋅ x(p) − 𝑓(x(p)). This eliminates the supremum condition.

6.4. Applications to thermodynamics

If we consider the particles in a gas, we could theoretically solve the Euler–Lagrange equa-
tions for a system of around 1023 particles. However, solving such a complicated system is
difficult. Instead of solving for each particle, we instead consider macroscopic quantities
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6. Convexity and the Legendre transform

such as pressure 𝑃, volume 𝑉 , temperature 𝑇, and entropy 𝑆. A system has internal energy
𝑈(𝑆, 𝑉). The Helmholtz free energy is

𝐹(𝑇, 𝑉) = min
𝑆
(𝑈(𝑆, 𝑉) − 𝑇𝑆)

= −max
𝑆
(𝑇𝑆 − 𝑈(𝑆, 𝑉))

= −𝑈⋆(𝑇, 𝑉)

where 𝑈⋆ is the Legendre transform of 𝑈 with respect to 𝑆, fixing 𝑉 constant. Assuming 𝑈
is convex,

𝜕
𝜕𝑆 (𝑇𝑆 − 𝑈(𝑆, 𝑉))|||𝑇,𝑉

= 0 ⟹ 𝑇 = 𝜕𝑈
𝜕𝑆

|||𝑉
There are other thermodynamical quantities that can be represented using a Legendre trans-
form, for instance enthalpy 𝐻(𝑆, 𝑃).

𝐻(𝑆, 𝑃) = min
𝑉
(𝑈(𝑆, 𝑉) + 𝑃𝑉)

= −𝑈⋆(−𝑃, 𝑆)

At this minimum, 𝑃 = −𝜕𝑈
𝜕𝑉
||𝑆. We can think of the Legendre transform in this context

as a way of swapping from dependence on entropy and volume to dependence on other
variables.

6.5. Legendre transform of the Lagrangian
Recall that the Lagrangian in mechanics was defined as

𝐿 = 𝑇 − 𝑉 = 𝐿(q, q̇, 𝑡)

This is a function on the configuration space. We define theHamiltonian to be the Legendre
transform of 𝐿 with respect to q̇. We find, assuming that 𝐿 is convex,

𝐻(q,p, t) = sup
v
(p ⋅ v − 𝐿)

= p ⋅ v(p) − 𝐿(q, v(p), 𝑡)

where v(p) is the solution to 𝑝𝑖 =
𝜕𝐿
𝜕 ̇𝑞𝑖

. The p are referred to as generalised momenta or
conjugate momenta. Consider

𝑇 = 1
2𝑚|q̇|

2; 𝑉 = 𝑉(q)

Then,
p = 𝜕𝐿

𝜕q̇ = 𝑚q̇ ⟹ q̇ = 1
𝑚p
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The Hamiltonian is therefore

𝐻(q,p, 𝑡) = p ⋅ 1𝑚p − 𝐿

= p ⋅ 1𝑚p − (12𝑚
|p|2
𝑚2 − 𝑉(q))

= 1
2𝑚|p|2 + 𝑉(q)

= 𝑇 + 𝑉

6.6. Hamilton’s equations from Euler–Lagrange equation
Given that the Lagrangian satisfies the Euler–Lagrange equation, we can deduce analogous
equations for the Hamiltonian. We often write the indices of the generalised coordinates in
superscript, as follows, where the summation convention applies:

𝐻 = 𝐻(q,p, 𝑡) = 𝑝𝑖 ̇𝑞𝑖 − 𝐿(𝑞𝑖, ̇𝑞𝑖, 𝑡)

Using this equation, we can compute two expressions for the differential of the Hamilto-
nian:

d𝐻 = 𝜕𝐻
𝜕𝑞𝑖 d𝑞

𝑖 + 𝜕𝐻
𝜕𝑝𝑖

d𝑝𝑖 +
𝜕𝐻
𝜕𝑡 d𝑡

= 𝑝𝑖 d ̇𝑞𝑖 + ̇𝑞𝑖 d𝑝𝑖 −
𝜕𝐿
𝜕𝑞𝑖 d𝑞

𝑖 − 𝜕𝐿
𝜕 ̇𝑞𝑖 d ̇𝑞𝑖 − 𝜕𝐿

𝜕𝑡 d𝑡

Now, note that 𝜕𝐿
𝜕 ̇𝑞𝑖

= 𝑝𝑖. This cancels some terms. Making use of the Euler–Lagrange
equation,

𝜕𝐿
𝜕𝑞𝑖 =

d
d𝑡

𝜕𝐿
𝜕 ̇𝑞𝑖 =

d
d𝑡𝑝𝑖 = ̇𝑝𝑖

This gives
d𝐻 = 𝜕𝐻

𝜕𝑞𝑖 d𝑞
𝑖 + 𝜕𝐻

𝜕𝑝𝑖
d𝑝𝑖 +

𝜕𝐻
𝜕𝑡 d𝑡 = ̇𝑞𝑖 d𝑝𝑖 − ̇𝑝𝑖 d𝑞𝑖 −

𝜕𝐿
𝜕𝑡 d𝑡

Comparing the differentials, we can see that

̇𝑞𝑖 = 𝜕𝐻
𝜕𝑝𝑖

; ̇𝑝𝑖 = −𝜕𝐻𝜕𝑞𝑖 ;
𝜕𝐿
𝜕𝑡 = −𝜕𝐻𝜕𝑡

This system of equations is known as Hamilton’s equations. Note that in the last equation,
𝜕
𝜕𝑡
||𝑞, ̇𝑞 ≠ 𝜕

𝜕𝑡
||𝑝,𝑞. For now, we will assume that there is no explicit 𝑡 dependence in the

Lagrangian. Then, Hamilton’s equations are a system of 2𝑛 first-order ordinary differen-
tial equations. (Note, for comparison, that the Euler–Lagrange equations were a system of
𝑛 second-order differential equations, which gives the same amount of initial conditions.)
The initial conditions are typically a configuration of p,q at some fixed 𝑡0. The solutions to
Hamilton’s equations are called the trajectories in 2𝑛-dimensional phase space.
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6. Convexity and the Legendre transform

6.7. Hamilton’s equations from extremising a functional
Note that we can also arrive at Hamilton’s equations by extremising a functional in phase
space.

𝑆[q,p] = ∫
𝑡2

𝑡1
( ̇𝑞𝑖𝑝𝑖 − 𝐻(q,p, 𝑡)) d𝑡

The integrand, denoted 𝑓, is a function of q,p, q̇, 𝑡. Writing the Euler–Lagrange equations
for 𝑆, varying first with respect to 𝑝𝑖,

𝜕𝑓
𝜕𝑝𝑖

− d
d𝑡

𝜕𝑓
𝜕 ̇𝑝𝑖⏟⎵⏟⎵⏟
0

= 0 ⟹ ̇𝑞𝑖 = 𝜕𝐻
𝜕𝑝𝑖

Now varying with respect to 𝑞𝑖,

𝜕𝑓
𝜕𝑞𝑖 −

d
d𝑡

𝜕𝑓
𝜕 ̇𝑞𝑖 = 0 ⟹ ̇𝑝𝑖 = −𝜕𝐻𝜕𝑞𝑖

These results are exactly Hamilton’s equations.
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7. Second variations
7.1. Conditions for local minimisers
The Euler–Lagrange equation gives a necessary condition for a stationary point. We cannot
tell whether this leads to a minimum, a maximum, or a saddle point, just from the Euler–
Lagrange equation. We can analyse the nature of the stationary points by considering the
second variation. Consider the functional

𝐹[𝑦] = ∫
𝛽

𝛼
𝑓(𝑥, 𝑦, 𝑦′) d𝑥

where 𝑦 is perturbed by a perturbation 𝜀𝜂. Let us assume that 𝑦 is a solution to the Euler–
Lagrange equation, so has no first variation. We will then expand 𝐹[𝑦 + 𝜀𝜂] to second or-
der.

𝐹[𝑦 + 𝜀𝜂] = ∫
𝛽

𝛼
[𝑓(𝑥, 𝑦 + 𝜀𝜂, 𝑦′ + 𝜀𝜂′)] d𝑥

𝐹[𝑦 + 𝜀𝜂] − 𝐹[𝑦] = ∫
𝛽

𝛼
[𝑓(𝑥, 𝑦 + 𝜀𝜂, 𝑦′ + 𝜀𝜂′) − 𝑓(𝑥, 𝑦, 𝑦′)] d𝑥

= 0 + 𝜀 ∫
𝛽

𝛼
𝜂(𝜕𝑓𝜕𝑦 −

d
d𝑥

𝜕𝑓
𝜕𝑦′ ) d𝑥⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟

zero by Euler–Lagrange equation

+ 1
2𝜀

2∫
𝛽

𝛼
(𝜂2 𝜕

2𝑓
𝜕𝑦2 + 𝜂′2 𝜕2𝑓

𝜕(𝑦′)2 + 2𝜂𝜂′ 𝜕
2𝑓

𝜕𝑦𝜕𝑦′ ) d𝑥 + 𝑂(𝜀3)

The last term (excluding the 𝜀2 component) is called the second variation. We write

𝛿2𝐹[𝑦] ≡ 1
2 ∫

𝛽

𝛼
(𝜂2 𝜕

2𝑓
𝜕𝑦2 + 𝜂′2 𝜕2𝑓

𝜕(𝑦′)2 +
d
d𝑥(𝜂

2) 𝜕2𝑓
𝜕𝑦𝜕𝑦′ ) d𝑥

Integrating the last term by parts, using 𝜂 = 0 at 𝛼, 𝛽, we have

𝛿2𝐹[𝑦] = 1
2 ∫

𝛽

𝛼
(𝑄𝜂2 + 𝑃(𝜂′)2) d𝑥

where
𝑃 = 𝜕2𝑓

𝜕(𝑦′)2 ; 𝑄 = 𝜕2𝑓
𝜕𝑦2 −

d
d𝑥(

𝜕2𝑓
𝜕𝑦𝜕𝑦′ )

Thus, if 𝑦 is a solution to the Euler–Lagrange equation, and also 𝑄𝜂2 + 𝑃(𝜂′)2 > 0 for all 𝜂
vanishing at 𝛼, 𝛽, then 𝑦 is a local minimiser of 𝐹.
Example. We will prove that the geodesic on a plane is a local minimiser of path length.
The functional we will analyse is given by

𝑓 = √1 + (𝑦′)2
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7. Second variations

Hence,

𝑃 = 𝜕2𝑓
𝜕(𝑦′)2 =

𝜕
𝜕𝑦′(

𝑦′

√1 + (𝑦′)2
) = 1

(1 + (𝑦′)2)
3
2

> 0

𝑄 = 0

Therefore the second variation is positive, so any 𝑦 that satisfies theEuler–Lagrange equation
minimises path length. In particular, straight lines minimise path length on the plane.

7.2. Legendre condition for minimisers
Proposition (Legendre condition). If 𝑦0(𝑥) is a local minimiser, then 𝑃|𝑦=𝑦0 ≥ 0.

We can say that the Legendre condition is a necessary condition for a minimiser. In less
formal terms, 𝑃 is ‘more important’ than 𝑄 when determining if a stationary point is a min-
imiser.

Proof. This condition is not proven rigorously. However, the general idea of the proof is
to construct a function 𝜂 which is small everywhere (giving a small 𝑄 contribution), but
oscillates very rapidly near some point 𝑥0, at which 𝑃 < 0. This gives a large 𝑃 contribution
which can overpower the 𝑄 contribution. Then this gives 𝑄𝜂2 + 𝑃(𝜂′)2 < 0 if there exists
some 𝑥0 where 𝑃|𝑦=𝑦0 < 0.

Note that the Legendre condition is not a sufficient condition for local minima, but 𝑃 > 0
and 𝑄 ≥ 0 is sufficient.

Example. Consider again the brachistochrone problem.

𝑓 =
√

1 + (𝑦′)2
−𝑦

We have
𝜕𝑓
𝜕𝑦 = − 1

2𝑦𝑓

𝜕𝑓
𝜕𝑦′ =

𝑦′

√1 + (𝑦′)2√−𝑦
Hence

𝑃 = 1
(1 + (𝑦′)2)

3
2√−𝑦

> 0

𝑄 = 1
2√1 + (𝑦2)2𝑦2√−𝑦

> 0

Hence the cycloid is a local minimiser of the time taken to travel between the two points.

97



II. Variational Principles

7.3. Associated eigenvalue problem
When deriving the minimiser condition, we had the integrand

𝑄𝜂2 + 𝑃(𝜂′)2

We can integrate this by parts:

𝑄𝜂2 + d
d𝑥(𝑃𝜂𝜂

′) − 𝜂 dd𝑥(𝑃𝜂
′)

giving

𝛿2𝐹[𝑦] = 1
2 ∫

𝛽

𝛼
𝜂[−(𝑃𝜂′)′ + 𝑄𝜂] d𝑥

The bracketed term −(𝑃𝜂′)′ + 𝑄𝜂 is known as the Sturm–Liouville operator acting on 𝜂,
denoted ℒ(𝜂). If there exists 𝜂 such that ℒ(𝜂) = −𝜔2𝜂, 𝜔 ∈ ℝ, and 𝜂(𝛼) = 𝜂(𝛽) = 0, then 𝑦
is not a minimiser, since the integrand will be −𝜔2𝜂2 < 0.
Example. Consider

𝐹[𝑦] = ∫
𝛽

0
((𝑦′)2 − 𝑦2) d𝑥

such that
𝑦(0) = 𝑦(𝛽) = 0; 𝛽 ≠ 𝑘𝜋, 𝑘 ∈ ℕ

The Euler–Lagrange equation gives
𝑦″ + 𝑦 = 0

Thus, constrained to the boundary conditions, the only stationary point of 𝐹 is
𝑦 ≡ 0

Analysing the second variation,

𝛿2𝐹[0] = 1
2 ∫

𝛽

0
[𝜂′2 − 𝜂2] d𝑥

giving
𝑃 = 1 > 0; 𝑄 < 0

Let us now examine the eigenvalue problem, since we cannot find whether 𝑦 ≡ 0 is a min-
imiser from what we know already. Consider the eigenvalue problem

−𝜂″ − 𝜂 = −𝜔2𝜂; 𝜂(0) = 𝜂(𝛽) = 0
Let us take

𝜂 = 𝐴 sin(𝜋𝑥𝛽 )

to give

(𝜋𝛽 )
2
= 1 − 𝜔2

So this has a solution 𝜔 > 0 if and only if 𝛽 > 𝜋. If 𝑃 > 0, a problemmay arise if the interval
of integration is ‘too large’ (in this case 𝛽 > 𝜋). Next lecture wewill make this notion precise.
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7.4. Jacobi accessory condition
Legendre tried to prove that 𝑃 > 0 implied local minimality; obviously this was impossible
due to the counterexample shown above. However, the method he used is still useful to
analyse, since we can find an actual sufficient condition using the same idea. Let 𝜙(𝑥) be
any differentiable function of 𝑥 on [𝛼, 𝛽]. Then note that

∫
𝛽

𝛼

d
d𝑥(𝜙𝜂

2) d𝑥 = 0

since 𝜂(𝛼) = 𝜂(𝛽) = 0. We can expand the integrand to give

∫
𝛽

𝛼
(𝜙′𝜂2 + 2𝜂𝜂′𝜙) d𝑥 = 0

We can add this new zero to both sides of the second variation equation.

𝛿2𝐹[𝑦] = 1
2 ∫

𝛽

𝛼
(𝑃(𝜂′)2 + 2𝜂𝜂′𝜙 + (𝑄 + 𝜙′)𝜂2) d𝑥

Now, suppose that 𝑃 > 0 at a particular 𝑦. Then, we can complete the square on the integ-
rand, giving

𝛿2𝐹[𝑦] = 1
2 ∫

𝛽

𝛼
(𝑃(𝜂′ + 𝜙

𝑃𝜂)
2
+ (𝑄 + 𝜙′ − 𝜙2

𝑃 )𝜂2) d𝑥

If we could choose a 𝜙 such that the second bracket vanishes, then the integrand would be
𝑃(𝜂′ + 𝜙

𝑃
𝜂)

2
. The only way the integral can be zero is if 𝜂′+ 𝜙

𝑃
𝜂 ≡ 0. Since 𝜂 = 0 at 𝛼, we have

𝜂′(𝛼) = 0. Hence, 𝜂 ≡ 0 by the uniqueness of solutions to first order differential equations.
Therefore, by contradiction, the integrand is not identically zero, and the second variation
is positive. Now, such a 𝜙 function is given by

𝜙2 = 𝑃(𝑄 + 𝜙′)

If a solution to this differential equation exists, then 𝛿2𝐹[𝑦] > 0. We can transform this
non-linear equation into a second order equation by the substitution 𝜙 = −𝑃 𝑢′

𝑢
for some

function 𝑢 ≠ 0. We have

𝑃(𝑢
′

𝑢 )
2
= 𝑄 − (𝑃𝑢

′

𝑢 )
′
= 𝑄 − (𝑃𝑢′)′

𝑢 + 𝑃(𝑢
′

𝑢 )
2

Hence,
−(𝑃𝑢′)′ + 𝑄𝑢 = 0

This is known as the Jacobi accessory condition. Note that the left hand side is just ℒ(𝑢),
where ℒ is the Sturm–Liouville operator.
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7.5. Solving the Jacobi condition
We need to find a solution to ℒ(𝑢) = 0, where 𝑢 ≠ 0 on [𝛼, 𝛽]. The solution we find may
not be nonzero on a large enough interval, in which case we would not have a local min-
imum.

Example. Consider

𝐹[𝑦] = 1
2 ∫

𝛽

𝛼
((𝑦′)2 − 𝑦2) d𝑥

The second variation is

𝛿2𝐹[𝑦] = 1
2 ∫

𝛽

𝛼
((𝜂′)2 − 𝜂2) d𝑥

In this case, 𝑃 = 1,𝑄 = −1. The Jacobi accessory equation is
𝑢″ + 𝑢 = 0

We can solve this to find

𝑢 = 𝐴 sin𝑥 − 𝐵 cos𝑥; 𝐴, 𝐵 ∈ ℝ
We want this to be nonzero on the interval [𝛼, 𝛽]. In particular,

tan𝑥 ≠ 𝐵
𝐴; ∀𝑥 ∈ [𝛼, 𝛽]

Note that tan𝑥 repeats every 𝜋, so if |𝛽 − 𝛼| < 𝜋 we have a positive second variation for any
stationary 𝑦.
Example. Consider again the geodesic on a sphere.

𝐹[𝜃] = ∫√d𝜃2 + sin2 𝜃 d𝜙2 = ∫√(𝜃′)2 + sin2 𝜃 d𝜙

We have already proven that critical points of this functional are segments of great circles.
Considering an equatorial great circle (since all great circles are equatorial under a change
of perspective),

𝜃 = 𝜋
2

Consider 𝜙1, 𝜙2 on this great circle. The minor arc is clearly the shortest path, but the major
arc is also a stationary point and must still be analysed.

𝑃 = 1; 𝑄 = −1
Thus,

𝛿2𝐹[𝜃0 =
𝜋
2 ] =

1
2 ∫

𝜙2

𝜙1
((𝜂′)2 − 𝜂2) d𝜙

which is exactly the example from above. This is a minimiser if |𝜙2 − 𝜙1| < 𝜋, which is
exactly the condition of being a minor arc. If 𝜙2 − 𝜙1 = 𝜋, we have an infinite amount
of geodesics, since these represent antipodal points. The set of geodesics exhibit rotational
symmetry.
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Lectured in Michaelmas 2021 by Dr. P. Sousi
A Markov chain is a common type of random process, where each state in the process de-
pends only on the previous one. Due to their simplicity, Markov processes show up in many
areas of probability theory and have lots of real-world applications, for example in computer
science.

One example of a Markov chain is a simple randomwalk, where a particle moves around an
infinite lattice of points, choosing its next direction to move at random. It turns out that if
the lattice is one- or two-dimensional, the particle will return to its starting point infinitely
many times, with probability 1. However, if the lattice is three-dimensional or higher, the
particle has probability 0 of ever returning to its starting point.
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1. Introduction

1. Introduction

1.1. Definition

Let 𝐼 be a finite or countable set. All of our random variables will be defined on the same
probability space (Ω,ℱ, ℙ).

Definition. A stochastic process (𝑋𝑛)𝑛≥0 is called aMarkov chain if for all 𝑛 ≥ 0 and for all
𝑥1…𝑥𝑛+1 ∈ 𝐼,

ℙ (𝑋𝑛+1 = 𝑥𝑛+1 ∣ 𝑋𝑛 = 𝑥𝑛,… , 𝑋1 = 𝑥1) = ℙ (𝑋𝑛+1 = 𝑥𝑛+1 ∣ 𝑋𝑛 = 𝑥𝑛)

We can think of 𝑛 as a discrete measure of time. If ℙ (𝑋𝑛+1 = 𝑦 ∣ 𝑋𝑛 = 𝑥) for all 𝑥, 𝑦 is inde-
pendent of 𝑛, then 𝑋 is called a time-homogeneous Markov chain. Otherwise, 𝑋 is called
time-inhomogeneous. In this course, we only study time-homogeneous Markov chains.
If we consider only time-homogeneous chains, we may as well take 𝑛 = 0 and we can
write

𝑃(𝑥, 𝑦) = ℙ (𝑋1 = 𝑦 ∣ 𝑋0 = 𝑥) ; ∀𝑥, 𝑦 ∈ 𝐼

Definition. A stochastic matrix is a matrix where the sum of each row is equal to 1.

We call 𝑃 the transition matrix. It is a stochastic matrix:

∑
𝑦∈𝐼

𝑃(𝑥, 𝑦) = 1

Remark. The index set does not need to be ℕ; it could alternatively be the set {0, 1,… ,𝑁} for
𝑁 ∈ ℕ.

We say that𝑋 isMarkov (𝜆, 𝑃) if𝑋0 has distribution𝜆, andP is the transitionmatrix. Hence,

(i) ℙ (𝑋0 = 𝑥0) = 𝜆𝑥0
(ii) ℙ (𝑋𝑛+1 = 𝑥𝑛+1 ∣ 𝑋𝑛 = 𝑥𝑛,… , 𝑋0 = 𝑥0) = 𝑃(𝑥𝑛, 𝑥𝑛+1) =∶ 𝑃𝑥𝑛𝑥𝑛+1

We usually draw a diagram of the transition matrix using a graph. Directed edges between
nodes are labelled with their transition probabilities.

1.2. Sequence definition

Theorem. The process 𝑋 is Markov (𝜆, 𝑃) if and only if ∀𝑛 ≥ 0 and all 𝑥0,… , 𝑥𝑛 ∈ 𝐼, we
have

ℙ (𝑋0 = 𝑥0,… , 𝑋𝑛 = 𝑥𝑛) = 𝜆𝑥0𝑃(𝑥0, 𝑥1)𝑃(𝑥1, 𝑥2)…𝑃(𝑥𝑛−1, 𝑥𝑛)
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Proof. If 𝑋 is Markov, then we have

ℙ (𝑋0 = 𝑥0,… , 𝑋𝑛 = 𝑥𝑛) = ℙ (𝑋𝑛 = 𝑥𝑛 ∣ 𝑋𝑛−1 = 𝑥𝑛−1,… , 𝑋0 = 𝑥0)
⋅ ℙ (𝑋𝑛−1 = 𝑥𝑛−1,… , 𝑋0 = 𝑥0)
= 𝑃(𝑥𝑛−1, 𝑥𝑛)ℙ (𝑋𝑛−1 = 𝑥𝑛−1,… , 𝑋0 = 𝑥0)
= 𝑃(𝑥𝑛−1, 𝑥𝑛)…𝑃(𝑥0, 𝑥1)𝜆𝑥0

as required. Conversely, ℙ (𝑋0 = 𝑥0) = 𝜆𝑥0 satisfies (i). The transition matrix is given by

ℙ (𝑋𝑛 = 𝑥𝑛 ∣ 𝑋0 = 𝑥0,… , 𝑋𝑛−1 = 𝑥𝑛−1) =
𝜆𝑥0𝑃(𝑥0, 𝑥1)…𝑃(𝑥𝑛−1, 𝑥𝑛)
𝜆𝑥0𝑃(𝑥0, 𝑥1)…𝑃(𝑥𝑛−2, 𝑥𝑛−1)

= 𝑃(𝑥𝑛−1, 𝑥𝑛)

which is exactly the Markov property as required.

1.3. Point masses
Definition. For 𝑖 ∈ 𝐼, the 𝛿𝑖-mass at 𝑖 is defined by

𝛿𝑖𝑗 = 𝟙(𝑖 = 𝑗)

This is a probability measure that has probability 1 at 𝑖 only.

1.4. Independence of sequences
Recall that discrete randomvariables (𝑋𝑛) are considered independent if for all𝑥1,… , 𝑥𝑛 ∈ 𝐼,
we have

ℙ (𝑋1 = 𝑥1,… , 𝑋𝑛 = 𝑥𝑛) = ℙ (𝑋1 = 𝑥1)…ℙ (𝑋𝑛 = 𝑥𝑛)
A sequence (𝑋𝑛) is independent if for all 𝑘, 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑛 and for all 𝑥1,… , 𝑥𝑘, we
have

ℙ (𝑋𝑖1 = 𝑥1,… , 𝑋𝑖𝑘 = 𝑥𝑘) =
𝑛
∏
𝑗=1

ℙ (𝑋𝑖𝑗 = 𝑥𝑗)

Let 𝑋 = (𝑋𝑛), 𝑌 = (𝑌𝑛) be sequences of discrete random variables. They are independent if
for all 𝑘,𝑚, 𝑖1 < ⋯ < 𝑖𝑘, 𝑗1 < ⋯ < 𝑗𝑚,

𝑝𝑟𝑜𝑏𝑋1 = 𝑥1,… , 𝑋𝑖𝑘 = 𝑥𝑖𝑘 , 𝑌 𝑗1 = 𝑦𝑗1 ,… , 𝑌 𝑗𝑚
= ℙ (𝑋1 = 𝑥1,… , 𝑋𝑖𝑘 = 𝑥𝑖𝑘) ℙ (𝑌 𝑗1 = 𝑦𝑗1 ,… , 𝑌 𝑗𝑚)

1.5. Simple Markov property
Theorem. Suppose 𝑋 is Markov (𝜆, 𝑃). Let 𝑚 ∈ ℕ and 𝑖 ∈ 𝐼. Given that 𝑋𝑚 = 𝑖, we have
that the process after time𝑚, written (𝑋𝑚+𝑛)𝑛≥0, is Markov (𝛿𝑖, 𝑃), and it is independent of
𝑋0,… , 𝑋𝑚.
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Informally, the past and the future are independent given the present.

Proof. We must show that

ℙ (𝑋𝑚 = 𝑥0,… , 𝑋𝑚+𝑛 = 𝑥𝑛 ∣ 𝑋𝑚 = 𝑖) = 𝛿𝑖𝑥0𝑃(𝑥0, 𝑥1)…𝑃(𝑥𝑛−1, 𝑥𝑛)

We have

ℙ (𝑋𝑚+𝑛 = 𝑥𝑚+𝑛,… , 𝑋𝑚 = 𝑥𝑚 ∣ 𝑋𝑚 = 𝑖) =
ℙ (𝑋𝑚+𝑛 = 𝑥𝑚+𝑛,… , 𝑋𝑚 = 𝑥𝑚) 𝛿𝑖𝑥𝑚

ℙ (𝑋𝑚 = 𝑖)

The numerator is

ℙ (𝑋𝑚+𝑛,… , 𝑋𝑚 = 𝑥𝑚)
= ∑

𝑥0,…,𝑥𝑚−1∈𝐼
ℙ (𝑋𝑚+𝑛 = 𝑥𝑚+𝑛,… , 𝑋𝑚 = 𝑥𝑚, 𝑋𝑚−1 = 𝑥𝑚−1,… , 𝑋0 = 𝑥0)

= ∑
𝑥0,…,𝑥𝑚−1

𝜆𝑥0𝑃(𝑥0, 𝑥1)…𝑃(𝑥𝑚−1, 𝑥𝑚)𝑃(𝑥𝑚, 𝑥𝑚+1)…𝑃(𝑥𝑚+𝑛−1, 𝑥𝑚+𝑛)

= 𝑃(𝑥𝑚, 𝑥𝑚+1)…𝑃(𝑥𝑚+𝑛−1, 𝑥𝑚+𝑛) ∑
𝑥0,…,𝑥𝑚−1

𝜆𝑥0𝑃(𝑥0, 𝑥1)…𝑃(𝑥𝑚−1, 𝑥𝑚)

= 𝑃(𝑥𝑚, 𝑥𝑚+1)…𝑃(𝑥𝑚+𝑛−1, 𝑥𝑚+𝑛)ℙ (𝑋𝑚 = 𝑥𝑚)

Thus we have

ℙ (𝑋𝑚+𝑛 = 𝑥𝑚+𝑛,… , 𝑋𝑚 = 𝑥𝑚 ∣ 𝑋𝑚 = 𝑖) = 𝑃(𝑥𝑚, 𝑥𝑚+1)…𝑃(𝑥𝑚+𝑛−1, 𝑥𝑚+𝑛)𝛿𝑖𝑥𝑚

Hence (𝑋𝑚+𝑛)𝑛≥0 ∼ Markov (𝛿𝑖, 𝑃) conditional on 𝑋𝑚 = 𝑖. Now it suffices to show inde-
pendence between the past and future variables. In particular, we need to show 𝑚 ≤ 𝑖1 <
⋯ < 𝑖𝑘 for some 𝑘 ∈ ℕ implies that

ℙ (𝑋𝑖1 = 𝑥𝑚+1,… , 𝑋𝑖𝑘 = 𝑥𝑚+𝑘, 𝑋0 = 𝑥0,… , 𝑋𝑚 = 𝑥𝑚 ∣ 𝑋𝑚 = 𝑖)
= ℙ (𝑋𝑖1 = 𝑥𝑚+1,… , 𝑋𝑖𝑘 = 𝑥𝑚+𝑘 ∣ 𝑋𝑚 = 𝑖) ℙ (𝑋0 = 𝑥0,… , 𝑋𝑚 = 𝑥𝑚 ∣ 𝑋𝑚 = 𝑖)

So let 𝑖 = 𝑥𝑚, and then

=
ℙ (𝑋𝑖1 = 𝑥𝑚+1,… , 𝑋𝑖𝑘 = 𝑥𝑚+𝑘, 𝑋0 = 𝑥0,… , 𝑋𝑚 = 𝑥𝑚)

ℙ (𝑋𝑚 = 𝑖)

=
𝜆𝑥0𝑃(𝑥0, 𝑥1)…𝑃(𝑥𝑚−1, 𝑥𝑚)ℙ (𝑋𝑖1 = 𝑥𝑚+1,… , 𝑋𝑖𝑘 = 𝑥𝑚+𝑘 ∣ 𝑋𝑚 = 𝑥𝑚)

ℙ (𝑥𝑚 = 𝑖)

= ℙ (𝑋0 = 𝑥0,… , 𝑋𝑚 = 𝑥𝑚)
ℙ (𝑋𝑚 = 𝑥𝑚)

ℙ (𝑋𝑖1 = 𝑥𝑚+1,… , 𝑋𝑖𝑘 = 𝑥𝑚+𝑘 ∣ 𝑋𝑚 = 𝑥𝑚)

which gives the result as required.
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1.6. Powers of the transition matrix
Suppose 𝑋 ∼ Markov (𝜆, 𝑃) with values in 𝐼. If 𝐼 is finite, then 𝑃 is an |𝐼| × |𝐼| square matrix.
In this case, we can label the states as 1,… , |𝐼|. If 𝐼 is infinite, then we label the states using
the natural numbers ℕ. Let 𝑥 ∈ 𝐼 and 𝑛 ∈ ℕ. Then,

ℙ (𝑋𝑛 = 𝑥) = ∑
𝑥0,…,𝑥𝑛−1∈𝐼

ℙ (𝑋𝑛 = 𝑥, 𝑋𝑛−1 = 𝑥𝑛−1,… , 𝑋0 = 𝑥0)

= ∑
𝑥0,…,𝑥𝑛−1∈𝐼

𝜆𝑥0𝑃(𝑥0, 𝑥1)…𝑃(𝑥𝑛−1, 𝑥)

We can think of 𝜆 as a row vector. So we can write this as

= (𝜆𝑃𝑛)𝑥

By convention, we take 𝑃0 = 𝐼, the identity matrix. Now, suppose 𝑚, 𝑛 ∈ ℕ. By the simple
Markov property,

ℙ (𝑋𝑚+𝑛 = 𝑦 ∣ 𝑋𝑚 = 𝑥) = ℙ (𝑋𝑛 = 𝑦 ∣ 𝑋0 = 𝑥) = (𝛿𝑥𝑃𝑛)𝑦

We will write ℙ𝑥 (𝐴) ≔ ℙ (𝐴 ∣ 𝑋0 = 𝑥) as an abbreviation. Further, we write 𝑝𝑖𝑗(𝑛) for the
(𝑖, 𝑗) element of 𝑃𝑛. We have therefore proven the following theorem.
Theorem.

ℙ (𝑋𝑛 = 𝑥) = (𝜆𝑃𝑛)𝑥;

ℙ (𝑋𝑛+𝑚 = 𝑦 ∣ 𝑋𝑚 = 𝑥) = ℙ𝑥 (𝑋𝑛 = 𝑦) = 𝑝𝑥𝑦(𝑛)

1.7. Calculating powers
Example. Consider

𝑃 = (1 − 𝛼 𝛼
𝛽 1 − 𝛽) ; 𝛼, 𝛽 ∈ [0, 1]

Note that for any stochastic matrix 𝑃, 𝑃𝑛 is a stochastic matrix. First, we have 𝑃𝑛+1 = 𝑃𝑛𝑃.
Let us begin by finding 𝑝11(𝑛 + 1).

𝑝11(𝑛 + 1) = 𝑝11(𝑛)(1 − 𝛼) + 𝑝12(𝑛)𝛽

Note that 𝑝11(𝑛) + 𝑝12(𝑛) = 1 since 𝑃𝑛 is stochastic. Therefore,

𝑝11(𝑛 + 1) = 𝑝11(𝑛)(1 − 𝛼 − 𝛽) + 𝛽

We can solve this recursion relation to find

𝑝11(𝑛) = {
𝛼

𝛼+𝛽
+ 𝛼

𝛼+𝛽
(1 − 𝛼 − 𝛽)𝑛 𝛼 + 𝛽 > 0

1 𝛼 + 𝛽 = 0
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The general procedure for finding 𝑃𝑛 is as follows. Suppose that 𝑃 is a 𝑘 × 𝑘 matrix. Then
let 𝜆1,… , 𝜆𝑘 be its eigenvalues (which may not be all distinct).
(1) All 𝜆𝑖 distinct. In this case, 𝑃 is diagonalisable, and hence we can write 𝑃 = 𝑈𝐷𝑈−1

where𝑈 is a diagonal matrix, whose diagonal entries are the 𝜆𝑖. Then, 𝑃𝑛 = 𝑈𝐷𝑛𝑈−1.
Calculating 𝐷𝑛 may be done termwise since 𝐷 is diagonal. In this case, we have terms
such as

𝑝11(𝑛) = 𝑎1𝜆𝑛1 +⋯+ 𝑎𝑘𝜆𝑛𝑘; 𝑎𝑖 ∈ ℝ
First, note 𝑃0 = 𝐼 hence 𝑝11(0) = 1. We can substitute small values of 𝑛 and then solve
the system of equations. Now, suppose 𝜆𝑘 is complex for some 𝑘. In this case, 𝜆𝑘 is
also an eigenvalue. Then, up to reordering,

𝜆𝑘 = 𝑟𝑒𝑖𝜃 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃); 𝜆𝑘−1 = 𝜆𝑘 = 𝑟𝑒𝑖𝜃 = 𝑟(cos 𝜃 − 𝑖 sin 𝜃)

We can instead write 𝑝11(𝑛) as

𝑝11(𝑛) = 𝑎1𝜆𝑛1 +⋯+ 𝑎𝑘−1𝑟𝑛 cos(𝑛𝜃) + 𝑎𝑘𝑟𝑛 sin(𝑛𝜃)

Since 𝑝11(𝑛) is real, all the imaginary parts disappear, so we can simply ignore them.
(2) Not all 𝜆𝑖 distinct. In this case, 𝜆 appears with multiplicity 2, then we include also the

term (𝑎𝑛 + 𝑏)𝜆𝑛 as well as 𝑏𝜆𝑛. This can be shown by considering the Jordan normal
form of 𝑃.

Example. Let

𝑃 =
⎛
⎜⎜
⎝

0 1 0
0 1

2
1
21

2
0 1

2

⎞
⎟⎟
⎠

The eigenvalues are 1, 1
2
𝑖, − 1

2
𝑖. Then, writing 𝑖

2
= 1

2
(cos 𝜋

2
+ 𝑖 sin 𝜋

2
), we can write

𝑝11(𝑛) = 𝛼 + 𝛽(12)
𝑛
cos 𝑛𝜋2 + 𝛾(12)

𝑛
sin 𝑛𝜋2

For 𝑛 = 0 we have 𝑝11(0) = 1, and for 𝑛 = 1 we have 𝑝11(1) = 0, and for 𝑛 = 2 we can
calculate 𝑃2 and find 𝑝11(2) = 0. Solving this system of equations for 𝛼, 𝛽, 𝛾, we can find

𝑝11(𝑛) =
1
5 + (12)

𝑛
(45 cos

𝑛𝜋
2 − 2

5 sin
𝑛𝜋
2 )
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2. Elementary properties
2.1. Communicating classes
Definition. Let 𝑋 be a Markov chain with transition matrix 𝑃 and values in 𝐼. For 𝑥, 𝑦 ∈ 𝐼,
we say that 𝑥 leads to 𝑦, written 𝑥 → 𝑦, if

ℙ𝑥 (∃𝑛 ≥ 0, 𝑋𝑛 = 𝑦) > 0

We say that 𝑥 communicates with 𝑦 and write 𝑥 ↔ 𝑦 if 𝑥 → 𝑦 and 𝑦 → 𝑥.

Theorem. The following are equivalent:

(i) 𝑥 → 𝑦

(ii) There exists a sequence of states 𝑥 = 𝑥0, 𝑥1,… , 𝑥𝑘 = 𝑦 such that

𝑃(𝑥0, 𝑥1)𝑃(𝑥1, 𝑥2)…𝑃(𝑥𝑘−1, 𝑥𝑘) > 0

(iii) There exists 𝑛 ≥ 0 such that 𝑝𝑥𝑦(𝑛) > 0.

Proof. First, we show (i) and (iii) are equivalent. If 𝑥 → 𝑦, then ℙ𝑥 (∃𝑛 ≥ 0, 𝑋𝑛 = 𝑦) > 0.
Then ifℙ𝑥 (∃𝑛 ≥ 0, 𝑋𝑛 = 𝑦) > 0wemust have some 𝑛 ≥ 0 such thatℙ𝑥 (𝑋𝑛 = 𝑦) = 𝑝𝑥𝑦(𝑛) >
0. Note that we can write (i) as ℙ𝑥 (⋃

∞
𝑛=0 𝑋𝑛 = 𝑦) > 0. If there exists 𝑛 ≥ 0 such that

𝑝𝑥𝑦(𝑛) > 0, then certainly the probability of the union is also positive.

Now we show (ii) and (iii) are equivalent. We can write

𝑝𝑥𝑦(𝑛) = ∑
𝑥1,…,𝑥𝑛−1

𝑃(𝑥, 𝑥1)…𝑃(𝑥𝑛−1, 𝑦)

which leads directly to the equivalence of (ii) with (iii).

Corollary. Communication is an equivalence relation on 𝐼.

Proof. 𝑥 ↔ 𝑥 since 𝑝𝑥𝑥(0) = 1. If 𝑥 → 𝑦 and 𝑦 → 𝑧 then by (ii) above, 𝑥 → 𝑧.

Definition. The equivalence classes induced on 𝐼 by the communication equivalence re-
lation are called communicating classes. A communicating class 𝐶 is closed if 𝑥 ∈ 𝐶, 𝑥 →
𝑦 ⟹ 𝑦 ∈ 𝐶.

Definition. A transitionmatrix 𝑃 is called irreducible if it has a single communicating class.
In other words, ∀𝑥, 𝑦 ∈ 𝐼, 𝑥 ↔ 𝑦.

Definition. A state 𝑥 is called absorbing if {𝑥} is a closed (communicating) class.
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2.2. Hitting times
Definition. For 𝐴 ⊆ 𝐼, we define the hitting time of 𝐴 to be a random variable 𝑇𝐴∶ Ω →
{0, 1, 2… } ∪ {∞}, defined by

𝑇𝐴(𝜔) = inf {𝑛 ≥ 0∶ 𝑋𝑛(𝜔) ∈ 𝐴}

with the convention that inf∅ = ∞. The hitting probability of 𝐴 is ℎ𝐴∶ 𝐼 → [0, 1], defined
by

ℎ𝐴𝑖 = ℙ𝑖 (𝑇𝐴 < ∞)
Themean hitting time of 𝐴 is 𝑘𝐴∶ 𝐼 → [0,∞], defined by

𝑘𝐴𝑖 = 𝔼𝑖 [𝑇𝐴] =
∞
∑
𝑛=0

𝑛ℙ𝑖 (𝑇𝐴 = 𝑛) +∞ℙ𝑖 (𝑇𝐴 = ∞)

Example. Consider

𝑃 =
⎛
⎜
⎜
⎝

1 0 0 0
1/2 0 1/2 0
0 1/2 0 1/2
0 0 0 1

⎞
⎟
⎟
⎠

Consider 𝐴 = {4}.
ℎ𝐴1 = 0

ℎ𝐴2 = ℙ2 (𝑇𝐴 < ∞) = 1
2ℎ

𝐴
1 +

1
2ℎ

𝐴
3

ℎ𝐴3 = 1
2 ⋅ 1 +

1
2ℎ

𝐴
2

Hence ℎ𝐴2 = 1
3
. Now, consider 𝐵 = {1, 4}.

𝑘𝐵1 = 𝑘𝐵4 = 0

𝑘𝐵2 = 1 + 1
2𝑘

𝐵
1 +

1
2𝑘

𝐵
3

𝑘𝐵3 = 1 + 1
2𝑘

𝐵
4 +

1
2𝑘

𝐵
2

Hence 𝑘𝐵2 = 2.
Theorem. Let 𝐴 ⊂ 𝐼. Then the vector (ℎ𝐴𝑖 )𝑖∈𝐴 is the minimal non-negative solution to the
system

ℎ𝐴𝑖 = {1 𝑖 ∈ 𝐴
∑𝑗 𝑃(𝑖, 𝑗)ℎ𝐴𝑗 𝑖 ∉ 𝐴

Minimality here means that if (𝑥𝑖)𝑖∈𝐼 is another non-negative solution, then ∀𝑖, ℎ𝐴𝑖 ≤ 𝑥𝑖.

109



III. Markov Chains

Note. The vector ℎ𝐴𝑖 = 1 always satisfies the equation, since 𝑃 is stochastic, but is typically
not minimal.

Proof. First, wewill show that (ℎ𝑖)𝑖∈𝐴 solves the system of equations. Certainly if 𝑖 ∈ 𝐴 then
ℎ𝐴𝑖 = 1. Suppose 𝑖 ∉ 𝐴. Consider the event {𝑇𝐴 < ∞}. We can write this event as a disjoint
union of the following events:

{𝑇𝐴 < ∞} = {𝑋0 ∈ 𝐴} ∪
∞

⋃
𝑛=1

{𝑋0 ∉ 𝐴,… , 𝑋𝑛−1 ∉ 𝐴, 𝑋𝑛 ∈ 𝐴}

By countable additivity,

ℙ𝑖 (𝑇𝐴 < ∞) = ℙ𝑖 (𝑋0 ∈ 𝐴)⏟⎵⎵⏟⎵⎵⏟
=0

+
∞
∑
𝑛=1

ℙ𝑖 (𝑋0 ∉ 𝐴,… , 𝑋𝑛−1 ∉ 𝐴, 𝑋𝑛 ∈ 𝐴)

=
∞
∑
𝑛=1

∑
𝑗
ℙ (𝑋0 ∉ 𝐴,… , 𝑋𝑛−1 ∉ 𝐴, 𝑋𝑛 ∈ 𝐴, 𝑋1 ∈ 𝑗 ∣ 𝑋0 = 𝑖)

= ∑
𝑗
ℙ (𝑋1 ∈ 𝐴, 𝑋1 = 𝑗 ∣ 𝑋0 = 𝑖)

+
∞
∑
𝑛=2

∑
𝑗
ℙ (𝑋1 ∉ 𝐴,… , 𝑋𝑛−1 ∉ 𝐴, 𝑋𝑛 ∈ 𝐴, 𝑋1 ∈ 𝑗 ∣ 𝑋0 = 𝑖)

= ∑
𝑗
𝑃(𝑖, 𝑗)ℙ (𝑋1 ∈ 𝐴 ∣ 𝑋1 = 𝑗, 𝑋0 = 𝑖)

+∑
𝑗
𝑃(𝑖, 𝑗)

∞
∑
𝑛=2

ℙ (𝑋1 ∉ 𝐴,… , 𝑋𝑛−1 ∉ 𝐴, 𝑋𝑛 ∈ 𝐴 ∣ 𝑋1 ∈ 𝑗, 𝑋0 = 𝑖)
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By the definition of the Markov chain, we can drop the condition on 𝑋0, and subtract one
from all indices.

= ∑
𝑗
𝑃(𝑖, 𝑗)ℙ (𝑋0 ∈ 𝐴 ∣ 𝑋0 = 𝑗)

+∑
𝑗
𝑃(𝑖, 𝑗)

∞
∑
𝑛=2

ℙ (𝑋1 ∉ 𝐴,… , 𝑋𝑛−1 ∉ 𝐴, 𝑋𝑛 ∈ 𝐴 ∣ 𝑋1 ∈ 𝑗)

= ∑
𝑗
𝑃(𝑖, 𝑗)ℙ (𝑋0 ∈ 𝐴 ∣ 𝑋0 = 𝑗)

+∑
𝑗
𝑃(𝑖, 𝑗)

∞
∑
𝑛=2

ℙ𝑗 (𝑋0 ∉ 𝐴,… , 𝑋𝑛−2 ∉ 𝐴, 𝑋𝑛−1 ∈ 𝐴)

= ∑
𝑗
𝑃(𝑖, 𝑗)(ℙ𝑗 (𝑋0 ∈ 𝐴) +

∞
∑
2
ℙ𝑗 (𝑋0 ∉ 𝐴,… , 𝑋𝑛−1 ∉ 𝐴, 𝑋𝑛 ∈ 𝐴))

= ∑
𝑗
𝑃(𝑖, 𝑗)(ℙ𝑗 (𝑇𝐴 = 0) +

∞
∑
𝑛=1

ℙ𝑗 (𝑇𝐴 = 𝑛))

= ∑
𝑗
𝑃(𝑖, 𝑗)ℙ𝑗 (𝑇𝐴 < ∞)

= ∑
𝑗
𝑃(𝑖, 𝑗)ℎ𝐴𝑗

Nowwemust showminimality. If (𝑥𝑖) is another non-negative solution, we must show that
ℎ𝐴𝑖 ≤ 𝑥𝑖. We have

𝑥𝑖 = ∑
𝑗
𝑃(𝑖, 𝑗)𝑥𝑗 = ∑

𝑗∈𝐴
𝑃(𝑖, 𝑗) + ∑

𝑗∉𝐴
𝑃(𝑖, 𝑗)𝑥𝑗

Substituting again,

𝑥𝑖 = ∑
𝑗∈𝐴

𝑃(𝑖, 𝑗)𝑥𝑗 + ∑
𝑗∉𝐴

𝑃(𝑖, 𝑗)(∑
𝑘∈𝐴

𝑃(𝑗, 𝑘) +∑𝑘 ∉ 𝐴𝑃(𝑗, 𝑘)𝑥𝑘)

Then

𝑥𝑖 = ∑
𝑗1∈𝐴

𝑃(𝑖, 𝑗1) + ∑
𝑗1∉𝐴

∑
𝑗2∈𝐴

𝑃(𝑖, 𝑗1)𝑃(𝑗1, 𝑗2) +⋯

+ ∑
𝑗1∉𝐴,…,𝑗𝑛−1∉𝐴,𝑗𝑛∈𝐴

𝑃(𝑖, 𝑗1)…𝑃(𝑗𝑛−1, 𝑗𝑛)

+ ∑
𝑗1∉𝐴…,𝑗𝑛∉𝐴

𝑃(𝑖, 𝑗1)…𝑃(𝑗𝑛−1, 𝑗𝑛)𝑥𝑗𝑛

The last term is non-negative since 𝑥 is non-negative. So

𝑥𝑖 ≥ ℙ𝑖 (𝑇𝐴 = 1) + ℙ𝑖 (𝑇𝐴 = 2) +⋯+ ℙ𝑖 (𝑇𝐴 = 𝑛) ≥ ℙ𝑖 (𝑇𝐴 ≤ 𝑛) , ∀𝑛 ∈ ℕ

Now, note {𝑇𝐴 ≤ 𝑛} are a set of increasing functions of 𝑛, so by continuity of the probability
measure, the probability increases to that of the union, {𝑇𝐴 < ∞} = ℎ𝐴𝑖 .
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Example. Consider the Markov chain previously explored:

𝑃 =
⎛
⎜
⎜
⎝

1 0 0 0
1/2 0 1/2 0
0 1/2 0 1/2
0 0 0 1

⎞
⎟
⎟
⎠

Let 𝐴 = {4}. Then ℎ𝐴1 = 0 since there is no route from 1 to 4. From the theorem above, the
system of linear equations is

ℎ2 =
1
2ℎ1 +

1
2ℎ3

ℎ3 =
1
2ℎ4 +

1
2ℎ2

ℎ4 = 1
Hence,

ℎ2 =
2
3ℎ1 +

1
3

ℎ3 =
1
3ℎ1 +

2
3

So the minimal solution arises at ℎ1 = 0.
Example. Consider 𝐼 = ℕ, and

𝑃(𝑖, 𝑖 + 1) = 𝑝 ∈ (0, 1); 𝑃(𝑖, 𝑖 − 1) = 1 − 𝑝 = 𝑞

Then ℎ𝑖 = ℙ𝑖 (𝑇0 < ∞) hence ℎ0 = 1. The linear equations are

𝑝 ≠ 𝑞 ⟹ ℎ𝑖 = 𝑝ℎ𝑖+1 + 𝑞ℎ𝑖−1

𝑝(ℎ𝑖+1 − ℎ𝑖) = 𝑞(ℎ𝑖 − ℎ𝑖−1)
Let 𝑢𝑖 = ℎ𝑖 − ℎ𝑖−1. Then,

𝑞
𝑝𝑢𝑖 = ⋯ = (𝑞𝑝)

𝑖
𝑢1

Hence

ℎ𝑖 =
𝑖
∑
𝑗=1

(ℎ𝑗 − ℎ𝑗−1) + 1 = 1 − (1 − ℎ1)
𝑖
∑
𝑗=1

( 𝑞𝑝)
𝑗

The general solution is therefore

ℎ𝑖 = 𝑎 + 𝑏(𝑞𝑝)
𝑖

If 𝑞 > 𝑝, then minimality of ℎ𝑖 implies 𝑏 = 0, 𝑎 = 1. Hence,

ℎ𝑖 = 1
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Otherwise, if 𝑝 > 𝑞, minimality of ℎ𝑖 implies 𝑎 = 0, 𝑏 = 1. Hence,

ℎ𝑖 = (𝑞𝑝)
𝑖

If 𝑝 = 𝑞 = 1
2
, then

ℎ𝑖 =
1
2ℎ𝑖+1 +

1
2ℎ𝑖−1

Hence, ℎ𝑖 = 𝑎 + 𝑏𝑖. Minimality implies 𝑎 = 1 and 𝑏 = 0.

ℎ𝑖 = 1

2.3. Birth and death chain
Consider a Markov chain on ℕ with

𝑃(𝑖, 𝑖 + 1) = 𝑝𝑖; 𝑃(𝑖, 𝑖 − 1) = 𝑞𝑖; ∀𝑖, 𝑝𝑖 + 𝑞𝑖 = 1

Now, consider ℎ𝑖 = ℙ𝑖 (𝑇0 < ∞). ℎ0 = 1, and ℎ𝑖 = 𝑝𝑖ℎ𝑖+1 + 𝑞𝑖ℎ𝑖−1.

𝑝𝑖(ℎ𝑖+1 − ℎ𝑖) = 𝑞𝑖(ℎ𝑖 − ℎ𝑖−1)

Let 𝑢𝑖 = ℎ𝑖 − ℎ𝑖−1 to give
𝑢𝑖+1 =

𝑞𝑖
𝑝𝑖
𝑢𝑖 = ∏𝑗 = 1𝑖 𝑞𝑖𝑝𝑖⏟⎵⎵⎵⏟⎵⎵⎵⏟

𝛾𝑖

𝑢𝑖

Then
ℎ𝑖 = 1 − (1 − ℎ1)(𝛾0 + 𝛾1 +⋯+ 𝛾𝑖−1)

where we let 𝛾0 = 1. Since ℎ𝑖 is the minimal non-negative solution,

ℎ𝑖 ≥ 0 ⟹ 1− ℎ1 ≤
1

∑𝑖−1
𝑗=0 𝛾𝑗

≤ 1
∑∞

𝑗=0 𝛾𝑗

Byminimality, wemust have exactly this bound. If∑∞
𝑗=0 𝛾𝑗 = ∞ then 1−ℎ1 = 0 ⟹ ℎ𝑖 = 1

for all 𝑖. If∑∞
𝑗=0 𝛾𝑗 < ∞ then

ℎ𝑖 =
∑∞

𝑗=𝑖 𝛾𝑗
∑∞

𝑗=0 𝛾𝑗

2.4. Mean hitting times
Recall that

𝑘𝐴𝑖 = 𝔼𝑖 [𝑇𝐴] = ∑
𝑛
𝑛ℙ𝑖 (𝑇𝐴 = 𝑛) +∞ℙ𝑖 (𝑇𝐴 = ∞)
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Theorem. The vector (𝑘𝐴𝑖 )𝑖∈𝐼 is the minimal non-negative solution to the system of equa-
tions

𝑘𝐴𝑖 = {0 if 𝑖 ∈ 𝐴
1 +∑𝑗∉𝐴 𝑃(𝑖, 𝑗)𝑘𝐴𝑗 if 𝑖 ∉ 𝐴

Proof. Suppose 𝑖 ∈ 𝐴. Then 𝑘𝑖 = 0. Now suppose 𝑖 ∉ 𝐴. Further, we may assume that
ℙ𝑖 (𝑇𝐴 = ∞) = 0, since if that probability is positive then the claim is trivial. Indeed, if
ℙ𝑖 (𝑇𝐴 = ∞) > 0, then there must exist 𝑗 such that 𝑃(𝑖, 𝑗) > 0 and ℙ𝑗 (𝑇𝐴 = ∞) > 0 since

ℙ𝑖 (𝑇𝐴 < ∞) = ∑
𝑗
𝑃(𝑖, 𝑗)ℎ𝐴𝑗 ⟹ 1−ℙ𝑖 (𝑇𝐴 = ∞) = ∑

𝑗
𝑃(𝑖, 𝑗)(1 − ℙ𝑗 (𝑇𝐴 = ∞))

Because 𝑃 is stochastic,

ℙ𝑖 (𝑇𝐴 = ∞) = ∑
𝑗
𝑃(𝑖, 𝑗)ℙ𝑗 (𝑇𝐴 = ∞)

so since the left hand side is positive, theremust exist 𝑗with 𝑃(𝑖, 𝑗) > 0 andℙ𝑗 (𝑇𝐴 = ∞ > 0).
For this 𝑗, we also have 𝑘𝐴𝑗 = ∞. Now we only need to compute∑𝑛 𝑛ℙ𝑖 (𝑇𝐴 = 𝑛).

ℙ𝑖 (𝑇𝐴 = 𝑛) = ℙ𝑖 (𝑋0 ∉ 𝐴,… , 𝑋𝑛−1 ∉ 𝐴, 𝑋𝑛 ∈ 𝐴)

Then, using the same method as the previous theorem,

𝑘𝐴𝑖 = ∑
𝑛
𝑛ℙ𝑖 (𝑇𝐴 = 𝑛) = 1 + ∑

𝑗∉𝐴
𝑃(𝑖, 𝑗)𝑘𝐴𝑗

It now suffices to prove minimality. Suppose (𝑥𝑖) is another solution to this system of equa-
tions. We need to show that 𝑥𝑖 ≥ 𝑘𝐴𝑖 for all 𝑖. Suppose 𝑖 ∉ 𝐴. Then

𝑥𝑖 = 1 + ∑
𝑗∉𝐴

𝑃(𝑖, 𝑗)𝑥𝑗 = 1 + ∑
𝑗∉𝐴

𝑃(𝑖, 𝑗)(1 + ∑
𝑘∉𝐴

𝑃(𝑗, 𝑘)𝑥𝑘)

Expanding inductively,

𝑥𝑖 = 1 + ∑
𝑗1∉𝐴

𝑃(𝑖, 𝑗1) + ∑
𝑗1∉𝐴,𝑗2∉𝐴

𝑃(𝑖, 𝑗1)𝑃(𝑗1, 𝑗2) +⋯

+ ∑
𝑗1∉𝐴,…,𝑗𝑛∉𝐴

𝑃(𝑖, 𝑗1)…𝑃(𝑗𝑛−1, 𝑗𝑛) + ∑
𝑗1∉𝐴,…,𝑗𝑛+1∉𝐴

𝑃(𝑖, 𝑗)…𝑃(𝑗𝑛, 𝑗𝑛+1)𝑥𝑗𝑛+1

Since 𝑥 is non-negative, we can remove the last term and reach an inequality.

𝑥𝑖 ≥ 1 + ∑
𝑗1∉𝐴

𝑃(𝑖, 𝑗1) + ∑
𝑗1∉𝐴,𝑗2∉𝐴

𝑃(𝑖, 𝑗1)𝑃(𝑗1, 𝑗2) +⋯ + ∑
𝑗1∉𝐴,…,𝑗𝑛∉𝐴

𝑃(𝑖, 𝑗1)…𝑃(𝑗𝑛−1, 𝑗𝑛)
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Hence

𝑥𝑖 ≥ 1 + ℙ𝑖 (𝑇𝐴 > 1) + ℙ𝑖 (𝑇𝐴 > 2) +⋯+ ℙ𝑖 (𝑇𝐴 > 𝑛)
= ℙ𝑖 (𝑇𝐴 > 0) + ℙ𝑖 (𝑇𝐴 > 1) + ℙ𝑖 (𝑇𝐴 > 2) +⋯+ ℙ𝑖 (𝑇𝐴 > 𝑛)

=
𝑛
∑
𝑘=0

ℙ𝑖 (𝑇𝐴 > 𝑘)

for all 𝑛. Hence, the limit of this sum is

𝑥𝑖 ≥
∞
∑
𝑘=0

ℙ𝑖 (𝑇𝐴 > 𝑘) = 𝔼𝑖 [𝑇𝐴]

which gives minimality as required.

2.5. Strong Markov property
The simple Markov property shows that, if 𝑋𝑚 = 𝑖,

𝑋𝑚+𝑛 ∼ Markov (𝛿𝑖, 𝑃)

and this is independent of 𝑋0,… , 𝑋𝑚. The strong Markov property will show that the same
property holds when we replace 𝑚 with a finite random ‘time’ variable. It is not the case
that any random variable will work; indeed, an 𝑚 very dependent on the Markov chain
itself might not satisfy this property.

Definition. A random time 𝑇 ∶ Ω → {0, 1,… }∪{∞} is called a stopping time if, for all 𝑛 ∈ ℕ,
{𝑇 = 𝑛} depends only on 𝑋0,… , 𝑋𝑛.
Example. The hitting time 𝑇𝐴 = inf {𝑛 ≥ 0∶ 𝑋𝑛 ∈ 𝐴} is a stopping time. This is because
we can write

{𝑇𝐴 = 𝑛} = {𝑋0 ∉ 𝐴,… , 𝑋𝑛−1 ∉ 𝐴, 𝑋𝑛 ∈ 𝐴}

Example. The time 𝐿𝐴 = sup {𝑛 ≥ 0∶ 𝑋𝑛 ∈ 𝐴} is not a stopping time. This is because we
need to know information about the future behaviour of 𝑋𝑛 in order to guarantee that we
are at the supremum of such events.

Theorem (StrongMarkov Property). Let 𝑋 ∼ Markov (𝜆, 𝑃) and 𝑇 be a stopping time. Con-
ditional on 𝑇 < ∞ and 𝑋𝑇 = 𝑖,

(𝑋𝑛+𝑇)𝑛≥0 ∼ Markov (𝛿𝑖, 𝑃)

and this distribution is independent of 𝑋0,… , 𝑋𝑇 .

Proof. We need to show that, for all 𝑥0,… , 𝑥𝑛 and for all vectors 𝑤 of any length,

ℙ (𝑋𝑇 = 𝑥0,… , 𝑋𝑇+𝑛 = 𝑥𝑛, (𝑋0,… , 𝑋𝑇) = 𝑤 ∣ 𝑇 < ∞,𝑋𝑇 = 𝑖)
= 𝛿𝑖𝑥0𝑃(𝑥0, 𝑥1)…𝑃(𝑥𝑛−1, 𝑥𝑛)ℙ ((𝑋0,… , 𝑋𝑇) = 𝑤∶ 𝑇 < ∞,𝑋𝑇 = 𝑖)
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Suppose that 𝑤 is of the form 𝑤 = (𝑤0,… ,𝑤𝑘). Then,
ℙ (𝑋𝑇 = 𝑋0,… , 𝑋𝑇+𝑛 = 𝑥𝑛, (𝑋0,… , 𝑋𝑇) = 𝑤 ∣ 𝑇 < ∞,𝑋𝑇 = 𝑖)

= ℙ (𝑋𝑘 = 𝑥0,… , 𝑋𝑘+𝑛 = 𝑥𝑛, (𝑋0,… , 𝑋𝑘) = 𝑤, 𝑇 = 𝑘, 𝑋𝑘 = 𝑖)
ℙ (𝑇 < ∞,𝑋𝑇 = 𝑖)

Now, since {𝑇 = 𝑘} depends only on 𝑋0,… , 𝑋𝑘, by the simple Markov property we have
ℙ (𝑋𝑘 = 𝑥0,… , 𝑋𝑘+𝑛 = 𝑥𝑛 ∣ (𝑋0,… , 𝑋𝑘) = 𝑤, 𝑇 = 𝑘, 𝑋𝑘 = 𝑖)
= ℙ (𝑋𝑘 = 𝑥0,… , 𝑋𝑘+𝑛 = 𝑥𝑛 ∣ 𝑋𝑘 = 𝑖) = 𝛿𝑖𝑥0𝑃(𝑥0, 𝑥1)…𝑃(𝑥𝑛−1, 𝑥𝑛)

Now,

ℙ (𝑋𝑇 = 𝑥0,… , 𝑋𝑇+𝑛 = 𝑥𝑛, (𝑋0,… , 𝑋𝑇) = 𝑤 ∣ 𝑇 < ∞,𝑋𝑇 = 𝑖)

=
𝛿𝑖𝑥0𝑃(𝑥0, 𝑥1)…𝑃(𝑥𝑛−1, 𝑥𝑛)ℙ ((𝑋0,… , 𝑋𝑘) = 𝑤∶ 𝑇 = 𝑘, 𝑋𝑘 = 𝑖)

ℙ (𝑇 < ∞,𝑋𝑇 = 𝑖)
= 𝛿𝑖𝑥0𝑃(𝑥0, 𝑥1)…𝑃(𝑥𝑛−1, 𝑥𝑛)ℙ ((𝑋0,… , 𝑋𝑇) = 𝑤∶ 𝑇 < ∞,𝑋𝑇 = 𝑖)

as required.

Example. Consider a simple random walk on 𝐼 = ℕ, where 𝑃(𝑥, 𝑥 ± 1) = 1
2
for 𝑥 ≠ 0, and

𝑃(0, 1) = 1. Now, let ℎ𝑖 = ℙ𝑖 (𝑇0 < ∞). We want to calculate ℎ1. We can write

ℎ1 =
1
2 +

1
2ℎ2

but the system of recursion relations this generates is difficult to solve. Instead, wewill write

ℎ2 = ℙ2 (𝑇0 < ∞)
Note that in order to hit 0, we must first hit 1. So conditioning on the first hitting time of 1
being finite, after this time the process starts again from 1. We can write 𝑇0 = 𝑇1+𝑇0, where
𝑇0 is independent of 𝑇1, with the same distribution as 𝑇0 under ℙ1. Now,

ℎ2 = ℙ2 (𝑇0 < ∞,𝑇1 < ∞) = ℙ2 (𝑇0 < ∞ ∣ 𝑇1 < ∞)ℙ2 (𝑇2 < ∞)
Note that

ℙ2 (𝑇0 < ∞ ∣ 𝑇1 < ∞) = ℙ2 (𝑇1 + 𝑇0 < ∞ ∣ 𝑇1 < ∞)
= ℙ2 (𝑇0 < ∞ ∣ 𝑇1 < ∞)
= ℙ1 (𝑇0 < ∞)

But ℙ2 (𝑇1 < ∞) = ℙ1 (𝑇0 < ∞), so
ℎ2 = ℙ2 (𝑇1 < ∞)ℙ1 (𝑇0 < ∞)

By translation invariance,
ℎ2 = ℎ21

In general, therefore, for any 𝑛 ∈ ℕ,
ℎ𝑛 = ℎ𝑛1
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3. Transience and recurrence
3.1. Definitions
Definition. Let 𝑋 be a Markov chain, and let 𝑖 ∈ 𝐼. 𝑖 is called recurrent if

ℙ𝑖 (𝑋𝑛 = 𝑖 for infinitely many 𝑛) = 1
𝑖 is called transient if

ℙ𝑖 (𝑋𝑛 = 𝑖 for infinitely many 𝑛) = 0

We will prove that any 𝑖 is either recurrent or transient.

3.2. Probability of visits

Definition. Let 𝑇(0)𝑖 = 0 and inductively define

𝑇(𝑟+1)𝑖 = inf {𝑛 ≥ 𝑇(𝑟)𝑖 + 1∶ 𝑋𝑛 = 𝑖}

We write 𝑇(1)𝑖 = 𝑇𝑖, called the first return time (or first passage time) to 𝑖. Further, let
𝑓𝑖 = ℙ𝑖 (𝑇𝑖 < ∞)

and let the number of visits to 𝑖 be defined by

𝑉 𝑖 =
∞
∑
𝑛=0

1(𝑋𝑛 = 𝑖)

Lemma. For all 𝑟 ∈ ℕ, 𝑖 ∈ 𝐼, ℙ𝑖 (𝑉 𝑖 > 𝑟) = 𝑓𝑟𝑖 .

Proof. For 𝑟 = 0, this is trivially true. Now, suppose that the statement is true for 𝑟, and we
will show that it is true for 𝑟 + 1.

ℙ𝑖 (𝑉 𝑖 > 𝑟 + 1) = ℙ𝑖 (𝑇(𝑟+1)𝑖 < ∞)

= ℙ𝑖 (𝑇(𝑟+1)𝑖 < ∞,𝑇(𝑟)𝑖 < ∞)

= ℙ𝑖 (𝑇(𝑟+1)𝑖 < ∞ ∣ 𝑇(𝑟)𝑖 < ∞)ℙ𝑖 (𝑇(𝑟)𝑖 < ∞)

= ℙ𝑖 (𝑇(𝑟+1)𝑖 < ∞ ∣ 𝑇(𝑟)𝑖 < ∞)ℙ𝑖 (𝑉 𝑖 > 𝑟)

= ℙ𝑖 (𝑇(𝑟+1)𝑖 < ∞ ∣ 𝑇(𝑟)𝑖 < ∞)𝑓𝑟𝑖

By the strong Markov property applied to the stopping time 𝑇(𝑟)𝑖 ,

= ℙ𝑖 (𝑇𝑖 < ∞)𝑓𝑟𝑖
= 𝑓𝑖𝑓𝑟𝑖
= 𝑓𝑟+1𝑖
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3.3. Duality of transience and recurrence
Theorem. Let 𝑋 be a Markov chain with transition matrix 𝑃, and let 𝑖 ∈ 𝐼. Then, exactly
one of the following is true.

(i) If ℙ𝑖 (𝑇𝑖 < ∞) = 1, then 𝑖 is recurrent, and
∞
∑
𝑛=0

𝑝𝑖𝑖(𝑛) = ∞

(ii) If ℙ𝑖 (𝑇𝑖 < ∞) < 1, then 𝑖 is transient, and
∞
∑
𝑛=0

𝑝𝑖𝑖(𝑛) < ∞

Proof.

𝔼𝑖 [𝑉 𝑖] = 𝔼𝑖 [
∞
∑
𝑛=0

1(𝑋𝑛 = 𝑖)]

=
∞
∑
𝑛=0

𝔼𝑖 [1(𝑋𝑛 = 𝑖)]

=
∞
∑
𝑛=0

ℙ𝑖 (𝑋𝑛 = 𝑖)

=
∞
∑
𝑛=0

𝑝𝑖𝑖(𝑛)

First, suppose ℙ𝑖 (𝑇𝑖 < ∞) = 1. Then, for all 𝑟, ℙ𝑖 (𝑉 𝑖 > 𝑟) = 1, so ℙ𝑖 (𝑉 𝑖 = ∞) = 1. Hence,
𝑖 is recurrent. Further, 𝔼𝑖 [𝑉 𝑖] = ∞ so∑∞

𝑛=0 𝑝𝑖𝑖(𝑛) = ∞.

Now, if 𝑓𝑖 < 1, by the previous lemmawe see that 𝔼𝑖 [𝑉 𝑖] =
1

1−𝑓𝑖
< ∞ hence ℙ𝑖 (𝑉 𝑖 < ∞) =

1. Thus, 𝑖 is transient. Further, 𝔼𝑖 [𝑉 𝑖] < ∞ so∑∞
𝑛=0 𝑝𝑖𝑖(𝑛) < ∞.

Theorem. Let 𝑥, 𝑦 be states that communicate. Then, either 𝑥 and 𝑦 are both recurrent, or
they are both transient.

Proof. Suppose 𝑥 is recurrent. Then, since 𝑥 and 𝑦 communicate, ∃𝑚, ℓ ∈ ℕ such that
𝑝𝑥𝑦(𝑚) > 0; 𝑝𝑦𝑥(ℓ) > 0

Note,∑𝑛 𝑝𝑥𝑥(𝑛) = ∞. Then,

𝑝𝑦𝑦(𝑛) ≥ ∑
𝑛
𝑝𝑦𝑦(𝑛 + 𝑚 + ℓ) ≥ ∑

𝑛
𝑝𝑦𝑥(ℓ)𝑝𝑥𝑥(𝑛)𝑝𝑥𝑦(𝑚) ≥ 𝑝𝑦𝑥(ℓ)𝑝𝑥𝑦(𝑚)𝑝𝑥𝑥(𝑛) = ∞

Corollary. Either all states in a communicating class are recurrent or they are all transient.
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3.4. Recurrent communicating classes
Theorem. Any recurrent communicating class is closed.

Proof. Suppose a communicating class 𝐶 is not closed. Then there exists 𝑥 ∈ 𝐶 and 𝑦 ∉ 𝐶
such that 𝑥 → 𝑦. Let𝑚 be such that 𝑝𝑥𝑦(𝑚) > 0. If, starting from 𝑥, we hit 𝑦which is outside
the communicating class, then we can never return to the communicating class (including
𝑥) again. In particular,

ℙ𝑥 (𝑉𝑥 < ∞) ≥ ℙ𝑥 (𝑋𝑚 = 𝑦) = 𝑝𝑥𝑦(𝑚) > 0

Hence 𝑥 is not recurrent, which is a contradiction.

Theorem. Any finite closed communicating class is recurrent.

Proof. Let 𝐶 be a finite closed communicating class. Let 𝑥 ∈ 𝐶. Then, by the pigeonhole
principle, there must exist 𝑦 ∈ 𝐶 such that

ℙ𝑥 (𝑋𝑛 = 𝑦 for infinitely many 𝑛) > 0

Since 𝑥 and 𝑦 communicate, there exists𝑚 ∈ ℕ such that 𝑝𝑦𝑥(𝑚) > 0. Now,

ℙ𝑦 (𝑋𝑚 = 𝑦 for infinitely many 𝑛) ≥ ℙ𝑥 (𝑋𝑚 = 𝑥, 𝑋𝑛 = 𝑦 for infinitely many 𝑛 ≥ 𝑚)
= ℙ𝑥 (𝑋𝑛 = 𝑦 for infinitely many 𝑛 ≥ 𝑚 ∣ 𝑋𝑚 = 𝑥)ℙ𝑦 (𝑋𝑚 = 𝑥)
= ℙ𝑥 (𝑋𝑛 = 𝑦 for infinitely many 𝑛)ℙ𝑦 (𝑋𝑚 = 𝑥) > 0

Thus 𝑦 is recurrent. Since recurrence is a class property, 𝐶 is recurrent.

Theorem. Let 𝑃 be irreducible and recurrent. Then, for all 𝑥, 𝑦,

ℙ𝑥 (𝑇𝑦 < ∞) = 1

Proof. Since 𝑦 is recurrent,

1 = ℙ𝑦 (𝑋𝑛 = 𝑦 for infinitely many 𝑛)

Let𝑚 such that 𝑝𝑦𝑥(𝑚) > 0. Now,

1 = ℙ𝑦 (𝑋𝑛 = 𝑦 infinitely often)
= ∑

𝑧
ℙ𝑦 (𝑋𝑚 = 𝑧, 𝑋𝑛 = 𝑦 for infinitely many 𝑛 ≥ 𝑚)

= ∑
𝑧
ℙ𝑦 (𝑋𝑛 = 𝑦 for infinitely many 𝑛 ≥ 𝑚 ∣ 𝑋𝑚 = 𝑧)ℙ𝑦 (𝑋𝑚 = 𝑧)

= ∑
𝑧
ℙ𝑧 (𝑋𝑛 = 𝑦 for infinitely many 𝑛)ℙ𝑦 (𝑋𝑚 = 𝑧)
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By the strong Markov property,

= ∑
𝑧
ℙ𝑧 (𝑇𝑦 < ∞)ℙ𝑦 (𝑋𝑛 = 𝑦 for infinitely many 𝑛)ℙ𝑦 (𝑋𝑚 = 𝑧)

Since 𝑦 is recurrent,

= ∑
𝑧
ℙ𝑧 (𝑇𝑦 < ∞)ℙ𝑦 (𝑋𝑚 = 𝑧)

= ∑
𝑧
ℙ𝑧 (𝑇𝑦 < ∞)𝑝𝑦𝑧(𝑚)

Since 𝑝𝑦𝑧(𝑚) > 0 and∑𝑧 𝑝𝑦𝑧(𝑚) = 1, ℙ𝑥 (𝑇𝑦 < ∞) = 1.
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4. Pólya’s recurrence theorem
4.1. Statement of theorem
Definition. The simple random walk in ℤ𝑑 is the Markov chain defined by

𝑃(𝑥, 𝑥 + 𝑒𝑖) = 𝑃(𝑥, 𝑥 − 𝑒𝑖) =
1
2𝑑

where 𝑒𝑖 is the standard basis.
Theorem. The simple random walk in ℤ𝑑 is recurrent for 𝑑 = 1, 𝑑 = 2 and transient for
𝑑 ≥ 3.

4.2. One-dimensional proof

Consider 𝑑 = 1. In this case, 𝑃(𝑥, 𝑥+1) = 𝑃(𝑥, 𝑥−1) = 1
2
. Wewill show that∑𝑛 𝑝00(𝑛) = ∞,

then recurrence will hold. We have 𝑝00(𝑛) = ℙ0 (𝑋𝑛 = 0). Note that if 𝑛 is odd, 𝑋𝑛 is odd, so
ℙ0 (𝑋2𝑘+1 = 0) = 0. So we will consider only even numbers. In order to be back at zero after
2𝑛 steps, we must make 𝑛 steps ‘up’ away from the origin and make 𝑛 steps ‘down’. There
are (2𝑛

𝑛
)ways of choosing which steps are ‘up’ steps. The probability of a specific choice of 𝑛

‘up’ and 𝑛 ‘down’ is ( 1
2
)
2𝑛
. Hence,

𝑝00(2𝑛) = (2𝑛𝑛 )(
1
2)

2𝑛
= (2𝑛)!
(𝑛!)2 ⋅

1
22𝑛

Recall Stirling’s formula:
𝑛! ∼ 𝑛𝑛𝑒−𝑛√2𝜋𝑛

Substituting in,
(2𝑛)!
(𝑛!)2 ⋅

1
22𝑛 ∼ 1

√𝜋𝑛
= 𝐴
√𝑛

for 𝐴 > 0; the precise value of 𝐴 is unnecessary. Hence, for some large 𝑛0, ∀𝑛 ≥ 𝑛0,
𝑝00(2𝑛) ≥

𝐴
2√𝑛

. So

∑
𝑛
𝑝00(2𝑛) ≥ ∑

𝑛≥𝑛0

𝐴
2√𝑛

= ∞

Now, let us consider the asymmetric random walk for 𝑑 = 1, defined by 𝑃(𝑥, 𝑥 + 1) = 𝑝 and
𝑃(𝑥, 𝑥 − 1) = 𝑞. We can compute 𝑝00(2𝑛) = (2𝑛

𝑛
)(𝑝𝑞)𝑛 ∼ 𝐴 (4𝑝𝑞)𝑛

√𝑛
. If 𝑝 ≠ 𝑞, then 4𝑝𝑞 < 1 so

by the geometric series we have

∑
𝑛≥𝑛0

𝑝00(2𝑛) ≤ ∑
𝑛≥𝑛0

2𝐴(4𝑝𝑞)𝑛 < ∞

So the asymmetric random walk is transient.
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4.3. Two-dimensional proof

Now, let us consider the simple random walk on ℤ2. For each point (𝑥, 𝑦) ∈ ℤ2, we will
project this coordinate onto the lines 𝑦 = 𝑥 and 𝑦 = −𝑥. In particular, we define

𝑓(𝑥, 𝑦) = (𝑥 + 𝑦
√2

, 𝑥 − 𝑦
√2

)

If 𝑋𝑛 is the simple random walk on ℤ2, we consider 𝑓(𝑋𝑛) = (𝑋+
𝑛 , 𝑋−

𝑛 ).

Lemma. (𝑋+
𝑛 ), (𝑋−

𝑛 ) are independent simple random walks on 1
√2
ℤ.

Proof. We can write 𝑋𝑛 as

𝑋𝑛 =
𝑛
∑
𝑖=1

𝜉𝑖

where 𝜉𝑖 are independent and identically distributed by

ℙ (𝜉1 = (1, 0)) = ℙ (𝜉1 = (−1, 0)) = ℙ (𝜉1 = (0, 1)) = ℙ (𝜉1 = (0, −1)) = 1
4

and we write 𝜉𝑖 = (𝜉1𝑖 , 𝜉2𝑖 ). We can then see that

𝑋+
𝑛 =

𝑛
∑
𝑖=1

𝜉1𝑖 + 𝜉2𝑖
√2

; 𝑋−
𝑛 =

𝑛
∑
𝑖=1

𝜉1𝑖 − 𝜉2𝑖
√2

We can check that (𝑋+
𝑛 ), (𝑋−

𝑛 ) are simple random walks on 1
√2
ℤ. It now suffices to prove the

independence property. Note that it suffices to show that 𝜉1𝑖 +𝜉21 and 𝜉1𝑖 −𝜉2𝑖 are independent,
since the𝑋+

𝑛 , 𝑋−
𝑛 are sums of independent and identically distributed copies of these random

variables. We can simply enumerate all possible values of 𝜉1𝑖 , 𝜉2𝑖 and the result follows.

We know that 𝑝00(𝑛) = 0 if 𝑛 is odd. We want to find 𝑝00(2𝑛) = ℙ0 (𝑋2𝑛 = 0). Note, 𝑋𝑛 =
0 ⟺ 𝑋+

𝑛 = 𝑋−
𝑛 = 0. Using the lemma above,

ℙ0 (𝑋2𝑛 = 0) = ℙ0 (𝑋+
𝑛 = 0, 𝑋−

𝑛 = 0) = ℙ0 (𝑋+
𝑛 = 0)ℙ0 (𝑋−

𝑛 = 0) ∼ 𝐴
√𝑛

𝐴
√𝑛

= 𝐴2
𝑛

Hence,

∑
𝑛≥𝑛0

ℙ0 (𝑋2𝑛 = 0) ≥ ∑
𝑛≥𝑛0

= 𝐴2
2𝑛 = ∞

which gives recurrence as required.
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4.4. Three-dimensional proof
Consider 𝑑 = 3. Again, 𝑝00(𝑛) = 0 if 𝑛 odd. In order to return to zero after 2𝑛 steps, we
must make 𝑖 steps both up and down, 𝑗 steps north and south, and 𝑘 steps east and west,
with 𝑖 + 𝑗 + 𝑘 = 𝑛. There are ( 2𝑛

𝑖,𝑖,𝑗,𝑗,𝑘,𝑘
) ways of choosing which steps in each direction we

take. Each combination has probability ( 1
6
)
2𝑛
of happening. Hence,

𝑝00(2𝑛) = ∑
𝑖,𝑗,𝑘≥0,𝑖+𝑗+𝑘=𝑛

( 2𝑛
𝑖, 𝑖, 𝑗, 𝑗, 𝑘, 𝑘)(

1
6)

2𝑛
= (2𝑛𝑛 )(

1
2)

2𝑛
∑

𝑖,𝑗,𝑘≥0,𝑖+𝑗+𝑘=𝑛
( 𝑛
𝑖, 𝑗, 𝑘)

2

(13)
2𝑛

The sum on the right hand side is the total probability of the number of ways of placing 𝑛
balls in three boxes uniformly at random, so equals one. Suppose 𝑛 = 3𝑚. Then we can
show that ( 𝑛

𝑖,𝑗,𝑘
) ≤ ( 𝑛

𝑚,𝑚,𝑚
).

𝑝00(6𝑚) ≥ (2𝑛𝑛 )(
1
2)

2𝑛
( 𝑛
𝑚,𝑚,𝑚)(

1
3)

𝑛

Applying Stirling’s formula again, we have

𝑝00(6𝑚) ∼
𝐴
𝑛3/2

It is sufficient to consider 𝑛 = 3𝑚:

𝑝00(6𝑚) ≥
1
62𝑝00(6𝑚 − 2); 𝑝00(6𝑚) ≥

1
64𝑝00(6𝑚 − 4)

Hence
∑
𝑛
𝑝00(𝑛) < ∞

So the Markov chain is transient.
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5. Invariant distributions
5.1. Invariant distributions
Let 𝐼 be a countable set. (𝜆𝑖) is a probability distribution if 𝜆𝑖 ≥ 0 and∑𝑖 𝜆𝑖 = 1.
Example. Consider a Markov chain with two elements, and 𝑃(1, 1) = 𝑃(1, 2) = 𝑃(2, 1) =
𝑃(2, 2) = 1

2
. As 𝑛 → ∞, it is easy to see here that both states should be equally likely to occur.

In fact, 𝑝11(𝑛) = 𝑝12(𝑛) = 𝑝21(𝑛) = 𝑝22(𝑛) =
1
2
. In this case, the row vector ( 1

2
, 1
2
) is an

equilibrium probability distribution.

In general, we want to find a distribution 𝜋 such that if 𝑋0 ∼ 𝜋, we have 𝑋𝑛 ∼ 𝜋 for all 𝑛.
Suppose 𝑋0 ∼ 𝜋. Then,

ℙ (𝑋1 = 𝑗) = ∑
𝑖∈𝐼

ℙ (𝑋0 = 𝑖, 𝑋1 = 𝑗)

= ∑
𝑖∈𝐼

ℙ (𝑋1 = 𝑗 ∣ 𝑋0 = 𝑖) ℙ (𝑋0 = 𝑖)

= ∑
𝑖∈𝐼

𝜋(𝑖)𝑃(𝑖, 𝑗)

Since we want 𝑋1 ∼ 𝜋, we must have 𝜋(𝑗) = ∑𝑖∈𝐼 𝜋(𝑖)𝑃(𝑖, 𝑗) for all 𝑗. In matrix form,
𝜋 = 𝜋𝑃.
Definition. An invariant (or equilibrium, or stationary) distribution for 𝑃 is a probability
distribution 𝜋 such that 𝜋 = 𝜋𝑃.
Theorem. Let 𝜋 be invariant. Then, if 𝑋0 ∼ 𝜋, for all 𝑛 we have 𝑋𝑛 ∼ 𝜋.

Proof. If 𝑋0 ∼ 𝜋, then 𝑋𝑛 ∼ 𝜋𝑃𝑛 = 𝜋.

Theorem. Suppose 𝐼 is finite, and there exists 𝑖 ∈ 𝐼 such that 𝑝𝑖𝑗(𝑛) → 𝜋𝑗 as 𝑛 → ∞ for all
𝑗. Then 𝜋 = (𝜋𝑗) is an invariant distribution.

Proof. First, we check that the sum of 𝜋𝑗 is one. Since 𝐼 is finite, we can interchange the
sum and limit.

∑
𝑗∈𝐼

𝜋𝑗 = ∑
𝑗∈𝐼

lim
𝑛→∞

𝑝𝑖𝑗(𝑛) = lim
𝑛→∞

∑
𝑗∈𝐼

𝑝𝑖𝑗(𝑛) = lim
𝑛→∞

1 = 1

So 𝜋𝑗 is a probability distribution. We now must show 𝜋 = 𝜋𝑃.
𝜋𝑗 = lim

𝑛→∞
𝑝𝑖𝑗(𝑛) = lim

𝑛→∞
∑
𝑘∈𝐼

𝑝𝑖𝑘(𝑛 − 1)𝑃(𝑘, 𝑗) = ∑
𝑘∈𝐼

lim
𝑛→∞

𝑝𝑖𝑘(𝑛 − 1)𝑃(𝑘, 𝑗) = ∑
𝑘∈𝐼

𝜋𝑘𝑃(𝑘, 𝑗)

as required.

Remark. If 𝐼 is infinite, the theorem does not necessarily hold. For example, let 𝐼 = ℤ, 𝑋 be
a simple symmetric random walk. We know that 𝑝00(𝑛) ∼

𝑐
√𝑛
, and 𝑝0𝑥(𝑛) → 0 as 𝑛 → ∞

for all 𝑥 ∈ ℤ. So zero is given by the limit but this is not a distribution.
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5. Invariant distributions

5.2. Conditions for unique invariant distribution
In this section, we restrict our analysis to irreducible chains. If 𝑃 is finite and irreducible,
then 1 is an eigenvalue, since𝑃 is stochastic. The corresponding right eigenvector is (1,… , 1)⊺.
We know that 1 is an eigenvalue of 𝑃⊺, so 𝑃⊺ has a right eigenvector corresponding to the
eigenvalue of 1, which can be transposed to find a left eigenvector for 𝑃. It is possible to
show using the Perron–Frobenius theorem that the eigenvector has non-negative compon-
ents since 𝑃 is irreducible. Since 𝐼 is finite, we can normalise the left eigenvector such that
its components sum to 1, giving an invariant distribution.

Definition. Let 𝑘 ∈ 𝐼. Recall that 𝑇𝑘 is the first return time to 𝑘. For every 𝑖 ∈ 𝐼, we define

𝜈𝑘(𝑖) = 𝔼𝑘 [
𝑇𝑘−1
∑
𝑛=0

1(𝑋𝑛 = 𝑖)]

which is the expected number of times that we hit 𝑖while on an excursion from 𝑘 (returning
back to 𝑘).

Theorem. If 𝑃 is irreducible and recurrent, then 𝜈𝑘 is an invariant measure: 𝜈𝑘 = 𝜈𝑘𝑃.
Further, 𝜈𝑘 satisfies 𝜈𝑘(𝑘) = 1 and in general 𝜈𝑘(𝑖) ∈ (0,∞) for all 𝑖.

Proof. It is clear from the definition that 𝜈𝑘(𝑘) = 1, since we must hit 𝑘 exactly once on the
outset, and we do not count the return. We will now prove that 𝜈𝑘 = 𝜈𝑘𝑃. 𝑇𝑘 < ∞ with
probability 1 by recurrence, and 𝑋𝑇𝑘 = 𝑘. Then,

𝜈𝑘(𝑖) = 𝔼𝑘 [
𝑇𝑘−1
∑
𝑛=0

1(𝑋𝑛 = 𝑖)]

= 𝔼𝑘 [
𝑇𝑘
∑
𝑛=1

1(𝑋𝑛 = 𝑖)]

= 𝔼𝑘 [
∞
∑
𝑛=1

1(𝑋𝑛 = 𝑖, 𝑇𝑘 ≥ 𝑛)]

=
∞
∑
𝑛=1

𝔼𝑘 [1(𝑋𝑛 = 𝑖, 𝑇𝑘 ≥ 𝑛)]

=
∞
∑
𝑛=1

ℙ𝑘 (𝑋𝑛 = 𝑖, 𝑇𝑘 ≥ 𝑛)

=
∞
∑
𝑛=1

∑
𝑗∈𝐼

ℙ𝑘 (𝑋𝑛 = 𝑖, 𝑋𝑛−1 = 𝑗, 𝑇𝑘 ≥ 𝑛)

=
∞
∑
𝑛=1

∑
𝑗∈𝐼

ℙ𝑘 (𝑋𝑛 = 𝑖 ∣ 𝑋𝑛−1 = 𝑗, 𝑇𝑘 ≥ 𝑛)ℙ𝑘 (𝑋𝑛−1 = 𝑗, 𝑇𝑘 ≥ 𝑛)
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III. Markov Chains

𝑇𝑘 is a stopping time, so the event {𝑇𝑘 ≥ 𝑛} = {𝑇𝑘 ≤ 𝑛 − 1}𝑐 depends only on values we
already know or don’t care about. Hence, we can remove it.

=
∞
∑
𝑛=1

∑
𝑗∈𝐼

ℙ𝑘 (𝑋𝑛 = 𝑖 ∣ 𝑋𝑛−1 = 𝑗)ℙ𝑘 (𝑋𝑛−1 = 𝑗, 𝑇𝑘 ≥ 𝑛)

=
∞
∑
𝑛=1

∑
𝑗∈𝐼

𝑃(𝑗, 𝑖)ℙ𝑘 (𝑋𝑛−1 = 𝑗, 𝑇𝑘 ≥ 𝑛)

= ∑
𝑗∈𝐼

∞
∑
𝑛=1

𝑃(𝑗, 𝑖)ℙ𝑘 (𝑋𝑛−1 = 𝑗, 𝑇𝑘 ≥ 𝑛)

= ∑
𝑗∈𝐼

∞
∑
𝑛=0

𝑃(𝑗, 𝑖)ℙ𝑘 (𝑋𝑛 = 𝑗, 𝑇𝑘 ≥ 𝑛 + 1)

= ∑
𝑗∈𝐼

𝑃(𝑗, 𝑖)𝔼𝑘 [
𝑇𝑘−1
∑
𝑛=0

1(𝑋𝑛 = 𝑗)]

= ∑
𝑗∈𝐼

𝑃(𝑗, 𝑖)𝜈𝑘(𝑗)

Hence 𝜈𝑘 = 𝜈𝑘𝑃. We must show 𝜈𝑘 > 0. 𝑃 is irreducible, hence there exists 𝑛 such that
𝑝𝑘𝑖(𝑛) > 0. Then

𝜈𝑘(𝑖) = ∑
𝑗∈𝐼

𝜈𝑘(𝑗)𝑃𝑛(𝑗, 𝑖) ≥ 𝜈𝑘(𝑘)𝑝𝑘𝑖(𝑛) > 0

To show 𝜈𝑘 < ∞, let𝑚 such that 𝑝𝑖𝑘(𝑚) > 0.

1 = 𝜈𝑘(𝑘) = ∑
𝑗∈𝐼

𝜈𝑘(𝑗)𝑃𝑚(𝑗, 𝑘) ≥ 𝜈𝑘(𝑖)𝑃𝑚(𝑖, 𝑘) ⟹ 𝜈𝑘(𝑖) ≤
1

𝑃𝑚(𝑖, 𝑘) < ∞

5.3. Uniqueness of invariant distributions

Theorem. Let 𝑃 be irreducible. Let 𝜆 be an invariant measure (𝜆 = 𝜆𝑃) with 𝜆𝑘 = 1. Then
𝜆 ≥ 𝜈𝑘. If 𝑃 is recurrent, then 𝜆 = 𝜈𝑘.
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5. Invariant distributions

Proof. Let 𝜆 be an invariant measure with 𝜆𝑘 = 1. Then,

𝜆𝑖 = ∑
𝑗1
𝜆𝑗1𝑃(𝑗1, 𝑖)

= 𝑃(𝑘, 𝑖) + ∑
𝑗1≠𝑘

𝜆𝑗1𝑃(𝑗1, 𝑖)

= 𝑃(𝑘, 𝑖) + ∑
𝑗1≠𝑘

𝑃(𝑘, 𝑗1)𝑃(𝑗1, 𝑖) + ∑
𝑗1,𝑗2≠𝑘

𝑃(𝑗2, 𝑗1)𝑃(𝑗1, 𝑖)𝜆𝑗2

= 𝑃(𝑘, 𝑖) + ∑
𝑗1≠𝑘

𝑃(𝑘, 𝑗1)𝑃(𝑗1, 𝑖) + …

+ ∑
𝑗1,…𝑗𝑛−1≠𝑘

𝑃(𝑘, 𝑗𝑛−1)𝑃(𝑗𝑛−1, 𝑗𝑛−2)…𝑃(𝑗2, 𝑗1)𝑃(𝑗1𝑖) + ∑
𝑗1,…,𝑗𝑛≠𝑘

𝑃(𝑗𝑛, 𝑗𝑛−1)…𝑃(𝑗𝑛, 𝑖)𝜆𝑗𝑛
⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

≥0

≥ ℙ𝑘 (𝑋1 = 𝑖, 𝑇𝑘 ≥ 1) + ℙ𝑘 (𝑋2 = 𝑖, 𝑇𝑘 ≥ 2) +⋯+ ℙ𝑘 (𝑋𝑛 = 𝑖, 𝑇𝑘 ≥ 𝑛)

≥
𝑛
∑
𝑖=1

ℙ𝑘 (𝑋𝑛 = 𝑖, 𝑇𝑘 ≥ 𝑛)

→ 𝜈𝑘(𝑖)

as 𝑛 → ∞. Now, suppose 𝑃 is recurrent, so 𝜈𝑘 is invariant. We define 𝜇 = 𝜆−𝜈𝑘. Then 𝜇 ≥ 0
is an invariant measure satisfying 𝜇𝑘 = 0. We need to show 𝜇𝑖 = 0 for all 𝑖. By invariance,
for all 𝑛,

𝜇𝑘 = ∑
𝑗
𝜇𝑗𝑃𝑛(𝑗, 𝑘)

By irreducibility, we can choose 𝑛 such that 𝑃𝑛(𝑖, 𝑘) > 0.

𝜇𝑘 ≥ 𝑃𝑛(𝑖, 𝑘)𝜇𝑖 ⟹ 𝜇𝑖 = 0

Remark. In the irreducible and recurrent case, all invariant measures are equal up to a scal-
ing factor.

Let 𝑘 be fixed. Then, 𝜈𝑘 is invariant, and unique in the above sense. If∑𝑖 𝜈𝑘(𝑖) is finite, we
can take

𝜋𝑖 =
𝜈𝑘(𝑖)

∑𝑗 𝜈𝑘(𝑗)
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which is an invariant distribution. The sum as required is

∑
𝑖∈𝐼

𝜈𝑘(𝑖) = ∑
𝑖∈𝐼

𝔼𝑘 [
𝑇𝑘−1
∑
𝑛=0

1(𝑋𝑛 = 𝑖)]

= 𝔼𝑘 [
𝑇𝑘−1
∑
𝑛=0

∑
𝑖∈𝐼

1(𝑋𝑛 = 𝑖)]

= 𝔼𝑘 [
𝑇𝑘−1
∑
𝑛=0

1]

= 𝔼𝑘 [𝑇𝑘]

So we require that the expectation of the first return time is finite. If 𝔼𝑘 [𝑇𝑘] is finite, we can
normalise 𝜈𝑘 into a (unique) invariant distribution.

5.4. Positive and null recurrence
Definition. Let 𝑘 ∈ 𝐼 be a recurrent state (so ℙ𝑘 (𝑇𝑘 < ∞) = 1). 𝑘 is positive recurrent if
𝔼𝑘 [𝑇𝑘] < ∞. 𝑘 is called null recurrent otherwise; so if 𝔼𝑘 [𝑇𝑘] = ∞.

Theorem. Let 𝑃 be irreducible. Then the following are equivalent.
(i) every state is positive recurrent;

(ii) some state is positive recurrent;

(iii) 𝑃 has an invariant distribution 𝜋.
If any of these conditions hold, we have

𝜋𝑖 =
1

𝔼𝑖 [𝑇𝑖]

for all 𝑖.

Proof. First, (i) clearly implies (ii). We now show (ii) implies (iii). Let 𝑘 be the a positive re-
current state, and consider 𝜈𝑘. Since 𝑘 is recurrent, we know that 𝜈𝑘 is an invariant measure.
Then,

∑
𝑖∈𝐼

𝜈𝑘(𝑖) = 𝔼𝑘 [𝑇𝑘] < ∞

since 𝑘 is positive recurrent. If we define

𝜋𝑖 =
𝜈𝑘(𝑖)
𝔼𝑘 [𝑇𝑘]

we have that 𝜋 is an invariant distribution.
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5. Invariant distributions

Nowwe show that (iii) implies (i). Let 𝑘 be a state, which we will prove is positive recurrent.
First, we show that 𝜋𝑘 > 0. There exists 𝑖 such that 𝜋𝑖 > 0, and we will choose 𝑛 such that
𝑃𝑛(𝑖, 𝑘) > 0 by irreducibility. Then,

𝜋𝑘 = ∑
𝑗
𝜋𝑗𝑃𝑛(𝑗, 𝑘) ≥ 𝜋𝑖𝑃𝑛(𝑖, 𝑘) > 0

Now, we define 𝜆𝑖 =
𝜋𝑖
𝜋𝑘
. This is an invariant measure with 𝜆𝑘 = 1. So from the above

theorem, 𝜆 ≥ 𝜈𝑘. Now, since 𝜋 is a distribution,

𝔼𝑘 [𝑇𝑘] = ∑
𝑖
𝜈𝑘(𝑖) ≤ ∑

𝑖
𝜆𝑖 = ∑

𝑖

𝜋𝑖
𝜋𝑘

= 1
𝜋𝑘

∑
𝑖
𝜋𝑖 =

1
𝜋𝑘

Hence 𝔼𝑘 [𝑇𝑘] < ∞, so 𝑘 is positive recurrent.
For the last part, we know that 𝑃 is recurrent and 𝜆𝑖 =

𝜋𝑖
𝜋𝑘

is an invariant measure with

𝜆𝑘 = 1. From the previous theorem, 𝜆𝑖 = 𝜈𝑘(𝑖). Hence,
𝜋𝑖
𝜋𝑘

= 𝜈𝑘(𝑖). Taking the sum over all
𝑖,

1
𝜋𝑘

= 𝔼𝑘 [𝑇𝑘]

which proves the last part.

Corollary. If 𝑃 is irreducible and𝜋 is an invariant distribution, then for all 𝑥, 𝑦, the expected
number of visits to 𝑦 starting from 𝑥 is given by

𝜈𝑥(𝑦) =
𝜋(𝑦)
𝜋(𝑥)

Example. Consider the simple symmetric random walk on ℤ. We have proven that this is
recurrent. Suppose 𝜋 is an invariant measure. So 𝜋 = 𝜋𝑃, giving

𝜋𝑖 =
1
2𝜋𝑖−1 +

1
2𝜋𝑖+1

So 𝜋𝑖 = 1 is an invariant measure. So all invariant measures are multiples of this. But since
this is not normalisable, there exists no invariant distribution. So this walk is null recurrent.

Remark. If 𝐼 is finite, we can always normalise the distribution, since we have only a finite
sum.

Remark. Consider a simple random walk on ℤ3. This is transient. However, 𝜆𝑖 = 1 for all
𝑖 ∈ ℤ3, this is clearly an invariant measure, so existence of an invariant measure does not
imply recurrence.

Example. Consider a randomwalk on ℤwith transition probabilities 𝑃(𝑖, 𝑖+1) = 𝑝, 𝑃(𝑖, 𝑖−
1) = 𝑞 such that 1 > 𝑝 > 𝑞 > 0 and 𝑝 + 𝑞 = 1. This random walk is transient. Suppose
there is an invariant distribution 𝜋, so 𝜋 = 𝜋𝑃. Then

𝜋𝑖 = 𝜋𝑖−1𝑞 + 𝜋𝑖+1𝑝
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Solving the recursion gives

𝜋𝑖 = 𝑎 + 𝑏(𝑝𝑞)
𝑖

This is not unique up to a multiplicative constant, due to the constant 𝑎.
Example. Consider a randomwalk onℤ+with transition probabilities𝑃(𝑖, 𝑖+1) = 𝑝, 𝑃(𝑖, 𝑖−
1) = 𝑞, 𝑃(0, 0) = 𝑞, and 𝑝 < 𝑞 so there is a drift towards zero. We can check that this is
recurrent. We will look for a solution to 𝜋 = 𝜋𝑃.

𝜋0 = 𝑞𝜋0 + 𝑞𝜋1; 𝜋𝑖 = 𝑝𝜋𝑖−1 + 𝑞𝜋𝑖+1

Solving this system yields

𝜋1 =
𝑝
𝑞𝜋0; 𝜋𝑖 = (𝑝𝑞)

𝑖
𝜋0

This is unique up to a multiplicative constant. Since 𝑝 < 𝑞, we can normalise this to reach
an invariant distribution. Let 𝜋0 = 1 − 𝑝

𝑞
. Then,

𝜋𝑖 = (𝑝𝑞)
𝑖
(1 − 𝑝

𝑞)

Hence the walk is positive recurrent.

5.5. Time reversibility
Theorem. Let 𝑃 be irreducible, and 𝜋 be an invariant distribution. Let 𝑁 ∈ ℕ and let
𝑌𝑛 = 𝑋𝑁−𝑛 for 0 ≤ 𝑛 ≤ 𝑁. If 𝑋0 ∼ 𝜋, then (𝑌𝑛)0≤𝑛≤𝑁 is a Markov chain with transition
matrix

̂𝑃(𝑥, 𝑦) = 𝜋(𝑦)
𝜋(𝑥)𝑃(𝑦, 𝑥)

and has invariant distribution 𝜋, so 𝜋 ̂𝑃 = 𝜋. Further, ̂𝑃 is also irreducible.

Proof. First, note that ̂𝑃 is stochastic. Since 𝜋 = 𝜋𝑃,

∑
𝑦

̂𝑃(𝑥, 𝑦) = ∑
𝑦

𝜋(𝑦)𝑃(𝑦, 𝑥)
𝜋(𝑥) = 𝜋(𝑥)

𝜋(𝑥) = 1

Now we show 𝑌 is a Markov chain.

ℙ (𝑌0 = 𝑦0,… , 𝑌 𝑁 = 𝑦𝑁) = ℙ (𝑋𝑁 = 𝑦0,… , 𝑋0 = 𝑦𝑛)
= 𝜋(𝑦𝑁)𝑃(𝑦𝑁 , 𝑦𝑁−1)…𝑃(𝑦1, 𝑦0)
= ̂𝑃(𝑦𝑁−1, 𝑦𝑁)𝜋(𝑦𝑁−1)𝑃(𝑦𝑁−1, 𝑦𝑁−2)…𝑃(𝑦1, 𝑦0)
= …
= 𝜋(𝑦0) ̂𝑃(𝑦0, 𝑦1)…𝑃(𝑦𝑁−1, 𝑦𝑁)
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Hence 𝑌 ∼ Markov (𝜋, ̂𝑃). Now, we must show 𝜋 = 𝜋 ̂𝑃.

∑
𝑥
𝜋(𝑥) ̂𝑃(𝑥, 𝑦) = ∑

𝑥
𝜋(𝑥)𝑃(𝑦, 𝑥)𝜋(𝑦)𝜋(𝑥) = 𝜋(𝑦)∑

𝑥
𝑃(𝑦, 𝑥) = 𝜋(𝑦)

Hence 𝜋 is invariant for ̂𝑃. Now we show ̂𝑃 is irreducible. Let 𝑥, 𝑦 ∈ 𝐼. Then there exists
𝑥 = 𝑥0, 𝑥1,… , 𝑥𝑘 = 𝑦 such that

𝑃(𝑥0, 𝑥1)…𝑃(𝑥𝑘−1, 𝑥𝑘) > 0

Hence
̂𝑃(𝑥𝑘, 𝑥𝑘−1)… ̂𝑃(𝑥1, 𝑥0) = 𝜋(𝑥0)𝑃(𝑥0, 𝑥1)…

𝑃(𝑥𝑘−1, 𝑥𝑘)
𝜋(𝑥𝑘)

> 0

So ̂𝑃 is irreducible.

Definition. A Markov chain 𝑋 with transition matrix 𝑃 and invariant distribution 𝜋 is
called reversible or time reversible if ̂𝑃 = 𝑃. Equivalently, for all 𝑥, 𝑦,

𝜋(𝑥)𝑃(𝑥, 𝑦) = 𝜋(𝑦)𝑃(𝑦, 𝑥)

These equations are called the detailed balance equations. Equivalently, 𝑋 is reversible if, for
any fixed 𝑁 ∈ ℕ, 𝑋0 ∼ 𝜋 implies

(𝑋0,… , 𝑋𝑁)
𝑑= (𝑋𝑁 ,… , 𝑋0)

which means that they are equal in distribution.

Remark. Intuitively, 𝑋 is reversible if, starting from 𝜋, we cannot tell if we are watching 𝑋
evolve forwards in time or backwards in time.

Lemma. Let 𝑃 be a transition matrix, and 𝜇 a distribution satisfying the detailed balance
equations.

𝜇(𝑥)𝑃(𝑥, 𝑦) = 𝜇(𝑦)𝑃(𝑦, 𝑥)

Then 𝜇 is invariant for 𝑃.

Proof.
∑
𝑥
𝜇(𝑥)𝑃(𝑥, 𝑦) = ∑

𝑥
𝜇(𝑦)𝑃(𝑦, 𝑥) = 𝜇(𝑦)

Remark. If we can find a solution to the detailed balance equations which is a distribution,
it must be an invariant distribution. It is simpler to solve this set of equations than to solve
𝜋 = 𝜋𝑃. If there is no solution to the detailed balance equations, then even if there exists an
invariant distribution, the Markov chain is not reversible.
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Example. Consider a random walk on the integers modulo 𝑛, with 𝑃(𝑖, 𝑖 + 1) = 2
3
and

𝑃(𝑖, 𝑖 − 1) = 1
3
. We can check 𝜋𝑖 =

1
𝑛
is an invariant distribution. This does not satisfy the

detailed balance equations. Hence the Markov chain is not reversible.

Example. Consider a random walk on {0,… , 𝑛 − 1} with 𝑃(𝑖, 𝑖 + 1) = 2
3
, 𝑃(𝑖, 𝑖 − 1) = 1

3
and

𝑃(0, 0) = 1
3
, 𝑃(𝑛 − 1, 𝑛 − 1) = 2

3
. This is an ‘opened up’ version of the previous example; the

circle is ‘cut’ open into a line at zero. The detailed balance equations give

𝜋𝑖𝑃(𝑖, 𝑖 + 1) = 𝜋𝑖+1𝑃(𝑖 + 1, 𝑖) ⟹ 𝜋𝑖 = 𝑘2𝑖

We can normalise this by setting 𝑘 such that𝜋 is a distribution. Hence the chain is reversible.
Example. Consider a random walk on a graph. Let 𝐺 = (𝑉, 𝐸) be a finite connected graph,
where 𝑉 is a set of vertices and 𝐸 is a set of edges. The simple random walk on 𝐺 has the
transition matrix

𝑃(𝑥, 𝑦) = {
1

𝑑(𝑥)
(𝑥, 𝑦) ∈ 𝐸

0 (𝑥, 𝑦) ∉ 𝐸
where 𝑑(𝑥) = ∑𝑦 1((𝑥, 𝑦) ∈ 𝐸) is the degree of 𝑥. The detailed balance equations give, for
(𝑥, 𝑦) ∈ 𝐸,

𝜋(𝑥)𝑃(𝑥, 𝑦) = 𝜋(𝑦)𝑃(𝑦, 𝑥) ⟹ 𝜋(𝑥)
𝑑(𝑥) =

𝜋(𝑦)
𝑑(𝑦)

Let 𝜋(𝑥) ∝ 𝑑(𝑥). Then this is an invariant distribution with normalising constant 1
∑𝑦 𝑑(𝑦)

=
1

2|𝐸|
. So the simple random walk on a finite connected graph is always reversible.

5.6. Aperiodicity
Definition. Let 𝑃 be a transition matrix. For all 𝑖, we write

𝑑𝑖 = gcd {𝑛 ≥ 1∶ 𝑃𝑛(𝑖, 𝑖) > 0}

This is called the period of 𝑖. If 𝑑𝑖 = 1, we say that 𝑖 is aperiodic.
Lemma. 𝑑𝑖 = 1 if and only if 𝑃𝑛(𝑖, 𝑖) > 0 for all 𝑛 sufficiently large. More rigorously, there
exists 𝑛0 ∈ ℕ such that for all 𝑛 > 𝑛0, 𝑃𝑛(𝑖, 𝑖) > 0.

Proof. First, if 𝑃𝑛(𝑖, 𝑖) > 0 for all 𝑛 sufficiently large, the greatest common divisor of all
sufficiently large numbers is one so this direction is trivial. Conversely, let

𝐷(𝑖) = {𝑛 ≥ 1∶ 𝑃𝑛(𝑖, 𝑖) > 0}

Observe that if 𝑎, 𝑏 ∈ 𝐷(𝑖) then 𝑎 + 𝑏 ∈ 𝐷(𝑖).
We claim that 𝐷(𝑖) contains two consecutive integers. Suppose that it does not, so for all
𝑎, 𝑏 ∈ 𝐷(𝑖) we must have |𝑎 − 𝑏| > 1. Let 𝑟 be the minimal distance between two integers
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5. Invariant distributions

in 𝐷(𝑖), so 𝑟 ≥ 2. Let 𝑛,𝑚 be numbers in 𝐷(𝑖) separated by 𝑟, so 𝑛 = 𝑚 + 𝑟. Then we can
show there exists 𝑘 ∈ 𝐷(𝑖) which can be written as ℓ𝑟 + 𝑠 with 0 < 𝑠 < 𝑟. Indeed, if there
were not such a 𝑘, we would have 𝑑𝑖 = 1, since all elements would be multiples of 𝑟. Now,
let 𝑎 = (ℓ + 1)𝑛 and 𝑏 = (ℓ + 1)𝑚 + 𝑘. Then 𝑎, 𝑏 ∈ 𝐷(𝑖), and 𝑎 − 𝑏 = 𝑟 − 𝑠 < 𝑟. This
is a contradiction, since we have found two points in 𝐷(𝑖) with a distance smaller than the
minimal distance.

Now, let 𝑛1, 𝑛1 + 1 be elements of 𝐷(𝑖). Then

{𝑥𝑛1 + 𝑦(𝑛1 + 1)∶ 𝑥, 𝑦 ∈ ℕ} ⊆ 𝐷(𝑖)

It is then easy to check that 𝐷(𝑖) ⊇ {𝑛∶ 𝑛 ≥ 𝑛21}.

Lemma. Suppose𝑃 is irreducible and 𝑖 is aperiodic. Then for all 𝑗 ∈ 𝐼, 𝑗 is aperiodic. Hence,
aperiodicity is a class property.

Proof. There exist 𝑛,𝑚 such that 𝑃𝑛(𝑖, 𝑗) > 0, 𝑃𝑚(𝑖, 𝑗) > 0. Hence,

𝑃𝑛+𝑚+𝑟(𝑗, 𝑗) ≥ 𝑃𝑛(𝑗, 𝑖)𝑃𝑟(𝑖, 𝑖)𝑃𝑛(𝑖, 𝑗)

The first and last terms are positive, and the middle term is positive for sufficiently large
𝑟.

5.7. Positive recurrent limiting behaviour
Theorem. Let 𝑃 be irreducible and aperiodic with invariant distribution 𝜋, and further let
𝑋 ∼ Markov (𝜆, 𝑃). Then for all 𝑦 ∈ 𝐼, ℙ (𝑋𝑛 = 𝑦) → 𝜋𝑦 as 𝑛 → ∞. Taking 𝜆 = 𝛿𝑥, we get
𝑝𝑥𝑦(𝑛) → 𝜋(𝑦) as 𝑛 → ∞.

Proof. This proof will use the idea of ‘coupling’ of Markov chains. Let 𝑌 ∼ Markov (𝜋, 𝑃)
be independent of 𝑋 . Consider the pair ((𝑋𝑛, 𝑌𝑛))𝑛≥0. This is a Markov chain on the state
space 𝐼 × 𝐼, because 𝑋 and 𝑌 are independent. The initial distribution is 𝜆 × 𝜋. We have
ℙ ((𝑋0, 𝑌0) = (𝑥, 𝑦)) = 𝜆(𝑥)𝜋(𝑦) and transition matrix 𝑃 given by

𝑃((𝑥, 𝑦), (𝑥′, 𝑦′)) = 𝑃(𝑥, 𝑥′)𝑃(𝑦, 𝑦′)

This product chain has invariant distribution 𝜋 given by

𝜋(𝑥, 𝑦) = 𝜋(𝑥)𝜋(𝑦)

Let 𝑎 ∈ 𝐼, and let 𝑇 = inf𝑛 ≥ 1∶ (𝑋𝑛, 𝑌𝑛) = (𝑎, 𝑎) be the hitting time of (𝑎, 𝑎).
First, wewant to show thatℙ (𝑇 < ∞) = 1. We show that𝑃 is irreducible. Let (𝑥, 𝑦), (𝑥′, 𝑦′) ∈
𝐼 × 𝐼. By irreducibility of 𝑃, there exist ℓ,𝑚 such that 𝑃ℓ(𝑥, 𝑥′) > 0 and 𝑃𝑚(𝑦, 𝑦′) > 0. Now,

𝑃ℓ+𝑚+𝑛((𝑥, 𝑦), (𝑥′, 𝑦′)) = 𝑃ℓ+𝑚+𝑛(𝑥, 𝑥′)𝑃ℓ+𝑚+𝑛(𝑦, 𝑦′)
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Note that
𝑃ℓ+𝑚+𝑛(𝑥, 𝑥′) ≥ 𝑃ℓ(𝑥, 𝑥′)𝑃𝑚+𝑛(𝑥′, 𝑥′)

By taking 𝑛 large, by aperiodicity the product is positive. Therefore, for sufficiently large 𝑛,
𝑃𝑛(𝑥, 𝑥′) > 0. So 𝑃 is irreducible, and there exists an invariant distribution 𝜋. Hence 𝑃 is
positive recurrent. So ℙ (𝑇 < ∞) = 1.

Now, we define

𝑍𝑛 = {𝑋𝑛 𝑛 < 𝑇
𝑌𝑛 𝑛 ≥ 𝑇

We wish to show 𝑍 = (𝑍𝑛)𝑛 ≥ 0 has the same distribution as 𝑋 , that is, 𝑍 ∼ Markov (𝜆, 𝑃).
Now,

ℙ (𝑍0 = 𝑥) = ℙ (𝑋0 = 𝑥) = 𝜆(𝑥)

so the initial distribution is the same. Now, we will check that 𝑍 evolves with transition
matrix 𝑃. Let 𝐴 = {𝑍𝑛−1 = 𝑧𝑛−1,… , 𝑍0 = 𝑧0}. We need to show ℙ (𝑍𝑛+1 = 𝑦 ∣ 𝑍𝑛 = 𝑥,𝐴) =
𝑃(𝑥, 𝑦).

ℙ (𝑍𝑛+1 = 𝑦 ∣ 𝑍𝑛 = 𝑥,𝐴) = ℙ (𝑍𝑛+1 = 𝑦, 𝑇 > 𝑛 ∣ 𝑍𝑛 = 𝑥,𝐴)
+ ℙ (𝑍𝑛+1 = 𝑦, 𝑇 ≤ 𝑛 ∣ 𝑍𝑛 = 𝑥,𝐴)
= ℙ (𝑋𝑛+1 = 𝑦 ∣ 𝑇 > 𝑛, 𝑍𝑛 = 𝑥,𝐴)ℙ (𝑇 > 𝑛 ∣ 𝑍𝑛 = 𝑥,𝐴)
+ ℙ (𝑌𝑛 + 1 = 𝑦 ∣ 𝑇 ≤ 𝑛, 𝑍𝑛 = 𝑥,𝐴)ℙ (𝑇 ≤ 𝑛 ∣ 𝑍𝑛 = 𝑥,𝐴)

Now,

ℙ (𝑋𝑛+1 = 𝑦 ∣ 𝑇 > 𝑛, 𝑍𝑛 = 𝑥,𝐴)
= ∑

𝑧
ℙ (𝑋𝑛+1 = 𝑦 ∣ 𝑇 > 𝑛, 𝑍𝑛 = 𝑥, 𝑌𝑛 = 𝑧, 𝐴)ℙ (𝑌𝑛 = 𝑧 ∣ 𝑇 > 𝑛, 𝑍 − 𝑛 = 𝑥, 𝐴)

Note, {𝑇 > 𝑛} depends only on (𝑋0, 𝑌0),… , (𝑋𝑛, 𝑌𝑛) since it is the complement of {𝑇 ≤ 𝑛}, so
it is a stopping time. Hence,

ℙ (𝑋𝑛+1 = 𝑦 ∣ 𝑇 > 𝑛, 𝑍𝑛 = 𝑥,𝐴) = ∑
𝑧
𝑃(𝑥, 𝑦)ℙ (𝑌𝑛 = 𝑧 ∣ 𝑇 > 𝑛, 𝑍 − 𝑛 = 𝑥, 𝐴) = 𝑃(𝑥, 𝑦)

Similarly,
ℙ (𝑌𝑛+1 = 𝑦 ∣ 𝑇 > 𝑛, 𝑍𝑛 = 𝑥,𝐴) = 𝑃(𝑥, 𝑦)

Hence,

ℙ (𝑍𝑛+1 = 𝑦 ∣ 𝑍𝑛 = 𝑥,𝐴) = 𝑃(𝑥, 𝑦)ℙ (𝑇 > 𝑛 ∣ 𝑍𝑛 = 𝑥,𝐴) + 𝑃(𝑥, 𝑦)ℙ (𝑇 ≤ 𝑛 ∣ 𝑍𝑛 = 𝑥,𝐴)
= 𝑃(𝑥, 𝑦)[ℙ (𝑇 > 𝑛 ∣ 𝑍𝑛 = 𝑥,𝐴) + ℙ (𝑇 ≤ 𝑛 ∣ 𝑍𝑛 = 𝑥,𝐴)]
= 𝑃(𝑥, 𝑦)
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as required. Hence 𝑍 ∼ Markov (𝜆, 𝑃). Thus,

|ℙ (𝑋𝑛 = 𝑦) − 𝜋(𝑦)| = |ℙ (𝑍𝑛 = 𝑦) − ℙ (𝑌𝑛 = 𝑦)|
= |ℙ (𝑋𝑛 = 𝑦, 𝑛 < 𝑇) + ℙ (𝑌𝑛 = 𝑦, 𝑛 ≥ 𝑇)
− 𝑌𝑛 = 𝑦, 𝑛 < 𝑇 − ℙ (𝑌𝑛 = 𝑦, 𝑛 ≥ 𝑇)|
= |ℙ (𝑋𝑛 = 𝑦, 𝑛 < 𝑇) − ℙ (𝑌𝑛 = 𝑦, 𝑛 < 𝑇)|
≤ ℙ (𝑛 < 𝑇)

As 𝑛 → ∞, this upper bound becomes zero, since ℙ (𝑇 < ∞) = 1.

5.8. Null recurrent limiting behaviour
Theorem. Let 𝑃 be irreducible, aperiodic, and null recurrent. Then, for all 𝑥, 𝑦,

lim
𝑛→∞

𝑃𝑛(𝑥, 𝑦) = 0

Proof. Let 𝑃((𝑥, 𝑦), (𝑥′, 𝑦′)) = 𝑃(𝑥, 𝑥′)𝑃(𝑦, 𝑦′) as before. We have shown previously that 𝑃 is
also irreducible. Suppose first that 𝑃 is transient. Then,

∑
𝑛
𝑃𝑛((𝑥, 𝑦), (𝑥, 𝑦)) < ∞

This sum is equal to
∑
𝑛
(𝑃𝑛(𝑥, 𝑦))2 < ∞

Hence,
𝑃𝑛(𝑥, 𝑦) → 0

Now, conversely suppose that 𝑃 is recurrent. Let 𝑦 ∈ 𝐼. Define as before

𝜈𝑦(𝑥) = 𝔼𝑦 [
𝑇𝑦−1
∑
𝑖=0

1(𝑋𝑖 = 𝑥)]

This measure is invariant for 𝑃 since 𝑃 is recurrent. Since 𝑃 is null recurrent in particular,
𝔼𝑦 [𝑇𝑦] = ∞. Hence,

𝜈𝑦(𝐼) = ∑
𝑥∈𝐼

𝜈𝑦(𝑥) = 𝔼𝑦 [
𝑇𝑦−1
∑
𝑖=0

1] = 𝔼𝑦 [𝑇𝑦] = ∞

Because 𝜈𝑦(𝐼) is infinite, for all𝑀 > 0 there exists a finite set 𝐴 ⊂ 𝐼 with 𝜈𝑦(𝐴) > 𝑀. Now,
we define a probability measure

𝜇(𝑧) =
𝜈𝑦(𝑧)
𝜈𝑦(𝐴)

1(𝑧 ∈ 𝐴)
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Now, for all 𝑧 ∈ 𝐼,

𝜇𝑃𝑛(𝑧) = ∑
𝑥
𝜇(𝑥)𝑃𝑛(𝑥, 𝑧) = ∑

𝑥

𝜈𝑦(𝑥)
𝜈𝑦(𝐴)

1(𝑧 ∈ 𝐴)𝑃𝑛(𝑥, 𝑧) ≤ 1
𝜈𝑦(𝐴)

∑
𝑥
𝜈𝑦(𝑥)𝑃𝑛(𝑥, 𝑧)

Since 𝜈𝑦 is invariant,

𝜇𝑃𝑛(𝑧) ≤ 1
𝜈𝑦(𝐴)

𝜈𝑦(𝑧) =
𝜈𝑦(𝑧)
𝜈𝑦(𝐴)

Let (𝑋, 𝑌) be a Markov chain with matrix 𝑃, started according to 𝜇 × 𝛿𝑥, so

ℙ (𝑋0 = 𝑧, 𝑌0 = 𝑤) = 𝜇(𝑧)𝛿𝑥(𝑤)

Now, let
𝑇 = inf {𝑛 ≥ 1∶ (𝑋𝑛, 𝑌𝑛) = (𝑥, 𝑥)}

Since 𝑃 is recurrent, 𝑇 is finite with probability 1. Let

𝑍𝑛 = {𝑋𝑛 𝑛 < 𝑇
𝑌𝑛 𝑛 ≥ 𝑇

We have already proven that 𝑍 is a Markov chain with transition matrix 𝑃, started according
to 𝜇; it has the same distribution as 𝑋 . Hence,

ℙ (𝑍𝑛 = 𝑦) = 𝜇𝑃𝑛(𝑦) ≤
𝜈𝑦(𝑦)
𝜈𝑦(𝐴)

= 1
𝜈𝑦(𝐴)

Note,

ℙ𝑥 (𝑌𝑛 = 𝑦) ≤ ℙ𝑥 (𝑌𝑛 = 𝑦, 𝑛 ≥ 𝑇) + ℙ𝑥 (𝑇 > 𝑛) = ℙ𝑥 (𝑍𝑛 = 𝑦) + ℙ𝑥 (𝑇 > 𝑛)

Hence,
lim sup
𝑛→∞

ℙ𝑥 (𝑌𝑛 = 𝑦) ≤ 1
𝑀 + 0 = 1

𝑀
Since this is true for all𝑀, 𝑃𝑛(𝑥, 𝑦) → 0 as 𝑛 → ∞.
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IV. Analysis and Topology

Lectured in Michaelmas 2021 by Dr. V. Zsák
In the analysis part of the course, we continue the study of convergence from Analysis I. We
define a stronger version of convergence, called uniform convergence, and show that it has
some very desirable properties. For example, if integrable functions 𝑓𝑛 converge uniformly
to the integrable function 𝑓, then the integrals of the 𝑓𝑛 converge to the integral of 𝑓. The
same cannot be said in general about non-uniform convergence. We also extend our study of
differentiation to functions with multiple input and output variables, and rigorously define
the derivative in this higher-dimensional context.

In the topology part of the course, we consider familiar spaces such as [𝑎, 𝑏], ℂ, ℝ𝑛, and
generalise their properties. We arrive at the definition of a metric space, which encapsulates
all of the information about how near or far points are from others. From here, we can
define notions such as continuous functions between metric spaces in such a way that does
not depend on the underlying space.

We then generalise even further to define topological spaces. The only information a topo-
logical space contains is the neighbourhoods of each point, but it turns out that this is still
enough to define continuous functions and similar things. We study topological spaces in
an abstract setting, and prove important facts that are used in many later courses.
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1. Uniform convergence

1. Uniform convergence
1.1. Definition
Recall that 𝑥𝑛 → 𝑥 as 𝑛 → ∞ (for 𝑥 ∈ ℝ or ℂ) if

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, |𝑥𝑛 − 𝑥| < 𝜀

This is essentially considering the 𝜀-neighbourhood of 𝑥. We aim to define the same notion
of convergence for functions, by defining an analogous concept of an 𝜀-neighbourhood. In
particular, each value on the domain should converge in its own 𝜀-neighbourhood.

Definition. Let 𝑆 be a set, and 𝑓, 𝑓𝑛∶ 𝑆 → ℝ, be functions. We say that (𝑓𝑛) converges to 𝑓
uniformly on 𝑆 if

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, ∀𝑥 ∈ 𝑆, |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀

Note. 𝑁 depends only on 𝜀, not on any 𝑥. Each 𝑥 converges therefore at a ‘similar speed’,
hence the name ‘uniform convergence’.

Equivalently, we can write

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, sup
𝑥∈𝑆

|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀

The supremumcondition is equivalent overall because the inequality on the right isweakened
to a possible equality, but we can always decrease 𝜀 to retain the inequality. Alternatively,
we could write

lim
𝑛→∞

sup
𝑥∈𝑆

|𝑓𝑛 − 𝑓| = 0

For each 𝑥 ∈ 𝑆, (𝑓𝑛(𝑥))∞𝑛=1 → 𝑓(𝑥). Hence, 𝑓 is unique given (𝑓𝑛), since limits are unique.
We call 𝑓 the uniform limit of (𝑓𝑛) on 𝑆.

1.2. Pointwise convergence
Definition. (𝑓𝑛) converges pointwise to𝑓 on 𝑆 if (𝑓𝑛(𝑥))∞𝑛=1 converges to𝑓(𝑥) for every𝑥 ∈ 𝑆.
In other words,

∀𝑥 ∈ 𝑆⏟⎵⏟⎵⏟
order rearranged

, ∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀

Now,𝑁 depends both on 𝜀 and on 𝑥. Note that the pointwise limit of (𝑓𝑛) on 𝑆 is also unique
since limits are unique.

Remark. Uniform convergence implies pointwise convergence, and the uniform limit is the
pointwise limit.
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Example. Let 𝑓𝑛(𝑥) = 𝑥2𝑒−𝑛𝑥 on [0,∞), 𝑛 ∈ ℕ. Does (𝑓𝑛) converge uniformly on the
domain? First let us check pointwise convergence. We have 𝑥2𝑒−𝑛𝑥 → 0 hence pointwise
convergence to 𝑓(𝑥) = 0 is satisfied. Now, we need only check uniform convergence to the
function 𝑓(𝑥) = 0.

sup
𝑥∈[0,∞)

|𝑓𝑛(𝑥) − 0| = sup
𝑥∈[0,∞)

𝑓𝑛(𝑥)

We could differentiate 𝑓𝑛 and find the maximum if it exists, but we might not find the max-
imum if it is (for example) on the endpoints. A much better method is to find an upper
bound on |𝑓𝑛(𝑥) − 𝑓(𝑥)| (which, in this example, is 𝑓𝑛(𝑥)) that does not depend on 𝑥. In this
case, we can expand 𝑒𝑛𝑥 on the denominator and isolate a single term to get

𝑥2𝑒−𝑛𝑥 = 𝑥2
𝑒𝑛𝑥 ≤ 2

𝑛2 ; ∀𝑥

Hence,
sup

𝑥∈[0,∞)
|𝑓𝑛(𝑥) − 0| → 0

and uniform convergence is satisfied.

Example. Consider 𝑓𝑛(𝑥) = 𝑥𝑛 on [0, 1], 𝑛 ∈ ℕ. A pointwise limit is reached by

𝑓(𝑥) = {1 𝑥 = 1
0 otherwise

Consider sup |𝑓𝑛(𝑥) − 𝑓(𝑥)| excluding 1 (since at 1 the supremum is zero). Note 𝑓𝑛(𝑥) → 1 as
𝑥 → 1 from below, for all 𝑛. Hence the supremum is always 1 by choosing an 𝑥 sufficiently
close to 1. So 𝑓𝑛 ↛ 𝑓 uniformly on [0, 1], hence (𝑓𝑛) does not converge at all uniformly on
this domain. Or,

sup𝑓𝑛(𝑥) ≥ 𝑓𝑛((
1
2)

1/𝑛
) = 1

2

Remark. If 𝑓𝑛 ↛ 𝑓 uniformly on S,

∃𝜀 > 0, ∀𝑁 ∈ ℕ, ∃𝑛 ≥ 𝑁, ∃𝑥 ∈ 𝑆, |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 𝜀

In the above example, we proved something stronger:

∀𝑛, ∃𝑥 ∈ 𝑆, 𝑓𝑛(𝑥) ≥
1
2

We could have alternatively stated, for example, 𝑓𝑛(𝑥) is continuous so there exists some
subset of [0, 1] greater than 1

2
always.

Theorem. Let 𝑆 ⊆ ℝ,ℂ. Let (𝑓𝑛), 𝑓∶ 𝑆 → ℝ(or ℂ), where 𝑓𝑛 is continuous and (𝑓𝑛) → 𝑓
uniformly on 𝑆. Then 𝑓 is continuous.
Informally, the uniform limit of continuous functions is continuous.
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Proof. Fix some point 𝑎 ∈ 𝑆, 𝜀 > 0. We seek 𝛿 > 0 such that ∀𝑥 ∈ 𝑆, |𝑥 − 𝑎| < 𝛿 ⟹
|𝑓(𝑥) − 𝑓(𝑎)| < 𝜀. We fix an 𝑛 ∈ ℕ such that ∀𝑥 ∈ 𝑆, |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀. Since 𝑓𝑛 is
continuous, there exists 𝛿 > 0 such that ∀𝑥 ∈ 𝑆, |𝑥 − 𝑎| < 𝛿 ⟹ |𝑓𝑛(𝑥) − 𝑓𝑛(𝑎)| < 𝜀. So,
∀𝑥 ∈ 𝑆,

|𝑥 − 𝑎| < 𝛿 ⟹ |𝑓(𝑥) − 𝑓(𝑎)| ≤ |𝑓(𝑥) − 𝑓𝑛(𝑥)| + |𝑓𝑛(𝑥) − 𝑓𝑛(𝑎)| + |𝑓𝑛(𝑎) − 𝑓(𝑎)| < 3𝜀

Remark. The above proof is often called a 3𝜀-proof. Note, the proof is not true for pointwise
convergence; if 𝑓𝑛 → 𝑓 pointwise and 𝑓𝑛 continuous, 𝑓 is not necessarily continuous. Fur-
ther, it is not true for differentiability; 𝑓𝑛 differentiable does not imply 𝑓 differentiable (see
example sheet). Another way to interpret the result of the above theorem is to swap limits:

lim
𝑥→𝑎

lim
𝑛→∞

𝑓𝑛(𝑥) = lim
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎) = lim
𝑛→∞

𝑓𝑛(𝑎) = lim
𝑛→∞

lim
𝑥→𝑎

𝑓𝑛(𝑥)

1.3. Uniform limit of bounded functions
Lemma. Let 𝑓𝑛 → 𝑓 uniformly on 𝑆. If 𝑓𝑛 is bounded for every 𝑛, then so is 𝑓.
In other words, the uniform limit of bounded functions is bounded.

Proof. Fix some 𝑛 ∈ ℕ such that ∀𝑥 ∈ 𝑆, |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 1. Since 𝑓𝑛 is bounded, ∃𝑀 ∈ ℝ
such that ∀𝑥 ∈ 𝑆, |𝑓𝑛(𝑥)| < 𝑀. Hence, ∀𝑥 ∈ 𝑆, |𝑓(𝑥)| ≤ |𝑓(𝑥) − 𝑓𝑛(𝑥)| + |𝑓𝑛(𝑥)| ≤ 1 +𝑀. So
𝑓 is bounded.

1.4. Integrability
Let 𝑓∶ [𝑎, 𝑏] → ℝ be a bounded function. Recall that for a dissection𝒟 of [𝑎, 𝑏], we define
the upper and lower sums of 𝑓 with respect to𝒟 by

𝑈𝒟(𝑓) =
𝑛
∑
𝑘=1

(𝑥𝑘 − 𝑥𝑘−1) sup
[𝑥𝑘−1,𝑥𝑘]

𝑓(𝑥)

𝐿𝒟(𝑓) =
𝑛
∑
𝑘=1

(𝑥𝑘 − 𝑥𝑘−1) inf
[𝑥𝑘−1,𝑥𝑘]

𝑓(𝑥)

Riemann’s integrability criterion states that 𝑓 is integrable if and only if

∀𝜀, ∃𝒟,𝑈𝒟(𝑓) − 𝐿𝒟(𝑓) < 𝜀

Equivalently, for any 𝐼 ⊂ [𝑎, 𝑏], we have

sup
𝐼
𝑓 − inf

𝐼
𝑓 = sup

𝑥,𝑦∈𝐼
(𝑓(𝑥) − 𝑓(𝑦)) = sup

𝑥,𝑦∈𝐼
|𝑓(𝑥) − 𝑓(𝑦)|

This is called the oscillation of𝑓 on 𝐼. So an integrable function ‘doesn’t oscillate toomuch’.
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Theorem. Let 𝑓𝑛∶ [𝑎, 𝑏] → ℝ be integrable for all 𝑛. If 𝑓𝑛 → 𝑓 uniformly on [𝑎, 𝑏], then 𝑓
is integrable and

∫
𝑏

𝑎
𝑓𝑛 →∫

𝑏

𝑎
𝑓

Proof. First, we prove 𝑓 to be bounded, then we will check Riemann’s criterion. We know
𝑓 is bounded because each 𝑓𝑛 is bounded, hence by the lemma above 𝑓 is bounded. Now
fix 𝜀 > 0, and choose 𝑛 ∈ ℕ such that ∀𝑥 ∈ [𝑎, 𝑏], |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀. Since 𝑓𝑛 is integrable,
∃𝒟∶ 𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑁 = 𝑏 of [𝑎, 𝑏] such that𝑈𝒟−𝐿𝒟 < 𝜀. Now, we fix 𝑘 ∈ {1,… ,𝑁}
and then for any 𝑥, 𝑦 ∈ [𝑥𝑘−1, 𝑥𝑘] we have

|𝑓(𝑥) − 𝑓(𝑦)| ≤ |𝑓(𝑥) − 𝑓𝑛(𝑥)| + |𝑓𝑛(𝑥) − 𝑓𝑛(𝑦)| + |𝑓𝑛(𝑦) − 𝑓(𝑦)| < 2𝜀 + |𝑓𝑛(𝑥) − 𝑓𝑛(𝑦)|

Taking the supremum,

sup
𝑥,𝑦∈[𝑥𝑘−1,𝑥𝑘]

(𝑓(𝑥) − 𝑓(𝑦)) ≤ sup
𝑥,𝑦∈[𝑥𝑘−1,𝑥𝑘]

|𝑓𝑛(𝑥) − 𝑓𝑛(𝑦)| + 2𝜀

Multiplying by (𝑥𝑘 − 𝑥𝑘−1) and taking the sum over all 𝑘,

𝑈(𝑓) − 𝐿(𝑓) ≤ 𝑈(𝑓𝑛) − 𝐿(𝑓𝑛) + 2𝜀(𝑏 − 𝑎) ≤ 𝜀(2(𝑏 − 𝑎) + 1)

Hence 𝑓 is integrable. We can now show that

||||
∫

𝑏

𝑎
𝑓𝑛 −∫

𝑏

𝑎
𝑓
||||
≤ ∫

𝑏

𝑎
|𝑓𝑛 − 𝑓| ≤ (𝑏 − 𝑎) sup

[𝑎,𝑏]
|𝑓𝑛 − 𝑓| → 0

Remark. We can interpret this as

∫
𝑏

𝑎
lim
𝑛→∞

𝑓𝑛(𝑥) d𝑥 = lim
𝑛→∞

∫
𝑏

𝑎
𝑓𝑛(𝑥) d𝑥

This is another ‘allowed’ way to swap limits.

Corollary. Let 𝑓𝑛∶ [𝑎, 𝑏] → ℝ be integrable for all 𝑛. If∑∞
𝑛=1 𝑓𝑛(𝑥) converges uniformly on

[𝑎, 𝑏], then

𝐹(𝑥) =
∞
∑
𝑛=1

𝑓𝑛(𝑥)

is integrable, and

∫
𝑏

𝑎

∞
∑
𝑛=1

𝑓𝑛(𝑥) d𝑥 =
∞
∑
𝑛=1

∫
𝑏

𝑎
𝑓𝑛(𝑥) d𝑥
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Proof. Let 𝐹𝑛(𝑥) = ∑𝑛
𝑘=1 𝑓𝑘(𝑥). By assumption, 𝐹𝑛 → 𝐹 uniformly on [𝑎, 𝑏]. 𝐹𝑛 is integrable

where the integral of 𝐹𝑛 is the sum of the integrals:

∫
𝑏

𝑎
𝐹𝑛 =

𝑛
∑
𝑘=1

∫
𝑏

𝑎
𝑓𝑘

Then the result follows from the theorem above.

1.5. Differentiability

Theorem. Let 𝑓𝑛∶ [𝑎, 𝑏] → ℝ be continuously differentiable for all 𝑛. Suppose∑∞
𝑘=1 𝑓′𝑘(𝑥)

converges uniformly on [𝑎, 𝑏], and that ∀𝑐 ∈ [𝑎, 𝑏],∑∞
𝑛−1 𝑓𝑛(𝑐) converges. Then,∑

∞
𝑘=1 𝑓𝑘(𝑥)

converges uniformly on [𝑎, 𝑏] to a continuously differentiable function 𝑓, and

d
d𝑥(

∞
∑
𝑘=1

𝑓𝑘) =
∞
∑
𝑘=1

d
d𝑥𝑓𝑘(𝑥)

Proof. Let 𝑔(𝑥) = ∑∞
𝑘=1 𝑓′𝑘(𝑥), for 𝑥 ∈ [𝑎, 𝑏]. The general idea is that we want to solve

the differential equation 𝑓′ = 𝑔 subject to the initial condition 𝑓(𝑐) = ∑∞
𝑛=1 𝑓𝑛(𝑐). Let

𝜆 = ∑∞
𝑛=1 𝑓𝑛(𝑐) and define 𝑓∶ [𝑎, 𝑏] → ℝ by

𝑓(𝑥) = 𝜆 +∫
𝑥

𝑐
𝑔(𝑡) d𝑡

Note that 𝑔 is integrable;∑∞
𝑘=1 𝑓′𝑘(𝑥) → 𝑔 uniformly implies that 𝑔 is continuous and hence

integrable. By the fundamental theorem of calculus, 𝑓′ = 𝑔 and 𝑓(𝑐) = 𝜆. So we have
found such an 𝑓 that satisfies the conditions set out. All that remains is to prove uniform
convergence of∑∞

𝑘=1 𝑓𝑘 → 𝑓. Also by the fundamental theorem, 𝑓𝑘(𝑥) = 𝑓𝑘(𝑐)+∫
𝑥
𝑐 𝑓′𝑘(𝑡) d𝑡.

Let 𝜀 > 0. There exists 𝑁 ∈ ℕ such that ||𝜆 −∑𝑁
𝑘=1 𝑓𝑘(𝑐)|| < 𝜀 and ||𝑔(𝑡) − ∑𝑁

𝑘=1 𝑓′𝑘(𝑡)|| < 𝜀.
Now, for 𝑛 ≥ 𝑁 we have

||||
𝑓(𝑥) −

𝑛
∑
𝑘=1

𝑓𝑘(𝑥)
||||
=
||||
𝜆 +∫

𝑥

𝑐
𝑔(𝑡) d𝑡 −

𝑛
∑
𝑘=1

(𝑓𝑘(𝑐) +∫
𝑥

𝑐
𝑓′𝑘(𝑡) d𝑡)

||||

≤
||||
𝜆 −

𝑛
∑
𝑘=1

𝑓𝑘(𝑐)
||||
+
||||
∫

𝑥

𝑐
(𝑔(𝑡) −

𝑛
∑
𝑘−1

𝑓′𝑘(𝑡)) d𝑡
||||

≤ 𝜀 + |𝑥 − 𝑐|𝜀
≤ 𝜀(𝑏 − 𝑎 + 1)
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1.6. Conditions for uniform convergence
Recall that a scalar sequence 𝑥𝑛 is Cauchy if

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑚, 𝑛 ≥ 𝑁, |𝑥𝑚 − 𝑥𝑛| < 𝜀

and that the general principle of convergence shows that anyCauchy sequence converges.

1.7. General principle of uniform convergence
Definition. A sequence (𝑓𝑛) of scalar functions on a set 𝑆 is called uniformly Cauchy if

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑚, 𝑛 ≥ 𝑁, ∀𝑥 ∈ 𝑆, |𝑓𝑚(𝑥) − 𝑓𝑛(𝑥)| < 𝜀

Theorem. A uniformly Cauchy sequence of functions is uniformly convergent.

Proof. Let 𝑥 ∈ 𝑆 and we will show that (𝑓𝑛(𝑥))∞𝑛=1 converges. Given 𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑚, 𝑛 ≥
𝑁, ∀𝑡 ∈ 𝑆, |𝑓𝑚(𝑡) − 𝑓𝑛(𝑡)| < 𝜀. In particular, ∀𝑚, 𝑛 ≥ 𝑁, |𝑓𝑚(𝑥) − 𝑓𝑛(𝑥)| < 𝜀. So certainly
(𝑓𝑛(𝑥))∞𝑛=1 is Cauchy and hence convergent by the general principle of convergence. There-
fore 𝑓𝑛 converges pointwise. Now, let 𝑓(𝑥) be the limit 𝑓(𝑥) = lim𝑛→∞ 𝑓𝑛(𝑥). Then 𝑓𝑛 → 𝑓
pointwise on 𝑆. Now we must extend this to show 𝑓𝑛 → 𝑓 uniformly on 𝑆. Given 𝜀 > 0,
we know that ∃𝑁 ∈ ℕ, ∀𝑚, 𝑛 ≥ 𝑁, ∀𝑥 ∈ 𝑆, |𝑓𝑚(𝑥) − 𝑓𝑛(𝑥)| < 𝜀. Now, we must show
∀𝑛 ≥ 𝑁, ∀𝑥 ∈ 𝑆, |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 2𝜀, then we are done. We will fix 𝑥 ∈ 𝑆, 𝑛 ≥ 𝑁. Since
𝑓𝑛(𝑥) → 𝑓(𝑥), we can choose𝑚 ∈ ℕ such that |𝑓𝑚(𝑥) − 𝑓(𝑥)| < 𝜀, and𝑚 ≥ 𝑁. Note however
that𝑚 depends on 𝑥 in this statement, but this doesn’t matter—we have shown that

|𝑓𝑛(𝑥) − 𝑓(𝑥)| ≤ |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| + |𝑓𝑚(𝑥) − 𝑓(𝑥)| ≤ 𝜀 + 𝜀 = 2𝜀

which is a result that, in itself, does not depend on 𝑥.

Note. Alternatively, we could end the proof as the following. Fix 𝑥 ∈ 𝑆, 𝑛 ≥ 𝑁. Then

∀𝑚 ≥ 𝑁, |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| < 𝜀

Then let𝑚 → ∞, and
|𝑓𝑛(𝑥) − 𝑓(𝑥)| ≤ 𝜀

1.8. Weierstrass M-test
Theorem. Let (𝑓𝑛) be a sequence of scalar functions on 𝑆. Assume that ∀𝑛 ∈ ℕ, ∃𝑀𝑛 ∈
ℝ+, ∀𝑥 ∈ 𝑆, |𝑓𝑛(𝑥)| ≤ 𝑀𝑛. In other words, (𝑓𝑛) is a sequence of bounded scalar functions.
Then,

∞
∑
𝑛=1

𝑀𝑛 < ∞ ⟹
∞
∑
𝑛=1

𝑓𝑛(𝑥) is uniformly convergent on 𝑆
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1. Uniform convergence

Proof. Let 𝐹𝑛(𝑥) = ∑𝑛
𝑘=1 𝑓𝑘(𝑥) for 𝑥 ∈ 𝑆, 𝑛 ∈ ℕ. Then

|𝐹𝑛(𝑥) − 𝐹𝑚(𝑥)| ≤
𝑛
∑

𝑘=𝑚+1
|𝑓𝑘(𝑥)| ≤

𝑛
∑

𝑘=𝑚+1
𝑀𝑘

Hence, given 𝜀 > 0, we can choose 𝑁 ∈ ℕ such that∑𝑛
𝑘=𝑁+1𝑀𝑘 < 𝜀. Thus, ∀𝑥 ∈ 𝑆, ∀𝑛 ≥

𝑚 ≥ 𝑁, we have

|𝐹𝑛(𝑥) − 𝐹𝑚(𝑥)| ≤
𝑛
∑

𝑘=𝑚+1
𝑀𝑘 < 𝜀

We have shown (𝐹𝑛) is uniformly Cauchy on 𝑆 and hence uniformly convergent on 𝑆.

1.9. Power series
Consider the power series

∞
∑
𝑛=0

𝑐𝑛(𝑧 − 𝑎)𝑛

where 𝑐𝑛 ∈ ℂ, 𝑎 ∈ ℂ are constants, and 𝑧 ∈ ℂ. Let 𝑅 ∈ [0,∞] be the radius of convergence.
Recall that

|𝑧 − 𝑎| < 𝑅 ⟹
∞
∑
𝑛=0

𝑐𝑛(𝑧 − 𝑎)𝑛 converges absolutely;

|𝑧 − 𝑎| > 𝑅 ⟹
∞
∑
𝑛=0

𝑐𝑛(𝑧 − 𝑎)𝑛 diverges

Let 𝐷(𝑎, 𝑅) ≔ {𝑧 ∈ ℂ ∣ |𝑧 − 𝑎| < 𝑅} be the open disc centred on 𝑎 with radius 𝑅. Then we
can create 𝑓∶ 𝐷(𝑎, ℝ) → ℂ to be defined by the power series, which is well-defined. 𝑓 is the
pointwise limit of the power series on 𝐷. In general, the convergence of the power series is
not uniformly convergent.

Example. ∑∞
𝑛=1

𝑧𝑛

𝑛2
has 𝑅 = 1. Let 𝑓𝑛∶ 𝐷(0, 1) → 𝒞 be defined by 𝑓𝑛(𝑧) =

𝑧𝑛

𝑛2
. Then for

every 𝑧 ∈ 𝐷(0, 1), |𝑧| ≤ 1
𝑛2
. Since∑∞

𝑛=1
1
𝑛2

= 𝜋2

6
< ∞, by the Weierstrass M-test, the power

series converges uniformly on the disc.

Example. Consider∑∞
𝑛=0 𝑧𝑛 =

1
1−𝑧

with 𝑅 = 1. Now,

∀𝑧 ∈ 𝐷(0, 1),
||||

∞
∑
𝑛=0

𝑧𝑛
||||
≤ 𝑁 + 1

Therefore, the series does not converge uniformly on the disc since 1
1−𝑧

is unbounded on the
disc. Alternatively, consider

sup
|𝑧|<1

||||
1

1 − 𝑧 −
𝑛
∑
𝑘=0

𝑧𝑘
||||
= sup

|𝑧|<1

|||
𝑧𝑛+1
1 − 𝑧

||| = ∞
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IV. Analysis and Topology

In some sense, the problem with uniform convergence here is that we are allowed to go too
close too the boundary.

Theorem. Suppose the power series ∑∞
𝑛=0 𝑐𝑛(𝑧 − 𝑎)𝑛 has radius of convergence 𝑅. Then

for all 0 < 𝑟 < 𝑅, the power series converges uniformly on 𝐷(𝑎, 𝑟).

Proof. Let𝑤 ∈ ℂ such that 𝑟 < |𝑤 − 𝑎| < 𝑅, for instance𝑤 = 𝑎+ 𝑟+𝑅
2
. Now, let 𝜌 = 𝑟

|𝑤−𝑎|
∈

(0, 1). Since∑∞
𝑛=0 𝑐𝑛(𝑤 −𝑎)𝑛 converges, we have that 𝑐𝑛(𝑤 −𝑎)𝑛 → 0 as 𝑛 → ∞. Therefore,

∃𝑀 ∈ ℝ+ such that |𝑐𝑛(𝑤 − 𝑎)𝑛| ≤ 𝑀 for all 𝑛 ∈ ℕ, since convergence implies boundedness.
Now, for 𝑧 ∈ 𝐷(𝑎, 𝑟), 𝑛 ∈ ℕ we have

|𝑐𝑛(𝑧 − 𝑎)𝑛| = |𝑐𝑛(𝑤 − 𝑎)𝑛|( |𝑧 − 𝑎|
|𝑤 − 𝑎|)

𝑛
≤ 𝑀( 𝑟

|𝑤 − 𝑎|)
𝑛
= 𝑀𝜌𝑛

Since the sum∑∞
𝑛=0𝑀𝜌𝑛 converges, the Weierstrass M-test shows us that∑∞

𝑛=0 𝑐𝑛(𝑧 − 𝑎)𝑛
converges uniformly on 𝐷(𝑎, 𝑟).

Remark. 𝑓∶ 𝐷(𝑎, 𝑅) → ℂ defined by 𝑓(𝑧) = ∑∞
𝑛=0 𝑐𝑛(𝑧 − 𝑎)𝑛 is the uniform limit on 𝐷(𝑎, 𝑟)

of polynomials for any 𝑟 such that 0 < 𝑟 < 𝑅. Hence 𝑓 is continuous on 𝐷(𝑎, 𝑟). Since
𝐷(𝑎, 𝑅) = ⋃0<𝑟<𝑅 𝐷(𝑎, 𝑟), it follows that 𝑓 is continuous everywhere inside the radius of
convergence.

Recall that the termwise derivative∑∞
𝑛=1 𝑐𝑛𝑛(𝑧 − 𝑎)𝑛−1 has the same radius of convergence.

This sequence therefore also converges uniformly on 𝐷(𝑎, 𝑟) if 0 < 𝑟 < 𝑅. Analogously to
the previous result about interchanging derivatives and sums, we can show that∑𝑐𝑛(𝑧−𝑎)𝑛
is complex differentiable on 𝐷(𝑎, 𝑅) with derivative∑∞

𝑛=1 𝑐𝑛𝑛(𝑧 − 𝑎)𝑛−1. This is seen in the
IB Complex Analysis course.

Now, fix 𝑤 ∈ 𝐷(𝑎, 𝑅). Then fix 𝑟 such that |𝑤 − 𝑎| < 𝑟 < 𝑅, and fix 𝛿 > 0 such that
|𝑤 − 𝑎|+𝛿 < 𝑟. If |𝑧 − 𝑤| < 𝛿, then |𝑧 − 𝑎| ≤ |𝑧 − 𝑤|+ |𝑤 − 𝑎| < 𝛿+|𝑤 − 𝑎| < 𝑟. Therefore,
geometrically, 𝐷(𝑤, 𝛿) ⊂ 𝐷(𝑎, 𝑟). Hence,∑∞

𝑛=0 𝑐𝑛(𝑧 − 𝑎)𝑛 converges uniformly on 𝐷(𝑤, 𝛿).
This is known as local uniform convergence.

Definition. 𝑈 ⊂ ℂ is called open if ∀𝑤 ∈ 𝑈, ∃𝛿 > 0, 𝐷(𝑤, 𝛿) ⊂ 𝑈 .
Definition. Let 𝑈 be an open subset of ℂ, and 𝑓𝑛 be a sequence of scalar functions on 𝑈 .
Then 𝑓𝑛 converges locally uniformly on 𝑈 if

∀𝑤 ∈ 𝑈, ∃𝛿 > 0, 𝑓𝑛 converges uniformly on 𝐷(𝑤, 𝛿) ⊂ 𝑈

Remark. Above, we showed that power series always converge locally uniformly inside the
radius of convergence, or equivalently inside the disc 𝐷(𝑎, 𝑅). We will return to this point
about local uniform convergence when discussing compactness.
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2. Uniform continuity
2.1. Definition
Let 𝑈 ⊂ ℝ,ℂ. Let 𝑓 be a scalar function on 𝑈 . Then for 𝑥 ∈ 𝑈 , we say 𝑓 is continuous at 𝑥
if

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑦 ∈ 𝑈, |𝑦 − 𝑥| < 𝛿 ⟹ |𝑓(𝑦) − 𝑓(𝑥)| < 𝜀

We say 𝑓 is continuous on 𝑈 if 𝑓 is continuous at 𝑥 for all 𝑥 ∈ 𝑈 :

∀𝑥 ∈ 𝑈, ∀𝜀 > 0, ∃𝛿 > 0, ∀𝑦 ∈ 𝑈, |𝑦 − 𝑥| < 𝛿 ⟹ |𝑓(𝑦) − 𝑓(𝑥)| < 𝜀

Note here that 𝛿 depends on 𝜀 and 𝑥.

Definition. Let 𝑈, 𝑓 be as in the previous definition. We say 𝑓 is uniformly continuous if

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑥, 𝑦 ∈ 𝑈, |𝑦 − 𝑥| < 𝛿 ⟹ |𝑓(𝑦) − 𝑓(𝑥)| < 𝜀

Now, 𝛿 works for all 𝑥 ∈ 𝑈 simultaneously; 𝛿 depends on 𝜀 only. Certainly, uniform con-
tinuity implies continuity.

Example. Let 𝑓∶ ℝ → ℝ such that 𝑓(𝑥) = 2𝑥+ 17. Then 𝑓 is uniformly continuous; given
𝜀 > 0, we can find 𝛿 = 1

2
𝜀. Then ∀𝑥, 𝑦 ∈ ℝ, |𝑦 − 𝑥| < 𝛿 ⟹ |𝑓(𝑦) − 𝑓(𝑥)| = |2𝑦 − 2𝑥| =

2𝑦 − 𝑥 < 2𝛿 = 𝜀.

Example. Let 𝑓∶ ℝ → ℝ, defined by 𝑓(𝑥) = 𝑥2. This is not uniformly continuous, since no
𝛿 works for all 𝑥 given some ‘bad’ 𝜀. Let us take 𝜀 = 1, and we wish to show that no 𝛿 exists.
Suppose some 𝛿 does exist. Then, let 𝑥 > 0 and 𝑦 = 𝑥+ 𝛿

2
. We should have |𝑓(𝑦) − 𝑓(𝑥)| < 1.

(𝑥 + 𝛿
2)

2
− 𝑥2 = 𝛿𝑥 + 𝛿2

4

So for 𝑥 = 1
𝛿
, this condition |𝑓(𝑦) − 𝑓(𝑥)| < 1 is not satisfied. Hence 𝑓 is not uniformly

continuous.

Note. For 𝑈, 𝑓 as in the above definition, 𝑓 is not uniformly continuous on 𝑈 if

∃𝜀 > 0, ∀𝛿 > 0, ∃𝑥, 𝑦 ∈ 𝑈, |𝑦 − 𝑥| < 𝛿, |𝑓(𝑦) − 𝑓(𝑥)| ≥ 𝜀

So there are points arbitrarily close togetherwhose difference of function values exceed some
fixed 𝜀.

2.2. Properties of continuous functions
Theorem. Let 𝑓 be a scalar function on a closed bounded interval [𝑎, 𝑏]. If 𝑓 is continuous
on [𝑎, 𝑏], then 𝑓 is uniformly continuous on [𝑎, 𝑏].
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IV. Analysis and Topology

Proof. Suppose there exists 𝜀 > 0 such that∀𝛿 > 0, ∃𝑥, 𝑦 ∈ [𝑎, 𝑏], |𝑦 − 𝑥| < 𝛿, |𝑓(𝑦) − 𝑓(𝑥)| ≥
𝜀. In particular, we can construct a sequence (𝛿𝑛) defined by 𝛿𝑛 =

1
𝑛
, and we can construct

sequences 𝑥𝑛, 𝑦𝑛 ∈ [𝑎, 𝑏] such that |𝑦𝑛 − 𝑥𝑛| <
1
𝑛
but |𝑓(𝑦𝑛) − 𝑓(𝑥𝑛)| ≥ 𝜀. By the Bolzano–

Weierstrass theorem, there exists a subsequence (𝑥𝑘𝑛) that converges. Now, let 𝑥 be the
limit of the subsequence, lim𝑛→∞ 𝑥𝑘𝑛 . Then 𝑥 ∈ [𝑎, 𝑏] since the interval is closed. Then,
||𝑦𝑘𝑛 − 𝑥|| ≤ ||𝑦𝑘𝑛 − 𝑥𝑘𝑛 || + ||𝑥𝑘𝑛 − 𝑥|| < 1

𝑛
+ ||𝑥𝑘𝑛 − 𝑥|| → 0. Hence 𝑦𝑘𝑛 → 𝑥. Now, since 𝑓 is

continuous 𝑓(𝑥𝑘𝑛), 𝑓(𝑦𝑘𝑛) → 𝑓(𝑥). Now, 𝜀 ≤ ||𝑓(𝑥𝑘𝑛) − 𝑓(𝑦𝑘𝑛)|| → |𝑓(𝑥) − 𝑓(𝑥)| = 0, which
is a contradiction.

Corollary. A continuous function 𝑓∶ [𝑎, 𝑏] → ℝ is Riemann integrable.

Proof. Since a continuous function on a closed bounded interval is bounded, we have that
𝑓 is bounded. Now, fix 𝜀 > 0, and we want to find a dissection 𝒟 such that the difference
between upper and lower sums is less than 𝜀. By the above theorem, 𝑓 is uniformly continu-
ous. Hence,

∃𝛿 > 0, ∀𝑥, 𝑦 ∈ [𝑎, 𝑏], |𝑦 − 𝑥| < 𝛿 ⟹ |𝑓(𝑦) − 𝑓(𝑥)| < 𝜀
So we must simply choose a dissection such that all intervals have size smaller than 𝛿. For
instance, choose some 𝑛 ∈ ℕ such that 𝑏−𝑎

𝑁
< 𝛿, and then divide the interval equally into

𝑛 subintervals. If 𝐼 is an interval in this dissection, then ∀𝑥, 𝑦 ∈ 𝐼 we have |𝑦 − 𝑥| < 𝛿 and
hence |𝑓(𝑦) − 𝑓(𝑥)| < 𝜀. Hence,

sup
𝑥,𝑦∈𝐼

|𝑓(𝑦) − 𝑓(𝑥)| ≤ 𝜀

Multiplying by the length of 𝐼 and summing over all subintervals 𝐼,

𝑈𝒟(𝑓) − 𝐿𝒟(𝑓) ≤ (𝑏 − 𝑎)𝜀

Hence 𝑓 is Riemann integrable.
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3. Metric spaces
3.1. Definition
Definition. Let𝑀 be a set. Then ametric on𝑀 is a function 𝑑∶ 𝑀 ×𝑀 → ℝ such that

(i) (positivity) ∀𝑥, 𝑦 ∈ 𝑀, 𝑑(𝑥, 𝑦) ≥ 0, and in particular, 𝑥 = 𝑦 ⟺ 𝑑(𝑥, 𝑦) = 0
(ii) (symmetric) ∀𝑥, 𝑦 ∈ 𝑀, 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)
(iii) (triangle inequality) ∀𝑥, 𝑦, 𝑧 ∈ 𝑀, 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧).
A metric space is a set𝑀 together with a metric 𝑑 on𝑀, written as the pair (𝑀, 𝑑).
Example. Let 𝑀 = ℝ,ℂ and 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|. This is known as the ‘standard metric’ on
𝑀. If a metric is not specified, the standard metric is taken as implied.

Example. Let𝑀 = ℝ𝑛, ℂ𝑛, and we define the Euclidean norm (or Euclidean length) to be

‖𝑥‖ = ‖𝑥‖2 = (
𝑛
∑
𝑘=1

|𝑥𝑘|
2)

1
2

This satisfies
‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖

and it then follows that we can define the metric as

𝑑2(𝑥, 𝑦) = ‖𝑥 − 𝑦‖2
called the Euclidean metric. We can check that this is indeed a metric easily. This is the
standard metric onℝ𝑛, ℂ𝑛. The metric space (𝑀, 𝑑) in this case is called 𝑛-dimensional real
(or complex) Euclidean space, sometimes denoted ℓ𝑛2 . The Euclidean norm is sometimes
called the ℓ2 norm, and the Euclidean metric is the ℓ2 metric.
Example. Let𝑀 = ℝ𝑛, ℂ𝑛, and we define the ℓ1 norm to be

|𝑥|1 =
𝑛
∑
𝑘=1

|𝑥𝑘|

which defines the ℓ1 metric given by
𝑑1(𝑥, 𝑦) = ‖𝑥 − 𝑦‖1

(𝑀, 𝑑1) is denoted ℓ𝑛1 . We can generalise and form the metric space ℓ𝑛𝑝 for all 𝑝 ∈ [1,∞].
Example. Again, let𝑀 = ℝ𝑛, ℂ𝑛. We can define the ℓ∞ norm by

‖𝑥‖∞ = max
1≤𝑘≤𝑛

|𝑥𝑘|

This defines the ℓ∞ metric:

𝑑∞(𝑥, 𝑦) = ‖𝑥 − 𝑦‖∞ = max
1≤𝑘≤𝑛

|𝑥𝑘 − 𝑦𝑘|

We denote (𝑀, 𝑑) by ℓ𝑛∞.
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In this course, we will only work with 𝑝 = 1, 2,∞, although the calculations can be made to
work for other 𝑝.
Example. Let 𝑆 be a set. Let ℓ∞(𝑆) be the set of all bounded scalar functions on 𝑆. We then
define the ℓ∞ norm of 𝑓 ∈ ℓ∞(𝑆) by

‖𝑓‖ = ‖𝑓‖∞ = sup
𝑥∈𝑆

|𝑓(𝑥)|

The supremum exists since the function is always bounded. This is also known as the ‘sup
norm’ or the ‘uniform norm’. Note that, for 𝑓, 𝑔 ∈ ℓ∞(𝑆), and 𝑥 ∈ 𝑆,

‖𝑓 + 𝑔‖ ≤ sup
𝑥∈𝑆

|𝑓(𝑥) + 𝑔(𝑥)| ≤ |𝑓(𝑥) + 𝑔(𝑥)| ≤ |𝑓(𝑥)| + |𝑔(𝑥)| ≤ ‖𝑓‖ + ‖𝑔‖

Hence 𝑑(𝑓, 𝑔) = ‖𝑓 − 𝑔‖ defines ametric on ℓ∞(𝑆). This is the standardmetric on this space
ℓ∞(𝑆), also called the ‘uniform metric’. For example, ℓ∞({1,… , 𝑛}) = ℝ𝑛 with the metric
ℓ∞. Also, for ℓ∞(ℕ), we typically omit the ℕ and instead write ℓ∞ for the space of scalar
sequences with the uniform metric.

Example. Consider 𝐶[𝑎, 𝑏], the set of all continuous functions on [𝑎, 𝑏]. For 𝑝 = 1, 2, we
define the 𝐿𝑝 norm of 𝑓 ∈ 𝐶[𝑎, 𝑏] by

‖𝑓‖𝑝 = (∫
𝑏

𝑎
|𝑓(𝑥)|𝑝 d𝑥)

1
𝑝

which induces the 𝐿𝑝 metric on 𝐶[𝑎, 𝑏].
Example. Let𝑀 be a set. Then

𝑑(𝑥, 𝑦) = {0 if 𝑥 = 𝑦
1 otherwise

is a metric, called the discrete metric on 𝑀. In particular, (𝑀, 𝑑) is called a discrete metric
space.

Example. Let𝐺 be a group generated by 𝑆 ⊂ 𝐺. We assume 𝑒 ∉ 𝑆 and 𝑥 ∈ 𝑆 ⟹ 𝑥−1 ∈ 𝑆.
Then

𝑑(𝑥, 𝑦) = min {𝑛 ≥ 0∶ ∃𝑠1,… , 𝑠𝑛, 𝑦 = 𝑥𝑠1…𝑠𝑛}
defines a metric called the word metric.

Example. Let 𝑝 be prime. Then

𝑑(𝑥, 𝑦) = {0 if 𝑥 = 𝑦
𝑝−𝑛 otherwise, where 𝑥 − 𝑦 = 𝑝𝑛𝑚, 𝑛 ≥ 0,𝑚 ∈ 𝑍, 𝑝 ∤ 𝑚

defines a metric on ℤ. This is known as the 𝑝-adic metric.
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3.2. Subspaces
Let (𝑀, 𝑑) be a metric space, and 𝑁 ⊂ 𝑀. Then naturally we can restrict 𝑑 to 𝑁 × 𝑁, giving
a metric on 𝑁. (𝑁, 𝑑) is called a subspace of𝑀.

Example. Consider ℚ with the metric 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|. This is clearly a subspace of ℝ
(implicitly with the standard metric on ℝ).

Example. Since every continuous function on a closed bounded interval is bounded,𝐶[𝑎, 𝑏]
is a subset of ℓ∞[𝑎, 𝑏]. Hence 𝐶[𝑎, 𝑏] with the uniform metric is a subspace of ℓ∞[𝑎, 𝑏].

3.3. Product spaces
Let (𝑀, 𝑑), (𝑀′, 𝑑′) be metric spaces. Then any of the following defines a metric on the
Cartesian product𝑀 ×𝑀′.

(i) 𝑑1((𝑥, 𝑥′), (𝑦, 𝑦′)) = 𝑑(𝑥, 𝑦) + 𝑑(𝑥′, 𝑦′)

(ii) 𝑑2((𝑥, 𝑥′), (𝑦, 𝑦′)) = (𝑑(𝑥, 𝑦)2 + 𝑑(𝑥′, 𝑦′)2)
1
2

(iii) 𝑑∞((𝑥, 𝑥′), (𝑦, 𝑦′)) = max {𝑑(𝑥, 𝑦), 𝑑(𝑥′, 𝑦′)}

We commonly write (𝑀 ×𝑀′, 𝑝) as𝑀 ⊕𝑝 𝑀′. Note that we always have

𝑑∞ ≤ 𝑑2 ≤ 𝑑1 ≤ 2𝑑∞

We can generalise for 𝑛 ∈ ℕ and metric spaces (𝑀𝑘, 𝑑𝑘) for 𝑘 ∈ {1,… , 𝑛}, by defining

(
𝑛

⨁
𝑘=1

𝑀𝑘)
𝑝

= 𝑀1 ⊕𝑝 ⋯⊕𝑝 𝑀𝑛 = (𝑀1 ×⋯×𝑀𝑛, 𝑑𝑝)

Example. ℝ⊕1 ℝ = ℓ21 . Further, ℝ⊕2 ℝ⊕2 𝑅 = ℓ32, and other analogous results hold.

Remark. ℝ ⊕1 ℝ ⊕2 ℝ does not make sense since we have not defined the associativity of
the⊕ operator. The two choices yield different metric spaces.

3.4. Convergence
Let𝑀 be ametric space, and (𝑥𝑛) a sequence in𝑀. Given 𝑥 ∈ 𝑀, we say that (𝑥𝑛) converges
to 𝑥 in𝑀 if

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, 𝑑(𝑥𝑛, 𝑥) < 𝜀

We say that (𝑥𝑛) is convergent in 𝑀 if ∃𝑥 ∈ 𝑀 such that 𝑥𝑛 → 𝑥. Otherwise, we say that
(𝑥𝑛) is divergent. Note that 𝑥𝑛 → 𝑥 in𝑀 if and only if 𝑑(𝑥𝑛, 𝑥) → 0 in ℝ.

Lemma. Suppose we have a sequence 𝑥𝑛 → 𝑥 and 𝑥𝑛 → 𝑦 in ametric space𝑀. Then 𝑥 = 𝑦.
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IV. Analysis and Topology

Proof. Suppose 𝑥 ≠ 𝑦. Then let 𝜀 = 𝑑(𝑥,𝑦)
3

> 0. So, by the definition of convergence,

∃𝑁1 ∈ ℕ, ∀𝑛 ≥ 𝑁1, 𝑑(𝑥𝑛, 𝑥) < 𝜀;

∃𝑁2 ∈ ℕ, ∀𝑛 ≥ 𝑁2, 𝑑(𝑥𝑛, 𝑦) < 𝜀
Now, fix 𝑁 ∈ ℕ such that 𝑛 ≥ 𝑁1, 𝑛 ≥ 𝑁2, for instance 𝑁 = max {𝑁1, 𝑁2}. Then

𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑥𝑛) + 𝑑(𝑥𝑛, 𝑦) < 2𝜀 = 2
3𝑑(𝑥, 𝑦)

which is a contradiction.

Definition. Given a convergent sequence (𝑥𝑛) in a metric space𝑀, we say the limit of (𝑥𝑛)
is the unique 𝑥 ∈ 𝑀 such that 𝑥𝑛 → 𝑥 as 𝑛 → ∞. This is denoted

lim
𝑛→∞

𝑥𝑛

Example. This definition has the usual meaning when𝑀 = ℝ,ℂ.
Example. The constant sequence defined by 𝑥𝑛 = 𝑥 converges to 𝑥. In particular, ‘even-
tually constant’ sequences converge; let (𝑥𝑛) be a sequence in 𝑀 such that ∃𝑥 ∈ 𝑀, ∃𝑁 ∈
ℕ, ∀𝑛 ≥ 𝑁, 𝑥𝑛 = 𝑥, then 𝑥𝑛 → 𝑥. It is not necessarily true that sequences only converge if
they are eventually constant. However, in a discrete metric space, the converse is true, since
we can choose 𝜀 smaller than all distances.
Example. Consider the 3-adic metric. Then, 3𝑛 → 0 as 𝑛 → ∞ since 𝑑(3𝑛, 0) = 3−𝑛 → 0.
Example. Let 𝑆 be a set. Then, 𝑓𝑛 → 𝑓 in ℓ∞(𝑆) in the uniform metric if and only if
𝑑(𝑓𝑛, 𝑓) = ‖𝑓𝑛 − 𝑓‖∞ = sup𝑆 |𝑓𝑛 − 𝑓| → 0, which is precisely the condition that 𝑓𝑛 → 𝑓
uniformly on 𝑆. Note, however, that 𝑓𝑛(𝑥) = 𝑥 + 1

𝑛
for 𝑥 ∈ ℝ, 𝑛 ∈ ℕ and 𝑓(𝑥) = 𝑥, then

certainly 𝑓𝑛 → 𝑥 uniformly on ℝ. However, 𝑓𝑛, 𝑓 ∉ ℓ∞(ℝ), so the uniform metric is not
defined on these functions. So the notion of uniform convergence visited before is slightly
more general than the idea of convergence in this metric space.

Example. Consider Euclidean space𝑀 = ℝ𝑛, ℂ𝑛 with the ℓ2 metric. Then, consider

𝑥(𝑘) = (𝑥(𝑘)1 ,… , 𝑥(𝑘)𝑛 ) ∈ 𝑀

for 𝑘 ∈ ℕ, and 𝑥 = (𝑥1,… , 𝑥𝑛) ∈ 𝑀. Then,

||𝑥
(𝑘)
𝑖 − 𝑥𝑖|| ≤ ‖

‖𝑥(𝑘) − 𝑥‖‖2 ≤
𝑛
∑
𝑖=1

||𝑥
(𝑘)
𝑖 − 𝑥𝑖||

So 𝑥(𝑘) → 𝑥 if and only if all 𝑖 satisfy 𝑥(𝑘)𝑖 → 𝑥𝑖. This can be thought of as convergence being
equivalent to coordinate-wise (or pointwise) convergence.
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Example. Consider 𝑓𝑛(𝑥) = 𝑥𝑛 for 𝑥 ∈ [0, 1], and 𝑛 ∈ ℕ. Then (𝑓𝑛) is a sequence in 𝐶[0, 1],
which converges pointwise but not uniformly. So (𝑓𝑛) is not convergent in the uniform met-
ric. However, using the 𝐿1 metric, we have

𝑑1(𝑓𝑛, 0) = ‖𝑓𝑛‖1 = ∫
1

0
𝑓𝑛 =

1
𝑛 + 1 → 0

So, 𝑓𝑛 → 0 in (𝐶[0, 1], 𝐿1).
Example. Let 𝑁 be a subspace of a metric space𝑀, and (𝑥𝑛) be a convergent sequence in
𝑁. Then (𝑥𝑛) converges in 𝑀. The converse is not necessarily true; consider 𝑀 = ℝ and
𝑁 = (0,∞) with (𝑥𝑛) =

1
𝑛
. This is divergent in 𝑁 but convergent in𝑀.

Example. Let (𝑀, 𝑑), (𝑀′, 𝑑′) be metric spaces. Let 𝑁 = 𝑀 ⊕𝑝 𝑀′. Let 𝑎𝑛 = (𝑥𝑛, 𝑦𝑛) ∈ 𝑁
for all 𝑛 ∈ ℕ, and 𝑎 = (𝑥, 𝑦) ∈ 𝑁. Then

𝑎𝑛 → 𝑎 in 𝑁 ⟺ 𝑥𝑛 → 𝑥 in𝑀, 𝑦𝑛 → 𝑦 in𝑀′

Indeed,

max {𝑑(𝑥𝑛, 𝑥), 𝑑′(𝑦𝑛, 𝑦)} = 𝑑∞(𝑎𝑛, 𝑎) ≤ 𝑑𝑝(𝑎𝑛, 𝑎) ≤ 2𝑑1(𝑎𝑛, 𝑎) = 2𝑑(𝑥𝑛, 𝑥) + 2𝑑′(𝑦𝑛, 𝑦)

3.5. Continuity
Definition. Let 𝑓∶ 𝑀 → 𝑀′ be a function betweenmetric spaces (𝑀, 𝑑), (𝑀′, 𝑑′). Then for
𝑎 ∈ 𝑀, we say 𝑓 is continuous at 𝑎 if

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑥 ∈ 𝑀, 𝑑(𝑥, 𝑎) < 𝛿 ⟹ 𝑑′(𝑓(𝑥), 𝑓(𝑎)) < 𝜀

We say 𝑓 is continuous if 𝑓 is continuous at 𝑎 for all 𝑎 ∈ 𝑀. In other words,

∀𝑎 ∈ 𝑀, ∀𝜀 > 0, ∃𝛿 > 0, ∀𝑥 ∈ 𝑀, 𝑑(𝑥, 𝑎) < 𝛿 ⟹ 𝑑′(𝑓(𝑥), 𝑓(𝑎)) < 𝜀

Note that 𝛿 depends both on 𝜀 and 𝑎.
Proposition. Let 𝑓∶ 𝑀 → 𝑀′ be as above. Let 𝑎 ∈ 𝑀. Then the following are equivalent:

(i) 𝑓 is continuous at 𝑎;
(ii) 𝑥𝑛 → 𝑎 in𝑀 implies 𝑓(𝑥𝑛) → 𝑓(𝑎) in𝑀

Proof. First we show (i) implies (ii). Suppose 𝑥𝑛 → 𝑎 in 𝑀. Then fix 𝜀 > 0, and seek
𝑁 ∈ ℕ such that ∀𝑛 ≥ 𝑁, 𝑑′(𝑓(𝑥𝑛), 𝑓(𝑎)) < 𝜀. By continuity, there exists 𝛿 > 0 such that
∀𝑥 ∈ 𝑀, 𝑑(𝑥, 𝑎) < 𝛿 ⟹ 𝑑′(𝑓(𝑥𝑛), 𝑓(𝑎)) < 𝜀 as required. So we want 𝑁 such that
∀𝑛 ≥ 𝑁, 𝑑(𝑥, 𝑎) < 𝛿, which must exist since 𝑥𝑛 → 𝑎.
Now, we show (ii) implies (i). Suppose that 𝑓 is not continuous at 𝑎. Then,

∃𝜀 > 0, ∀𝛿 > 0, ∃𝑥 ∈ 𝑀, 𝑑(𝑥, 𝑎) < 𝛿, 𝑑′(𝑓(𝑥), 𝑓(𝑎)) ≥ 𝜀
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So fix such an 𝜀 for which no suitable 𝛿 exists. Choose the sequence 𝛿𝑛 =
1
𝑛
, so

𝑑(𝑥𝑛, 𝑎) <
1
𝑛; 𝑑′(𝑓(𝑥𝑛), 𝑓(𝑎)) ≥ 𝜀

Then 𝑥𝑛 → 𝑎 in𝑀 but 𝑓(𝑥𝑛) ↛ 𝑓(𝑎) in𝑀, which is a contradiction.

Proposition. Let 𝑓, 𝑔 be scalar functions on a metric space 𝑀. Let 𝑎 ∈ 𝑀. Then if 𝑓, 𝑔
are continuous at 𝑎, so are 𝑓 + 𝑔 and 𝑓 ⋅ 𝑔. Moreover, letting 𝑁 = {𝑥 ∈ 𝑀∶ 𝑔(𝑥) ≠ 0} and
assuming 𝑎 ∈ 𝑁, 𝑓

𝑔
is continuous at 𝑎. Hence if 𝑓, 𝑔 are continuous, then so are 𝑓+𝑔, 𝑓 ⋅𝑔, 𝑓

𝑔
where they are defined.

Proof. Suppose 𝑥𝑛 → 𝑎. Then by the above proposition, (𝑓 ⋅ 𝑔)(𝑥𝑛) = 𝑓(𝑥𝑛) ⋅ 𝑔(𝑥𝑛) →
𝑓(𝑎) ⋅ 𝑔(𝑎) = (𝑓 ⋅ 𝑔)(𝑎), and similar results hold for the other operators.

Remark. If 𝑓∶ 𝑀 → 𝑀′ is continuous everywhere,

lim
𝑛→∞

𝑓(𝑥𝑛) = 𝑓( lim
𝑛→∞

𝑥𝑛)

by the second proposition.

Proposition. Let 𝑓∶ 𝑀 → 𝑀′, 𝑔∶ 𝑀′ → 𝑀″ be functions between metric spaces. If 𝑓
is continuous at 𝑎 and 𝑔 is continuous at 𝑓(𝑎), then 𝑔 ∘ 𝑓 is continuous at 𝑎. If 𝑓, 𝑔 are
continuous, 𝑔 ∘ 𝑓 is continuous.

Proof. Let 𝜀 > 0. We want to find 𝛿 > 0 such that ∀𝑥 ∈ 𝑀,

𝑑(𝑥, 𝑎) < 𝛿 ⟹ 𝑑″(𝑔(𝑓(𝑥)), 𝑔(𝑓(𝑎))) < 𝜀

Since 𝑔 is continuous at 𝑓(𝑎), there exists 𝜂 > 0 such that ∀𝑦 ∈ 𝑀′,

𝑑′(𝑦, 𝑓(𝑎)) < 𝜂 ⟹ 𝑑″(𝑔(𝑦), 𝑔(𝑓(𝑎))) < 𝜀

Now, since 𝑓 is continuous at 𝑎, for this 𝜂 there exists 𝛿 such that for all 𝑥 ∈ 𝑀,

𝑑(𝑥, 𝑎) < 𝛿 ⟹ 𝑑′(𝑓(𝑥) − 𝑓(𝑎)) < 𝜂

Then
𝑑(𝑥, 𝑎) < 𝛿 ⟹ 𝑑″(𝑔(𝑓(𝑥)), 𝑔(𝑓(𝑎))) < 𝜀

as required.

Example. Constant functions are continuous. For instance, let 𝑏 ∈ 𝑀 and let 𝑓(𝑥) = 𝑏.
Then this is continuous since 𝑑′(𝑓(𝑥) − 𝑓(𝑎)) = 𝑑′(𝑏, 𝑏) = 0 so any 𝛿 > 0 will satisfy the
condition.

Example. The identity function 𝑓∶ 𝑀 → 𝑀 defined by 𝑥 ↦ 𝑥 is continuous. Consider
𝑑(𝑓(𝑥) − 𝑓(𝑎)) = 𝑑(𝑥 − 𝑎). So 𝛿 = 𝜀 will suffice.
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Example. All real and complex polynomials and rational functions are continuouswherever
they are defined by the propositions and examples above. In fact, using uniform conver-
gence, the uniform limits of such functions are also continuous. For example, exponential
and trigonometric functions are continuous.

Example. Let (𝑀, 𝑑) be a metric space. Then 𝑑∶ 𝑀 ⊕𝑝 𝑀 → ℝ, which can be viewed as
a function between metric spaces 𝑀 ⊕𝑝 𝑀 and ℝ. Then, given 𝑣 = (𝑥, 𝑥′), 𝑤 = (𝑦, 𝑦′) ∈
𝑀 ⊕𝑝 𝑀,

|𝑑(𝑣) − 𝑑(𝑤)| = |𝑑(𝑥, 𝑥′) − 𝑑(𝑦, 𝑦′)| ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑥′, 𝑦′) = 𝑑1(𝑣, 𝑤) ≤ 2𝑑𝑝(𝑣, 𝑤)

Hence 𝛿 = 𝜀
2
will suffice.

3.6. Isometric, Lipschitz, and uniformly continuous functions
Definition. Let 𝑓∶ 𝑀 → 𝑀′ be a function between metric spaces. Then, 𝑓 is
(i) isometric, if

∀𝑥, 𝑦 ∈ 𝑀, 𝑑′(𝑓(𝑥), 𝑓(𝑦)) = 𝑑(𝑥, 𝑦)

(ii) Lipschitz, or 𝑐-Lipschitz, if

∃𝑐 ∈ ℝ+, ∀𝑥, 𝑦 ∈ 𝑀, 𝑑′(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝑐 ⋅ 𝑑(𝑥, 𝑦)

(iii) uniformly continuous, if

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑥, 𝑦 ∈ 𝑀, 𝑑(𝑥, 𝑦) < 𝛿 ⟹ 𝑑′(𝑓(𝑥), 𝑓(𝑦)) < 𝜀

Remark. Any isometric function is 1-Lipschitz. Any Lipschitz function is uniformly con-
tinuous. Any uniformly continuous function is continuous.

Remark. If a function is isometric, it is injective, since𝑓(𝑥) = 𝑓(𝑦) ⟹ 𝑥 = 𝑦. For example,
if 𝑁 ⊂ 𝑀, the inclusion map 𝑖 ∶ 𝑁 → 𝑀 defined by 𝑖(𝑥) = 𝑥 is isometric but not surjective.
An isometric and surjective map is called an isometry. If there exists an isometry𝑀 → 𝑀′,
we say that𝑀 and𝑀′ are isometric metric spaces, or𝑀′ is an isometric copy of𝑀.

Example. Suppose (𝑀, 𝑑), (𝑀′, 𝑑′) be metric spaces. Let 𝑦 ∈ 𝑀′. We define 𝑓∶ 𝑀 →
𝑀 ⊕𝑝 𝑀′ by 𝑥 ↦ (𝑥, 𝑦). Then 𝑑𝑝(𝑓(𝑥), 𝑓(𝑧)) = 𝑑𝑝((𝑥, 𝑦), (𝑧, 𝑦)) = 𝑑(𝑥, 𝑧). So the function 𝑓
is isometric. Therefore,𝑀 × {𝑦} is an isometric copy of𝑀 in𝑀 ⊕𝑝 𝑀′.

Example. Consider the projections 𝑞∶ 𝑀⊕𝑝𝑀′ → 𝑀 defined by 𝑞(𝑥, 𝑦) = 𝑥 and 𝑞′∶ 𝑀⊕𝑝
𝑀′ → 𝑀′ defined by 𝑞′(𝑥, 𝑦) = 𝑦. These projections are both 1-Lipschitz. Indeed,

𝑑(𝑞(𝑥, 𝑦), 𝑞(𝑥′, 𝑦′)) = 𝑑(𝑥, 𝑥′) ≤ 𝑑𝑝((𝑥, 𝑦), (𝑥′, 𝑦′))

In particular, polynomials in any finite number of variables are continuous since we can
multiply continuous functions together.
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3.7. Generalised triangle inequality
Suppose 𝑢, 𝑥, 𝑦, 𝑧 ∈ 𝑀. Then, |𝑑(𝑢, 𝑥) − 𝑑(𝑦, 𝑧)| ≤ 𝑑(𝑢, 𝑦) + 𝑑(𝑥, 𝑧). First,

𝑑(𝑢, 𝑥) ≤ 𝑑(𝑢, 𝑦) + 𝑑(𝑦, 𝑥) ≤ 𝑑(𝑢, 𝑦) + 𝑑(𝑦, 𝑧) + 𝑑(𝑧, 𝑥)

Rearranging,
𝑑(𝑢, 𝑥) − 𝑑(𝑦, 𝑧) ≤ 𝑑(𝑢, 𝑦) + 𝑑(𝑥, 𝑧)

To achieve the negative, satisfying both conditions in the absolute value term,

𝑑(𝑦, 𝑧) ≤ 𝑑(𝑦, 𝑢) + 𝑑(𝑢, 𝑥) + 𝑑(𝑥, 𝑧)

which gives
𝑑(𝑦, 𝑧) − 𝑑(𝑢, 𝑥) ≤ 𝑑(𝑢, 𝑦) + 𝑑(𝑥, 𝑧)

as required.
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4. Topology of metric spaces
4.1. Open balls
Definition. Let𝑀 be a metric space, 𝑥 ∈ 𝑀, 𝑟 > 0. Then the open ball in𝑀 of centre 𝑥 and
radius 𝑟 is the set

𝒟𝑟(𝑥) = {𝑦 ∈ 𝑀∶ 𝑑(𝑦, 𝑥) < 𝑟}

The open ball notation is a convenient syntax for denoting closeness in some metric space.
Note that, for example, 𝑥𝑛 → 𝑛 in𝑀 is equivalent to saying

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, 𝑥𝑛 ∈ 𝒟𝜀(𝑥)

We can also say that 𝑓∶ 𝑀 → 𝑀′ is continuous at 𝑥 if

∀𝜀 > 0, ∃𝛿 > 0, 𝑓(𝒟𝛿(𝑥)) ⊂ 𝒟𝜀(𝑓(𝑥))

Definition. The closed ball of centre 𝑥 and radius 𝑟 ≥ 0 is the set

ℬ𝑟(𝑥) = {𝑦 ∈ 𝑀∶ 𝑑(𝑦, 𝑥) ≤ 𝑟}

Example. Inℝ,𝒟𝑟(𝑥) = (𝑥−𝑟, 𝑥+𝑟). Further,ℬ𝑟(𝑥) = [𝑥−𝑟, 𝑥+𝑟]. In the plane (ℝ2, 𝑑𝑝),

ℬ1(0) = {𝑥 ∈ ℝ2∶ ‖𝑥‖𝑝 ≤ 1}

Note. 𝒟𝑟(𝑥) ⊂ ℬ𝑟(𝑥) ⊂ 𝒟𝑠(𝑥) for all 𝑟 < 𝑠.
Example. Let𝑀 be a discrete metric space. Then for 𝑥 ∈ 𝑀,

𝒟1(𝑥) = {𝑥}; ℬ1(𝑥) = 𝑀

4.2. Neighbourhoods and openness
Definition. Let 𝑀 be a metric space, and 𝑈 ⊂ 𝑀. Then for 𝑥 ∈ 𝑀, we say that 𝑈 is a
neighbourhood of 𝑥 (in𝑀) if

∃𝑟 > 0,𝒟𝑟(𝑥) ⊂ 𝑈 ⟺ ∃𝑟 > 0,ℬ𝑟(𝑥) ⊂ 𝑈

Definition. We say 𝑈 ⊂ 𝑀 is open in𝑀, or that 𝑈 is an open subset of𝑀, if

∀𝑥 ∈ 𝑈, ∃𝑟 > 0,𝒟𝑟(𝑥) ⊂ 𝑈

So 𝑈 is a neighbourhood of all points in 𝑈 .
Example. 𝒟𝑟(𝑥), ℬ𝑟(𝑥) are neighbourhoods of 𝑥.
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Example. Let𝐻 = {𝑧 ∈ ℂ∶ Im 𝑧 ≥ 0}. Let𝑤 ∈ 𝐻 and 𝛿 = Im𝑤. If 𝛿 > 0, then𝒟𝛿(𝑤) ⊂ 𝐻.
If 𝛿 = 0, then for any 𝑟,𝒟𝛿(𝑤) ⊄ 𝐻. So 𝐻 is not open.

Lemma. Open balls are open.

Proof. Let𝒟𝑟(𝑥) be an open ball in a metric space𝑀. We need to show that

∀𝑦 ∈ 𝒟𝑟(𝑥), ∃𝛿 > 0,𝒟𝛿(𝑦) ⊂ 𝒟𝑟(𝑥)

So let 𝑦 ∈ 𝒟𝑟(𝑥) and set 𝛿 = 𝑟−𝑑(𝑥, 𝑦). Note that 𝑑(𝑥, 𝑦) > 0, and by the triangle inequality,

𝑑(𝑧, 𝑥) ≤ 𝑑(𝑧, 𝑦) + 𝑑(𝑦, 𝑥) < 𝛿 + (𝑟 − 𝛿) = 𝑟

as required.

Corollary. Let𝑀 be a metric space, 𝑈 ⊂ 𝑀, 𝑥 ∈ 𝑀. Then𝑈 is a neighbourhood of 𝑥 if and
only if there exists an open subset 𝑉 of𝑀 such that 𝑥 ∈ 𝑉 ⊂ 𝑈 .

Proof. In the forward direction, there exists 𝑟 > 0 such that 𝒟𝑟(𝑥) ⊂ 𝑈 , so let 𝑉 = 𝒟𝑟(𝑥).
Conversely, if 𝑉 is open we can construct 𝑟 > 0 such that 𝒟𝑟(𝑥) ⊂ 𝑉 ⊂ 𝑈 . So 𝑈 is a
neighbourhood of 𝑥.

4.3. Continuity and convergence using topology
Proposition. In a metric space𝑀, the following are equivalent.

(i) 𝑥𝑛 → 𝑥;
(ii) for all neighbourhoods 𝑈 of 𝑥 in𝑀, ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, 𝑥𝑛 ∈ 𝑈 ;
(iii) for all open neighbourhoods 𝑈 of 𝑥 in𝑀, ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, 𝑥𝑛 ∈ 𝑈 .

Proof. First, (i) implies (ii). Let𝑈 be aneighbourhoodof𝑥. Thenby definition∃𝜀 > 0,𝒟𝜀(𝑥) ⊂
𝑈 . Since 𝑥𝑛 → 𝑥,

∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, 𝑥𝑛 ∈ 𝒟𝜀(𝑥)
hence ∀𝑛 ≥ 𝑁, 𝑥𝑛 ∈ 𝑈 .
Now we show (ii) implies (iii). This is clear since any open set 𝑈 with 𝑥 ∈ 𝑈 is a neighbour-
hood of 𝑥.
Finally, (iii) implies (i). Fix 𝜀 > 0. By the above lemma, 𝑈 = 𝒟𝜀(𝑥) is open, and 𝑥 ∈ 𝑈 .
Then by (iii),

∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑛, 𝑥𝑛 ∈ 𝑈
hence 𝑑(𝑥𝑛, 𝑥) < 𝜀.

Proposition. Let 𝑓∶ 𝑀 → 𝑀′ be a function between metric spaces.
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(a) The following are equivalent for all 𝑥 ∈ 𝑀.

(i) 𝑓 is continuous at 𝑥;
(ii) for all neighbourhoods 𝑉 of 𝑓(𝑥) in 𝑀′, there exists a neighbourhood 𝑈 of 𝑥 in

𝑀 such that 𝑓(𝑈) ⊂ 𝑉 ;
(iii) for all neighbourhoods 𝑉 of 𝑓(𝑥) in𝑀′, 𝑓−1(𝑉) is a neighbourhood of 𝑥 in𝑀.

(b) The following are equivalent.

(i) 𝑓 is continuous;
(ii) 𝑓−1(𝑉) is open in𝑀 for all open subsets 𝑉 of𝑀′.

Proof. First, we show (a)(i) implies (a)(ii). Let 𝑉 be a neighbourhood of 𝑓(𝑥) in 𝑀′. By
definition, ∃𝜀 > 0 such that 𝒟𝜀(𝑓(𝑥)) ⊂ 𝑉 . Since 𝑓 is continuous at 𝑥, there exists 𝛿 > 0
such that 𝑓(𝒟𝛿(𝑥)) ⊂ 𝒟𝜀(𝑓(𝑥)). Then, 𝑈 = 𝒟𝛿(𝑥) is a neighbourhood of 𝑥 in M, and
𝑓(𝑈) ⊂ 𝑉 .
Now, (a)(ii) implies (a)(iii). Let 𝑉 be a neighbourhood of 𝑓(𝑥) in 𝑀′. By (ii), there exists a
neighbourhood of 𝑥 in 𝑀 such that 𝑓(𝑈) ⊂ 𝑉 . Then 𝑈 ⊂ 𝑓−1(𝑉) and since 𝑈 is a neigh-
bourhood of 𝑥 in 𝑀, ther exists 𝑟 > 0 such that 𝒟𝑟(𝑥) ⊂ 𝑈 ⊂ 𝑓−1(𝑉) Thus, 𝑓−1(𝑉) is a
neighbourhood of 𝑥 in𝑀.

Finally, (a)(iii) implies (a)(i). Given 𝜀 > 0, 𝑉 = 𝒟𝜀(𝑓(𝑥)) is a neighbourhood of 𝑓(𝑥) in 𝑉 .
By (iii), 𝑓−1(𝑉) is a neighbourhood of 𝑥 in𝑀. So ∃𝛿 > 0 such that 𝒟𝛿(𝑥) ⊂ 𝑓−1(𝑉). Thus,
𝑓(𝒟𝛿(𝑥)) ⊂ 𝑉 = 𝒟𝜀(𝑓(𝑥)).
Now, (b)(i) implies (b)(ii). Let 𝑉 be open in𝑀′. So pick 𝑥 ∈ 𝑓−1(𝑉). Then, 𝑓(𝑥) ∈ 𝑉 . Since
𝑉 is open, ∃𝜀 > 0,𝒟𝜀(𝑓(𝑥)) ⊂ 𝑉 . Since 𝑓 is continuous at 𝑥, ∃𝛿 > 0, 𝑓(𝒟𝛿(𝑥)) ⊂ 𝒟𝜀(𝑓(𝑥)).
Then,𝒟𝛿(𝑥) ⊂ 𝑓−1(𝒟𝜀(𝑓(𝑥))) ⊂ 𝑓−1(𝑉).
Finally, (b)(ii) implies (b)(i). Consider 𝑥 ∈ 𝑀. Wemust show 𝑓 is continuous at 𝑥. Let 𝜀 > 0.
Consider the ball 𝑉 = 𝒟𝜀(𝑓(𝑥)). This is open in 𝑀′ by the above lemma. By (ii), 𝑓−1(𝑉)
is open in 𝑀. Further, 𝑥 ∈ 𝑓−1(𝑉). So by definition, ∃𝛿 > 0,𝒟𝛿(𝑥) ⊂ 𝑉 , which is exactly
continuity as required.

Definition. The topology of a metric space𝑀 is the family of all open subsets of𝑀.

Proposition. The topology of a metric space satisfies

(i) ∅ and𝑀 are open;

(ii) if 𝑈 𝑖 are open in 𝑀 for 𝑖 ∈ 𝐼 (𝐼 may be countable or uncountable), then ⋃𝑖∈𝐼 𝑈 𝑖 is
open in𝑀;

(iii) if 𝑈,𝑉 are open then 𝑈 ∩ 𝑉 is open.

Proof. (ii): Let 𝑥 ∈ ⋃𝑖∈𝐼 𝑈 𝑖, then ∃𝑖𝑎 ∈ 𝐼, 𝑥 ∈ 𝑈 𝑖𝑎 . Then since𝑈 𝑖𝑎 is open, ∃𝛿 > 0,𝒟𝑟(𝑥) ⊂
𝑈 𝑖𝑎 ⊂ ⋃𝑖∈𝐼 𝑈 𝑖
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(iii) Given 𝑥 ∈ 𝑈 ∩𝑉 , since𝑈 is open then ∃𝑟 > 0,𝒟𝑟(𝑥) ⊂ 𝑈 and ∃𝑠 > 0,𝒟𝑠(𝑥) ⊂ 𝑉 . Then
let 𝑡 = min(𝑟, 𝑠), and𝒟𝑡(𝑥) = 𝒟𝑟(𝑥) ∩ 𝒟𝑠(𝑥) ⊂ 𝑈 ∩ 𝑉 .

4.4. Properties of topology of metric space

Definition. A subspace 𝐴 of a metric space𝑀 is closed in𝑀 if for every sequence (𝑥𝑛) ∈ 𝐴
that is convergent in𝑀,

lim
𝑛→∞

𝑥𝑛 ∈ 𝐴

Lemma. Closed balls are closed.

Proof. Consider ℬ𝑟(𝑥) in𝑀. Consider further (𝑥𝑛) ∈ ℬ𝑟(𝑥) such that 𝑥𝑛 → 𝑧 in𝑀.

𝑑(𝑧, 𝑥) ≤ 𝑑(𝑧, 𝑥𝑛) + 𝑑(𝑥𝑛, 𝑥) ≤ 𝑑(𝑧, 𝑥𝑛) + 𝑟 → 𝑟

Hence 𝑑(𝑧, 𝑥) ≤ 𝑟, so 𝑧 ∈ ℬ𝑟(𝑥).

Example. [0, 1] = ℬ1/2(1/2) is closed in ℝ. This is not open, for instance consider 𝐷𝑟(0) ⊄
[0, 1].

Example. (0, 1) = 𝒟1/2(1/2) is open in ℝ. This is not closed, for instance the sequence
1

𝑛+1
tends to zero in ℝ.

Example. ℝ and ∅ are open and closed in ℝ.

Example. (0, 1] inℝ is neither open nor closed. Consider𝒟𝑟(1) ⊄ (0, 1] and 1
𝑛
→ 0 ∉ (0, 1].

Lemma. Let 𝐴 ⊂ 𝑀. Then 𝐴 is closed in𝑀 if and only if𝑀 ∖ 𝐴 is open in𝑀.

Proof. Let𝐴 be closed. Suppose𝑀∖𝐴 is not open. Then ∃𝑥 ∈ 𝑀∖𝐴, ∀𝑟 > 0,𝒟𝑟(𝑥) ⊄ 𝑀∖𝐴,
so 𝒟𝑟(𝑥) ∩ 𝐴 ≠ ∅. In particular, for every 𝑛 we can choose a point in 𝒟1/𝑛(𝑥) ∩ 𝐴. Then,
𝑑(𝑥𝑛, 𝑥) <

1
𝑛
→ 0 and 𝑥𝑛 ∈ 𝐴 which contradicts the fact that 𝐴 is closed.

Conversely, let us assume 𝑀 ∖ 𝐴 is open, but suppose 𝐴 is not closed. Then there exists a
sequence (𝑥𝑛) ∈ 𝐴 such that 𝑥𝑛 → 𝑥 in𝑀 but 𝑥 ∉ 𝐴. Since 𝑥 ∈ 𝑀 ∖ 𝐴 and𝑀 ∖ 𝐴 is open,
there exists 𝜀 > 0,𝒟𝜀(𝑥) ⊂ 𝑀∖𝐴. Since 𝑥𝑛 → 𝑥, wemust have ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, 𝑥𝑛 ∈ 𝒟𝜀(𝑥)
and hence 𝑥𝑛 ∈ 𝑀 ∖ 𝐴, which is a contradiction.

Example. Let𝑀 be a discretemetric space. Let𝐴 ⊂ 𝑀. Then for all𝑥 ∈ 𝐴,𝒟1(𝑥) = {𝑥} ⊂ 𝐴.
Hence 𝐴 is open. So in a discrete metric space, all subsets are open. Hence every subset is
closed.
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4.5. Homeomorphisms
Definition. A map 𝑓∶ 𝑀 → 𝑀′ between metric spaces is called a homeomorphism if 𝑓 is
a bijection and 𝑓, 𝑓−1 are continuous. Equivalently, 𝑓 is a bijection, and for all open sets 𝑉
in𝑀′, 𝑓−1(𝑉) is open in𝑀, and for all open sets 𝑈 in𝑀, 𝑓(𝑈) is open in𝑀′. If there exists
a homeomorphism between𝑀,𝑀′, we say that𝑀,𝑀′ are homeomorphic.

Example. Consider (0,∞) and (0, 1). Consider the map 𝑥 ↦ 1
𝑥+1

with inverse 𝑥 ↦ 1
𝑥
− 1.

These are continuous, so the metric spaces are homeomorphic.

Remark. Every isometry is a homeomorphism, since it is bijective by definition. It is not
true that every homeomorphism is an isometry.

Consider the identity on ℝ with the discrete metric to ℝ with the Euclidean metric. This is
a continuous bijection whose inverse is not continuous. So it is not true that a continuous
bijection always has a continuous inverse.

4.6. Equivalence of metrics
Definition. Let 𝑑, 𝑑′ be metrics on a set𝑀. We say that 𝑑, 𝑑′ are equivalent, written 𝑑 ∼ 𝑑′,
if they define the same topology. In particular, 𝑈 ⊂ 𝑀 is open in (𝑀, 𝑑) if and only if 𝑈 is
open in (𝑀, 𝑑′). So 𝑑 ∼ 𝑑′ if and only if id∶ (𝑀, 𝑑) → (𝑀, 𝑑′) is a homeomorphism.
Remark. If 𝑑 ∼ 𝑑′, then (𝑀, 𝑑) and (𝑀, 𝑑′) have the same convergent sequences and con-
tinuous maps.

Definition. Let 𝑑, 𝑑′ be metrics on𝑀. Then we say 𝑑, 𝑑′ are uniformly equivalent, written
𝑑 ∼𝑢 𝑑′ if

id∶ (𝑀, 𝑑) → (𝑀, 𝑑′); id∶ (𝑀, 𝑑′) → (𝑀, 𝑑)
are uniformly continuous. We say 𝑑, 𝑑′ are Lipschitz equivalent, written 𝑑 ∼Lip 𝑑′, if the
identity maps above are Lipschitz. Equivalently, 𝑑 ∼Lip 𝑑′ if ∃𝑎 > 0, 𝑏 > 0, 𝑎𝑑(𝑥, 𝑦) ≤
𝑑′(𝑥, 𝑦) ≤ 𝑏𝑑(𝑥, 𝑦). Note, 𝑑 ∼Lip 𝑑′ ⟹ 𝑑 ∼𝑢 𝑑′ ⟹ 𝑑 ∼ 𝑑′.
Example. Given a metric space (𝑀, 𝑑), we define 𝑑′(𝑥, 𝑦) = min(1, 𝑑(𝑥, 𝑦)). This defines a
metric on𝑀, and 𝑑′ ∼𝑢 𝑑.
Example. On𝑀 ×𝑀′, 𝑑1, 𝑑2, 𝑑∞ are pairwise Lipschitz equivalent.

Example. Consider 𝐶[0, 1]. The 𝐿1metric and the uniformmetric are not equivalent. Con-
sider 𝑓𝑛(𝑥) = 𝑥𝑛. This is convergent to zero in the 𝐿1 metric but is not convergent in the
uniform metric.

Example. The discrete metric and Euclidean metric on ℝ are not equivalent. This is be-
cause in the discrete metric all sets are open, but in the Euclidean metric there are some
non-open sets.
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5. Completeness

5.1. Cauchy sequences

In ℝ,ℂ, every Cauchy sequence is convergent. We wish to generalise this notion to an arbit-
rary metric space. Recall that a sequence (𝑥𝑛) in ℝ or ℂ is bounded if there exists 𝑐 ∈ ℝ+

such that ∀𝑛 ∈ ℕ, |𝑥𝑛| ≤ 𝑐.

Definition. A sequence (𝑥𝑛) in a metric space𝑀 is said to be Cauchy if

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑚, 𝑛 ≥ 𝑁, 𝑑(𝑥𝑚, 𝑥𝑛) < 𝜀

The sequence is bounded if

∃𝑧 ∈ 𝑀, ∃𝑟 > 0, ∀𝑛 ∈ ℕ, 𝑥𝑛 ∈ ℬ𝑟(𝑧)

This is equivalent to
∀𝑧 ∈ 𝑀, ∃𝑟 > 0, ∀𝑛 ∈ ℕ, 𝑥𝑛 ∈ ℬ𝑟(𝑧)

by considering the triangle inequality around the given 𝑧 point. In particular, if the metric
arises from a norm, (𝑥𝑛) is bounded if and only if ‖𝑥𝑛‖ is bounded.

Lemma. If a sequence is convergent, it is Cauchy. If a sequence is Cauchy, it is bounded.

Proof. Let (𝑥𝑛) be a sequence in𝑀. First, we assume that (𝑥𝑛) is convergent in𝑀, so let 𝑥
be the limit. Given 𝜀 > 0, there exists 𝑁 ∈ ℕ such that ∀𝑛 ≥ 𝑁, 𝑑(𝑥𝑛, 𝑥) < 𝜀. Then, for all
𝑚, 𝑛 ≥ 𝑁, we have 𝑑(𝑥𝑚, 𝑥𝑛) ≤ 𝑑(𝑥𝑚, 𝑥) + 𝑑(𝑥, 𝑥𝑛) ≤ 2𝜀 as required. So (𝑥𝑛) is Cauchy.

Now conversely, we assume (𝑥𝑛) is Cauchy. There exists 𝑛 ∈ ℕ such that ∀𝑚, 𝑛 ≥ 𝑁, we
have 𝑑(𝑥𝑚, 𝑥𝑛) < 1. In particular, 𝑑(𝑥𝑛, 𝑥𝑁) < 1 for 𝑛 ≥ 𝑁. In other words, 𝑥𝑛 ∈ ℬ1(𝑥𝑁).
Now, let 𝑟 = max {𝑑(𝑥1, 𝑥𝑁),… , 𝑑(𝑥𝑁−1, 𝑥𝑁), 1}. This 𝑟 is a bound for all elements of the
sequence; for all 𝑛 ∈ ℕ, 𝑥𝑛 ∈ ℬ𝑟(𝑥𝑁).

Remark. Boundedness does not imply the sequence is Cauchy. For instance, consider the
sequence 0, 1, 0, 1,… in ℝ. If a sequence is Cauchy, it is not necessarily convergent in an
arbitrary metric space (not ℝ,ℂ). For instance, consider 𝑥𝑛 =

1
𝑛
in (0,∞). This is certainly

not convergent, since the limit cannot be zero.

5.2. Definition of completeness

Definition. A metric space𝑀 is called complete if every Cauchy sequence in𝑀 converges
in𝑀.

Example. ℝ,ℂ are complete.
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5.3. Completeness of product spaces
Proposition. Product spaces of complete spaces are complete. More precisely, if𝑀,𝑀′ are
complete, then so is𝑀 ⊕𝑝 𝑀′.

Proof. Let (𝑎𝑛) be a Cauchy sequence in the product space 𝑀 ⊕𝑝 𝑀′. We will write 𝑎𝑛 =
(𝑥𝑛, 𝑥′𝑛) for all 𝑛. Then, since (𝑎𝑛) is Cauchy,

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑚, 𝑛 ∈ 𝑁, 𝑑𝑝(𝑎𝑚, 𝑎𝑛) < 𝜀

Then, for all𝑚, 𝑛 ≥ 𝑁,

𝑑(𝑥𝑚, 𝑥𝑛) ≤ max {𝑑(𝑥𝑚, 𝑥𝑛), 𝑑(𝑥′𝑚, 𝑥′𝑛)} ≤ 𝑑𝑝(𝑎𝑚, 𝑎𝑛) < 𝜀

Hence (𝑥𝑛) is Cauchy in𝑀, and similarly (𝑥′𝑚) is Cauchy in𝑀′. Since𝑀,𝑀′ are complete,
(𝑥𝑛), (𝑥′𝑛) are convergent in𝑀,𝑀′ to 𝑥, 𝑥′. Now, let 𝑎 = (𝑥, 𝑥′). Then,

𝑑𝑝(𝑎𝑛, 𝑎) ≤ 𝑑1(𝑎𝑛, 𝑎) = 𝑑(𝑥𝑛, 𝑥) + 𝑑(𝑥′𝑛, 𝑥′) → 0

So the product space is complete.

Remark. (𝑎𝑛) is Cauchy in 𝑀 ⊕𝑝 𝑀′ if and only if (𝑥𝑛) is Cauchy in 𝑀 and (𝑥′𝑛) is Cauchy
in𝑀′.

Corollary. ℝ𝑛, ℂ𝑛 are complete in the ℓ𝑝 metric. In particular, 𝑛-dimensional real or com-
plex Euclidean space is complete.

5.4. Completeness of subspaces and function spaces
Theorem. Let 𝑆 be any set. Then, ℓ∞(𝑆), the set of bounded scalar functions on 𝑆, is com-
plete in the uniform metric 𝐷.

Proof. Let (𝑓𝑛) be a Cauchy sequence in ℓ∞(𝑆). Then,

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑚, 𝑛 ≥ 𝑁,𝐷(𝑥𝑚, 𝑥𝑛) = sup
𝑥∈𝑆

|𝑓𝑚(𝑥) − 𝑓𝑛(𝑥)| < 𝜀

In other words, ∀𝑚, 𝑛 ≥ 𝑁, ∀𝑥 ∈ 𝑆, |𝑓𝑚(𝑥) − 𝑓𝑛(𝑥)| < 𝜀. So (𝑓𝑛) is uniformly Cauchy as
defined previously. As shown previously, (𝑓𝑛) is uniformly convergent. Hence, there is a
scalar function 𝑓 on 𝑆 such that 𝑓𝑛 → 𝑓 uniformly on 𝑆. We have also shown previously
that the uniform limit 𝑓 of bounded functions (𝑓𝑛) is bounded. In other words, 𝑓 ∈ ℓ∞(𝑆).
Now it remains to show that 𝑓𝑛 → 𝑓 in the uniform metric.

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑀, ∀𝑥 ∈ 𝑆, |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀

Hence,
∀𝑛 ≥ 𝑁, sup

𝑥∈𝑆
|𝑓𝑛(𝑥) − 𝑓(𝑥)| = 𝐷(𝑓𝑛, 𝑓) ≤ 𝜀

which is convergence in the metric as required.
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Proposition. Let 𝑁 be a subspace of a metric space𝑀. Then,

(i) If 𝑁 is complete, 𝑁 is closed in𝑀.

(ii) If𝑀 is complete and 𝑁 is closed in𝑀, then 𝑁 is complete.

In other words, in a complete metric space, a subspace is complete if and only if it is closed.

Proof. To prove (i), we let (𝑥𝑛) be a sequence in𝑁 and assume that 𝑥𝑛 → 𝑥 in𝑀. Wewant to
show that 𝑥 ∈ 𝑁. We know (𝑥𝑛) is convergent in𝑀, so it is Cauchy in𝑀. So (𝑥𝑛) is Cauchy
in 𝑁. Since 𝑁 is complete, 𝑥𝑛 → 𝑦 in 𝑁. So 𝑥𝑛 → 𝑦 in𝑀. By uniqueness of limits, 𝑥 = 𝑦 as
required.

Now we want to prove (ii) is complete. Let (𝑥𝑛) be a Cauchy sequence in 𝑁. Then (𝑥𝑛) is
Cauchy in 𝑀. Since 𝑀 is complete, 𝑥𝑛 → 𝑥 in 𝑀 for some 𝑥 ∈ 𝑀. Since 𝑁 is closed in 𝑀,
𝑥 ∈ 𝑁. So 𝑥𝑛 → 𝑥 in 𝑁.

Theorem. Let (𝑀, 𝑑) be a metric space, and define 𝐶𝑏(𝑀) to be the set of functions 𝑓 in
ℓ∞(𝑀) such that 𝑓 is continuous. This is a subspace of ℓ∞(𝑀) in the uniform metric 𝐷.
𝐶𝑏(𝑀) is complete in the uniform metric.

Proof. By the above proposition, it is sufficient to show that 𝐶𝑏(𝑀) is closed in ℓ∞(𝑀). Let
(𝑓𝑛) be a sequence in 𝐶𝑏(𝑀) and we assume that 𝑓𝑛 → 𝑓 in ℓ∞(𝑀). We want to show that
𝑓𝑛 ∈ 𝐶𝑏(𝑀). It is now sufficient to show that 𝑓 is continuous, or equivalently, continuous at
every point in𝑀. Let 𝑎 ∈ 𝑀, and let 𝜀 > 0. Since 𝑓𝑛 → 𝑓 in ℓ∞(𝑀), we can fix 𝑛 ∈ ℕ such
that 𝐹(𝑓𝑛, 𝑓) < 𝜀. Since 𝑓𝑛 is continuous (at 𝑎),

∃𝛿 > 0, ∀𝑥 ∈ 𝑀, 𝑑(𝑥, 𝑎) < 𝛿 ⟹ |𝑓𝑛(𝑥) − 𝑓𝑛(𝑎)| < 𝜀

Hence, ∀𝑥 ∈ 𝑀, if 𝑑(𝑥, 𝑎) < 𝛿 we have

|𝑓(𝑥) − 𝑓(𝑎)| ≤ |𝑓(𝑥) − 𝑓𝑛(𝑥)| + |𝑓𝑛(𝑥) − 𝑓𝑛(𝑎)| + |𝑓𝑛(𝑎) − 𝑓(𝑎)|
≤ 2𝐷(𝑓𝑛, 𝑓) + |𝑓𝑛(𝑥) − 𝑓𝑛(𝑎)|
< 3𝜀

Corollary. Consider 𝐶[𝑎, 𝑏], the space of continuous functions on [𝑎, 𝑏]. This space is com-
plete in the uniform metric, since 𝐶[𝑎, 𝑏] = 𝐶𝑏[𝑎, 𝑏].
Definition. Let 𝑆 be a set, and (𝑁, 𝑒) be a metric space. Then we generalise ℓ∞(𝑆) to the
following definition.

ℓ∞(𝑆, 𝑁) = {𝑓∶ 𝑆 → 𝑁∶ 𝑓 is bounded}
where 𝑓 is bounded if there exists 𝑦 ∈ 𝑁, 𝑟 > 0 such that ∀𝑥 ∈ 𝑆, 𝑓(𝑥) ∈ ℬ𝑟(𝑦). If 𝑔∶ 𝑆 → 𝑁
is a bounded function, ∀𝑥 ∈ 𝑆, 𝑔(𝑥) ∈ ℬ𝑠(𝑧), then

∀𝑥 ∈ 𝑆, 𝑒(𝑓(𝑥), 𝑔(𝑥)) ≤ 𝑒(𝑓(𝑥), 𝑦) + 𝑒(𝑦, 𝑧) + 𝑒(𝑧, 𝑔(𝑥)) ≤ 𝑟 + 𝑒(𝑦, 𝑧) + 𝑠
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This is a uniform bound for all 𝑥, so we may take the supremum. So sup𝑥∈𝑆 𝑒(𝑓(𝑥), 𝑔(𝑥))
exists and we denote this by

𝒟(𝑓, 𝑔) = sup
𝑥∈𝑆

𝑒(𝑓(𝑥), 𝑔(𝑥))

This can be shown to be a metric, called the uniform metric on ℓ∞(𝑆, 𝑁). Now, let 𝑆 = 𝑀,
where (𝑀, 𝑑) is a metric space. We define

𝐶𝑏(𝑀,𝑁) = {𝑓∶ 𝑀 → 𝑁∶ 𝑓 continuous and bounded}

Note that 𝐶𝑏(𝑀,𝑁) is a subspace of ℓ∞(𝑀,𝑁) with the uniform metric.

Theorem. Let 𝑆 be a set, let (𝑀, 𝑑) be a metric space, and let (𝑁, 𝑒) be a complete metric
space. Then

(i) ℓ∞(𝑆, 𝑁) is complete in the uniform metric 𝐷;
(ii) 𝐶𝑏(𝑀,𝑁) is complete in the uniform metric 𝐷.

Proof. We first prove part (i). Let (𝑓𝑛) be a Cauchy sequence in ℓ∞(𝑆, 𝑁). We first show that
(𝑓𝑛) is pointwise Cauchy. Let 𝑥 ∈ 𝑆.

∀𝜀 > 0, ∃𝐾 ∈ ℕ, ∀𝑖, 𝑗 ≥ 𝐾,𝐷(𝑓𝑖, 𝑓𝑗) < 𝜀

In particular, 𝑒(𝑓𝑖(𝑥), 𝑓𝑗(𝑥)) ≤ 𝐷(𝑓𝑖, 𝑓𝑗) < 𝜀 for 𝑖, 𝑗 ≥ 𝐾. So the sequence (𝑓𝑘(𝑥))𝑘 is Cauchy
in𝑁. Since𝑁 is complete, (𝑓𝑘(𝑥))𝑘 converges. This holds for all 𝑥 ∈ 𝑆, hence we can define
𝑓∶ 𝑆 → 𝑁 by 𝑓(𝑥) = lim𝑘→∞ 𝑓𝑘(𝑥).
Now, we must show that 𝑓 is bounded, such that 𝑓 ∈ ℓ∞(𝑆, 𝑁). Since 𝑓𝑘 is Cauchy in
the uniform metric 𝐷, there exists 𝐾 ∈ ℕ such that ∀𝑖, 𝑗 ≥ 𝐾, 𝐷(𝑓𝑖, 𝑓𝑗) < 1. In par-
ticular, for all 𝑖 ≥ 𝐾, 𝐷(𝑓𝑖, 𝑓𝐾) < 1. Since 𝑓𝐾 is bounded, there exists 𝑦 ∈ 𝑁, 𝑟 > 0
such that ∀𝑥 ∈ 𝑆, 𝑓𝐾(𝑥) ∈ ℬ𝑟(𝑦). Then, by the triangle inequality, for a fixed 𝑥 ∈ 𝑆,
∀𝑖 ≥ 𝐾, 𝑒(𝑓𝑖(𝑥), 𝑓𝐾(𝑥)) ≤ 𝐷(𝑓𝑖(𝑥), 𝑓𝐾(𝑥)) < 1. Let 𝑖 → ∞, then 𝑒(𝑓𝑖(𝑥), 𝑓𝐾(𝑥)) ≤ 1. Hence
𝑒(𝑓(𝑥), 𝑦) ≤ 𝑒(𝑓(𝑥), 𝑓𝐾(𝑥)) + 𝑒(𝑓𝐾(𝑥), 𝑦) ≤ 1 + 𝑟. But since this is true for all 𝑥, 1 + 𝑟 is a
uniform bound; ∀𝑥 ∈ 𝑆, 𝑓(𝑥) ∈ ℬ𝑟+1(𝑦).
Now we will show that 𝑓𝑘 → 𝑓 uniformly in 𝐷. Again, we use

∀𝜀 > 0, ∃𝐾 ∈ ℕ, ∀𝑖, 𝑗 ≥ 𝐾,𝐷(𝑓𝑖, 𝑓𝑗) < 𝜀

So choose 𝑖 ≥ 𝐾, and 𝑥 ∈ 𝑆. Then for all 𝑗 ≥ 𝐾, 𝑒(𝑓𝑖(𝑥), 𝑓𝑗(𝑥)) ≤ 𝐷(𝑓𝑖, 𝑓𝑗) < 𝜀. As 𝑗 → ∞,
𝑒(𝑓(𝑥), 𝑓𝑖(𝑥)) ≤ 𝜀, because metrics are continuous. But since 𝑥 was arbitrary, we have a
uniform distance 𝐷(𝑓, 𝑓𝑖) < 𝜀. This holds for all 𝑖 ≥ 𝐾, so we have uniform convergence.

Now we prove part (ii). By part (i) and an above proposition, it is enough to show that
𝐶𝑏(𝑀,𝑁) is closed in ℓ∞(𝑀,𝑁). Let (𝑓𝑘) be a sequence in𝐶𝑏(𝑀,𝑁) and𝑓𝑘 → 𝑓 in ℓ∞(𝑀,𝑁).
We require 𝑓 ∈ 𝐶𝑏(𝑀,𝑁), so it is enough to show that 𝑓 is continuous. This is exactly the
proof that the uniform limit of continuous functions is continuous. Let 𝑎 ∈ 𝑀, 𝜀 > 0. Then,
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since 𝑓𝑘 → 𝑓 in ℓ∞(𝑀,𝑁), we can fix 𝑘 ∈ ℕ such that 𝐷(𝑓𝑘, 𝑓) < 𝜀. Since 𝑓𝑘 is continuous,
∃𝛿 > 0, ∀𝑥 ∈ 𝑀, 𝑑(𝑥, 𝑎) < 𝛿 ⟹ 𝑒(𝑓𝑘(𝑥), 𝑓𝑘(𝑎)) < 𝜀.

∀𝑥 ∈ 𝑀, 𝑓(𝑥, 𝑎) < 𝛿 ⟹ 𝑒(𝑓(𝑥), 𝑓(𝑎)) ≤ 𝑒(𝑓(𝑥), 𝑓𝑘(𝑥)) + 𝑒(𝑓𝑘(𝑥), 𝑓𝑘(𝑎)) + 𝑒(𝑓𝑘(𝑎), 𝑓(𝑎))
≤ 3𝜀
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6. Contraction mapping theorem
6.1. Contraction mappings
Definition. A function 𝑓∶ 𝑀 → 𝑀′ is called a contraction mapping if ∃𝜆, 0 ≤ 𝜆 < 1 such
that

∀𝑥, 𝑦 ∈ 𝑀, 𝑑′(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝜆𝑑(𝑥, 𝑦)
so 𝑓 is 𝜆-Lipschitz.

6.2. Contraction mapping theorem
This theorem is also called Banach’s fixed point theorem.

Theorem. Let𝑀 be a non-empty complete metric space. Let 𝑓∶ 𝑀 → 𝑀 be a contraction
mapping. Then 𝑓 has a unique fixed point:

∃!𝑧 ∈ 𝑀, 𝑓(𝑧) = 𝑧

Proof. Let 𝜆 such that 0 ≤ 𝜆 < 1 and ∀𝑥, 𝑦 ∈ 𝑀, 𝑑′(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝜆𝑑(𝑥, 𝑦). First we show
uniqueness. Suppose there were two fixed points 𝑓(𝑧) = 𝑧, 𝑓(𝑤) = 𝑤. Then 𝑑(𝑧, 𝑤) =
𝑑(𝑓(𝑧), 𝑓(𝑤)) ≤ 𝜆𝑑(𝑧, 𝑤) < 𝑑(𝑧, 𝑤). Hence 𝑑(𝑧, 𝑤) = 0 so 𝑧 = 𝑤.
Now we show existence. Fix a starting point 𝑥0 ∈ 𝑀. Let 𝑥𝑛 = 𝑓(𝑥𝑛−1) for all 𝑛 ∈ ℕ, so
𝑥𝑛 = 𝑓𝑛(𝑥0). First, observe that for all 𝑛 ∈ ℕ,

𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑑(𝑓(𝑥𝑛−1), 𝑓(𝑥𝑛)) ≤ 𝜆𝑑(𝑥𝑛−1, 𝑥𝑛) ≤ ⋯ ≤ 𝜆𝑛𝑑(𝑥0, 𝑥1)
For𝑚 ≥ 𝑛, we have

𝑑(𝑥𝑛, 𝑥𝑚) ≤
𝑚−1
∑
𝑘=𝑛

𝑑(𝑥𝑘, 𝑥𝑘+1) ≤
𝑚−1
∑
𝑘=𝑛

𝜆𝑘𝑑(𝑥0, 𝑥1) ≤
𝜆𝑛

1 − 𝜆𝑑(𝑥0, 𝑥1)

Since 𝜆𝑛

1−𝜆
𝑑(𝑥0, 𝑥1) → 0,

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, 𝜆𝑛
1 − 𝜆𝑑(𝑥0, 𝑥1) < 𝜀

Hence, ∀𝑚 ≥ 𝑛 ≥ 𝑁, 𝑑(𝑥𝑛, 𝑥𝑚) < 𝜀. So the sequence (𝑥𝑛) is Cauchy. Since 𝑀 is complete,
(𝑥𝑛) is convergent to some point 𝑧 ∈ 𝑀. 𝑓 is continuous since it is a contraction, so 𝑓(𝑥𝑛) →
𝑧 so 𝑓(𝑧) = 𝑧. So the fixed point exists.

Remark. Letting𝑚 → ∞ in the inequality for 𝑑(𝑥𝑛, 𝑥𝑚), 𝑑(𝑥𝑛, 𝑧) ≤
𝜆𝑛

1−𝜆
𝑑(𝑥0, 𝑥1). So 𝑥𝑛 → 𝑧

exponentially fast. Consider 𝑓∶ ℝ∖{0} → ℝ∖{0}, and 𝑥 ↦ 𝑥
2
. This is a contraction, but there

is no fixed point. This is because ℝ ∖ {0} is not complete. Consider instead 𝑓∶ ℝ → ℝ, 𝑥 ↦
𝑥+1. This has no fixed point, since 𝑓 is an isometry (𝜆 = 1) and not a contraction. Consider
further 𝑓∶ [1,∞) → [1,∞)mapping 𝑥 ↦ 𝑥+ 1

𝑥
. Certainly |𝑓(𝑥) − 𝑓(𝑦)| < |𝑥 − 𝑦|. [1,∞) is

closed inℝ so it is complete. However this is not a contraction; even though |𝑓(𝑥) − 𝑓(𝑦)| <
|𝑥 − 𝑦|, there is no upper bound 𝜆. There are no fixed points.
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6.3. Application of contraction mapping theorem
Let 𝑦0 ∈ ℝ. Then the initial value problem𝑓′(𝑡) = 𝑓(𝑡2) and𝑓(0) = 𝑦0 has a unique solution
on [0, 1

2
]. In other words, there exists a unique differentiable function 𝑓∶ [0, 1

2
] → [0, 1

2
]

such that 𝑓(0) = 𝑦0 and 𝑓′(𝑡) = 𝑓(𝑡2) for all 𝑡 in the domain.

First, observe that if 𝑓 is a solution then certainly it is continuous, so 𝑓 ∈ 𝐶[0, 1
2
]. Further,

by the fundamental theorem of calculus, it satisfies

𝑓(𝑡) = 𝑦0 +∫
𝑡

0
𝑓(𝑠2) d𝑠

Note that 𝑓′(𝑠) = 𝑓(𝑠2) is continuous. Conversely, if 𝑓 ∈ 𝐶[0, 1
2
] and 𝑓(𝑡) = 𝑦0 +∫

𝑡
0 𝑓(𝑠2) d𝑠

then 𝑓 is a solution to the initial value problem.

Let𝑀 = 𝐶[0, 1
2
]with the uniformmetric. This is non-empty and complete. Then we define

the map 𝑇 ∶ 𝑀 → 𝑀 by

(𝑇𝑔)(𝑡) = 𝑦0 +∫
𝑡

0
𝑔(𝑠2) d𝑠

Note that 𝑇𝑔 is well-defined since 𝑔(𝑠2) is continuous. Moreover, by the fundamental the-
orem of calculus, 𝑇𝑔 is differentiable and (𝑇𝑔)′(𝑡) = 𝑔(𝑡2). Thus, 𝑓 is a solution to the initial
value problem if and only if 𝑓 ∈ 𝑀 and 𝑇𝑓 = 𝑓.
Now, if 𝑇 is a contraction, we can use the contraction mapping theorem to assert that there
is exactly one fixed point. For 𝑔, ℎ ∈ 𝑀, 𝑡 ∈ [0, 1

2
], consider

|(𝑇𝑔)(𝑡) − (𝑇ℎ)(𝑡)| =
||||
∫

𝑡

0
[𝑔(𝑠2) − ℎ(𝑠2)] d𝑠

||||
≤ 𝑡 sup

𝑠∈[0, 12 ]
||𝑔(𝑠2) − ℎ(𝑠2)|| ≤ 1

2𝐷(𝑔, ℎ)

Taking the supremum over 𝑡 gives 𝐷(𝑇𝑔, 𝑇ℎ) ≤ 1
2
𝐷(𝑔, ℎ), and so there is exactly one fixed

point.

Remark. The above shows that for any 𝛿 ∈ (0, 1) there is a unique solution to the initial
value problem on [0, 𝛿], called 𝑓𝛿, since 𝛿 < 1 is required for the map to be a contraction.
For 0 < 𝛿 < 𝜇 < 1, 𝑓𝜇||[0,𝛿] = 𝑓𝛿 by uniqueness. So we can combine the solutions together
to yield a unique solution on [0, 1).

6.4. Lindelöf–Picard theorem
Theorem. Let 𝑛 ∈ ℕ, 𝑦0 ∈ ℝ𝑛, and 𝑎, 𝑏, 𝑅 ∈ ℝ, such that 𝑎 < 𝑏 and 𝑅 > 0. Let 𝜙∶ [𝑎, 𝑏] ×
ℬ𝑅(𝑦0) → ℝ𝑛 be a continuous function. Given that there exists 𝐾 > 0 such that ∀𝑡 ∈
[𝑎, 𝑏], ∀𝑥, 𝑦 ∈ ℬ𝑅(𝑦0), such that

‖𝜙(𝑡, 𝑥) − 𝜙(𝑡, 𝑦)‖ ≤ 𝐾‖𝑥 − 𝑦‖
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Then, ∃𝜀 > 0 such that ∀𝑡, 𝑡0 ∈ [𝑎, 𝑏], the initial value problem

𝑓′(𝑡) = 𝜙(𝑡, 𝑓(𝑡)); 𝑓(𝑡0) = 𝑦0

has a unique solution on [𝑐, 𝑑] = [𝑡0 − 𝜀, 𝑡0 + 𝜀] ∩ [𝑎, 𝑏].
Remark. If𝑓 is a solution of the initial value problem, implicitly this includes the assumption
that 𝑓(𝑡) ∈ 𝐵𝑟(𝑦0) for all 𝑡 ∈ [𝑐, 𝑑]. Note that if 𝑓∶ [𝑐, 𝑑] → ℝ𝑛, we let 𝑓𝑘∶ [𝑐, 𝑑] → ℝ
be the 𝑘th component of 𝑓, and 𝑓𝑘 = 𝑞𝑘 ∘ 𝑓 where 𝑞𝑘 is the 𝑘th coordinate projection.
Then, 𝑓(𝑡) = (𝑓1(𝑡),… , 𝑓𝑛(𝑡)) and we define 𝑓 to be differentiable if and only if all of the
components are differentiable, with 𝑓′(𝑡) = (𝑓′1(𝑡),… , 𝑓′𝑛(𝑡)). Note further, if 𝑓 is continuous,
then so are 𝑓𝑘, hence 𝑓𝑘 are integrable. So we define

∫
𝑑

𝑐
𝑓(𝑡) d𝑡 = 𝑣 = (∫

𝑑

𝑐
𝑓1(𝑡) d𝑡 ,… ,∫

𝑑

𝑐
𝑓𝑛(𝑡) d𝑡)

Note that we can use the Cauchy–Schwarz inequality to give

‖𝑣‖2 =
𝑛
∑
𝑘=1

𝑣2𝑘

=
𝑛
∑
𝑘=1

𝑣𝑘∫
𝑑

𝑐
𝑓𝑘(𝑡) d𝑡

= ∫
𝑑

𝑐

𝑛
∑
𝑘=1

𝑣𝑘𝑓𝑘(𝑡) d𝑡

= ∫
𝑑

𝑐
𝑣 ⋅ 𝑓(𝑡) d𝑡

≤ ∫
𝑑

𝑐
‖𝑣‖ ⋅ ‖𝑓(𝑡)‖ d𝑡

= ‖𝑣‖∫
𝑑

𝑐
‖𝑓(𝑡)‖ d𝑡

Hence,
‖
‖‖‖
∫

𝑑

𝑐
𝑓(𝑡) d𝑡

‖
‖‖‖
≤ ∫

𝑑

𝑐
‖𝑓(𝑡)‖ d𝑡 ≤ (𝑑 − 𝑐) sup

𝑡∈[𝑐,𝑑]
‖𝑓(𝑡)‖

Proof. Recall that closed balls are closed, hence ℬ𝑅(𝑦0) is a closed subset of ℝ𝑛. So 𝜙 is
a continuous function on the closed and bounded set [𝑎, 𝑏] × ℬ𝑅(𝑦0). It follows that 𝜙 is
bounded. Now, let 𝑐 = sup {‖𝜙(𝑡, 𝑥)‖∶ 𝑡 ∈ [𝑎, 𝑏], 𝑥 ∈ ℬ𝑅(𝑦0)}. Let 𝜀 = min(𝑅

𝑐
, 1
2𝐾
). Let

𝑡0 ∈ [𝑎, 𝑏] and let [𝑐, 𝑑] = [𝑡0 − 𝜀, 𝑡0 + 𝜀] ∩ [𝑎, 𝑏]. We need to show that there exists a unique
differentiable function 𝑓∶ [𝑐, 𝑑] → ℝ𝑛 such that 𝑓(𝑡0) = 𝑦0 and 𝑓′(𝑡) = 𝜙(𝑡, 𝑓(𝑡)) for all
𝑡 ∈ [𝑐, 𝑑]. Sinceℬ𝑅(𝑦0) is closed inℝ𝑛, and sinceℝ𝑛 is complete,ℬ𝑅(𝑦0) is complete. Then,
𝑀 = 𝐶([𝑐, 𝑑], ℬ𝑅(𝑦0)) is complete in the uniform metric 𝐷. This is certainly non-empty;
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consider the constant function yielding 𝑦0. 𝑓 is a solution to the initial value problem if
𝑓 ∈ 𝑀 and 𝑓′(𝑡) = 𝑦0 + ∫𝑡

𝑡0 𝜙(𝑠, 𝑓(𝑠)) d𝑠, from the fundamental theorem of calculus applied
coordinatewise. We define 𝑇 ∶ 𝑀 → 𝑀 mapping 𝑔 ↦ 𝑇𝑔 where 𝑇𝑔 is given by

(𝑇𝑔)(𝑡) = 𝑦0 +∫
𝑡

𝑡0
𝜙(𝑠, 𝑔(𝑠)) d𝑠

Wemust show 𝑇 is well defined. First, note that the integral is well defined; 𝑠 ↦ 𝜙(𝑠, 𝑔(𝑠)) is
continuous so integrable. By the fundamental theorem of calculus, 𝑇𝑔 is differentiable and
the derivative is (𝑇𝑔)′(𝑡) = 𝜙(𝑡, 𝑔(𝑡)). In particular, 𝑇𝑔∶ [𝑐, 𝑑] → ℝ𝑛 is continuous. Finally,
for 𝑡 ∈ [𝑐, 𝑑],

‖(𝑇𝑔)(𝑡) − 𝑦0‖ =
‖
‖‖‖
∫

𝑡

𝑡0
𝜙(𝑠, 𝑔(𝑠)) d𝑠

‖
‖‖‖
≤ |𝑡 − 𝑡0| sup

𝑠∈[𝑐,𝑑]
‖𝜙(𝑠, 𝑔(𝑠))‖ ≤ 𝜀𝑐 ≤ 𝑅

So 𝑇𝑔 ∈ 𝑀. Recall that 𝑓 is a solution of the initial value problem if and only if 𝑓 ∈ 𝑀 and
𝑇𝑓 = 𝑓. Now we must show that 𝑇 has a unique fixed point, so we will show that 𝑇 is a
contraction. Let 𝑡 ∈ [𝑐, 𝑑] and 𝑔, ℎ ∈ 𝑀.

‖(𝑇𝑔)(𝑡) − (𝑇ℎ)(𝑡)‖ =
‖
‖‖‖
∫

𝑡

𝑡0
[𝜙(𝑠, 𝑔(𝑠)) − 𝜙(𝑠, ℎ(𝑠))] d𝑠

‖
‖‖‖

Note that ‖𝜙(𝑠, 𝑔(𝑠)) − 𝜙(𝑠, ℎ(𝑠))‖ ≤ 𝐾‖𝑔(𝑠) − ℎ(𝑠)‖ ≤ 𝐾 ⋅ 𝐷(𝑔, ℎ).

‖(𝑇𝑔)(𝑡) − (𝑇ℎ)(𝑡)‖ = |𝑡 − 𝑡0| ⋅ 𝐾 ⋅ 𝐾(𝑔, ℎ) ≤ 𝜀𝐾𝐷(𝑔, ℎ)

Taking the supremum over 𝑡 ∈ (𝑐, 𝑑),

𝐷(𝑇𝑔, 𝑇ℎ) ≤ 𝜀𝐾𝐷(𝑔, ℎ) ≤ 1
2𝐷(𝑔, ℎ)

So 𝑇 is a contraction. By the contraction mapping theorem, 𝑇 has a unique fixed point in
𝑀.

Remark. For any 𝛿 ∈ (0, 1), taking 𝜀 = min(𝑅
𝑐
, 𝛿
𝐾
) works. But by the uniqueness of the

solution, the choice does not matter for constructing the solution. So we can construct the
solution for 𝜀 = min(𝑅

𝑐
, 1
𝐾
), on (𝑡0−𝜀, 𝑡0+𝜀)∩[𝑎, 𝑏]. In general, there is no solution on [𝑎, 𝑏].

Finally, note that the above theorem can handle any 𝑛th order ODE for any 𝑛 ∈ ℕ.
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7. Topology
7.1. Definitions
Definition. Let 𝑋 be a set. A topology on 𝑋 is a family 𝜏 of subsets of 𝑋 (so 𝜏 ⊂ 𝒫(𝑋)) such
that

(i) ∅,𝑋 ∈ 𝜏;

(ii) if 𝑈 𝑖 ∈ 𝜏 for all 𝑖 ∈ 𝐼 where 𝐼 is some index set, then⋃𝑖∈𝐼 𝑈 𝑖 ∈ 𝜏; and

(iii) if 𝑈,𝑉 ∈ 𝜏 then 𝑈 ∩ 𝑉 ∈ 𝜏.

A topological space is a pair (𝑋, 𝜏)where 𝑋 is a set and 𝜏 is a topology on 𝑋 . Members of 𝜏 are
called open sets in the topology. So we say that 𝑈 ⊂ 𝑋 is open in 𝑋 , or 𝑈 is 𝜏-open, if 𝑈 ∈ 𝜏.

Remark. If 𝑈 𝑖 ∈ 𝜏 for 𝑖 = 1,… , 𝑛, then⋂𝑛
𝑖=1𝑈 𝑖 ∈ 𝜏.

Example. Let (𝑀, 𝑑) be a metric space. Recall that 𝑈 ⊂ 𝑀 is open in the metric sense if
∀𝑥 ∈ 𝑈, ∃𝑟 > 0,ℬ𝑟(𝑥) ⊂ 𝑈 . We may say that 𝑈 is 𝑑-open. We have already proven that the
family of 𝑑-open sets is a topology on𝑀. This is a metric topology.

Definition. Let (𝑋, 𝜏) be a topological space. Thenwe say that𝑋 ismetrisable (or sometimes
we say 𝜏 is metrisable) if there exists a metric 𝑑 on 𝑋 such that 𝜏 is the metric topology on 𝑋
induced by 𝑑. In other words, 𝑈 ⊂ 𝑋 is 𝜏-open if and only if 𝑈 is 𝑑-open. If 𝑑′ ∼ 𝑑, then 𝑑′
also induces the same topology 𝜏 on 𝑋 .

Example. The indiscrete topology on a set 𝑋 is a topology 𝜏 = {∅, 𝑋}. If |𝑋| ≥ 2, then this
is not metrisable. Let 𝑑 be a metric on 𝑋 . Then let 𝑥 ≠ 𝑦 ∈ 𝑋 , let 𝑟 = 𝑑(𝑥, 𝑦), and finally let
𝑈 = 𝒟𝑟(𝑥). We know that 𝑈 is 𝑑-open. But since 𝑥 ∈ 𝑈, 𝑦 ∉ 𝑈 , 𝑈 ∉ 𝜏.

Definition. If 𝜏1, 𝜏2 are topologies on 𝑋 , we say that 𝜏1 is coarser than 𝜏2, or that 𝜏2 is finer
than 𝜏1, if 𝜏1 ⊂ 𝜏2. For example, the indiscrete topology on 𝑋 is the coarsest topology on 𝑋 .

Example. The discrete topology on a set 𝑋 is 𝜏 = 𝒫(𝑋). This is the finest topology on 𝑋 .
This is metrisable by the discrete metric.

Definition. A topological space 𝑋 isHausdorff if ∀𝑥 ≠ 𝑦 in 𝑋 , there exist open sets𝑈,𝑉 in
𝑋 such that 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉,𝑈 ∩ 𝑉 = ∅. Informally, 𝑥, 𝑦 are ‘separated by open sets’.

Proposition. Metric spaces are Hausdorff.

Proof. Let 𝑥 ≠ 𝑦 be points in ametric space (𝑀, 𝑑). Let 𝑟 > 0 such that 2𝑟 < 𝑑(𝑥, 𝑦). Then let
𝑈 = 𝒟𝑟(𝑥), let 𝑉 = 𝒟𝑟(𝑦). Certainly 𝑈,𝑉 are open since they are open balls, and they have
no intersection by the triangle inequality, so the metric space is Hausdorff as required.

Example. The cofinite topology on a set 𝑋 is

𝜏 = {∅} ∪ {𝑈 ∈ 𝑋 ∶ 𝑈 is cofinite in 𝑋}
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where 𝑈 is cofinite in 𝑋 if 𝑋 ∖ 𝑈 is finite. When 𝑋 is finite, this topology 𝜏 is simply 𝒫(𝑋).
When 𝑋 is infinite, 𝜏 is not metrisable. Let 𝑥 ≠ 𝑦 in 𝑋 , and let 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉 where 𝑈,𝑉 are
open in 𝑋 . Then𝑈 and 𝑉 are cofinite, and hence𝑈 ∩𝑉 ≠ ∅. So this topology on an infinite
set is not Hausdorff and hence not metrisable.

7.2. Closed subsets
Definition. A subset 𝐴 of a topological space (𝑋, 𝜏) is said to be closed in 𝑋 if 𝑋 ∖ 𝐴 is open
in 𝑋 .
Remark. In ametric space, this agreeswith the earlier definition of a closed subset, as proven
before.

Proposition. The collection of closed sets in a topological space 𝑋 satisfy

(i) ∅,𝑋 are closed;

(ii) If 𝐴𝑖 are closed in 𝑋 for 𝑖 in some non-empty index set 𝐼, then⋂𝑖∈𝐼 𝐴𝑖 is closed;

(iii) If 𝐴1, 𝐴2 are closed in 𝑋 then 𝐴1 ∪ 𝐴2 is closed.

Example. In a discrete topological space, every set is closed.

Example. In the cofinite topology, a subset is closed if and only if it is finite or the full set.

7.3. Neighbourhoods
Definition. Let 𝑋 be a topological space, and let 𝑈 ⊂ 𝑋 and 𝑥 ∈ 𝑋 . We say that 𝑈 is a
neighbourhood of 𝑥 in 𝑋 if there exists an open set 𝑉 in 𝑋 such that 𝑋 ∈ 𝑉 ⊂ 𝑈 .
Remark. In a metric space, we defined this in terms of open balls not open sets. However,
we have already proven that the definitions agree.

Proposition. Let 𝑈 be a subset of a topological space 𝑋 . Then 𝑈 is open if and only if 𝑈 is
a neighbourhood of 𝑥 for every 𝑥 ∈ 𝑈 .

Proof. If𝑈 is open, and 𝑥 ∈ 𝑈 , then by letting𝑉 = 𝑈 ,𝑉 is open and 𝑥 ∈ 𝑉 ⊂ 𝑈 . Conversely,
if 𝑥 ∈ 𝑈 , there exists 𝑉𝑥 in 𝑋 such that 𝑥 ∈ 𝑉𝑥 ⊂ 𝑈 . Then, 𝑈 = ⋃𝑥∈𝑈 𝑥 = ⋃𝑥∈𝑈 𝑉𝑥 is open,
since each 𝑉𝑥 is open.

7.4. Convergence
Definition. Let (𝑥𝑛) be a sequence in a topological space 𝑋 . Let 𝑥 ∈ 𝑋 . We say that (𝑥𝑛)
converges to 𝑥 if for all neighbourhoods 𝑈 of 𝑥 in 𝑋 , there exists 𝑁 ∈ ℕ such that ∀𝑛 ≥
𝑁, 𝑥𝑛 ∈ 𝑈 . Equivalently, for all open sets 𝑈 which contain 𝑥, there exists 𝑁 ∈ ℕ such that
∀𝑛 ≥ 𝑁, 𝑥𝑛 ∈ 𝑈 .
Remark. Again, the definition in a metric space agrees with this definition.
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Example. Eventually constant sequences converge. If ∃𝑧 ∈ 𝑋, ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, 𝑥𝑛 = 𝑧,
then 𝑥𝑛 → 𝑧.

Example. In an indiscrete topological space, every sequence converges to every point.

Example. In the cofinite topology on a set 𝑋 , let 𝑥𝑛 → 𝑋 . Suppose that 𝑥𝑛 → 𝑥 in 𝑋 . Then
if 𝑦 ≠ 𝑥, 𝑋 ∖ {𝑦} is a neighbourhood of 𝑥. Then 𝑁𝑦 = {𝑛 ∈ 𝑁∶ 𝑥𝑛 = 𝑦} is finite.

Conversely, suppose (𝑥𝑛) is a sequence such that for some 𝑥 ∈ 𝑋 and for all 𝑦 ≠ 𝑥, 𝑁𝑦 is
finite. Then 𝑥𝑛 → 𝑥.

In particular, if 𝑁𝑦 is finite for all 𝑦 ∈ 𝑋 , the sequence converges to every point.

Proposition. If 𝑥𝑛 → 𝑥 and 𝑥𝑛 → 𝑦 in a Hausdorff space, then 𝑥 = 𝑦.

Proof. Suppose 𝑥 ≠ 𝑦, thenwe can choose open sets𝑈,𝑉 such that 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉,𝑈∩𝑉 = ∅.
Since 𝑥𝑛 → 𝑥, there exists 𝑁1 ∈ ℕ such that ∀𝑛 ≥ 𝑁1, 𝑥𝑛 ∈ 𝑈 . Similarly there exists an
analogous 𝑁2. Hence ∀𝑛 ≥ max(𝑁1, 𝑁2), 𝑥𝑛 ∈ 𝑈, 𝑥𝑛 ∈ 𝑉 which is a contradiction since
𝑈 ∩ 𝑉 = ∅.

Remark. If 𝑥𝑛 → 𝑥 in a Hausdorff space, we write 𝑥 = lim𝑛→∞ 𝑥𝑛 since the limit is unique.

Remark. In a metric space, for a subset 𝐴, we say that 𝐴 is closed if and only if 𝑥𝑛 → 𝑥 in 𝐴
implies 𝑥 ∈ 𝐴. In a general topological space, any closed set is closed under limits, but not
every subset that is closed under limits is closed.

7.5. Interiors and closures
Definition. Let 𝑋 be a topological space, and 𝐴 ⊂ 𝑋 . We define the interior of 𝐴 in 𝑋 ,
denoted 𝐴∘ or int(𝐴), by

𝐴∘ =⋃{𝑈 ⊂ 𝑋 ∶ 𝑈 is open in 𝑋,𝑈 ⊂ 𝐴}

Similarly we define the closure of 𝐴 in 𝑋 , denoted 𝐴 or cl(𝐴), by

𝐴 =⋂{𝐹 ⊂ 𝑋 ∶ 𝐹 is closed in 𝑋, 𝐹 ⊃ 𝐴}

Remark. Note that 𝐴∘ is open in 𝑋 , and 𝐴∘ ⊂ 𝐴. In particular, if 𝑈 is open in 𝑋 and 𝑈 ⊂ 𝐴,
then 𝑈 ⊂ 𝐴∘. Hence, 𝐴∘ is the largest open subset of 𝐴.

Similarly, 𝐴 is closed in 𝑋 , and 𝐴 ⊃ 𝐴. The intersection is not empty since 𝑋 is closed and
𝑋 ⊃ 𝐴, so it is well-defined. We have that 𝐴 is the smallest closed superset of 𝐴.

Proposition. Let 𝑋 be a topological space and let 𝐴 ⊂ 𝑋 . Then the interior is exactly those
𝑥 ∈ 𝑋 for which 𝐴 is a neighbourhood of 𝑥. Similarly, the closure is those 𝑥 ∈ 𝑋 such that
for all neighbourhoods 𝑈 of 𝑥, 𝑈 ∩ 𝐴 ≠ ∅.
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Proof. If 𝐴 is a neighbourhood of 𝑋 , then by definition there exists an open set 𝑈 such that
𝑥 ∈ 𝑈 ⊂ 𝐴, which is true if and only if 𝑥 ∈ 𝐴∘.

For the other part, suppose 𝑥 ∉ 𝐴. Then there exists a closed set 𝐹 ⊃ 𝐴 such that 𝑥 ∉ 𝐹. Let
𝑈 = 𝑋 ∖ 𝐹. Then 𝑈 is open and 𝑥 ∈ 𝑈 . So 𝑈 is a neighbourhood of 𝑥, and 𝑈 ∩ 𝐴 = ∅.

Conversely, suppose there exists a neighbourhood 𝑈 of 𝑥 such that 𝑈 ∩ 𝐴 = ∅. Then there
exists an open set 𝑉 such that 𝑥 ∈ 𝑉 ⊂ 𝑈 . Since 𝑉 ⊂ 𝑈 , 𝑉 ∩𝐴 = ∅. Let 𝐹 = 𝑋 ∖ 𝑉 . Then 𝐹
is closed, and 𝐴 ⊂ 𝐹. Hence 𝐴 ⊂ 𝐹. So 𝑥 ∉ 𝐴.

Example. In ℝ, let 𝐴 = [0, 1) ∪ {2}. Then 𝐴∘ = (0, 1), and 𝐴 = [0, 1] ∪ {2}. Further, ℚ∘ = ∅
and ℚ = ℝ. Finally, ℤ∘ = ∅ and ℤ = ℤ.

Remark. In a metric space, for a subset 𝐴 we have that 𝑥 ∈ 𝐴 if and only if there exists
a sequence (𝑥𝑛) in 𝐴 such that 𝑥𝑛 → 𝑥. In a general topological space, the existence of a
sequence implies 𝑥 ∈ 𝐴 but the converse is not true.

7.6. Dense subsets
Definition. A subset 𝐴 of a topological space 𝑋 is said to be dense in 𝑋 if 𝐴 = 𝑋 . 𝑋 is
separable if there exists a countable subset 𝐴 ⊂ 𝑋 such that 𝐴 is dense in 𝑋 .

Example. ℝ is separable asℚ is dense inℝ. ℝ𝑛 is separable in the same way asℚ𝑛 is dense
in ℝ𝑛.

Example. An uncountable discrete topological space is not separable, since the closure of
any set is itself.

7.7. Subspaces
Definition. Let (𝑋, 𝜏) be a topological space. Let 𝑌 ⊂ 𝑋 . Then the subspace topology, or
relative topology on 𝑌 induced by 𝜏 is the topology

{𝑉 ∩ 𝑌 ∶ 𝑉 ∈ 𝜏}

on 𝑌 . This is the intersection of 𝑌 with all open sets in 𝑋 . We can denote this 𝜏|𝑌 . So, for
𝑈 ⊂ 𝑌 , 𝑈 is open in 𝑌 if and only if there exists an open set 𝑉 in 𝑋 with 𝑈 = 𝑉 ∩ 𝑌 .

Example. Let 𝑋 = ℝ, 𝑌 = [0, 2], and 𝑈 = (1, 2]. Then certainly 𝑈 ⊂ 𝑌 ⊂ 𝑋 . 𝑈 is open
in 𝑌 , since 𝑉 = (1, 3) is open in 𝑋 and 𝑈 = 𝑉 ∩ 𝑌 . However, 𝑈 is not open in 𝑋 , since no
neighbourhood (or ball) around 2 can be constructed in 𝑋 that is contained within 𝑈 .

Remark. On a subset of a topological space, this is considered the standard topology. Sup-
pose that (𝑋, 𝜏) is a topological space, and 𝑍 ⊂ 𝑌 ⊂ 𝑋 . There are two natural topologies on
𝑍: 𝜏|𝑍 and 𝜏|𝑌 ||𝑍. One can easily check that these two topologies are equal.
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Let (𝑀, 𝑑) be a metric space, and 𝑁 ⊂ 𝑀. Again, there are two natural topologies on 𝑁:
𝜏(𝑑)|𝑁 and 𝜏(𝑑|𝑁), where 𝜏(𝑒) is the metric topology induced by the metric 𝑒. These two
constructions coincide; indeed, for any 𝑥 ∈ 𝑁, 𝑟 > 0,

{𝑦 ∈ 𝑁 ∶ 𝑑(𝑦, 𝑥) < 𝑟} = {𝑦 ∈ 𝑀∶ 𝑑(𝑦, 𝑥) < 𝑟} ∩ 𝑁

Proposition. Let 𝑋 be a topological space, and let 𝐴 ⊂ 𝑌 ⊂ 𝑋 . 𝐴 is closed in 𝑌 if and only
if there exists a closed subset 𝐵 ⊂ 𝑋 such that 𝐴 = 𝐵 ∩ 𝑌 . Further,

cl𝑌 (𝐴) = cl𝑋(𝐴) ∩ 𝑌

This is not true for the interior of a subset in general. For instance, consider 𝑋 = ℝ,𝐴 =
𝑌 = {0}. In this case, int𝑌 (𝐴) = 𝐴, int𝑋(𝐴) = ∅.

Proof. The first part is true by taking complements: 𝑌 ∖𝐴 is open in 𝑌 . By definition, 𝑌 ∖𝐴 =
𝑉 ∩ 𝑌 for some open 𝑉 in 𝑋 . So 𝐵 = 𝑋 ∖ 𝑉 is closed in 𝑋 and 𝐴 = 𝐵 ∩ 𝑌 . If 𝐴 = 𝐵 ∩ 𝑌 , 𝐵 is
closed in 𝑋 , then 𝑋 ∖ 𝐵 is open in 𝑋 , and hence 𝑌 ∖ 𝐴 = (𝑋 ∖ 𝐵) ∩ 𝑌 is open in 𝑌 .
For the second part, we know cl𝑋(𝐴) is closed in 𝑋 , so by the first part, cl𝑋(𝐴) ∩ 𝑌 is closed
in 𝑌 . Then 𝐴 ⊂ cl𝑋(𝐴) ∩ 𝑌 . So by definition, cl𝑌 (𝐴) ⊂ cl𝑋(𝐴) ∩ 𝑌 . Similarly, since cl𝑌 (𝐴)
is closed in 𝑌 , we can write cl𝑌 (𝐴) = 𝐵 ∩ 𝑌 for some closed set 𝐵 in 𝑋 . But 𝐴 ⊂ 𝐵, and 𝐵 is
closed in 𝑋 , so cl𝑋(𝐴) ⊂ 𝐵 and hence cl𝑌 (𝐴) = 𝐵 ∩ 𝑌 ⊃ cl𝑋(𝐴) ∩ 𝑌 .

Remark. If 𝑈 ⊂ 𝑌 ⊂ 𝑋 , and 𝑌 is open in 𝑋 , then 𝑈 is open in 𝑌 if and only if 𝑈 is open in
𝑋 .

7.8. Continuity
Definition. A function 𝑓∶ 𝑋 → 𝑌 between topological spaces is said to be continuous if
for all open sets 𝑉 in 𝑌 , the preimage 𝑓−1(𝑉) is open in 𝑋 .
Remark. We have already proven that this agrees with the definition of continuity of func-
tions between metric spaces.

Example. Constant functions are always continuous. Consider 𝑓∶ 𝑋 → 𝑌 defined by
𝑓(𝑥) = 𝑦0 for a fixed 𝑦0 ∈ 𝑌 . For any 𝑉 ⊂ 𝑌 , 𝑓−1(𝑉) = ∅ if 𝑦0 ∉ 𝑉 , and 𝑓−1(𝑉) = 𝑋
if 𝑦0 ∈ 𝑉 . So 𝑓 is continuous.
Example. The identity map is always continuous. If 𝑓∶ 𝑋 → 𝑋 is defined by 𝑥 ↦ 𝑥,
𝑓−1(𝑉) = 𝑉 so if 𝑉 is open, 𝑓−1(𝑉) is trivially open.
Example. Let 𝑌 ⊂ 𝑋 . Let 𝑖 ∶ 𝑌 → 𝑋 be the inclusion map. Then for an open set 𝑉 in 𝑋 ,
𝑖−1(𝑉) = 𝑉 ∩ 𝑌 which by definition is open in 𝑌 . Hence, if 𝑔∶ 𝑋 → 𝑍 is continuous, then
𝑔|𝑌 = 𝑔 ∘ 𝑖∶ 𝑋 → 𝑌 is continuous, as we will see below.

Proposition. Let 𝑓∶ 𝑋 → 𝑌 be a function between topological spaces. Then,

(i) 𝑓 is continuous if and only if for all closed sets 𝐵 in 𝑌 , 𝑓−1(𝐵) is closed in 𝑋 ;
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(ii) if 𝑓 is continuous and 𝑔∶ 𝑌 → 𝑍 is continuous, then 𝑔 ∘ 𝑓 is continuous.

Proof. To prove (i), note that for any subset 𝐷 ⊂ 𝑌 , 𝑓−1(𝑌 ∖ 𝐷) = 𝑋 ∖ 𝑓−1(𝐷). We can now
use the fact that 𝐴 ⊂ 𝑋 is open in 𝑋 if and only if 𝑋 ∖ 𝐴 is closed in 𝑋 , and vice versa for 𝑌 .
To prove (ii), note that if 𝑊 is an open subset of 𝑍, then 𝑔−1(𝑊) is open in 𝑌 since 𝑔 is
continuous. Hence 𝑓−1𝑔−1(𝑊) is open in 𝑋 since 𝑓 is continuous. But then 𝑓−1𝑔−1 = (𝑔 ∘
𝑓)−1, so 𝑔 ∘ 𝑓 is continuous.

Remark. There exists a notion of ‘continuity at a point’ for topological spaces, but it is not
as useful in this course as the global continuity definition.

7.9. Homeomorphisms and topological invariance
Definition. A function 𝑓∶ 𝑋 → 𝑌 between topological spaces is a homeomorphism if 𝑓
is a bijection, and both 𝑓, 𝑓−1 are continuous. If such an 𝑓 exists, we say that 𝑋 and 𝑌 are
homeomorphic. This is exactly the definition from metric spaces.

Definition. A property 𝒫 of topological spaces is said to be a topological property or topo-
logical invariant if, for all pairs 𝑋, 𝑌 of homeomorphic spaces, 𝑋 satisfies 𝒫 if and only if 𝑌
satisfies 𝒫.
Example. Metrisability is a topological invariant. BeingHausdorff is a topological invariant.
Being completely metrisable (metrisable into a complete metric space) is not a topological
invariant. For example, consider metrics 𝑑, 𝑑′ on ℝ such that 𝑑 ∼ 𝑑′ but 𝑑 is complete and
𝑑′ is not.
Remark. If 𝑓∶ 𝑋 → 𝑌 is a homeomorphism, for an open set 𝑈 in 𝑋 , 𝑓(𝑈) = (𝑓−1)−1(𝑈) is
open in 𝑌 since 𝑓−1∶ 𝑌 → 𝑋 is continuous.

Definition. A function 𝑓∶ 𝑋 → 𝑌 between topological spaces is an openmap if for all open
sets 𝑈 in 𝑋 , 𝑓(𝑈) is open in 𝑌 .
Remark. 𝑓∶ 𝑋 → 𝑌 is a homeomorphism if and only if 𝑓 is a continuous and open bijection.

7.10. Products
Let 𝑋, 𝑌 be topological spaces. We want to define the topology on 𝑋 × 𝑌 . If 𝑈 is open in 𝑋
and 𝑉 is open in 𝑌 , then we would like𝑈×𝑉 to be open in 𝑋 ×𝑌 . Certainly∅ = ∅×∅ and
𝑋 × 𝑌 should be open. Further (𝑈 × 𝑉) ∩ (𝑈 ′ ×𝑉 ′) = (𝑈 ∩𝑈 ′) × (𝑉 ∩ 𝑉 ′), so intersections
work. ⋃𝑖∈𝐼 𝑈 𝑖 ×𝑉 𝑖 must be open for open sets𝑈 𝑖, 𝑉 𝑖, but this is not obvious from what we
have shown so far, so we must include this in our definition.

Definition. The product topology on 𝑋 × 𝑌 is the topology such that a subset 𝑈 of 𝑋 × 𝑌 is
open if there exists a set 𝐼 and open sets 𝑈 𝑖, 𝑉 𝑖 in 𝑋, 𝑌 for all 𝑖 ∈ 𝐼 such that

𝑈 =⋃
𝑖∈𝐼

𝑈 𝑖 × 𝑉 𝑖
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Remark. For𝑊 ⊂ 𝑋 × 𝑌 , we know that𝑊 is open if and only if for all 𝑧 ∈ 𝑊 , there exist
open sets𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑌 , such that 𝑧 ∈ 𝑈 ×𝑉 ⊂ 𝑊 . So, thinking of the product as a product
of real lines, we might say that𝑊 is open if for every point 𝑧 ∈ 𝑊 , we can construct a ‘box
set’ (the Cartesian product of open intervals) contained in𝑊 that has 𝑧 as an element. More
formally, 𝑊 is a neighbourhood of 𝑧 if and only if there exist neighbourhoods 𝑈 of 𝑥 in 𝑋
and 𝑉 of 𝑦 in 𝑌 such that 𝑈 × 𝑉 ⊂ 𝑊 .

7.11. Continuity in product topology
Example. Let (𝑀, 𝑑), (𝑀′, 𝑑′) be metric spaces. Then, the metric 𝑑∞ on𝑀 ×𝑀′ is

𝑑∞((𝑥, 𝑥′), (𝑦, 𝑦′)) = max(𝑑(𝑥, 𝑦), 𝑑′(𝑥′, 𝑦′))

This metric is chosen since all 𝑑𝑝 metrics induce the same metric topology, but this is easier
to work with. Also,𝑀,𝑀′ are topological spaces with their metric topologies, which induce
the product topology on the product space𝑀×𝑀′. These two constructions create the same
topology. For a point 𝑧 = (𝑥, 𝑥′) ∈ 𝑀 ×𝑀′ and 𝑟 > 0, the open ball𝒟𝑟(𝑧) is exactly

𝒟𝑟(𝑧) = {(𝑦, 𝑦′) ∈ 𝑀 ×𝑀′∶ 𝑑∞((𝑦, 𝑦′), (𝑥, 𝑥′)) < 𝑟}
= {(𝑦, 𝑦′) ∈ 𝑀 ×𝑀′∶ 𝑑(𝑥, 𝑦) < 𝑟, 𝑑(𝑥′, 𝑦′) < 𝑟}
= 𝒟𝑟(𝑥) × 𝒟𝑟(𝑥′)

Now, let 𝑊 ⊂ 𝑀 × 𝑀′. Then 𝑊 is open in the product topology if and only if for all 𝑧 =
(𝑥, 𝑥′) ∈ 𝑊 , there exist open sets 𝑈 in 𝑀 and 𝑈 ′ in 𝑀′ such that (𝑥, 𝑥′) ∈ 𝑈 × 𝑈 ′ ⊂ 𝑊 .
Equivalently, for all 𝑧 = (𝑥, 𝑥′) ∈ 𝑊 , there exists 𝑟 > 0 such that𝒟𝑟(𝑥) × 𝒟𝑟(𝑥′) ⊂ 𝑊 . But
𝒟𝑟(𝑥) × 𝒟𝑟(𝑥′) = 𝒟𝑟(𝑧), so𝑊 is 𝑑∞-open, as required. For instance, the product topology
on ℝ × ℝ is the Euclidean topology on ℝ2.

Proposition. Let𝑋, 𝑌 be topological spaces. Let𝑋×𝑌 be given the product topology. Then,
the coordinate projections 𝑞𝑋 ∶ 𝑋 × 𝑌 → 𝑋 and 𝑞𝑌 ∶ 𝑋 × 𝑌 → 𝑌 satisfy

(i) 𝑞𝑋 , 𝑞𝑌 are continuous;

(ii) if 𝑍 is any topological space, and 𝑔∶ 𝑍 → 𝑋 × 𝑌 is a function, then 𝑔 is continuous if
and only if 𝑞𝑋 ∘ 𝑔, 𝑞𝑌 ∘ 𝑔 are continuous.

Proof. If𝑈 is open in 𝑋 , then 𝑞−1𝑋 (𝑈) = 𝑈 ×𝑌 , which is the product of an open set in 𝑋 and
an open set in 𝑌 , so is open in 𝑋 × 𝑌 . Hence 𝑞𝑋 is continuous. Similarly, 𝑞𝑌 is continuous.

If 𝑔 is continuous then certainly 𝑞𝑋 ∘ 𝑔, 𝑞𝑌 ∘ 𝑔 are continuous since the composition of con-
tinuous functions are continuous. Conversely, let ℎ∶ 𝑍 → 𝑋 and 𝑘∶ 𝑍 → 𝑌 be continuous
functions with ℎ = 𝑞𝑋 ∘ 𝑔 and 𝑘 = 𝑞𝑌 ∘ 𝑔. Then 𝑔(𝑥) = (ℎ(𝑥), 𝑘(𝑥)) for 𝑥 ∈ 𝑍. Now, for open
sets 𝑈 in 𝑋 and 𝑉 in 𝑌 , we have

𝑧 ∈ 𝑔−1(𝑈 × 𝑉) ⟺ 𝑔(𝑧) ∈ 𝑈 × 𝑉 ⟺ ℎ(𝑧) ∈ 𝑈, 𝑘(𝑧) ∈ 𝑉 ⟺ 𝑧 ∈ ℎ−1(𝑈) ∩ 𝑘−1(𝑉)
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So 𝑔−1(𝑈 × 𝑉) = ℎ−1(𝑈) ∩ 𝑘−1(𝑉) which is open in 𝑍 as ℎ, 𝑘 are continuous. Given an
arbitrary open set𝑊 in 𝑋 ×𝑌 , we can write𝑊 = ⋃𝑖∈𝐼 𝑈 𝑖×𝑉 𝑖, where𝑈 𝑖 are open in 𝑋 and
𝑉 𝑖 are open in 𝑌 . Thus, 𝑔−1(𝑊) = ⋃𝑖∈𝐼 𝑔−1(𝑈 𝑖 × 𝑉 𝑖) which is open.

Remark. The product topology may be extended to a finite product 𝑋1 ×⋯×𝑋𝑛, consisting
of all unions of sets of the form𝑈1×⋯×𝑈𝑛 where𝑈𝑗 is open in𝑋𝑗 . Properties of the product
topology hold in this more general case. For example, if 𝑋𝑗 is metrisable with metric 𝑒𝑗 for
all 𝑗, then the product topology is metrisable with, for instance, the 𝑑∞ metric.

7.12. Quotients
Let 𝑋 be a set and 𝑅 an equivalence relation on 𝑋 . So 𝑅 ⊂ 𝑋 × 𝑋 , but we will write 𝑥 ∼ 𝑦 to
mean (𝑥, 𝑦) ∈ 𝑅. For 𝑥 ∈ 𝑋 , we define 𝑞(𝑥) = {𝑦 ∈ 𝑋 ∶ 𝑦 ∼ 𝑥} to be the equivalence class of
𝑥, the set of which partition 𝑋 . Let 𝑋/𝑅 denote the set of all equivalence classes. The map
𝑞∶ 𝑋 → 𝑋/𝑅 is called the quotient map.
Definition. Let 𝑋 be a topological space, and 𝑅 an equivalence relation on 𝑋 . The quotient
topology on 𝑋/𝑅 is given by

𝜏 = {𝑉 ⊂ 𝑋/𝑅∶ 𝑞−1(𝑉) open in 𝑋}

This is a topology:

(i) 𝑞−1(∅) = ∅ which is open, and 𝑞−1(𝑋/𝑅) = 𝑋 which is open.

(ii) If𝑉 𝑖 are open, then 𝑞−1(⋃𝑖∈𝐼 𝑉 𝑖) = ⋃𝑖∈𝐼 𝑞−1(𝑉 𝑖)which is a union of open sets which
is open.

(iii) If 𝑈,𝑉 are open, then 𝑞−1(𝑈 ∩ 𝑉) = 𝑞−1(𝑈) ∩ 𝑞−1(𝑉) which is open.
Remark. The quotient map 𝑞∶ 𝑋 → 𝑋/𝑅 is continuous. In particular, it is the largest pos-
sible topology on 𝑋 such that 𝑞 is continuous.
Let 𝑥 ∈ 𝑋, 𝑡 ∈ 𝑋/𝑅. Then 𝑥 ∈ 𝑡 if and only if 𝑡 = 𝑞(𝑥). For 𝑉 ⊂ 𝑋/𝑅,

𝑞−1(𝑉) = {𝑥 ∈ 𝑋 ∶ 𝑞(𝑥) ∈ 𝑉}
= {𝑥 ∈ 𝑋 ∶ ∃𝑡 ∈ 𝑉, 𝑡 = 𝑞(𝑥)}
= {𝑥 ∈ 𝑋 ∶ ∃𝑡 ∈ 𝑉, 𝑥 ∈ 𝑡}
= ⋃

𝑡∈𝑉
𝑡

Example. Consider ℝ, an abelian group under addition, and the subgroup ℤ. We can form
the quotient groupℝ/ℤ, which is the set of equivalence classes where 𝑥 ∼ 𝑦 ⟺ 𝑥−𝑦 ∈ ℤ.
For all 𝑥 ∈ ℝ, there exists 𝑦 ∈ [0, 1] such that 𝑥 ∼ 𝑦, and for all 𝑥, 𝑦 ∈ [0, 1] we have 𝑥 ∼ 𝑦
if and only if 𝑥 = 𝑦 or {𝑥, 𝑦} = {0, 1}. So we can think of the quotient topology of ℝ/ℤ as a
circle. We can say that ℝ/ℤ is homeomorphic to 𝑆1 = {(𝑥, 𝑦) ∈ ℝ2∶ ‖(𝑥, 𝑦)‖ = 1}, which we
will prove later.
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Example. Consider the subgroup ℚ of ℝ. Let 𝑉 ⊂ ℝ/ℚ, such that 𝑉 ≠ ∅ and 𝑉 is open.
Then 𝑞−1(𝑉) is open and not empty. Therefore, there exist 𝑎 < 𝑏 ∈ ℝ such that (𝑎, 𝑏) ⊂
𝑞−1(𝑉). Given 𝑥 ∈ ℝ, we can choose a rational 𝑟 in the interval (𝑎 − 𝑥, 𝑏 − 𝑥). Then 𝑟 + 𝑥 ∈
(𝑎, 𝑏) ⊂ 𝑞−1(𝑉), so 𝑞(𝑥) = 𝑞(𝑟 + 𝑥) ∈ 𝑉 . So 𝑉 = ℝ/ℚ. This is the indiscrete topology, which
is not metrisable or Hausdorff. So we cannot (in general) take quotients of metric spaces.

Example. Let 𝑄 = [0, 1] × [0, 1] ⊂ ℝ2. We define the equivalence relation 𝑅 given by

(𝑥1, 𝑥2) ∼ (𝑦1, 𝑦2) ⟺
⎧⎪
⎨⎪
⎩

(𝑥1, 𝑥2) = (𝑦1, 𝑦2) or
𝑥1 = 𝑦1, {𝑥2, 𝑦2} = {0, 1} or
𝑥2 = 𝑦2, {𝑥1, 𝑦1} = {0, 1} or
𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ {0, 1}

The space 𝑄/𝑅 is homeomorphic toℝ2/ℤ2. This is a square where the top and bottom edges
are identified as the same, and the left and right edges are also identified as the same. This is
homeomorphic to the surface of a toruswith the Euclidean topology embedded in Euclidean
three-dimensional space.

Proposition. Let 𝑋 be a set, and let 𝑅 be an equivalence relation on 𝑋 . Let 𝑞∶ 𝑋 → 𝑋/𝑅 be
the quotient map. Let 𝑌 be a set, and 𝑓∶ 𝑋 → 𝑌 be a function. Suppose that 𝑓 ‘respects’ 𝑅;
that is, 𝑥 ∼ 𝑦 ⟹ 𝑓(𝑥) = 𝑓(𝑦). Then there exists a unique map 𝑓∶ 𝑋/𝑅 → 𝑌 such that
𝑓 = 𝑓 ∘ 𝑞. For 𝑧 ∈ 𝑋/𝑅, we write 𝑧 = 𝑞(𝑥) for some 𝑥 ∈ 𝑋 , and then define 𝑓(𝑧) = 𝑓(𝑥).

Remark. Note that Im𝑓 = Im𝑓 since 𝑞 is surjective. 𝑓 is injective if for all 𝑥, 𝑦 ∈ 𝑋 ,
𝑓(𝑞(𝑥)) = 𝑓(𝑞(𝑦)) implies 𝑞(𝑥) = 𝑞(𝑦). In other words, for all 𝑥, 𝑦 ∈ 𝑋 , 𝑓(𝑥) = 𝑓(𝑦) ⟹
𝑥 ∼ 𝑦. We say that 𝑓 fully respects 𝑅 if, for all 𝑥, 𝑦 ∈ 𝑋 ,

𝑥 ∼ 𝑦 ⟺ 𝑓(𝑥) = 𝑓(𝑦)

In this case, 𝑓 is injective.

7.13. Continuity of functions in quotient spaces
Proposition. Let 𝑋 be a topological space and let 𝑅 be an equivalence relation on 𝑋 . Let
𝑞∶ 𝑋 → 𝑋/𝑅 be a quotient map, where 𝑋/𝑅 has the quotient topology. Let 𝑌 be another
topological space and 𝑓∶ 𝑋 → 𝑌 be a function that respects 𝑅. Let 𝑓∶ 𝑋/𝑅 → 𝑌 be the
unique map such that 𝑓 = 𝑓 ∘ 𝑞. Then

(i) if 𝑓 is continuous then 𝑓 is continuous; and

(ii) if 𝑓 is an open map (the image of an open set is open) then 𝑓 is an open map.

In particular, if 𝑓 is a continuous surjective map that fully respects 𝑅, then 𝑓 is a continuous
bijection. If in addition 𝑓 is an open map, then 𝑓 is a continuous bijective open map, so is a
homeomorphism.
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Proof. We prove part (i). Let 𝑉 be an open set in 𝑌 .
𝑞−1(𝑓−1(𝑉)) = (𝑓 ∘ 𝑞)−1(𝑉) = 𝑓−1(𝑉) is open

So by definition, 𝑓−1(𝑉) is open in 𝑋/𝑅. Hence 𝑓 is continuous. Now, we prove part (ii). Let
𝑉 be an open set in 𝑋/𝑅. Let 𝑈 = 𝑞−1(𝑉). Then 𝑈 is open in 𝑋 by definition of the quotient
topology. Since 𝑞 is surjective, 𝑞(𝑈) = 𝑞(𝑞−1(𝑉)) = 𝑉 . Hence,

𝑓(𝑉) = 𝑓(𝑞(𝑈)) = (𝑓 ∘ 𝑞)(𝑈) = 𝑓(𝑈) is open
since 𝑓 is an open map.

Example. ℝ/ℤ is homeomorphic to a circle 𝑆1 = {𝑥 ∈ ℝ2∶ ‖𝑥‖ = 1}. We define
𝑓(𝑡) = (cos 2𝜋𝑡, sin 2𝜋𝑡)

Then, 𝑠 − 𝑡 ∈ ℤ if and only if 𝑓(𝑠) = 𝑓(𝑡) so 𝑓 fully respects the relation, and 𝑓 is surjective.
𝑓 is also continuous since each component is continuous. Hence, there exists 𝑓∶ ℝ/ℤ → 𝑆1
such that 𝑓 = 𝑓 ∘ 𝑞 and 𝑓 is a continuous bijection. Now we must show 𝑓 is an open map,
and then 𝑓 will be a homeomorphism. Suppose 𝑓 is not an open map, so there exists an
open set𝑈 inℝ such that 𝑓(𝑈) is not open in 𝑆1. So 𝑆1 ∖ 𝑓(𝑈) is not closed, so there exists a
sequence (𝑧𝑛) in this complement and 𝑧 ∈ 𝑓(𝑈) such that 𝑧𝑛 → 𝑧. 𝑓 is surjective so for all
𝑛 ∈ 𝑁 we can choose 𝑥𝑛 ∈ [0, 1] such that 𝑓(𝑥𝑛) = 𝑧𝑛. This is a bounded sequence, so by the
Bolzano–Weierstrass theorem, without loss of generality we can let 𝑥𝑛 → 𝑥 ∈ [0, 1]. Since
𝑓 is continuous, 𝑓(𝑥𝑛) → 𝑓(𝑥), so 𝑧𝑛 → 𝑧. But since 𝑧𝑛 ∉ 𝑓(𝑈), we have 𝑥𝑛 ∈ ℝ ∖ 𝑈 . Since
the complement is closed and 𝑥𝑛 → 𝑥, we have 𝑥 ∈ ℝ ∖ 𝑈 so 𝑥 ∉ 𝑈 . Since 𝑧 ∈ 𝑓(𝑈), there
exists 𝑦 ∈ 𝑈 such that 𝑧 = 𝑓(𝑦). Hence 𝑘 = 𝑦 − 𝑥 ∈ ℤ. Now, 𝑓(𝑥𝑛 + 𝑘) = 𝑓(𝑥𝑛) = 𝑧𝑛 → 𝑧,
but also 𝑥𝑛 + 𝑘 → 𝑥 + 𝑘 = 𝑦 ∈ 𝑈 . Since 𝑧𝑛 ∉ 𝑓(𝑈), we have 𝑥𝑛 + 𝑘 ∉ 𝑈 . Since ℝ ∖ 𝑈 is
closed and 𝑥𝑛 + 𝑘 → 𝑦, we have 𝑦 ∈ ℝ ∖ 𝑈 which is a contradiction.

Proposition. Let 𝑋 be a topological space, and 𝑅 an equivalence relation on 𝑋 . Then,
(a) If 𝑋/𝑅 is Hausdorff, then 𝑅 is closed in 𝑋 × 𝑋 .
(b) If 𝑅 is closed in 𝑋 × 𝑋 and the quotient map 𝑞∶ 𝑋 → 𝑋/𝑅 is an open map, then 𝑋/𝑅

is Hausdorff.

Proof. Let𝑊 = 𝑋 × 𝑋 ∖ 𝑅. For part (a), we want to show𝑊 is open, so is a neighbourhood
of all of its points. Given (𝑥, 𝑦) ∈ 𝑊 , we have 𝑥 ≁ 𝑦, so 𝑞(𝑥) ≠ 𝑞(𝑦). Since the quotient is
Hausdorff, there exist open sets 𝑆, 𝑇 in 𝑋/𝑅 such that 𝑆∩𝑇 = ∅ and 𝑞(𝑥) ∈ 𝑆, 𝑞(𝑦) ∈ 𝑇. Let
𝑈 = 𝑞−1(𝑆), 𝑉 = 𝑞−1(𝑇) which are open in 𝑋 , and 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉 . For all (𝑎, 𝑏) ∈ 𝑈 × 𝑉 , we
have 𝑞(𝑎) ∈ 𝑆, 𝑞(𝑏) ∈ 𝑇 hence 𝑎 ≁ 𝑏. So (𝑥, 𝑦) ∈ 𝑈 × 𝑉 ⊂ 𝑊 . Hence 𝑅 is closed.
For part (b), let 𝑧 ≠ 𝑤 be elements of 𝑋/𝑅, and we want to separate these points by open sets.
Let 𝑥, 𝑦 ∈ 𝑋 such that 𝑞(𝑥) = 𝑧, 𝑞(𝑦) = 𝑤. Then (𝑥, 𝑦) ∈ 𝑊 since 𝑥 ≁ 𝑤. Since 𝑅 is closed,
𝑊 is open, so there exist open sets 𝑈,𝑉 in 𝑋 such that (𝑥, 𝑦) ∈ 𝑈 × 𝑉 ⊂ 𝑊 . Since 𝑞 is an
open map, 𝑞(𝑈) and 𝑞(𝑉) are open in 𝑋/𝑅, and 𝑧 = 𝑞(𝑥) ∈ 𝑞(𝑈), 𝑤 = 𝑞(𝑦) ∈ 𝑞(𝑉). Now it
suffices to show 𝑞(𝑈) ∩ 𝑞(𝑉) = ∅. For (𝑎, 𝑏) ∈ 𝑈 × 𝑉 ⊂ 𝑊 , (𝑎, 𝑏) ∉ 𝑅 hence 𝑞(𝑎) ≠ 𝑞(𝑏) so
𝑞(𝑈) ∩ 𝑞(𝑉) = ∅.

182



8. Connectedness

8. Connectedness
8.1. Definition
Recall the intermediate value theorem from IA Analysis. If 𝑓∶ 𝐼 → ℝ is continuous, where
𝐼 is an interval, and 𝑥 < 𝑦 in 𝐼 and 𝑐 ∈ (𝑓(𝑥), 𝑓(𝑦)), then there exists 𝑧 ∈ (𝑥, 𝑦) such
that 𝑓(𝑧) = 𝑐. An interval in this context is a set 𝐼 such that for all 𝑥 < 𝑦 < 𝑧 ∈ ℝ,
𝑥, 𝑧 ∈ 𝐼 ⟹ 𝑦 ∈ 𝐼. So the intermediate value theoremessentially states that the continuous
image of an interval is an interval.

Example. Consider [0, 1) ∪ (1, 2]. Let 𝑓 be a function from this space to ℝ, defined by

𝑓(𝑥) = {0 𝑥 ∈ [0, 1)
1 𝑥 ∈ (1, 2]

This is continuous, but the image of 𝑓 is not an interval.
Definition. A topological space 𝑋 is disconnected if there exist open subsets𝑈,𝑉 of 𝑋 such
that 𝑈 ∩ 𝑉 = ∅,𝑈 ∪ 𝑉 = 𝑋 and 𝑈,𝑉 ≠ ∅. We say that 𝑈 and 𝑉 disconnect 𝑋 . We say 𝑋 is
connected if 𝑋 is not disconnected.

Theorem. Let 𝑋 be a topological space. Then the following are equivalent.

(i) 𝑋 is connected;

(ii) if 𝑓∶ 𝑋 → ℝ is continuous, then 𝑓(𝑋) is an interval;
(iii) if 𝑓∶ 𝑋 → ℤ is continuous, 𝑓 is constant.

Proof. First we show (i) implies (ii). Suppose 𝑋 is connected, and 𝑓∶ 𝑋 → ℝ is continuous,
but 𝑓(𝑋) is not an interval. Then there exist 𝑎 < 𝑏 < 𝑐 ∈ ℝ such that 𝑎, 𝑐 ∈ 𝑓(𝑋) and 𝑏 ∉
𝑓(𝑋). Let 𝑥, 𝑦 ∈ 𝑋 such that 𝑓(𝑥) = 𝑎, 𝑓(𝑦) = 𝑐. Let 𝑈 = 𝑓−1(−∞, 𝑏), 𝑉 = 𝑓−1(𝑏,∞). 𝑈,𝑉
are open since 𝑓 is continuous. 𝑈,𝑉 are non-empty since 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉 . Their intersection
is empty since we are taking the preimage of disjoint sets. Finally, 𝑈 ∪ 𝑉 = 𝑓−1(ℝ ∖ 𝑏) = 𝑋
since 𝑏 is not in the image. So 𝑈,𝑉 disconnect 𝑋 , which is a contradiction.
Now (ii) implies (iii). This is immediate since an interval containing an integer must only
contain one integer.

Finally, (iii) implies (i). Suppose 𝑈,𝑉 disconnect 𝑋 . Let 𝑓∶ 𝑋 → ℤ by

𝑓(𝑥) = {0 𝑥 ∈ 𝑈
1 𝑥 ∈ 𝑉

For any 𝑌 ⊂ ℝ,

𝑓−1(𝑌) =
⎧⎪
⎨⎪
⎩

∅ 0, 1 ∉ 𝑌
𝑈 0 ∈ 𝑌, 1 ∉ 𝑌
𝑉 0 ∉ 𝑌, 1 ∈ 𝑌
𝑋 0, 1 ∈ 𝑌
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which is open. But 𝑓 is not constant, so this is a contradiction.

Corollary. Let 𝑋 ⊂ ℝ. Then 𝑋 is connected if and only if 𝑋 is an interval.

Proof. Suppose 𝑋 is connected. Then the inclusion map 𝑖 ∶ 𝑋 → ℝ is continuous. By the
theorem above, 𝑖(𝑋) = 𝑋 is an interval. Conversely, suppose 𝑋 is an interval. Then, for all
continuous 𝑓∶ 𝑋 → ℝ, 𝑓(𝑋) is an interval by the intermediate value theorem. Then 𝑋 is
connected.

Proof. This is an alternative, direct proof that intervals are connected. Suppose𝑈,𝑉 discon-
nect 𝑋 . Then let 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉 such that 𝑥 < 𝑦. Let 𝑧 = sup𝑈 ∩[𝑥, 𝑦]. This set is non-empty
since it contains 𝑥 and is bounded above by 𝑦. So 𝑧 = [𝑥, 𝑦] ⊂ 𝑋 . We will show 𝑧 ∈ 𝑈 ∩ 𝑉 ,
which is a contradiction. For all 𝑛 ∈ ℕ, we have 𝑧 − 1

𝑛
< 𝑛 so there exists 𝑥𝑛 ∈ 𝑈 ∩ [𝑥, 𝑦]

which satisfies 𝑧 − 1
𝑛
< 𝑥𝑛 ≤ 𝑧. Hence 𝑥𝑛 → 𝑧. Also, 𝑈 = 𝑋 ∖ 𝑉 is closed, so 𝑧 ∈ 𝑈 . In

particular, 𝑧 < 𝑦. Now, choose 𝑁 ∈ ℕ such that 𝑧 + 1
𝑁
< 𝑦. Then for all 𝑛 ≥ 𝑁 we have

𝑧 < 𝑧 + 1
𝑛
< 𝑦. Hence 𝑧 + 1

𝑛
∈ 𝑉 . However, 𝑧 + 1

𝑛
→ 𝑧, and 𝑉 is closed, so 𝑧 ∈ 𝑉 , which is

a contradiction.

8.2. Consequences of definition
Example. Any indiscrete topological space is connected. Any cofinite topological space on
an infinite set is connected. The discrete topological space on a set of size at least two is
disconnected.

Lemma. Let 𝑌 be a subspace of a topological space 𝑋 . Then, 𝑌 is disconnected if and
only if there exist open subsets 𝑈,𝑉 of 𝑋 such that 𝑈 ∩ 𝑉 ∩ 𝑌 = ∅ and 𝑈 ∪ 𝑉 ⊃ 𝑌 , and
𝑈 ∩ 𝑌 ≠ ∅,𝑉 ∩ 𝑌 ≠ ∅.

Proof. Suppose 𝑌 is disconnected. Then there exist open subsets𝑈 ′, 𝑉 ′ of 𝑌 that disconnect
𝑌 . Then there exist open sets 𝑈,𝑉 in 𝑋 such that 𝑈 ′ = 𝑈 ∩ 𝑌 and 𝑉 ′ = 𝑉 ∩ 𝑌 . Then 𝑈,𝑉
satisfy the requirements from the lemma.

Conversely, suppose 𝑈,𝑉 are as given. Then, let 𝑈 ′ = 𝑈 ∩ 𝑌, 𝑉 ′ = 𝑉 ∩ 𝑌 . They are open in
𝑌 by the definition of the subspace topology, and they disconnect 𝑌 .

Remark. In the above lemma, we say subsets 𝑈,𝑉 of 𝑋 disconnect 𝑌 .
Proposition. Let 𝑌 be a subspace of a topological space 𝑋 . If 𝑌 is connected, then so is 𝑌 .

Proof. Suppose 𝑌 is disconnected. Then there exist open sets𝑈,𝑉 in 𝑋 which disconnect 𝑌 .
Then𝑈∩𝑉 ∩𝑌 ⊂ 𝑈∩𝑉 ∩𝑌 = ∅ by definition. Hence𝑈∩𝑉 ∩𝑌 = ∅. Also,𝑈∪𝑉 ⊃ 𝑌 ⊃ 𝑌 .
So 𝑈,𝑉 disconnect 𝑌 unless 𝑈 ∩ 𝑌 = ∅ or 𝑉 ∩ 𝑌 = ∅. But 𝑌 is connected, so without loss
of generality let 𝑉 ∩ 𝑌 = ∅. Then 𝑌 ⊂ 𝑋 ∖ 𝑉 and 𝑋 ∖ 𝑉 is closed, so 𝑌 ⊂ 𝑋 ∖ 𝑉 . Hence
𝑉 ∩ 𝑌 = ∅. This is a contradiction since 𝑈,𝑉 disconnect 𝑌 .
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Remark. More generally, if 𝑌 ⊂ 𝑍 ⊂ 𝑌 , and 𝑌 is connected, then 𝑍 is connected. This is
since cl𝑍(𝑌) = cl𝑋(𝑌) ∩ 𝑍 = 𝑍.

Theorem. Let 𝑓∶ 𝑋 → 𝑌 be a continuous function between topological spaces. If 𝑋 is
connected, then so is 𝑓(𝑋).

Proof. Let𝑈,𝑉 be open subsets of 𝑌 which disconnect 𝑓(𝑋). For 𝑥 ∈ 𝑋 , 𝑓(𝑥) ∈ 𝑓(𝑋) ⊂ 𝑈 ∪
𝑉 . Hence, 𝑓−1(𝑈)∪𝑓−1(𝑉) = 𝑋 . Also, if 𝑥 ∈ 𝑓−1(𝑈)∩𝑓−1(𝑉) then 𝑓(𝑥) ∈ 𝑈∩𝑉∩𝑓(𝑋) = ∅.
This is a contradiction, so 𝑓−1(𝑈) ∩ 𝑓−1(𝑉) = ∅. Since 𝑓 is continuous, 𝑓−1(𝑈), 𝑓−1(𝑉) are
open in 𝑋 . Since 𝑈 ∩ 𝑓(𝑋) ≠ ∅ and 𝑉 ∩ 𝑓(𝑋) ≠ ∅, 𝑓−1(𝑈) ≠ ∅ and 𝑓−1(𝑉) ≠ ∅ So
𝑓−1(𝑈), 𝑓−1(𝑉) disconnect 𝑋 .

Remark. This shows that connectedness is a topological property. If𝑋, 𝑌 are homeomorphic
spaces, then 𝑋 is connected if and only if 𝑌 is connected. Further, note that if 𝑓∶ 𝑋 → 𝑌 is
continuous and 𝐴 ⊂ 𝑋 and 𝐴 is connected, then 𝑓(𝐴) is connected. This can be shown by
restricting 𝑓 to the domain 𝐴.

Corollary. Any quotient of a connected topological space is connected.

Example. Let
𝑌 = {(𝑥, sin 1𝑥)∶ 𝑥 > 0} ⊂ ℝ2

This space is connected; the function 𝑓∶ (0,∞) → ℝ2 defined by 𝑓(𝑥) = (𝑥, sin 1
𝑥
) is con-

tinuous. So we have that 𝑌 = Im𝑓 is connected. Hence, 𝑌 is connected. We claim that

𝑍 ≡ 𝑌 ∪ {(0, 𝑦)∶ 𝑦 ∈ [−1, 1]} = 𝑌

Indeed, given 𝑦 ∈ [−1, 1], for all 𝑛 ∈ ℕwe have that (0, 1
𝑛
) is mapped to (𝑛,∞) by 𝑥 → 1

𝑥
, so

by the intermediate value theorem there exists 𝑥𝑛 ∈ (0, 1
𝑛
) such that sin 1

𝑥𝑛
= 𝑦. Hence,

(𝑥𝑛, sin
1
𝑥𝑛
) = (𝑥𝑛, 𝑦) → (0, 𝑦) ∈ 𝑌

So 𝑌 ⊂ 𝑍 ⊂ 𝑌 . If we can show 𝑍 is closed, 𝑍 = 𝑌 since 𝑌 is the smallest closed superset of
𝑌 . Suppose (𝑥𝑛, 𝑦𝑛) ∈ 𝑍 for all 𝑛 ∈ ℕ, and (𝑥𝑛, 𝑦𝑛) → (𝑥, 𝑦) in ℝ2. Since 𝑦𝑛 ∈ [−1, 1] and
𝑦𝑛 → 𝑦, we have 𝑦 ∈ [−1, 1]. If 𝑥 = 0, we have (𝑥, 𝑦) ∈ 𝑍. If 𝑥 ≠ 0, then 𝑥𝑛 → 𝑥 implies
𝑥𝑛 ≠ 0 for all sufficiently large 𝑛. Hence 𝑦𝑛 = sin 1

𝑥𝑛
for all sufficiently large 𝑛. Thus

(𝑥𝑛, 𝑦𝑛) → (𝑥, sin 1𝑥) ∈ 𝑍

Lemma. Let 𝑋 be a topological space and𝒜 be a family of connected subsets of 𝑋 . Suppose
that 𝐴 ∩ 𝐵 ≠ ∅ for all 𝐴, 𝐵 ∈ 𝒜. Then⋃𝐴∈𝒜 𝐴 is connected.
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Proof. Let 𝑌 = ⋃𝐴∈𝒜 𝐴, and let 𝑓∶ 𝑌 → ℤ be a continuous function. We must show that
𝑓 is constant. For all 𝐴 ∈ 𝒜, 𝑓|𝐴 ∶ 𝐴 → ℤ is continuous and hence constant, since 𝐴 is
connected. For all 𝐴, 𝐵 ∈ 𝒜, 𝐴 ∩ 𝐵 ≠ ∅ hence 𝑓|𝐴 and 𝑓|𝐵 are both constant and have the
same value. So 𝑓must be constant, and hence 𝑌 is connected.

Theorem. Let 𝑋, 𝑌 be connected topological spaces. Then 𝑋 × 𝑌 is connected (in the
product topology).

Proof. Without loss of generality, let 𝑋 ≠ ∅, 𝑌 ≠ ∅. Let 𝑥0 ∈ 𝑋 . Consider the function
𝑓∶ 𝑌 → 𝑋 × 𝑌 defined by 𝑓(𝑦) = (𝑥0, 𝑦). The components of 𝑓 are the functions 𝑦 ↦ 𝑥0
which is continuous as it is constant, and 𝑦 ↦ 𝑦 which is continuous as it is the identity.
So 𝑓 is continuous. Then, the image of 𝑓, which is {𝑥0} × 𝑌 , is connected. Similarly, for
all 𝑦 ∈ 𝑌 , 𝑋 × {𝑦} is connected. For 𝑦 ∈ 𝑌 , {𝑥0} × 𝑌 ∩ 𝑋 × {𝑦} = {(𝑥0, 𝑦)} ≠ ∅. Hence,
𝐴𝑦 = {𝑥0}×𝑌 ∪𝑋×{𝑦} is connected. For all 𝑦, 𝑧 ∈ 𝑌 , 𝐴𝑦∩𝐴𝑧 ⊃ {𝑥0}×𝑌 hence𝐴𝑦∩𝐴𝑧 ≠ ∅.
Hence,⋃𝑦∈𝑌 𝐴𝑦 = 𝑋 × 𝑌 is connected.

Example. ℝ𝑛 is connected for all 𝑛 ∈ ℕ.

8.3. Partitioning into connected components

Definition. Let 𝑋 be a topological space. We define a relation ∼ on 𝑋 by 𝑥 ∼ 𝑦 if and only
if there exists a connected subset 𝐴 of 𝑋 such that 𝑥, 𝑦 ∈ 𝐴. For all 𝑥 ∈ 𝑋 , 𝑥 ∼ 𝑥 since {𝑥}
is connected. Symmetry is clear from the definition. If 𝑥 ∼ 𝑦 and 𝑦 ∼ 𝑧 then by definition
there exist connected subsets 𝐴, 𝐵 in 𝑋 such that 𝑥, 𝑦 ∈ 𝐴 and 𝑦, 𝑧 ∈ 𝐵. In particular, 𝐴 ∩ 𝐵
is not empty since 𝑦 ∈ 𝐴 ∩ 𝐵. Hence 𝐴 ∪ 𝐵 is connected. Since 𝐴 ∪ 𝐵 contains 𝑥, 𝑧, we
have 𝑥 ∼ 𝑧 as required for transitivity. Hence ∼ is an equivalence relation. For 𝑥 ∈ 𝑋 , we
write 𝐶𝑥 for the equivalence class containing 𝑥, called the connected component of 𝑥. The
equivalence classes are called connected components of 𝑋 .

Proposition. The connected components of a topological space 𝑋 are non-empty, maximal
connected subsets of 𝑋 , they are closed, and they partition 𝑋 .

Proof. Let 𝐶 be a connected component of 𝑋 . So 𝐶 = 𝐶𝑥 for some 𝑥 ∈ 𝑋 . Then 𝑥 ∈ 𝐶 hence
𝐶 ≠ ∅. Suppose 𝐶 ⊂ 𝐴 ⊂ 𝑋 and 𝐴 is connected. Then for all 𝑦 ∈ 𝐴, since 𝑥, 𝑦 ∈ 𝐴 we must
have 𝑥 ∼ 𝑦. So 𝑦 ∈ 𝐶. Hence 𝐴 ⊂ 𝐶, giving 𝐴 = 𝐶. For all 𝑦 ∈ 𝐶, we have 𝑦 ∼ 𝑥, so there
exists a connected subset 𝐴𝑦 ⊂ 𝑋 such that 𝑥, 𝑦 ∈ 𝐴𝑦. Let 𝐴 = ⋃𝑦∈𝐶 𝐴𝑦. 𝐴 is connected
since the union of pairwise intersecting connected sets are connected. Further 𝐴 ⊃ 𝐶 so
𝐴 = 𝐶 and 𝐶 is connected. Since the closure of a connected set is connected, 𝐶 is connected.
But 𝐶 ⊃ 𝐶, so 𝐶 = 𝐶 is closed.
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8.4. Path-connectedness
Definition. Let 𝑋 be a topological space. For points 𝑥, 𝑦 ∈ 𝑋 , a path from 𝑥 to 𝑦 in 𝑋 is
a continuous function 𝛾∶ [0, 1] → 𝑋 such that 𝛾(0) = 𝑥, 𝛾(1) = 𝑦. We say that 𝑋 is path-
connected if for all 𝑥, 𝑦 ∈ 𝑋 , there exists a path from 𝑥 to 𝑦 in 𝑋 .
Example. Inℝ𝑛,𝒟𝑟(𝑥) is path-connected by a straight line segment between any two points
in the ball. In particular, let 𝛾(𝑡) = (1 − 𝑡)𝑦 + 𝑡𝑧. This is continuous and lies entirely inside
𝒟𝑟(𝑥), since

‖𝛾(𝑡) = 𝑥‖ = ‖(1 − 𝑡)𝑡 + 𝑡𝑧 − 𝑥‖
= ‖((1 − 𝑡)𝑦 + 𝑡𝑧) − ((1 − 𝑡)𝑥 + 𝑡𝑥)‖
≤ (1 − 𝑡)‖𝑦 − 𝑥‖ + 𝑡‖𝑧 − 𝑥‖
< 𝑟

In a similar way, any convex subset of ℝ𝑛 is path-connected.

Theorem. If 𝑋 is path-connected, 𝑋 is connected.

Proof. Suppose 𝑋 is not connected. Let 𝑈,𝑉 disconnect 𝑋 . Let 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉 , and suppose
𝛾∶ [0, 1] → 𝑋 is continuouswith 𝛾(0) = 𝑥 and 𝛾(1) = 𝑦. Then 𝛾−1(𝑈) and 𝛾−1(𝑉) disconnect
[0, 1], which contradicts the connectedness of [0, 1].

Example. The converse is false in general. Recall that the space

𝑋 = {(𝑥, sin 1𝑥)∶ 𝑥 > 0} ∪ {(0, 𝑦)∶ − 1 ≤ 𝑦 ≤ 1}

is connected. We will show 𝑋 is not path-connected. Suppose 𝛾∶ [0, 1] → 𝑋 is continuous,
and 𝛾(0) = (0, 0) and 𝛾(1) = (1, sin 1). Let 𝛾 = (𝛾1, 𝛾2), so 𝛾1, 𝛾2 are continuous functions.
Suppose 𝑡 ∈ [0, 1] such that 𝛾1(𝑡) > 0. Then 𝛾1((0, 𝑡)) ⊃ (0, 𝛾1(𝑡)) by the intermediate value
theorem. In particular, there exists𝑛 ∈ ℕ such that 1

2𝜋𝑛
∈ (0, 𝛾1(𝑡)). Hence, there exists 𝑠 < 𝑡

such that 𝛾1(𝑠) =
1

2𝜋𝑛
so 𝛾1(𝑠) = 0. Similarly, 1

2𝜋𝑛+𝜋
2
∈ (0, 𝛾1(𝑡)) so there exists a different

𝑠 < 𝑡 such that 𝛾1(𝑠) =
1

2𝜋𝑛+𝜋
2
hence 𝛾2(𝑠) = 1. In both cases, 𝛾1(𝑠) > 0. We can inductively

find a sequence 1 > 𝑡1 > 𝑡2 > ⋯ > 0 such that 𝛾2(𝑡𝑛) alternates between zero and one.
But then 𝑡𝑛 → 𝑡 since it is a decreasing bounded-below sequence, and 𝛾2 is continuous, so
𝛾2(𝑡𝑛) → 𝛾2(𝑡) which is a contradiction.

8.5. Gluing lemma
Lemma. Let 𝑋 be a topological space. Suppose 𝑋 = 𝐴 ∪ 𝐵 where 𝐴, 𝐵 are closed in 𝑋 . Let
𝑔∶ 𝐴 → 𝑌 and ℎ∶ 𝐵 → 𝑌 be continuous where 𝑌 is a topological space, such that for 𝐴∩𝐵,
we have 𝑔 = ℎ. Then 𝑓∶ 𝑋 → 𝑌 defined by

𝑓(𝑥) = {𝑔(𝑥) 𝑥 ∈ 𝐴
ℎ(𝑥) 𝑥 ∈ 𝐵
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IV. Analysis and Topology

is well defined and continuous.

Proof. First, observe that if 𝐹 ⊂ 𝐴 and 𝐹 is closed in 𝐴, then there exists a closed set 𝐺 in 𝑋
such that 𝐹 = 𝐴 ∩ 𝐺. Since 𝐴 is closed in 𝑋 , we must have 𝐹 is closed in 𝑋 . The same holds
for 𝐹 ⊂ 𝐵. Now, let 𝑉 be a closed set in 𝑌 . Then the inverse image of 𝑉 under 𝑓 is

𝑓−1(𝑉) = (𝑓−1(𝑉) ∩ 𝐴) ∪ (𝑓−1(𝑉) ∩ 𝐵) = 𝑔−1(𝑉)⏟⎵⏟⎵⏟
closed in𝐴

∪ ℎ−1(𝑉)⏟⎵⏟⎵⏟
closed in 𝐵

So 𝑓−1(𝑉) is closed in𝑋 . To prove continuity it suffices to show that the preimage of a closed
set is closed, since that implies that the preimage of an open set is open.

Definition. Let 𝑋 be a topological space. For 𝑥, 𝑦 ∈ 𝑋 , we write 𝑥 ∼ 𝑦 if there exists a path
from 𝑥 to 𝑦 in 𝑋 . This is an equivalence relation:

(i) The constant function shows that 𝑥 ∼ 𝑥 for all 𝑥.

(ii) If 𝛾∶ [0, 1] → 𝑋 is continuous and 𝛾(0) = 𝑥, 𝛾(1) = 𝑦, we define 𝑡 ↦ 𝛾(1 − 𝑡), which
is a path from 𝑦 to 𝑥.

(iii) Finally, if 𝑥 ∼ 𝑦 and 𝑦 ∼ 𝑧, we have continuous functions 𝛾, 𝛿 such that 𝛾(0) =
𝑥, 𝛾(1) = 𝑦 = 𝛿(0), 𝛿(1) = 𝑧. Then let

𝜂(𝑡) = {
𝛾(2𝑡) 𝑡 ∈ [0, 1

2
]

𝛿(2𝑡 − 1) 𝑡 ∈ [ 1
2
, 1]

These intervals are closed on [0, 1] and their union is [0, 1]. On the intersection, they
are equal. By the gluing lemma, 𝜂 is continuous, and now since 𝜂(0) = 𝑥, 𝜂(1) = 𝑧 we
have 𝑥 ∼ 𝑧.

We call the equivalence classes path-connected components of 𝑋 .

Theorem. Let 𝑈 be an open subset of ℝ𝑛. Then 𝑈 is connected if and only if 𝑈 is path-
connected.

Proof. The converse is trivial. Suppose 𝑈 is connected. Without loss of generality, suppose
𝑈 ≠ ∅. Let 𝑥0 ∈ 𝑈 . Let 𝑃 = {𝑥 ∈ 𝑈 ∶ 𝑥 ∼ 𝑥0} be the equivalence class of 𝑥0. We want to
show 𝑃 = 𝑈 . To do this, we will show that 𝑃 is open and closed in 𝑈 . Then, 𝑃,𝑈 ∖ 𝑃 will
disconnect 𝑈 unless 𝑃 = ∅ or 𝑃 = 𝑈 . But we know 𝑥0 ∈ 𝑃, hence 𝑃 = 𝑈 will be the only
possibility.

To show 𝑃 is open, let 𝑥 ∈ 𝑈 . Since𝑈 is open, there exists 𝑟 > 0 such that𝒟𝑟(𝑥) ⊂ 𝑈 . Recall
that for all 𝑦 ∈ 𝒟𝑟(𝑥), we have 𝑦 ∼ 𝑥. Now, if 𝑥 ∈ 𝑃, then we have 𝑦 ∼ 𝑥 and 𝑥 ∼ 𝑥0 so
𝑦 ∼ 𝑥0. So𝒟𝑟(𝑥) ⊂ 𝑃. So 𝑃 is open.

Now, if 𝑥 ∈ 𝑈 ∖ 𝑃 and 𝑦 ∈ 𝒟𝑟(𝑥) has 𝑦 ∼ 𝑥0, then by transitivity 𝑥 ∼ 𝑥0. But this is a
contradiction since 𝑥 ∉ 𝑃. Hence 𝑈 ∖ 𝑃 is open. So 𝑃 is open and closed, so 𝑃 = 𝑈 .
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Theorem. For 𝑛 ≥ 2, ℝ and ℝ𝑛 are not homeomorphic.

The generalisation ℝ𝑚 ≄ ℝ𝑛 is true, but significantly harder to prove and outside the scope
of this course.

Proof. Suppose 𝑓∶ ℝ → ℝ𝑛 is a homeomorphism. Let 𝑔 = 𝑓−1. Then 𝑔 is continuous.
Then, 𝑓|ℝ∖{0} is a homeomorphism from ℝ ∖ {0} to ℝ𝑛 ∖ {𝑓(0)}, with inverse 𝑔|ℝ𝑛∖{𝑓(0)}. But
ℝ ∖ {0} is disconnected, but ℝ𝑛 ∖ {𝑓(0)} is connected since it is path-connected. This is a
contradiction.

189



IV. Analysis and Topology

9. Compactness
9.1. Motivation and definition
Recall from IAAnalysis that a continuous function on a closed bounded interval is bounded
and attains its bounds. Wewish to generalise this result tomore general topological spaces.

Example. (i) If 𝑋 is finite, any function 𝑋 → ℝ is finite.

(ii) If, for all continuous functions 𝑓∶ 𝑋 → ℝ there exists 𝑛 ∈ ℕ and subsets 𝐴1,… , 𝐴𝑛 of
𝑋 such that 𝑋 = ⋃𝑛

𝑗=1 𝐴𝑗 and 𝑓 is bounded on 𝐴𝑗 for all 𝑗, then the property holds.

(iii) Note that continuous functions are ‘locally bounded’; if 𝑓∶ 𝑋 → ℝ is continuous, then
for all 𝑥 ∈ 𝑋 we have𝑈𝑥 = 𝑓−1((𝑓(𝑥)−1, 𝑓(𝑥)+1)) is an open set containing 𝑋 , and 𝑓
is bounded on 𝑈𝑥. So each point has an open neighbourhood on which 𝑓 is bounded.
Further, 𝑋 = ⋃𝑥∈𝑋 𝑈𝑥. If there exists a finite subset 𝐹 ⊂ 𝑋 such that⋃𝑥∈𝐹 𝑈𝑥 = 𝑋 ,
then 𝑓 is bounded on 𝑋 . This is exactly the definition we will use for compactness.

Definition. Let 𝑋 be a topological space. An open cover for 𝑋 is a family𝒰 of open subsets
of 𝑋 that cover 𝑋 ; that is,⋃𝑈∈𝒰 𝑈 = 𝑋 . A subcover of 𝒰 is a subset 𝒱 ⊂ 𝒰 that covers 𝑈 .
This is called a finite subcover if 𝒱 is finite. We say that 𝑋 is compact if every open cover has
a finite subcover.

Remark. Compactness can be thought of as the next best thing to finiteness.

Theorem. Let 𝑋 be a compact topological space and 𝑓∶ 𝑋 → ℝ be continuous. Then 𝑓 is
bounded, and if 𝑋 is not empty 𝑓 attains its bounds.

Proof. For 𝑛 ∈ ℕ, let 𝑈𝑛 = {𝑥 ∈ 𝑋 ∶ |𝑓(𝑥)| < 𝑛}. 𝑈𝑛 is open since 𝑥 ↦ |𝑓(𝑥)| is continuous
and (−𝑛, 𝑛) is open. It is clear that 𝑋 = ⋃𝑛∈ℕ𝑈𝑛. This is an open cover of 𝑋 . Hence there
exists a finite subcover 𝐹 ⊂ ℕ such that 𝑋 = ⋃𝑛∈𝐹 𝑈𝑛 = 𝑈𝑁 where 𝑁 = max𝐹. Hence, for
all 𝑥 ∈ 𝑋 , we have |𝑓(𝑥)| < 𝑁 so 𝑓 is bounded.
Let 𝛼 = inf𝑋 𝑓; this exists since 𝑓 is bounded. Suppose there exists no 𝑥 ∈ 𝑋 such that
𝑓(𝑥) = 𝛼. Then, for all 𝑥 ∈ 𝑋 , 𝑓(𝑥) > 𝛼. Then there exists 𝑛 ∈ ℕ such that 𝑓(𝑥) > 𝛼 + 1

𝑛
.

So let
𝑉𝑛 = {𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) > 𝛼 + 1

𝑛} = 𝑓−1((𝛼 + 1
𝑛,∞))

We can see that 𝑉𝑛 is open. Now, since⋃𝑛∈ℕ 𝑉𝑛 = 𝑋 , there exists a finite subcover 𝐹 ⊂ ℕ
such that ⋃𝑛∈𝐹 𝑉𝑛 = 𝑋 = 𝑉 𝑁 where 𝑁 is the maximal 𝐹. Then for all 𝑥 ∈ 𝑋 , we have
𝑓(𝑥) > 𝛼+ 1

𝑁
. Hence inf𝑋 𝑓 ≥ 𝛼+ 1

𝑁
, which is a contradiction. The same argument applies

for the supremum.

Lemma. Let 𝑌 be a subspace of a topological space 𝑋 . Then 𝑌 is compact if and only if
whenever 𝒰 is a family of open sets in 𝑋 such that⋃𝑈∈𝒰 ⊃ 𝑌 , there is a finite subfamily
𝒱 ⊂ 𝒰 with⋃𝑈∈𝒱 𝑈 ⊃ 𝑌 .
Theorem. [0, 1] is compact.
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Proof. Let 𝒰 be a family of open sets in ℝ that cover [0, 1]. For a subset 𝐴 ⊂ [0, 1], we say
that𝒰 finitely covers𝐴 if there exists a finite subcover𝒱 ⊂ 𝒰 of𝐴. Note that if𝐴 = 𝐵∪𝐶 and
𝐴, 𝐵, 𝐶 ⊂ [0, 1] and𝒰 finitely covers𝐵 and𝐶, we can take the union of the finite subcovers to
find a finite subcover of𝐴, so𝑈 finitely covers𝐴. Suppose that𝒰 does not finitely cover [0, 1].
Then one of the intervals [0, 1

2
] and [ 1

2
, 1] is not finitely coverable by 𝒰. Let this interval be

[𝑎1, 𝑏1]. Let 𝑐 =
1
2
(𝑎1 + 𝑏1). Then one of the intervals [𝑎1, 𝑐], [𝑐, 𝑏1] is not finitely coverable

by 𝒰. Inductively, we obtain a nested sequence of intervals [𝑎1, 𝑏1] ⊃ ⋯ ⊃ [𝑎𝑛, 𝑏𝑛] ⊃ ⋯
which are not finitely covered by 𝒰 and 𝑏𝑛 − 𝑎𝑛 = 2−𝑛. Now, 𝑎𝑛 → 𝑥 for some 𝑥 ∈ [0, 1]
and 𝑏𝑛 = 𝑎𝑛 + 2−𝑛 → 𝑥. But since 𝒰 covers [0, 1], there exists 𝑈 ∈ 𝒰 such that 𝑥 ∈ 𝑈 . 𝑈
is open in ℝ, so for all 𝜀 > 0, we have (𝑥 − 𝜀, 𝑥 + 𝜀) ⊂ 𝑈 . Since 𝑎𝑛, 𝑏𝑛 → 𝑥, we can choose
𝑛 such that 𝑎𝑛, 𝑏𝑛 ∈ (𝑥 − 𝜀, 𝑥 + 𝜀). This is covered by one open set 𝑈 in 𝒰, so this is a finite
subcover. This is a contradiction.

Example. Other examples of compact spaces include the following.

(i) Any finite set is compact.

(ii) On any set 𝑋 , the cofinite topology is compact. Suppose without loss of generality that
𝑋 is not empty, and let 𝒰 be an open cover for 𝑋 . Let 𝑈 ∈ 𝒰 such that 𝑈 ≠ ∅. Then
𝐹 = 𝑋 ∖ 𝑈 is finite. For all 𝑥 ∈ 𝐹, let 𝑈𝑥 ∈ 𝒰 such that 𝑥 ∈ 𝑈𝑥. Then⋃𝑥∈𝐹 𝑈𝑥 ∪ 𝑈 is
a finite subcover.

(iii) Let 𝑥𝑛 → 𝑥 in a topological space 𝑋 . Let 𝑌 = {𝑥𝑛∶ 𝑛 ∈ ℕ} ∪ {𝑥}. Then 𝑌 is compact.
Indeed, let 𝒰 be a family of open sets in 𝑋 such that⋃𝑈∈𝒰 𝑈 ⊃ 𝑌 . In particular, let
𝑈 ∈ 𝒰 such that 𝑥 ∈ 𝑈 . Since 𝑈 is open and 𝑥𝑛 → 𝑥, there exists 𝑁 ∈ ℕ such that
for all 𝑛 ≥ 𝑁 we have 𝑥𝑛 ∈ 𝑈 . So we can cover the remaining finitely many elements
analogously to the previous example, and this yields a finite subcover.

(iv) The indiscrete topology on any set is compact, since there are only two open sets.

Counterexamples include the following.

(i) An infinite set 𝑋 in the discrete topology is not compact. Let

𝒰 = {{𝑥}∶ 𝑥 ∈ 𝑋}

This has no finite subcover.

(ii) ℝ is not compact. Consider the intervals (−𝑛, 𝑛) for all 𝑛 ∈ ℕ. This is an open cover
with no finite subcover.

9.2. Subspaces
Theorem. Let 𝑌 be a subspace of a topological space 𝑋 . Then,
(i) Let 𝑋 be compact and 𝑌 be closed in 𝑋 . Then 𝑌 is compact.

(ii) Let 𝑋 be Hausdorff and 𝑌 be compact. Then 𝑌 is closed in 𝑋 .
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Proof. Let𝒰 be a family of open sets in 𝑋 such that their union covers 𝑌 . Then𝒰∪(𝑋 ∖𝑌) is
an open cover for 𝑋 since 𝑌 is closed. This has a finite subcover 𝒱 ⊂ 𝒰 such that⋃𝑈∈𝒱 𝑈 ∪
(𝑋 ∖ 𝑌) = 𝑋 . Then⋃𝑈∈𝒱 𝑈 ⊃ 𝑌 .

For part (ii), let 𝑥 ∈ 𝑋 ∖ 𝑌 . For 𝑦 ∈ 𝑌 , since 𝑥 ≠ 𝑦 there exist open sets 𝑈𝑦, 𝑉𝑦 in 𝑋 such that
𝑥 ∈ 𝑈𝑦, 𝑦 ∈ 𝑉𝑦, 𝑈𝑦 ∩ 𝑉𝑦 = ∅. Now, {𝑉𝑦 ∶ 𝑦 ∈ 𝑌} is an open cover of 𝑌 . Hence there exists
𝐹 ⊂ 𝑌 finite such that⋃𝑦∈𝐹 𝑉𝑦 ⊃ 𝑌 . Now, 𝑈 = ⋂𝑦∈𝐹 𝑈𝑦 is open, further 𝑥 ∈ 𝑈 and

𝑈 ∩ 𝑌 ⊂ (⋂
𝑦∈𝐹

𝑈𝑦) ∩ (⋃
𝑦∈𝐹

𝑉𝑦) = ∅

Hence 𝑋 ∖ 𝑌 is a neighbourhood of all of its points, so it is open and 𝑌 is closed.

9.3. Continuous images of compact spaces
Theorem. Let 𝑓∶ 𝑋 → 𝑌 be a continuous function between topological spaces such that
𝑋 is compact. Then 𝑓(𝑋) is compact.

Proof. Let𝒰 be a family of open sets in𝑌 such that⋃𝑈∈𝒰 𝑈 ⊃ 𝑓(𝑋). Then⋃𝑈∈𝒰 𝑓−1(𝑈) =
𝑋 and 𝑓−1(𝑈) is open in 𝑋 for all𝑈 ∈ 𝒰 since 𝑓 is continuous. Since 𝑋 is compact, we have
a finite subcover 𝒱 ⊂ 𝒰 such that 𝑋 = ⋃𝑈∈𝒱 𝑓−1(𝑉). Hence 𝑓(𝑋) ⊂ ⋃𝑈∈𝒱 𝑈 .

Remark. Compactness is a topological property. If 𝑓∶ 𝑋 → 𝑌 is continuous and 𝐴 ⊂ 𝑋 is
compact, then 𝑓(𝐴) is compact.

Corollary. Any quotient of a compact space is compact.

Example. Let 𝑎 < 𝑏 ∈ ℝ. Then [𝑎, 𝑏] ≃ [0, 1] so is compact.

9.4. Topological inverse function theorem
Theorem. Let 𝑓∶ 𝑋 → 𝑌 be a continuous bijection from a compact space 𝑋 to a Hausdorff
space 𝑌 . Then 𝑓−1 is continuous, so 𝑓 is an open map. Hence 𝑓 is a homeomorphism.

Proof. Let 𝑈 be an open subset of 𝑋 . Then 𝐾 = 𝑋 ∖ 𝑈 is closed. Since 𝑋 is compact, 𝐾 is
compact. Further, 𝑓(𝐾) is compact. Hence 𝑓(𝐾) is closed in 𝑌 . So 𝑓(𝑈) = 𝑌 ∖ 𝑓(𝐾) is open
in 𝑌 .

Example. ℝ/ℤ is homeomorphic to 𝑆1 = {𝑥 ∈ ℝ2∶ ‖𝑥‖ = 1}. Indeed, let 𝑓∶ ℝ → 𝑆1 by
𝑓(𝑡) = (cos(2𝜋𝑡), sin(2𝜋𝑡)). For all 𝑠, 𝑡, we have 𝑓(𝑠) = 𝑓(𝑡) if and only if 𝑠 ∼ 𝑡 so 𝑓 fully
respects ∼. 𝑓 is continuous and surjective. Let 𝑓∶ ℝ/ℤ → 𝑆1 be the unique map such that
𝑓 ∘ 𝑞 = 𝑓. So 𝑓 is a continuous bijection. 𝑆1 is Hausdorff, and ℝ/ℤ is the image of [0, 1]
under a continuous map, hence is compact. Hence 𝑓 is a homeomorphism.
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9.5. Tychonov’s theorem
Theorem. Let 𝑋, 𝑌 be compact topological spaces. Then 𝑋 × 𝑌 is compact in the product
topology.

Proof. Let𝒰 be an open cover for 𝑋 ×𝑌 . We want to show that there exists a finite subcover.
Without loss of generality, every member of 𝒰 can be of the form 𝑈 × 𝑉 where 𝑈 is open
in 𝑋 and 𝑉 is open in 𝑌 . Indeed, for 𝑧 ∈ 𝑋 × 𝑌 we can choose𝑊𝑧 ∈ 𝒰 such that 𝑧 ∈ 𝑊𝑧.
By definition of the product topology, there exist open sets 𝑈𝑧 in 𝑋 and 𝑉𝑧 in 𝑌 such that
𝑧 ∈ 𝑈𝑧 × 𝑉𝑧 ⊂ 𝑊𝑧. So {𝑈𝑧 × 𝑉𝑧 ∶ 𝑧 ∈ 𝑋 × 𝑌} is an open cover for 𝑋 × 𝑌 . If there exists a
finite subset 𝐹 ⊂ 𝑋 × 𝑌 such that⋃𝑧∈𝐹 𝑈𝑧 × 𝑉𝑧 covers 𝑋 × 𝑌 , then {𝑊𝑥 ∶ 𝑧 ∈ 𝐹} is a finite
subcover of 𝒰.
Let 𝑥 ∈ 𝑋 . Recall that {𝑥} × 𝑌 is the continuous image of 𝑌 under the map 𝑦 ↦ (𝑥, 𝑦).
Hence, {𝑥}×𝑌 is compact, since the continuous image of a compact space is compact. Since
{𝑥} × 𝑌 is covered by⋃𝑊∈𝒰𝑊 , 𝒰 finitely covers {𝑥} × 𝑌 . So there exists 𝑛𝑥 ∈ ℕ such that
we can find open sets 𝑈𝑥,1,… ,𝑈𝑥,𝑛𝑥 in 𝑋 and 𝑉𝑥,1,… , 𝑉𝑥,𝑛𝑥 in 𝑌 such that 𝑈𝑥,𝑗 × 𝑉𝑥,𝑗 ∈ 𝒰
and {𝑥} × 𝑌 ⊂ ⋃𝑛𝑥

𝑗=1𝑈𝑥,𝑗 × 𝑉𝑥,𝑗 .

Without loss of generality, let 𝑥 ∈ 𝑈𝑥,𝑗 for all 𝑗, since any other𝑈𝑥,𝑗 is not needed in the cover.
Now let 𝑈𝑥 = ⋂𝑛𝑥

𝑗=1𝑈𝑥,𝑗 . We know 𝑥 ∈ 𝑈𝑥 and 𝑈𝑥 is open since it is a finite intersection of
open sets. In particular, 𝑈𝑥 × 𝑌 ⊂ ⋃𝑛𝑥

𝑗=1𝑈𝑥,𝑗 × 𝑉𝑥,𝑗 .

Now, {𝑈𝑥 ∶ 𝑥 ∈ 𝑋} is an open cover for 𝑋 . So there exists a finite subset 𝐹 ⊂ 𝑋 such that
𝑋 = ⋃𝑥∈𝐹 𝑈𝑥. Then, 𝑋 × 𝑌 = ⋃𝑥∈𝐹 𝑈𝑥 × 𝑌 ⊂ ⋃𝑥∈𝐹 ⋃

𝑛𝑥
𝑗=1𝑈𝑥,𝑗 × 𝑉𝑥,𝑗 . Hence,

{𝑈𝑥,𝑗 × 𝑉𝑥,𝑗 ∶ 𝑥 ∈ 𝐹, 1 ≤ 𝑗 ≤ 𝑛𝑥}

is a finite subcover of 𝒰.

Remark. More generally, if 𝑋1,… , 𝑋𝑛 are compact spaces, then so is 𝑋1 ×⋯× 𝑋𝑛.

9.6. Heine–Borel theorem
Theorem. A subset 𝐾 of ℝ𝑛 is compact if and only if 𝐾 is closed and bounded.

Proof. Suppose 𝐾 is compact. ℝ𝑛 is a metric space and hence Hausdorff. Hence, 𝐾 is closed
in ℝ𝑛. The function 𝑥 ↦ ‖𝑥‖ is continuous. Therefore, it is bounded on 𝐾. So 𝐾 is bounded.

Conversely, if 𝐾 is bounded, there exists 𝑀 ≥ 0 such that for all 𝑥 ∈ 𝐾 we have ‖𝑥‖ ≤ 𝑀.
Hence, 𝐾 ⊂ [−𝑀,𝑀]𝑛. Note that [−𝑀,𝑀] is compact since it is homeomorphic to [0, 1]. By
Tychonov’s theorem, [−𝑀,𝑀]𝑛 is compact in the product topology. Since a closed subset of
a compact space is compact, 𝐾 is compact.

Example. Closed balls ℬ𝑟(𝑥) in ℝ𝑛 are compact. The start of the proof for the Lindelöf–
Picard theorem now makes more sense.
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9.7. Sequential compactness
Definition. A topological space 𝑋 is sequentially compact if every sequence in 𝑋 has a
convergent subsequence. Given a sequence (𝑥𝑛) and an infinite set 𝑀 ⊂ ℕ, we will write
(𝑥𝑚)𝑚∈𝑀 for the subsequence (𝑥𝑚𝑛)∞𝑛=1 where 𝑚1 < 𝑚2 < … are the elements of𝑀. Note
that if 𝐿 ⊂ 𝑀 ⊂ ℕ, then (𝑥𝑛)𝑛∈𝐿 is a subsequence of (𝑥𝑛)𝑛∈𝑀 .
Example. Any closed and bounded subset of ℝ is sequentially compact by the Bolzano–
Weierstrass theorem. Similarly, any closed and bounded subset 𝐾 of ℝ𝑛 is sequentially com-
pact. Indeed, let (𝑥𝑚) be a sequence in 𝐾. Then, writing 𝑥𝑚 = (𝑥𝑚,1,… , 𝑥𝑚,𝑛), since 𝐾 is
bounded we have that (𝑥𝑚,𝑗) is bounded for all 𝑗. Applying the Bolzano–Weierstrass the-
orem to the first coordinate, we find 𝑀1 ⊂ ℕ such that (𝑥𝑚,1)𝑚∈𝑀1 converges in ℝ. Now,
(𝑥𝑚,2)𝑚∈𝑀1 is bounded in ℝ, so again applying the Bolzano–Weierstrass theorem, we can
find 𝑀2 ⊂ ℕ such that (𝑥𝑚,2)𝑚∈𝑀2 converges. Note that (𝑥𝑚,1)𝑚∈𝑀2 converges. So induct-
ively we can find𝑀1 ⊃ ⋯ ⊃ 𝑀𝑛 such that (𝑥𝑚,𝑗)𝑚∈𝑀𝑛 converges for all 𝑗. Hence (𝑥𝑚)𝑚∈𝑀𝑛
converges in ℝ𝑛. The limit is contained in 𝐾 since 𝐾 is closed.

Remark. In ℝ𝑛, any compact space is sequentially compact. The converse is also true; any
sequentially compact subspace must be closed and bounded. We aim to show that compact-
ness and sequential compactness are identical in metric spaces.

9.8. Compactness and sequential compactness in metric spaces
Let (𝑀, 𝑑) be a metric space.
Definition. For 𝜀 > 0 and 𝐹 ⊂ 𝑀, we say that 𝐹 is an 𝜀-net for𝑀 if for all 𝑥 ∈ 𝑀, there exists
𝑦 ∈ 𝐹 such that 𝑑(𝑦, 𝑥) ≤ 𝜀. Equivalently,𝑀 = ⋃𝑦∈𝑀 ℬ𝜀(𝑦). This is called a finite 𝜀-net if 𝐹
is finite. We say that𝑀 is totally bounded if for all 𝜀 > 0, there exists a finite 𝜀-net for𝑀.

Example. For 𝜀 > 0, let 𝑛 such that 1
𝑛
< 𝜀. Then { 1

𝑛
, 2
𝑛
,… , 𝑛−1

𝑛
} is an 𝜀-net for (0, 1).

Definition. For a non-empty𝐴 ⊂ 𝑀, the diameter of𝐴 is diam𝐴 = sup {𝑑(𝑥, 𝑦)∶ 𝑥, 𝑦 ∈ 𝐴}.
This is finite if and only if 𝐴 is a bounded set.

Example. diamℬ𝑟(𝑥) ≤ 2𝑟.
Lemma. Suppose𝑀 is totally bounded. Let𝐴 be a non-empty closed subset of𝑀. Let 𝜀 > 0.
Then there exists 𝐾 ∈ ℕ and non-empty closed sets 𝐵1,… , 𝐵𝐾 such that 𝐴 = ⋃𝐾

𝑘=1 𝐵𝑘 and
diam𝐵𝑘 ≤ 𝜀 for all 𝑘.

Proof. Let 𝐹 be a finite 𝜀
2
-net for𝑀. So𝑀 = ⋃𝑥∈𝐹 𝐵𝜀/2(𝑥) and hence𝐴 = ⋃𝑥∈𝐹(𝐴∩𝐵𝜀/2(𝑥)).

Let 𝐺 = {𝑥 ∈ 𝐹 ∶ 𝐴 ∩ 𝐵𝜀/2(𝑥) ≠ 0}. Then for 𝑥 ∈ 𝐺 let 𝐵𝑥 = 𝐴 ∩ 𝐵𝜀/2(𝑥). So for 𝑥 ∈ 𝐺, we
have 𝐵𝑥 ≠ ∅, 𝐵𝑥 ⊂ 𝐵𝜀/2(𝑥) and so diam𝐵𝑥 ≤ 𝜀, and 𝐵𝑥 is closed. Then 𝐴 = ⋃𝑥∈𝐺 𝐵𝑥.

Theorem. For a metric space (𝑀, 𝑑), the following are equivalent.
(i) 𝑀 is compact;
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(ii) 𝑀 is sequentially compact;

(iii) 𝑀 is complete and totally bounded.

Proof. We first show (i) implies (ii). Let (𝑥𝑛) be a sequence in𝑀. Then for 𝑛 ∈ ℕ, let 𝑇𝑛 =
{𝑥𝑘∶ 𝑘 > 𝑛} be the tail of the sequence. Note that the limit of any convergent subsequence
(if it exists) is in the intersection of⋂𝑛∈ℕ 𝑇𝑛. So first, we prove that this intersection is non-
empty. Suppose that it is empty. Then,⋃𝑛∈ℕ (𝑀 ∖ 𝑇𝑛) = 𝑀. But the𝑀 ∖ 𝑇𝑛 are open, and
𝑀 is compact, there is a finite subcover. So 𝑀 ∖ 𝑇𝑁 = 𝑀 for some 𝑁, since the 𝑇𝑛 are a
decreasing sequence of sets. This is a contradiction since 𝑇𝑁 ≠ ∅. Now, let 𝑥 ∈ ⋂𝑛∈ℕ 𝑇𝑛,
and we want to show the existence of a subsequence converging to 𝑥. First, 𝑥 ∈ 𝑇1, so
𝒟1(𝑥) ∩ 𝑇1 ≠ ∅. Hence there exists 𝑘1 > 1 such that 𝑑(𝑥𝑘1 , 𝑥) < 1. Now since 𝑥 ∈ 𝑇𝑘1 ,
𝒟1/2(𝑥) ∩ 𝑇𝑘1 ≠ ∅. There exists 𝑘2 > 𝑘1 such that 𝑑(𝑥𝑘2 , 𝑥) <

1
2
. Inductively, we can find a

strictly increasing sequence 𝑘1 < 𝑘2 < … such that 𝑑(𝑥𝑘𝑛 , 𝑥) <
1
𝑛
for all 𝑛, so 𝑥𝑘𝑛 → 𝑥.

Now, we show (ii) implies (iii). To show𝑀 is complete, let (𝑥𝑛) be a Cauchy sequence in𝑀.
Let 𝑘1 < 𝑘2 < … such that 𝑥𝑘𝑛 converges in 𝑀, and let 𝑥 be the limit. We show 𝑥𝑛 → 𝑥.
Indeed, for 𝜀 > 0, there exists 𝑁 ∈ ℕ such that ∀𝑚, 𝑛 ≥ 𝑁, we have 𝑑(𝑥𝑚, 𝑥𝑛) < 𝜀. Then
∀𝑚 ≥ 𝑁, we have 𝑘𝑛 ≥ 𝑚 ≥ 𝑁, so for a fixed 𝑛 ≥ 𝑁 and ∀𝑚 ≥ 𝑁, we have 𝑑(𝑥𝑛, 𝑥) ≤
𝑑(𝑥𝑛, 𝑥𝑘𝑚) + 𝑑(𝑥𝑘𝑚 , 𝑥) ≤ 𝜀+𝑑(𝑥𝑘𝑚 , 𝑥). Let𝑚 → ∞, so 𝑑(𝑥𝑛, 𝑥) ≤ 𝜀. So 𝑥𝑛 → 𝑥. To show𝑀
is totally bounded, suppose it is not. There exists 𝜀 > 0 such that𝑀 has no finite 𝜀-net. Let
𝑥1 ∈ 𝑀, and suppose we can find 𝑥1,… , 𝑥𝑛−1 in𝑀. Then⋃𝑛−1

𝑗=1 ℬ𝜀(𝑥𝑗) ≠ 𝑀. So we can pick
𝑥𝑛 ∈ 𝑀 ∖⋃𝑛−1

𝑗−1 ℬ𝜀(𝑥𝑗). Inductively we obtain (𝑥𝑛) such that 𝑑(𝑥𝑚, 𝑥𝑛) > 𝜀 for all 𝑛,𝑚 ∈ ℕ.
So (𝑥𝑛) has no Cauchy subsequence. There is therefore no convergent subsequence, which
is a contradiction.

Finally, we show (iii) implies (i). Let 𝒰 be an open cover for𝑀. We must show there exists
a finite subcover. Suppose that is not true, so 𝒰 does not finitely cover 𝑀. We construct
non-empty closed subsets 𝐴0 ⊃ 𝐴1 ⊃ … of 𝑀 such that for all 𝑛 ≥ 0, 𝒰 does not finitely
cover 𝐴𝑛, and for all 𝑛 ≥ 1 we have diam𝐴𝑛 <

1
𝑛
. Let 𝐴0 = 𝑀. Suppose that for some 𝑛 ≥ 1

we have already found 𝐴𝑛−1. Since 𝑀 is totally bounded, we can write 𝐴𝑛−1 = ⋃𝐾
𝑘=1 𝐵𝑘

where 𝐾 ∈ ℕ and the 𝐵𝑘 are non-empty, closed, and diam𝐵𝑘 <
1
𝑛
. Since 𝒰 does not finitely

cover 𝐴𝑛−1, there exists 𝑘 ≤ 𝐾 such that 𝒰 does not finitely cover 𝐵𝑘. Let 𝐴𝑛 be this 𝐵𝑘.
Now, for all 𝑛, pick some 𝑥𝑛 ∈ 𝐴𝑛. For all 𝑁, ∀𝑚, 𝑛 ≥ 𝑁 we have 𝑥𝑚, 𝑥𝑛 ∈ 𝐴𝑁 hence
𝑑(𝑥𝑚, 𝑥𝑛) ≤ diam𝐴𝑁 ≤ 1

𝑛
so the sequence is Cauchy. 𝑀 is complete, so 𝑥𝑛 → 𝑥 for some

𝑥 ∈ 𝑀. Let 𝑈 ∈ 𝒰 such that 𝑥 ∈ 𝑈 . 𝑈 is open, so there exists 𝑟 > 0 such that 𝒟𝑟(𝑥) ⊂ 𝑈 .
But 𝑥𝑛 → 𝑥 hence there exists 𝑛 such that 𝑑(𝑥𝑛, 𝑥) <

𝑟
2
and diam𝐴𝑛 <

𝑟
2
. For every 𝑦 ∈ 𝐴𝑛,

𝑑(𝑦, 𝑥) ≤ 𝑑(𝑦, 𝑥𝑛) + 𝑑(𝑥𝑛, 𝑥) ≤ diam𝐴𝑛 +
𝑟
2
< 𝑟. Hence every point in 𝐴𝑛 is contained

within 𝒟𝑟(𝑥) ⊂ 𝑈 . But this contradicts the fact that 𝒰 does not finitely cover 𝐴𝑛, but we
have constructed a cover using just one open set.
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Remark. Wecannowdeduce the one direction of theHeine–Borel theorem from theBolzano–
Weierstrass theorem; closed and bounded subsets of ℝ𝑛 are compact. Similarly, we can
check that the product of sequentially compact topological spaces is sequentially compact
in the product topology. This yields a new proof for Tychonov’s theorem for metric spaces.
In general, there exist topological spaces that are compact but not sequentially compact, and
conversely there exist topological spaces which are sequentially compact but not compact.
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10. Differentiation
10.1. Linear maps
Let𝑚, 𝑛 ∈ ℕ. Recall that 𝐿(ℝ𝑚, ℝ𝑛) is the vector space of linear maps from ℝ𝑚 to ℝ𝑛. This
is isomorphic to 𝑀𝑛,𝑚, the space of 𝑛 × 𝑚 real matrices. There is also an isomorphism to
ℝ𝑚𝑛. Let 𝑒1,… , 𝑒𝑚 be the standard basis of ℝ𝑚, and similarly let 𝑒′1,… , 𝑒′𝑛 be the standard
basis of ℝ𝑛. Then 𝑇 ∈ 𝐿(ℝ𝑚, ℝ𝑛) is identified with the 𝑛 × 𝑚matrix (𝑇𝑗𝑖) where 1 ≤ 𝑗 ≤ 𝑛
and 1 ≤ 𝑖 ≤ 𝑚, such that 𝑇𝑗𝑖 = ⟨𝑇𝑒𝑖, 𝑒′𝑗⟩. We can therefore view 𝐿(ℝ𝑚, ℝ𝑛) as the 𝑚𝑛-
dimensional vector space ℝ𝑚𝑛 with the Euclidean norm. So the norm of a linear map 𝑇 is
given by

‖𝑇‖ =
√√√
√

𝑚
∑
𝑖=1

𝑛
∑
𝑗=1

𝑇2𝑗𝑖 =
√√√
√

𝑚
∑
𝑖=1

‖𝑇𝑒𝑖‖
2

where 𝑇𝑒𝑖 is the 𝑖th column of 𝑇. Thus, 𝐿(ℝ𝑚, ℝ𝑛) becomes a metric space together with
the Euclidean distance 𝑑(𝑆, 𝑇) = ‖𝑆 − 𝑇‖.
Lemma. For 𝑇 ∈ 𝐿(ℝ𝑚, ℝ𝑛) and 𝑥 ∈ ℝ𝑚,

‖𝑇𝑥‖ ≤ ‖𝑇‖ ⋅ ‖𝑥‖

So 𝑇 is a Lipschitz map and hence continuous. Further, if 𝑆 ∈ 𝐿(ℝ𝑛, ℝ𝑝) then

‖𝑆𝑇‖ ≤ ‖𝑆‖ ⋅ ‖𝑇‖

Proof. We can write

𝑥 =
𝑚
∑
𝑖=1

𝑥𝑖𝑒𝑖

Hence,

𝑇𝑥 =
𝑚
∑
𝑖=1

𝑥𝑖𝑇𝑒𝑖

Thus,

‖𝑇𝑥‖ ≤
𝑚
∑
𝑖=1

|𝑥𝑖|‖𝑇𝑒𝑖‖ ≤ (
𝑚
∑
𝑖=1

𝑥2𝑖 )
1/2

⋅ (
𝑚
∑
𝑖=1

‖𝑇𝑒𝑖‖
2)

1/2

= ‖𝑇‖ ⋅ ‖𝑥‖

Further, for 𝑥, 𝑦 ∈ ℝ𝑚 we have

𝑑(𝑇𝑥, 𝑇𝑦) = ‖𝑇𝑥 − 𝑇𝑦‖ = ‖𝑇(𝑥 − 𝑦)‖ ≤ ‖𝑇‖ ⋅ ‖𝑥 − 𝑦‖ = ‖𝑇‖𝑑(𝑥, 𝑦)

So 𝑇 is Lipschitz, and any Lipschitz function is continuous. Now,

‖𝑆𝑇‖ = (
𝑚
∑
𝑖=1

‖𝑆𝑇𝑒𝑖‖
2)

1/2

≤ (
𝑚
∑
𝑖=1

‖𝑆‖‖𝑇𝑒𝑖‖
2)

1/2

= ‖𝑆‖(
𝑚
∑
𝑖=1

‖𝑇𝑒𝑖‖
2)

1/2

= ‖𝑆‖ ⋅ ‖𝑇‖
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10.2. Differentiation
Recall from IA Analysis that a function 𝑓∶ ℝ → ℝ is differentiable at a point 𝑎 ∈ ℝ if

lim
ℎ→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎)
ℎ

exists. The value of this limit is called the derivative of 𝑓 at 𝑎, and denoted 𝑓′(𝑎). Note that
𝑓 is differentiable at 𝑎 if and only if there exists 𝜆 ∈ ℝ and 𝜀∶ ℝ → ℝ such that 𝜀(0) = 0 and
𝜀 is continuous at 0, and

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝜆ℎ + ℎ𝜀(ℎ)
This is because we can define

𝜀(ℎ) = {
0 ℎ = 0
𝑓(𝑎+ℎ)−𝑓(𝑎)

ℎ
− 𝜆 ℎ ≠ 0

Informally, this 𝜀 definition states that 𝑓 is approximated very well (the error ℎ𝜀(ℎ) shrinks
rapidly since 𝜀 → 0) by a linear function in a small neighbourhood of 𝑎. Recall that if 𝑓 is 𝑛
times differentiable at 𝑎, then

𝑓(𝑎 + ℎ) = 𝑓(𝑎) +
𝑛
∑
𝑘=1

𝑓(𝑘)(𝑎)
𝑘! ℎ𝑘 + 𝑜(ℎ𝑛)

Definition. Let𝑚, 𝑛 ∈ ℕ. Then 𝑓∶ ℝ𝑚 → ℝ𝑛 and 𝑎 ∈ ℝ𝑚. We say that 𝑓 is differentiable at
𝑎 if there exists a linear map 𝑇 ∈ 𝐿(ℝ𝑚, ℝ𝑛) and a function 𝜀∶ ℝ𝑚 → ℝ𝑛 such that 𝜀(0) = 0
and 𝜀 is continuous at 0, and

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝑇(ℎ) + ‖ℎ‖𝜀(ℎ)

Note that

𝜀(ℎ) = {
0 ℎ = 0
𝑓(𝑎+ℎ)−𝑓(𝑎)−𝑇(ℎ)

‖ℎ‖
ℎ ≠ 0

So 𝑓 is differentiable at 𝑎 if and only if there exists 𝑇 ∈ 𝐿(ℝ𝑚, ℝ𝑛) such that
𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝑇(ℎ)

‖ℎ‖ → 0

as ℎ → 0. Such a 𝑇 is unique. Indeed, suppose 𝑆, 𝑇 satisfy the above limit. Then, by sub-
tracting,

𝑆(ℎ) − 𝑇(ℎ)
‖ℎ‖ → 0

For a fixed 𝑥 ∈ ℝ𝑚, 𝑥 ≠ 0, we have 𝑥
𝑘
→ 0 as 𝑘 → ∞ so

𝑆(𝑥
𝑘
) − 𝑇(𝑥

𝑘
)

‖
‖
𝑥
𝑘
‖
‖

→ 0 ⟹ 𝑆(𝑥) − 𝑇(𝑥)
‖𝑥‖ = 0
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So 𝑆𝑥 = 𝑇𝑥. It follows that 𝑆 = 𝑇. We say that if a function 𝑓 is differentiable at a point 𝑎,
𝑇 is the unique derivative of 𝑓 at 𝑎. This is denoted 𝑓′(𝑎) = 𝐷𝑓(𝑎) = 𝐷𝑓|𝑎. If 𝑓∶ ℝ𝑚 → ℝ𝑛

is differentiable at 𝑎 ∈ ℝ𝑚 for every 𝑎, we say that 𝑓 is differentiable on ℝ𝑚. The function
𝑓′ = 𝐷∶ ℝ𝑚 → 𝐿(ℝ𝑚, ℝ𝑛)mapping 𝑎 ↦ 𝑓′(𝑎) is the derivative of 𝑓.
Example. Constant functions are differentiable. Let 𝑓∶ ℝ𝑚 → ℝ𝑛 such that 𝑓(𝑥) = 𝑏 for
𝑏 ∈ ℝ𝑛. Then for all 𝑎 ∈ ℝ𝑚, we have

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 0ℎ + 0

so 𝑓 is differentiable at 𝑎 and the derivative is zero.
Example. Linear maps are differentiable. Let 𝑓∶ ℝ𝑚 → ℝ𝑛 be defined by 𝑓(𝑥) = 𝑇𝑥 for a
linear map 𝑇 ∈ 𝐿(ℝ𝑚, ℝ𝑛). Then

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝑓(ℎ) + 0

so 𝑓 is differentiable at 𝑎 with derivative 𝑇 = 𝑓. So 𝑓′ is a constant function.
Example. Consider

𝑓(𝑥) = ‖𝑥‖2

For 𝑎 ∈ ℝ𝑚, we can find

𝑓(𝑎 + ℎ) = ‖𝑎 + ℎ‖2 = ‖𝑎‖2 + 2 ⟨𝑎, ℎ⟩ + ‖ℎ‖2 = 𝑓(𝑎) + 2 ⟨𝑎, ℎ⟩ + ‖ℎ‖𝜀(ℎ)

Hence, 𝑓 is differentiable with derivative

𝑓′(𝑎)(ℎ) = 2 ⟨𝑎, ℎ⟩

Note that 𝑓′∶ ℝ𝑚 → 𝐿(ℝ𝑚 → ℝ) is linear.
Example. Note 𝑀𝑛 ≃ ℝ𝑛2 . The function 𝑓∶ 𝑀𝑛 → 𝑀𝑛 given by 𝑓(𝐴) = 𝐴2. For a fixed
𝐴 ∈ 𝑀𝑛,

𝑓(𝐴 + 𝐻) = (𝐴 + 𝐻)2 = 𝐴2 + 𝐴𝐻 +𝐻𝐴 + 𝐻2

It suffices to show 𝐻2 is 𝑜(‖𝐻‖). We have ‖‖𝐻2‖‖ ≤ ‖𝐻‖2, hence

‖
‖𝐻2‖‖
‖𝐻‖ ≤ ‖𝐻‖ → 0

So 𝑓 is differentiable at 𝐴 and the derivative is given by

𝑓′(𝐴)(𝐻) = 𝐴𝐻 + 𝐻𝐴

Example. Suppose 𝑓∶ ℝ𝑚 × ℝ𝑛 → ℝ𝑝 is bilinear. Let (𝑎, 𝑏) ∈ ℝ𝑚 × ℝ𝑛. Then,

𝑓((𝑎, 𝑏) + (ℎ, 𝑘)) = 𝑓((𝑎 + ℎ, 𝑏 + 𝑘)) = 𝑓(𝑎, 𝑏) + 𝑓(𝑎, 𝑘) + 𝑓(ℎ, 𝑏) + 𝑓(ℎ, 𝑘)
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Themapℝ𝑚×ℝ𝑛 → ℝ𝑝 given by (ℎ, 𝑘) ↦ 𝑓(𝑎, 𝑘)+𝑓(ℎ, 𝑏) is linear as the sum of two linear
maps. So it suffices to show 𝑓(ℎ, 𝑘) is 𝑜(‖(ℎ, 𝑘)‖).

ℎ =
𝑚
∑
𝑖=1

ℎ𝑖𝑒𝑖; 𝑘 =
𝑛
∑
𝑗=1

𝑘𝑗𝑒′𝑗

Hence,

𝑓(ℎ, 𝑘) =
𝑚
∑
𝑖=1

𝑛
∑
𝑗=1

ℎ𝑖𝑘𝑗𝑓(𝑒𝑖, 𝑒′𝑗) ⟹ ‖𝑓(ℎ, 𝑘)‖ ≤
𝑚
∑
𝑖=1

𝑛
∑
𝑗=1

|ℎ𝑖| ⋅ ||𝑘𝑗 || ⋅ ‖‖𝑓(𝑒𝑖, 𝑒
′
𝑗)‖‖ ≤ 𝐶‖(ℎ, 𝑘)‖2

for some constant 𝐶, since |ℎ𝑖| ≤ ‖(ℎ, 𝑘)‖2 and similarly for ||𝑘𝑗 ||. So

‖𝑓(ℎ, 𝑘)‖
‖(ℎ, 𝑘)‖ ≤ 𝐶‖(ℎ, 𝑘)‖ → 0

Hence 𝑓 is differentiable with

𝑓′(𝑎, 𝑏)(ℎ, 𝑘) = 𝑓(𝑎, 𝑘) + 𝑓(ℎ, 𝑏)

10.3. Derivatives on open subsets
Wemay define the derivative on a subset ofℝ𝑚. We will use the notion of open subsets since
we are typically interested in neigbourhoods of points.

Definition. Let 𝑈 be an open subset of ℝ𝑚. Let 𝑓∶ 𝑈 → ℝ𝑛 be a function, and 𝑎 ∈ 𝑈 .
Then we say 𝑓 is differentiable at 𝑎 if there exists a linear map 𝑇 ∈ 𝐿(ℝ𝑚, ℝ𝑛) such that

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝑇(ℎ) + ‖ℎ‖𝜀(ℎ)

where 𝜀(0) = 0 and 𝜀 is continuous at zero. Note that 𝜀 need only be defined on the set of ℎ
such that 𝑎 + ℎ ∈ 𝑈 , or more precisely the open set 𝑈 − 𝑎. Hence there exists 𝑟 > 0 such
that𝒟𝑟(0) ⊂ 𝑈𝑎. Then

𝜀(ℎ) = {
0 ℎ = 0
𝑓(𝑎+ℎ)−𝑓(𝑎)−𝑇(ℎ)

‖ℎ‖
ℎ ≠ 0, 𝑎 + ℎ ∈ 𝑈

So 𝑓 is differentiable at 𝑎 if and only if there exists a linear map 𝑇 ∈ 𝐿(ℝ𝑚, ℝ𝑛) such that

𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝑇(ℎ)
‖ℎ‖ → 0

Remark. The linear map 𝑇 is unique, and is called the derivative of 𝑓 at 𝑎, denoted 𝑓′(𝑎). In
particular,

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝑓′(𝑎)(ℎ) + 𝑜(‖ℎ‖)
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Remark. If 𝑚 = 1, the space 𝐿(ℝ,ℝ𝑛) is isomorphic to ℝ𝑛. The linear map is defined
uniquely by a vector in ℝ𝑛 which multiplies by the scalar ℎ. Hence, if 𝑈 ⊂ ℝ is open and
𝑓∶ 𝑈 → ℝ be a function and 𝑎 ∈ 𝑈 , then 𝑓 is differentiable at 𝑎 if there exists a vector
𝑣 ∈ ℝ𝑛 such that

𝑓(𝑎 + ℎ) − 𝑓(𝑎) − ℎ𝑣
|𝑣| → 0

Equivalently, there exists 𝑣 ∈ ℝ𝑛 such that

𝑓(𝑎 + ℎ) − 𝑓(𝑎)
ℎ → 𝑣

10.4. Properties of derivative
Proposition. Let 𝑈 ⊂ ℝ𝑚 be open, 𝑓∶ 𝑈 → ℝ𝑛 be a function, and 𝑎 ∈ 𝑈 . If 𝑓 is differen-
tiable at 𝑎, 𝑓 is continuous at 𝑎.

Proof. We have
𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝑓′(𝑎)(ℎ) + ‖ℎ‖𝜀(ℎ)

Hence,
𝑓(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) + ‖𝑥 − 𝑎‖𝜀(𝑥 − 𝑎)

The functions 𝑥 ↦ 𝑓(𝑎), 𝑥 ↦ 𝑓′(𝑎)(𝑥 − 𝑎) and 𝑥 ↦ ‖𝑥 − 𝑎‖𝜀(𝑥 − 𝑎) are all continuous at 𝑎.
Hence their sum is continuous.

Proposition (chain rule). Let 𝑈 ⊂ ℝ𝑚 and 𝑉 ⊂ ℝ𝑛 be open, 𝑓∶ 𝑈 → ℝ𝑛 and 𝑔∶ 𝑉 →
ℝ𝑝 be functions, and 𝑎 ∈ 𝑈, 𝑏 ≡ 𝑓(𝑎) ∈ 𝑉 . Suppose 𝑓 is differentiable at 𝑎, and 𝑔 is
differentiable at 𝑏. Then 𝑔 ∘ 𝑓 is differentiable at 𝑎 and

(𝑔 ∘ 𝑓)′(𝑎) = 𝑔′(𝑏) ∘ 𝑓′(𝑎)

Proof. Let 𝑆 = 𝑓′(𝑎) and 𝑇 = 𝑔′(𝑏). Then by assumption

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝑆(ℎ) + ‖ℎ‖𝜀(ℎ); 𝑔(𝑏 + 𝑘) + 𝑔(𝑏) + 𝑇(𝑘) + ‖𝑘‖𝜁(𝑘)

for suitable 𝜀, 𝜁. Then,

(𝑔 ∘ 𝑓)(𝑎 + ℎ) = 𝑔(𝑓(𝑎) + 𝑆(ℎ) + ‖ℎ‖𝜀(ℎ))

= 𝑔(𝑏 + 𝑆(ℎ) + ‖ℎ‖𝜀(ℎ)⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝑘

)

= 𝑔(𝑏) + 𝑇(𝑆(ℎ) + ‖ℎ‖𝜀(ℎ)) + ‖𝑆(ℎ) + ‖ℎ‖𝜀(ℎ)‖𝜁(𝑆(ℎ) + ‖ℎ‖𝜀(ℎ))
= (𝑔 ∘ 𝑓)(𝑎) + (𝑇 ∘ 𝑆)(ℎ) + ‖ℎ‖𝑇(𝜀(ℎ)) + ‖𝑘‖𝜁(𝑘)

It suffices to show that
𝜂(ℎ) ≡ ‖ℎ‖𝑇(𝜀(ℎ)) + ‖𝑘‖𝜁(𝑘)
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satisfies 𝜂
‖ℎ‖

→ 0. Then the result follows. First,

‖ℎ‖𝑇(𝜀(ℎ))
‖ℎ‖ = 𝑇(𝜀(ℎ)) → 0

as ‖𝑇(𝜀(ℎ))‖ ≤ ‖𝑇‖ ⋅ ‖𝜀(ℎ)‖ → 0. Then,
‖𝑘‖
‖ℎ‖ =

‖𝑆(ℎ)‖ + ‖ℎ‖ ⋅ ‖𝜀(ℎ)‖
‖ℎ‖ ≤ ‖𝑆‖ + ‖𝜀(ℎ)‖

Hence, 𝑘 = 𝑆(ℎ) + ‖ℎ‖ ⋅ 𝜀(ℎ) → 0 as ℎ → 0. Thus 𝜁(𝑘) → 0 as 𝑘 → 0. So
𝜂(ℎ)
‖ℎ‖ = 𝑇(𝜀(ℎ)) + ‖𝑘‖

‖ℎ‖𝜁(𝑘) → 0

as required.

Proposition. Let 𝑈 ⊂ ℝ𝑚 be open, 𝑓∶ 𝑈 → ℝ𝑛 be a function, and 𝑎 ∈ 𝑈 . Let 𝑓𝑗 be the
𝑗th component of 𝑓, so 𝑓𝑗 = 𝜋𝑗 ∘ 𝑓. Then 𝑓 is differentiable at 𝑎 if and only if each 𝑓𝑗 is
differentiable at 𝑎. If this holds,

𝑓′(𝑎)(ℎ) =
𝑛
∑
𝑗=1

𝑓′𝑗 (𝑎)(ℎ)𝑒′𝑗

Equivalently,
𝜋𝑗[𝑓′(𝑎)(ℎ)] = 𝑓′𝑗 (𝑎)(ℎ)

Proof. If 𝑓 is differentiable at 𝑎, by the chain rule the composite 𝜋𝑗 ∘ 𝑓 is differentiable at 𝑎.
Since the derivative of a linear map is itself, the derivative is given by

𝑓′𝑗 (𝑎) = 𝜋′𝑗(𝑓(𝑎)) ∘ 𝑓′(𝑎) = 𝜋𝑗 ∘ 𝑓′(𝑎)
Hence

𝑓′(𝑎)(ℎ) =
𝑛
∑
𝑗=1

𝜋𝑗[𝑓′(𝑎)(ℎ)𝑒′𝑗] =
𝑛
∑
𝑗=1

𝑓′𝑗 (𝑎)(ℎ)𝑒′𝑗

Conversely suppose each 𝑓𝑗 is differentiable. Then
𝑓𝑗(𝑎 + ℎ) = 𝑓𝑗(𝑎) + 𝑓′𝑗 (𝑎)(ℎ) + ‖ℎ‖𝜀𝑗(ℎ)

for suitable 𝜀(𝑗). Now,

𝑓(𝑎 + ℎ) =
𝑛
∑
𝑗=1

𝑓𝑗(𝑎 + ℎ)𝑒′𝑗

=
𝑛
∑
𝑗=1

[𝑓𝑗(𝑎) + 𝑓′𝑗 (𝑎)(ℎ) + ‖ℎ‖𝜀𝑗(ℎ)]𝑒′𝑗

=
𝑛
∑
𝑗=1

𝑓𝑗(𝑎)𝑒′𝑗 +
𝑛
∑
𝑗=1

𝑓′𝑗 (𝑎)(ℎ)𝑒′𝑗 + ‖ℎ‖
𝑛
∑
𝑗=1

𝜀𝑗(ℎ)𝑒′𝑗

Since each 𝜀𝑗 tends to zero as ℎ → 0, so does their sum.
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Remark. This proposition shows that we can prove things for an imageℝ𝑛 = ℝwithout loss
of generality.

10.5. Linearity and product rule
Proposition. Let 𝑈 ⊂ ℝ𝑚 be open and functions 𝑓, 𝑔∶ 𝑈 → ℝ𝑛, 𝜙∶ 𝑈 → ℝ which are dif-
ferentiable at 𝑎. Then the functions 𝑓+𝑔 and 𝜙⋅𝑓 are also differentiable and their derivatives
are

(𝑓 + 𝑔)′(𝑎) = 𝑓′(𝑎) + 𝑔′(𝑎); (𝜙𝑓)′(𝑎)(ℎ) = 𝜙(𝑎)[𝑓′(𝑎)(ℎ)] + [𝜙′(𝑎)(ℎ)]𝑓(𝑎)

For𝑚 = 𝑛 = 1 this is the usual product rule.

Proof. We have

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝑓′(𝑎)(ℎ) + ‖ℎ‖𝜀(ℎ)
𝑔(𝑎 + ℎ) = 𝑔(𝑎) + 𝑔′(𝑎)(ℎ) + ‖ℎ‖𝜁(ℎ)
𝜙(𝑎 + ℎ) = 𝜙(𝑎) + 𝜙′(𝑎)(ℎ) + ‖ℎ‖𝜂(ℎ)

for suitable 𝜀, 𝜁, 𝜂. The sum gives

(𝑓 + 𝑔)(𝑎 + ℎ) = (𝑓 + 𝑔)(𝑎 + ℎ) + (𝑓′(𝑎) + 𝑔′(𝑎))(ℎ) + ‖ℎ‖(𝜀(ℎ) + 𝜁(ℎ))

It follows that 𝑓+𝑔 is differentiable at 𝑎 and its derivative is the sum of the derivatives of its
components.

(𝜙 ⋅ 𝑓)(𝑎 + ℎ) = 𝜙(𝑎 + ℎ)𝑓(𝑎 + ℎ)
= (𝜙 ⋅ 𝑓)(𝑎) + [𝜙(𝑎)𝑓′(𝑎)(ℎ) + 𝜙′(𝑎)(ℎ)𝑓(𝑎)] + 𝑓′(𝑎)(ℎ)𝜙′(𝑎)(ℎ)
+ ‖ℎ‖ (𝑓′(𝑎)(ℎ)𝜂(ℎ) + 𝜙′(𝑎)(ℎ)𝜀(ℎ) + 𝜂(ℎ)𝑓(𝑎) + 𝜙(𝑎)𝜀(ℎ) + ‖ℎ‖𝜂(ℎ)𝜀(ℎ))⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

𝛿(ℎ)

Now,

‖𝜙′(𝑎)(ℎ) ⋅ 𝑓′(𝑎)(ℎ)‖
‖ℎ‖ = |𝜙′(𝑎)(ℎ)| ⋅ ‖𝑓′(𝑎)(ℎ)‖

‖ℎ‖ ≤ ‖𝜙′(𝑎)‖ ⋅ ‖ℎ‖ ⋅ ‖𝑓′(𝑎)‖ ⋅ ‖ℎ‖
‖ℎ‖ → 0

Clearly 𝛿 → 0 since the same is true for all of its components.

203



IV. Analysis and Topology

11. Partial derivatives
11.1. Directional and partial derivatives
Definition. Let 𝑈 , 𝑓, 𝑎 as before. Fix a direction 𝑢 ∈ ℝ𝑚 where 𝑢 ≠ 0. If the limit

lim
𝑡→0

𝑓(𝑎 + 𝑡𝑢) − 𝑓(𝑎)
𝑡

exists, then the value of this limit is the directional derivative of 𝑓 at 𝑎 in direction 𝑢, denoted
𝐷𝑢𝑓(𝑎).
Remark. Note that 𝐷𝑢𝑓(𝑎) ∈ ℝ𝑛. Further, 𝑓(𝑎 + 𝑡𝑢) = 𝑓(𝑎) + 𝑡𝐷𝑢𝑓(𝑎) + 𝑜(𝑡). Define
𝛾∶ ℝ → ℝ𝑚 by 𝛾(𝑡) = 𝑎 + 𝑡𝑢. Then 𝑓 ∘ 𝛾 is defined on 𝛾−1(𝑈) which is open as 𝛾 is
continuous, and 0 ∈ 𝛾−1(𝑈). Then,

𝑓(𝑎 + 𝑡𝑢) − 𝑓(𝑎)
𝑡 = (𝑓 ∘ 𝛾)(𝑡) − (𝑓 ∘ 𝛾)(0)

𝑡
Hence𝐷𝑢𝑓(𝑎) exists if and only if 𝑓 ∘𝛾 is differentiable at zero, and its value is the derivative
of 𝑓 ∘ 𝛾. When 𝑢 = 𝑒𝑖 for a standard basis vector 𝑒𝑖, if 𝐷𝑒𝑖𝑓(𝑎) exists we call it the 𝑖th partial
derivative of 𝑓 at 𝑎, denoted 𝐷𝑖𝑓(𝑎).
Proposition. Let𝑈 , 𝑓, 𝑎 as before. If 𝑓 is differentiable at 𝑎, then all directional derivatives
𝐷𝑢𝑓(𝑎) exist. Further,

𝐷𝑢𝑓(𝑎) = 𝑓′(𝑎)(𝑢)
Further,

𝑓′(𝑎)(ℎ) =
𝑚
∑
𝑖=1

ℎ𝑖𝐷𝑖𝑓(𝑎)

for all ℎ = ∑𝑚
𝑖=1 ℎ𝑖𝑒𝑖.

Proof. Since 𝑓 is differentiable,

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝑓′(𝑎)(ℎ) + ‖ℎ‖𝜀(ℎ)

Let ℎ = 𝑡𝑢. Then,
𝑓(𝑎 + 𝑡𝑢) = 𝑓(𝑎) + 𝑡𝑓′(𝑎)(𝑢) + |𝑡| ⋅ ‖𝑢‖𝜀(𝑡𝑢)

Hence,
𝑓(𝑎 + 𝑡𝑢) − 𝑓(𝑎)

𝑡 = 𝑓′(𝑎)(𝑢) + |𝑡|
𝑡 ‖𝑢‖𝜀(𝑡𝑢)

The error term converges to zero, hence the limit becomes 𝑓′(𝑎)(𝑢). Moreover, for all ℎ
defined as above,

𝑓′(𝑎)(ℎ) =
𝑚
∑
𝑖=1

ℎ𝑖𝑓′(𝑎)(𝑒𝑖) =
𝑚
∑
𝑖=1

ℎ𝑖𝐷𝑖𝑓(𝑎)
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alternative proof. Let 𝛾(𝑡) = 𝑎 + 𝑡𝑢. Then 𝑓 ∘ 𝛾 is defined on the open set 𝛾−1(𝑈). Note that
𝛾 is differentiable and 𝛾′(𝑡) = 𝑢 for all 𝑡. By the chain rule, 𝑓 ∘ 𝛾 is differentiable at zero, and

𝐷𝑢𝑓(𝑎) = (𝑓 ∘ 𝛾)′(0) = 𝑓′(𝛾(0))(𝛾′(0)) = 𝑓′(𝑎)(𝑢)

Remark. If 𝐷𝑢𝑓(𝑎) exists, then so does 𝐷𝑢𝑓𝑗(𝑎) where 𝑓𝑗 = 𝜋𝑗 ∘ 𝑓. Indeed, by linearity and
continuity of 𝜋,

𝑓𝑗(𝑎 + 𝑡𝑢) − 𝑓𝑗(𝑎)
𝑡 = 𝜋𝑗(

𝑓(𝑎 + 𝑡𝑢) − 𝑓(𝑡)
𝑡 ) → 𝜋𝑗(𝐷𝑢𝑓(𝑎))

The converse of the proposition is false in general.

11.2. Jacobian matrix
Definition. Suppose 𝑓 is differentiable at 𝑎. Then the Jacobian matrix of 𝑓 at 𝑎, denoted
𝐽𝑓(𝑎), is thematrix of 𝑓′(𝑎)with respect to the standard bases. For 1 ≤ 𝑖 ≤ 𝑚, the 𝑖th column
is

𝑓′(𝑎)(𝑒𝑖) = 𝐷𝑖𝑓(𝑎)
In particular, for the 𝑗, 𝑖 entry,

(𝐽𝑓(𝑎))𝑗𝑖 = ⟨𝐷𝑖𝑓(𝑎), 𝑒′𝑗⟩ = 𝜋𝑗(𝐷𝑖𝑓(𝑎)) = 𝐷𝑖𝑓𝑗(𝑎) =
𝜕𝑓𝑗
𝜕𝑥𝑖

11.3. Constructing total derivative from partial derivatives
Theorem. Suppose there exists an open neighbourhood𝑉 of 𝑎with𝑉 ⊂ 𝑈 such that𝐷𝑖𝑓(𝑥)
exists for all𝑥 ∈ 𝑉 and for all 1 ≤ 𝑖 ≤ 𝑚, and themap𝑥 ↦ 𝐷𝑖𝑓(𝑥) from𝑉 toℝ𝑛 is continuous
at 𝑎 for all 𝑖. Then 𝑓 is differentiable at 𝑎.

Proof. By considering components, without loss of generality let 𝑛 = 1. Let 𝑚 = 2 for
convenience of notation; this does not change the proof. Let 𝑎 = (𝑝, 𝑞). Let

𝜓(ℎ, 𝑘) = 𝑓(𝑝 + ℎ, 𝑞 + 𝑘) − 𝑓(𝑝, 𝑞) − ℎ𝐷1𝑓(𝑝, 𝑞) − 𝑘𝐷2𝑓(𝑝, 𝑞)

We need to show 𝜓(ℎ, 𝑘) = 𝑜(‖(ℎ, 𝑘)‖), then the derivative of 𝑓 can be read off from the
definition of 𝜓. Note,

𝜓(ℎ, 𝑘) = [𝑓(𝑝 + ℎ, 𝑞 + 𝑘) − 𝑓(𝑝 + ℎ, 𝑞) − 𝑘𝐷2𝑓(𝑝, 𝑞)] + [𝑓(𝑝 + ℎ, 𝑞) − 𝑓(𝑝, 𝑞) − ℎ𝐷1(𝑝, 𝑞)]

We will show separately that each part is small enough to be an error term. The second
term is 𝑜(ℎ) and hence 𝑜(‖(ℎ, 𝑘)‖) by the definition of𝐷1𝑓(𝑝, 𝑞). For the first term, let 𝜙(𝑡) =
𝑓(𝑝+ℎ, 𝑞+ 𝑡𝑘) for a given fixed ℎ, 𝑘. Then 𝜙 is differentiable and by the chain rule we have
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𝜙′(𝑡) = 𝐷2𝑓(𝑝+ℎ, 𝑞+ 𝑡𝑘) ⋅ 𝑘. By the mean value theorem, there exists a point 𝑡(ℎ, 𝑘) ∈ (0, 1)
such that 𝜙(1) − 𝜙(0) = 𝜙′(𝑡). Hence, the first term becomes

𝜙(1) − 𝜙(0) − 𝑘𝐷2𝑓(𝑝, 𝑞) = 𝑘[𝐷2𝑓(𝑝 + ℎ, 𝑞 + 𝑡𝑘) − 𝐷2𝑓(𝑝, 𝑞)]

As (ℎ, 𝑘) → (0, 0), we have (𝑝 + ℎ, 𝑞 + 𝑡𝑘) → (𝑝, 𝑞). By continuity of 𝐷2𝑓 at 𝑎, the term is
𝑜(𝑘) and hence 𝑜(‖(ℎ, 𝑘)‖).

11.4. Mean value inequality
The mean value theorem cannot be extended verbatim to higher dimensional spaces, since
there can be multiple paths between points.

Theorem. Let 𝑈 ⊂ ℝ𝑚 be open, and 𝑓∶ 𝑈 → ℝ𝑛 be differentiable at every 𝑧 ∈ 𝑈 . Let
𝑎, 𝑏 ∈ 𝑈 such that the line segment connecting 𝑎, 𝑏 given by

[𝑎, 𝑏] = {(1 − 𝑡)𝑎 + 𝑡𝑏∶ 0 ≤ 𝑡 ≤ 1}

is contained inside 𝑈 . Suppose there exists 𝑀 ≥ 0 such that for all 𝑧 ∈ [𝑎, 𝑏], we have
‖𝑓′(𝑧)‖ ≤ 𝑀. Then

‖𝑓(𝑏) − 𝑓(𝑎)‖ ≤ 𝑀‖𝑏 − 𝑎‖

Proof. Let 𝑢 = 𝑏 − 𝑎 and 𝑣 = 𝑓(𝑏) − 𝑓(𝑎). Without loss of generality, let 𝑢 ≠ 0. Let
𝛾(𝑡) = 𝑎+ 𝑡𝑢, so 𝑓 ∘ 𝛾 is defined on the open set 𝛾−1(𝑈), and is differentiable with derivative

(𝑓 ∘ 𝛾)′(𝑡) = 𝑓′(𝛾(𝑡))(𝛾′(𝑡)) = 𝑓′(𝑎 + 𝑡𝑢)(𝑢)

Now,
‖𝑓(𝑏) − 𝑓(𝑎)‖2 = ⟨𝑓(𝑏) − 𝑓(𝑎), 𝑣⟩ = ⟨(𝑓 ∘ 𝛾)(1) − (𝑓 ∘ 𝛾)(0), 𝑣⟩

Let 𝜙(𝑡) = ⟨(𝑓 ∘ 𝛾)(𝑡), 𝑣⟩. Note that 𝜙 is differentiable since the inner product is linear. The
derivative is

𝜙′(𝑡) = ⟨(𝑓 ∘ 𝛾)′(𝑡), 𝑣⟩ = ⟨𝑓′(𝑎 + 𝑡𝑢)(𝑢), 𝑣⟩
By the mean value theorem, there exists 𝜃 ∈ (0, 1) such that 𝜙(1) − 𝜙(0) = 𝜙′(𝜃). Then, by
the Cauchy–Schwarz inequality,

‖𝑓(𝑏) − 𝑓(𝑎)‖2 = 𝜙′(𝜃)
= ⟨𝑓′(𝑎 + 𝜃𝑢)(𝑢), 𝑣⟩
≤ ‖𝑓′(𝑎 + 𝜃𝑢)(𝑢)‖ ⋅ ‖𝑣‖
≤ ‖𝑓′(𝑎 + 𝜃𝑢)‖ ⋅ ‖𝑢‖ ⋅ ‖𝑣‖
≤ 𝑀‖𝑏 − 𝑎‖ ⋅ ‖𝑣‖

Hence,
‖𝑓(𝑏) − 𝑓(𝑎)‖ ≤ 𝑀‖𝑏 − 𝑎‖

as required.
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11.5. Zero derivatives
Corollary. Let 𝑈 be an open, connected subset of ℝ𝑚, and 𝑓∶ 𝑈 → ℝ𝑛 be differentiable at
every 𝑈 . If 𝑓′(𝑎) = 0 for all 𝑎 ∈ 𝑈 , then 𝑓 is constant.

Proof. If 𝑎, 𝑏 ∈ 𝑈 satisfy [𝑎, 𝑏] ⊂ 𝑈 , then by the mean value inequality we have

‖𝑓(𝑏) − 𝑓(𝑎)‖ ≤ ‖𝑏 − 𝑎‖ sup
𝑧∈[𝑎,𝑏]

‖𝑓′(𝑧)‖ = 0

Hence 𝑓(𝑎) = 𝑓(𝑏). For an arbitrary 𝑥 ∈ 𝑈 , there exists 𝑟 > 0 such that 𝒟𝑟(𝑥) ⊂ 𝑈 . This
open ball is convex, so for all 𝑦 ∈ 𝒟𝑟(𝑥) we have 𝑓(𝑦) = 𝑓(𝑥). Hence 𝑓 is locally constant;
every point has a neighbourhood onwhich 𝑓 is constant. Since𝑈 is connected, 𝑓 is constant
(refer to the derivation from the example sheet).

11.6. Inverse function theorem
Remark. Let 𝑉 ⊂ ℝ𝑚 and 𝑊 ⊂ ℝ𝑛 be open sets. Let 𝑓∶ 𝑉 → 𝑊 be a bijection. Let
𝑎 ∈ 𝑉 , and let 𝑓 be differentiable at 𝑎, and the inverse 𝑓−1∶ 𝑊 → 𝑉 is differentiable at 𝑓(𝑎).
Denoting 𝑆 = 𝑓′(𝑎), 𝑇 = (𝑓−1)′(𝑓(𝑎)), we can use the chain rule to find

𝑇𝑆 = (𝑓−1 ∘ 𝑓)′(𝑎); 𝑆𝑇 = (𝑓 ∘ 𝑓−1)′(𝑓(𝑎))

The identity function is linear so its derivative is the identity. Hence 𝑇𝑆 is the identity on
ℝ𝑚 and 𝑆𝑇 is the identity on ℝ𝑛. Hence, 𝑚 = tr(𝑇𝑆) = tr(𝑆𝑇) = 𝑛. So in order for 𝑓 to be
a bijection, the dimensions of the spaces must match. Hence 𝑓′(𝑎) is an invertible matrix.
This proves that ℝ𝑚, ℝ𝑛 are not homeomorphic in such a way that the maps between them
are differentiable. We aim now to prove an inverse; if 𝑓 is differentiable and 𝑓′ is invertible,
then 𝑓 is locally a bijection between neighbourhoods.

Definition. Let𝑈 ⊂ ℝ𝑚 be open, and 𝑓∶ 𝑈 → ℝ𝑛 be a function. We say that 𝑓 is differenti-
able on𝑈 if𝑓 is differentiable at 𝑎 for all 𝑎 ∈ 𝑈 . Then, the derivative of 𝑓 on𝑈 is the function
𝑓′∶ 𝑈 → 𝐿(ℝ𝑚, ℝ𝑛)mapping points to their derivatives. We say that 𝑓 is a𝐶1-function on𝑈
if 𝑓 is continuously differentiable on 𝑈 ; 𝑓 is differentiable on 𝑈 and 𝑓′∶ 𝑈 → 𝐿(ℝ𝑚, ℝ𝑛) is
a continuous function.

Theorem. Let 𝑈 ⊂ ℝ𝑛 be open. Let 𝑓∶ 𝑈 → ℝ𝑛 be a 𝐶1-function. Let 𝑎 ∈ 𝑈 , and let
𝑓′(𝑎) be an invertible linear map 𝑓′(𝑎)∶ 𝐿(ℝ𝑛). Then there exist open sets 𝑉,𝑊 such that
𝑎 ∈ 𝑉, 𝑓(𝑎) ∈ 𝑊,𝑉 ⊂ 𝑈 and 𝑓|𝑉 ∶ 𝑉 → 𝑊 is a bijection with inverse function 𝑔∶ 𝑊 → 𝑉 .
Further, 𝑔 is a 𝐶1-function, and

𝑔′(𝑦) = [𝑓′(𝑔(𝑦))]−1

Proof. We first show that without loss of generality we can let 𝑎 = 𝑓(𝑎) = 0 and 𝑓′(𝑎) = 𝐼.
To see this, let 𝑇 = 𝑓′(𝑎) and define ℎ(𝑥) = 𝑇−1(𝑓(𝑥 + 𝑎) − 𝑓(𝑎)). Then, ℎ is defined on
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𝑈 − 𝑎, which is open. In particular, 𝑈 − 𝑎 is an open neighbourhood of zero. By the chain
rule, ℎ is differentiable with ℎ′(𝑥) = 𝑇−1 ∘ 𝑓′(𝑥 + 𝑎). For 𝑥, 𝑦 ∈ 𝑈 − 𝑎, we then have

‖ℎ′(𝑥) − ℎ′(𝑦)‖ = ‖
‖𝑇−1 ∘ (𝑓′(𝑎 + 𝑥) − 𝑓′(𝑎 + 𝑦))‖‖ ≤

‖
‖𝑇−1‖‖ ⋅ ‖𝑓′(𝑎 + 𝑥) − 𝑓′(𝑎 + 𝑦)‖

It then follows that ℎ is a 𝐶1-function, and that ℎ(0) = 0, ℎ′(0) = 𝑇−1 ∘ 𝑇 = 𝐼. We have
transformed into a coordinate system where 𝑎 = 𝑓(𝑎) = 0 and 𝑓′(𝑎) = 𝐼. If we can prove
the result for this coordinate system, we can translate back using 𝑓(𝑥) = 𝑇(ℎ(𝑥−𝑎))+𝑓(𝑎).
Now, let 𝑓(0) = 0 and 𝑓′(0) = 𝐼. Since 𝑓′ is continuous, there exists 𝑟 > 0 such that
ℬ𝑟(0) ⊂ 𝑈 and for all 𝑥 ∈ 𝑈 , we have

‖𝑓′(𝑥) − 𝑓′(0)‖ = ‖𝑓′(𝑥) − 𝐼‖ ≤ 1
2

We intend to show that for all 𝑥, 𝑦 ∈ ℬ𝑟(0), we have ‖𝑓(𝑥) − 𝑓(𝑦)‖ ≥ 1
2
‖𝑥 − 𝑦‖. Indeed,

define 𝑝∶ 𝑈 → ℝ𝑛 by 𝑝(𝑥) = 𝑓(𝑥) − 𝑥. Then 𝑝′(𝑥) = 𝑓′(𝑥) − 𝐼. Then, ‖𝑝′(𝑥)‖ ≤ 1
2
for

all 𝑥 ∈ ℬ𝑟(0). By the mean value inequality, ‖𝑝(𝑥) − 𝑝(𝑦)‖ ≤ 1
2
‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ ℬ𝑟(0).

Hence,

‖𝑓(𝑥) − 𝑓(𝑦)‖ = ‖(𝑝(𝑥) + 𝑥) − (𝑝(𝑦) + 𝑦)‖ ≥ ‖𝑥 − 𝑦‖ − ‖𝑝(𝑥) − 𝑝(𝑦)‖ ≥ 1
2‖𝑥 − 𝑦‖

So we have proven the bound as claimed. Now, let 𝑠 = 𝑟
2
. We will show that 𝑓(𝒟𝑟(0)) ⊂

𝒟𝑠(0). More precisely, we will show that for all 𝑤 ∈ 𝒟𝑠(0) there exists a unique 𝑥 ∈ 𝒟𝑟(0)
such that 𝑓(𝑥) = 𝑤. Let 𝑤 ∈ 𝒟𝑠(0) be fixed. We now define, for all 𝑥 ∈ ℬ𝑟(0), the function
𝑞(𝑥) = 𝑤 − 𝑓(𝑥) + 𝑥 = 𝑤 − 𝑝(𝑥). Note that 𝑓(𝑥) = 𝑤 if and only if 𝑞(𝑥) = 𝑥. We will show
that 𝑞 is a contractionmapping, and that there exists a fixed point. Since 𝑝(0) = 𝑓(0)−0 = 0,
we have for all 𝑥 ∈ ℬ𝑟(0) that

‖𝑞(𝑥)‖ ≤ ‖𝑤‖ + ‖𝑝(𝑥)‖ = ‖𝑤‖ + ‖𝑝(𝑥) − 𝑝(0)‖ ≤ ‖𝑤‖ + 1
2‖𝑥 − 0‖ = 1

2‖𝑥‖ < 𝑠 + 1
2𝑟

Hence, 𝑞(ℬ𝑟(0)) ⊂ 𝒟𝑟(0) ⊂ ℬ𝑟(0). We now show 𝑞 is a contraction mapping. For 𝑥, 𝑦 ∈
ℬ𝑟(0), we have

‖𝑞(𝑥) − 𝑞(𝑦)‖ = ‖𝑝(𝑥) − 𝑝(𝑦)‖ ≤ 1
2‖𝑥 − 𝑦‖

Hence 𝑞∶ ℬ𝑟(0) → ℬ𝑟(0) really is a contractionmapping on the non-empty, completemetric
spaceℬ𝑟(0). By the contractionmapping theorem, there exists a unique 𝑥 ∈ ℬ𝑟(0) such that
𝑞(𝑥) = 𝑥. But since 𝑞(ℬ𝑟(0)) ⊂ 𝒟𝑟(0), we must have 𝑥 ∈ 𝒟𝑟(0). In particular, there exists a
unique 𝑥 ∈ 𝒟𝑟(0) such that 𝑓(𝑥) = 𝑤.
Now, let𝑊 = 𝒟𝑠(0), 𝑉 = 𝒟𝑟(0) ∩ 𝑓−1(𝑊). Then, we will now show that 𝑓|𝑉 ∶ 𝑉 → 𝑊 is a
bijection with inverse 𝑔∶ 𝑊 → 𝑉 which is continuous. First,𝑊 is open and 𝑓(0) = 0 ∈ 𝑊 .
Since 𝑓 is continuous, 𝑓−1(𝑊) is open. Hence 𝑉 is open, as the intersection of two open
sets. We have 0 ∈ 𝑉 . By the previous paragraph, 𝑓|𝑉 ∶ 𝑉 → 𝑊 is a bijection since for
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every point in𝑊 there exists a unique point in 𝑉 mapping to it. Finally, let 𝑢, 𝑣 ∈ 𝑊 . Let
𝑥 = 𝑔(𝑢), 𝑦 = 𝑔(𝑣). Then,

‖𝑔(𝑢) − 𝑔(𝑣)‖ = ‖𝑥 − 𝑦‖ ≤ 2‖𝑓(𝑥) − 𝑓(𝑦)‖ = 2‖𝑢 − 𝑣‖

Hence 𝑔 is 2-Lipschitz and hence continuous. Now it suffices to show 𝑔 is 𝐶1, and for all
𝑦 ∈ 𝑊 we have 𝑔′(𝑦) = [𝑓′(𝑔(𝑦))]−1. This part of the proof is non-examinable.
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12. Second derivatives
12.1. Definition
Definition. Let 𝑈 ⊂ ℝ𝑚 be an open set, and 𝑓∶ 𝑈 → ℝ𝑛. Let 𝑎 ∈ 𝑈 . Suppose that
there exists an open neighbourhood 𝑉 of 𝑎 contained within 𝑈 , and 𝑓 is differentiable on
𝑉 . We say that 𝑓 is twice differentiable at 𝑎 if 𝑓′∶ 𝑉 → 𝐿(ℝ𝑚 → ℝ𝑛) is differentiable at 𝑎.
We write 𝑓″(𝑎) for the derivative of 𝑓′ at 𝑎, called the second derivative of 𝑓 at 𝑎. Note that
𝑓″(𝑎) ∈ 𝐿(ℝ𝑚, 𝐿(ℝ𝑚, ℝ𝑛)).
Remark. We can visualise the second derivative as a bilinear map instead of a nested se-
quence of linear maps. Note,

𝐿(ℝ𝑚, 𝐿(ℝ𝑚, ℝ𝑛)) ∼ Bil(ℝ𝑚 × ℝ𝑚, ℝ𝑛)

where Bil(𝑋 ×𝑌, 𝑍) is the vector space of bilinear maps from 𝑋 ×𝑌 to 𝑍. For ℎ, 𝑘 ∈ ℝ𝑚, and
𝑇 is the second derivative, we can say 𝑇(ℎ)(𝑘) = 𝑇(ℎ, 𝑘) where 𝑇 is a bilinear map. From
now on, this bilinear map notation will be used, and 𝑇 and 𝑇 will be identified as the same.

Proposition. Let 𝑈 ⊂ ℝ𝑚 be open, 𝑓∶ 𝑈 → ℝ𝑛 be a function, and 𝑎 ∈ 𝑈 . Let 𝑓 be differ-
entiable on an open neighbourhood 𝑉 of 𝐴 contained in𝑈 . Then 𝑓 is twice differentiable at
𝑎 if and only if there exists a bilinear map 𝑇 ∈ Bil(ℝ𝑚×ℝ𝑚, ℝ𝑛) such that for every 𝑘 ∈ ℝ𝑚,
we have

𝑓′(𝑎 + ℎ)(𝑘) = 𝑓′(𝑎)(𝑘) + 𝑇(ℎ, 𝑘) + 𝑜(‖ℎ‖)
Then 𝑇 = 𝑓″(𝑎).

Proof. Suppose 𝑓 is twice differentiable at 𝑎. Then 𝑓′ is differentiable at 𝑎. So,

𝑓′(𝑎 + ℎ) = 𝑓′(𝑎) + 𝑓″(𝑎)(ℎ) + ‖ℎ‖ ⋅ 𝜀(ℎ)

All terms are linear maps 𝐿(ℝ𝑚, ℝ𝑛). In particular, 𝜀 is defined on 𝑉 − 𝑎 → 𝐿(ℝ𝑚, ℝ𝑛) such
that 𝜀(0) = 0 and 𝜀 is continuous at zero. If we evaluate this equation at a fixed 𝑘 ∈ ℝ𝑚,

𝑓′(𝑎 + ℎ)(𝑘) = 𝑓′(𝑎)(𝑘) + 𝑓″(𝑎)(ℎ, 𝑘) + ‖ℎ‖ ⋅ 𝜀(ℎ)(𝑘)

Here, 𝑓″(𝑎) is a bilinear map. Further,

‖𝜀(ℎ)(𝑘)‖ ≤ ‖𝜀(ℎ)‖ ⋅ ‖𝑘‖ → 0

Hence, ‖ℎ‖ ⋅ 𝜀(ℎ)(𝑘) = 𝑜(‖ℎ‖). Conversely, suppose 𝑇 is a bilinear map and

𝑓′(𝑎 + ℎ)(𝑘) − 𝑓′(𝑎)(𝑘) − 𝑇(ℎ, 𝑘)
‖ℎ‖ → 0

for any fixed 𝑘, as ℎ → 0. We need to show that

𝜀(ℎ) = 𝑓′(𝑎 + ℎ) − 𝑓′(𝑎) − 𝑇(ℎ)
‖ℎ‖ → 0
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in the space 𝐿(ℝ𝑚, ℝ𝑛). We know that for a fixed 𝑘 ∈ ℝ𝑚, 𝜀(ℎ)(𝑘) → 0 in ℝ𝑛 as ℎ → 0. It
then follows that

‖𝜀(ℎ)‖ =
√√√
√

𝑚
∑
𝑖=1

‖𝜀(ℎ)(𝑒𝑖)‖
2 → 0

since we are in a finite-dimensional vector space.

Example. Let 𝑓∶ ℝ𝑚 → ℝ𝑛 be linear. Then 𝑓 is differentiable on ℝ𝑚 with 𝑓′(𝑎) = 𝑓 for
all 𝑎. Hence 𝑓′∶ ℝ𝑚 → 𝐿(ℝ𝑚, ℝ𝑛) sends 𝑎 to 𝑓 for all 𝑎. So this is a constant function, so
has derivative 𝑓″(𝑎) = 0.

Example. Let 𝑓∶ ℝ𝑚 ×ℝ𝑛 → ℝ𝑝 be bilinear. Then 𝑓 is differentiable on ℝ𝑚 ×ℝ𝑛 and for
all (𝑎, 𝑏) ∈ ℝ𝑚 × ℝ𝑛, we have

𝑓′(𝑎, 𝑏)(ℎ, 𝑘) = 𝑓(𝑎, 𝑘) + 𝑓(ℎ, 𝑏)

Note that this is linear in (𝑎, 𝑏) for a fixed (ℎ, 𝑘). Hence, 𝑓′∶ ℝ𝑚 × ℝ𝑛 → 𝐿(ℝ𝑚, ℝ𝑛, ℝ𝑝) is
linear. Hence this is differentiable, and its derivative is

𝑓″(𝑎, 𝑏) = 𝑓′ ∈ 𝐿(ℝ𝑚, ℝ𝑛, 𝐿(ℝ𝑚 × ℝ𝑛, ℝ𝑝)) ≃ Bil((ℝ𝑚 × ℝ𝑛) × (ℝ𝑚 × ℝ𝑛), ℝ𝑝)

Example. Let 𝑓∶ 𝑀𝑛 → 𝑀𝑛 be defined by 𝑓(𝐴) = 𝐴3. Let 𝐴 be fixed. Then,

𝑓(𝐴 + 𝐻) = (𝐴 + 𝐻)3 = 𝐴3 + 𝐴2𝐻 + 𝐴𝐻𝐴 + 𝐻𝐴2 + 𝐴𝐻2 + 𝐻𝐴𝐻 +𝐻2𝐴 + 𝐻3

= 𝑓(𝐴) + (𝐴2𝐻 + 𝐴𝐻𝐴 + 𝐻𝐴2) + 𝑜(‖𝐻‖)

Hence 𝑓 is differentiable at 𝐴 and

𝑓′(𝐴)(𝐻) = 𝐴2𝐻 + 𝐴𝐻𝐴 + 𝐻𝐴2

Thus, if 𝑛 = 1, we have commutativity and hence 𝑓′(𝐴) = 3𝐴2. So 𝑓 is differentiable on𝑀𝑛.
For a fixed 𝐴 and fixed 𝐾, the second derivative is given by

𝑓′(𝐴 + 𝐻)(𝐾) = (𝐴 + 𝐻)2𝐾 + (𝐴 + 𝐻)𝐾(𝐴 + 𝐻) + 𝐾(𝐴 + 𝐻)2
= (𝐴2𝐾 + 𝐴𝐾𝐴 + 𝐾𝐴2)⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

𝑓′(𝐴)(𝐾)

+ (𝐴𝐻𝐾 + 𝐻𝐴𝐾 + 𝐴𝐾𝐻 + 𝐻𝐾𝐴 + 𝐾𝐴𝐻 + 𝐾𝐻𝐴) + (𝐻2𝐾 + 𝐻𝐾𝐻 + 𝐾𝐻2)

The term 𝑇(𝐻, 𝐾) = (𝐴𝐻𝐾 + 𝐻𝐴𝐾 + 𝐴𝐾𝐻 + 𝐻𝐾𝐴 + 𝐾𝐴𝐻 + 𝐾𝐻𝐴) is bilinear in 𝐻 and
𝐾 as required. So the second derivative is 𝑇. In one dimension, this is equivalent to saying
𝑓″(𝐴) = 6𝐴.
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12.2. Second derivatives and partial derivatives
Let 𝑈 be open in ℝ𝑛, let 𝑓∶ 𝑈 → ℝ𝑛, and let 𝑎 ∈ 𝑈 . Let 𝑓 be twice differentiable at 𝑎, so
𝑓 is differentiable on some open neighbourhood 𝑉 of 𝑎 contained within 𝑈 , and 𝑓′∶ 𝑉 →
𝐿(ℝ𝑚, ℝ𝑛) is differentiable at 𝑎. Recall that

𝑓′(𝑎 + ℎ) = 𝑓′(𝑎) + 𝑓″(𝑎)(ℎ) + 𝑜(‖ℎ‖)

Evaluating at a fixed 𝑘,

𝑓′(𝑎 + ℎ)(𝑘) = 𝑓′(𝑎)(𝑘) + 𝑓″(𝑎)(ℎ, 𝑘) + 𝑜(‖ℎ‖)

Let 𝑢, 𝑣 ∈ ℝ𝑚 ∖ {0} be directions. Let 𝑘 = 𝑣. Then,

𝑓′(𝑎 + ℎ)(𝑣) = 𝐷𝑣𝑓(𝑎 + ℎ) = 𝐷𝑣𝑓(𝑎) + 𝑓″(𝑎)(ℎ, 𝑣) + 𝑜(‖ℎ‖)

Hence, the map 𝐷𝑣𝑓∶ 𝑉 → ℝ𝑛 maps 𝑥 ↦ 𝐷𝑣𝑓(𝑥) = 𝑓′(𝑥)(𝑣). Then this map is differenti-
able at 𝑎 and

(𝐷𝑣𝑓)′(𝑎)(ℎ) = 𝑓″(𝑎)(ℎ, 𝑣)
Hence there exist directional derivatives.

𝐷𝑢𝐷𝑣𝑓(𝑎)
def= 𝐷𝑢(𝐷𝑣𝑓)(𝑎) = (𝐷𝑣𝑓)′(𝑎)(𝑢) = 𝑓″(𝑎)(𝑢, 𝑣)

In particular, we have
𝐷𝑖𝐷𝑗𝑓(𝑎) = 𝑓″(𝑎)(𝑒𝑖, 𝑒𝑗)

for 1 ≤ 𝑖, 𝑗 ≤ 𝑚.

12.3. Symmetry of mixed directional derivatives
Theorem. Let𝑈 be open inℝ𝑛, let 𝑓∶ 𝑈 → ℝ𝑛, and let 𝑎 ∈ 𝑈 . Let 𝑓 be twice differentiable
on an open set𝑉 with 𝑎 ∈ 𝑉 ⊂ 𝑈 . Let 𝑓″∶ 𝑉 → Bil(ℝ𝑚×ℝ𝑚, ℝ𝑛) be continuous at 𝑎. Then,
for all directions 𝑢, 𝑣 ∈ ℝ𝑚 ∖ {0}, we have

𝐷𝑢𝐷𝑣𝑓(𝑎) = 𝐷𝑣𝐷𝑢𝑓(𝑎)

Equivalently,
𝑓″(𝑎)(𝑢, 𝑣) = 𝑓″(𝑎)(𝑣, 𝑢)

In other words, 𝑓″ is a symmetric bilinear map.

Proof. Without loss of generality we can let 𝑛 = 1. Indeed, we have

(𝐷𝑢𝑓)𝑗(𝑥) = [𝐷𝑢𝑓(𝑥)]𝑗 = [𝑓′(𝑥)(𝑢)]𝑗 = 𝑓′𝑗 (𝑥)(𝑢) = 𝐷𝑢𝑓𝑗(𝑥)

Hence, (𝐷𝑢𝑓)𝑗 = 𝐷𝑢𝑓𝑗 . For 𝑣:

(𝐷𝑣𝐷𝑢𝑓)𝑗 = 𝐷𝑣(𝐷𝑢𝑓)𝑗 = 𝐷𝑣𝐷𝑢𝑓𝑗
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So it is sufficient to show that 𝐷𝑣𝐷𝑢𝑓𝑗(𝑎) = 𝐷𝑢𝐷𝑣𝑓𝑗(𝑎). Now, consider

𝜙(𝑠, 𝑡) = 𝑓(𝑎 + 𝑠𝑢 + 𝑡𝑣) − 𝑓(𝑎 + 𝑡𝑣) − 𝑓(𝑎 + 𝑠𝑢) + 𝑓(𝑎)

for 𝑠, 𝑡 ∈ ℝ. Let 𝑠, 𝑡 be fixed, and consider

𝜓(𝑦) = 𝑓(𝑎 + 𝑦𝑢 + 𝑡𝑣) − 𝑓(𝑎 + 𝑦𝑢)

Note that 𝜙(𝑠, 𝑡) can be written as

𝜙(𝑠, 𝑡) = 𝜓(𝑠) − 𝜓(0)

The term 𝜓(𝑠) − 𝜓(0) can be interpreted as (𝑓(𝑎 + 𝑠𝑢+ 𝑡𝑣) − 𝑓(𝑎 + 𝑡𝑣)) − (𝑓(𝑎 + 𝑠𝑢) − 𝑓(𝑎)),
which is the second difference given by the function when traversing the parallelogramwith
sides 𝑠𝑢, 𝑡𝑣. By the mean value theorem, there exists 𝛼(𝑠, 𝑡) ∈ (0, 1) such that

𝜙(𝑠, 𝑡) = 𝜓(𝑠) − 𝜓(0) = 𝑠𝜓′(𝛼𝑠) = 𝑠[𝐷𝑢𝑓(𝑎 + 𝛼𝑠𝑢 + 𝑡𝑣) − 𝐷𝑢𝑓(𝑎 + 𝛼𝑠𝑢)]

Now, applying the mean value theorem to the function 𝑦 ↦ 𝐷𝑢𝑓(𝑎 + 𝛼𝑠𝑢 + 𝑦𝑣), we have

𝜙(𝑠, 𝑡) = 𝑠𝑡𝐷𝑣𝐷𝑢𝑓(𝑎 + 𝛼𝑠𝑢 + 𝛽𝑡𝑣)

for 𝛽(𝑠, 𝑡) ∈ (0, 1). Now,

𝜙(𝑠, 𝑡)
𝑠𝑡 = 𝐷𝑣𝐷𝑢𝑓(𝑎 + 𝛼𝑠𝑢 + 𝛽𝑡𝑣) = 𝑓″(𝑎 + 𝛼𝑠𝑢 + 𝛽𝑡𝑣)(𝑢, 𝑣)

Since 𝑓″ is continuous at 𝑎, we can let 𝑠, 𝑡 → 0 and find

𝜙(𝑠, 𝑡)
𝑠𝑡 → 𝑓″(𝑎)(𝑢, 𝑣)

Now, we can repeat the above using

𝜓(𝑦) = 𝑓(𝑎 + 𝑠𝑢 + 𝑦𝑣) − 𝑓(𝑎 + 𝑦𝑣)

This calculates the second difference from above, but using the other path. We can find

𝜙(𝑠, 𝑡)
𝑠𝑡 → 𝑓″(𝑎)(𝑣, 𝑢)

as required.
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V. Methods

Lectured in Michaelmas 2021 by Prof. E. P. Shellard
In this course, we discuss variousmethods for solving differential equations. Different forms
of differential equations need different solution strategies, and we study a wide range of
common types of differential equation.

A particularly powerful method for solving differential equations involves the use of Green’s
functions. For example, physical systems can involve bodies spread over spacewith constant
density. Green’s functions allow the equation to be solved for a point mass, and then integ-
rated to find the solution for the larger body.

Fourier transforms are another way to solve differential equations. Sometimes a differential
equation is easier to solve after applying the Fourier transform to the relevant function, then
the inverse Fourier transform recovers the solution to the original equation.
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1. Fourier series

1. Fourier series
1.1. Periodic functions
A function 𝑓(𝑥) is periodic if 𝑓(𝑥 + 𝑇) = 𝑓(𝑥) for all 𝑥, where 𝑇 is the period. For example,
simple harmonic motion is periodic. In space, we consider the wavelength 𝜆 = 2𝜋

𝑘
, and the

(angular) wave number 𝑘 is defined conversely by 𝑘 = 2𝜋
𝜆
.

1.2. Properties of trigonometric functions
Consider the set of functions

𝑔𝑛(𝑥) = cos 𝑛𝜋𝑥𝐿 ; ℎ𝑛(𝑥) = sin 𝑛𝜋𝑥𝐿
where 𝑛 ∈ ℕ. These functions are periodic with period 𝑇 = 2𝐿. Recall that

cos𝐴 cos𝐵 = 1
2(cos(𝐴 − 𝐵) + cos(𝐴 + 𝐵));

sin𝐴 sin𝐵 = 1
2(cos(𝐴 − 𝐵) − cos(𝐴 + 𝐵));

sin𝐴 cos𝐵 = 1
2(sin(𝐴 − 𝐵) + sin(𝐴 + 𝐵))

1.3. Periodic function space
We define the inner product

⟨𝑓, 𝑔⟩ = ∫
2𝐿

0
𝑓(𝑥)𝑔(𝑥) d𝑥

The functions 𝑔𝑛 and ℎ𝑛 are mutually orthogonal on the interval [0, 2𝐿) with respect to the
inner product above.

⟨ℎ𝑛, ℎ𝑚⟩ = ∫
2𝐿

0
sin 𝑛𝜋𝑥𝐿 sin 𝑚𝜋𝑥𝐿 d𝑥

= 1
2 ∫

2𝐿

0
(cos (𝑛 − 𝑚)𝜋𝑥

𝐿 − cos (𝑛 + 𝑚)𝜋𝑥
𝐿 ) d𝑥

= 1
2
𝐿
𝜋[

1
𝑛 − 𝑚 sin (𝑛 − 𝑚)𝜋𝑥

𝐿 − 1
𝑛 + 𝑚 sin (𝑛 + 𝑚)𝜋𝑥

𝐿 ]
2𝐿

0
= 0 when 𝑛 ≠ 𝑚

If 𝑛 = 𝑚, we have

⟨ℎ𝑛, ℎ𝑛⟩ = ∫
2𝐿

0
sin2 𝑛𝜋𝑥𝐿 d𝑥 = 1

2 ∫
2𝐿

0
(1 − cos 2𝜋𝑛𝑥𝐿 ) d𝑥 = 𝐿
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Thus,

⟨ℎ𝑛, ℎ𝑚⟩ = {𝐿𝛿𝑛𝑚 𝑛,𝑚 ≠ 0
0 𝑛𝑚 = 0

Similarly, we can show

⟨𝑔𝑛, 𝑔𝑚⟩ =
⎧
⎨
⎩

𝐿𝛿𝑛𝑚 𝑛,𝑚 ≠ 0
0 exactly one of𝑚, 𝑛 is zero
2𝐿 𝑛,𝑚 = 0

and
⟨ℎ𝑛, 𝑔𝑚⟩ = 0

Now, we assert that {𝑔𝑛, ℎ𝑛} form a complete orthogonal set; they span the space of all
‘well-behaved’ periodic functions of period 2𝐿. Further, the set {𝑔𝑛, ℎ𝑛} is linearly independ-
ent.

1.4. Fourier series
Since 𝑔𝑛, ℎ𝑛 span the space of ‘well-behaved’ periodic functions of period 2𝐿, we can express
any such function as a sum of such eigenfunctions.

Definition. The Fourier series of 𝑓 is

𝑓(𝑥) = 1
2𝑎0 +

∞
∑
𝑛=1

𝑎𝑛 cos
𝑛𝜋𝑥
𝐿 +

∞
∑
𝑛=1

𝑏𝑛 sin
𝑛𝜋𝑥
𝐿

where 𝑎𝑛, 𝑏𝑛 are constants such that the right hand side is convergent for all 𝑥where𝑓 is con-
tinuous. At a discontinuity 𝑥, the Fourier series approaches the midpoint of the supremum
and infimum of the function in a close neighbourhood of 𝑥. That is, we replace the left hand
side with

1
2𝑓(𝑥+) +

1
2𝑓(𝑥−)

Let𝑚 > 0, and consider taking the inner product ⟨ℎ𝑚, 𝑓⟩ and substituting the Fourier series
of 𝑓.

⟨ℎ𝑚, 𝑓⟩ = ∫
2𝐿

0
sin 𝑚𝜋𝑥𝐿 𝑓(𝑥) d𝑥

= ⟨ℎ𝑚, 𝑏𝑚ℎ𝑚⟩
= 𝐿𝑏𝑚

Thus,

𝑏𝑛 =
1
𝐿 ⟨ℎ𝑛, 𝑓⟩ =

1
𝐿 ∫

2𝐿

0
sin 𝑛𝜋𝑥𝐿 𝑓(𝑥) d𝑥

220



1. Fourier series

and analogously

𝑎𝑛 =
1
𝐿 ⟨𝑔𝑛, 𝑓⟩ =

1
𝐿 ∫

2𝐿

0
cos 𝑛𝜋𝑥𝐿 𝑓(𝑥) d𝑥

Note that 1
2
𝑎0 is the average of the function. Note further that we may integrate over any

range as long as the total length is one period, 2𝐿. Notably, wemay integrate over the interval
[−𝐿, 𝐿].

Example. Consider the sawtooth wave; defined by 𝑓(𝑥) = 𝑥 for 𝑥 ∈ [−𝐿, 𝐿) and periodic
elsewhere. Here,

𝑎𝑛 =
1
𝐿 ∫

𝐿

−𝐿
𝑥 cos 𝑛𝜋𝑥𝐿 d𝑥 = 0

and

𝑏𝑛 =
2
𝐿 ∫

𝐿

0
𝑥 sin 𝑛𝜋𝑥𝐿 d𝑥

= −2
𝑛𝜋[𝑥 cos

𝑛𝜋𝑥
𝐿 ]

𝐿

0
+ 2
𝑛𝜋 ∫

𝐿

0
cos 𝑛𝜋𝑥𝐿 d𝑥

= −2𝐿
𝑛𝜋 cos𝑛𝜋 + 2𝐿

(𝑛𝜋)2 sin𝑛𝜋

= 2𝐿
𝑛𝜋(−1)

𝑛+1

1.5. Dirichlet conditions
The Dirichlet conditions are sufficiency conditions for a well-behaved function, that will
imply the existence of a unique Fourier series.

Theorem. If 𝑓(𝑥) is a bounded periodic function of period 2𝐿 with a finite number of min-
ima,maxima anddiscontinuities in [0, 2𝐿), then theFourier series converges to𝑓 at all points
at which 𝑓 is continuous, and at discontinuities the series converges to the midpoint.

Remark. (i) These are some relatively weak conditions for convergence, compared to
Taylor series. However, this definition still eliminates pathological functions such as
1
𝑥
, sin 1

𝑥
, 𝟙(ℚ) and so on.

(ii) The converse is not true; for example, sin 1
𝑥
does in fact have a Fourier series.

(iii) The proof is difficult and will not be given.

The rate of convergence of theFourier series depends on the smoothness of the function.

Theorem. If 𝑓(𝑥) has continuous derivatives up to a 𝑝th derivative which is discontinuous,
then the Fourier series converges with order 𝑂(𝑛−(𝑝+1)) as 𝑛 → ∞.
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Example (𝑝 = 0). Consider the square wave

𝑓(𝑥) = {1 0 ≤ 𝑥 < 1
−1 −1 ≤ 𝑥 < 0

Then the Fourier series is

𝑓(𝑥) = 4
∞
∑
𝑚=1

sin(2𝑚 − 1)𝜋𝑥
(2𝑚 − 1)𝜋

Example (𝑝 = 1). Consider the general ‘seesaw’ wave, defined by

𝑓(𝑥) = {𝑥(1 − 𝜉) 0 ≤ 𝑥 < 𝜉
𝜉(1 − 𝑥) 𝜉 ≤ 𝑥 < 1

and defined as an odd function for −1 ≤ 𝑥 < 0. The Fourier series is

𝑓(𝑥) = 2
∞
∑
𝑚=1

sin𝑛𝜋𝜉 sin𝑛𝜋𝑥
(𝑛𝜋)2

For instance, if 𝜉 = 1
2
, we can show that

𝑓(𝑥) = 2
∞
∑
𝑚=1

(−1)𝑚+1 sin(2𝑚 − 1)𝜋𝑥
((2𝑚 − 1)𝜋)2

Example (𝑝 = 2). Let
𝑓(𝑥) = 1

2𝑥(1 − 𝑥)

for 0 ≤ 𝑥 < 1, and defined as an odd function for −1 ≤ 𝑥 < 0. We can show that

𝑓(𝑥) = 4
∞
∑
𝑛=1

sin(2𝑚 − 1)𝜋𝑥
((2𝑚 − 1)𝜋)3

Example (𝑝 = 3). Consider
𝑓(𝑥) = (1 − 𝑥2)2

with Fourier series
𝑎𝑛 = 𝑂( 1𝑛4 )

1.6. Integration
It is always valid to take the integral of a Fourier series term by term. Defining 𝐹(𝑥) =
∫𝑥
−𝐿 𝑓(𝑥) d𝑥, we can show that 𝐹 satisfies the Dirichlet conditions if 𝑓 does. For instance, a
jump discontinuity becomes continuous in the integral.
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1.7. Differentiation
Differentiating term by term is not always valid. For example, consider the square wave
above:

𝑓(𝑥) ?= 4
∞
∑
𝑚=1

cos(2𝑚 − 1)𝜋𝑥

which is an unbounded series.

Theorem. If 𝑓(𝑥) is continuous and satisfies the Dirichlet conditions, and 𝑓′(𝑥) also sat-
isfies the Dirichlet conditions, then 𝑓′(𝑥) can be found term by term by differentiating the
Fourier series of 𝑓(𝑥).

Example. We can differentiate the seesaw function with 𝜉 = 1
2
, even though the derivative

is not continuous. The result is an offset square wave, or by mapping 𝑥 ↦ 𝑥 + 1
2
we recover

the original square wave.

1.8. Parseval’s theorem
Parseval’s theorem relates the integral of the square of a function with the squares of the
function’s Fourier series coefficients.

Theorem. Suppose 𝑓 has Fourier coefficients 𝑎𝑖, 𝑏𝑖. Then

∫
2𝐿

0
[𝑓(𝑥)]2 d𝑥 = ∫

2𝐿

0
[12𝑎0 +

∞
∑
𝑛=1

𝑎𝑘 cos
𝑘𝜋𝑥
𝐿 +

∞
∑
𝑛=1

𝑏𝑛 sin
𝑛𝜋𝑥
𝐿 ]

2

d𝑥

We can remove cross terms, since the basis functions are orthogonal.

= ∫
2𝐿

0
[14𝑎

2
0 +

∞
∑
𝑛=1

𝑎2𝑛 cos2
𝑛𝜋𝑥
𝐿 +

∞
∑
𝑛=1

𝑏2𝑛 sin2
𝑛𝜋𝑥
𝐿 ] d𝑥

= 𝐿[12𝑎
2
0 +

∞
∑
𝑛=1

(𝑎2𝑛 + 𝑏2𝑛)]

This is also called the completeness relation: the left hand side is greater than or equal to
the right hand side if any of the basis functions are missing.

Example. Let us apply Parseval’s theorem to the sawtooth wave.

∫
𝐿

−𝐿
[𝑓(𝑥)]2 d𝑥 = ∫

𝐿

−𝐿
𝑥2 d𝑥 = 2

3𝐿
3

The right hand side gives

𝐿
∞
∑
𝑛=1

4𝐿2
𝑛2𝜋2 =

4𝐿3
𝜋2

∞
∑
𝑛=1

1
𝑛2
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Parseval’s theorem then implies
∞
∑
𝑛=1

1
𝑛2 =

𝜋2
6

Remark. Parseval’s theorem for functions is equivalent to Pythagoras’ theorem for vectors
in ℝ𝑛: we can find the norm of a linear combination by computing the sum of the norms of
the components.

1.9. Half-range series
Consider 𝑓(𝑥) defined only on 0 ≤ 𝑥 < 𝐿. We can extend the range of 𝑓 to be the full range
−𝐿 ≤ 𝑥 < 𝐿 in two simple ways:

(i) require 𝑓 to be odd, so 𝑓(−𝑥) = −𝑓(𝑥). Hence, 𝑎𝑛 = 0 and

𝑏𝑛 =
2
𝐿 ∫

𝐿

0
𝑓(𝑥) sin 𝑛𝜋𝑥𝐿 d𝑥

So

𝑓(𝑥) =
∞
∑
𝑛=1

𝑏𝑛 sin
𝑛𝜋𝑥
𝐿

which is called a Fourier sine series.

(ii) require 𝑓 to be even, so 𝑓(−𝑥) = 𝑓(𝑥). In this case, 𝑏𝑛 = 0 and

𝑎𝑛 =
2
𝐿 ∫

𝐿

0
𝑓(𝑥) cos 𝑛𝜋𝑥𝐿 d𝑥

and

𝑆𝑜𝑓(𝑥) = 1
2𝑎0 +

∞
∑
𝑛=1

𝑎𝑛 cos
𝑛𝜋𝑥
𝐿

which is a Fourier cosine series.

1.10. Complex representation of Fourier series
Recall that

cos 𝑛𝜋𝑥𝐿 = 1
2(𝑒

𝑖𝑛𝜋𝑥/𝐿 + 𝑒−𝑖𝑛𝜋𝑥/𝐿);

sin 𝑛𝜋𝑥𝐿 = 1
2𝑖 (𝑒

𝑖𝑛𝜋𝑥/𝐿 − 𝑒−𝑖𝑛𝜋𝑥/𝐿)
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Therefore, a Fourier series can be written as

𝑓(𝑥) = 1
2𝑎0 +

1
2

∞
∑
𝑛=1

[(𝑎𝑛 − 𝑖𝑏𝑛)𝑒𝑖𝑛𝜋𝑥/𝐿 + (𝑎𝑛 + 𝑖𝑏𝑛)𝑒−𝑖𝑛𝜋𝑥/𝐿]

=
∞
∑

𝑚=−∞
𝑐𝑚𝑒𝑖𝑚𝜋𝑥/𝐿

where for 𝑚 > 0 we have 𝑚 = 𝑛, 𝑐𝑚 = 1
2
(𝑎𝑛 − 𝑖𝑏𝑛), and for 𝑚 < 0 we have 𝑛 = −𝑚, 𝑐𝑚 =

1
2
(𝑎−𝑚 + 𝑖𝑏−𝑚), and where𝑚 = 0 we have 𝑐0 =

1
2
𝑎0. In particular,

𝑐𝑚 = 1
2𝐿 ∫

𝐿

−𝐿
𝑓(𝑥)𝑒−𝑖𝑚𝜋𝑥/𝐿 d𝑥

where the negative sign comes from the complex conjugate. This is because, for complex-
valued 𝑓, 𝑔, we have

⟨𝑓, 𝑔⟩ = ∫
𝐿

−𝐿
𝑓⋆𝑔 d𝑥

The orthogonality conditions are

∫
𝐿

−𝐿
𝑒−𝑖𝑚𝜋𝑥/𝐿𝑒𝑖𝑛𝜋𝑥/𝐿 d𝑥 = 2𝐿𝛿𝑚𝑛

Parseval’s theorem now states

∫
𝐿

−𝐿
𝑓⋆(𝑥)𝑓(𝑥) d𝑥 = ∫

𝐿

−𝐿
|𝑓(𝑥)|2 d𝑥 = 2𝐿

∞
∑

𝑚=−∞
|𝑐𝑚|

2

1.11. Self-adjoint matrices
Much of this section is a recap of IA Vectors and Matrices. Suppose that 𝑢, 𝑣 ∈ ℂ𝑁 with inner
product

⟨𝑢, 𝑣⟩ = 𝑢†𝑣
The 𝑁 × 𝑁 matrix 𝐴 is self-adjoint, or Hermitian, if

∀𝑢, 𝑣 ∈ ℂ𝑁 , ⟨𝐴𝑢, 𝑣⟩ = ⟨𝑢, 𝐴𝑣⟩ ⟺ 𝐴† = 𝐴

The eigenvalues 𝜆𝑛 and eigenvectors 𝑣𝑛 satisfy

𝐴𝑣𝑛 = 𝜆𝑛𝑣𝑛

They have the following properties:

(i) 𝜆⋆
𝑛 = 𝜆𝑛;
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(ii) 𝜆𝑛 ≠ 𝜆𝑚 ⟹ ⟨𝑣𝑛, 𝑣𝑚⟩ = 0;
(iii) we can create an orthonormal basis from the eigenvectors.

Given 𝑏 ∈ ℂ𝑛, we can solve for 𝑥 in the general matrix equation 𝐴𝑥 = 𝑏 by expressing 𝑏 in
terms of the eigenvector basis:

𝑏 =
𝑁
∑
𝑛=1

𝑏𝑛𝑣𝑛

We seek a solution of the form

𝑥 =
𝑁
∑
𝑛=1

𝑐𝑛𝑣𝑛

At this point, the 𝑏𝑛 are known and the 𝑐𝑛 are our target. Substituting into the matrix equa-
tion, orthogonality of basis vectors gives

𝐴
𝑁
∑
𝑛=1

𝑐𝑛𝑣𝑛 =
𝑁
∑
𝑛=1

𝑏𝑛𝑣𝑛

𝑁
∑
𝑛=1

𝑐𝑛𝜆𝑛𝑣𝑛 =
𝑁
∑
𝑛=1

𝑏𝑛𝑣𝑛

𝑐𝑛𝜆𝑛 = 𝑏𝑛
𝑐𝑛 =

𝑏𝑛
𝜆𝑛

Therefore,

𝑥 =
𝑁
∑
𝑛=1

𝑏𝑛
𝜆𝑛
𝑣𝑛

provided 𝜆𝑛 ≠ 0, or equivalently, the matrix is invertible.

1.12. Solving inhomogeneous ODEs with Fourier series
We wish to find 𝑦(𝑥) given a source term 𝑓(𝑥) for the general differential equation

ℒ𝑦 ≡ −d
2𝑦
d𝑥2 = 𝑓(𝑥)

with boundary conditions 𝑦(0) = 𝑦(𝐿) = 0. The related eigenvalue problem is

ℒ𝑦𝑛 = 𝜆𝑛𝑦𝑛, 𝑦𝑛(0) = 𝑦𝑛(𝐿) = 0

which has solutions
𝑦𝑛(𝑥) = sin 𝑛𝜋𝑥𝐿 , 𝜆𝑛 = (𝑛𝜋𝐿 )

2
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We can show that this is a self-adjoint linear operator with orthogonal eigenfunctions. We
seek solutions of the form of a half-range sine series. Consider

𝑦(𝑥) =
∞
∑
𝑛=1

𝑐𝑛 sin
𝑛𝜋𝑥
𝐿

The right hand side is

𝑓(𝑥) =
∞
∑
𝑛=1

𝑏𝑛 sin
𝑛𝜋𝑥
𝐿

We can find 𝑏𝑛 by

𝑏𝑛 =
2
𝐿 ∫

𝐿

0
𝑓(𝑥) sin 𝑛𝜋𝑥𝐿 d𝑥

Substituting, we have

ℒ𝑦 = − d2
d𝑥2(∑𝑛

𝑐𝑛 sin
𝑛𝜋𝑥
𝐿 ) = ∑

𝑛
𝑐𝑛(

𝑛𝜋
𝐿 )

2
sin 𝑛𝜋𝑥𝐿 = ∑

𝑛
𝑏𝑛 sin

𝑛𝜋𝑥
𝐿

By orthogonality,

𝑐𝑛(
𝑛𝜋
𝐿 )

2
= 𝑏𝑛 ⟹ 𝑐𝑛 = ( 𝐿𝑛𝜋)

2
𝑏𝑛

Therefore the solution is

𝑦(𝑥) = ∑
𝑛
( 𝐿𝑛𝜋)

2
𝑏𝑛 sin

𝑛𝜋𝑥
𝐿 = ∑

𝑛

𝑏𝑛
𝜆𝑛
𝑦𝑛

which is equivalent to the solution we found for self-adjoint matrices for which the eigen-
values and eigenvectors are known.

Example. Consider an odd square wave with 𝐿 = 1, so 𝑓(𝑥) = 1 from 0 ≤ 𝑥 < 1.

𝑓(𝑥) = 4∑
𝑚

sin(2𝑚 − 1)𝜋𝑥
(2𝑚 − 1)𝜋

Then the solution to ℒ𝑦 = 𝑓 should be (with odd 𝑛 = 2𝑚 − 1)

𝑦(𝑥) = ∑
𝑛

𝑏𝑛
𝜆𝑛
𝑦𝑛 = 4∑

𝑛

sin(2𝑚 − 1)𝜋𝑥
((2𝑚 − 1)𝜋)3

This is exactly the Fourier series for

𝑦(𝑥) = 1
2𝑥(1 − 𝑥)

so this 𝑦 is the solution to the differential equation. We can in fact integrate ℒ𝑦 = 1 directly
with the boundary conditions to verify the solution. We can also differentiate the Fourier
series for 𝑦 twice to find the square wave.
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2. Sturm–Liouville theory
2.1. Second-order linear ODEs
This section is a review of IA Differential Equations.

We wish to solve a general inhomogeneous ODE, written

ℒ𝑦 ≡ 𝛼(𝑥)𝑦″ + 𝛽(𝑥)𝑦′ + 𝛾(𝑥)𝑦 = 𝑓(𝑥)

The homogeneous version has 𝑓(𝑥) = 0, so ℒ𝑦 = 0, which has two independent solutions
𝑦1, 𝑦2. The general solution, also the complementary function for the inhomogeneous ODE,
is 𝑦𝑐(𝑥) = 𝐴𝑦1(𝑥) + 𝐵𝑦2(𝑥). The inhomogeneous equation ℒ𝑦 = 𝑓(𝑥) has a solution called
the particular integral, denoted 𝑦𝑝(𝑥). The general solution to this equation is then 𝑦𝑝 +
𝑦𝑐.
We need two boundary or initial conditions to find the particular solution to the differential
equation. Suppose 𝑥 ∈ [𝑎, 𝑏]. We can create boundary conditions by defining 𝑦(𝑎), 𝑦(𝑏),
often called the Dirichlet conditions. Alternatively, we can consider 𝑦(𝑎), 𝑦′(𝑎), called the
Neumann conditions. We could also used some kind of mixed condition, for instance 𝑦 +
𝑘𝑦′. Homogeneous boundary conditions are such that 𝑦(𝑎) = 𝑦(𝑏) = 0. In this part of
the course, homogeneous boundary conditions are often assumed. Note that we can add
a complementary function 𝑦𝑐 to the solution, for instance 𝑦 = 𝑦 + 𝐴𝑦1 + 𝐵𝑦2 such that
𝑦(𝑎) = 𝑦(𝑏) = 0. This would allow us to construct homogeneous boundary conditions even
when they are not present a priori in the problem. We could also specify initial data, such
as solving for 𝑥 ≥ 𝑎, given 𝑦, 𝑦′ at 𝑥 = 𝑎.
To solve the inhomogeneous equation, we want to use eigenfunction expansions such as
Fourier series. In order to do this, we must first solve the related eigenvalue problem. In
this case, that is

𝛼(𝑥)𝑦″ + 𝛽(𝑥)𝑦′ + 𝛾(𝑥)𝑦 = −𝜆𝜌(𝑥)𝑦
We must solve this equation with the same boundary conditions as the original problem.
This form of equation often arises as a result of applying a separation of variables, particu-
larly for PDEs in several dimensions.

2.2. Sturm–Liouville form
For two complex-valued functions 𝑓, 𝑔 on [𝑎, 𝑏], we define the inner product as

⟨𝑓, 𝑔⟩ = ∫
𝑏

𝑎
𝑓⋆(𝑥)𝑔(𝑥) d𝑥

The eigenvalue problem above greatly simplifies if ℒ is self-adjoint, that is, if it can be ex-
pressed in Sturm–Liouville form:

ℒ𝑦 ≡ (−𝑝𝑦′)′ + 𝑞𝑦 = 𝜆𝑤𝑦

𝜆 is an eigenvalue, and 𝑤 is the weight function, which must be non-negative.
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2.3. Converting to Sturm–Liouville form
Suppose we have the eigenvalue problem

𝛼(𝑥)𝑦″ + 𝛽(𝑥)𝑦′ + 𝛾(𝑥)𝑦 = −𝜆𝜌(𝑥)𝑦

Multiply this by an integrating factor 𝐹 to give

𝐹𝛼𝑦″ + 𝐹𝛽𝑦′ + 𝐹𝛾𝑦 = −𝜆𝐹𝜌𝑦
d
d𝑥(𝐹𝛼𝑦

′) − 𝐹′𝛼𝑦′ − 𝐹𝛼′𝑦 + 𝐹𝛽𝑦′ + 𝐹𝛾𝑦 = −𝜆𝐹𝜌𝑦

To eliminate the 𝑦′ term, we require 𝐹′𝛼 = 𝐹(𝛽 − 𝛼′). Thus,

𝐹′
𝐹 = 𝛽 − 𝛼′

𝛼 ⟹ 𝐹 = exp∫
𝑥 𝛽 − 𝛼′

𝛼 d𝑥

and further,
(𝐹𝛼𝑦′)′ + 𝐹𝛾𝑦 = −𝜆𝐹𝜌𝑦

hence

𝑝 = 𝐹𝛼
𝑞 = 𝐹𝛾
𝑤 = 𝐹𝜌

and 𝐹(𝑥) > 0 hence 𝑤 > 0.
Example. Consider the Hermite equation,

𝑦″ − 2𝑥𝑦′ + 2𝑛𝑦 = 0

In this case,

𝐹 = exp∫
𝑥 −2𝑥

1 d𝑥 = 𝑒−𝑥2

Then the equation, in Sturm–Liouville form, is

ℒ𝑦 ≡ −(𝑒−𝑥2𝑦′)
′
= 2𝑛𝑒−𝑥2𝑦

2.4. Self-adjoint operators
ℒ is a self-adjoint operator on [𝑎, 𝑏] for all pairs of functions 𝑦1, 𝑦2 satisfying appropriate
boundary conditions if

⟨𝑦1, ℒ𝑦2⟩ = ⟨ℒ𝑦1, 𝑦2⟩
Written explicitly,

∫
𝑏

𝑎
𝑦⋆
1(𝑥)ℒ𝑦2(𝑥) d𝑥 = ∫

𝑏

𝑎
(ℒ𝑦1(𝑥))⋆𝑦2(𝑥) d𝑥
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Substituting Sturm–Liouville form into the above,

⟨𝑦1, ℒ𝑦2⟩ − ⟨ℒ𝑦1, 𝑦2⟩ = ∫
𝑏

𝑎
[−𝑦1(𝑝𝑦′2)′ + 𝑦1𝑞𝑦2 + 𝑦2(𝑝𝑦′1)′ − 𝑦2𝑞𝑦1] d𝑥

= ∫
𝑏

𝑎
[−𝑦1(𝑝𝑦′2)′ + 𝑦1𝑞𝑦2 + 𝑦2(𝑝𝑦′1)′ − 𝑦2𝑞𝑦1] d𝑥

= ∫
𝑏

𝑎
[−𝑦1(𝑝𝑦′2)′ + 𝑦2(𝑝𝑦′1)′] d𝑥

Adding −𝑦′1𝑝𝑦′2 + 𝑦′1𝑝𝑦′2,

= ∫
𝑏

𝑎
[−(𝑝𝑦1𝑦′2)′ + (𝑝𝑦′1𝑦2)′] d𝑥

= [−𝑝𝑦1𝑦′2 + 𝑝𝑦′1𝑦2]𝑏𝑎

which must be zero for an equation in Sturm–Liouville form to be self-adjoint.

2.5. Self-adjoint compatible boundary conditions

• Suppose 𝑦(𝑎) = 𝑦(𝑏) = 0. Then certainly the Sturm–Liouville form of the differential
equation is self-adjoint. We could also choose 𝑦′(𝑎) = 𝑦′(𝑏) = 0. Collectively, the act
of using homogeneous boundary conditions is known as the regular Sturm–Liouville
problem.

• Periodic boundary conditions could also be used, such as 𝑦(𝑎) = 𝑦(𝑏).

• If 𝑎 and 𝑏 are singular points of the equation, i.e. 𝑝(𝑎) = 𝑝(𝑏) = 0, this is self-adjoint
compatible.

• We could also have combinations of the above properties, one at 𝑎 and one at 𝑏.

2.6. Properties of self-adjoint operators

The following properties hold for any self-adjoint differential operator ℒ.

(i) The eigenvalues 𝜆𝑛 are real.

(ii) The eigenfunctions 𝑦𝑛 are orthogonal.

(iii) The 𝑦𝑛 are a complete set; they span the space of all functions hence our general solu-
tion can be written in terms of these eigenfunctions.

Each property is proven in its own subsection.
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2.7. Real eigenvalues
Proof. Suppose we have some eigenvalue 𝜆𝑛, so ℒ𝑦𝑛 = 𝜆𝑛𝑤𝑦𝑛. Taking the complex conjug-
ate, ℒ𝑦⋆

𝑛 = 𝜆⋆
𝑛𝑤𝑦⋆

𝑛, since ℒ,𝑤 are real. Now, consider

∫
𝑏

𝑎
(𝑦⋆

𝑛ℒ𝑦𝑛 − 𝑦𝑛ℒ𝑦⋆
𝑛) d𝑥

which must be zero if ℒ is self-adjoint. This can be written as

(𝜆𝑛 − 𝜆⋆
𝑛)∫

𝑏

𝑎
𝑤𝑦⋆

𝑛𝑦𝑛 d𝑥

The integral is nonzero, hence 𝜆𝑛 − 𝜆⋆
𝑛 = 0 which implies 𝜆𝑛 is real. Note, if the 𝜆𝑛 are non-

degenerate (simple), i.e. with a unique eigenfunction 𝑦𝑛, then 𝑦⋆
𝑛 = 𝑦𝑛 hence they are real.

We can in fact show that (for a second-order equation) it is always possible to take linear
combinations of eigenfunctions such that the result is linear, for example in the exponential
form of the Fourier series. Hence, we can assume that 𝑦𝑛 is real. We can further prove that
the regular Sturm–Liouville problemmust have simple (non-degenerate) eigenvalues 𝜆𝑛, by
considering two possible eigenfunctions 𝑢, 𝑣 for the same 𝜆, and use the expression for self-
adjointness. We find 𝑢ℒ𝑣 − (ℒ𝑢)𝑣 = [−𝑝(𝑢𝑣′ − 𝑢′𝑣)]′ which contains the Wrońskian. We
can integrate and impose homogeneous boundary conditions to get the required result.

2.8. Orthogonality of eigenfunctions
Suppose ℒ𝑦𝑛 = 𝜆𝑛𝑤𝑦𝑛, and ℒ𝑦𝑚 = 𝜆𝑚𝑤𝑦𝑚 where 𝜆𝑛 ≠ 𝜆𝑚. Then, we can integrate to
find

∫
𝑏

𝑎
(𝑦𝑚ℒ𝑦𝑛 − 𝑦𝑛ℒ𝑦𝑚) d𝑥 = (𝜆𝑛 − 𝜆𝑚)∫

𝑏

𝑎
𝑤𝑦𝑛𝑦𝑚 d𝑥 = 0 by self-adjointness

Since 𝜆𝑛 ≠ 𝜆𝑚, we have

∀𝑛 ≠ 𝑚,∫
𝑏

𝑎
𝑤𝑦𝑛𝑦𝑚 d𝑥 = 0

Hence, 𝑦𝑛 and 𝑦𝑚 are orthogonal with respect to the weight function 𝑤 on [𝑎, 𝑏].
Definition. We define the inner product with respect to 𝑤 to be

⟨𝑓, 𝑔⟩𝑤 = ∫
𝑏

𝑎
𝑤𝑓⋆𝑔 d𝑥

Note,
⟨𝑓, 𝑔⟩𝑤 = ⟨𝑤𝑓, 𝑔⟩ = ⟨𝑓, 𝑤𝑔⟩

Hence, the orthogonality relation becomes

∀𝑛 ≠ 𝑚, ⟨𝑦𝑛, 𝑦𝑚⟩𝑤 = 0
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2.9. Eigenfunction expansions

The completeness of the family of eigenfunctions (which is not proven here) implies that we
can approximate any ‘well-behaved’ 𝑓(𝑥) on [𝑎, 𝑏] by the series

𝑓(𝑥) =
∞
∑
𝑛=1

𝑎𝑛𝑦𝑛(𝑥)

This is comparable to Fourier series. To find the coefficients 𝑎𝑛, we will take the inner
product with an eigenfunction. By orthogonality,

∫
𝑏

𝑎
𝑤𝑦𝑚𝑓 d𝑥 =

∞
∑
𝑛=1

𝑎𝑛∫
𝑏

𝑎
𝑤𝑦𝑛𝑦𝑚 d𝑥 = 𝑎𝑚∫

𝑏

𝑎
𝑤𝑦2𝑚 d𝑥

Hence,

𝑎𝑛 =
∫𝑏
𝑎 𝑤𝑦𝑛𝑓 d𝑥
∫𝑏
𝑎 𝑤𝑦2𝑛 d𝑥

We can normalise eigenfunctions, for instance

𝑌𝑛(𝑥) =
𝑦𝑛(𝑥)

(∫𝑏
𝑎 𝑤𝑦2𝑛 d𝑥)

1
2

hence
⟨𝑌𝑛, 𝑌𝑚⟩𝑤 = 𝛿𝑛𝑚

giving an orthonormal set of eigenfunctions. In this case,

𝑓(𝑥) =
∞
∑
𝑛=1

𝐴𝑛𝑌𝑛

where

𝐴𝑛 = ∫
𝑏

𝑎
𝑤𝑌𝑛𝑓 d𝑥

Example. Recall Fourier series in Sturm–Liouville form:

ℒ𝑦𝑛 ≡ −d
2𝑦
d𝑥2 = 𝜆𝑛𝑦𝑛

where in this case we have
𝜆𝑛 = (𝑛𝜋𝐿 )

2
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2.10. Completeness and Parseval’s identity
Consider

∫
𝑏

𝑎
[𝑓(𝑥) −

∞
∑
𝑛=1

𝑎𝑛𝑦𝑛]
2

𝑤 d𝑥

By orthogonality, this is equivalently

∫
𝑏

𝑎
[𝑓2 − 2𝑓∑

𝑛
𝑎𝑛𝑦𝑛 +∑

𝑛
𝑎2𝑛𝑦2𝑛]𝑤 d𝑥

Note that the second term can be extracted using the definition of 𝑎𝑛, giving

∫
𝑏

𝑎
𝑤𝑓2 d𝑥 −

∞
∑
𝑛=1

𝑎2𝑛∫
𝑏

𝑎
𝑤𝑦2𝑛 d𝑥

If the eigenfunctions are complete, then the result will be zero, showing that the series ex-
pansion converges.

∫
𝑏

𝑎
𝑤𝑓2 d𝑥 =

∞
∑
𝑛=1

𝑎2𝑛∫
𝑏

𝑎
𝑤𝑦2𝑛 d𝑥 =

∞
∑
𝑛=1

𝐴2
𝑛

If some eigenfunctions are missing, this is Bessel’s inequality:

∫
𝑏

𝑎
𝑤𝑓2 d𝑥 ≥

∞
∑
𝑛=1

𝐴2
𝑛

We define the partial sum to be

𝑆𝑁(𝑥) =
𝑁
∑
𝑛=1

𝑎𝑛𝑦𝑛

with 𝑓(𝑥) = lim𝑁→∞ 𝑆𝑁(𝑥). Convergence is defined in terms of the mean-square error. In
particular, if we have a complete set of eigenfunctions,

𝜀𝑁 = ∫
𝑏

𝑎
𝑤[𝑓(𝑥) − 𝑆𝑛(𝑥)]

2 d𝑥 → 0

This ‘global’ definition of convergence is convergence in the mean, not pointwise conver-
gence as in Fourier series. The error in partial sum 𝑆𝑁 is minimised by 𝑎𝑛 above for the
𝑁 = ∞ expansion.

𝜕𝜀𝑁
𝜕𝑎𝑛

= −2∫
𝑏

𝑎
𝑦𝑛𝑤[𝑓 −

𝑁
∑
𝑛=1

𝑎𝑛𝑦𝑛] d𝑥 = −2∫
𝑏

𝑎
(𝑤𝑓𝑦𝑛 − 𝑎𝑛𝑤𝑦2𝑛) d𝑥 = 0

It is minimal because we can show 𝜕2𝜀
𝜕𝑎2𝑛

= 2∫𝑏
𝑎 𝑤𝑦2𝑛 d𝑥 ≥ 0. Thus the 𝑎𝑛 given above is the

best possible choice for the coefficient at all 𝑁.
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2.11. Legendre’s equation
Legendre’s equation is

(1 − 𝑥2)𝑦″ − 2𝑥𝑦′ + 𝜆𝑦 = 0
on [−1, 1], with boundary conditions that 𝑦 is finite at 𝑥 = ±1, at the regular singular points
of the ODE. This equation is already in Sturm–Liouville form with

𝑝 = 1 − 𝑥2, 𝑞 = 0, 𝑤 = 1
We seek a power series solution centred on 𝑥 = 0:

𝑦 = ∑
𝑛
𝑐𝑛𝑥𝑛

Substituting into the differential equation,

(1 − 𝑥2)∑
𝑛
𝑛(𝑛 − 1)𝑥𝑛𝑥𝑛−2 − 2𝑥∑

𝑛
𝑐𝑛𝑐𝑛−1 + 𝜆∑

𝑛
𝑐𝑛𝑥𝑛 = 0

Equating powers,

(𝑛 + 2)(𝑛 + 1)𝑐𝑛+2 − 𝑛(𝑛 − 1)𝑐𝑛 − 2𝑛𝑐𝑛 + 𝜆𝑐𝑛 = 0
which gives a recursion relation between 𝑐𝑛+2 and 𝑐𝑛.

𝑐𝑛+2 =
𝑛(𝑛 + 1) − 𝜆
(𝑛 + 1)(𝑛 + 2)𝑐𝑛

Hence, specifying 𝑐0, 𝑐1 gives two independent solutions. In particular,

𝑦even = 𝑐0[1 +
(−𝜆)
2! 𝑥2 + (6 − 𝜆)(−𝜆)

4! 𝑥4 +…]

𝑦odd = 𝑐1[𝑥 +
(2 − 𝜆)
3! 𝑥3 +…]

As 𝑛 → ∞, 𝑐𝑛+2
𝑐𝑛

→ 1. So these are geometric series, with radius of convergence |𝑥| <
1, hence there is divergence at 𝑥 = ±1. So taking a power series does not give a useful
solution.

Suppose we chose 𝜆 = ℓ(ℓ + 1). Then eventually we have 𝑛 such that the numerator van-
ishes. In particular, by taking 𝜆 = ℓ(ℓ + 1), either the series for 𝑦even or 𝑦odd terminates.
These functions are called the Legendre polynomials, denoted 𝑃ℓ(𝑥), with the normalisa-
tion convention 𝑃ℓ(1) = 1.

• ℓ = 0, 𝜆 = 0, 𝑃0(𝑥) = 1
• ℓ = 1, 𝜆 = 2, 𝑃1(𝑥) = 𝑥

• ℓ = 2, 𝜆 = 6, 𝑃2(𝑥) =
3𝑥2−1

2

• ℓ = 3, 𝜆 = 12, 𝑃3(𝑥) =
5𝑥3−3𝑥

2

Note, 𝑃ℓ(𝑥) has ℓ zeroes. The polynomials oscillate in parity.
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2.12. Properties of Legendre polynomials
Since Legendre polynomials come from a self-adjoint operator, they must have certain con-
ditions, such as orthogonality. For 𝑛 ≠ 𝑚,

∫
1

−1
𝑃𝑛𝑃𝑚 d𝑥 = 0

They are also normalisable,

∫
1

−1
𝑃2𝑛 d𝑥 =

2
2𝑛 + 1

We can prove this with Rodrigues’ formula:

𝑃𝑛(𝑥) =
1

2𝑛𝑛!(
d
d𝑥)

𝑛
(𝑥2 − 1)𝑛

Alternatively we could use a generating function:

∞
∑
𝑛=0

𝑃𝑛(𝑥)𝑡𝑛 =
1

√1 − 2𝑥𝑡 + 𝑡2
= 1 + 1

2(2𝑥𝑡 − 𝑡2) + 3
8(2𝑥𝑡 − 𝑡2)2 +…

= 1 + 𝑥𝑡 + 1
2(3𝑥

2 − 1)𝑡2 +…

There are some useful recursion relations.

ℓ(ℓ + 1)𝑃ℓ+1 = (2ℓ + 1)𝑥𝑃ℓ(𝑥) − ℓ𝑃ℓ−1(𝑥)

Also,

(2ℓ + 1)𝑃ℓ(𝑥) =
d
d𝑥[𝑃ℓ+1(𝑥) − 𝑃ℓ−1(𝑥)]

2.13. Legendre polynomials as eigenfunctions
Any (well-behaved) function on [−1, 1] can be expressed as

𝑓(𝑥) =
∞
∑
ℓ=0

𝑎ℓ𝑃ℓ(𝑥)

where

𝑎ℓ =
2ℓ + 1
2 ∫

1

−1
𝑓(𝑥)𝑃ℓ(𝑥) d𝑥

with no boundary conditions (e.g. periodicity conditions) on 𝑓.
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2.14. Solving inhomogeneous differential equations
This can be thought of as the general case of Fourier series discussed previously.

Consider the problem
ℒ𝑦 = 𝑓(𝑥) ≡ 𝑤(𝑥)𝐹(𝑥)

on 𝑥 ∈ [𝑎, 𝑏] assuming homogeneous boundary conditions. Given eigenfunctions 𝑦𝑛(𝑥)
satisfying ℒ𝑦𝑛 = 𝜆𝑛𝑤𝑦𝑛, we wish to expand this solution as

𝑦(𝑥) = ∑
𝑛
𝑐𝑛𝑦𝑛(𝑥)

and
𝐹(𝑥) = ∑

𝑛
𝑎𝑛𝑦𝑛(𝑥)

where 𝑎𝑛 are known and 𝑐𝑛 are unknown:

𝑎𝑛 =
∫𝑏
𝑎 𝑤𝐹𝑦𝑛 d𝑥
∫𝑏
𝑎 𝑤𝑦2𝑛 d𝑥

Substituting,
ℒ𝑦 = ℒ∑

𝑛
𝑐𝑛𝑦𝑛 = 𝑤∑

𝑛
𝑐𝑛𝜆𝑛𝑦𝑛 = 𝑤∑

𝑛
𝑎𝑛𝑦𝑛

By orthogonality,
𝑐𝑛𝜆𝑛 = 𝑎𝑛 ⟹ 𝑐𝑛 =

𝑎𝑛
𝜆𝑛

In particular,

𝑦(𝑥) =
∞
∑
𝑛=1

𝑎𝑛
𝜆𝑛
𝑦𝑛(𝑥)

We can further generalise; we can permit a driving force, which often induces a linear re-
sponse term ̃𝜆𝑤𝑦.

ℒ𝑦 − ̃𝜆𝑤𝑦 = 𝑓(𝑥)

where ̃𝜆 is fixed. The solution becomes

𝑦(𝑥) =
∞
∑
𝑛=1

𝑎𝑛
𝜆𝑛 − ̃𝜆

𝑦𝑛(𝑥)

2.15. Integral solutions
Recall that

𝑦(𝑥) =
∞
∑
𝑛=1

𝑎𝑛
𝜆𝑛
𝑦𝑛(𝑥) = ∑

𝑛

𝑦𝑛(𝑥)
𝜆𝑛𝜆𝑛𝑁𝑛

∫
𝑏

𝑎
𝑤(𝜉)𝐹(𝜉)𝑦𝑛(𝜉) d𝜉
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where
𝑁𝑛 = ∫𝑤𝑦2𝑛 d𝑥

This then gives

𝑦(𝑥) = ∫
𝑏

𝑎

∞
∑
𝑛=1

𝑦𝑛(𝑥)𝑦𝑛(𝜉)
𝜆𝑛𝑁𝑛⏟⎵⎵⎵⏟⎵⎵⎵⏟

𝐺(𝑥,𝜉)

𝑤(𝜉)𝐹(𝜉)⏟⎵⏟⎵⏟
𝑓(𝜉)

d𝜉 = ∫
𝑏

𝑎
𝐺(𝑥; 𝜉)𝑓(𝜉) d𝜉

where

𝐺(𝑥, 𝜉) =
∞
∑
𝑛=1

𝑦𝑛(𝑥)𝑦𝑛(𝜉)
𝜆𝑛𝑁𝑛

is the eigenfunction expansion of the Green’s function. Note that the Green’s function does
not depend on 𝑓, but only on ℒ and the boundary conditions. In this sense, it acts like an
inverse operator

ℒ− ≡ ∫ d𝜉 𝐺(𝑥, 𝜉)

analogously to how 𝐴𝑥 = 𝑏 ⟹ 𝑥 = 𝐴−1𝑏 for matrix equations.

2.16. Waves on an elastic string
Consider a small displacement 𝑦(𝑥, 𝑡) on a stretched string with fixed ends at 𝑥 = 0 and
𝑥 = 𝐿, that is, with boundary conditions 𝑦(0, 𝑡) = 𝑦(𝐿, 𝑡) = 0. We can determine the string’s
motion for specified initial conditions 𝑦(𝑥, 0) = 𝑝(𝑥) and 𝜕𝑦

𝜕𝑡
= 𝑞(𝑥). We derive the equation

of motion governing the motion of the string by balancing forces on a string segment (𝑥, 𝑥 +
𝛿𝑥) and take the limit as 𝛿𝑥 → 0. Let 𝑇1 be the tension force acting to the left at angle 𝜃1
from the horizontal. Analogously, let 𝑇2 be the rightwards tension force at angle 𝜃2. We
assume at any point on the string that ||

𝜕𝑦
𝜕𝑥
|| ≪ 1, so the angles of the forces are small. In the

𝑥 dimension,
𝑇1 cos 𝜃1 = 𝑇2 cos 𝜃2 ⟹ 𝑇1 ≈ 𝑇2 = 𝑇

So the tension 𝑇 is constant up to an error of order𝑂(||
𝜕𝑦
𝜕𝑥
||
2
). In the 𝑦 dimension, since 𝜃 are

small,
𝐹𝑇 = 𝑇2 sin 𝜃2 − 𝑇1 sin 𝜃1 ≈ 𝑇( 𝜕𝑦𝜕𝑥

|||𝑥+𝛿𝑥
− 𝜕𝑦
𝜕𝑥
|||𝑥
) ≈ 𝑇 𝜕

2𝑦
𝜕𝑥2𝛿𝑥

By 𝐹 = 𝑚𝑎,
𝐹𝑇 + 𝐹𝑔 = (𝜇𝛿𝑥)𝜕

2𝑦
𝜕𝑡2 = 𝑇 𝜕

2𝑦
𝜕𝑥2𝛿𝑥 − 𝑔𝜇𝛿𝑥

where 𝐹𝑔 is the gravitational force and 𝜇 is the linear mass density. We define the wave speed
as

𝑐 =
√

𝑇
𝜇

237



V. Methods

and find
𝜕2𝑦
𝜕𝑡2 = 𝑇

𝜇
𝜕2𝑦
𝜕𝑥2 − 𝑔 = 𝑐2 𝜕

2𝑦
𝜕𝑥2

We often assume gravity is negligible to produce the pure wave equation

1
𝑐2
𝜕2𝑦
𝜕𝑡2 = 𝜕2𝑦

𝜕𝑥2
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3. Separation of variables
3.1. Separation of variables
We wish to solve the wave equation subject to certain boundary and initial conditions. Con-
sider a possible solution of separable form:

𝑦(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡)

Substituting into the wave equation,

1
𝑐2 ̈𝑦 = 𝑦″ ⟹ 1

𝑐2𝑋
̈𝑇 = 𝑋″𝑇

Then
1
𝑐2

̈𝑇
𝑇 = 𝑋″

𝑋
However,

̈𝑇
𝑇
depends only on 𝑡 and 𝑋″

𝑋
depends only on 𝑥. Thus, both sides must be equal

to some separation constant −𝜆.
1
𝑐2

̈𝑇
𝑇 = 𝑋″

𝑋 = −𝜆

Hence,
𝑋″ + 𝜆𝑋 = 0; ̈𝑇 + 𝜆𝑐2𝑇 = 0

3.2. Boundary conditions and normal modes
Wewill begin by first solving the spatial part of the solution. One of 𝜆 > 0, 𝜆 < 0, 𝜆 = 0must
be true. The boundary conditions restrict the possible 𝜆.
(i) First, suppose 𝜆 < 0. Take 𝜒2 = −𝜆. Then,

𝑋(𝑥) = 𝐴𝑒𝜒𝑥 + 𝐵𝑒−𝜒𝑥 = 𝐶 cosh(𝜒𝑥) + 𝐷 sinh(𝜒𝑥)

The boundary conditions are 𝑥(0) = 𝑥(𝐿) = 0, so only the trivial solution is possible:
𝐶 = 𝐷 = 0.

(ii) Now, suppose 𝜆 = 0. Then
𝑋(𝑥) = 𝐴𝑥 + 𝐵

Again, the boundary conditions impose 𝐴 = 𝐵 = 0 giving only the trivial solution.
(iii) Finally, the last possibility is 𝜆 > 0.

𝑋(𝑥) = 𝐴 cos (√𝜆𝑥) + 𝐵 sin (√𝜆𝑥)

The boundary conditions give

𝐴 = 0; 𝐵 sin (√𝜆𝐿) = 0 ⟹ √𝜆𝐿 = 𝑛𝜋
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The following are the eigenfunctions and eigenvalues.

𝑋𝑛(𝑥) = 𝐵𝑛 sin
𝑛𝜋𝑥
𝐿 ; 𝜆𝑛 = (𝑛𝜋𝐿 )

2

These are also called the ‘normal modes’ of the system. The spatial shape in 𝑥 does not
change in time, but the amplitudemay vary. The fundamental mode is the lowest frequency
of vibration, given by

𝑛 = 1 ⟹ 𝜆1 =
𝜋2
𝐿2

The second mode is the first overtone, and is given by

𝑛 = 2 ⟹ 𝜆2 =
4𝜋2
𝐿2

3.3. Initial conditions and temporal solutions
Substituting 𝜆𝑛 into the time ODE,

̈𝑇 + 𝑛2𝜋2𝑐2
𝐿2 𝑇 = 0

Hence,
𝑇𝑛(𝑡) = 𝐶𝑛 cos

𝑛𝜋𝑐𝑡
𝐿 + 𝐷𝑛 sin

𝑛𝜋𝑐𝑡
𝐿

Therefore, a specific solution of the wave equation satisfying the boundary conditions is
(absorbing the 𝐵𝑛 into the 𝐶𝑛, 𝐷𝑛):

𝑦𝑛(𝑥, 𝑡) = 𝑇𝑛(𝑡)𝑋𝑛(𝑥) = (𝐶𝑛 cos
𝑛𝜋𝑐𝑡
𝐿 + 𝐷𝑛 sin

𝑛𝜋𝑐𝑡
𝐿 ) sin 𝑛𝜋𝑥𝐿

To find a particular solution for a given set of initial conditions, we must consider a linear
superposition of all possible 𝑦𝑛.

𝑦(𝑥, 𝑡) =
∞
∑
𝑛=1

(𝐶𝑛 cos
𝑛𝜋𝑐𝑡
𝐿 + 𝐷𝑛 sin

𝑛𝜋𝑐𝑡
𝐿 ) sin 𝑛𝜋𝑥𝐿

By construction, this 𝑦(𝑥, 𝑡) satisfies the boundary conditions, so now we can impose the
initial conditions.

𝑦(𝑥, 0) = 𝑝(𝑥) =
∞
∑
𝑛=1

𝐶𝑛 sin
𝑛𝜋𝑥
𝐿

We can find the𝐶𝑛 using standard Fourier series techniques, since this is exactly a half-range
sine series. Further,

𝜕𝑦(𝑥, 0)
𝜕𝑡 = 𝑞(𝑥) =

∞
∑
𝑛=1

𝑛𝜋𝑐
𝐿 𝐷𝑛 sin

𝑛𝜋𝑥
𝐿
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Again we can solve for the 𝐷𝑛 in a similar way. In particular,

𝐶𝑛 =
2
𝐿 ∫

𝐿

0
𝑝(𝑥) sin 𝑛𝜋𝑥𝐿 d𝑥

𝐷𝑛 =
2
𝑛𝜋𝑐 ∫

𝐿

0
𝑞(𝑥) sin 𝑛𝜋𝑥𝐿 d𝑥

Example. Consider the initial condition of a see-sawwave parametrised by 𝜉, and let 𝐿 = 1.
This can be visualised as plucking the string at position 𝜉.

𝑦(𝑥, 0) = 𝑝(𝑥) = {𝑥(1 − 𝜉) 0 ≤ 𝑥 < 𝜉
𝜉(1 − 𝑥) 𝜉 ≤ 𝑥 < 1

We also define
𝜕𝑦(𝑥, 0)
𝜕𝑡 = 𝑞(𝑥) = 0

The Fourier series for 𝑝 is given by

𝐶𝑛 =
2 sin𝑛𝜋𝜉
(𝑛𝜋)2 ; 𝐷𝑛 = 0

Hence the solution to the wave equation is

𝑦(𝑥, 𝑡) =
∞
∑
𝑛=1

2
(𝑛𝜋)2 sin𝑛𝜋𝜉 sin𝑛𝜋𝑥 cos𝑛𝜋𝑐𝑡

3.4. Separation of variables methodology
A general strategy for solving higher-dimensional partial differential equations is as fol-
lows.

(i) Obtain a linear PDE system, using boundary and initial conditions.

(ii) Separate variables to yield decoupled ODEs.

(iii) Impose homogeneous boundary conditions to find eigenvalues and eigenfunctions.

(iv) Use these eigenvalues (constants of separation) to find the eigenfunctions in the other
variables.

(v) Sum over the products of separable solutions to find the general series solution.

(vi) Determine coefficients for this series using the initial conditions.
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Example. Wewill solve the wave equation instead in characteristic coordinates. Recall the
sine and cosine summation identities:

𝑦(𝑥, 𝑡) = 1
2

∞
∑
𝑛=1

[(𝐶𝑛 sin
𝑛𝜋
𝐿 (𝑥 − 𝑐𝑡) + 𝐷𝑛 cos

𝑛𝜋
𝐿 (𝑥 − 𝑐𝑡))

+ (𝐶𝑛 sin
𝑛𝜋
𝐿 (𝑥 + 𝑐𝑡) − 𝐷𝑛 cos

𝑛𝜋
𝐿 (𝑥 + 𝑐𝑡))]

= 𝑓(𝑥 − 𝑐𝑡) + 𝑔(𝑥 + 𝑐𝑡)

The standing wave solution can be interpreted as a superposition of a right-moving wave
and a left-moving wave. A special case is 𝑞(𝑥) = 0, implying 𝑓 = 𝑔 = 1

2
𝑝. Then,

𝑦(𝑥, 𝑡) = 1
2[𝑝(𝑥 − 𝑐𝑡) + 𝑝(𝑥 + 𝑐𝑡)]

3.5. Energy of oscillations
A vibrating string has kinetic energy due to its motion.

Kinetic energy = 1
2𝜇∫

𝐿

0
(𝜕𝑦𝜕𝑡 )

2
d𝑥

It has potential energy given by

Potential energy = 𝑇Δ𝑥 = 𝑇∫
𝑇

𝑐
(√1 + (𝜕𝑦𝜕𝑥)

2
− 1) d𝑥 ≈ 1

2𝑇∫
𝐿

0
(𝜕𝑦𝜕𝑥)

2
d𝑥

assuming that the disturbances on the string are small, that is, ||
𝜕𝑦
𝜕𝑥
|| ≪ 1. The total energy

on the string, given 𝑐2 = 𝑇/𝜇, is given by

𝐸 = 1
2𝜇∫

𝐿

0
[(𝜕𝑦𝜕𝑡 )

2
+ 𝑐2(𝜕𝑦𝜕𝑥)

2
] d𝑥

Substituting the solution, using the orthogonality conditions,

𝐸 = 1
2𝜇

∞
∑
𝑛=1

∫
𝐿

0
[ − (𝑛𝜋𝑐𝐿 𝐶𝑛 sin

𝑛𝜋𝑐𝑡
𝐿 + 𝑛𝜋𝑐

𝐿 𝐷𝑛 cos
𝑛𝜋𝑐𝑡
𝐿 )

2
sin2 𝑛𝜋𝑥𝐿

+ 𝑐2(𝐶𝑛 cos
𝑛𝜋𝑐𝑡
𝐿 + 𝐷𝑛 sin

𝑛𝜋𝑐𝑡
𝐿 )

2𝑛2𝜋2
𝐿2 cos2 𝑛𝜋𝑥𝐿 ] d𝑥

= 1
4𝜇

∞
∑
𝑛=1

𝑛2𝜋2𝑐2
𝐿 (𝐶2

𝑛 + 𝐷2
𝑛)
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which is an analogous result to Parseval’s theorem. This is true since

∫ cos2 𝑛𝜋𝑥𝐿 d𝑥 = 1
2

and cos2+ sin2 = 1. We can think of this energy as the sum over all the normal modes of
the energy in that specific mode. Note that this quantity is constant over time.

3.6. Wave reflection and transmission
The travelling wave has left-moving and right-moving modes. A simple harmonic travelling
wave is

𝑦 = Re [𝐴𝑒𝑖𝜔(𝑡−𝑥/𝑐)] = 𝐴 cos [𝜔(𝑡 − 𝑥/𝑐) + 𝜙]
where the phase 𝜙 is equal to arg𝐴, and the wavelength 𝜆 is 2𝜋𝑐/𝜔. In further discussion,
we assume only the real part is used. Consider a density discontinuity on the string at 𝑥 = 0
with the following properties.

𝜇 = {𝜇− for 𝑥 < 0
𝜇+ for 𝑥 > 0

⟹ 𝑐 =
⎧⎪
⎨⎪
⎩

𝑐− =√
𝑇
𝜇−

for 𝑥 < 0

𝑐+ =√
𝑇
𝜇+

for 𝑥 > 0

assuming a constant tension 𝑇. As a wave from the negative direction approaches the dis-
continuity, some of the wave will be reflected, given by 𝐵𝑒𝑖𝜔(𝑡+𝑥/𝑐−), and some of the wave
will be transmitted, given by 𝐷𝑒𝑖𝜔(𝑡−𝑥/𝑐+). The boundary conditions at 𝑥 = 0 are
(i) 𝑦 is continuous for all 𝑡 (the string does not break), so

𝐴 + 𝐵 = 𝐷 (∗)

(ii) The forces balance, 𝑇 𝜕𝑦
𝜕𝑥
||𝑥=0− = 𝑇 𝜕𝑦

𝜕𝑥
||𝑥=0+ which means

𝜕𝑦
𝜕𝑥

must be continuous for
all 𝑡. This gives

−𝑖𝜔𝐴
𝑐−

+ 𝑖𝜔𝐵
𝑐−

= −𝑖𝜔𝐷
𝑐+

(†)

We can eliminate 𝐵 from (∗) by subtracting 𝑐−
𝑖𝜔
(†).

2𝐴 = 𝐷 + 𝐷𝑐−𝑐+
= 𝐷
𝑐+
(𝑐+ + 𝑐−)

Hence, given 𝐴, we have the solution for the transmitted amplitude and reflected amplitude
to be

𝐷 = 2𝑐+
𝑐− + 𝑐+

𝐴; 𝐵 = 𝑐+ − 𝑐−
𝑐− + 𝑐+

In general 𝐴, 𝐵, 𝐷 are complex, hence different phase shifts are possible.

There are a number of limiting cases, for example
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(i) If 𝑐− = 𝑐+ we have 𝐷 = 𝐴 and 𝐵 = 0 so we have full transmission and no reflection.
(ii) (Dirichlet boundary conditions) If 𝜇+

𝜇−
→ ∞, this models a fixed end at 𝑥 = 0. We

have 𝑐+
𝑐−

→ 0 giving 𝐷 = 0 and 𝐵 = −𝐴. Notice that the reflection has occurred with
opposite phase, 𝜙 = 𝜋.

(iii) (Neumann boundary conditions) Consider 𝜇+
𝜇−

→ 0, this models a free end. Then
𝑐+
𝑐−
→∞ giving 𝐷 = 2𝐴, 𝐵 = 𝐴. This gives total reflection but with the same phase.

3.7. Wave equation in plane polar coordinates
Consider the two-dimensional wave equation for 𝑢(𝑟, 𝜃, 𝑡) given by

1
𝑐2
𝜕2𝑢
𝜕𝑡2 = ∇2𝑢

with boundary conditions at 𝑟 = 1 on a unit disc given by
𝑢(1, 𝜃, 𝑡) = 0

and initial conditions for 𝑡 = 0 given by

𝑢(𝑟, 𝜃, 0) = 𝜙(𝑟, 𝜃); 𝜕𝑢
𝜕𝑡 = 𝜓(𝑟, 𝜃)

Suppose that this equation is separable. First, let us consider temporal separation. Suppose
that

𝑢(𝑟, 𝜃, 𝑡) = 𝑇(𝑡)𝑉(𝑟, 𝜃)
Then we have

̈𝑇 + 𝜆𝑐2𝑇 = 0; ∇2𝑉 + 𝜆𝑉 = 0
In plane polar coordinates, we can write the spatial equation as

𝜕2𝑉
𝜕𝑟2 + 1

𝑟
𝜕𝑉
𝜕𝑟 + 1

𝑟2
𝜕2𝑉
𝜕𝜃2 + 𝜆𝑉 = 0

We will perform another separation, supposing

𝑉(𝑟, 𝜃) = 𝑅(𝑟)Θ(𝜃)
to give

Θ″ + 𝜇Θ = 0; 𝑟2𝑅″ + 𝑟𝑅′ + (𝜆𝑟2 − 𝜇)𝑅 = 0
where 𝜆, 𝜇 are the separation constants. The polar solution is constrained by periodicity
Θ(0) = Θ(2𝜋), since we are working on a disc. We also consider only 𝜇 > 0. The eigenvalue
is then given by 𝜇 = 𝑚2, where𝑚 ∈ ℕ.

Θ𝑚(𝜃) = 𝐴𝑚 cos𝑚𝜃 + 𝐵𝑚 sin𝑚𝜃
Or, in complex exponential form,

Θ𝑚(𝜃) = 𝐶𝑚𝑒𝑖𝑚𝜃; 𝑚 ∈ ℤ
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3.8. Bessel’s equation
We can solve the radial equation (in the previous subsection) by converting it first into
Sturm–Liouville form, which can be accomplished by dividing by 𝑟.

d
d𝑟(𝑟𝑅

′) − 𝑚2

𝑟 = −𝜆𝑟𝑅

where 𝑝(𝑟) = 𝑟, 𝑞(𝑟) = 𝑚2

𝑟
, 𝑤(𝑟) = 𝑟, with self-adjoint boundary conditions with 𝑅(1) = 0.

We will require 𝑅 is bounded at 𝑅(0), and since 𝑝(0) = 0 there is a regular singular point at
𝑟 = 0. This particular equation for 𝑅 is known as Bessel’s equation. We will first substitute
𝑧 ≡ √𝜆𝑟, then we find the usual form of Bessel’s equation,

𝑧2d
2𝑅
d𝑧2 + 𝑧d𝑅d𝑧 + (𝑧2 −𝑚2)𝑅 = 0

We can use the method of Frobenius by substituting the following power series:

𝑅 = 𝑧𝑝
∞
∑
𝑛=0

𝑎𝑛𝑧𝑛

to find
∞
∑
𝑛=0

[𝑎𝑛(𝑛 + 𝑝)(𝑛 + 𝑝 − 1)𝑧𝑛+𝑝 + (𝑛 + 𝑝)𝑧𝑛+𝑝 + 𝑧𝑛+𝑝+2 +𝑚2𝑧𝑛+𝑝] = 0

Equating powers of 𝑧, we can find the indicial equation

𝑝2 −𝑚2 = 0 ⟹ 𝑝 = 𝑚,−𝑚

The regular solution, given by 𝑝 = 𝑚, has recursion relation

(𝑛 + 𝑚)2𝑎𝑛 + 𝑎𝑛−2 −𝑚2𝑎𝑛 = 0

which gives
𝑎𝑛 =

−1
𝑛(𝑛 + 2𝑚)𝑎𝑛−2

Hence, we can find

𝑎2𝑛 = 𝑎0
(−1)𝑛

22𝑛𝑛!(𝑛 + 𝑚)(𝑛 + 𝑚 − 1)… (𝑚 + 1)
If, by convention, we let

𝑎0 =
1

2𝑚𝑚!
we can then write the Bessel function of the first kind by

𝐽𝑚(𝑧) = (𝑧2)
𝑚 ∞
∑
𝑛=0

(−1)𝑛
𝑛!(𝑛 + 𝑚)!(

𝑧
2)

2𝑛
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3.9. Asymptotic behaviour of Bessel functions
If 𝑧 is small, the leading-order behaviour of 𝐽𝑚(𝑧) is

𝐽0(𝑧) ≈ 1

𝐽𝑚(𝑧) ≈
1
𝑚!(

𝑧
2)

𝑚

Now, let us consider large 𝑧. In this case, the function becomes oscillatory;

𝐽𝑚(𝑧) ≈ √
2
𝜋𝑧 cos(𝑧 −

𝑚𝜋
2 − 𝜋

4 )

3.10. Zeroes of Bessel functions
We can see from the asymptotic behaviour that there are infinitely many zeroes of the Bessel
functions of the first kind as 𝑧 → ∞. We define 𝑗𝑚𝑛 to be the 𝑛th zero of 𝐽𝑚, for 𝑧 > 0.
Approximately,

cos(𝑧 − 𝑚𝜋
2 − 𝜋

4 ) = 0 ⟹ 𝑧 − 𝑚𝜋
2 − 𝜋

4 = 𝑛𝜋 − 𝜋
2

Hence
𝑧 ≈ 𝑛𝜋 + 𝑚𝜋

2 − 𝜋
4 ≡ ̃𝑗𝑚𝑛

3.11. Solving the vibrating drum
Recall that the radial solutions become

𝑅𝑚(𝑧) = 𝑅𝑚(√𝜆𝑥) = 𝐴𝐽𝑚(√𝜆𝑥) + 𝐵𝑌𝑚(√𝜆𝑥)
Imposing the boundary condition of boundedness at 𝑟 = 0, we must have 𝐵 = 0. Further
imposing 𝑟 = 1 and 𝑅 = 0 gives 𝐽𝑚(√𝜆) = 0. These zeroes occur at 𝑗𝑚𝑛 ≈ 𝑛𝜋 + 𝑚𝜋

2
− 𝜋

4
.

Hence, the eigenvalues must be 𝑗2𝑚𝑛. Therefore, the spatial solution is

𝑉𝑚𝑛(𝑟, 𝜃) = Θ𝑚(𝜃)𝑅𝑚𝑛(√𝜆𝑚𝑛𝑟) = (𝐴𝑚𝑛 cos𝑚𝜃 + 𝐵𝑚𝑛 sin𝑚𝜃)𝐽𝑚(𝑗𝑚𝑛𝑟)
The temporal solution is

̈𝑇 = −𝜆𝑐𝑇 ⟹ 𝑇𝑚𝑛(𝑡) = cos(𝑗𝑚𝑛𝑐𝑡), sin(𝑗𝑚𝑛𝑐𝑡)
Combining everything together, the full solution is

𝑢(𝑟, 𝜃, 𝑡) =
∞
∑
𝑛=1

𝐽0(𝑗0𝑛𝑟)(𝐴0𝑛 cos 𝑗0𝑛𝑐𝑡 + 𝐶0𝑛 sin 𝑗0𝑛𝑐𝑡)

+
∞
∑
𝑚=1

∞
∑
𝑛=1

𝐽𝑚(𝑗𝑚𝑛𝑟)(𝐴𝑚𝑛 cos𝑚𝜃 + 𝐵𝑚𝑛 sin𝑚𝜃) cos 𝑗𝑚𝑛𝑐𝑡

+
∞
∑
𝑚=1

∞
∑
𝑛=1

𝐽𝑚(𝑗𝑚𝑛𝑟)(𝐶𝑚𝑛 cos𝑚𝜃 + 𝐷𝑚𝑛 sin𝑚𝜃) sin 𝑗𝑚𝑛𝑐𝑡
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Now, we impose the boundary conditions

𝑢(𝑟, 𝜃, 0) = 𝜙(𝑟, 𝜃) =
∞
∑
𝑚=0

∞
∑
𝑛=1

𝐽𝑚(𝑗𝑚𝑛𝑟)(𝐴𝑚𝑛 cos𝑚𝜃 + 𝐵𝑚𝑛 sin𝑚𝜃)

and
𝜕𝑢
𝜕𝑡 (𝑟, 𝜃, 0) = 𝜓(𝑟, 𝜃) =

∞
∑
𝑚=0

∞
∑
𝑛=1

𝑗𝑚𝑛𝑐𝐽𝑚(𝑗𝑚𝑛𝑟)(𝐶𝑚𝑛 cos𝑚𝜃 + 𝐷𝑚𝑛 sin𝑚𝜃)

We need to find the coefficients by multiplying by 𝐽𝑚, cos, sin and using the orthogonality
relations, which are

∫
1

0
𝐽𝑚(𝑗𝑚𝑛𝑟)𝐽𝑚(𝑗𝑚𝑘𝑟)𝑟 d𝑟 =

1
2[𝐽

′
𝑚(𝑗𝑚𝑛)]

2𝛿𝑛𝑘 =
1
2[𝐽𝑚+1(𝑗𝑚𝑛)]

2𝛿𝑛𝑘

by using a recursion relation of the Bessel functions. We can then integrate to obtain the
coefficients 𝐴𝑚𝑛.

∫
2𝜋

0
d𝜃 cos𝑝𝜃∫

1

0
𝑟 d𝑟 𝐽𝑝(𝑗𝑝𝑞𝑟)𝜙(𝑟, 𝜃) =

𝜋
2 [𝐽𝑝+1(𝑗𝑝𝑞)]

2𝐴𝑝𝑞

where the 𝜋
2
coefficient is 2𝜋 for𝑝 = 0. We can find analogous results for the𝐵𝑚𝑛, 𝐶𝑚𝑛, 𝐷𝑚𝑛.

Example. Consider an initial radial profile 𝑢(𝑟, 𝜃, 0) = 𝜙(𝑟) = 1−𝑟2. Then,𝑚 = 0, 𝐵𝑚𝑛 = 0
for all𝑚 and 𝐴𝑚𝑛 = 0 for all𝑚 ≠ 0. Then

𝜕𝑢
𝜕𝑡 (𝑟, 0, 0) = 0

hence 𝐶𝑚𝑛, 𝐷𝑚𝑛 = 0. We just now need to find

𝐴0𝑛 =
2

𝐽0(𝑗0𝑛)2
∫

1

0
𝐽0(𝑗0𝑛𝑟)(1 − 𝑟)2𝑟 d𝑟 = 2

𝐽0(𝑗0𝑛)2
𝐽2(𝑗0𝑛)
𝑗20𝑛

≈ 𝐽2(𝑗0𝑛)
𝑛 as 𝑛 → ∞

Then the approximate solution is

𝑢(𝑟, 𝜃, 𝑡) =
∞
∑
𝑛=1

𝐴0𝑛𝐽0(𝑗0𝑛𝑟) cos 𝑗0𝑛𝑐𝑡

The fundamental frequency is 𝜔𝑑 = 𝑗01𝑐
2
𝑑
≈ 4.8 𝑐

𝑑
where 𝑑 is the diameter of the drum.

Comparing this to a string with length 𝑑, this has a fundamental frequency of 𝜔𝑠 =
𝜋𝑐
𝑑
≈

0.77𝜔𝑑.
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3.12. Diffusion equation derivation with Fourier’s law
In a volume 𝑉 , the overall heat energy 𝑄 is given by

𝑄 = ∫
𝑉
𝑐𝑉𝜌𝜃 d𝑉

where 𝑐𝑉 is the specific heat of the material, 𝜌 is the mass density, and 𝜃 is the temperature.
The rate of change due to heat flow is

d𝑄
d𝑡 = ∫

𝑉
𝑐𝑉𝜌

𝜕𝜃
𝜕𝑡 d𝑉

Fourier’s law for heat flow is
𝑞 = −𝑘∇𝜃

where 𝑞 is the heat flux. We will integrate this over the surface 𝑆 = 𝜕𝑉 , giving

−d𝑄d𝑡 = ∫
𝑆
𝑞 ⋅ ̂𝑛 d𝑆

The negative sign is due to the normals facing outwards. This is exactly

−d𝑄d𝑡 = ∫
𝑆
(−𝑘∇𝜃) ⋅ ̂𝑛 d𝑆 = ∫

𝑉
−𝑘∇2𝜃 d𝑉

Equating these two forms for d𝑄
d𝑡
, we find

∫
𝑉
(𝑐𝑉𝜌

𝜕𝜃
𝜕𝑡 − 𝑘∇2𝜃) d𝑉 = 0

Since 𝑉 was arbitrary, the integrand must be zero. So we have

𝜕𝜃
𝜕𝑡 −

𝑘
𝑐𝑉𝜌

∇2𝜃 = 0

Let 𝐷 = 𝑘
𝑐𝑉𝜌

be the diffusion constant. Then we have the diffusion equation

𝜕𝜃
𝜕𝑡 − 𝐷∇2𝜃 = 0

3.13. Diffusion equation derivation with statistical dynamics
We can derive this equation in another way, using statistical dynamics. Gas particles diffuse
by scattering every fixed time step Δ𝑡 with probability density function 𝑝(𝜉) of moving by a
displacement 𝜉. On average, we have

⟨𝜉⟩ = ∫𝑝(𝜉)𝜉 d𝜉 = 0

248



3. Separation of variables

since there is no bias the direction in which any given particle is travelling. Suppose that the
probability density function after 𝑁Δ𝑡 time is described by 𝑃𝑁Δ𝑡(𝑥). Then, for the next time
step,

𝑃(𝑁+1)Δ𝑡(𝑥) = ∫
∞

−∞
𝑝(𝜉)𝑃𝑁Δ𝑡(𝑥 − 𝜉) d𝜉

Using the Taylor expansion,

𝑃(𝑁+1)Δ𝑡(𝑥) ≈ ∫
∞

−∞
𝑝(𝜉)[𝑃𝑁Δ𝑡(𝑥) + 𝑃′𝑁Δ𝑡(𝑥)(−𝜉) + 𝑃″𝑁Δ𝑡(𝑥)

𝜉2
2 +⋯] d𝜉

≈ 𝑃𝑁Δ𝑡(𝑥) − 𝑃′𝑁Δ𝑡(𝑥) ⟨𝜉⟩ + 𝑃″𝑁Δ𝑡(𝑥)
⟨𝜉2⟩
2 +⋯

≈ 𝑃𝑁Δ𝑡(𝑥) + 𝑃″𝑁Δ𝑡(𝑥)
⟨𝜉2⟩
2 +⋯

since ∫𝑝(𝜉) d𝜉 = 1. Identifying 𝑃𝑁Δ𝑡(𝑥) = 𝑃(𝑥, 𝑁Δ𝑡), we can write

𝑃(𝑥, (𝑁 + 1)Δ𝑡) − 𝑃(𝑥, 𝑁Δ𝑡) = 𝜕2
𝜕𝑥2𝑃(𝑥, 𝑁Δ𝑡)

⟨𝜉2⟩
2

Assuming that the variance ⟨𝜉2⟩
2
is proportional to 𝐷Δ𝑡, then for small Δ𝑡, we find

𝜕𝑃
𝜕𝑡 = 𝐷𝜕

2𝑃
𝜕𝑥2

which is exactly the diffusion equation.

3.14. Similarity solutions
The characteristic relation between the variance and time suggests that we seek solutions
with a dimensionless parameter. If we can a change of variables of the form 𝜃(𝜂) = 𝜃(𝑥, 𝑡),
then it will likely be easier to solve. Consider

𝜂 ≡ 𝑥
2√𝐷𝑡

Then,
𝜕𝜃
𝜕𝑡 =

𝜕𝜂
𝜕𝑡
𝜕𝜃
𝜕𝜂 = −1

2
𝑥

√𝐷𝑡3/2
𝜃′ = −1

2
𝜂
𝑡 𝜃

′

and
𝐷𝜕

2𝜃
𝜕𝑥2 = 𝐷 𝜕

𝜕𝑥(
𝜕𝜂
𝜕𝑥

𝜕𝜃
𝜕𝜂) = 𝐷 𝜕

𝜕𝑥(
1

2√𝐷𝑡
𝜃′) = 𝐷

4𝐷𝑡𝜃
″ = 1

4𝑡𝜃
″

Substituting into the diffusion equation,

𝜃″ = −2𝜂𝜃′
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Let 𝜓 = 𝜃′. Then
𝜓′
𝜓 = −2𝜂 ⟹ ln𝜓 = −𝜂2 + constant

Then, choosing a constant of 𝑐 2
√𝜋
,

𝜓 = 𝑐 2
√𝜋

𝑒−𝜂2 ⟹ 𝜃(𝜂) = 𝑐 2
√𝜋

∫
𝜂

0
𝑒−𝑢2 d𝑢 = 𝑐 erf(𝜂) = 𝑐 erf( 𝑥

2√𝐷𝑡
)

where
erf(𝑧) = 2

√𝜋
∫

𝑧

0
𝑒−𝑢2 d𝑢

This describes discontinuous initial conditions that spread over time.

3.15. Heat conduction in a finite bar
Suppose we have a bar of length 2𝐿 with −𝐿 ≤ 𝑥 ≤ 𝐿 and initial temperature

𝜃(𝑥, 0) = 𝐻(𝑥) = {1 if 0 ≤ 𝑥 ≤ 𝐿
0 if − 𝐿 ≤ 𝑥 < 0

with boundary conditions 𝜃(𝐿, 𝑡) = 1, 𝜃(−𝐿, 𝑡) = 0. Currently the boundary conditions are
not homogeneous, so Sturm–Liouville theory cannot be used directly. If we can identify
a steady-state solution (time-independent) that reflects the late-time behaviour, then we
can turn it into a homogeneous set of boundary conditions. We will try a solution of the
form

𝜃𝑠(𝑥) = 𝐴𝑥 + 𝐵
since this certainly satisfies the diffusion equation. To satisfy the boundary conditions,

𝐴 = 1
2𝐿; 𝐵 = 1

2
Hence we have a solution

𝜃𝑠 =
𝑥 + 𝐿
2𝐿

We will subtract this solution from our original equation for 𝜃, giving

̂𝜃(𝑥, 𝑡) = 𝜃(𝑥, 𝑡) − 𝜃𝑠(𝑥)

with homogeneous boundary conditions

̂𝜃(−𝐿, 𝑡) = ̂𝜃(𝐿, 𝑡) = 0

and initial conditions
𝜃(𝑥, 0) = 𝐻(𝑥) − 𝑥 + 𝐿

2𝐿
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We will now separate variables in the usual way. We will consider the ansatz

̂𝜃(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡) ⟹ 𝑋″ = −𝜆𝑋; ̇𝑇 = −𝐷𝜆𝑇

The boundary conditions imply 𝜆 > 0 and give the Fourier modes 𝑋(𝑥) = 𝐴 cos√𝜆𝑥 +
𝐵 sin√𝜆𝑥. For cos√𝜆𝐿 = 0, we require √𝜆𝑚 = 𝑚𝜋

2𝐿
for 𝑚 odd. Also, sin√𝜆𝐿 = 0 gives

√𝜆𝑛 =
𝑛𝜋
𝐿
for 𝑛 even. Since ̂𝜃 is odd due to our initial conditions, we can take

𝑋𝑛 = 𝐵𝑛 sin
𝑛𝜋𝑥
𝐿 ; 𝜆𝑛 =

𝑛2𝜋2
𝐿2

Substituting into ̇𝑇 = −𝐷𝜆𝑇, we have

𝑇𝑛(𝑡) = 𝑐𝑛 exp(−
𝐷𝑛2𝜋2
𝐿2 𝑡)

In general, the solution is

̂𝜃(𝑥, 𝑡) =
∞
∑
𝑛=1

𝑏𝑛 sin
𝑛𝜋𝑥
𝐿 exp(−𝐷𝑛

2𝜋2
𝐿2 𝑡)

3.16. Particular solution to diffusion equation
Recall that

̂𝜃(𝑥, 𝑡) =
∞
∑
𝑛=1

𝑏𝑛 sin
𝑛𝜋𝑥
𝐿 exp(−𝐷𝑛

2𝜋2
𝐿2 𝑡)

At 𝑡 = 0, we have a pure Fourier sine series. We can then impose the initial conditions, to
give

𝑏𝑛 =
1
𝐿 ∫

𝐿

−𝐿
̂𝜙(𝑥, 0) sin 𝑛𝜋𝑥𝐿 d𝑥

where
̂𝜙(𝑥, 0) = 𝐻(𝑥) − 𝑥 + 𝐿

2𝐿
Hence, we can use the half-range sine series and find

𝑏𝑛 =
2
𝐿 ∫

𝐿

0
(𝐻(𝑥) = 1

2) sin
𝑛𝜋𝑥
𝐿 d𝑥

⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟
square wave/2

− 2
𝐿
𝑥
2𝐿 sin

𝑛𝜋𝑥
𝐿 d𝑥⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

sawtooth/2𝐿

which gives

𝑏𝑛 =
2

(2𝑚 − 1)𝜋 − (−1)𝑛+1
𝑛𝜋
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where 𝑛 = 2𝑚 − 1, and the first term vanishes for 𝑛 even. For 𝑛 odd or even, we find the
same result

𝑏𝑛 =
1
𝑛𝜋

Hence
̂𝜃(𝑥, 𝑡) =

∞
∑
𝑛=1

1
𝑛𝜋 sin 𝑛𝜋𝑥𝐿 𝑒−𝐷

𝑛2𝜋2
𝐿2 𝑡

For the inhomogeneous boundary conditions,

𝜃(𝑥, 𝑡) = 𝑥 + 𝐿
2𝐿 +

∞
∑
𝑛=1

1
𝑛𝜋 sin 𝑛𝜋𝑥𝐿 𝑒−𝐷

𝑛2𝜋2
𝐿2 𝑡

The similarity solution 1
2
(1 + erf( 𝑥

2√𝐷𝑡
)) is a good fit for early 𝑡, but it does not necessarily

satisfy the boundary conditions, so for large 𝑡 it is a bad approximation.

3.17. Laplace’s equation
Laplace’s equation is

∇2𝜙 = 0
This equation describes (among others) steady-state heat flow, potential theory 𝐹 = −∇𝜙,
and incompressible fluid flow 𝑣 = ∇𝜙. The equation is solved typically on a domain 𝐷,
where boundary conditions are specified often on the boundary surface. TheDirichlet bound-
ary conditions fix 𝜙 on the boundary surface 𝜕𝐷. The Neumann boundary conditions fix
̂𝑛 ⋅ ∇𝜙 on 𝜕𝐷.

3.18. Laplace’s equation in three-dimensional Cartesian coordinates
In ℝ3 with Cartesian coordinates, Laplace’s equation becomes

𝜕2𝜙
𝜕𝑥2 +

𝜕2𝜙
𝜕𝑦2 +

𝜕2𝜙
𝜕𝑧2 = 0

We seek separable solutions in the usual way:

𝜙(𝑥, 𝑦, 𝑧) = 𝑋(𝑥)𝑌(𝑦)𝑍(𝑧)
Substituting,

𝑋″𝑌𝑍 + 𝑋𝑌″𝑍 + 𝑋𝑌𝑍″ = 0
Dividing by 𝑋𝑌𝑍 as usual,

𝑋″

𝑋 = −𝑌″

𝑌 − 𝑍″
𝑍 = −𝜆ℓ

𝑌″

𝑌 = −𝑍″
𝑍 − 𝑋″

𝑋 = −𝜆𝑚
𝑍″
𝑍 = −𝑋″

𝑋 − 𝑌″

𝑌 = −𝜆𝑛 = 𝜆ℓ + 𝜆𝑚
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From the eigenmodes, our general solution will be of the form

𝜙(𝑥, 𝑦, 𝑧) = ∑
ℓ,𝑚,𝑛

𝑎ℓ𝑚𝑛𝑋ℓ(𝑥)𝑌𝑚(𝑦)𝑍𝑛(𝑧)

Consider steady (𝜕𝜙
𝜕𝑡

= 0) heat flow in a semi-infinite rectangular bar, with boundary con-
ditions 𝜙 = 0 at 𝑥 = 0, 𝑥 = 𝑎, 𝑦 = 0 and 𝑦 = 𝑏; and 𝜙 = 1 at 𝑧 = 0 and 𝜙 → 0 as
𝑧 → ∞. We will solve for each eigenmode successively. First, consider 𝑋″ = −𝜆ℓ𝑋 with
𝑋(0) = 𝑋(𝑎) = 0. This gives

𝜆ℓ =
𝑙2𝜋2
𝑎2 ; 𝑋ℓ = sin ℓ𝜋𝑥𝑎

where ℓ > 0, ℓ ∈ ℕ. By symmetry,

𝜆𝑚 = 𝑚2𝜋2
𝑏2 ; 𝑌𝑚 = sin 𝑚𝜋𝑦𝑏

For the 𝑧mode,
𝑍″ = −𝜆𝑛𝑍 = (𝜆ℓ + 𝜆𝑚)𝑍 = 𝜋2(ℓ

2

𝑎2 +
𝑚2

𝑏2 )𝑍

Since 𝜙 → 0 as 𝑧 → ∞, the growing exponentials must vanish. Therefore,

𝑍ℓ𝑚 = exp[−(ℓ
2

𝑎2 +
𝑚2

𝑏2 )
1/2
𝜋𝑧]

Thus the general solution is

𝜙(𝑥, 𝑦, 𝑧) = ∑
ℓ,𝑚

𝑎ℓ𝑚 sin ℓ𝜋𝑥𝑎 sin 𝑚𝜋𝑦𝑏 exp[−(ℓ
2

𝑎2 +
𝑚2

𝑏2 )
1/2
𝜋𝑧]

Now, we will fix 𝑎ℓ𝑚 using 𝜙(𝑥, 𝑦, 0) = 1 using the Fourier sine series.

𝑎ℓ𝑚 = 2
𝑏 ∫

𝑏

0

2
𝑎 ∫

𝑎

0
1 sin ℓ𝜋𝑥𝑎⏟⎵⎵⏟⎵⎵⏟
square wave

sin 𝑚𝜋𝑦𝑏⏟⎵⏟⎵⏟
square wave

d𝑥 d𝑦

So only the odd terms remain, giving

𝑎ℓ𝑚 = 4𝑎
𝑎(2𝑘 − 1)𝜋 ⋅ 4𝑏

𝑏(2𝑝 − 1)𝜋
where ℓ = 2𝑘 − 1 is odd and𝑚 = 2𝑝 − 1 is odd. Simplifying,

𝑎ℓ𝑚 = 16
𝜋2ℓ𝑚 for ℓ,𝑚 odd

So the heat flow solution is

𝜙(𝑥, 𝑦, 𝑧) = ∑
ℓ,𝑚 odd

16
𝜋2ℓ𝑚 sin ℓ𝜋𝑥𝑎 sin ℓ𝜋𝑦𝑏 exp[−(ℓ

2

𝑎2 +
𝑚2

𝑏2 )
1/2
𝜋𝑧]

As 𝑧 increases, every contribution but the lowest mode will be very small. So low ℓ,𝑚 dom-
inate the solution.
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3.19. Laplace’s equation in plane polar coordinates
In plane polar coordinates, Laplace’s equation becomes

1
𝑟
𝜕
𝜕𝑟(𝑟

𝜕𝜙
𝜕𝑟 ) +

1
𝑟2
𝜕2𝜙
𝜕𝜃2 = 0

Consider a separable form of the answer, given by

𝜙(𝑟, 𝜃) = 𝑅(𝑟)Θ(𝜃)

We then have
Θ″ + 𝜇Θ = 0; 𝑟(𝑟𝑅′)′ − 𝜇𝑅 = 0

The polar equation can be solved easily by considering periodic boundary conditions. This
gives 𝜇 = 𝑚2 and the eigenmodes

Θ𝑚(𝜃) = cos𝑚𝜃, sin𝑚𝜃

The radial equation is not Bessel’s equation, since there is no second separation constant.
We simply have

𝑟(𝑟𝑅′)′ −𝑚2𝑅 = 0
We will try a power law solution, 𝑟 = 𝛼𝑟𝛽. We find

𝛽2 −𝑚2 = 0 ⟹ 𝛽 = ±𝑚

So the eigenfunctions are
𝑅𝑚(𝑟) = 𝑟𝑚, 𝑟−𝑚

which is one regular solution at the origin and one singular solution. In the case𝑚 = 0, we
have

(𝑟𝑅′) = 0 ⟹ 𝑟𝑅′ = constant ⟹ 𝑅 = log 𝑟
So

𝑅0(𝑟) = constant, log 𝑟
The general solution is therefore

𝜙(𝑟, 𝜃) = 𝑎0
2 + 𝑐0 log 𝑟 +

∞
∑
𝑚=1

(𝑎𝑚 cos𝑚𝜃 + 𝑏𝑚 sin𝑚𝜃)𝑟𝑚 +
∞
∑
𝑚=1

(𝑐𝑚 cos𝑚𝜃 + 𝑑𝑚 sin𝑚𝜃)𝑟−𝑚

Example. Consider a soap film on a unit disc. We wish to solve Laplace’s equation with a
vertically distorted circular wire of radius 𝑟 = 1 with boundary conditions 𝜙(1, 𝜃) = 𝑓(𝜃).
The 𝑧 displacement of the wire produces the 𝑓(𝜃) term. We wish to find 𝜙(𝑟, 𝜃) for 𝑟 < 1,
assuming regularity at 𝑟 = 0. Then, 𝑐𝑚 = 𝑑𝑚 = 0 and the solution is of the form

𝜙(𝑟, 𝜃) = 𝑎0
2 +

∞
∑
𝑚=1

(𝑎𝑚 cos𝑚𝜃 + 𝑏𝑚 sin𝑚𝜃)𝑟𝑚
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At 𝑟 = 1,

𝜙(1, 𝜃) = 𝑓(𝜃) = 𝑎0
2 +

∞
∑
𝑚=1

(𝑎𝑚 cos𝑚𝜃 + 𝑏𝑚 sin𝑚𝜃)

which is exactly the Fourier series. Thus,

𝑎𝑚 = 1
𝜋 ∫

2𝜋

0
𝑓(𝜃) cos𝑚𝜃 d𝜃 ; 𝑏𝑚 = 1

𝜋 ∫
2𝜋

0
𝑓(𝜃) sin𝑚𝜃 d𝜃

We can see from the equation that high harmonics are confined to have effects only near
𝑟 = 1.

3.20. Laplace’s equation in cylindrical polar coordinates
In cylindrical coordinates,

1
𝑟
𝜕
𝜕𝑟(𝑟

𝜕𝜙
𝜕𝑟 ) +

1
42
𝜕2𝜙
𝜕𝜃2 +

𝜕2𝜙
𝜕𝑧2 = 0

With 𝜙 = 𝑅(𝑟)Θ(𝜃)𝑍(𝑧), we find

Θ″ = −𝜇Θ; 𝑍″ = 𝜆𝑍; 𝑟(𝑟𝑅′)′ + (𝜆𝑟2 − 𝜇)𝑅 = 0

The polar equation can be easily solved by

𝜇𝑚 = 𝑚2; Θ𝑚(𝜃) = cos𝑚𝜃, sin𝑚𝜃

The radial equation is Bessel’s equation, giving solutions

𝑅 = 𝐽𝑚(𝑘𝑟), 𝑌𝑚(𝑘𝑟)

Setting boundary conditions in the usual way, defining 𝑅 = 0 at 𝑟 = 𝑎means that

𝐽𝑚(𝑘𝑎) = 0 ⟹ 𝑘 = 𝑗𝑚𝑛
𝑎

The radial solution is
𝑅𝑚𝑛(𝑟) = 𝐽𝑚(

𝑗𝑚𝑛
𝑎 𝑟)

We have eliminated the 𝑌𝑛 term since we require 𝑟 = 0 to give a finite 𝜙. Finally, the 𝑧
equation gives

𝑍″ = 𝑘2𝑍 ⟹ 𝑍 = 𝑒−𝑘𝑧, 𝑒𝑘𝑧

We typically eliminate the 𝑒𝑘𝑧 mode due to boundary conditions, such as 𝑍 → 0 as 𝑧 → ∞.
The general solution is therefore

𝜙(𝑟, 𝜃, 𝑧) =
∞
∑
𝑚=0

∞
∑
𝑛=1

(𝑎𝑚𝑛 cos𝑚𝜃 + 𝑏𝑚𝑛 sin𝑚𝜃)𝐽𝑚(
𝑗𝑚𝑛
𝑎 𝑟)𝑒−𝑓𝑟𝑎𝑐𝑗𝑚𝑛𝑟𝑎
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3.21. Laplace’s equation in spherical polar coordinates
In spherical polar coordinates,

1
𝑟2

𝜕
𝜕𝑟(𝑟

2 𝜕Φ
𝜕𝑟 ) +

1
𝑟2 sin 𝜃

𝜕
𝜕𝜃(sin 𝜃

𝜕Φ
𝜕𝜃 ) +

1
𝑟2 sin2 𝜃

𝜕2Φ
𝜕𝜙2 = 0

Wewill consider the axisymmetric case; supposing that there is no 𝜙 dependence. We seek a
separable solution of the form

Φ(𝑟, 𝜃) = 𝑅(𝑟)Θ(𝜃)
which gives

(sin 𝜃Θ′)′ + 𝜆 sin 𝜃Θ = 0; (𝑟2𝑅′)′ − 𝜆𝑅 = 0
Consider the substitution 𝑥 = cos 𝜃, d𝑥

d𝜃
= − sin 𝜃 in the polar equation. This gives dΘ

d𝜃
=

− sin 𝜃 dΘ
d𝑥

and hence

− sin 𝜃 d
d𝑥[− sin

2 𝜃dΘd𝑥 ] + 𝜆 sin 𝜃Θ = 0 ⟹ d
d𝑥[(1 − 𝑥2)dΘd𝑥 ] + 𝜆Θ = 0

This gives Legendre’s equation, so it has solutions of eigenvalues 𝜆ℓ = ℓ(ℓ + 1) and eigen-
functions

Θℓ(𝜃) = 𝑃ℓ(𝑥) = 𝑃ℓ(cos 𝜃)
The radial equation then gives

(𝑟2𝑅′)′ − ℓ(ℓ + 1)𝑅 = 0

We will seek power law solutions: 𝑅 = 𝛼𝑟𝛽. This gives

𝛽(𝛽 + 1) − ℓ(ℓ + 1) = 0 ⟹ 𝛽 = ℓ, 𝛽 = −ℓ − 1

Thus the radial eigenmodes are
𝑅ℓ = 𝑟ℓ, 𝑟−ℓ−1

Therefore the general axisymmetric solution for spherical polar coordinates is

Φ(𝑟, 𝜃) =
∞
∑
ℓ=0

(𝑎ℓ𝑟ℓ + 𝑏ℓ𝑟−ℓ−1)𝑃ℓ(cos 𝜃)

The 𝑎ℓ, 𝑏ℓ are determined by the boundary conditions. Orthogonality conditions for the 𝑃ℓ
can be used to determine coefficients. Consider a solution to Laplace’s equation on the unit
sphere with axisymmetric boundary conditions given by

Φ(1, 𝜃) = 𝑓(𝜃)

Given that we wish to find the interior solution, 𝑏𝑛 = 0 by regularity. Then,

𝑓(𝜃) =
∞
∑
ℓ=0

𝑎ℓ𝑃ℓ(cos 𝜃)
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By defining 𝑓(𝜃) = 𝐹(cos 𝜃),

𝐹(𝑥) =
∞
∑
ℓ=0

𝑎ℓ𝑃ℓ(𝑥)

We can then find the coefficients in the usual way, giving

𝑎ℓ =
2ℓ + 1
2 ∫

1

−1
𝐹(𝑥)𝑃ℓ(𝑥) d𝑥

3.22. Generating function for Legendre polynomials
Consider a charge at 𝑟0 = (𝑥, 𝑦, 𝑧) = (0, 0, 1). Then, the potential at a point 𝑃 becomes

Φ(𝑟) = 1
|𝑟 − 𝑟0|

= 1
(𝑥2 + 𝑦2 + (𝑥 − 1)2)1/2

= 1
(𝑟2(sin2 𝜙 + cos2 𝜙) sin2 𝜃 + 𝑟2 cos2 𝜃 − 2𝑟 cos 𝜃 + 1)1/2

= 1
(𝑟2 sin2 𝜃 + 𝑟2 cos2 𝜃 − 2𝑟 cos 𝜃 + 1)1/2

= 1
(𝑟2 − 2𝑟 cos 𝜃 + 1)1/2

= 1
(𝑟2 − 2𝑟𝑥 + 1)1/2

where 𝑥 ≡ cos 𝜃. This function Φ is a solution to Laplace’s equation where 𝑟 ≠ 𝑟0. Note that
we can represent any axisymmetric solution as a sum of Legendre polynomials. Now,

1
√𝑟2 − 2𝑟𝑥 + 1

=
∞
∑
ℓ=0

𝑎ℓ𝑃ℓ(𝑥)𝑟ℓ

With the normalisation condition for the Legendre polynomials 𝑃ℓ(1) = 1, we find

1
1 − 𝑟 =

∞
∑
ℓ=0

𝑎ℓ𝑟ℓ

Using the geometric series expansion, we arrive at 𝑎ℓ = 1. This gives

1
√𝑟2 − 2𝑟𝑥 + 1

=
∞
∑
ℓ=0

𝑃ℓ(𝑥)𝑟ℓ

which is the generating function for the Legendre polynomials.
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4. Green’s functions

4.1. Dirac 𝛿 function
Definition. We define a generalised function 𝛿(𝑥 − 𝜉) such that

(i) 𝛿(𝑥 − 𝜉) = 0 for all 𝑥 ≠ 𝜉;

(ii) ∫∞
−∞ 𝛿(𝑥 − 𝜉) d𝑥 = 1.

This acts as a linear operator∫ d𝑥 𝛿(𝑥−𝜉) on some function 𝑓(𝑥) to produce a number 𝑓(𝜉).

∫
∞

−∞
d𝑥 𝛿(𝑥 − 𝜉)𝑓(𝑥) = 𝑓(𝜉)

This relationship holds provided that 𝑓(𝑥) is sufficiently ‘well-behaved’ at 𝑥 = 𝜉 and 𝑥 →
±∞.

Remark. Strictly, the 𝛿 ‘function’ is classified as a distribution, not as a function. For this
reason, we will never use 𝛿 outside an integral, although such an integral may be implied.
The 𝛿 function represents a unit point source or impulse.

We can approximate the 𝛿 function using a Gaussian approximation.

𝛿𝜀(𝑥) =
1

𝜀√𝜋
exp[−𝑥

2

𝜀2 ]

Therefore,

∫
∞

−∞
𝑓(𝑥)𝛿(𝑥) d𝑥 = lim

𝜀→0
∫

∞

−∞

1
𝜀√𝜋

exp[−𝑥
2

𝜀2 ]𝑓(𝑥) d𝑥

= lim
𝜀→0

∫
∞

−∞

1
𝜀√𝜋

exp[−𝑦2]𝑓(𝜀𝑦) d𝑦

= lim
𝜀→0

∫
∞

−∞

1
𝜀√𝜋

exp[−𝑦2][𝑓(0) + 𝜀𝑦𝑓′(0) +⋯] d𝑦

= 𝑓(0)

for all well-behaved functions 𝑓 at 0, ±∞. We could alternatively use the Dirichlet ker-
nel

𝛿𝑛(𝑥) =
sin𝑛𝑥
𝜋𝑥 = 1

2𝜋 ∫
𝑛

−𝑛
𝑒𝑖𝑘𝑥 d𝑘

or even
𝛿𝑛(𝑥) =

𝑛
2 sech

2 𝑛𝑥
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4.2. Integral and derivative of 𝛿 function
We define the Heaviside step function by

𝐻(𝑥) = {1 𝑥 ≥ 0
0 𝑥 < 0

For 𝑥 ≠ 0, we have
𝐻(𝑥) = ∫

𝑥

−∞
𝛿(𝑡) d𝑡

Thus,
d
d𝑥𝐻(𝑥) = 𝛿(𝑥)

where this identification takes place under an implied integral. We define 𝛿′(𝑥) using integ-
ration by parts.

∫
∞

−∞
𝛿′(𝑥 − 𝜉)𝑓(𝑥) d𝑥 = [𝛿(𝑥 − 𝜉)𝑓(𝑥)]∞−∞ −∫

∞

−∞
𝛿(𝑥 − 𝜉)𝑓′(𝑥) d𝑥

= −∫
∞

−∞
𝛿(𝑥 − 𝜉)𝑓′(𝑥) d𝑥

= −𝑓′(𝜉)
This is valid for all 𝑓 that are smooth at 𝑥 = 𝜉.
Example. Consider the Gaussian approximation:

𝛿𝜀(𝑥) =
1

𝜀√𝜋
exp[−𝑥

2

𝜀2 ]

Then,
𝛿′𝜀(𝑥) =

−2𝑥
𝜀3√𝜋

exp[−𝑥
2

𝜀2 ]

4.3. Properties of 𝛿 function
Note that

∫
𝑏

𝑎
𝑓(𝑥)𝛿(𝑥 − 𝜉) d𝑥 = {𝑓(𝜉) 𝑎 < 𝜉 < 𝑏

0 otherwise
So the 𝛿 function only ‘samples’ values within the integral range. This is known as the
sampling property. Let 𝑢 = −(𝑥 − 𝜉), and consider

∫
∞

−∞
𝑓(𝑥)𝛿(−(𝑥 − 𝜉)) d𝑥 = ∫

−∞

∞
𝑓(𝜉 − 𝑢)𝛿(𝑢)(− d𝑢)

= ∫
∞

−∞
𝑓(𝜉 − 𝑢)𝛿(𝑢) d𝑢

= 𝑓(𝜉)

259



V. Methods

Hence,

∫
∞

−∞
𝑓(𝑥)𝛿(−(𝑥 − 𝜉)) d𝑥 = ∫

∞

−∞
𝑓(𝑥)𝛿(𝑥 − 𝜉) d𝑥

This is called the even property. Now, consider

∫
∞

−∞
𝑓(𝑥)𝛿(𝑎(𝑥 − 𝜉)) d𝑥 = 1

|𝑎|𝑓(𝜉)

This is the scaling property. Let 𝑔(𝑥) be a function with 𝑛 isolated roots at 𝑥1,… , 𝑥𝑛. Then,
assuming 𝑔′(𝑥) does not vanish at the 𝑥𝑖,

𝛿(𝑔(𝑥)) =
𝑛
∑
𝑖=1

𝛿(𝑥 − 𝑥𝑖)
|𝑔′(𝑥𝑖)|

This is a generalisation of the above, known as the advanced scaling property. Now, if 𝑔(𝑥) is
continuous at 𝑥 = 0, then 𝑔(𝑥)𝛿(𝑥) equivalent to 𝑔(0)𝛿(𝑥) inside an integral. This is known
as the isolation property.

4.4. Fourier series expansion of 𝛿 function
Consider a complex Fourier series expansion,

𝛿(𝑥) =
∞
∑

𝑛=−∞
𝑐𝑛𝑒𝑖𝑛𝜋𝑥/𝐿; 𝑐𝑛 =

1
2𝐿 ∫

𝐿

−𝐿
𝛿(𝑥)𝑒−𝑖𝑛𝜋𝑥/𝐿 d𝑥 = 1

2𝐿

Hence,

𝛿(𝑥) = 1
2𝐿

∞
∑

𝑛=−∞
𝑒𝑖𝑛𝜋𝑥/𝐿

Let 𝑓(𝑥) be a function, so 𝑓(𝑥) = ∑∞
𝑛=−∞ 𝑑𝑛𝑒𝑖𝑛𝜋𝑥/𝐿. Then, their inner product is given

by

∫
𝐿

−𝐿
𝑓⋆(𝑥)𝛿(𝑥) d𝑥 = 1

2𝐿
∞
∑

𝑛=−∞
𝑑𝑛∫

𝐿

−𝐿
𝑒𝑖𝑛𝜋𝑥/𝐿𝑒𝑖𝑛𝜋𝑥/𝐿 d𝑥 =

∞
∑

𝑛=−∞
𝑑𝑛 = 𝑓(0)

The Fourier expansion of the 𝛿 function can be extended periodically to the whole real line.
This infinite set of 𝛿 functions is known as the Dirac comb, given by

∞
∑

𝑚=−∞
𝛿(𝑥 − 2𝑚𝐿) =

∞
∑

𝑛=−∞
𝑒𝑖𝑛𝜋𝑥/𝐿
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4.5. Arbitrary eigenfunction expansion of 𝛿 function
In general, suppose

𝛿(𝑥 − 𝜉) =
∞
∑
𝑛=1

𝑎𝑛𝑦𝑛(𝑥)

with coefficients

𝑎𝑛 =
∫𝑏
𝑎 𝑤(𝑥)𝑦𝑛(𝑥)𝛿(𝑥 − 𝜉) d𝑥
∫𝑏
𝑎 𝑤(𝑥)𝑦𝑛(𝑥)2 d𝑥

= 𝑤(𝜉)𝑦𝑛(𝜉)
∫𝑏
𝑎 𝑤(𝑥)𝑦𝑛(𝑥)2 d𝑥

= 𝑤𝑛(𝜉)𝑌𝑛(𝜉)

Then,

𝛿(𝑥 − 𝜉) = 𝑤(𝜉)
∞
∑
𝑛=1

𝑌𝑛(𝜉)𝑌𝑛(𝑥) = 𝑤(𝑥)
∞
∑
𝑛=1

𝑌𝑛(𝜉)𝑌𝑛(𝑥)

since 𝑤(𝑥)
𝑤(𝜉)

𝛿(𝑥 − 𝜉) = 𝛿(𝑥 − 𝜉). Hence,

𝛿(𝑥 − 𝜉) = 𝑤(𝑥)
∞
∑
𝑛=1

𝑦𝑛(𝜉)𝑦𝑛(𝑥)
𝑁𝑛

where 𝑁𝑛 = ∫𝑏
𝑎 𝑤𝑦2𝑛 d𝑥 is a normalisation factor.

Example. Consider a Fourier series for 𝑦(0) = 𝑦(1) = 0, with 𝑦𝑛(𝑥) = sin𝑛𝜋𝑥. From the
sine series coefficient expression,

𝛿(𝑥 − 𝜉) = 2
∞
∑
𝑛=1

sin𝑛𝜋𝜉 sin𝑛𝜋𝑥

where 0 < 𝜉 < 1.

4.6. Motivation for Green’s functions
Consider amassive static stringwith tension𝑇 and linearmass density𝜇, suspendedbetween
fixed ends 𝑦(0) = 𝑦(1) = 0. By resolving forces, we have the time independent form

𝑇 d
2𝑦
d𝑥2 − 𝜇𝑔 = 0

Wewill solve the inhomogeneous ODE− d2𝑦
d𝑥2

= 𝑓(𝑥)with 𝑓(𝑥) = −𝜇𝑔
𝑇
. This has been placed

in Sturm–Liouville form. We can integrate directly and find

−𝑦 = −𝜇𝑔2𝑇 𝑥
2 + 𝑘1𝑥 + 𝑘2

Imposing boundary conditions,

𝑦(𝑥) = (−𝜇𝑔𝑇 ) ⋅ 12𝑥(1 − 𝑥)
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Consider alternatively a solution obtained by solving the equation for a single point mass
𝛿𝑚 = 𝜇𝛿𝑥 suspended at 𝑥 = 𝜉 on an very light string. We can then superimpose the solu-
tions for each point mass to find the overall solution. For a single point mass, the solu-
tion is given by two straight lines from (0, 0) and (1, 0) to the point mass (𝜉𝑖, 𝑦𝑖(𝜉𝑖)). The
angles of these straight lines from the horizontal are given by 𝜃1, 𝜃2. Resolving in the 𝑦 dir-
ection,

0 = 𝑇(sin 𝜃1 + sin 𝜃2) − 𝛿𝑚𝑔

= 𝑇(−𝑦𝑖𝜉𝑖
+ −𝑦𝑖
1 − 𝜉𝑖

) − 𝛿𝑚𝑔

∴ − 𝑇(𝑦𝑖(1 − 𝜉𝑖) + 𝑦𝑖𝜉𝑖) = 𝛿𝑚𝑔𝜉𝑖(1 − 𝜉𝑖)

∴ 𝑦𝑖(𝜉𝑖) =
−𝛿𝑚𝑔
𝑇 𝜉𝑖(1 − 𝜉𝑖)

So the solution is

𝑦𝑖(𝑥) =
−𝛿𝑚𝑔
𝑇 {𝑥(1 − 𝜉𝑖) 𝑥 < 𝜉𝑖

𝜉𝑖(1 − 𝑥) 𝑥 > 𝜉𝑖
which is the generalised sawtooth. This can alternatively be written

𝑓𝑖(𝜉)𝐺(𝑥, 𝜉)

where 𝑓𝑖 is a source term, and 𝐺(𝑥, 𝜉) is the Green’s function, the solution for a unit point
source. Since the differential equation is linear, we can sum the solutions, giving

𝑦(𝑥) =
𝑁
∑
𝑖=1

𝑓𝑖(𝜉)𝐺(𝑥, 𝜉𝑖)

Taking a continuum limit,

𝑓𝑖(𝜉) =
−𝛿𝑚𝑔
𝑇 = −𝜇𝛿𝑥𝑔

𝑇 ≡ 𝑓(𝑥) d𝑥 ⟹ 𝑓(𝑥) = −𝜇𝑔
𝑇

which gives

𝑦(𝑥) = ∫
1

0
𝑓(𝜉)𝐺(𝑥, 𝜉) d𝜉

Substituting the Green’s function,

𝑦(𝑥) = (−𝜇𝑔𝑇 )[∫
𝑥

0
𝜉(1 − 𝑥) d𝜉 +∫

1

𝑥
𝑥(1 − 𝜉) d𝜉]

= (−𝜇𝑔𝑇 ){[𝜉
2

2 (1 − 𝑥)]
𝑥

0
+ [𝑥(𝜉 − 𝜉2

2 )]
1

𝑥
}

= (−𝜇𝑔𝑇 )(𝑥
2

2 (1 − 𝑥) − 0 + 𝑥
2 − 𝑥(𝑥 − 𝑥2

2 ))

= (−𝜇𝑔𝑇 ) ⋅ 12𝑥(1 − 𝑥)
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So we have found the correct solution in two ways; once by direct integration, and once
by superimposing point solutions. In general, direct integration is not trivial, and Green’s
functions are useful in this case.

4.7. Definition of Green’s function
We wish to solve the inhomogeneous ODE

ℒ𝑦 ≡ 𝛼(𝑥)𝑦″ + 𝛽(𝑥)𝑦′ + 𝛾(𝑥)𝑦 = 𝑓(𝑥)

on 𝑎 ≤ 𝑥 ≤ 𝑏, where 𝛼 ≠ 0 and 𝛼, 𝛽, 𝛾 are continuous and bounded, taking homogeneous
boundary conditions 𝑦(𝑎) = 𝑦(𝑏) = 0. The Green’s function for ℒ in this case is defined to
be the solution for a unit point source at 𝑥 = 𝜉. That is, 𝐺(𝑥, 𝜉) is the function that satisfies
the boundary conditions and

ℒ𝐺(𝑥, 𝜉) = 𝛿(𝑥 − 𝜉)

so 𝐺(𝑎, 𝜉) = 𝐺(𝑏, 𝜉) = 0. Then, by linearity, the general solution is given by

𝑦(𝑥) = ∫
𝑏

𝑎
𝑓(𝜉)𝐺(𝑥, 𝜉) d𝜉

where 𝑦(𝑥) satisfies the homogeneous boundary conditions. We can verify this by check-
ing

ℒ𝑦 = ∫
𝑏

𝑎
ℒ𝐺(𝑥, 𝜉)𝑓(𝜉) d𝜉 = ∫

𝑏

𝑎
𝛿(𝑥 − 𝜉)𝑓(𝜉) d𝜉 = 𝑓(𝑥)

So the solution is given by the inverse operator

𝑦 = ℒ−1𝑓; ℒ−1 = ∫
𝑏

𝑎
d𝜉 𝐺(𝑥, 𝜉)

The Green’s function spits into two parts;

𝐺(𝑥, 𝜉) = {𝐺1(𝑥, 𝜉) 𝑎 ≤ 𝑥 < 𝜉
𝐺2(𝑥, 𝜉) 𝜉 < 𝑥 < 𝑏

For all 𝑥 ≠ 𝜉, we have ℒ𝐺1 = ℒ𝐺2 = 0, so the parts are homogeneous solutions. 𝐺 satisfies
the homogeneous boundary conditions, so 𝐺1(𝑎, 𝜉) = 0 and 𝐺2(𝑏, 𝜉) = 0. 𝐺 must be con-
tinuous at 𝑥 = 𝜉, hence 𝐺1(𝜉, 𝜉) = 𝐺2(𝜉, 𝜉). There is a jump condition; the derivative of 𝐺
is discontinuous at 𝑥 = 𝜉. This satisfies

[𝐺′]𝜉+𝜉− =
d𝐺2
d𝑥

|||𝑥=𝜉+
− d𝐺1

d𝑥
|||𝑥=𝜉−

= 1
𝛼(𝜉)
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4.8. Explicit form for Green’s functions
We want to solve

ℒ𝐺(𝑥, 𝜉) = 𝛿(𝑥 − 𝜉)
on 𝑎 ≤ 𝑥 ≤ 𝑏, subject to homogeneous boundary conditions 𝐺(𝑎, 𝜉) = 𝐺(𝑏, 𝜉) = 0. The
functions 𝐺1, 𝐺2 satisfy the homogeneous equation, so ℒ𝐺𝑖(𝑥, 𝜉) = 0. Suppose there exist
two independent homogeneous solutions 𝑦1(𝑥), 𝑦2(𝑥) to ℒ𝑦 = 0. Then, 𝐺1 = 𝐴𝑦1 + 𝐵𝑦2,
such that 𝐴𝑦1(𝑎) + 𝐵𝑦2(𝑎) = 0, which gives a constraint between 𝐴 and 𝐵. This defines
a complementary function 𝑦−(𝑥) such that 𝑦−(𝑎) = 0. The general homogeneous solution
with 𝐺1(𝑎) = 0 is

𝐺1 = 𝐶𝑦−
𝐶 will be found later. Similarly we can define 𝑦+ as a linear combination of 𝑦1, 𝑦2 such that
𝑦+(𝑏) = 0.

𝐺2 = 𝐷𝑦+
We require 𝐺1(𝜉, 𝜉) = 𝐺2(𝜉, 𝜉) for continuity, hence

𝐶𝑦−(𝜉) = 𝐷𝑦+(𝜉)

Since [𝐺′]𝜉
+

𝜉− =
1

𝛼(𝜉)
, we have

𝐷𝑦′+(𝜉) − 𝐶𝑌 ′
−(𝜉) =

1
𝛼(𝜉)

We can solve these equations for 𝐶,𝐷 simultaneously to find

𝐶(𝜉) = 𝑦+(𝜉)
𝛼(𝜉)𝑊(𝜉) ; 𝐷(𝜉) = 𝑦−(𝜉)

𝛼(𝜉)𝑊(𝜉)

where𝑊(𝜉) is the Wrońskian

𝑊(𝜉) = 𝑦−(𝜉)𝑦′+(𝜉) − 𝑦+(𝜉)𝑦′−(𝜉)

which is nonzero if 𝑦−, 𝑦+ are linearly independent. Hence,

𝐺(𝑥, 𝜉) = {
𝑦−(𝑥)𝑦+(𝜉)
𝛼(𝜉)𝑊(𝜉)

𝑎 ≤ 𝑥 ≤ 𝜉
𝑦−(𝜉)𝑦+(𝑥)
𝛼(𝜉)𝑊(𝜉)

𝜉 ≤ 𝑥 ≤ 𝑏

4.9. Solving boundary value problems
We know that the solution of ℒ𝑦 = 𝑓 is

𝑦(𝑥) = ∫
𝑏

𝑎
𝐺(𝑥, 𝜉)𝑓(𝜉) d𝜉
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We can split this into two intervals given that 𝐺 = 𝐺1 for 𝜉 > 𝑥 and 𝐺 = 𝐺2 for 𝜉 < 𝑥.

𝑦(𝑥) = ∫
𝑥

𝑎
𝐺2(𝑥, 𝜉)𝑓(𝜉) d𝜉 +∫

𝑏

𝑥
𝐺1(𝑥, 𝜉)𝑓(𝜉) d𝜉

= 𝑦+(𝑥)∫
𝑥

𝑎

𝑦−(𝜉)𝑓(𝜉)
𝛼(𝜉)𝑊(𝜉) d𝜉 + 𝑦−(𝑥)∫

𝑥

𝑎

𝑦+(𝜉)𝑓(𝜉)
𝛼(𝜉)𝑊(𝜉) d𝜉

Note that if ℒ is in Sturm–Liouville form, so 𝛽 = 𝛼′, then the denominator 𝛼(𝜉)𝑊(𝜉) is a
constant. Further, 𝐺 is symmetric; 𝐺(𝑥, 𝜉) = 𝐺(𝜉, 𝑥). Often, by convention, we take 𝛼 = 1
(however Sturm–Liouville form typically takes 𝛼 < 0).
Example. Consider 𝑦″ − 𝑦 = 𝑓(𝑥) with 𝑦(0) = 𝑦(1) = 0. Homogeneous solutions are
𝑦1 = 𝑒𝑥, 𝑦2 = 𝑒−𝑥. Imposing boundary conditions,

𝐺 = {𝐶 sinh𝑥 0 ≤ 𝑥 < 𝜉
𝐷 sinh(1 − 𝑥) 𝜉 < 𝑥 ≤ 𝑏

Continuity at 𝑥 = 𝜉 implies

𝐶 sinh 𝜉 = 𝐷 sinh(1 − 𝜉) ⟹ 𝐶 = 𝐷 sinh(1 − 𝜉)
sinh 𝜉

The jump condition is
−𝐷 cosh(1 − 𝜉) − 𝐶 cosh 𝜉 = 1

Hence,

−𝐷[cosh(1 − 𝜉) sinh 𝜉 + sinh(1 − 𝜉) cosh 𝜉] = sinh 𝜉
−𝐷[sinh((1 − 𝜉) + 𝜉)] = sinh 𝜉

−𝐷 sinh 1 = sinh 𝜉

𝐷 = sinh 𝜉
sinh 1

∴ 𝐶 = − sinh(1 − 𝜉)
sinh 1

Therefore,

𝑦(𝑥) = − sinh(1 − 𝑥)
sinh 1 ∫

𝑥

0
sinh 𝜉𝑓(𝜉) d𝜉 − sinh𝑥

sinh 1 ∫
1

𝑥
sinh(1 − 𝜉)𝑓(𝜉) d𝜉

Supposewehave inhomogeneous boundary conditions. In this case, wewant to find a homo-
geneous solution 𝑦𝑝 that solves the inhomogeneous boundary conditions. That is, ℒ𝑦𝑝 = 0
but 𝑦𝑝(𝑎), 𝑦𝑝(𝑏) are as required for the boundary conditions. Then, by subtracting this solu-
tion from the original equation, we can solve using a homogeneous set of boundary condi-
tions. For instance, in the above example, suppose 𝑦(0) = 0, 𝑦(1) = 1. We can find a solution
𝑦𝑝 =

sinh𝑥
sinh 1

which has the inhomogeneous boundary conditions but solves the homogeneous
problem.
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4.10. Higher-order ODEs
Suppose ℒ𝑦 = 𝑓(𝑥)where ℒ is an 𝑛th order linear differential operator, and 𝛼(𝑥) is the coef-
ficient for the highest degree derivative. Suppose that homogeneous boundary conditions
are satisfied. Then we can define the Green’s function in this case to be the function that
solves

ℒ𝐺(𝑥, 𝜉) = 𝛿(𝑥 − 𝜉)
which has the properties:

(i) 𝐺1, 𝐺2 are homogeneous solutions satisfying the homogeneous boundary conditions;

(ii) 𝐺(𝑘)
1 (𝜉) = 𝐺(𝑘)

2 (𝜉) for 𝑘 ∈ {0,… , 𝑛 − 2};

(iii) 𝐺(𝑛−1)
2 (𝜉+) − 𝐺(𝑛−1)

1 (𝜉−) = 1
𝛼(𝜉)

.

4.11. Eigenfunction expansions of Green’s functions
Suppose ℒ is in Sturm–Liouville form with eigenfunctions 𝑦𝑛(𝑥) and eigenvalues 𝜆𝑛. We
seek 𝐺(𝑥, 𝜉) = ∑∞

𝑛=1 𝐴𝑛𝑦𝑛(𝑥) satisfying ℒ𝐺 = 𝛿(𝑥 − 𝜉).

ℒ𝐺 = ∑
𝑛
𝐴𝑛ℒ𝑦𝑛

= ∑
𝑛
𝐴𝑛𝜆𝑛𝑤(𝑥)𝑦𝑛(𝑥)

The 𝛿 function has expansion

𝛿(𝑥 − 𝜉) = 𝑤(𝑥)∑
𝑛

𝑦𝑛(𝜉)𝑦𝑛(𝑥)
𝑁𝑛

; 𝑁𝑛 = ∫𝑤𝑦2𝑛 d𝑥

Hence,
𝐴𝑛(𝜉) =

𝑦𝑛(𝜉)
𝜆𝑛𝑁𝑛

Thus,

𝐺(𝑥, 𝜉) =
∞
∑
𝑛=1

𝑦𝑛(𝜉)𝑦𝑛(𝑥)
𝜆𝑛 ∫𝑤𝑦2𝑛 d𝑥

=
∞
∑
𝑛=1

𝑌𝑛(𝜉)𝑌 𝑁(𝑥)
𝜆𝑛

whichwas already obtained earlier in the coursewhen studying Sturm–Liouville theory.

4.12. Constructing Green’s function for an initial value problem
Suppose we want to solve ℒ𝑦 = 𝑓(𝑡) for 𝑡 ≥ 𝑎 with 𝑦(𝑎) = 𝑦′(𝑎) = 0, using 𝐺(𝑡, 𝜏) satisfying
ℒ𝑔 = 𝛿(𝑡 − 𝜏). For 𝑡 < 𝜏, we have

𝐺1 = 𝐴𝑦1(𝑡) + 𝐵𝑦2(𝑡); 𝐴𝑦1(𝑎) + 𝐵𝑦2(𝑎) = 0; 𝐴𝑦′1(𝑎) + 𝐵𝑦′2(𝑎) = 0
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4. Green’s functions

If 𝐴 ≠ 𝐵 ≠ 0, then we can solve this by dividing out 𝐴, 𝐵 and find 𝑦1𝑦′2 − 𝑦2𝑦′1 = 0. Since
the Wrońskian at 𝑎 cannot be zero, 𝐴 = 𝐵 = 0. So 𝐺1(𝑡, 𝜏) ≡ 0 for 𝑎 ≤ 𝑡 < 𝜏, so there is no
change until the ‘impulse’ at 𝑡 = 𝜏.
For 𝑡 > 𝜏, by continuity wemust have𝐺2(𝜏, 𝜏) = 0. So we choose a complementary function
𝐺2 = 𝐷𝑦+(𝑡)with 𝑦+(𝑡) = 𝐴𝑦1(𝑡)+𝐵𝑦2(𝑡), and 𝑦+(𝜏) = 0. The discontinuity in the derivative
implies that

𝐺′
2(𝜏, 𝜏) = 𝐷𝑦′+(𝜏) =

1
𝛼(𝜏)

Hence,
𝐴𝑦′1(𝜏) + 𝐵𝑦′2(𝜏) =

1
𝛼(𝜏) ⟹ 𝐷(𝜏) = 1

𝛼(𝜏)𝑦′+(𝜏)
Hence we have a non-trivial solution

𝐺(𝑡, 𝜏) = {
0 𝑡 < 𝜏

𝑦+(𝑡)
𝛼(𝜏)𝑦′+(𝜏)

𝑡 > 𝜏

The initial value problem has solution

𝑦(𝑡) = ∫
𝑡

𝑎
𝐺2(𝑡, 𝜏)𝑓(𝜏) d𝜏 = ∫

𝑡

𝑎

𝑦+(𝑡)𝑓(𝜏)
𝑦′+(𝜏)

d𝜏

Causality is ‘built in’ to this solution. Only forces which occur before 𝑡may have an impact
on 𝑦(𝑡).
Example. Let us solve 𝑦″−𝑦 = 𝑓(𝑡)with 𝑦(0) = 𝑦′(0) = 0. The homogeneous solution and
initial conditions are

𝑡 < 𝜏 ⟹ 𝐺1 ≡ 0
and

𝑡 > 𝜏 ⟹ 𝐺2 = 𝐴𝑒𝑡 + 𝐵𝑒−𝑡 = 𝐷 sinh(𝑡 − 𝜏)
Now,

[𝐺′]𝜏+𝜏− =
1

𝛼(𝜏) = 1 ⟹ 𝐺′(𝜏, 𝜏) = 𝐷 cosh 0 = 𝐷 = 1

Hence, the solution is

𝑦(𝑡) = ∫
𝑡

0
𝑓(𝜏) sinh(𝑡 − 𝜏) d𝜏
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5. Fourier transforms
5.1. Definitions
Definition. The Fourier transform of a function 𝑓(𝑥) is

𝑓(𝑘) = ℱ(𝑓)(𝑘) = ∫
∞

−∞
𝑓(𝑥)𝑒−𝑖𝑘𝑥 d𝑥

The inverse Fourier transform is

𝑓(𝑥) = ℱ−1(𝑓)(𝑥) = 1
2𝜋 ∫

∞

−∞
𝑓(𝑘)𝑒𝑖𝑘𝑥 d𝑘

Different internally-consistent definitions exist, which distribute themultiplicative constants
in different ways.

Theorem (Fourier inversion theorem). For a function 𝑓(𝑥),

ℱ−1(ℱ(𝑓))(𝑥) = 𝑓(𝑥)

with a sufficient condition that 𝑓 and 𝑓 are absolutely integrable, so

∫
∞

−∞
|𝑓(𝑥)| d𝑥 = 𝑀 < ∞

In particular, 𝑓 → 0 as 𝑥 → ±∞.

Example. Consider the Gaussian,

𝑓(𝑥) = 1
𝜎√𝜋

exp[−𝑥
2

𝜎2 ]

We wish to compute its Fourier transform. Since 𝑖 sin 𝑘𝑥 is an odd function,

𝑓(𝑘) = 1
𝜎√𝜋

∫
∞

−∞
exp[−𝑥

2

𝜎2 ] exp[−𝑖𝑘𝑥] d𝑥 =
1

𝜎√𝜋
∫

∞

−∞
exp[−𝑥

2

𝜎2 ] cos(𝑘𝑥) d𝑥

Consider, using Leibniz’ rule,

d𝑓
d𝑘 = −1

𝜎√𝜋
∫

∞

−∞
𝑥 exp[−𝑥

2

𝜎2 ] sin 𝑘𝑥 d𝑥

Integrating by parts,

d𝑓
d𝑘 = 1

𝜎√𝜋
[𝜎

2

2 exp[−𝑥
2

𝜎2 ] sin 𝑘𝑥]
∞

−∞
− 1
𝜎√𝜋

∫
∞

−∞

𝑘𝜎2
2 exp[−𝑥

2

𝜎2 ] cos 𝑘𝑥 d𝑥

= 1
𝜎√𝜋

∫
∞

−∞

𝑘𝜎2
2 exp[−𝑥

2

𝜎2 ] cos 𝑘𝑥 d𝑥

= −𝑘𝜎
2

2 𝑓(𝑘)
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This is a differential equation for 𝑓, which gives

𝑓(𝑘) = 𝐶 exp[−𝑘
2𝜎2
4 ]

Suppose 𝑘 = 0. Then, in the original expression for the Fourier transform, we can directly
find 𝑓(0) = 1. Hence 𝐶 exp[−02𝜎2

4
] = 1 ⟹ 𝐶 = 1. Hence,

𝑓(𝑘) = exp[−𝑘
2𝜎2
4 ]

which is another Gaussian with the width parameter inverted.

5.2. Converting Fourier series into Fourier transforms
Recall that the complex form of the Fourier series is

𝑓(𝑥) =
∞
∑

𝑛=−∞
𝑐𝑛𝑒𝑖𝑘𝑛𝑥

where 𝑘𝑛 =
𝑛𝜋
𝐿
. We can write in particular 𝑘𝑛 = 𝑛Δ𝑘 where Δ𝑘 = 𝜋

𝐿
. Then,

𝑐𝑛 =
1
2𝐿 ∫

𝐿

−𝐿
𝑓(𝑥)𝑒−𝑖𝑘𝑛𝑥 d𝑥 = Δ𝑘

2𝜋 ∫
𝐿

−𝐿
𝑓(𝑥)𝑒−𝑖𝑘𝑛𝑥 d𝑥

Now, re-substituting into the Fourier series,

𝑓(𝑥) =
∞
∑

𝑛=−∞

Δ𝑘
2𝜋𝑒

𝑖𝑘𝑛𝑥∫
𝐿

−𝐿
𝑓(𝑥′)𝑒−𝑖𝑘𝑛𝑥′ d𝑥′

Interpreting the sum multiplied by Δ𝑘 as a Riemann integral,

𝑓(𝑥) → ∫
∞

−∞

1
2𝜋𝑒

𝑖𝑘𝑛𝑥∫
𝐿

−𝐿
𝑓(𝑥′)𝑒−𝑖𝑘𝑥′ d𝑥′ d𝑘

Taking the limit 𝐿 → ∞,

𝑓(𝑥) = 1
2𝜋 ∫

∞

−∞
d𝑘 𝑒𝑖𝑘𝑥∫

∞

−∞
d𝑥′ 𝑓(𝑥′)𝑒−𝑖𝑘𝑛𝑥′

which is the inverse Fourier transform of the Fourier transform of 𝑓, which gives the Four-
ier inversion theorem. Note that when 𝑓(𝑥) is discontinuous at 𝑥, the Fourier transform
gives

ℱ−1(ℱ(𝑓))(𝑥) = 1
2(𝑓(𝑥−) + 𝑓(𝑥+))

which is analogous to the result for Fourier series.
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5.3. Properties of Fourier series
Recall the definition of the Fourier transform.

𝑓(𝑘) = ∫
∞

−∞
𝑓(𝑥)𝑒−𝑖𝑘𝑥 d𝑥

The (inverse) Fourier transform is linear.

ℎ(𝑥) = 𝜆𝑓(𝑥) + 𝜇𝑔(𝑥) ⟺ ℎ̃(𝑘) = 𝜆𝑓(𝑘) + 𝜇 ̃𝑔(𝑘)

Translated functions transform to multiplicative factors.

ℎ(𝑥) = 𝑓(𝑥 − 𝜆) ⟺ ℎ̃(𝑘) = 𝑒−𝑖𝜆𝑘𝑓(𝑘)

This is because

ℎ̃(𝑘) = ∫𝑓(𝑥 − 𝜆)𝑒−𝑖𝑘𝑥 d𝑥 = ∫𝑓(𝑦)𝑒−𝑖𝑘(𝑦+𝜆) d𝑦 = 𝑒−𝑖𝜆𝑘𝑓(𝑘)

Frequency shifts transform to translations in frequency space.

ℎ(𝑥) = 𝑒𝑖𝜆𝑥𝑓(𝑥) ⟹ ℎ̃(𝑘) = 𝑓(𝑘 − 𝜆)

A scalar multiple applied to the argument transforms into an inverse scalar multiple.

ℎ(𝑥) = 𝑓(𝜆𝑥) ⟺ ℎ̃(𝑘) = 1
|𝜆|𝑓(

𝑘
𝜆)

Multiplication by 𝑥 transforms into an imaginary derivative.

ℎ(𝑥) = 𝑥𝑓(𝑥) ⟺ ℎ̃(𝑘) = 𝑖𝑓′(𝑘)

This is because
∫

∞

−∞
𝑓(𝑥)𝑒−𝑖𝑘𝑥 d𝑥 = −1

𝑖
d
d𝑘 ∫

∞

−∞
𝑓(𝑥)𝑒−𝑖𝑘𝑥 d𝑥

Derivatives transform into a muliplication by 𝑖𝑘.

ℎ(𝑥) = 𝑓′(𝑥) ⟺ ℎ̃(𝑘) = 𝑖𝑘𝑓(𝑘)

This is because we can integrate by parts and find

ℎ̃(𝑘) = ∫
∞

−∞
𝑓′(𝑥)𝑒−𝑖𝑘𝑥 d𝑥 = [𝑓(𝑥)𝑒−𝑖𝑘𝑥]∞−∞⏟⎵⎵⎵⏟⎵⎵⎵⏟

=0

+𝑖𝑘∫
∞

−∞
𝑓(𝑥)𝑒−𝑖𝑘𝑥 d𝑥

The general duality property states that by mapping 𝑥 ↦ −𝑥, we have

𝑓(−𝑥) = 1
2𝜋 ∫

∞

−∞
𝑓(𝑘)𝑒−𝑖𝑘𝑥 d𝑘
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5. Fourier transforms

hence mapping 𝑘 ↔ 𝑥, treating 𝑓 now as a function in position space, we have

𝑓(−𝑘) = 1
2𝜋 ∫

∞

−∞
𝑓(𝑥)𝑒−𝑖𝑘𝑥 d𝑥

Thus
𝑔(𝑥) = 𝑓(𝑥) ⟺ ̃𝑔(𝑘) = 2𝜋𝑓(−𝑘)

We can then write the corollary that

𝑓(−𝑥) = 1
2𝜋ℱ(ℱ(𝑓))(𝑥)

Finally,
ℱ4(𝑓)(𝑥) = 4𝜋2𝑓(𝑥)

Example. Consider a function defined by

𝑓(𝑥) = {1 |𝑥| ≤ 𝑎
0 otherwise

for some 𝑎 > 0. By the definition of the Fourier transform,

𝑓(𝑘) = ∫
∞

−∞
𝑓(𝑥)𝑒−𝑖𝑘𝑥 d𝑥 = ∫

𝑎

−𝑎
𝑒−𝑖𝑘𝑥 d𝑥 = ∫

𝑎

−𝑎
cos 𝑘𝑥 d𝑥 = 2

𝑘 sin 𝑘𝑎

By the Fourier inversion theorem,

1
𝜋 ∫

∞

−∞
𝑒𝑖𝑘𝑥 1𝑘 sin 𝑘𝑎 d𝑘 = 𝑓(𝑥)

for 𝑥 ≠ 𝑎. Now, in this expression, let 𝑥 = 0 and let 𝑘 ↦ 𝑥. We arrive at the Dirichlet
discontinuous formula.

∫
∞

0

sin 𝑎𝑥
𝑥 d𝑥 = 𝜋

2 sgn 𝑎 =
⎧
⎨
⎩

𝜋
2

𝑎 > 0
0 𝑎 = 0
−𝜋

2
𝑎 < 0

5.4. Convolution theorem
Wewant to multiply Fourier transforms in the frequency domain (transformed space). This
is useful for filtering or processing signals.

ℎ̃(𝑘) = 𝑓(𝑘) ̃𝑔(𝑘)
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Consider the inverse.

ℎ(𝑥) = 1
2𝜋 ∫

∞

−∞
𝑓(𝑘) ̃𝑔(𝑘)𝑒𝑖𝑘𝑥 d𝑘

= 1
2𝜋 ∫

∞

−∞
(∫

∞

−∞
𝑓(𝑦)𝑒−𝑖𝑘𝑦 d𝑦) ̃𝑔(𝑘)𝑒𝑖𝑘𝑥 d𝑘

= ∫
∞

−∞
𝑓(𝑦)( 1

2𝜋 ∫
∞

−∞
𝑒−𝑖𝑘𝑦 ̃𝑔(𝑘)𝑒𝑖𝑘𝑥 d𝑘) d𝑦

= ∫
∞

−∞
𝑓(𝑦)( 1

2𝜋 ∫
∞

−∞
̃𝑔(𝑘)𝑒𝑖𝑘(𝑥−𝑦) d𝑘) d𝑦

= ∫
∞

−∞
𝑓(𝑦)𝑔(𝑥 − 𝑦) d𝑦

= (𝑓 ∗ 𝑔)(𝑥)

where 𝑓 ∗ 𝑔 is called the convolution of 𝑓 and 𝑔. By duality, we also have

ℎ(𝑥) = 𝑓(𝑥)𝑔(𝑥) ⟹ ℎ̃(𝑘) = 1
2𝜋 ∫

∞

−∞
𝑓(𝑝) ̃𝑔(𝑘 − 𝑝) d𝑝 = 1

2𝜋(𝑓 ∗ ̃𝑔)(𝑘)

5.5. Parseval’s theorem
Consider ℎ(𝑥) = 𝑔⋆(−𝑥). Then, by letting 𝑥 = −𝑦,

ℎ̃(𝑘) = ∫
∞

−∞
𝑔⋆(−𝑥)𝑒−𝑖𝑘𝑥 d𝑥

= [∫
∞

−∞
𝑔(−𝑥)𝑒𝑖𝑘𝑥 d𝑥]

⋆

= [∫
∞

−∞
𝑔(𝑦)𝑒−𝑖𝑘𝑦 d𝑦]

⋆

= ̃𝑔⋆(𝑘)

Substituting this into the convolution theorem, with 𝑔(𝑥) ↦ 𝑔⋆(−𝑥), we have

∫
∞

−∞
𝑓(𝑦)𝑔⋆(𝑦 − 𝑥) d𝑦 = 1

2𝜋 ∫
∞

−∞
𝑓(𝑘) ̃𝑔⋆(𝑘)𝑒𝑖𝑘𝑥 d𝑥

Taking 𝑥 = 0 in this expression and mapping 𝑦 ↦ 𝑥, we find

∫
∞

−∞
𝑓(𝑥)𝑔⋆(𝑥) d𝑥 = 1

2𝜋 ∫
∞

−∞
𝑓(𝑘) ̃𝑔⋆(𝑘) d𝑥

Equivalently,
⟨𝑔, 𝑓⟩ = 1

2𝜋 ⟨ ̃𝑔, 𝑓⟩
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So the inner product is conserved under the Fourier transform (up to a factor of 2𝜋). Now,
by setting 𝑔⋆ = 𝑓⋆, we have

∫
∞

−∞
|𝑓(𝑥)|2 d𝑥 = 1

2𝜋 ∫
∞

−∞
||𝑓(𝑘)||

2
d𝑘

This is Parseval’s theorem.

5.6. Fourier transforms of generalised functions

We can apply Fourier transforms to generalised functions by considering limiting distribu-
tions. Consider the inversion

𝑓(𝑥) = ℱ−1(ℱ(𝑓))(𝑥)

= 1
2𝜋 ∫

∞

−∞
[∫

∞

−∞
𝑓(𝑢)𝑒−𝑖𝑘𝑢 d𝑢]𝑒𝑖𝑘𝑥 d𝑘

= 1
2𝜋 ∫

∞

−∞
𝑓(𝑢) [ 1

2𝜋 ∫
∞

−∞
𝑒−𝑖𝑘(𝑥−𝑢) d𝑘]

⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
𝛿(𝑥−𝑢)

d𝑢

In order to reconstruct 𝑓(𝑥) on the right hand side for any function 𝑓, we must have that the
bracketed term is 𝛿(𝑥 − 𝑢). So we identify

𝛿(𝑥 − 𝑢) = 1
2𝜋 ∫

∞

−∞
𝑒𝑖𝑘(𝑥−𝑢) d𝑘

If 𝑓(𝑥) = 𝛿(𝑥),

𝑓(𝑘) = ∫
∞

−∞
𝛿(𝑥)𝑒𝑖𝑘𝑥 d𝑥 = 1

This can be thought of as the Fourier transform of an infinitely thin Gaussian, which be-
comes an infinitely wide Gaussian (a constant). If 𝑓(𝑥) = 1, then

𝑓(𝑘) = ∫
∞

−∞
𝑒−𝑖𝑘𝑥 d𝑥 = 2𝜋𝛿(𝑘)

This can also be found by the duality formula. If 𝑓(𝑥) = 𝛿(𝑥 − 𝑎), we have

𝑓(𝑘) = 𝑒−𝑖𝑘𝑎

This is a translation of the original Fourier transform for the 𝛿 function above.

273



V. Methods

5.7. Trigonometric functions

Let 𝑓(𝑥) = cos𝜔𝑥 = 1
2
(𝑒𝑖𝑥 + 𝑒−𝑖𝑥). Then,

𝑓(𝑘) = 𝜋(𝛿(𝑘 + 𝜔) + 𝛿(𝑘 − 𝜔))

For 𝑓(𝑥) = sin𝜔𝑥, we have

𝑓(𝑘) = 𝑖𝜋(𝛿(𝑘 + 𝜔) − 𝛿(𝑘 − 𝜔))

Using duality,

𝑓(𝑥) = 1
2(𝛿(𝑥 + 𝑎) + 𝛿(𝑥 − 𝑎)) ⟹ 𝑓(𝑘) = cos 𝑘𝑎

𝑓(𝑥) = 1
2𝑖 (𝛿(𝑥 + 𝑎) − 𝛿(𝑥 − 𝑎)) ⟹ 𝑓(𝑘) = sin 𝑘𝑎

5.8. Heaviside functions
Let 𝐻(𝑥) be the Heaviside function, such that 𝐻(0) = 1

2
. Then, 𝐻(𝑥) + 𝐻(−𝑥) = 1 for all 𝑥.

We can take the Fourier transform of this and find

𝐻(𝑘) + 𝐻(−𝑘) = 2𝜋𝛿(𝑘)

Recall that 𝐻′(𝑥) = 𝛿(𝑥). Thus,
𝑖𝑘𝐻(𝑥) = ̃𝛿(𝑘) = 1

Since 𝑘𝛿(𝑘) = 0, the two equations for 𝐻 can be consistent if we take

𝐻(𝑘) = 𝜋𝛿(𝑘) + 1
𝑖𝑘

5.9. Dirichlet discontinuous formula
Recall the Dirichlet discontinuous formula:

∫
∞

0

sin 𝑎𝑥
𝑥 d𝑥 = 𝜋

2 sgn 𝑎 =
⎧
⎨
⎩

𝜋
2

𝑎 > 0
0 𝑎 = 0
−𝜋

2
𝑎 < 0

We can rewrite this as
1
2 sgn𝑥 =

1
2𝜋 ∫

∞

−∞

𝑒𝑖𝑘𝑥
𝑖𝑘 d𝑘

since the cosine term divided by 𝑖𝑘 is odd. Hence,

𝑓(𝑥) = 1
2 sgn𝑥 ⟺ 𝑓(𝑘) = 1

𝑖𝑘
This is the preferred form for aHeaviside-type functionwhenused inFourier transforms.
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5.10. Solving ODEs for boundary value problems
Consider 𝑦″−𝑦 = 𝑓(𝑥)with homogeneous boundary conditions 𝑦 → 0 as 𝑥 → ±∞. Taking
the Fourier transform of this expression, we find

(−𝑘2 − 1) ̃𝑦 = 𝑓

Thus, the solution is

̃𝑦(𝑘) = −𝑓(𝑘)
1 + 𝑘2 ≡ 𝑓(𝑘) ̃𝑔(𝑘)

where ̃𝑔(𝑘) = −1
1+𝑘2

. Note that ̃𝑔(𝑘) is the Fourier transform of 𝑔(𝑥) = − 1
2
𝑒−|𝑥|. Applying the

convolution theorem,

𝑦(𝑥) = ∫
∞

−∞
𝑓(𝑢)𝑔(𝑥 − 𝑢) d𝑢

= −12 ∫
∞

−∞
𝑓(𝑢)𝑒−|𝑥−𝑢| d𝑢

= −12[∫
𝑥

−∞
𝑓(𝑢)𝑒𝑢−𝑥 d𝑢 +∫

∞

𝑥
𝑓(𝑢)𝑒𝑥−𝑢 d𝑢]

This is in the form of a boundary value problem Green’s function. We can construct the
same results by constructing the Green’s function directly.

5.11. Signal processing
Suppose we have an input signal ℐ(𝑡), which is acted on by some linear operator ℒin to yield
an output 𝒪(𝑡). The Fourier transform of the input ̃ℐ(𝜔) is called the resolution.

̃ℐ(𝜔) = ∫
∞

−∞
ℐ(𝑡)𝑒−𝑖𝜔𝑡 d𝑡

In the frequency domain, the action ofℒin on ℐ(𝑡)means that ̃ℐ(𝜔) is multiplied by a transfer
function ℛ̃(𝜔). Thus,

𝒪(𝑡) = 1
2𝜋 ∫

∞

−∞
ℛ̃(𝜔) ̃ℐ(𝜔)𝑒𝑖𝜔𝑡 d𝜔

The inverse Fourier transform of the transfer function, ℛ, is called the response function,
which is given by

ℛ(𝑡) = 1
2𝜋 ∫

∞

−∞
ℛ̃(𝜔)𝑒𝑖𝜔𝑡 d𝜔

By the convolution theorem,

𝒪(𝑡) = ∫
∞

−∞
ℐ(𝑢)ℛ(𝑡 − 𝑢) d𝑢
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Suppose there is no input (ℐ(𝑡) = 0) for 𝑡 < 0. By causality, there should be zero output for
the response function (ℛ(𝑡) = 0) for 𝑡 < 0. Therefore, we require 0 < 𝑢 < 𝑡 and hence

𝒪(𝑡) = ∫
𝑡

0
ℐ(𝑢)ℛ(𝑡 − 𝑢) d𝑢

which resembles an initial value problem Green’s function.

5.12. General transfer functions for ODEs
Suppose an input-output relationship is given by a linear ODE.

ℒ𝒪(𝑡) ≡ (
𝑛
∑
𝑖=0

𝑎𝑖
d𝑖
d𝑥𝑖 )𝒪(𝑡) ≡ ℐ(𝑡)

Here, ℒin = 1. We want to solve this ODE using a Fourier transform.

(𝑎0 + 𝑎1𝑖𝜔 − 𝑎2𝜔2 − 𝑎3𝑖𝜔3 +⋯+ 𝑎𝑛(𝑖𝜔)𝑛)𝒪(𝜔) = ̃ℐ(𝜔)

We can solve this algebraically in Fourier transform space. The transfer function is

ℛ̃(𝜔) = 1
𝑎0 +⋯+ 𝑎𝑛(𝑖𝜔)𝑛

We factorise the denominator to find partial fractions. Suppose there are 𝐽 distinct roots
(𝑖𝜔 − 𝑐𝑗)𝑘𝑗 , where 𝑘𝑗 is the algebraic multiplicity of the 𝑗th root, so∑

𝐽
𝑗=1 𝑘𝑗 = 𝑛. So we can

write
ℛ̃(𝜔) = 1

(𝑖𝜔 − 𝑐1)𝑘1 …(𝑖𝜔 − 𝑐𝐽)𝑘𝐽
Expressing this as partial fractions,

ℛ̃(𝜔) =
𝐽
∑
𝑗=1

𝑘𝑖
∑
𝑚=1

Γ𝑗𝑚
(𝑖𝜔 − 𝑐𝑗)𝑚

The Γ𝑗𝑚 terms are constant. To solve this, we must find the inverse Fourier transform of
(𝑖𝜔 − 𝑎)−𝑚. Recall that

ℱ−1( 1
𝑖𝜔 − 𝑎) = {𝑒

𝑎𝑡 𝑡 > 0
0 𝑡 < 0

for Re 𝑎 < 0. So we will require Re 𝑐𝑗 < 0 for all 𝑗 to eliminate exponentially growing
solutions. Note that for 𝑛 = 2,

𝑖 dd𝜔(
1

(𝑖𝜔 − 𝑎)2 )

and recall that
ℱ(𝑡𝑓(𝑡)) = 𝑖ℱ′(𝜔)
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Hence,

ℱ−1( 1
(𝑖𝜔 − 𝑎)2 ) = {𝑡𝑒

𝑎𝑡 𝑡 > 0
0 𝑡 < 0

Inductively, we arrive at

ℱ−1( 1
(𝑖𝜔 − 𝑎)𝑚 ) = {

𝑡𝑚−1

(𝑚−1)!
𝑒𝑎𝑡 𝑡 > 0

0 𝑡 < 0

We can therefore invert any transfer function to obtain the response function. Thus the
response function takes the form

ℛ(𝑡) =
𝐽
∑
𝑗=1

𝑘𝑖
∑
𝑚=1

Γ𝑗𝑚
𝑡𝑚−1

(𝑚 − 1)!𝑒
𝑐𝑗𝑡; 𝑡 > 0

and zero for 𝑡 < 0. We can now solve such differential equations in Green’s function form,
or directly invert ℛ̃(𝜔) ̃ℐ(𝜔) for a polynomial ̃ℐ(𝜔).

5.13. Damped oscillator
We can use the Fourier transform method to solve the differential equation

ℒ𝑦 ≡ 𝑦″ + 2𝑝𝑦′ + (𝑝2 + 𝑞2)𝑦 = 𝑓(𝑡)

where 𝑝 > 0. Consider homogeneous boundary conditions 𝑦(0) = 𝑦′(0) = 0. The Fourier
transform is

(𝑖𝜔)2 ̃𝑦 + 2𝑖𝑝𝜔 ̃𝑦 + (𝑝2 + 𝑞2) ̃𝑦 = 𝑓

Hence,

̃𝑦 = 𝑓
−𝜔2 + 2𝑖𝑝𝜔 + 𝑝2 + 𝑞2 ≡ 𝑅𝑓

We can invert this using the convolution theorem by inverting 𝑅.

𝑦(𝑡) = ∫
𝑡

0
ℛ(𝑡 − 𝜏)𝑓(𝜏) d𝜏

where the response function is

ℛ(𝑡 − 𝜏) = 1
2𝜋 ∫

∞

−∞

𝑒𝑖𝜔(𝑡−𝜏)
𝑝2 + 𝑞2 + 2𝑖𝑝𝜔 − 𝜔2 d𝜔

We can show that ℒℛ(𝑡 − 𝜏) = 𝛿(𝑡 − 𝜏); in other words,ℛ is the Green’s function.
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5.14. Discrete sampling and the Nyquist frequency
Suppose a signal ℎ(𝑡) is sampled at equal times 𝑡𝑛 = 𝑛Δ with a time step Δ and values
ℎ𝑛 = ℎ(𝑡𝑛) = ℎ(𝑛Δ), for all 𝑛 ∈ ℤ. The sampling frequency is thereforeΔ−1, so the sampling
angular velocity is 𝜔𝑠 = 2𝜋𝑓𝑠 =

2𝜋
Δ
. The Nyquist frequency is 𝑓𝑐 =

1
2Δ
, which is the highest

frequency actually sampled at Δ. Suppose we have a signal 𝑔𝑓 with a given frequency 𝑓. We
will write

𝑔𝑓(𝑡) = 𝐴 cos(2𝜋𝑓𝑡 + 𝜑) = Re (𝐴𝑒2𝜋𝑖𝑓𝑡+𝜑) = 1
2(𝐴𝑒

2𝜋𝑖𝑓𝑡+𝜑) + 1
2(𝐴𝑒

−2𝜋𝑖𝑓𝑡+𝜑)

where𝐴 ∈ ℝ. Note that this signal has two ‘frequencies’; a positive and a negative frequency.
The combination of these frequencies gives the full wave. Suppose we sample 𝑔𝑓(𝑡) at the
Nyquist frequency, so 𝑓 = 𝑓𝑐. Then,

𝑔𝑓𝑐(𝑡𝑛) = 𝐴 cos(2𝜋 1
2Δ𝑛Δ + 𝜑)

= 𝐴 cos(𝜋𝑛 + 𝜑)
= 𝐴 cos𝜋𝑛 cos𝜙 + 𝐴 sin𝜋𝑛 sin𝜙
= 𝐴′ cos(2𝜋𝑓𝑐𝑓𝑛)

where𝐴′ = 𝐴 cos𝜙. This has removed half of the information about the wave; the amplitude
and the phase have become degenerate. We can identify 𝑓𝑐 with −𝑓𝑐 when considering the
remaining information; we say that the two frequencies are aliased together. Now, suppose
we sample at greater than the Nyquist frequency, in particular 𝑓 = 𝑓𝑐 + 𝛿𝑓 > 𝑓𝑐, where for
simplicity we let 𝛿𝑓 < 𝑓𝑐. We have

𝑔𝑓(𝑡𝑛) = 𝐴 cos(2𝜋(𝑓𝑐 + 𝛿𝑓)𝑡𝑛 + 𝜑)
= 𝐴 cos(2𝜋(𝑓𝑐 − 𝛿𝑓)𝑡𝑛 − 𝜑)

So frequencies above the Nyquist frequency are reinterpreted after the sampling as a fre-
quency lower than the Nyquist frequency. This aliases 𝑓𝑐 + 𝛿𝑓 with 𝑓𝑐 − 𝛿𝑓.

5.15. Nyquist–Shannon sampling theorem
Definition. A signal 𝑔(𝑡) is bandwidth-limited if it contains no frequencies above 𝜔max =
2𝜋𝑓max. In other words, ̃𝑔(𝜔) = 0 for all |𝜔| > 𝜔max. In this case,

𝑔(𝑡) = 1
2𝜋 ∫

∞

−∞
̃𝑔(𝜔)𝑒𝑖𝜔𝑡 d𝜔 = 1

2𝜋 ∫
𝜔max

−𝜔max

̃𝑔(𝜔)𝑒𝑖𝜔𝑡 d𝜔

Suppose we set the sampling rate to the Nyquist frequency, so Δ = 1
2𝑓max

. Then,

𝑔𝑛 ≡ 𝑔(𝑡𝑛) =
1
2𝜋 ∫

𝜔max

−𝜔max

̃𝑔(𝜔)𝑒𝑖𝜋𝑛𝜔/𝜔max d𝜔
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This is a complex Fourier series coefficient 𝑐𝑛, multiplied by
𝜔max

𝜋
. The Fourier series is

periodic in 𝜔 with period 2𝜔max, not in space or time.

̃𝑔per(𝜔) =
𝜋

𝜔max

∞
∑

𝑛=−∞
𝑔𝑛𝑒−𝑖𝜋𝑛𝜔/𝜔max

The actual Fourier transform ̃𝑔 is found by multiplying by a top hat window function

ℎ̃(𝜔) = {1 |𝜔| ≤ 𝜔max
0 otherwise

Hence,
̃𝑔(𝜔) = ̃𝑔per(𝜔)ℎ̃(𝜔)

Note that this relation is exact. Inverting this expression,

𝑔(𝑡) = 1
2𝜋 ∫

∞

−∞
̃𝑔per(𝜔)ℎ̃(𝜔)𝑒𝑖𝜔𝑡 d𝜔

= 1
2𝜔max

∞
∑

𝑛=−∞
𝑔𝑛∫

𝜔max

−𝜔max

exp(𝑖𝜔(𝑡 − 𝑛𝜋
𝜔max

)) d𝜔

Only the cosine term is even, hence

𝑔(𝑡) = 1
2𝜔max

∞
∑

𝑛=−∞
𝑔𝑛
sin(𝜔max𝑡 − 𝜋𝑛)
𝜔max𝑡 − 𝜋𝑛

Hence, 𝑔(𝑡) can be written exactly as a combination of countably many discrete sample
points.

5.16. Discrete Fourier transform

Supposewehave a finite number of samplesℎ𝑚 = ℎ(𝑡𝑚) for 𝑡𝑚 = 𝑚Δ, where𝑚 = 0,… ,𝑁−1.
We will approximate the Fourier transform for 𝑁 frequencies within the Nyquist frequency
𝑓𝑐 =

1
2Δ
, using equally-spaced frequencies, given by Δ𝑓 =

1
𝑁Δ

in the range −𝑓𝑐 ≤ 𝑓 ≤ 𝑓𝑐. We
could take the convention 𝑓𝑛 = 𝑛Δ𝑓 = 𝑛

𝑁Δ
for 𝑛 = −𝑁

2
,… ,−𝑁

2
. However, this overcounts

the Nyquist frequency (which is aliased), giving 𝑁 + 1 frequencies instead of the desired 𝑁.
Since frequencies above the Nyquist frequency are aliased to below it:

(𝑁2 + 𝑚)Δ𝑓 = 𝑓𝑐 + 𝛿𝑓 ↦ (𝑁2 − 𝑚)Δ𝑓 = −(𝑓𝑐 − 𝛿𝑓)
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we can instead use the convention 𝑓𝑛 = 𝑛Δ𝑓 = 𝑛
𝑁Δ

for 𝑛 = 0,… ,𝑁 − 1. This counts the
Nyquist frequency only once. The Fourier transform at a frequency 𝑓𝑛 becomes

ℎ̃(𝑓𝑛) = ∫
∞

−∞
ℎ(𝑡)𝑒−2𝜋𝑖𝑓𝑛𝑡 d𝑡

≈ Δ
𝑁−1
∑
𝑚=0

ℎ𝑚𝑒−2𝜋𝑖𝑓𝑛𝑡𝑚

= Δ
𝑁−1
∑
𝑚=0

ℎ𝑚𝑒−2𝜋𝑖𝑚𝑛/𝑁

= Δℎ̃𝑑(𝑓𝑛)

where the function ℎ̃𝑑(𝑓𝑛) is thediscrete Fourier transform. Thematrix [DFT]𝑚𝑛 = 𝑒−2𝜋𝑖𝑚𝑛/𝑁

defines the discrete Fourier transform for the vector ℎ = {ℎ𝑚}. The discrete Fourier trans-
form is then

ℎ̃𝑑 = [DFT]ℎ
By inverting the discrete Fourier transform matrix, we find

ℎ = [DFT]−1ℎ̃𝑑 =
1
𝑁 [DFT]

†ℎ̃𝑑
since the inverse of the discrete Fourier transform matrix is its adjoint. The matrix is built
from roots of unity 𝜔 = 𝑒−2𝜋𝑖/𝑁 . So, for instance, 𝑛 = 4 gives 𝜔 = 𝑒−2𝜋𝑖/4 = −𝑖 giving

[DFT] =
⎛
⎜
⎜
⎝

1 1 1 1
1 −𝑖 −1 𝑖
1 −1 1 −1
1 𝑖 −1 −𝑖

⎞
⎟
⎟
⎠

The inverse discrete Fourier transform is

ℎ𝑚 = ℎ(𝑡𝑚)

= 1
2𝜋 ∫

∞

−∞
ℎ̃(𝜔)𝑒𝑖𝜔𝑡𝑚 d𝜔

= ∫
∞

−∞
ℎ̃(𝑓)𝑒2𝜋𝑖𝑓𝑡𝑚 d𝑓

≈ 1
Δ𝑁

𝑁−1
∑
𝑛=0

Δℎ̃𝑑(𝑓𝑛)𝑒2𝜋𝑖𝑚𝑛/𝑁

= 1
𝑁

𝑁−1
∑
𝑛=0

ℎ̃𝑛𝑒2𝜋𝑖𝑚𝑛/𝑁

Hence, we can interpolate the initial function from its samples.

ℎ(𝑡) = 1
𝑁

𝑁−1
∑
𝑛=0

ℎ̃𝑛𝑒2𝜋𝑖𝑛𝑡/𝑁

280



5. Fourier transforms

Parseval’s theorem becomes
𝑁−1
∑
𝑚=0

|ℎ𝑚|
2 = 1

𝑁
𝑁−1
∑
𝑛=0

||ℎ̃𝑛||
2

and the convolution theorem is

𝑐𝑘 =
𝑁−1
∑
𝑚=0

𝑔𝑚ℎ𝑘−𝑚 ⟺ ̃𝑐𝑘 = ̃𝑔𝑘ℎ̃𝑘

5.17. Fast Fourier transform (non-examinable)
While the discrete Fourier transform is an order 𝑂(𝑁2) operation, we can reduce this into
an order 𝑂(𝑛 log𝑁) operation. Such a simplification is called the fast Fourier transform. We
can split the discrete Fourier transform into even and odd parts, noting that 𝜔𝑁 = 𝑒−2𝜋𝑖/𝑁
implies 𝜔2𝑁 = 𝑒−2𝜋𝑖/(𝑁/2) = 𝜔𝑁/2

ℎ̃𝑘 =
𝑁−1
∑
𝑛=0

ℎ𝑛𝜔𝑛𝑘𝑁

=
𝑁/2−1
∑
𝑚=0

ℎ2𝑚𝜔2𝑚𝑘
𝑁 +

𝑁/2−1
∑
𝑚=0

ℎ2𝑚+1𝜔(2𝑚+1)𝑘
𝑁

=
𝑁/2−1
∑
𝑚=0

ℎ2𝑚(𝜔2𝑁)𝑚𝑘 + 𝜔𝑘𝑁
𝑁/2−1
∑
𝑚=0

ℎ2𝑚+1(𝜔2𝑁)𝑚𝑘

=
𝑁/2−1
∑
𝑚=0

ℎ2𝑚(𝜔𝑁/2)𝑚𝑘 + 𝜔𝑘𝑁
𝑁/2−1
∑
𝑚=0

ℎ2𝑚+1(𝜔𝑁/2)𝑚𝑘

This algorithm iteratively reduces the Fourier transform’s complexity by a factor of two, until
the trivial case of finding the discrete Fourier transform of two data points.
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6. Method of characteristics
6.1. Well-posed Cauchy problems
Solving partial differential equations depends on the nature of the equations in combination
with the boundary or initial data. A Cauchy problem is the partial differential equation for
some function 𝜙 together with the auxiliary data (in 𝜙 and its derivatives) specified on a
surface (or a curve in two dimensions), which is called Cauchy data. For a Cauchy problem
to be well-posed, we require that

(i) a solution exists (we do not have excessive auxiliary data);

(ii) the solution is unique (we do not have insufficient auxiliary data); and

(iii) the solution depends continuously on the auxiliary data.

6.2. Method of characteristics
Consider a parametrised curve 𝐶 given by Cartesian coordinates (𝑥(𝑠), 𝑦(𝑠)). The tangent
vector is

𝑣 = (d𝑥(𝑠)d𝑠 , d𝑦(𝑠)d𝑠 )

We then define the directional derivative of a function 𝜙(𝑥, 𝑦) by
d𝜙
d𝑠
|||𝐶
= d𝑥(𝑠)

d𝑠
𝜕𝜙
𝜕𝑥 + d𝑦(𝑠)

d𝑠
𝜕𝜙
𝜕𝑦 = 𝑣 ⋅ ∇𝜙

Suppose 𝑣 ⋅ ∇𝜙 = 0 then d𝜙
d𝑠

= 0 and hence 𝜙 is constant along the curve. Suppose there
exists a vector field

𝑢 = (𝛼(𝑥, 𝑦), 𝛽(𝑥, 𝑦))
with a family of non-intersecting integral curves 𝐶 which fill the plane (or domain of the
function more generally), such that at a point (𝑥, 𝑦) the integral curve has tangent vector
𝑢(𝑥, 𝑦). Now, define a curve 𝐵 by (𝑥(𝑡), 𝑦(𝑡)) such that 𝐵 is transverse to 𝑢; its tangent is
nowhere parallel to 𝑢.

𝑤 = (d𝑥(𝑡)d𝑡 , d𝑦(𝑡)d𝑡 ) ∦ (𝛼(𝑥, 𝑦), 𝛽(𝑥, 𝑦)) = 𝑢

This can be used to parametrise the family of curves by labelling each curve𝐶 with the value
of 𝑡 at the intersection point between it and 𝐵. Along the curve, we use 𝑠 such that 𝑠 = 0 at
the intersection. The integral curves (𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡)) satisfy

d𝑥
d𝑠 = 𝛼(𝑥, 𝑦); d𝑦

d𝑠 = 𝛽(𝑥, 𝑦)

We can solve these equations to find a family of characteristic curves, along which 𝑡 remains
constant. This yields a new coordinate system (𝑠, 𝑡) associated with a differential equation
we wish to solve.
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6.3. Characteristics of a first order PDE
Consider

𝛼(𝑥, 𝑦)𝜕𝜙𝜕𝑥 + 𝛽(𝑥, 𝑦)𝜕𝜙𝜕𝑦 = 0

with Cauchy data on an initial curve 𝐵, defined by (𝑥(𝑡), 𝑦(𝑡)):

𝜙(𝑥(𝑡), 𝑦(𝑡)) = 𝑓(𝑡)

Note,
𝛼𝜙𝑥 + 𝛽𝜙𝑦 = 𝑢 ⋅ ∇𝜙 = d𝜙

d𝑠
|||𝐶

This is exactly the directional derivative along the integral curve 𝐶, defined by 𝑢 = (𝛼, 𝛽).
Since d𝜙

d𝑠
= 𝛼𝜙𝑥 +𝛽𝜙𝑦 = 0 from the original PDE, the function 𝜙(𝑥, 𝑦) is constant along this

curve 𝐶. In other words, the Cauchy data 𝑓(𝑡) defined on 𝐵 at 𝑠 = 0 is propagated constantly
along the integral curves. This gives the solution

𝜙(𝑠, 𝑡) = 𝜙(𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡)) = 𝑓(𝑡)

To obtain 𝜙 in the original coordinates, we need to transform from 𝑠, 𝑡-space into 𝑥, 𝑦-space.
Provided that the Jacobian 𝐽 = 𝑥𝑡𝑦𝑠−𝑥𝑠𝑦𝑡 is nonzero, we can invert the transformation and
find 𝑠, 𝑡 as functions of 𝑥, 𝑦. This gives

𝜙(𝑥, 𝑦) = 𝑓(𝑡(𝑥, 𝑦))

To solve such a PDE, we will typically use the following steps.

(i) Find the characteristic equations d𝑥
d𝑠
= 𝛼, d𝑦

d𝑠
= 𝛽.

(ii) Parametrise the initial conditions on 𝐵 by (𝑥(𝑡), 𝑦(𝑡)).
(iii) Solve the characteristic equations to find 𝑥 = 𝑥(𝑠, 𝑡) and 𝑦 = 𝑦(𝑠, 𝑡) subject to the initial

conditions at 𝑠 = 0.
(iv) Solve the equation for 𝜙 given by d𝜙

d𝑠
= 𝛼𝜙𝑥 + 𝛽𝜙𝑦 = 0, so 𝜙 is constant along the

integral curves, giving 𝜙(𝑠, 𝑡) = 𝑓(𝑡).
(v) Invert the relations 𝑠 = 𝑠(𝑥, 𝑦) and 𝑡 = 𝑡(𝑥, 𝑦), then find 𝜙 in terms of 𝑥, 𝑦.

Example. Consider the equation
d𝜙(𝑥, 𝑦)
d𝑥 = 0

such that
𝜙(0, 𝑦) = ℎ(𝑦)

The characteristic equations are given by

d𝑥
d𝑠 = 𝛼 = 1; d𝑦

d𝑠 = 𝛽 = 0
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The initial curve 𝐵 is given by
(𝑥(𝑡), 𝑦(𝑡)) = (0, 𝑡)

Solving the characteristic equations,

𝑥 = 𝑠 + 𝑐(𝑡); 𝑦 = 𝑑(𝑡)

At 𝑥 = 0, we must have 𝑠 = 0, so 𝑐 = 0. Further, 𝑦 = 𝑡 hence 𝑑 = 𝑡. Thus,

𝑥 = 𝑠; 𝑦 = 𝑡

Thus,
d𝜙
d𝑥 = 0 ⟹ 𝜙(𝑠, 𝑡) = ℎ(𝑡) ⟹ 𝜙(𝑥, 𝑦) = ℎ(𝑦)

Example. Consider
𝑒𝑥𝜙𝑥 + 𝜙𝑦 = 0; 𝜙(𝑥, 0) = cosh𝑥

The characteristic equations are

d𝑥
d𝑠 = 𝑒𝑥; d𝑦

d𝑠 = 1

The initial conditions are
𝑥(𝑡) = 𝑡; 𝑦(𝑡) = 0

We solve the characteristic equation subject to these initial conditions, giving

−𝑒−𝑥 = 𝑠 + 𝑐(𝑡); 𝑦 = 𝑠 + 𝑑(𝑡)

𝑠 = 0 implies −𝑒−𝑡 = 𝑐(𝑡) and 𝑦 = 0 = 𝑑(𝑡). Hence

𝑒−𝑥 = 𝑒−𝑡 − 𝑠; 𝑦 = 𝑠

Now,
d𝜙
d𝑠 = 0 ⟹ 𝜙(𝑠, 𝑡) = cosh 𝑡

Since 𝑠 = 𝑦, 𝑒−𝑡 = 𝑦 + 𝑒−𝑥, we have 𝑡 = − log(𝑦 + 𝑒−𝑥). Thus,

𝜙(𝑥, 𝑦) = cosh [− log(𝑦 + 𝑒−𝑥)]

6.4. Inhomogeneous first order PDEs
Suppose we now wish to solve

𝛼(𝑥, 𝑦)𝜙𝑥 + 𝛽(𝑥, 𝑦)𝜙𝑦 = 𝛾(𝑥, 𝑦)

with Cauchy data 𝜙(𝑥(𝑡), 𝑦(𝑡)) = 𝑓(𝑡) along a curve 𝐵. The characteristic curves are the same
as the homogeneous case. However, the directional derivative no longer vanishes:

d𝜙
d𝑠
|||𝐶
= 𝑢 ⋅ ∇𝜙 = 𝛾(𝑥, 𝑦)
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where 𝜙 = 𝑓(𝑡) at 𝑠 = 0 on 𝐵. So 𝑓(𝑡) is no longer propagated constantly across characteristic
polynomials, but is instead propagated according to the ODE in 𝑠 above. We must therefore
solve this ODE along 𝐶 before reverting to 𝑥, 𝑦 coordinates.
Example. Consider

𝜙𝑥 + 2𝜙𝑦 = 𝑦𝑒𝑥; 𝜙(𝑥, 𝑥) = sin𝑥
The characteristic equation is given by

d𝑥
d𝑠 = 1; d𝑦

d𝑠 = 2

The initial conditions are
𝑥(𝑡) = 𝑦(𝑡) = 𝑡

From the characteristic equations,

𝑥 = 𝑠 + 𝑐(𝑡); 𝑦 = 2𝑠 + 𝑑(𝑡)

Thus,
𝑥 = 𝑡 = 𝑐(𝑡); 𝑦 = 𝑡 = 𝑑(𝑡)

So the solutions to the characteristics are

𝑥 = 𝑠 + 𝑡; 𝑦 = 2𝑠 + 𝑡

Now we solve
d𝜙
d𝑠 = 𝛾 = 𝑦𝑒𝑥 = (2𝑠 + 𝑡)𝑒𝑠+𝑡

Note that d
d𝑠
(2𝑠𝑒𝑠) = 2𝑒𝑠 + 2𝑠𝑒𝑠, so the solution is

𝜙(𝑠, 𝑡) = (2𝑠 − 2 + 𝑡)𝑒𝑠+𝑡 + 𝑐(𝑠)

for some constant term 𝑐(𝑠). But 𝜙(0, 𝑡) = sin 𝑡, hence

sin 𝑡 = (𝑡 − 2)𝑒𝑡 + 𝑐(𝑠) ⟹ 𝜙(𝑠, 𝑡) = (2𝑠 − 2 + 𝑡)𝑒𝑠+𝑡 + sin 𝑡 − (2 − 𝑡)𝑒𝑡

Inverting into 𝑥, 𝑦 space,

𝜙(𝑥, 𝑦) = (𝑦 − 2)𝑒𝑥 + (𝑦 − 2𝑥 + 2)𝑒2𝑥−𝑦 + sin(2𝑥 − 𝑦)

6.5. Classification of second order PDEs
In two dimensions, the general second order PDE is

ℒ𝜙 ≡ 𝑎(𝑥, 𝑦)𝜕
2𝜙
𝜕𝑥2 + 2𝑏(𝑥, 𝑦) 𝜕

2𝜙
𝜕𝑥𝜕𝑦 + 𝑐(𝑥, 𝑦)𝜕

2𝜙
𝜕𝑦2

+ 𝑑(𝑥, 𝑦)𝜕𝜙𝜕𝑥 + 𝑒(𝑥, 𝑦)𝜕𝜙𝜕𝑦 + 𝑓(𝑥, 𝑦)𝜙(𝑥, 𝑦)
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The principal part is given by

𝜎𝑃(𝑥, 𝑦, 𝑘𝑥, 𝑘𝑦) ≡ 𝑘⊺𝐴𝑘 = (𝑘𝑥 𝑘𝑦) (
𝑎(𝑥, 𝑦) 𝑏(𝑥, 𝑦)
𝑏(𝑥, 𝑦) 𝑐(𝑥, 𝑦)) (

𝑘𝑥
𝑘𝑦
)

The PDE is classified by the properties of the eigenvalues of 𝐴.

(i) If 𝑏2−𝑎𝑐 < 0, the equation is elliptic. The eigenvalues have the same sign. An example
is the Laplace equation.

(ii) If 𝑏2 − 𝑎𝑐 > 0, the equation is hyperbolic. The eigenvalues have opposite signs. An
example is the wave equation.

(iii) If 𝑏2 − 𝑎𝑐 = 0, the equation is parabolic, where at least one eigenvalue is zero. An
example is the heat equation.

Note that a differential equation may have different classifications at different points (𝑥, 𝑦)
in space.

6.6. Characteristic curves of second order PDEs
A curve defined by 𝑓(𝑥, 𝑦) constant is a characteristic if

(𝑓𝑥 𝑓𝑦) (
𝑎 𝑏
𝑏 𝑐) (

𝑓𝑥
𝑓𝑦
) = 0

This is a generalisation of the first order case 𝑢 ⋅ ∇𝑓 = 0 where 𝑢 = (𝛼, 𝛽). The curve can be
written as 𝑦 = 𝑦(𝑥) by the chain rule.

𝜕𝑓
𝜕𝑥 + 𝜕𝑓

𝜕𝑦
d𝑦
d𝑥 = 0 ⟹ 𝑓𝑥

𝑓𝑦
= −d𝑦d𝑥

Substituting into the quadratic form,

𝑎(d𝑦d𝑥)
2
− 2𝑏d𝑦d𝑥 + 𝑐 = 0

for which we have a quadratic solution given by

d𝑦
d𝑥 = 𝑏 ± √𝑏2 − 𝑎𝑐

𝑎

(i) Hyperbolic equations have two such solutions, since 𝑏2 − 𝑎𝑐 > 0.

(ii) Parabolic equations have one solution.

(iii) Elliptic equations have no real characteristics.
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6.7. Characteristic coordinates
Transforming to characteristic coordinates 𝑢, 𝑣 will set 𝑎 = 0 and 𝑐 = 0. Hence, the PDE
will take the canonical form

𝜕2𝜙
𝜕𝑢𝜕𝑣 +⋯+ = 0

where the omitted terms are lower order.

Example. Consider
−𝑦𝜙𝑥𝑥 + 𝜙𝑦𝑦 = 0

Here, 𝑎 = −𝑦, 𝑏 = 0, 𝑐 = 1 hence 𝑏2 − 𝑎𝑐 = 𝑦. For 𝑦 > 0, the equation is hyperbolic, for
𝑦 < 0 it is elliptic, and for 𝑦 = 0 it is parabolic. Consider the characteristics for 𝑦 > 0.

d𝑦
d𝑥 = 𝑏 ± √𝑏2 − 𝑎𝑐

𝑎 = ± 1
√𝑦

Hence,
∫√𝑦 d𝑦 = ±∫ d𝑥 ⟹ 2

3𝑦
3
2 ± 𝑥 = 𝐶±

Therefore, the characteristic curves are

𝑢 = 2
3𝑦

3
2 + 𝑥; 𝑣 = 2

3𝑦
3
2 − 𝑥

Taking derivatives,
𝑢𝑥 = 1; 𝑢𝑦 = √𝑦; 𝑣𝑥 = −1; 𝑣𝑦 = √𝑦

Hence,

𝜙𝑥 = 𝜙𝑢𝑢𝑥 + 𝜙𝑣𝑣𝑥 = 𝜙𝑢 − 𝜙𝑣
𝜙𝑦 = √𝑦(𝜙𝑢 + 𝜙𝑣)
𝜙𝑥𝑥 = 𝜙𝑢𝑢 − 2𝜙𝑢𝑣 + 𝜙𝑣𝑣
𝜙𝑦𝑦 = 𝑦(𝜙𝑢𝑢 + 2𝜙𝑢𝑣 + 𝜙𝑣𝑣) +

1
2√𝑦

(𝜙𝑢 + 𝜙𝑣)

Substituting into the original PDE,

−𝑦𝜙𝑥𝑥 + 𝜙𝑦𝑦 = 𝑦(4𝜙𝑢𝑣 +
1
2𝑦

3
2

(𝜙𝑢 + 𝜙𝑣))

Note, 𝑢 + 𝑣 = 4
3
𝑦
3
2 , hence we have the canonical form

4𝜙𝑢𝑣 +
1

6(𝑢 + 𝑣)(𝜙𝑢 + 𝜙𝑣) = 0
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6.8. General solution to wave equation
The wave equation is

1
𝑐2
𝜕2𝜙
𝜕𝑡2 −

𝜕2𝜙
𝜕𝑥2 = 0

We wish to solve this with initial conditions 𝜙(𝑥, 0) = 𝑓(𝑥), and 𝜙𝑡(𝑥, 0) = 𝑔(𝑥). Here,
𝑎 = 1

𝑐2
, 𝑏 = 0, 𝑐 = −1 hence 𝑏2 − 𝑎𝑐 > 0. The characteristic equation is

d𝑥
d𝑡 =

0 ±√0 + 1
𝑐2

1
𝑐2

= ±𝑐

Hence the characteristic coordinates are

𝑢 = 𝑥 − 𝑐𝑡; 𝑣 = 𝑥 + 𝑐𝑡

This yields the canonical form
𝜕2𝜙
𝜕𝑢𝜕𝑣 = 0

This may be integrated directly to find

𝜕𝜙
𝜕𝑣 = 𝐹(𝑣) ⟹ 𝜙 = 𝐺(𝑢) +∫

𝑣
𝐹(𝑦) d𝑦 = 𝐺(𝑢) + 𝐻(𝑣)

Imposing the initial conditions at 𝑡 = 0, we find

𝐺(𝑥) + 𝐻(𝑥) = 𝑓(𝑥); −𝑐𝐺′(𝑥) + 𝑐𝐻′(𝑥) = 𝑔(𝑥)

Differentiating the first equation, we find

𝐺′(𝑥) + 𝐻′(𝑥) = 𝑓′(𝑥)

We can combine this with the second equation to give

𝐻′(𝑥) = 1
2(𝑓

′(𝑥) + 1
𝑐 𝑔(𝑥)) ⟹ 𝐻(𝑥) = 1

2(𝑓(𝑥) − 𝑓(0)) + 1
2𝑐 ∫

𝑥

0
𝑔(𝑦) d𝑦

Similarly,

𝐺′(𝑥) = 1
2(𝑓

′(𝑥) − 1
𝑐 𝑔(𝑥)) ⟹ 𝐺(𝑥) = 1

2(𝑓(𝑥) − 𝑓(0)) − 1
2𝑐 ∫

𝑥

0
𝑔(𝑦) d𝑦

The final solution is therefore

𝜙(𝑥, 𝑡) = 𝐺(𝑥 − 𝑐𝑡) + 𝐻(𝑥 + 𝑐𝑡) = 1
2(𝑓(𝑥 − 𝑐𝑡) + 𝑓(𝑥 + 𝑐𝑡)) + 1

2𝑐 ∫
𝑥+𝑐𝑡

𝑥−𝑐𝑡
𝑔(𝑦) d𝑦

Waves propagate at a velocity 𝑐, hence 𝜙(𝑥, 𝑡) is fully determined by values of 𝑓, 𝑔 in the
interval [𝑥 − 𝑐𝑡, 𝑥 + 𝑐𝑡].
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7. Solving partial differential equations with Green’s
functions

7.1. Diffusion equation and Fourier transform
Recall the heat equation for a conducting wire given by

𝜕Θ
𝜕𝑡 (𝑥, 𝑡) − 𝐷𝜕

2Θ
𝜕𝑥2 (𝑥, 𝑡) = 0

with initial conditions Θ(𝑥, 0) = ℎ(𝑥) and boundary conditions Θ → 0 as 𝑥 → ±∞. Taking
the Fourier transform with respect to 𝑥,

𝜕
𝜕𝑡 Θ̃(𝑘, 𝑡) = −𝐷𝑘2Θ̃(𝑘, 𝑡)

Integrating, we find
Θ̃(𝑘, 𝑡) = 𝐶𝑒−𝐷𝑘2𝑡

The initial conditions give Θ̃(𝑘, 0) = ℎ̃(𝑘) and therefore

Θ̃(𝑘, 𝑡) = ℎ̃(𝑘)𝑒−𝐷𝑘2𝑡

We take the inverse Fourier transform to find

Θ(𝑥, 𝑡) = 1
2𝜋 ∫

∞

−∞
ℎ̃(𝑘) 𝑒−𝐷𝑘2𝑡⏟⎵⏟⎵⏟

FT of Gaussian
𝑒𝑖𝑘𝑥 d𝑘

Hence, by the convolution theorem,

Θ(𝑥, 𝑡) = 1
√4𝜋𝐷𝑡

∫
∞

−∞
ℎ(𝑢) exp(−(𝑥 − 𝑢)2

4𝐷𝑡 ) d𝑢

≡ ∫
∞

−∞
ℎ(𝑢)𝑆𝑑(𝑥 − 𝑢, 𝑡) d𝑢

where the fundamental solution is

𝑆𝑑(𝑥, 𝑡) =
1

√4𝜋𝐷𝑡
exp(− 𝑥2

4𝐷𝑡)

which is theFourier transformof exp(−𝐷𝑘2𝑡). Note, with localised initial conditionsΘ(𝑥, 0) =
Θ0𝛿(𝑥), the solution is exactly the fundamental solution:

Θ(𝑥, 𝑡) = Θ0𝑆𝑑(𝑥, 𝑡) =
Θ0

√4𝜋𝐷𝑡
exp(−𝜂2); 𝜂 = 𝑥

2√𝐷𝑡

where 𝜂 is the similarity parameter.
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7.2. Gaussian pulse for heat equation
Suppose that the initial conditions for the head equation are given by

𝑓(𝑥) = √
𝑎
𝜋Θ0𝑒−𝑎𝑥

2

Then, our previous solution gives

Θ(𝑥, 𝑡) = Θ0√𝑎
√4𝜋2𝐷𝑡

∫
∞

−∞
exp[−𝑎𝑢2 − (𝑥 − 𝑢)2

4𝐷𝑡 ] d𝑢

= Θ0√𝑎
√4𝜋2𝐷𝑡

∫
∞

−∞
exp[−(1 + 4𝑎𝐷𝑡)𝑢2 − 2𝑥𝑢 + 𝑥2

4𝐷𝑡 ] d𝑢

= Θ0√𝑎
√4𝜋2𝐷𝑡

∫
∞

−∞
exp[−1 + 4𝑎𝐷𝑡

4𝐷𝑡 (𝑢 − 𝑥
1 + 4𝑎𝐷𝑡)] exp[

−𝑎𝑥2
1 + 4𝑎𝐷𝑡] d𝑢

Recall that
∫

∞

−∞
exp[−(𝑢 − 𝜇)2

𝜎2 ] d𝑢 = 𝜎√𝜋

The integral above is a Gaussian, so its solution can be read off directly as

Θ(𝑥, 𝑡) = Θ0√𝑎
√𝜋(1 + 4𝜋2𝐷𝑡)

exp[ −𝑎𝑥2
1 + 4𝑎𝐷𝑡]

So the width of the Gaussian pulse will get wider over time, according to 𝜎2 ∼ 𝑡, as it evolves
according to the heat equation. The area is constant, so heat energy is conserved in the
system.

7.3. Forced diffusion equation
Consider the equation

𝜕
𝜕𝑡Θ(𝑥, 𝑡) − 𝐷𝜕

2Θ
𝜕𝑥2 = 𝑓(𝑥, 𝑡)

subject to homogeneous initial conditions Θ(𝑥, 0) = 0. We construct a two-dimensional
Green’s function 𝐺(𝑥, 𝑡; 𝜉, 𝜏) such that

𝜕
𝜕𝑡𝐺(𝑥, 𝑡) − 𝐷𝜕

2𝐺
𝜕𝑥2 = 𝛿(𝑥 − 𝜉)𝛿(𝑡 − 𝜏)

subject to the same homogeneous boundary conditions 𝐺(𝑥, 0; 𝜉, 𝜏) = 0. Consider the Four-
ier transform with respect to 𝑥.

𝜕𝐺
𝜕𝑡 + 𝐷𝑘2𝐺 = 𝑒−𝑖𝑘𝜉𝛿(𝑡 − 𝜏)
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We can solve this using an integrating factor 𝑒𝐷𝑘2𝑡 and integratingwith respect to time. Since
𝐺 = 0 at 𝑡 = 0,

𝜕
𝜕𝑡 [𝑒

𝐷𝑘2𝑡𝐺] = 𝑒−𝑖𝑘𝜉+𝐷𝑘2𝑡𝛿(𝑡 − 𝜏)

∫
𝑡

0

𝜕
𝜕𝑡′ [𝑒

𝐷𝑘2𝑡′𝐺] d𝑡′ = ∫
𝑡

0
𝑒−𝑖𝑘𝜉+𝐷𝑘2𝑡′𝛿(𝑡′ − 𝜏) d𝑡′

𝑒𝐷𝑘2𝑡𝐺 = 𝑒−𝑖𝑘𝜉∫
𝑡

0
𝑒𝐷𝑘2𝑡′𝛿(𝑡′ − 𝜏) d𝑡′

𝑒𝐷𝑘2𝑡𝐺 = 𝑒−𝑖𝑘𝜉𝑒𝐷𝑘2𝜏𝐻(𝑡 − 𝜏)

where 𝐻 is the Heaviside step function. Thus,

𝐺(𝑘, 𝑡; 𝜉, 𝜏) = 𝑒−𝑖𝑘𝜉𝑒−𝐷𝑘2(𝑡−𝜏)𝐻(𝑡 − 𝜏)

The inverse Fourier transform gives the Green’s function.

𝐺(𝑥, 𝑡; 𝜉, 𝜏) = 𝐻(𝑡 − 𝜏)
2𝜋 ∫

∞

−∞
𝑒−𝑖𝑘𝜉𝑒−𝐷𝑘2(𝑡−𝜏)𝑒𝑖𝑘𝑥 d𝑘

This is a Gaussian; by changing variables into 𝑥′ = 𝑥 − 𝜉 and 𝑡′ = 𝑡 − 𝜏 we find

𝐺(𝑥, 𝑡; 𝜉, 𝜏) = 𝐻(𝑡′)
2𝜋 ∫

∞

−∞
𝑒𝑖𝑘𝑥′𝑒−𝐷𝑘2𝑡′ d𝑘 = 𝐻(𝑡′)

√4𝜋𝐷𝑡′
exp[−(𝑥

′)2
4𝐷𝑡′ ]

Converting back,

𝐺(𝑥, 𝑡; 𝜉, 𝜏) = 𝐻(𝑡 − 𝜏)
√4𝜋𝐷(𝑡 − 𝜏)

exp[− (𝑥 − 𝜉)2
4𝐷(𝑡 − 𝜏)] = 𝐻(𝑡 − 𝜏)𝑆𝑑(𝑥 − 𝜉, 𝑡 − 𝜏)

where 𝑆𝑑 is the fundamental solution as above. Thus, the general solution is

Θ(𝑥, 𝑡) = ∫
∞

0
d𝜏∫

∞

−∞
d𝜉 𝐺(𝑥, 𝑡; 𝜉, 𝜏)𝑓(𝜉, 𝜏)

Let 𝜉 = 𝑢, then

Θ(𝑥, 𝑡) = ∫
𝑡

0
d𝜏∫

∞

−∞
d𝑢𝑓(𝑢, 𝜏)𝑆𝑑(𝑥 − 𝑢, 𝑡 − 𝜏)

7.4. Duhamel’s principle
In the above equation, omitting the integral over time, this is exactly the solution as found
earlier with initial conditions at 𝑡 = 𝜏, which was

Θ(𝑥, 𝑡) = ∫
∞

−∞
d𝑢𝑓(𝑢)𝑆𝑑(𝑥 − 𝑢, 𝑡 − 𝜏)

291



V. Methods

The forced PDE with homogeneous boundary conditions can be related to solutions of the
homogeneous PDE with inhomogeneous boundary conditions. The forcing term 𝑓(𝑥, 𝑡) at
𝑡 = 𝜏 acts as an initial condition for subsequent evolution. Thus, the solution is a superpos-
ition of the effects of the initial conditions integrated over 0 < 𝜏 < 𝑡. This relation between
the homogeneous and inhomogeneous problems is known as Duhamel’s principle.

7.5. Forced wave equation
Consider the forced wave equation, given by

𝜕2𝜙
𝜕𝑡2 − 𝑐2 𝜕

2𝜙
𝜕𝑥2 = 𝑓(𝑥, 𝑡)

with 𝜙(𝑥, 0) = 𝜙𝑡(𝑥, 0) = 0. We construct the Green’s function using

𝜕2𝐺
𝜕𝑡2 − 𝑐2 𝜕

2𝐺
𝜕𝑥2 = 𝛿(𝑥 − 𝜉)𝛿(𝑡 − 𝜏)

with𝐺(𝑥, 0) = 𝜙𝑡(𝑥, 0) = 0. We take the Fourier transformwith respect to 𝑥, and find

𝜕2𝐺
𝜕𝑡2 + 𝑐2𝑘2𝐺 = 𝑒−𝑖𝑘𝜉𝛿(𝑡 − 𝜏)

We can solve this by inspection by comparing with the corresponding initial value problem
Green’s function, and find

𝐺 = {
0 𝑡 < 𝜏
𝑒−𝑖𝑘𝜉 sin𝑘𝑐(𝑡−𝜏)

𝑘𝑐
𝑡 > 𝜏

Using the Heaviside function.

𝐺 = 𝑒−𝑖𝑘𝜉 sin 𝑘𝑐(𝑡 − 𝜏)
𝑘𝑐 𝐻(𝑡 − 𝜏)

We invert the Fourier transform.

𝐺(𝑥, 𝑡; 𝜉, 𝜏) = 𝐻(𝑡 − 𝜏)
2𝜋𝑐 ∫

∞

−∞
𝑒𝑖𝑘(𝑥−𝜉) sin 𝑘𝑐(𝑡 − 𝜏)

𝑘 d𝑘

Let 𝐴 = 𝑥 − 𝜉, and 𝐵 = 𝑐𝑡 − 𝜏. By oddness of sine, only the cosine term of the complex
exponential remains. Noting the similarity to the Dirichlet discontinuous function,

𝐺(𝑥, 𝑡; 𝜉, 𝜏) = 𝐻(𝑡 − 𝜏)
𝜋𝑐 ∫

∞

0

cos(𝑘𝐴) sin(𝑘𝐵)
𝑘 d𝑘

= 𝐻(𝑡 − 𝜏)
2𝜋𝑐 ∫

∞

0

sin 𝑘(𝐴 + 𝐵) − sin 𝑘(𝐴 − 𝐵)
𝑘 d𝑘

= 𝐻(𝑡 − 𝜏)
4𝑐 [sgn(𝐴 + 𝐵) − sgn(𝐴 − 𝐵)]
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Since the 𝐻(𝑡 − 𝜏) term is nonzero only for 𝑡 > 𝜏, we must have 𝐵 = 𝑐(𝑡 − 𝜏) > 0. The only
way that the bracketed term can be nonzero is when |𝐴| < 𝐵; so |𝑥 − 𝜉| < 𝑐(𝑡 − 𝜏). This
is the domain of dependence as found before, demonstrating the causality of the relation.
Hence,

𝐺(𝑥, 𝑡; 𝜉, 𝜏) = 1
2𝑐𝐻(𝑐(𝑡 − 𝜏) − |𝑥 − 𝜉|)

Thus, the solution is

𝜙(𝑥, 𝑡) = ∫
∞

0
d𝜏∫

∞

−∞
d𝜉 𝑓(𝜉, 𝑡)𝐺(𝑥, 𝑡; 𝜉, 𝜏)

= 1
2𝑐 ∫

𝑡

0
d𝜏∫

𝑥+𝑐(𝑡−𝜏)

𝑥−𝑐(𝑡−𝜏)
d𝜉 𝑓(𝜉, 𝜏)

7.6. Poisson’s equation
Consider

∇2𝜙 = −𝜌(𝑟)

defined on a three-dimensional domain 𝐷, with Dirichlet boundary conditions 𝜙 = 0 on a
boundary 𝜕𝐷. The Dirac 𝛿 function, when defined inℝ3, has the following properties.

(i) 𝛿(𝑟 − 𝑟′) = 0 for all 𝑟 ≠ 𝑟′;

(ii) ∫𝐷 𝛿(𝑟 − 𝑟′) d3𝑟 = 1 if 𝑟′ ∈ 𝐷, and zero otherwise;

(iii) ∫𝐷 𝑓(𝑟)𝛿(𝑟 − 𝑟′) d3𝑟 = 𝑓(𝑟′).

First, we consider 𝐷 = ℝ3 with the homogeneous boundary conditions that 𝐺 → 0 as ‖𝑟‖ →
∞. This is known as the free-space Green’s function, denoted 𝐺FS. The potential here is
spherically symmetric, so the Green’s function is a function only of the distance between
the point and the source. WIthout loss of generality, let 𝑟′ = 0, so 𝐺 is a function only of the
radius, now denoted 𝑟. Integrating the left hand side of Poisson’s equation over a ball 𝐵 with
radius 𝑟 around zero, we find

∫
𝐵
∇2𝐺FS d3𝑟 = ∫

𝜕𝐵
∇𝐺FS ⋅ ̂𝑛 d𝑆 = ∫

𝜕𝐵

𝜕𝐺
𝜕𝑟 𝑟

2 dΩ

where dΩ is the angle element. This gives

∫
𝐵
∇2𝐺FS d3𝑟 = 4𝜋𝑟2 𝜕𝐺FS

𝜕𝑟

The right hand side of Poisson’s equation gives unity, since zero is contained in the ball.
Therefore,

𝜕𝐺FS
𝜕𝑟 = 1

4𝜋𝑟2 ⟹ 𝐺FS =
−1
4𝜋𝑟 + 𝑐
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Since 𝐺 → 0 as 𝑟 → ∞, we must have 𝑐 = 0. The fundamental solution is therefore the
free-space Green’s function given by

𝐺(𝑟; 𝑟′) = −1
4𝜋‖𝑟 − 𝑟′‖

Thus, Poisson’s equation is solved by

Φ(𝑟) = 1
4𝜋 ∫

ℝ3

𝜌(𝑟′)
‖𝑟 − 𝑟′‖ d

3𝑟′

7.7. Green’s identities
Consider scalar functions 𝜙, 𝜓 which are twice differentiable on a domain 𝐷. By the diver-
gence theorem, Green’s first identity is

∫
𝐷
∇ ⋅ (𝜙∇𝜓) d3𝑟 = ∫

𝐷
(𝜙∇2𝜓 + ∇𝜙 ⋅ ∇𝜓) d3𝑟 = ∫

𝜕𝐷
𝜙∇𝜓 ⋅ ̂𝑛 d𝑆

Switching𝜓 and 𝜙 and subtracting from the above, we arrive atGreen’s second identity:

∫
𝜕𝐷

(𝜙𝜕𝜓𝜕 ̂𝑛 − 𝜓𝜕𝜙𝜕 ̂𝑛) d𝑆 = ∫
𝐷
(𝜙∇2𝜓 − 𝜓∇2𝜙) d3𝑟

Suppose we remove a ball ℬ𝜀(𝑟′) from the domain. Without loss of generality let 𝑟′ = 0.
Let 𝜙 be a solution to Poisson’s equation, so ∇2𝜙 = −𝜌 and let 𝜓 be the free-space Green’s
function. Thus, the right hand side of the second identity becomes

∫
𝐷∖ℬ𝜀

(𝜙∇2𝐺FS − 𝐺FS∇2𝜙) d3𝑟 = ∫
𝐷∖ℬ𝜀

𝐺FS𝜌 d3𝑟

The left hand side is

∫
𝜕𝐷

(𝜙𝜕𝐺FS
𝜕 ̂𝑛 − 𝐺FS

𝜕𝜙
𝜕 ̂𝑛) d𝑆 +∫

𝜕ℬ𝜀

(𝜙𝜕𝐺FS
𝜕 ̂𝑛 − 𝐺FS

𝜕𝜙
𝜕 ̂𝑛) d𝑆

For the second integral, we take the limit as 𝜀 → 0. Let 𝜙 be regular, and let 𝜙 be the average
value and 𝜕𝜙

𝜕�̂�
be the average derivative. This integral then becomes

(𝜙 −1
4𝜋𝜀2 −

1
4𝜋𝜀

𝜕𝜙
𝜕 ̂𝑛)4𝜋𝜀

2 → −𝜙(0)

Combining the above, we find Green’s third identity, which is

𝜙(𝑟′) = ∫
𝐷
𝐺FS(𝑟; 𝑟′)(−𝜌(𝑟)) d3𝑟 +∫

𝜕𝐷
(𝜙(𝑟)𝜕𝐺FS

𝜕 ̂𝑛 (𝑟; 𝑟′) − 𝐺FS(𝑟; 𝑟′)
𝜕𝜙
𝜕 ̂𝑛 (𝑟)) d𝑆

The second integral provides the ability to use inhomogeneous boundary conditions
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7.8. Dirichlet Green’s function
Wewill solve Poisson’s equation∇2𝜙 = −𝜌 on 𝐷 with inhomogeneous boundary conditions
𝜙(𝑟) = ℎ(𝑟) on 𝜕𝐷. The Dirichlet Green’s function satisfies
(i) ∇2𝐺(𝑟; 𝑟′) = 0 for all 𝑟 ≠ 𝑟′;
(ii) 𝐺(𝑟; 𝑟′) = 0 on 𝜕𝐷;
(iii) 𝐺(𝑟; 𝑟′) = 𝐺FS(𝑟; 𝑟′) + 𝐻(𝑟; 𝑟′) where 𝐻 satisfies Laplace’s equation, the homogeneous

version of Poisson’s equation, for all 𝑟 ∈ 𝐷.
Green’s second identity with ∇2𝜙 = −𝜌,∇2𝐻 = 0 gives

∫
𝜕𝐷

(𝜙𝜕𝐻𝜕 ̂𝑛 − 𝐻𝜕𝜙
𝜕 ̂𝑛) d𝑆 = ∫

𝐷
𝐻𝜌 d3𝑟

Now, we set 𝐺FS = 𝐺 − 𝐻 into Green’s third identity to find

𝜙(𝑟′) = ∫
𝐷
(𝐺 − 𝐻)(−𝜌) d3𝑟 +∫

𝜕𝐷
(𝜙𝜕(𝐺 − 𝐻)

𝜕 ̂𝑛 − (𝐺 − 𝐻)𝜕𝜙𝜕𝑛) d𝑆

All of the𝐻 terms can be cancelled by substituting the formof the second identity the derived
above. Now, given 𝐺 = 0, 𝜙 = ℎ on 𝜕𝐷, we have

𝜙(𝑟′) = ∫
𝐷
𝐺(𝑟; 𝑟′)(−𝜌(𝑟)) d3𝑟 +∫

𝜕𝐷
ℎ(𝑟)𝜕𝐺(𝑟; 𝑟

′)
𝜕 ̂𝑛 d𝑆

This is the general solution. The first integral is theGreen’s function solution, and the second
integral yields the inhomogeneous boundary conditions.

7.9. Method of images for Laplace’s equation
For symmetric domains 𝐷, we can construct Green’s functions with 𝐺 = 0 on 𝜕𝐷 by cancel-
ling the boundary potential out by using an opposite ‘mirror image’ Green’s function placed
outside the domain. Consider Laplace’s equation ∇2𝜙 = 0 on half of ℝ3, in particular, the
subset of ℝ3 such that 𝑧 > 0. Let 𝜙(𝑥, 𝑦, 0) = ℎ(𝑥, 𝑦) and 𝜙 → 0 as 𝑟 → ∞. The free space
Green’s function satisfies 𝐺FS → 0 as 𝑟 → ∞, but does not satisfy the boundary condition
that 𝐺FS = 0 at 𝑧 = 0. For 𝐺FS at 𝑟′ = (𝑥′, 𝑦′, 𝑧′), we will subtract a copy of 𝐺FS located at
𝑟″ = (𝑥′, 𝑦′, −𝑧′). This gives

𝐺(𝑟, 𝑟′) = −1
4𝜋|𝑟 − 𝑟′| −

−1
4𝜋|𝑟 − 𝑟″|

= −1
4𝜋√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2

+ 1
4𝜋√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 + 𝑧′)2

Hence 𝐺((𝑥, 𝑦, 0), 𝑟′) = 0, so this function satisfies the Dirichlet boundary conditions on all
of the boundary 𝜕𝐷. We have

𝜕𝐺
𝜕 ̂𝑛

|||𝑧=0
= 𝜕𝐺

𝜕𝑧
|||𝑧=0

= −1
4𝜋(

𝑧 − 𝑧′

|𝑟 − 𝑟′|3
− 𝑧 + 𝑧′

|𝑟 − 𝑟′|3
) = 𝑧′

2𝜋((𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧′)2)−3/2
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The solution is then given by

Φ(𝑥′, 𝑦′, 𝑧′) = 𝑧′
2𝜋 ∫

∞

−∞
∫

∞

−∞
[(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧′)2]−3/2ℎ(𝑥, 𝑦) d𝑥 d𝑦

7.10. Method of images for wave equation
Consider the one-dimensional wave equation

̈𝜙 − 𝑐2𝜙″ = 𝑓(𝑥, 𝑡)

with Dirichlet boundary conditions 𝜙(0, 𝑡) = 0. We create matching Green’s functions with
an opposite sign centred at −𝜉.

𝐺(𝑥, 𝑡; 𝜉, 𝜏) = 1
2𝑐𝐻(𝑐(𝑡 − 𝜏) − |𝑥 − 𝜉|) − 1

2𝑐𝐻(𝑐, (𝑡 − 𝜏) − |𝑥 + 𝜉|)

We can replace the addition of the two terms with a subtraction to instead use Neumann
boundary conditions. Suppose we wish to solve the homogeneous problem with 𝑓 = 0 for
initial conditions of a Gaussian pulse. Here, for 𝑥 > 0 we have

𝜙(𝑥, 𝑡) = exp[−(𝑥 − 𝜉 + 𝑐𝑡)2] − exp[−(−𝑥 − 𝜉 + 𝑐𝑡)2]

The solution travels to the left, cancellingwith the image at 𝑡 = 𝜉
𝑐
, which emerges and travels

right as the reflected wave.
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VI. QuantumMechanics

Lectured in Michaelmas 2021 by Dr. M. Ubiali
In this course, we explore the basics of quantummechanics using the Schrödinger equation.
This equation explains how a quantum wavefunction changes over time. By solving the
Schrödinger equation with different inputs and boundary conditions, we can understand
some of the ways in which quantum mechanics differs from classical physics, explaining
some of the scientific discoveries of the past century. We prove some theoretical facts about
quantum operators and observables, such as the uncertainty theorem, which roughly states
that it is impossible to know both the position and momentum of a particle.
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1. Historical introduction

1.1. Timeline

• (1801–3) Particles were shown to have wave-like properties using Young’s double slit
experiment.

• (1862–4) Electromagnetism was conceived by Maxwell. Light was discovered to be an
electromagnetic wave.

• (1897) Discovery of the electron by Thomson.

• (1900) The Planck law was discovered, which explains black-body radiation.

• (1905) The photoelectric effect was discovered by Einstein.

• (1909) Wave-light interference patterns were shown to exist with only one photon re-
corded at a time.

• (1911) Rutherford created his atomic model.

• (1913) Bohr created his atomic model.

• (1923) The Compton experiment showed x-ray scattering off electrons.

• (1923–4) De Broglie discovered the concept of wave-particle duality.

• (1925–30) The theory of quantum mechanics emerged at this time.

• (1927–8) The diffraction experiment was carried out with electrons.

1.2. Particles and waves in classical mechanics

In classical mechanics, a point-particle is an object with energy and momentum in an infin-
itesimally small point of space. Therefore, a particle is determined by the three-dimensional
vectors x, v = ẋ. The motion of a particle is governed by Newton’s second law,

𝑚ẍ = F(x, ẋ)

Solving this equation involves determination of x, ẋ for all 𝑡 > 𝑡0, once initial conditions
x(𝑡0), ẋ(𝑡0) are known.

Waves are classically defined as any real- or complex-valued functionwith periodicity in time
and/or space. For instance, consider a function 𝑓 such that 𝑓(𝑡 +𝑇) = 𝑓(𝑡), which is a wave
with period 𝑇. The frequency 𝜈 is defined to be 1

𝑇
, and the angular frequency 𝜔 is defined

as 2𝜋𝜈 = 2𝜋
𝑇
. Suppose we have a function in one dimension obeying 𝑓(𝑥 + 𝜆) = 𝑓(𝑥). This

has wavelength 𝜆 and wave number 𝑘 = 2𝜋
𝜆
.
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Consider 𝑓(𝑥) = exp(±𝑖𝑘𝑥). In three dimensions, this becomes 𝑓(𝑥) = exp(±𝑖k ⋅ x). This
is called a ‘plane wave’; the one-dimensional wave number 𝑘 has been transformed into a
three-dimensional wave vector k. 𝜆 is now defined as 2𝜋

|𝑘|
.

The wave equation in one dimension is

𝜕2𝑓(𝑥, 𝑡)
𝜕𝑡2 − 𝑐2 𝜕

2𝑓(𝑥, 𝑡)
𝜕𝑥2 = 0; 𝑐 ∈ ℝ

The solutions to this equation are

𝑓±(𝑥, 𝑡) = 𝐴± exp(±𝑖𝑘𝑥 − 𝑖𝜔𝑡)

where 𝜔 = 𝑐𝑘; 𝜆 = 𝑐
𝜈
. The two conditions are known as the dispersion relations. 𝐴± is the

amplitude of the waves.

In three dimensions,
𝜕2𝑓(x, 𝑡)
𝜕𝑡2 − 𝑐2∇2𝑓(x, 𝑡) = 0; 𝑐 ∈ ℝ

The solution is
𝑓(x, 𝑡) = 𝐴 exp(±𝑖k ⋅ x − 𝑖𝜔𝑡)

where 𝜔 = 𝑐|k|; 𝜆 = 𝑐
𝜈
.

Note. Other kinds of waves are solutions to other governing equations, provided that an-
other dispersion relation 𝜔(k) is given. Also, for any governing equation linear in 𝑓, the
superposition principle holds: if 𝑓1, 𝑓2 are solutions then so is 𝑓1 + 𝑓2.

1.3. Black-body radiation
Several experiments have shown that light behaves with some particle-like characteristics.
For example, consider a body heated at some temperature 𝑇. Any such body will emit radi-
ation. The simplest body to study is called a ‘black-body’, which is a totally absorbing surface.
The intensity of light emitted by a black body was modelled as a function of the frequency.
The classical prediction for the spectrum of emitted radiation was that as the frequency in-
creased, the intensity would also increase. A curve with a clear maximum point was ob-
served. Planck’s law was found to be the equation of this curve, which can be derived from
the equation 𝐸 = ℏ𝜔 involving the Planck constant, instead of the classical energy equation
𝐸 = 𝑘𝐵𝑇 involving the Boltzmann constant. This then implies that light was ‘quantised’
into particles.

1.4. Planck’s constant

The Planck constant is ℎ ≈ 6.61 × 10−34 J s. The reduced Planck constant is ℏ = ℎ
2𝜋
.

Quantum mechanics typically uses the reduced Planck constant over the normal Planck
constant. The dimensionality of ℎ is energy multiplied by time, or position multiplied by
momentum.
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1.5. Photoelectric effect
Consider ametal surface in a vacuum, which is hit by light with angular frequency𝜔. When
the radiation hits the surface of the metal, electrons were emitted. Classically, we would
expect that:

(i) Since the incident light carries energy proportional to its intensity, increasing the in-
tensity we should have sufficient energy to break the bonds of the electrons with the
atoms of the metal.

(ii) Since the intensity and frequency are independent, light of any 𝜔 would eventually
cause electrons to be emitted, given a high enough intensity.

(iii) The emission rate should be constant.

In fact, the experiment showed that

(i) Themaximum energy 𝐸max of emitted electrons depended on𝜔, and not on the intens-
ity.

(ii) Below a given threshold 𝜔min, there was no electron emission.

(iii) The emission rate increased with the intensity.

Einstein’s explanation for this phenomenon was that the light was quantised into small
quanta, called photons. Photons each carry an energy 𝐸 = ℏ𝜔. Each photon could liber-
ate only one electron. Thus,

𝐸max = ℏ𝜔 − 𝜙

where 𝜙 is the binding energy of the electron with the metal. The higher the intensity, the
more photons hit the metal. This implies that more electrons will be scattered.

1.6. Compton scattering
X-rays were emitted towards a crystal, scattering free electrons. The X-ray should then be
deflected by some angle 𝜃. Classically, for a given 𝜃 we would expect that the intensity as
a function of 𝜔 would have a maximum at 𝜔0, the frequency of the incoming X-rays. This
is because we would not expect 𝜔 to change much after scattering an electron. However,
there was another peak at 𝜔′, which was dependent on the angle 𝜃. In fact, considering the
photon and electron as a relativistic system of particles, we can derive (from IA Dynamics
and Relativity),

2 sin2 𝜃2 =
𝑚𝑐
|q| −

𝑚𝑐
|p|

where p is the initial momentum and q is the final momentum. Assuming 𝐸 = ℏ𝜔 and
p = ℏk,

|p| = ℏ|k| = ℏ𝜔𝑐 ; |q| = ℏ|k′| = ℏ𝜔
′

𝑐
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Hence,
1
𝜔 = 1

𝜔′ +
ℏ
𝑚𝑐(1 − cos 𝜃)

So the frequency of the outgoing X-ray should have an angular frequency which is shifted
from the original. The expected peak was actually caused by X-rays simply not interacting
with the electrons.

1.7. Atomic spectra
The Rutherford scattering experiment involved shooting 𝛼 particles at some thin gold foil.
Most particles travelled through the foil, somewere slightly deflected, and somewere deflec-
ted completely back. This indicated that the gold foil was mostly comprised of vacuum and
there was a high density of positive charge within the atom. Electrons would orbit around
the nucleus. However, there were problems with this model:

(i) If the electrons in orbits moved, they would radiate and lose energy. However if the
electrons were static, they would simply collapse and fall into the nucleus.

(ii) This model did not explain the atomic spectra, the observed frequencies of light ab-
sorbed or emitted by an atom when electrons change energy levels.

The spectra had frequency

𝜔𝑚𝑛 = 2𝜋𝑐𝑅0(
1
𝑛2 −

1
𝑚𝑐); 𝑚, 𝑛 ∈ ℕ,𝑚 > 𝑛

where 𝑅0 is the Rydberg constant, approximately 1 × 107m−1. Bohr theorised that the
electron orbits themselves are quantised, so 𝐿 (the orbital angular momentum) is an in-
teger multiple of ℏ; 𝐿𝑛 = 𝑛ℏ. First, the quantisation of 𝐿 implies the quantisation of 𝑣
and 𝑟. Indeed, given that 𝐿 ≡ 𝑚𝑒𝑣𝑟, we have that 𝑣 is quantised: 𝑣𝑛 = 𝑛ℏ

𝑚𝑒𝑟
. Further,

by the Coulomb force, 𝐹 = 𝑒2

4𝜋𝜀2
1
𝑟2
e𝑟 = 𝑚𝑒𝑎𝑟e𝑟 where 𝑎𝑟 is the radial acceleration. Then

𝑒2

4𝜋𝜀2
1
𝑟2
= 𝑚𝑒

𝑣2

𝑟
⟹ 𝑟 = 𝑟𝑛 =

4𝜋𝜀0ℏ2

𝑚𝑒𝑒2
𝑛2. The coefficient on 𝑛2 is known as the Bohr radius.

Immediately then the energy levels 𝐸 of the atom can be shown to be quantised, since

𝐸 = 1
2𝑚𝑒𝑣2 −

𝑒2
4𝜋𝜀0

1
𝑟

giving

𝐸𝑛 = − 𝑒2
8𝜋𝜀0𝑎0

1
𝑛2 =

−𝑒4𝑚𝑒
32𝜋2𝜀20ℏ2

1
𝑛2

The ground energy level is at 𝑛 = 1, giving

𝐸1 = −13.6 eV
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The excited states are 𝐸𝑛 for 𝑛 > 1. The energy emitted when descending from 𝐸𝑛 to 𝐸1 are
the spectral lines:

Δ𝐸 = ℏ𝜔
The Bohr model gives

𝜔𝑚𝑛 =
Δ𝐸𝑚𝑛
ℏ = 2𝜋𝑐( 𝑒2

4𝜋𝜀0ℏ𝑐
)
2
( 1𝑛2 −

1
𝑚2 )

which agrees with the Rydberg constant 𝑅0 defined earlier.
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2. Wavefunctions
2.1. Wave-like behaviour of particles
De Broglie hypothesised that any particle of any mass is associated with a wave with

𝜔 = 𝐸
ℏ ; k = p

ℏ
This hypothesis made sense of the quantisation of electron angular momentum; if the elec-
tron lies on a circular orbit then 2𝜋𝑟 = 𝑛𝜆 where 𝜆 is the wavelength of the electron. How-
ever,

𝑝 = ℏ𝑘 = ℏ2𝜋𝜆 ⟹ 𝐿 = 𝑚𝑒𝑣𝑟 = 𝑝𝑟 = ℏ2𝜋𝜆
𝑛𝜆
2𝜋 = 𝑛ℏ

Hence the angular momentum must be quantised. The electron diffraction experiment
showed that this hypothesis was true, by showing that electrons behaved sufficiently like
waves. Interference patterns were observed with 𝜆 = 2𝜋

|k|
= 2𝜋𝑘

|p|
compatible with the De

Broglie hypothesis.

2.2. Probabilistic interpretation of wavefunctions
In classical mechanics, we can describe a particle with x, ẋ or p = 𝑚ẋ. In quantum mech-
anics, we need the state 𝜓 described by 𝜓(x, 𝑡) called the wavefunction.

Remark. Note that the state is an abstract entity, while 𝜓(x, 𝑡) is the representation of 𝜓 in
the space of x. In some sense, 𝜓(x, 𝑡) is the complex coefficient of 𝜓 in the continuous basis
of x. In other words, 𝜓(x, 𝑡) is 𝜓 in the x representation. In this course, we always work in
the x representation.

Definition. A wavefunction is a function 𝜓(x, 𝑡)∶ ℝ3 → ℂ that satisfies certain mathemat-
ical properties (defined later) dictated by its physical interpretation. 𝑡 is considered a fixed
external parameter, so it is not included in the function’s type.

The physical interpretation of a wavefunction is called Born’s rule. The probability density
for a particle to be at some point x at 𝑡 is given by |𝜓(x, 𝑡)|2. We write the probability density
as 𝜌, hence 𝜌(x, 𝑡) d𝑉 is the probability that the particle lies in some small volume 𝑉 centred
at x. Now, since the particle must be somewhere, the wave function must be normalisable,
or square-integrable in ℝ3:

∫
ℝ3
𝜓⋆(x, 𝑡)𝜓(x, 𝑡) d𝑉 = ∫

ℝ3
|𝜓(x, 𝑡)|2 d𝑉 = 𝑁 ∈ (0,∞)

Since we want the total probability to be 1, we must normalise the wavefunction by defin-
ing

𝜓(x, 𝑡) = 1
√𝑁

𝜓(x, 𝑡) ⟺ ∫
ℝ3

||𝜓(x, 𝑡)||
2
d𝑉 = 1
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Hence, 𝜌(x, 𝑡) = ||𝜓(x, 𝑡)||
2
really is a probability density. From now, we will not use the bar

for denoting normalisation, since normalisation is evident from context.

2.3. Bases and equivalence classes
In linear algebra, we consider vectors in some vector space such asℝ𝑛. In quantummechan-
ics, we instead consider states in a space of wave functions. The analogous concept to vector
components is to represent a state 𝜓 in an infinite-dimensional 𝑥 axis basis 𝜓(𝑥, 𝑡). Note that
if two wavefunctions differ by a constant phase, that is, ∃𝛼 ∈ ℝ such that

𝜓(𝑥, 𝑡) = 𝑒𝑖𝛼𝜓(𝑥, 𝑡)

then the states are equivalent in terms of probability, since the probability density is given by
the norm of 𝜓, not its angle. We can think of states as arrays in the vector space of wavefunc-
tions. We can then describe the equivalence class [𝜓] as the set of all functions 𝜙 such that
𝜙 = 𝜆𝜓, for some 𝜆 ∈ ℂ∖{0}, sincewemust retain the condition that𝜙 is normalisable.

2.4. Hilbert spaces
In quantum mechanics, we are interested in the functional space of square-integrable func-
tions on ℝ3, which is a type of Hilbert space and denotedℋ.

Remark. Since the set of wavefunctions form a vector space, 𝜓1, 𝜓2 ∈ ℋ implies that 𝜓 =
𝜆1𝜓1 + 𝜆2𝜓2 ∈ ℋ for constants 𝜆1, 𝜆2 ∈ ℂ provided this 𝜓 is nonzero. For waves, this is the
well-known superposition principle. Note that this exact formulation of linearity is unique
to quantummechanics; for example, in classical mechanics, two solutions to Newton’s equa-
tions may not be combined into a new solution by taking their sum.

Proposition. If 𝜓1(𝑥, 𝑡), 𝜓2(𝑥, 𝑡) are normalisable, then 𝜓 = 𝜆1𝜓𝑖(𝑥, 𝑡) + 𝜆2𝜓2(𝑥, 𝑡) is also
normalisable.

Proof. Recall the inequality
2|𝑧1||𝑧2| ≤ |𝑧1|

2 + |𝑧2|
2

Then we can show

∫
ℝ3
|𝜆1𝜓1 + 𝜆2𝜓2|

2 d𝑉 = ∫
ℝ3
(|𝜆1𝜓1| + |𝜆2𝜓2|)

2 d𝑉

= ∫
ℝ3
(|𝜆1𝜓1|

2 + 2|𝜆1𝜓1||𝜆2𝜓2| + |𝜆2𝜓2|
2) d𝑉

= ∫
ℝ3
(2|𝜆1𝜓1|

2 + 2|𝜆2𝜓2|
2) d𝑉 < ∞

so the norm is non-infinite.
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2.5. Inner product
We define the inner product between two wavefunctions to be

⟨𝜓, 𝜙⟩ = ∫
ℝ3
𝜓⋆𝜙 d𝑉

The following statements hold.

(i) ⟨𝜓, 𝜙⟩ exists for all wave functions 𝜓, 𝜙 ∈ ℋ;

(ii) ⟨𝜓, 𝜙⟩⋆ = ⟨𝜙, 𝜓⟩;
(iii) the inner product is antilinear in the first entry, and linear in the second entry; and

(iv) for continuous 𝜓, ⟨𝜓, 𝜓⟩ = 0 is true if and only if 𝜓 is identically zero.
Weprove the first statement, since the others are obvious from the definition. By theCauchy–
Schwarz inequality,

∫
ℝ3
|𝜓|2 d𝑉 ≤ 𝑁1;

∫
ℝ3
|𝜙|2 d𝑉 ≤ 𝑁2;

∴ ∫
ℝ3
|𝜓𝜙| d𝑉 ≤

√
∫
ℝ3
|𝜓|2 d𝑉 ⋅∫

ℝ3
|𝜙|2 d𝑉 < ∞

2.6. Normalisation
Definition. We define the norm of a wavefunction to be ‖𝜓‖ ≡ ⟨𝜓, 𝜓⟩. A wavefunction 𝜓 is
normalised if ‖𝜓‖ = 1.
Definition. A set of wavefunctions {𝜓𝑛} is orthonormal if ⟨𝜓𝑚, 𝜓𝑛⟩ = 𝛿𝑚𝑛. A set of wave-
functions {𝜓𝑛} is complete if for any 𝜓 ∈ ℋ, we can write

𝜓 = ∑
𝑛
𝜆𝑛𝜓𝑛

for 𝜆𝑛 ∈ ℂ.
Proposition. If {𝜓𝑛} is a complete and orthonormal basis ofℋ, then

𝜙 =
𝑛
∑
𝑘=0

𝑐𝑘𝜓𝑘

where
𝑐𝑘 = ⟨𝜓𝑘, 𝜙⟩
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Proof. Suppose we can write 𝜙 in this form. Then,

⟨𝜓𝑛, 𝜙⟩ = ⟨𝜓𝑛,∑
𝑚
𝑐𝑚𝜓𝑚⟩

= ∑
𝑚
𝑐𝑚 ⟨𝜓𝑛, 𝜓𝑚⟩

= ∑
𝑚
𝑐𝑚𝛿𝑚𝑛

= 𝑐𝑛

Remark. If 𝜙 is the desired outcome of a measurement for a particle described by 𝜓, then
the probability of observing 𝜙 given 𝜓 at some time 𝑡 is

|⟨𝜓, 𝜙⟩|2 = |||∫ℝ3
𝜓⋆𝜙 d𝑉|||

2

2.7. Time-dependent Schrödinger equation
Definition. The evolution of the wavefunction over time is given by the time-dependent
Schrödinger equation (TDSE),

𝑖ℏ𝜕𝜓𝜕𝑡 = − ℏ2
2𝑚∇2𝜓 + 𝑈𝜓

where 𝑈 = 𝑈(𝑥) is a real potential energy term.
Remark. This equation is a first-order differential equation in 𝑡. Contrast this to Newton’s
second law, which is a second-order differential equation in 𝑡. This implies that we only
need a single initial condition 𝜓(𝑥, 𝑡0) to determine all future behaviour.
Remark. Note the asymmetry between the spatial and temporal components: there is only
a first derivative in time but a second derivative in space. This implies that this equation is
incompatible with relativity, where time and space must be treated equitably.

One way to conceptualise the TDSE is by letting 𝜓 be some wave defined by

𝜓(𝑥, 𝑡) = exp[𝑖(𝑘 ⋅ 𝑥 − 𝜔𝑡)]

Then, the De Broglie hypothesis (𝑘 = 𝑝/ℏ, 𝜔 = 𝐸/𝑚) implies that

𝜓(𝑥, 𝑡) = exp [ 𝑖ℏ(𝑝 ⋅ 𝑥 −
𝑝2
2𝑚𝑡)]

which is a solution to the TDSE.

308



2. Wavefunctions

2.8. Normalisation and time evolution
Because of the TDSE, we can show that the norm 𝑁 of a wavefunction 𝜓 is independent of
𝑡.

d𝑁
d𝑡 = ∫

ℝ3

𝜕
𝜕𝑡 |𝜓(𝑥, 𝑡)|

2 d𝑉

Now, note that
𝜕
𝜕𝑡 |𝜓|

2 = 𝜕
𝜕𝑡 ⟨𝜓

⋆, 𝜓⟩ = 𝜓⋆ 𝜕𝜓
𝜕𝑡 + 𝜓𝜕𝜓

⋆

𝜕𝑡
The TDSE then gives

𝜕𝜓
𝜕𝑡 =

𝑖ℏ
2𝑚∇2𝜓2 + 𝑖

𝑘𝑈𝜓;
𝜕𝜓⋆

𝜕𝑡 = − 𝑖ℏ
2𝑚∇2𝜓2 − 𝑖

𝑘𝑈𝜓
⋆

∴ 𝜕|𝜓|2
𝜕𝑡 = ∇ ⋅ [ 𝑖ℏ2𝑚(𝜓⋆∇𝜓 − 𝜓∇𝜓⋆)]

Finally,

∫
ℝ3

𝜕|𝜓|2
𝜕𝑡 d𝑉 = ∫

ℝ3
∇ ⋅ [ 𝑖ℏ2𝑚(𝜓⋆∇𝜓 − 𝜓∇𝜓⋆)] = 0

since 𝜓, 𝜓⋆ are such that |𝜓| → 0 as |𝑥| → ∞.

2.9. Conserved probability current
We have proven that the normalisation of wavefunctions are constant in time. Hence, we
can derive the probability conservation law:

𝜕𝜌
𝜕𝑡 + ∇ ⋅ 𝐽 = 0; 𝐽(𝑥, 𝑡) = −𝑖ℏ

2𝑚 (𝜓⋆∇𝜓 − 𝜓∇𝜓⋆)

This is the conserved probability current.
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3. Observables and operators
3.1. Expectation and operators
Given the wavefunction, we would like to extract some information about the particle it
represents.

Definition. An observable is a property of the particle that can be measured.

Definition. An operator is any linear mapℋ →ℋ such that

�̂�(𝑎1𝜓1 + 𝑎2𝜓2) = 𝑎1�̂�(𝜓1) + 𝑎2�̂�(𝜓2)

where 𝑎1, 𝑎2 ∈ ℂ, 𝜓1, 𝜓2 ∈ ℋ.

In quantummechanics, each observable is represented by an operator acting on the state 𝜓.
Each measurement is represented by an expectation value of the operator. In comparison,
in linear algebra we would often use a linear transformation for a similar purpose. Once we
have a basis for a linear transformation, we have a matrix. In quantum mechanics, we use
the 𝑥 basis, so we can write

𝜓 = (�̂�)(𝑥, 𝑡)

Example. Consider the class of finite differential operators

𝑁
∑
𝑛=0

𝑝𝑛(𝑥)
𝜕𝑛
𝜕𝑥𝑛

This includes, for example, position, momentum, and energy.

Example. A translation is an operator:

𝑠𝑎∶ 𝜓(𝑥) ↦ 𝜓(𝑥 − 𝑎)

Example. The parity operator is

𝑃∶ 𝜓(𝑥) ↦ 𝜓(−𝑥)

3.2. Dynamical observables
In general, to calculate the expectation value of an observable, we place the operator between
𝜓⋆ and 𝜓 and integrate over the whole space. From the probabilistic interpretation of the
Born rule, the position of the particle can be interpreted as

⟨𝑥⟩ = ∫
+∞

−∞
𝑥|𝜓(𝑥, 𝑡)|2 d𝑥 = ∫

+∞

−∞
𝜓⋆𝑥𝜓 d𝑥
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3. Observables and operators

Hence, we can write the coefficient 𝑥 as the operator ̂𝑥. Now, consider the momentum. By
considering the time-dependent Schrödinger equation with 𝑈 = 0, and then integrating by
parts,

⟨𝑝⟩ = 𝑚 d
d𝑡 ⟨𝑥⟩

= 𝑚 d
d𝑡 ∫

+∞

−∞
𝑥𝜓⋆𝜓 d𝑥

= 𝑚∫
+∞

−∞
𝑥 𝜕𝜕𝑡 (𝜓

⋆𝜓) d𝑥

= 𝑚 ⋅ 𝑖ℏ2𝑚 ∫
+∞

−∞
𝑥 𝜕
𝜕𝑥(𝜓

⋆ 𝜕𝜓
𝜕𝑥 − 𝜓𝜕𝜓

⋆

𝜕𝑥 ) d𝑥

= −𝑖ℏ
2 ∫

+∞

−∞
𝑥 𝜕
𝜕𝑥(𝜓

⋆ 𝜕𝜓
𝜕𝑥 − 𝜓𝜕𝜓

⋆

𝜕𝑥 ) d𝑥

= −𝑖ℏ
2 ∫

+∞

−∞
(𝜓⋆ 𝜕𝜓

𝜕𝑥 − 𝜓𝜕𝜓
⋆

𝜕𝑥 ) d𝑥

= −𝑖ℏ∫
+∞

−∞
𝜓⋆ 𝜕𝜓

𝜕𝑥 d𝑥

= ∫
+∞

−∞
𝜓⋆(−𝑖ℏ 𝜕

𝜕𝑥)𝜓 d𝑥

So the operator ̂𝑝 is −𝑖ℏ 𝜕
𝜕𝑥
. Given 𝑥 and 𝑝, we can write many classical dynamical observ-

ables. The classical notion is written in parentheses. The symbol↦ is used instead of equal-
ity since we are representing the observable in the 𝑥 basis.

̂𝑥 ↦ 𝑥

̂𝑝 ↦ −𝑖ℏ 𝜕
𝜕𝑥

(𝑇 = 𝑝2
2𝑚) ̂𝑇 ↦ ̂𝑝2

2𝑚 = −ℏ2
2𝑚

𝜕2
𝜕𝑥2

�̂� ↦ 𝑈( ̂𝑥) = 𝑈(𝑥)

3.3. Hamiltonian operator
The total energy is

𝐸 = 𝑇 + 𝑈
given by the Hamiltonian operator

�̂� = ̂𝑇 + �̂�
In one dimension,

�̂� ↦ −ℏ2
2𝑚

𝜕2𝜓
𝜕𝑥2 + 𝑈(𝑥)𝜓
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VI. QuantumMechanics

In three dimensions,
�̂� ↦ −ℏ2

2𝑚 ∇2𝜓 + 𝑈(𝑥)𝜓

Wecannow represent the time-dependent Schrödinger equation in amore compact form:

𝑖ℏ𝜕𝜓𝜕𝑡 = �̂�𝜓

We can now prove that for a particle in a potential 𝑈(𝑥) ≠ 0,

d
d𝑡 ⟨𝑝⟩ = −⟨𝜕𝑈𝜕𝑥 ⟩

3.4. Time-independent Schrödinger equation
From the time-dependent version of the equation,

𝑖ℏ𝜕𝜓𝜕𝑡 = �̂�𝜓

we can try a solution of the form

𝜓(𝑥, 𝑡) = 𝑇(𝑡)𝜒(𝑥)

Then, we can find
𝑖ℏ𝜕𝑇(𝑡)𝜕𝑡 𝜒(𝑥) = 𝑇(𝑡)�̂�𝜒(𝑥)

Then, dividing by 𝑇𝜒,
1

𝑇(𝑡)(𝑖ℏ
𝜕𝑇
𝜕𝑡 ) =

�̂�𝜒(𝑥)
𝜒

Since the left and right hand sides depend only on 𝑥 and 𝑡 respectively but are equal, they
must be equal to a separation constant 𝐸 ∈ ℝ. Solving for time,

1
𝑇 𝑖ℏ

𝜕𝑇
𝜕𝑡 = 𝐸 ⟹ 𝑇(𝑡) = 𝑒

−𝑖𝐸𝑡
ℏ

If 𝐸 were complex, 𝑇 would diverge. Solving for space, we have the time-independent
Schrödinger equation as follows.

�̂�𝜒(𝑥) = 𝐸𝜒(𝑥)
Explicitly,

− ℏ2
2𝑚∇2𝜒(𝑥) + 𝑈(𝑥)𝜒(𝑥) = 𝐸𝜒(𝑥)

This is an eigenvalue equation for �̂�; we wish to find the eigenvalues for �̂� in the 𝑥 basis.
Note that the factorised solution 𝜓 = 𝑇𝜒 is just a particular class of solutions for the time-
dependent Schrödinger equation. However, it can be shown that any solution to the time-
dependent equation can be written as a linear combination of the time-independent equa-
tion solutions.
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4. One-dimensional solutions to the Schrödinger equation

4. One-dimensional solutions to the Schrödinger equation
4.1. Stationary states
Definition. With the ansatz 𝜓(𝑥, 𝑡) = 𝜒(𝑥)𝑇(𝑡), we have found a particular class of solu-
tions of the time-independent Schrödinger equation:

𝜓(𝑥, 𝑡) = 𝜒(𝑥)𝑒−
𝑖𝐸𝑡
ℏ

where 𝜒(𝑥) are the eigenfunctions of �̂� with eigenvalue 𝐸. Such solutions are called station-
ary states.

Note,
𝜌(𝑥, 𝑡) = |𝜓(𝑥, 𝑡)|2 = |𝜒(𝑥)|2

This explains the naming of the states as ‘stationary’, as their probability density is independ-
ent of time. Now, suppose 𝐸 is quantised. Then, the general solution to the system is

𝜓(𝑥, 𝑡) =
𝑁
∑
𝑛=1

𝑎𝑛𝜒𝑛(𝑥)𝑒−
𝑖𝐸𝑛𝑡
ℏ

where 𝑁 can be finite or infinite. In principle, we can also have a continuous energy state
𝐸𝛼, 𝛼 ∈ ℝ. We can still use the same idea:

𝜓(𝑥, 𝑡) = ∫
Δ𝛼

𝐴(𝛼)𝜒𝛼(𝑥)𝑒−
𝑖𝐸𝛼𝑡
ℏ d𝛼

Note that |𝑎𝑛|
2 and 𝐴(𝛼) d𝛼 give the probability of measuring the particle energy to be 𝐸𝑛 or

𝐸𝛼.

4.2. Infinite potential well
We define

𝑈(𝑥) = {0 for |𝑥| ≤ 𝑎
∞ for |𝑥| > 𝑎

For |𝑥| > 𝑎, we must have 𝜒(𝑎) = 0. Otherwise, 𝜒 ⋅ 𝑈 = ∞. This gives us a boundary
condition, 𝜒(±𝑎) = 0. For |𝑥| ≤ 𝑎, we seek solutions of the form

− ℏ2
2𝑚𝜒″(𝑥) = 𝐸𝜒(𝑥); 𝜒(±𝑎) = 0

Equivalently,

𝜒″(𝑥) + 𝑘2𝜒(𝑥) = 0; 𝑘 = √
2𝑚𝐸
ℏ2

Since 𝐸 > 0,
𝜒(𝑥) = 𝐴 sin 𝑘𝑥 + 𝐵 cos 𝑘𝑥
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VI. QuantumMechanics

Imposing boundary conditions,

𝐴 sin 𝑘𝑎 + 𝐵 cos 𝑘𝑎 = 0; 𝐴 sin 𝑘𝑎 − 𝐵 cos 𝑘𝑎 = 0

Suppose 𝐴 = 0, giving 𝜒(𝑥) = 𝐵 cos 𝑘𝑥. Then, imposing boundary conditions, 𝜒𝑛(𝑥) =
𝐵 cos 𝑘𝑛𝑥 where 𝑘𝑛 =

𝑛𝜋
2𝑎
, and 𝑛 are odd positive integers. These are even solutions.

Alternatively, suppose 𝐵 = 0. In this case, 𝜒(𝑥) = 𝐴 sin 𝑘𝑥. Thus, 𝜒𝑛(𝑥) = 𝐴 sin 𝑘𝑛𝑥 where
𝑘𝑛 =

𝑛𝜋
2𝑎
, and 𝑛 are even nonzero positive integers. These provide odd solutions.

We can also determine the normalisation constants by defining that the eigenfunctions of
the Hamiltonian are normalised to unity. Thus,

∫
𝑎

−𝑎
|𝜒𝑛(𝑥)|

2 = 1 ⟹ 𝐴 = 𝐵 =√
1
𝑎

Hence, the general solution is given by the eigenvalues

𝐸𝑛 =
ℏ2
2𝑛𝑘

2
𝑛 =

ℏ2𝜋2𝑛2
2𝑚𝑎2

and eigenfunctions

𝜒𝑛(𝑥) = √
1
𝑎 {

cos(𝑛𝜋𝑥
2𝑎

) if 𝑛 odd
sin(𝑛𝜋𝑥

2𝑎
) if 𝑛 even

Remark. Note that unlike classical mechanics, the ground state energy is not zero. Note
also that 𝜒𝑛 have (𝑛 + 1) nodes in which 𝜌(𝑥) = 0. When 𝑛 → ∞, 𝜌𝑛(𝑥) tends to a constant,
which is like in classical mechanics. Eigenfunctions of the Hamiltonian in this case were
either odd or even; we can in fact prove that this is the case in general.

Proposition. If we have a system of non-degenerate eigenstates (𝐸𝑖 ≠ 𝐸𝑗), then if 𝑈(𝑥) =
𝑈(−𝑥) the eigenfunctions of �̂� must be either odd or even.

Proof. The time-independent Schrödinger equation is invariant under 𝑥 ↦ −𝑥 if 𝑈 is even.
Hence, if 𝜒(𝑥) is a solution with eigenvalue 𝐸, then 𝜒(−𝑥) is also a solution. Since we have
a non-degenerate solution, 𝜒(−𝑥) = 𝜒(𝑥) hence the solutions must be the same up to a
normalisation factor. For consistency, 𝜒(𝑥) = 𝜒(−(−𝑥)) = 𝛼𝜒(−𝑥) = 𝛼2𝜒(𝑥). Hence 𝛼 =
±1, so 𝜒 is either odd or even.

4.3. Finite potential well
We define

𝑈(𝑥) = {0 for |𝑥| ≤ 𝑎
𝑈0 for |𝑥| > 𝑎
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4. One-dimensional solutions to the Schrödinger equation

Classically, if 𝐸 < 𝑈0, the particle has insufficient energy to escape the well. We will only
consider eigenstates with 𝐸 < 𝑈0 here, but we will find that it is possible in quantummech-
anics to escape the well with positive probability. We will search for even functions only,
odd functions can be solved independently. If |𝑥| ≤ 𝑎,

− ℏ2
2𝑚𝜒″(𝑥) = 𝐸𝜒(𝑥)

Equivalently,

𝜒″(𝑥) + 𝑘2𝜒(𝑥) = 0; 𝑘 = √
2𝑚𝐸
ℏ2

The solution becomes

𝜒(𝑥) = 𝐴 sin 𝑘𝑥 + 𝐵 cos 𝑘𝑥 ⟹ 𝜒(𝑥) = 𝐵 cos 𝑘𝑥

since we are only looking for even solutions. In the region |𝑥| > 𝑎,

− ℏ2
2𝑚𝜒″(𝑥) + 𝑈0𝜒(𝑥) = 𝐸𝜒(𝑥)

giving

𝜒″(𝑥) − 𝑘
2
𝜒(𝑥) = 0; 𝑘 = √

2𝑚(𝑈0 − 𝐸)
ℏ2

This yields exponential solutions:

𝜒(𝑥) = 𝐶𝑒𝑘𝑥 + 𝐷𝑒−𝑘𝑥

Imposing the normalisability constraints, for 𝑥 > 𝑎we have 𝐶 = 0, and for 𝑥 < −𝑎 we have
𝐷 = 0. Imposing even parity, 𝐶 = 𝐷 when nonzero. Thus,

𝜒(𝑥) =
⎧
⎨
⎩

𝐶𝑒𝑘𝑥 𝑥 < −𝑎
𝐵 cos(𝑘𝑥) |𝑥| ≤ 𝑎
𝐶𝑒−𝑘𝑥 𝑥 > 𝑎

Now we must impose continuity of 𝜒(𝑥) and its derivative at 𝑥 = ±𝑎. First,

𝐶𝑒−𝑘𝑎 = 𝐵 cos(𝑘𝑎)

The other gives
−𝑘𝐶𝑒−𝑘𝑎 = −𝑘𝐵 sin(𝑘𝑎)

From the ratio of both constraints,

𝑘 tan(𝑘𝑎) = 𝑘

From the definition of 𝑘, 𝑘,
𝑘2 + 𝑘

2
= 2𝑚𝑈0

ℏ2
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VI. QuantumMechanics

We will define some rescaled variables for convenience: 𝜉 = 𝑘𝑎, 𝜂 = 𝑘𝑎. Rewriting,

𝜉 tan 𝜉 = 𝜂; 𝜉2 + 𝜂2 = 𝑟20 ; 𝑟0 =
2𝑚𝑈
ℏ

This may be solved graphically. The eigenvalues of the system correspond to the points
of intersection between the two equations. There are always a finite number of possible
intersections, regardless of the value of 𝑟0. The eigenvalues are

𝐸𝑛 =
ℏ2
2𝑛𝑎2 𝜉

2
𝑛; 𝜉 ∈ {𝜉1,… , 𝜉𝑛}; 𝑛 = 1,… , 𝑝

When 𝑈0 → ∞, 𝑟0 → ∞. At this point, there are an infinite amount of intersections, so the
eigenvalues of the Hamiltonian become that of the infinite well. Further 𝜒(𝑥) tends to the
eigenfunctions of the infinite well. Note that the 𝜒𝑛(𝑥) have some positive region outside
the well. We can use the unused condition above to write 𝐶 in terms of 𝐵, and then we can
use the normalisation condition to find 𝐵.

4.4. Free particles

A free particle is under no potential. The time-independent Schrödinger equation is

− ℏ
2𝑚𝜒″(𝑥) = 𝐸𝜒(𝑥)

This has solutions

𝜒𝑘(𝑥) = 𝐴𝑒𝑖𝑘𝑥; 𝑘 = √
2𝑚𝐸
ℏ2

The complete solution, adding 𝑇(𝑡), is thus

𝜓𝑘(𝑥, 𝑡) = 𝜒𝑘(𝑥)𝑒−𝑖𝐸𝑘𝑡/ℏ = 𝐴𝑒𝑖(𝑘𝑥−
ℏ𝑘2
2𝑚 𝑡)

which are called De Broglie plane waves. This is not a solution since

∫
∞

−∞
|𝜙𝑘(𝑥, 𝑡)| d𝑥 = |𝐴|2∫

∞

−∞
1 d𝑥

which diverges. In general, any non-bound solution is non-normalisable. This is true since
∫∞
−∞ |𝜒(𝑥)|2 d𝑥 < ∞ requires lim𝑅→∞ ∫|𝑥|>𝑅 |𝜒(𝑥)| d𝑥 = 0. So, to solve the free particle
system, we will build a linear combination of plane waves 𝜒 to yield a normalisable solution.
This is called the Gaussian wavepacket. Alternatively, we can simply ignore the problem of
normalisability, and change the interpretation of 𝜒𝑛(𝑥).
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4. One-dimensional solutions to the Schrödinger equation

4.5. Gaussian wavepacket
Due to the superposition principle, we can take a continuous linear combination of the 𝜓𝑘
functions.

𝜓(𝑥, 𝑡) = ∫
∞

0
𝐴(𝑘)𝜓𝑘(𝑥, 𝑡) d𝑘

We can construct a suitable 𝐴(𝑘) such that 𝜓 is normalisable. Choosing

𝐴(𝑘) = 𝐴GP(𝑘) = exp[−𝜎2 (𝑘 − 𝑘0)2]; 𝑘0 ∈ ℝ, 𝜎 ∈ ℝ+

produces a solution called the Gaussian wavepacket. Substituting into the above,

𝜓GP(𝑥, 𝑡) = ∫
∞

0
exp[−𝜎2 (𝑘 − 𝑘0)2]𝜓𝑘(𝑥, 𝑡) d𝑘 = ∫

∞

0
exp[𝐹(𝑘)] d𝑘

𝐹(𝑘) = −𝜎2 (𝑘 − 𝑘0)2 + 𝑖𝑘𝑥 − 𝑖ℏ𝑘
2

2𝑚 𝑡

We can rewrite this as

𝐹(𝑘) = −12(𝜎 +
𝑖ℏ𝑡
𝑚 )𝑘2 + (𝑘0𝜎 + 𝑖𝑥)𝑘 − 𝜎

2𝑘
2
0

We define further
𝛼 ≡ 𝜎 + 𝑖ℏ𝑡

𝑚 ; 𝛽 = 𝑘0𝜎 + 𝑖𝑥; 𝛿 = −𝜎2𝑘
2
0

Completing the square,

𝐹(𝑘) = −𝛼2 (𝑘 −
𝛽
𝛼)

2
+ 𝛽2
2𝛼 + 𝛿

We arrive at the solution

𝜓GP(𝑥, 𝑡) = exp[ 𝛽
2

2𝛼 + 𝛿]∫
∞

−∞
exp[−𝛼2 (𝑘 −

𝛽
𝛼)

2
] d𝑘

Under a change of variables ̃𝑘 = 𝑘 − 𝛽
𝛼
, 𝑢 = Im(𝛽

𝛼
),

𝜓GP(𝑥, 𝑡) = exp[ 𝛽
2

2𝛼 + 𝛿]∫
∞−𝑖𝑢

∞−𝑖𝑢
exp[−𝛼2

̃𝑘] d ̃𝑘

We arrive at the usual Gaussian integral:

𝐼(𝑎) = ∫
∞

−∞
exp[−𝑎𝑥2] d𝑥 = √

𝜋
2

giving

𝜓GP(𝑥, 𝑡) = √
2𝜋
𝛼 exp[ 𝛽

2

2𝛼 + 𝛿] = √
2𝜋
𝛼 exp

⎡
⎢
⎢
⎣
−𝜎2

(𝑥 − ℏ𝑘0
𝑚
𝑡)
2

(𝜎2 + ℏ2𝑡2

𝑚2 )

⎤
⎥
⎥
⎦
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We define 𝜓GP to be the normalised Gaussian wavefunction, so 𝜓GP = 𝐶𝜓GP. We can find
that

𝜌GP(𝑥, 𝑡) = ||𝜓GP(𝑥, 𝑡)||
2
=√√
√

𝜎
𝜋(𝜎2 + ℏ2𝑡2

𝑚2 )
exp

⎡
⎢
⎢
⎣
−
𝜎(𝑥 − ℏ𝑘

𝑚
𝑡)
2

𝜎2 + ℏ2𝑡2

𝑚2

⎤
⎥
⎥
⎦

This is a wavefunction whose probability density distribution resembles a Gaussian 𝑒−𝑥2
term, with a maximum point at

⟨𝑥⟩ = ∫
∞

−∞
𝜓⋆
GP𝑥𝜓GP d𝑥 = ∫

∞

−∞
𝑥𝜌GP d𝑥 =

ℏ𝑘0
𝑚 𝑡

and a width of

Δ𝑥 = √⟨𝑥2⟩ − ⟨𝑥⟩2 =
√

1
2(𝜎 +

ℏ2𝑡2
𝑚2𝜎)

The physical interpretation is that the uncertainty of the particle’s position grows with time.
In this case, we can find

⟨𝑝⟩ = ∫
∞

−∞
𝜓⋆
GP𝑖ℏ

𝜕
𝜕𝑥𝜓GP d𝑥 = ℏ𝑘0

which is constant. The uncertainty in the momentum can be found to be

Δ𝑝 = √⟨𝑝2⟩ − ⟨𝑝⟩2 = ℏ

√
1
2
(𝜎 + ℏ2𝑡2

𝑚𝜎
)

Thus,
Δ𝑥Δ𝑝 = ℏ

2
We can find for a single plane wave that

Δ𝑥 = ∞; Δ𝑝 = 0

4.6. Beam interpretation
We can choose to ignore the normalisation problem and take the plane waves as the eigen-
functions of the Hamiltonian:

𝜒𝑘(𝑥) = 𝐴𝑒𝑖𝑘𝑥; 𝜓𝑘(𝑥, 𝑡) = 𝐴𝑒𝑖𝑘𝑥𝑒−
𝑖ℏ2𝑘2
2𝑚 𝑡

Instead of 𝜒𝑘(𝑥) describing a single particle, we can interpret it as a beam of particles with
momentum 𝑝 = ℏ𝑘 and 𝐸 = ℏ2𝑘2

2𝑚
with probability density

𝜌𝑘(𝑥) =
|||𝜒𝑘(𝑥)𝑒

− 𝑖ℏ2𝑘2
2𝑚 𝑡|||

2

= |𝐴|2
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4. One-dimensional solutions to the Schrödinger equation

which here is interpreted as a constant average density of particles. The probability current
is given by

𝐽𝑘(𝑥, 𝑡) = − 𝑖ℏ
2𝑚(𝜓⋆

𝑘
𝜕𝜓𝑘
𝜕𝑥 − 𝜓𝑘

𝜕𝜓⋆
𝑘

𝜕𝑥 ) = − 𝑖ℏ
2𝑚|𝐴|22𝑖𝑘 = |𝐴|2ℏ𝑘𝑚 = |𝐴|2 𝑝𝑚⏟

velocity

This is interpreted as the average flux of particles.

4.7. Scattering states
We wish to investigate what happens when a particle, or beam of particles, is thrown onto a
potential 𝑈(𝑥). In this case, suppose we have a step function

𝑈(𝑥) = {𝑈0 if 0 ≤ 𝑥 < 𝑎
0 otherwise

and a Gaussian wavepacket which is centred at 𝑥0 ≪ 0moving in the+𝑥 direction, towards
the spike in potential. As 𝑡 ≫ 0, we end upwith a probability density given by twowavepack-
ets; one will be moving left from the spike and one will have cleared the spike and continues
moving to the right.

Definition. The reflection coefficient 𝑅 is

𝑅 = lim
𝑡→∞

∫
0

−∞
|𝜓GP(𝑥, 𝑡)|

2 d𝑥

which is the probability for the particle to be reflected. The transmission coefficient is

𝑇 = lim
𝑡→∞

∫
∞

0
|𝜓GP(𝑥, 𝑡)|

2 d𝑥

By definition, 𝑅 + 𝑇 = 1.
In practice, working with Gaussian packets is mathematically challenging, although not
impossible. The beam interpretation, by allowing us to use non-normalisable stationary
state wavefunctions, greatly simplifies the computation.

4.8. Scattering off potential step
Consider a potential

𝑈(𝑥) = {0 if 𝑥 ≤ 0
𝑈0 if 𝑥 > 0

We want to solve
− ℏ2
2𝑚𝜒″𝑘(𝑥) + 𝑈(𝑥)𝜒𝑘(𝑥) = 𝐸𝜒𝑘(𝑥)
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We split the problem into two regions: 𝑥 ≤ 0, 𝑥 > 0. For 𝑥 ≤ 0, the TISE becomes

𝜒″𝑘(𝑥) + 𝑘2𝜒𝑘(𝑥) = 0; 𝑘 = √
2𝑚𝐸
ℏ2

The solution is
𝜒(𝑥) = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥

This is a superposition of two beams; the beam of incident particles 𝐴𝑒𝑖𝑘𝑥 and the beam of
reflected particles 𝐵𝑒−𝑖𝑘𝑥 which are travelling in the opposite direction. In the region 𝑥 > 0,
we have

𝜒″𝑘(𝑥) + 𝑘
2
𝜒𝑘(𝑥) = 0; 𝑘 = √

2𝑚(𝐸 − 𝑈0)
ℏ2

where 𝑘 is real if 𝐸 > 𝑈0, and 𝑘 is pure-imaginary if 𝐸 < 𝑈0. Therefore, for 𝐸 > 𝑈0 we
have

𝜒𝑘(𝑥) = 𝐶𝑒𝑖𝑘𝑥 + 𝐷𝑒−𝑖𝑘𝑥

which is a beam of particlesmoving towards the right and an incident beam of particles from
the right moving towards the left. Since no such incident beam exists, we can set 𝐷 = 0. If
𝐸 < 𝑈0, the solution is

𝑘 ≡ 𝑖𝜂 ⟹ 𝜒𝑘(𝑥) = 𝐶𝑒−𝜂𝑥 + 𝐷𝑒𝜂𝑥

𝐷 ≠ 0 would give infinite values of 𝜒𝑘(𝑥) as 𝑥 → ∞. In either case, the eigenfunctions
are

𝜒𝑘,𝑘(𝑥) = {𝐴𝑒
𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥 𝑥 ≤ 0

𝐶𝑒𝑖𝑘𝑥 𝑥 > 0
By imposing the boundary conditions, specifically the continuity of 𝜒, we can determine the
constants.

𝐴 + 𝐵 = 𝐶; 𝑖𝑘𝐴 − 𝑖𝑘𝐵 = 𝑖𝑘𝐶
which gives

𝐵 = 𝑘 − 𝑘
𝑘 + 𝑘

𝐴; 𝐶 = 2𝑘
𝑘 + 𝑘

𝐴

We can view these solutions in terms of particle flux.

𝐽𝑘(𝑥, 𝑡) = − 𝑖ℏ
2𝑚(𝜓⋆

𝑘
𝜕𝜓𝑘
𝜕𝑥 − 𝜓𝑘

𝜕𝜓⋆
𝑘

𝜕𝑥 )

If 𝐸 > 𝑈0, we find

𝐽(𝑥, 𝑡) = {
ℏ𝑘
𝑚
(|𝐴|2 − |𝐵|2) 𝑥 < 0

ℏ𝑘
𝑚
|𝐶|2 𝑥 ≥ 0

The incident flux is ℏ𝑘
𝑚
|𝐴|2, the reflected flux is ℏ𝑘

𝑚
|𝐵|2, and the transmitted flux is ℏ𝑘

𝑚
|𝐶|2.

We can define

𝑅 = 𝐽ref
𝐽inc

= |𝐵|2

|𝐴|2
= (𝑘 − 𝑘

𝑘 + 𝑘
)
2
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We can also define

𝑇 = 𝐽trans
𝐽inc

= 𝑘|𝐶|2

𝑘|𝐴|2
= 4𝑘𝑘
(𝑘 + 𝑘)2

We can check that our original interpretation makes sense; for example, 𝑅 + 𝑇 = 1, and
𝐸 → 𝑈0, 𝑘 → 0 implies 𝑇 → 0, 𝑅 → 1. If 𝐸 → ∞, 𝑇 → 1 and 𝑅 → 0. If 𝐸 < 𝑈0,

𝐽(𝑥, 𝑡) = {
ℏ𝑘
𝑚
(|𝐴|2 + |𝐵|2) 𝑥 < 0

0 𝑥 ≥ 0

since 𝜒𝑘 = 𝜒⋆
𝑘. Here, 𝑇 = 0 but 𝜒𝑘(𝑥) ≠ 0.

4.9. Scattering off a potential barrier
Consider the potential

𝑈(𝑥) = {0 𝑥 ≤ 0, 𝑥 ≥ 𝑎
𝑈0 0 < 𝑥 < 𝑎

When 𝐸 < 𝑈0, we define

𝑘 = √
2𝑚𝐸
ℏ2 > 0; 𝜂 = √

2𝑚(𝑈0 − 𝐸)
ℏ2 > 0

The solution is then

𝜒(𝑥) =
⎧
⎨
⎩

𝑒𝑖𝑘𝑥 + 𝐴𝑒−𝑖𝑘𝑥 𝑥 ≤ 0
𝐵𝑒−𝜂𝑥 + 𝐶𝑒𝜂𝑥 0 < 𝑥 < 𝑎
𝐷𝑒𝑖𝑘𝑥 𝑥 ≥ 𝑎

since we can normalise the incoming flux to one. The boundary conditions are that 𝜒(𝑥) =
𝜒′(𝑥) are both continuous at 𝑥 = 0, 𝑥 = 𝑎. This gives four conditions, which are enough to
solve the problem. 𝜒(𝑥) and its derivative at zero give

1 + 𝐴 = 𝐵 + 𝐶; 𝑖𝑘 − 𝑖𝑘𝐴 = −𝜂𝐵 + 𝜂𝐶

and the continuity at 𝑎 gives

𝐵𝑒−𝜂𝑎 + 𝐶𝑒𝜂𝑎 = 𝐷𝑒𝑖𝑘𝑎; −𝜂𝐵𝑒−𝜂𝑎 + 𝜂𝐶𝑒𝜂𝑎 = 𝑖𝑘𝐷𝑒𝑖𝑘𝑎

Solving the system gives

𝐷 = −4𝑖𝜂𝑘
(𝜂 − 𝑖𝑘)2 exp[(𝜂 + 𝑖𝑘)𝑎] − (𝜂 + 𝑖𝑘)2 exp[−(𝜂 − 𝑖𝑘)𝑎]

The transmitted flux is 𝑗tr =
ℏ𝑘
𝑚
|𝐷|2 and the incident flux is 𝑗inc =

ℏ𝑘
𝑚
. Hence, the transmis-

sion coefficient is 𝑇 = |𝐷|2. This is

𝑇 = 4𝑘2𝜂2

(𝑘2 + 𝜂2)2 sinh2(𝜂𝑎) + 4𝑘2𝜂2
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If we take the limit as 𝑈0 ≫ 𝐸, we have 𝜂𝑎 ≫ 1. Then

𝑇 → 16𝑘2𝜂2
(𝜂2 + 𝑘2)2 exp[−2𝜂𝑎] ∝ exp[−2𝑎𝑘 √2𝑚(𝑈0 − 𝐸)]

So the probability decreases exponentially with the width of the barrier.

4.10. Harmonic oscillator
Consider a parabolic potential

𝑈(𝑥) = 1
2𝑘𝑥

2 = 1
2𝑚𝜔

2𝑥2

where 𝑘 is an elastic constant and 𝜔 = √
𝑘
𝑚
is the angular frequency of the harmonic os-

cillator. Classically, we find the solution 𝑥 = 𝐴 cos𝜔𝑡 + 𝐵 sin𝜔𝑡. This gives a continuous
energy spectrum. The TDSE gives

− ℏ2
2𝑚𝜒″(𝑥) + 1

2𝑚𝜔
2𝑥2𝜒(𝑥) = 𝐸𝜒(𝑋)

Since this is a bound system, we will have a discrete set of eigenvalues. The potential is sym-
metric so the eigenfunctions are odd or even. We will make the change of variables

𝜉2 = 𝑚𝜔
ℏ 𝑥2; 𝜀 = 2𝐸

ℏ𝜔
which reformulates the TDSE as

−d
2𝜒
d𝜉2 + 𝜉2𝜒 = 𝜀𝜒

Wewill start by considering the solution for 𝜀 = 1. In this case, 𝐸 = ℏ𝜔
2
. The solution in this

case is
𝜒0(𝜉) = exp[−𝜉

2

2 ]

So the first eigenfunction, 𝜒0, is known in terms of 𝑥, given by

𝜒0(𝑥) = 𝐴 exp[−𝑚𝜔2ℏ 𝑥
2]; 𝐸0 =

ℏ𝜔
2

To find the other eigenfunctions, we will take the general form

𝜒(𝜉) = 𝑓(𝜉) exp[−𝜉
2

2 ]

This works because we know we have a bound solution and 𝜒must tend to zero quickly as
𝜉 tends to infinity, due to the differential equation in terms of 𝜉, 𝜀. Using the above ansatz
for 𝜒 in the Schrödinger equation,

−d
2𝑓
d𝜉2 + 2𝜉d𝑓d𝜉 + (1 − 𝜀)𝑓 = 0
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Note that if 𝜀 = 1, a solution is 𝑓 = 1. We can find a power series solution to this differential
equation, with 𝜉 = 0 as a regular point.

𝑓(𝜉) =
∞
∑
𝑛=0

𝑎𝑛𝜉𝑛

We find

𝜉d𝑓d𝜉 =
∞
∑
𝑛=0

𝑛𝑎𝑛𝜉𝑛;
d2𝑓
d𝜉2 =

∞
∑
𝑛=0

𝑛(𝑛 − 1)𝑎𝑛𝜉𝑛−2 =
∞
∑
𝑛=0

(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝜉𝑛

Comparing coefficients of 𝜉𝑛,

(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 − 2𝑛𝑎𝑛 + (𝜀 − 1)𝑎𝑛 = 0

Hence,
𝑎𝑛+2 =

2𝑛 − 𝜀 + 1
(𝑛 + 1)(𝑛 + 2)𝑎𝑛

Since the function must be either even or odd, exactly one of 𝑎0 and 𝑎1 must be zero.
Proposition. If the series for 𝑓 does not terminate, 𝜒 is not normalisable.

Proof. Suppose the series does not terminate. We will consider the asymptotic behaviour as
𝑛 → ∞. 𝑎𝑛+2

𝑎𝑛
→ 2

𝑛
But this is the same asymptotic behaviour as the function 𝑔(𝜉) given by

𝑔(𝜉) = exp[𝜉2] =
∞
∑
𝑚=0

𝜉2𝑚
𝑚! =

∞
∑
𝑛=0

𝑏𝑛𝜉𝑛

with

𝑏𝑛 = {
1
𝑚!

𝑛 = 2𝑚
0 𝑛 = 2𝑚 + 1

So asymptotically,

𝑏𝑛+2
𝑏𝑛

=
(𝑛
2
)!

(𝑛
2
+ 1)!

= 2
𝑛 + 2 →

2
𝑛

Hence 𝜒 would have a form asymptotically equal to

𝜒(𝜉) ∼ exp[𝜉
2

2 ]

Hence 𝜒(𝜉) would be not normalisable.

323



VI. QuantumMechanics

Hence 𝑓must be a polynomial. So there exists𝑁 such that 𝑎𝑁+2 = 0 and 𝑎𝑁 ≠ 0. So for this
value,

2𝑁 − 𝜀 + 1 = 0 ⟹ 𝜀 = 2𝑁 + 1
By the definition of 𝜀,

𝐸𝑁 = (𝑁 + 1
2)ℏ𝜔

In particular, 𝐸𝑁+1 − 𝐸𝑁 = ℏ𝜔. The eigenfunctions are

𝜒𝑁(𝜉) = 𝑓𝑁(𝜉) exp[−
𝜉2
2 ]

with the property that
𝜒𝑁(−𝜉) = (−1)𝑁𝜒𝑁(𝜉)

𝑓0(𝜉) = 1
𝑓1(𝜉) = 𝜉
𝑓2(𝜉) = 1 − 2𝜉2

𝑓3(𝜉) = 𝜉 − 2
3𝜉

3

⋮
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5. Operators and measurements
5.1. Hermitian operators
Definition. The Hermitian conjugate of an operator ̂𝐴 is written ̂𝐴†, and is defined such
that

⟨ ̂𝐴†𝜓1, 𝜓2⟩ = ⟨𝜓1, ̂𝐴𝜓2⟩
where 𝜓1, 𝜓2 ∈ ℋ.

We can verify that for 𝑎1, 𝑎2 ∈ ℂ,
(i) (𝑎1 ̂𝐴1 + 𝑎2 ̂𝐴2)† = 𝑎⋆

1 ̂𝐴†
1 + 𝑎⋆

2 ̂𝐴†
2;

(ii) ( ̂𝐴 ̂𝐵)† = ̂𝐵† ̂𝐴†

Definition. A Hermitian operator is a linear operator �̂�∶ ℋ → ℋ such that

̂𝐴† = ̂𝐴

Equivalently,
⟨ ̂𝐴𝜓1, 𝜓2⟩ = ⟨𝜓1, ̂𝐴𝜓2⟩

Example. The familiar operators ̂𝑥, ̂𝑝 are Hermitian.

⟨ ̂𝑥𝜓1, 𝜓2⟩ = ∫
ℝ3
(𝑥𝜓1)⋆𝜓2 d𝑉

= ∫
ℝ3
𝜓⋆
1𝑥𝜓2 d𝑉

= ⟨𝜓1, ̂𝑥𝜓2⟩

For ̂𝑝, integrating by parts, we have

⟨ ̂𝑝𝜓1, 𝜓2⟩ = ∫
∞

−∞
(−𝑖ℏ 𝜕

𝜕𝑥𝜓1)
⋆
𝜓2 d𝑥

= 𝑖ℏ∫
∞

−∞

𝜕𝜓⋆
1

𝜕𝑥 𝜓2 d𝑥

= −𝑖ℏ∫
∞

−∞
𝜓⋆
1
𝜕𝜓2
𝜕𝑥 d𝑥

= ⟨𝜓1, ̂𝑝𝜓2⟩

Theorem. The eigenvalues of a Hermitian operator are real.

Proof. Let ̂𝐴 be a Hermitian operator, and 𝜓 a normalised eigenfunction with eigenvalue 𝑎.

⟨𝜓, ̂𝐴𝜓⟩ = ⟨𝜓, 𝑎𝜓⟩ = 𝑎 ⟨𝜓, 𝜓⟩ = 𝑎
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Since ̂𝐴 is Hermitian,

⟨𝜓, ̂𝐴𝜓⟩ = ⟨ ̂𝐴𝜓, 𝜓⟩ = ⟨𝑎𝜓, 𝜓⟩ = 𝑎⋆ ⟨𝜓, 𝜓⟩ = 𝑎⋆

Hence 𝑎 = 𝑎⋆ so 𝑎 ∈ ℝ.

Theorem. Let ̂𝐴 be a Hermitian operator, and 𝜓1, 𝜓2 normalised eigenfunctions with dis-
tinct eigenvalues 𝑎1, 𝑎2. Then 𝜓1, 𝜓2 are orthogonal.

Proof. We have ̂𝐴𝜓1 = 𝑎1𝜓1 and ̂𝐴𝜓2 = 𝑎2𝜓2. Then,

⟨ ̂𝐴𝜓1, 𝜓2⟩ = 𝑎1 ⟨𝜓1, 𝜓2⟩

But also,
⟨𝜓1, ̂𝐴𝜓2⟩ = 𝑎2 ⟨𝜓1, 𝜓2⟩

These two values must be the same, so ⟨𝜓1, 𝜓2⟩ = 0.

Theorem. The discrete and continuous set of eigenfunctions of any Hermitian operator
form a complete orthogonal basis for theHilbert space. This theorem is statedwithout proof.

Corollary. Every solution of the time-dependent Schrödinger can be written as a superpos-
ition of stationary states.

𝜓(𝑥, 𝑡) =
∞
∑
𝑛=1

𝑎𝑛𝜒𝑛(𝑥)𝑒−𝑖𝐸𝑛𝑡/ℏ; 𝑎𝑛 = ⟨𝜒𝑛, 𝜓⟩

In the continuous case,

𝜓(𝑥, 𝑡) = ∫
Δ𝛼
𝐴(𝛼)𝜒𝛼(𝑥)𝑒−𝑖𝐸𝑛𝑡/ℏ d𝛼 ; 𝐴(𝛼) = ⟨𝜒𝛼, 𝜓⟩

5.2. Postulates of quantummechanics
The following postulates are used to interpret measurements in quantum systems.

(i) Any observable 𝑂 is represented by a Hermitian operator �̂�.
(ii) The possible outcomes of 𝑂 are the eigenvalues of �̂�. Since �̂� is Hermitian, we can

only ever observe real values.

(iii) Let �̂� have a discrete set of normalised eigenfunctions {𝜓𝑖} with distinct eigenvalues
{𝜆𝑖}. Let 𝜓 be a state, written in terms of the eigenfunctions of �̂�.

𝜓 = ∑𝑎𝑖𝜓𝑖
Suppose we measure 𝑂 on a particle in the state 𝜓. Then, the probability that 𝑂 takes
value 𝜆𝑖 is

ℙ (𝑂 = 𝜆𝑖) = |𝑎𝑖|
2 = 𝑎⋆

𝑖 𝑎𝑖
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(iv) The above postulate can be generalised to the casewhere �̂� has degenerate eigenvalues.
Let {𝜓𝑖} be a discrete set of normalised eigenfunctions with not necessarily distinct
eigenvalues {𝜆𝑖}. If {𝜓𝑖}𝑖∈𝐼 is a complete set of orthonormal eigenfunctions with the
same eigenvalue 𝜆, then

ℙ (𝑂 = 𝜆) = ∑
𝑖∈𝐼

|𝑎𝑖|
2 = ∑

𝑖∈𝐼
𝑎⋆𝑎

(v) We can verify from the postulates above that the sum of all probabilities is unity.

∑
𝑖
|𝑎𝑖|

2 = ∑
𝑖
⟨𝑎𝑖𝜓𝑖, 𝑎𝑖𝜓𝑖⟩ = ∑

𝑖
∑
𝑗
⟨𝑎𝑖𝜓𝑖, 𝑎𝑗𝜓𝑗⟩ = ⟨𝜓, 𝜓⟩ = 1

(vi) If 𝑂 is measured on a state 𝜓 at time 𝑡, and the outcome is 𝜆𝑖, then the wavefunction
instantaneously ‘collapses’ into the measured state after the measurement.

𝜓 ↦ 𝜓𝑖
This is called the projection postulate.

(vii) If �̂� has degenerate eigenfunctions all with eigenvalue 𝜆, then instead we find

𝜓 ↦∑
𝑖∈𝐼

𝑎𝑖𝜓𝑖

So in this case, the wavefunction collapses to a linear combination of the eigenfunc-
tions that give this eigenvalue.

5.3. Expectation of operators
Definition.

𝜓 = ∑
𝑖
𝑎𝑖𝜓𝑖 = ∑

𝑖
⟨𝜓𝑖, 𝜓⟩ 𝜓𝑖

The projector operator projects 𝜓 onto a specific eigenfunction.
̂𝑃 ∶ 𝜓 ↦ ⟨𝜓𝑖, 𝜓⟩ 𝜓𝑖

Definition. The expectation value of an observable �̂� on a state 𝜓 is

⟨𝑂⟩𝜓 = ∑
𝑖
𝜆𝑖ℙ (𝑂 = 𝜆𝑖)

= ∑
𝑖
𝜆𝑖|⟨𝜓𝑖, 𝜓⟩|

2

= ⟨∑
𝑖
⟨𝜓𝑖, 𝜓⟩ 𝜓𝑖,∑

𝑗
𝜆𝑗 ⟨𝜓𝑗 , 𝜓⟩ 𝜓𝑗⟩

= ⟨𝜓, �̂�𝜓⟩
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5.4. Commutators
Definition. The commutator of two operators ̂𝐴 and ̂𝐵 is the operator given by

[ ̂𝐴, ̂𝐵] = ̂𝐴 ̂𝐵 − ̂𝐵 ̂𝐴

We observe the following properties of the commutator.

(i) [ ̂𝐴, ̂𝐵] = −[ ̂𝐵, ̂𝐴];
(ii) [ ̂𝐴, ̂𝐴] = 0;
(iii) [ ̂𝐴, ̂𝐵 ̂𝐶] = [ ̂𝐴, ̂𝐵] ̂𝐶 + ̂𝐵[ ̂𝐴, ̂𝐶];
(iv) [ ̂𝐴 ̂𝐵, ̂𝐶] = ̂𝐴[ ̂𝐵, ̂𝐶] + [ ̂𝐴, ̂𝐶] ̂𝐵;
Example. The commutator [ ̂𝑥, ̂𝑝] in one dimension is given by, for every 𝜓 ∈ ℋ,

̂𝑥 ̂𝑝𝜓 = 𝑥(−𝑖ℏ 𝜕
𝜕𝑥)𝜓(𝑥) = −𝑖ℏ𝑥𝜕𝜓𝜕𝑥

̂𝑝 ̂𝑥𝜓 = (−𝑖ℏ 𝜕
𝜕𝑥)𝑥𝜓(𝑥) = −𝑖ℏ𝜓 − 𝑖ℏ𝑥𝜕𝜓𝜕𝑥

∴ [ ̂𝑥, ̂𝑝]𝜓 = 𝑖ℏ𝜓

Hence,
[ ̂𝑥, ̂𝑝] = 𝑖ℏ ̂𝐼

where ̂𝐼 is the identity operator. This specific commutator is known as the canonical com-
mutator relation.

5.5. Simultaneously diagonalisable operators
Definition. Hermitian operators ̂𝐴 and ̂𝐵 are said to be simultaneously diagonalisable if
there exists a complete basis of joint eigenfunctions {𝜓𝑖} such that ̂𝐴𝜓𝑖 = 𝜆𝑖𝜓𝑖 and ̂𝐵𝜓𝑖 =
𝜇𝑖𝜓𝑖 for 𝜆𝑖, 𝜇𝑖 ∈ ℝ.
Theorem. Hermitian operators ̂𝐴 and ̂𝐵 are simultaneously diagonalisable if and only if
[ ̂𝐴, ̂𝐵] = 0.

Proof. Suppose ̂𝐴 and ̂𝐵 are simultaneously diagonalisable. Then, by definition, there exists
a complete basis {𝜓𝑖} with eigenvalues 𝜆𝑖, 𝜇𝑖 for ̂𝐴, ̂𝐵. Now, for any element 𝜓𝑖 of this basis,
the commutator is

[ ̂𝐴, ̂𝐵]𝜓𝑖 = ̂𝐴 ̂𝐵𝜓𝑖 − ̂𝐵 ̂𝐴𝜓𝑖 = ̂𝐴𝜇𝑖𝜓𝑖 − ̂𝐵𝜆𝑖𝜓𝑖 = 𝜇𝑖 ̂𝐴𝜓𝑖 − 𝜆𝑖 ̂𝐵𝜓𝑖 = 𝜆𝑖𝜇𝑖𝜓𝑖 − 𝜇𝑖𝜆𝑖𝜓𝑖 = 0

Let 𝜓 be an arbitrary function in the Hilbert spaceℋ. Then by linearity,

[ ̂𝐴, ̂𝐵]𝜓 = ∑
𝑖
𝑐𝑖[ ̂𝐴, ̂𝐵]𝜓𝑖 = 0
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Conversely, suppose that the commutator is zero. Let 𝜓𝑖 be an eigenfunction of ̂𝐴 with ei-
genvalue 𝜆𝑖. Then, since the commutator is zero, we have

0 = [ ̂𝐴, ̂𝐵]𝜓𝑖 = ̂𝐴 ̂𝐵𝜓𝑖 − ̂𝐵 ̂𝐴𝜓𝑖 ⟹ ̂𝐴( ̂𝐵𝜓𝑖) = 𝜆𝑖( ̂𝐵𝜓𝑖)

Hence, ̂𝐵 maps the eigenspace 𝐸𝑖 of ̂𝐴 with eigenvalue 𝜆𝑖 into itself. So ̂𝐵||𝐸𝑖 is a Hermitian
operator on𝐸𝑖. Since this holds for any eigenfunction and eigenvalue, we can find a complete
basis of simultaneous eigenfunctions of ̂𝐴 and ̂𝐵.

5.6. Uncertainty
Definition. The uncertainty in a measurement of an observable 𝐴 on a state 𝜓 is defined as

Δ𝜓𝐴 = √(Δ𝜓𝐴)
2

where
(Δ𝜓𝐴)

2 = ⟨( ̂𝐴 − ⟨ ̂𝐴⟩𝜓 ̂𝐼)
2
⟩
𝜓
= ⟨ ̂𝐴2⟩𝜓 − (⟨ ̂𝐴⟩𝜓)

2

The two definitions are equivalent:

⟨( ̂𝐴 − ⟨ ̂𝐴⟩𝜓 ̂𝐼)
2
⟩
𝜓
= ∫

ℝ3
𝜓⋆( ̂𝐴 − ⟨ ̂𝐴⟩𝜓 ̂𝐼)

2
𝜓 d𝑉

= ∫
ℝ3
𝜓⋆ ̂𝐴2𝜓 d𝑉 + (⟨ ̂𝐴⟩𝜓)

2
∫
ℝ3
𝜓⋆𝜓 d𝑉 − 2 ⟨ ̂𝐴⟩𝜓∫

ℝ3
𝜓⋆𝐴𝜓 d𝑉

= ⟨ ̂𝐴2⟩𝜓 + (⟨ ̂𝐴⟩𝜓)
2
− 2(⟨ ̂𝐴⟩𝜓)

2

= ⟨ ̂𝐴2⟩𝜓 − (⟨ ̂𝐴⟩𝜓)
2

Lemma. (Δ𝜓𝐴)2 ≥ 0, and Δ𝜓𝐴 = 0 if and only if 𝜓 is an eigenfunction of ̂𝐴.

Proof. Since ̂𝐴 is Hermitian,

(Δ𝜓𝐴)2 = ⟨( ̂𝐴 − ⟨ ̂𝐴⟩𝜓 ̂𝐼)
2
⟩
𝜓

= ⟨𝜓, ( ̂𝐴 − ⟨ ̂𝐴⟩𝜓 ̂𝐼)
2
𝜓⟩

= ⟨( ̂𝐴 − ⟨ ̂𝐴⟩𝜓 ̂𝐼)𝜓, ( ̂𝐴 − ⟨ ̂𝐴⟩𝜓 ̂𝐼)𝜓⟩

= ‖
‖( ̂𝐴 − ⟨ ̂𝐴⟩𝜓 ̂𝐼)𝜓‖‖

Let 𝜙 = ( ̂𝐴 − ⟨ ̂𝐴⟩𝜓 ̂𝐼)𝜓. The norm of any function is non-negative, so the square uncertainty
is non-negative. Now, suppose this norm ‖𝜙‖ is zero. Then, 𝜙 = 0. Hence,

̂𝐴𝜓 = ⟨ ̂𝐴⟩𝜓 𝜓
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so it is an eigenfunction of ̂𝐴. If 𝜓 is conversely an eigenfunction of ̂𝐴 with eigenvalue 𝑎,
then

⟨ ̂𝐴⟩𝜓 = ⟨𝜓, ̂𝐴𝜓⟩ = 𝑎‖𝜓‖ = 𝑎

Further,
⟨ ̂𝐴2⟩𝜓 = ⟨𝜓, ̂𝐴2𝜓⟩ = 𝑎2

Hence,
(Δ𝜓𝐴)

2 = 𝑎2 − 𝑎2 = 0

5.7. Schwarz inequality
Theorem. Let 𝜓, 𝜙 ∈ ℋ. Then,

|⟨𝜓, 𝜙⟩|2 ≤ ⟨𝜙, 𝜙⟩ ⟨𝜓, 𝜓⟩

and
|⟨𝜓, 𝜙⟩|2 = ⟨𝜙, 𝜙⟩ ⟨𝜓, 𝜓⟩ ⟺ ∃𝑎 ∈ ℂ, 𝜙 = 𝑎𝜓

Proof. For all 𝑎 ∈ ℂ, we have
0 ≤ ⟨𝜙 − 𝑎𝜓, 𝜙 − 𝑎𝜓⟩

In particular, let
𝑎 = ⟨𝜓, 𝜙⟩

⟨𝜓, 𝜓⟩
Then,

0 ≤ ⟨𝜙, 𝜙⟩ − 2|⟨𝜓, 𝜙⟩|2
⟨𝜓, 𝜓⟩ + |⟨𝜓, 𝜙⟩|2

⟨𝜓, 𝜓⟩ = ⟨𝜙, 𝜙⟩ − |⟨𝜓, 𝜙⟩|2
⟨𝜓, 𝜓⟩

Hence,
|⟨𝜓, 𝜙⟩|2 ≤ ⟨𝜓, 𝜓⟩ ⟨𝜙, 𝜙⟩

Equality holds if and only if 𝜙 − 𝑎𝜓 = 0.

5.8. Generalised uncertainty theorem
Theorem. Let 𝐴 and 𝐵 be observables, and 𝜓 ∈ ℋ. Then

(Δ𝜓𝐴)(Δ𝜓𝐵) ≥
1
2||⟨𝜓, [

̂𝐴, ̂𝐵]𝜓⟩||

Proof.
(Δ𝜓𝐴)

2 = ⟨( ̂𝐴 − ⟨ ̂𝐴⟩𝜓 ̂𝐼)𝜓, ( ̂𝐴 − ⟨ ̂𝐴⟩𝜓 ̂𝐼)𝜓⟩
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Defining ̂𝐴′ = ̂𝐴 − ⟨ ̂𝐴⟩𝜓 ̂𝐼 and ̂𝐵′ = ̂𝐵 − ⟨ ̂𝐵⟩𝜓 ̂𝐼,

(Δ𝜓 ̂𝐴′)2 = ⟨ ̂𝐴′𝜓, ̂𝐴′𝜓⟩

and analogously for ̂𝐵′. Now,

(Δ𝜓 ̂𝐴′)2(Δ𝜓 ̂𝐵′)2 = ⟨ ̂𝐴′𝜓, ̂𝐴′𝜓⟩ ⟨ ̂𝐵′𝜓, ̂𝐵′𝜓⟩ ≥ ||⟨ ̂𝐴′𝜓, ̂𝐵′𝜓⟩||2

Since ̂𝐴′ is Hermitian,
(Δ𝜓 ̂𝐴′)(Δ𝜓 ̂𝐵′) ≥ ||⟨𝜓, ̂𝐴′ ̂𝐵′𝜓⟩||

By definition, [ ̂𝐴, ̂𝐵] = ̂𝐴 ̂𝐵 − ̂𝐵 ̂𝐴 and let the anticommutator be { ̂𝐴, ̂𝐵} = ̂𝐴 ̂𝐵 + ̂𝐵 ̂𝐴. If ̂𝐴′ and
̂𝐵′ are Hermitian,

[ ̂𝐴′, ̂𝐵′]† = −[ ̂𝐴′, ̂𝐵′]
and

{ ̂𝐴′, ̂𝐵′}† = { ̂𝐴′, ̂𝐵′}
So the anticommutator is Hermitian. Now, we can write

̂𝐴′ ̂𝐵′ = 1
2[

̂𝐴′, ̂𝐵′] + 1
2{

̂𝐴′, ̂𝐵′}

Hence,

(Δ𝜓 ̂𝐴′)(Δ𝜓 ̂𝐵′) ≥ |||⟨𝜓, (
1
2[

̂𝐴′, ̂𝐵′] + 1
2{

̂𝐴′, ̂𝐵′})𝜓⟩|||
= |||⟨𝜓,

1
2[

̂𝐴′, ̂𝐵′]𝜓⟩ + ⟨𝜓, 12{
̂𝐴′, ̂𝐵′}𝜓⟩|||

We can prove that ⟨𝜓, { ̂𝐴′, ̂𝐵′}𝜓⟩ ∈ ℝ. Since the anticommutator is Hermitian,

⟨𝜓, { ̂𝐴′, ̂𝐵′}𝜓⟩ = ⟨{ ̂𝐴′, ̂𝐵′}𝜓, 𝜓⟩ = ⟨𝜓, { ̂𝐴′, ̂𝐵′}𝜓⟩⋆

Analogously we can prove that ⟨𝜓, [ ̂𝐴′, ̂𝐵′]𝜓⟩ ∈ 𝑖ℝ.

⟨𝜓, [ ̂𝐴′, ̂𝐵′]𝜓⟩ = ⟨[ ̂𝐴′, ̂𝐵′]⋆𝜓, 𝜓⟩ = − ⟨𝜓, [ ̂𝐴′, ̂𝐵′]𝜓⟩⋆

Hence,

(Δ𝜓 ̂𝐴′)2(Δ𝜓 ̂𝐵′)2 ≥ |||⟨𝜓,
1
2[

̂𝐴′, ̂𝐵′]𝜓⟩ + ⟨𝜓, 12{
̂𝐴′, ̂𝐵′}𝜓⟩|||

2

= 1
4||⟨𝜓, [

̂𝐴′, ̂𝐵′]𝜓⟩||2 + 1
4||⟨𝜓, {

̂𝐴′, ̂𝐵′}𝜓⟩||2

≥ 1
4||⟨𝜓, {

̂𝐴′, ̂𝐵′}𝜓⟩||2

∴ (Δ𝜓 ̂𝐴′)2(Δ𝜓 ̂𝐵′)2 ≥ 1
4||⟨𝜓, {

̂𝐴, ̂𝐵}𝜓⟩||2
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5.9. Consequences of uncertainty relation

(i) [ ̂𝐴, ̂𝐵] = 0 implies that there exists a joint set of eigenfunctions which is a complete
basis ofℋ. In particular, ̂𝐴 and ̂𝐵 can be measured simulaneously with arbitrary pre-
cision. For instance, we can measure 𝐸, ||𝐿|| and 𝐿𝑧 simultaneously for an electron on
a hydrogen atom.

(ii) We cannot simultaneously measure position and momentum of a particle with arbit-
rary precision. In particular,

Δ𝜓𝑥Δ𝜓𝑝 ≥
ℏ
2

This is Heisenberg’s uncertainty principle.

5.10. States of minimal uncertainty

The Gaussian wavepacket was a state of minimal uncertainty:

Δ𝜓𝑥Δ𝜓𝑝 =
ℏ
2

We would like to analyse the conditions for a state 𝜓 to have minimal uncertainty.

Lemma. 𝜓 is a state of minimal uncertainty if and only if

̂𝑥𝜓 = 𝑖𝑎 ̂𝑝𝜓

for some 𝑎 ∈ ℝ. A non-example is the De Broglie plane waves.

Lemma. The condition for the above lemma to hold is that

𝜓(𝑥) = 𝑐𝑒−𝑏𝑥2 ; 𝑏, 𝑐 ∈ ℝ, 𝑏 > 0, 𝑐 ≠ 0

The Gaussian wavepacket is an example of this form.

5.11. Ehrenfest theorem

Theorem. The time evolution of a Hermitian operator ̂𝐴 is governed by

d
d𝑡 ⟨

̂𝐴⟩𝜓 =
𝑖
ℏ ⟨[�̂�,

̂𝐴]⟩𝜓 + ⟨𝜕
̂𝐴

𝜕𝑡 ⟩𝜓

In this course, we will not see any operators with time dependence, so the last term will not
be needed.
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Proof.

d
d𝑡 ⟨

̂𝐴⟩𝜓 =
d
d𝑡 ∫

∞

−∞
𝜓⋆ ̂𝐴𝜓 d𝑥

= ∫
∞

−∞

𝜕
𝜕𝑡 (𝜓

⋆ ̂𝐴𝜓) d𝑥

= ∫
∞

−∞
[𝜕𝜓

⋆

𝜕𝑡
̂𝐴𝜓 + 𝜓⋆ 𝜕 ̂𝐴

𝜕𝑡 𝜓 + 𝜓⋆ ̂𝐴𝜕𝜓𝜕𝑡 ] d𝑥

The time-dependent Schrödinger equation gives

(𝑖ℏ𝜕𝜓𝜕𝑡 )
⋆
= (�̂�𝜓)⋆ ⟹ −𝑖ℏ𝜕𝜓

⋆

𝜕𝑡 = 𝜓⋆�̂�⋆ = 𝜓⋆�̂�

Hence,

d
d𝑡 ⟨

̂𝐴⟩𝜓 =
𝑖
ℏ ∫

∞

−∞
[𝜓⋆�̂� ̂𝐴𝜓 − 𝜓⋆ ̂𝐴�̂�𝜓] d𝑥 +∫

∞

−∞
𝜓⋆ 𝜕 ̂𝐴

𝜕𝑡 𝜓 d𝑥

= 𝑖
ℏ ⟨[�̂�,

̂𝐴]⟩𝜓 + ⟨𝜕
̂𝐴

𝜕𝑡 ⟩𝜓

Example. Let ̂𝐴 = �̂�. Then,
d
d𝑡 ⟨�̂�⟩𝜓 = 0

This corresponds to the classical notion of conservation of energy.

Example. Let ̂𝐴 = ̂𝑝. First, note

[�̂�, ̂𝑝]𝜓 = [ ̂𝑝2
2𝑚 + 𝑈( ̂𝑥), ̂𝑝]𝜓

= [𝑈( ̂𝑥), ̂𝑝]𝜓

= 𝑈(𝑥)(−𝑖ℏ 𝜕
𝜕𝑥)𝜓 − (−𝑖ℏ 𝜕

𝜕𝑥)𝑈(𝑥)𝜓

= 𝑖ℏ𝜕𝑈(𝑥)𝜕𝑥 𝜓

Hence,
d
d𝑡 ⟨ ̂𝑝⟩𝜓 =

𝑖
ℏ ⟨[�̂�, ̂𝑝]⟩𝜓 = −⟨𝜕𝑈𝜕𝑥 ⟩𝜓

This corresponds exactly to Newton’s second law,

̇𝑝 = −d𝑈d𝑥
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Example. Let ̂𝐴 = ̂𝑥. We have

[�̂�, ̂𝑥]𝜓 = [ ̂𝑝2
2𝑚 + 𝑈( ̂𝑥), ̂𝑥]𝜓

= 1
2𝑚[ ̂𝑝2, ̂𝑥]𝜓

= 1
2𝑚( ̂𝑝[ ̂𝑝, ̂𝑥] + [ ̂𝑝, ̂𝑥] ̂𝑝)𝜓

= −𝑖ℏ
𝑚

Hence,
d
d𝑡 ⟨ ̂𝑥⟩𝜓 =

𝑖
ℏ ⟨[�̂�, ̂𝑥]⟩𝜓 =

⟨ ̂𝑝⟩𝜓
𝑚

which aligns with the classical equation

̇𝑥 = 𝑝
𝑚
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6. Three-dimensional solutions to the Schrödinger equation
6.1. Time-independent Schrödinger equation in spherical polar

coordinates
For a spherically symmetric potential in ℝ3, the time-independent Schrödinger equation
is

− ℏ2
2𝑚∇2𝜒(𝑥) + 𝑈(𝑥)𝜒(𝑥) = 𝐸𝜒(𝑥)

Recall that the Laplacian operator can be expanded in spherical polar coordinates as

− ℏ2
2𝑚(1𝑟

𝜕2
𝜕𝑟2 𝑟 +

1
𝑟2 sin2 𝜃

[sin 𝜃 𝜕
𝜕𝜃(sin 𝜃

𝜕
𝜕𝜃) +

𝜕2
𝜕𝜙2 ])𝜒(𝑥) + 𝑈(𝑥)𝜒(𝑥) = 𝐸𝜒(𝑥)

where
𝑥 = 𝑟 cos𝜙 sin 𝜃; 𝑦 = 𝑟 sin𝜙 sin 𝜃; 𝑧 = 𝑟 cos 𝜃

Definition. A spherically symmetric potential is a potential 𝑈 which depends only on 𝑟.
We search for the particular solutions of the time-dependent Schrödinger equation with
spherically symmetric potential that are radial eigenfunctions. If 𝜒(𝑟) is a function of 𝑟
alone,

∇2𝜒(𝑟) = 1
𝑟
𝜕2
𝜕𝑟2 (𝑟𝜒(𝑟))

Hence,
− ℏ2
2𝑚𝑟

𝜕2
𝜕𝑟2 (𝑟𝜒(𝑟)) + 𝑈(𝑟)𝜒(𝑟) = 𝐸𝜒(𝑟)

This is equivalent to

− ℏ2
2𝑚(𝜒″(𝑟) + 2

𝑟𝜒
′(𝑟)) + 𝑈(𝑟)𝜒(𝑟) = 𝐸𝜒(𝑟)

The normalisation condition is

∫
∞

0
|𝜒(𝑟)|2𝑟2 d𝑟 < 𝑁

The eigenfunctions 𝜒(𝑟) must converge to zero sufficiently fast as 𝑟 → ∞ in order to be
normalisable. To solve the time-independent Schrödinger equation, we will define

𝜎(𝑟) = 𝑟𝜒(𝑟)

Then,
− ℏ2
2𝑚𝜎″(𝑟) + 𝑈(𝑟)𝜎(𝑟) = 𝐸𝜎(𝑟)

This is defined for 𝑟 ≥ 0. The normalisation condition here is

∫
∞

0
|𝜎(𝑟)|2 d𝑟 < 𝑁; 𝜎(0) = 0; 𝜎′(0) < ∞
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The conditions at zero force 𝜒 to be defined and have finite derivative at zero. To solve the
equation for 𝜎, we solve on ℝ and search for odd solutions 𝜎(−), so

𝜎(−)(−𝑟) = −𝜎(−)(𝑟)

6.2. Spherically symmetric potential well
Consider the potential well given by

𝑈(𝑟) = {0 𝑟 ≤ 𝑎
𝑈0 𝑟 > 𝑎

where 𝑎,𝑈0 > 0. The time-independent Schrödinger equation is

− ℏ2
2𝑚𝜎″(𝑟) + 𝑈(𝑟)𝜎(𝑟) = 𝐸𝜎(𝑟)

We search for odd-parity bound states, so 0 < 𝐸 < 𝑈0. Let

𝑘 = √
2𝑚𝐸
ℏ2 ; 𝑘 = √

2𝑚(𝑈0 − 𝐸)
ℏ2

The solution for 𝜎 is
𝜎(𝑟) = {𝐴 sin(𝑘𝑟) 𝑟 ≤ 𝑎

𝐵𝑒−𝑘𝑟 𝑟 > 𝑎

The continuity condition at 𝑟 = 𝑎 can be imposed to find 𝐴 sin 𝑘𝑎 = 𝐵𝑒−𝑘𝑎. The continuity
of the derivative gives 𝑘𝐴 cos 𝑘𝑎 = −𝑘𝐵𝑒−𝑘𝑎. Therefore,

−𝑘 cot(𝑘𝑎) = 𝑘; 𝑘2 + 𝑘
2
= 2𝑚𝑈0

ℏ2

Hence,
−𝜉 cot 𝜉 = 𝜂; 𝜉2 + 𝜂2 = 𝑟20

where 𝜉 = 𝑘𝑎 and 𝜂 = 𝑘𝑎, and 𝑟0 = 𝑎√2𝑚𝑈0/ℏ. If 𝑟0 <
𝜋
2
, we have no solutions because

𝜉 ≥ 0. Equivalently, there are no solutions if

𝑈0 <
𝜋2ℏ2
8𝑚𝑎2
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7. Solution to hydrogen atom

7. Solution to hydrogen atom
7.1. Radial wavefunction of hydrogen atom
The hydrogen atom is comprised of a nucleus and a single electron. The nucleus has a posit-
ive charge and the electron has a negative charge. We will model the proton to be stationary
at the origin. The Coulomb force experienced by the electron is given by

𝐹 = − 𝑒2
4𝜋𝜀0

1
𝑟2 = −𝜕𝑈𝜕𝑟 ⟹ 𝑈 = − 𝑒2

4𝜋𝜀0
1
𝑟

Since zero potential is achieved only at infinity, we search for bound states with 𝐸 < 0. We
will search for the radial symmetric eigenfunctions. We have

− ℏ2
2𝑚𝑒

(𝜒″(𝑟) + 2
𝑟𝜒

′(𝑟)) − 𝑒2
4𝜋𝜀0

1
𝑟𝜒(𝑟) = 𝐸𝜒(𝑟)

We define
𝜈2 = −2𝑚𝐸ℏ2 > 0; 𝛽 = 𝑒2𝑚𝑒

2𝜋𝜀0ℏ2
> 0

The Schrödinger equation becomes

𝜒″(𝑟) + 2
𝑟𝜒

′(𝑟) + (𝛽𝑟 − 𝜈2)𝜒(𝑟) = 0

Asymptotically as 𝑟 → ∞, we can see that 𝜒″ ∼ 𝜈2𝜒. Since 𝜈2 > 0, this yields solutions
that asymptotically behave similarly to 𝑒−𝑟𝜈, where the positive exponential solution is not
applicable due to the normalisation condition. For 𝑟 = 0, the eigenfunction should be finite.
We will consider an ansatz educated by the asymptotical behaviour. Suppose

𝜒(𝑟) = 𝑓(𝑟)𝑒−𝜈𝑟

and we solve for 𝑓(𝑟). The Schrödinger equation is

𝑓″(𝑟) + 2
𝑟 (1 − 𝜈𝑟)𝑓′(𝑟) + 1

𝑟 (𝛽 − 2𝜈)𝑓(𝑟) = 0

This is a homogeneous linear ordinary differential equation with a regular point at 𝑟 = 0.
Suppose there exist series solutions.

𝑓(𝑟) = 𝑟𝑐
∞
∑
𝑛=0

𝑎𝑛𝑟𝑛

We can differentiate and find

𝑓′(𝑟) =
∞
∑
𝑛=0

𝑎𝑛(𝑐 + 𝑛)𝑟𝑐+𝑛−1; 𝑓″(𝑟) =
∞
∑
𝑛=0

𝑎𝑛(𝑐 + 𝑛)(𝑐 + 𝑛 − 1)𝑟𝑐+𝑛−2
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Hence,

∞
∑
𝑛=0

[𝑎𝑛(𝑐 + 𝑛)(𝑐 + 𝑛 − 1)𝑟𝑐+𝑛−2 + 2
𝑟 (1 − 𝜈𝑟)𝑎𝑛(𝑐 + 𝑛)𝑟𝑐+𝑛−1 + (𝛽 − 2𝜈)𝑟𝑐+𝑛−1] = 0

By comparing coefficients of the lowest power of 𝑟,

𝑎0𝑐(𝑐 − 1) + 2𝑎0𝑐 = 0 ⟹ 𝑎0𝑐(𝑐 + 1) = 0 ⟹ 𝑐 = −1, 0

The solution 𝑐 = −1 implies 𝜒(𝑟) ∼ 1
𝑟
which is invalid at 𝑟 = 0. So we require 𝑐 = 0. Then

the power series becomes

∞
∑
𝑛=0

𝑎𝑛[𝑛(𝑛 − 1) + 2𝑛]𝑟𝑛−2 +
∞
∑
𝑛=0

𝑎𝑛(−2𝜈𝑛 + 𝛽 − 2𝜈)𝑟𝑛−1 = 0

Comparing coefficients of equal powers of 𝑟,

𝑎𝑛𝑛(𝑛 + 1) + 𝑎𝑛−1(−2𝜈𝑛 + 2𝜈 + 𝛽 − 2𝜈) = 0

Hence, we arrive at the recurrence relation

𝑎𝑛 =
2𝜈𝑛 − 𝛽
𝑛(𝑛 + 1)𝑎𝑛−1

Suppose this series were infinite. Asymptotically, the behaviour of 𝑓(𝑟) is determined by
𝑎𝑛
𝑎𝑛−1

∼ 2𝜈
𝑛
. We can compare this behaviour to the asymptotic behaviour of 𝑔(𝑟) = 𝑒2𝜈𝑟. In

this case, the series expansion with coefficients 𝑏𝑛 satisfies

𝑏𝑛 =
(2𝜈)𝑛
𝑛! ⟹ 𝑏𝑛

𝑏𝑛−1
= 2𝜈

𝑛

Hence, asymptotically 𝑓(𝑟) ∼ 𝑒2𝜈𝑟 if the series does not terminate. Since 𝜒(𝑟) = 𝑓(𝑟)𝑒−𝜈𝑟,
we have 𝜒(𝑟) ∼ 𝑒𝜈𝑟 which is not normalisable. Hence the series is finite. So there exists an
integer 𝑁 > 0 such that 𝑎𝑁 = 0 and 𝑎𝑁−1 ≠ 0. This implies 2𝜈𝑁 − 𝛽 = 0 hence 𝜈 = 𝛽

2𝑁
.

Substituting 𝜈2 and 𝛽, we find

𝐸 = 𝐸𝑁 = − 𝑒4𝑚𝑒
32𝜋2𝜀20ℏ2𝑁2

So the eigenvalues are equivalent to those found in the Bohr model. We now wish to find
the radial eigenfunctions. Note, 𝛽

2𝜈
= 𝑁 hence we can substitute and find

𝑎𝑛
𝑎𝑛−1

= −2𝜈 𝑁 − 𝑛
𝑛(𝑛 + 1)
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This recursion can be used to find the coefficients of the polynomial 𝑓𝑁(𝑟).

𝑓1(𝑟) = 1
𝑓2(𝑟) = 1 − 𝜈𝑟

𝑓3(𝑟) = 1 − 2𝜈𝑟 + 2
3𝜈

2𝑟2

These are called theLaguerre polynomials of order𝑁−1 (for example, the first order Laguerre
polynomial is 𝑓2). We can then multiply the Laguerre polynomials by 𝑒−𝜈𝑟 and normalise
over ℝ3 to find the normalised eigenfunctions 𝜒𝑁(𝑟). For example,

𝜒1(𝑟) =
𝜈3/2

√𝜋
= 1
√𝜋

( 𝑒2𝑚𝑒
4𝜋𝜀0ℏ2

)
3/2
𝑒−𝜈𝑟

Recall that the Bohr model implied that the ground state has radius 𝑎0, known as the Bohr
radius, given in terms of 𝜈 by 𝑎0 =

1
𝜈
. Using quantum mechanics, we instead find

⟨𝑟⟩𝜒1
= ∫

ℝ3
𝜒⋆
1 (𝑟)𝑟𝜒1(𝑟) d𝑉

= ∫
2𝜋

0
d𝜙∫

1

−1
d cos 𝜃∫

∞

0

𝜈3
𝜋 𝑟

3𝑒−2𝜈𝑟 d𝑟

= 4𝜋𝜈
3

𝜋 ∫
∞

0
𝑟3𝑒−2𝜈𝑟 d𝑟

= 3
2𝑎0

We have verified with physical experiments that this larger expected radius is physically
accurate.

7.2. Angular momentum
Recall that classically the angular momentum 𝐿 is given by

𝐿 = 𝑥 × 𝑝

Spherically symmetric potentials conserve classical angular momentum:

d𝐿
d𝑡 = ̇𝑥 × 𝑝 + 𝑥 × ̇𝑝 = 0

Solving classical problems in this way allows us to reduce a three-dimensional problem into
a two-dimensional problem, by considering motion on the plane 𝐿 ⋅ 𝑥 = 0. Then we re-
duce to one dimension by considering ̂𝑒𝑟. In quantum mechanics, we can do an analogous
simplification.
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Definition. In quantum mechanics, the angular momentum is given by

�̂� = ̂𝑥 × ̂𝑝 = 𝑖ℏ𝑥 × ∇

In Cartesian coordinates, this reduces to

�̂�𝑖 = −𝑖ℏ𝜀𝑖𝑗𝑘𝑥𝑗
𝜕
𝜕𝑥𝑘

Each component �̂�𝑖 is a Hermitian operator. Note,

[�̂�1, �̂�2]𝜓(𝑥1, 𝑥2, 𝑥3) = −ℏ2[(𝑥2
𝜕
𝜕𝑥3

− 𝑥3
𝜕
𝜕𝑥2

)(𝑥3
𝜕
𝜕𝑥1

− 𝑥1
𝜕
𝜕𝑥3

)

− (𝑥3
𝜕
𝜕𝑥1

− 𝑥1
𝜕
𝜕𝑥3

)(𝑥2
𝜕
𝜕𝑥3

− 𝑥3
𝜕
𝜕𝑥2

)]𝜓

= −ℏ2[𝑥2
𝜕
𝜕𝑥1

− 𝑥1
𝜕
𝜕𝑥2

]𝜓

= −𝑖ℏ�̂�3𝜓

Hence the commutator [�̂�𝑖, �̂�𝑗] = 𝑖ℏ𝜀𝑖𝑗𝑘�̂�𝑘 is nonzero for 𝑖 ≠ 𝑗. In particular, we cannot
measure each component of the angular momentum simultaneously.

Definition. The total angular momentum is

�̂�2 = �̂�21 + �̂�22 + �̂�23

We can find that [�̂�2, �̂�𝑖] = 0, so we can measure both the total angular momentum and
a specific component of angular momentum simultaneously. For a spherically symmetric
potential, given by �̂� = ̂𝑝2

2𝑚
+ 𝑈( ̂𝑟), we can find

[�̂�, �̂�2] = [�̂�, �̂�𝑖] = 0

7.3. Commutativity of angular momentum operators
The set {�̂�, �̂�2, �̂�𝑖} commutes pairwise. By convention, we choose 𝑖 = 3 to extract the 𝑧
component of the angular momentum. Hence,

(i) We can find joint eigenstates of the three operators, and such eigenstates can be chosen
to form a basis for the Hilbert spaceℋ.

(ii) The corresponding eigenvalues |𝐿|, 𝐿𝑧, 𝐸 can be measured simultaneously to an arbit-
rary precision.

(iii) The set of operators is maximal; there exists no operator (other than a linear combin-
ation of the above) that commutes with all three.
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7.4. Joint eigenfunctions of angular momentum
We search for joint eigenfunctions of �̂�𝑧 and �̂�2. We will write �̂� in spherical coordinates. In
Cartesian coordinates,

�̂� = −𝑖ℏ𝑥 ⋅ ∇
Hence,

�̂�3 = −𝑖ℏ 𝜕
𝜕𝜙; �̂�2 = − ℏ2

sin2 𝜃
[sin 𝜃 𝜕

𝜕𝜃(sin 𝜃
𝜕
𝜕𝜃) +

𝜕2
𝜕𝜙2 ]

Now we search for eigenfunctions of these operators.

�̂�2𝑌(𝜃, 𝜙) = 𝜆𝑌(𝜃, 𝜙); �̂�3𝑌(𝜃, 𝜙) = ℏ𝑚𝑌(𝜃, 𝜙)

Solving the equation in �̂�3,
−𝑖ℏ 𝜕

𝜕𝜙𝑌(𝜃, 𝜙) = ℏ𝑚𝑌(𝜃, 𝜙)

We can find solutions of the form 𝑌(𝜃, 𝜙) = 𝑦(𝜃)𝑥(𝜙). We find

−𝑖ℏ𝑦(𝜃)𝑥′(𝜙) = ℏ𝑚𝑦(𝜃)𝑥(𝜙)

Hence 𝑦(𝜃) is arbitrary, and further

−𝑖ℏ𝑥′(𝜙) = ℏ𝑚𝑥(𝜙) ⟹ 𝑥(𝜙) = 𝑒𝑖𝑚𝜙

Given that the wavefunctions must be single-valued on ℝ3, we must have 𝑥(𝜙) invariant
under the choice of 𝜙 = 𝜙 + 2𝜋𝑘. Hence 𝑚 must be an integer. Since this must also be an
eigenfunction of �̂�2, we have further

− ℏ2

sin2 𝜃
[sin 𝜃 𝜕

𝜕𝜃(sin 𝜃
𝜕
𝜕𝜃) +

𝜕2
𝜕𝜙2 ][𝑦(𝜃)𝑥(𝜙)] = 𝜆𝑦(𝜃)𝑥(𝜙)

Hence, substituting 𝑥(𝜙) = 𝑒𝑖𝑚𝜙, we find

1
sin 𝜃

𝜕
𝜕𝜃 (sin 𝜃𝑦

′(𝜃)) − 𝑚2

sin2 𝜃
𝑦(𝜃) = − 𝜆

ℏ2 𝑦(𝜃)

This is the associate Legendre equation. The solutions of 𝑦(𝜃) are the associate Legendre
functions.

𝑦(𝜃) = 𝑃ℓ,𝑚(cos 𝜃) = (sin 𝜃)|𝑚| d|𝑚|

d(cos 𝜃)|𝑚|𝑃ℓ(cos 𝜃)

where the 𝑃ℓ are the Legendre polynomials. Since the ordinary Legendre polynomials are
of degree ℓ, we must have |𝑚| ≤ ℓ to obtain a nonzero solution. This corresponds to the
classical notion that |𝐿𝑧| ≤ |𝐿| for a physical solution. The eigenvalues of �̂�2 are

𝜆 = ℓ(ℓ + 1)ℏ2

with ℓ ∈ {0, 1, 2,… }. Thus,

𝑌 ℓ,𝑚(𝜃, 𝜙) = 𝑃ℓ,𝑚(cos 𝜃)𝑒𝑖𝑚𝜙
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The 𝑌 functions are called the spherical harmonics. The parameters ℓ,𝑚 are known as the
quantum numbers of the eigenfunction; ℓ is the total angular momentum quantum number
and𝑚 is the azimuthal quantumnumber. Examples of normalised eigenfunctions are

𝑌0,0 =
1

√4𝜋

𝑌1,0 =√
3
4𝜋 cos 𝜃

𝑌1,±1 = ∓√
3
8𝜋 sin 𝜃𝑒−𝑖𝜙

All spherical harmonics can be shown to be orthogonal.

7.5. Full solution to hydrogen atom
The time-independent Schrödinger equation for the hydrogen atom is

− ℏ2
2𝑚𝑒

∇2𝜒(𝑟, 𝜃, 𝜙) − 𝑒2
4𝜋𝜀0

1
𝑟𝜒(𝑟, 𝜃, 𝜙) = 𝐸𝜒(𝑟, 𝜃, 𝜙)

Writing the Laplacian in spherical polar coordinates,

∇2 = 1
𝑟
𝜕2
𝜕𝑟2 +

1
𝑟2 sin2 𝜃

(sin 𝜃 𝜕
𝜕𝜃 sin 𝜃

𝜕
𝜕𝜃 +

𝜕2
𝜕𝜙2 )

Hence,
�̂�2 = ℏ2

sin2 𝜃
[sin 𝜃 𝜕

𝜕𝜃 sin 𝜃
𝜕
𝜕𝜃 +

𝜕2
𝜕𝜙2 ] ⟹ −ℏ2∇2 = −ℏ

2

𝑟
𝜕2
𝜕𝑟2 𝑟 +

�̂�2
𝑟2

Thus we can rewrite the TISE as

− ℏ2
2𝑚𝑒

1
𝑟 (

𝜕2
𝜕𝑟2 (𝑟𝜒)) +

�̂�2
2𝑚𝑒𝑟2

𝜒 − 𝑒2
4𝜋𝜀0𝑟

𝜒 = 𝐸𝜒

Since �̂�2, �̂�3, �̂� are a maximal set of pairwise commuting operators, we know that the eigen-
functions of the Hamiltonian 𝜒must also be eigenfunctions of �̂�2, �̂�3. Hence,

𝜒(𝑟, 𝜃, 𝜙) = 𝑅(𝑟)𝑌 ℓ,𝑚(𝜃, 𝜙)

Since 𝜒 is an eigenfunction of �̂�2,

�̂�2(𝑅(𝑟)𝑌 ℓ,𝑚(𝜃, 𝜙)) = 𝑅(𝑟)ℏ2ℓ(ℓ + 1)𝑌 ℓ,𝑚(𝜃, 𝜙)

Substituting into the TISE, we find

− ℏ2
2𝑚𝑒

(𝜕
2𝑅
𝜕𝑟2 +

2
𝑟
𝜕𝑅
𝜕𝑟 )𝑌 ℓ,𝑚(𝜃, 𝜙) +

ℏ2
2𝑚𝑒𝑟2

ℓ(ℓ + 1)𝑅(𝑟)𝑌 ℓ,𝑚(𝜃, 𝜙) −
𝑒2

4𝜋𝜀0𝑟
𝑅(𝑟)𝑌 ℓ,𝑚(𝜃, 𝜙)

= 𝐸𝑅(𝑟)𝑌 ℓ,𝑚(𝜃, 𝜙)
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Cancelling the spherical harmonic,

− ℏ2
2𝑚𝑒

(𝜕
2𝑅
𝜕𝑟2 +

2
𝑟
𝜕𝑅
𝜕𝑟 ) + ( ℏ2

2𝑚𝑒𝑟2
ℓ(ℓ + 1) − 𝑒2

4𝜋𝜀0𝑟
)

⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
𝑈eff= effective potential

𝑅(𝑟) = 𝐸𝑅(𝑟)

This is an equation for the radial part of the solution. We have already solved this equation
for ℓ = 0 to find 𝜒(𝑟), the radial wavefunction. Note that the azimuthal quantum number
does not appear in the effective potential, giving a degeneracy of order at least 2ℓ + 1. We
define

𝜈2 = −2𝑚𝑒𝐸
ℏ2 > 0; 𝛽 = 𝑒2𝑚𝑒

2𝜋𝜀0ℏ2
Hence,

𝑅″ + 2
𝑟𝑅

′ + (𝛽𝑟 − 𝜈2 − ℓ(ℓ + 1)
𝑟2 )𝑅 = 0

The asymptotic limit is as before in the radial case, since the angular velocity dependence is
suppressed by 1

𝑟2
. We have 𝑅″−𝜈2𝑅 → 0 hence 𝑅 ∝ 𝑒−𝜈𝑟 in the limit. We let 𝑅(𝑟) = 𝑔(𝑟)𝑒−𝜈𝑟.

Then,
𝑔″ + 2

𝑟 (1 − 𝜈𝑟)𝑔′ + (𝛽𝑟 − 2𝜈 − ℓ(ℓ + 1)
𝑟2 )𝑔 = 0

Expanding in power series,

𝑔(𝑟) = 𝑟𝜎
∞
∑
𝑛=0

𝑎𝑛𝑟𝑛

Substituting and comparing the lowest power of 𝑟,

𝑎0[𝜎(𝜎 − 1) + 2𝜎 − ℓ(ℓ + 1)] = 0 ⟹ 𝜎(𝜎 + 1) = ℓ(ℓ + 1)

Hence, 𝜎 = ℓ or 𝜎 = −ℓ − 1. If 𝜎 = −ℓ − 1, we have 𝑅(𝑟) ∼ 1
𝑟ℓ+1

which cannot be the
solution, so 𝜎 = ℓ. Thus,

𝑔(𝑟) = 𝑟ℓ
∞
∑
𝑛=0

𝑎𝑛𝑟𝑛

We can evaluate the recurrence relation between the coefficients as before to find
∞
∑
𝑛=0

[(𝑛 + ℓ)(𝑛 + ℓ − 1)𝑎𝑛 + 2(𝑛 + 1)𝑎𝑛 − ℓ(ℓ + 1)𝑎𝑛

− 2𝜈(𝑛 + ℓ − 1)𝑎𝑛−1 + (𝛽 − 2𝜈)𝑎𝑛−1]𝑟ℓ+𝑛−2 = 0

which gives
𝑎𝑛 =

2𝜈(𝑛 + ℓ) − 𝛽
𝑛(𝑛 + 2ℓ − 1)

If ℓ = 0 this yields the result for the radial solution. Unless the series terminates, it is
possible to show that 𝑅 diverges. Hence 𝑔 must be a polynomial with first zero coefficient
𝑎𝑛max . Here,

2𝜈(𝑛max + ℓ) − 𝛽 = 0
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We define 𝑁 = 𝑛max +ℓ, so 2𝜈𝑁 −𝛽 = 0 giving 𝜈 = 𝛽
2𝑁
. Note that 𝑁 > ℓ since 𝑛max > 0. We

can then find the energy level to be

𝐸𝑁 = − 𝑒4𝑚𝑒
32𝜋2𝜀20ℏ2

1
𝑛2

which is an identical energy spectrum as we found before when not considering angular
momentum (using the Bohr model). For each 𝐸𝑁 , we have 𝑁 = 𝑛max + ℓ so there can be
ℓ = 0,… ,𝑁−1 and𝑚 = −ℓ,… , ℓ. Hence, the degeneracy of the solution for each𝑁 is

𝐷(𝑁) =
𝑁−1
∑
ℓ=0

ℓ
∑

𝑚=−ℓ
1 = 𝑁2

So the degeneracy increases quadratically with the energy level. For example, for 𝑁 = 2
there are four possible eigenfunctions with the same energy. The eigenfunctions are now
dictated by three quantum numbers.

𝜒𝑁,ℓ,𝑚(𝑟, 𝜃, 𝜙) = 𝑅𝑁,ℓ(𝑟)𝑌 ℓ,𝑚(𝜃, 𝜙) = 𝑟ℓ𝑔𝑁,ℓ(𝑟)𝑒−
𝛽𝑟
2𝑁 𝑌 ℓ,𝑚(𝜃, 𝜙)

where 𝑔𝑁,ℓ is a polynomial of degree 𝑁 − ℓ − 1 defined by the recurrence relation

𝑎𝑘 =
2𝜈
𝑘
𝑘 + ℓ − 𝑁
𝑘 + 2ℓ + 1𝑎𝑛−1

These are the generalised Laguerre polynomials, often written

𝑔𝑁,ℓ(𝑟) = 𝐿2ℓ+1𝑁−ℓ−1(2𝑟)

The quantum number 𝑁 ∈ {0, 1,… } is known as the principal quantum number.

7.6. Comparison to Bohr model

In the Bohr model, the energy levels were predicted accurately. Further, the maximum of
the radial probability corresponds to the orbits found in the Bohr model:

d
d𝑟(||𝜒𝑁,0,0(𝑟)||

2𝑟2) = 0

The classical trajectory, and the assumption about the angular momentum 𝐿2 = 𝑁2ℏ2, were
incorrect. The angular momentum found in quantummechanics is 𝐿2 = ℓ(ℓ + 1)ℏ2, which
corresponds closely with the Bohr model for large ℓ.
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7.7. Other elements of the periodic table
The above solution does not hold for other elements of the periodic table. Generalising to a
nucleus with charge +𝑧𝑒 and 𝑧 orbiting electrons, we could model this as

𝜒(𝑥1,… , 𝑥𝑧) = 𝜒(𝑥1)…𝜒(𝑥𝑁); 𝐸 =
𝑁
∑
𝑗=1

𝑒𝑗

This approximation can be acceptable for small 𝑧, but diverges very quickly from the true
solution as 𝑧 increases, due to the electron-electron interactions and the Pauli exclusion
principle.
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VII. Linear Algebra

Lectured in Michaelmas 2021 by Prof. P. Raphael
Linear algebra is the field of study that deals with vector spaces and linear maps. A vector
space can be thought of as a generalisation of ℝ𝑛 or ℂ𝑛, although they can be based off
any field (not just ℝ or ℂ), and may have infinitely many dimensions. In this course, we
mainly study finite-dimensional vector spaces and the linear functions between them. Any
linearmap between finite-dimensional vector spaces can be encoded as amatrix. Suchmaps
have properties such as their trace and determinant, which can be easily obtained from a
matrix representing them. As was shown for real matrices in Vectors and Matrices, if the
determinant of a matrix is nonzero it can be inverted.
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1. Vector spaces and linear dependence

1. Vector spaces and linear dependence
1.1. Vector spaces
Definition. Let𝐹 be an arbitrary field. An𝐹-vector space is an abelian group (𝑉, +) equipped
with a function

𝐹 × 𝑉 → 𝑉; (𝜆, 𝑣) ↦ 𝜆𝑣
such that

(i) 𝜆(𝑣1 + 𝑣2) = 𝜆𝑣1 + 𝜆𝑣2
(ii) (𝜆1 + 𝜆2)𝑣 = 𝜆1𝑣 + 𝜆2𝑣
(iii) 𝜆(𝜇𝑣) = (𝜆𝜇)𝑣
(iv) 1𝑣 = 𝑣
Such a vector space may also be called a vector space over 𝐹.
Example. Let 𝑋 be a set, and define ℝ𝑋 = {𝑓∶ 𝑋 → ℝ}. Then ℝ𝑋 is an ℝ-vector space,
where (𝑓1 + 𝑓2)(𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥).
Example. Define 𝑀𝑛,𝑚(𝐹) to be the set of 𝑛 × 𝑚 𝐹-valued matrices. This is an 𝐹-vector
space, where the sum of matrices is computed elementwise.

Remark. The axioms of scalar multiplication imply that ∀𝑣 ∈ 𝑉, 0𝐹𝑣 = 0𝑉 .

1.2. Subspaces
Definition. Let𝑉 be an𝐹-vector space. The subset𝑈 ⊆ 𝑉 is a vector subspace of𝑉 , denoted
𝑈 ≤ 𝑉 , if
(i) 0𝑉 ∈ 𝑈
(ii) 𝑢1, 𝑢2 ∈ 𝑈 ⟹ 𝑢1 + 𝑢2 ∈ 𝑈
(iii) (𝜆, 𝑢) ∈ 𝐹 × 𝑈 ⟹ 𝜆𝑢 ∈ 𝑈
Conditions (ii) and (iii) are equivalent to

∀𝜆1, 𝜆2 ∈ 𝐹, ∀𝑢1, 𝑢2 ∈ 𝑈, 𝜆1𝑢1 + 𝜆2𝑢2 ∈ 𝑈

This means that 𝑈 is stable by addition and scalar multiplication.

Proposition. If 𝑉 is an 𝐹-vector space, and 𝑈 ≤ 𝑉 , then 𝑈 is an 𝐹-vector space.
Example. Let 𝑉 = ℝℝ be the space of functions ℝ → ℝ. The set 𝐶(ℝ) of continuous real
functions is a subspace of 𝑉 . The set ℙ of polynomials is a subspace of 𝐶(ℝ).
Example. Consider the subset of ℝ3 such that 𝑥1 + 𝑥2 + 𝑥3 = 𝑡 for some real 𝑡. This is a
subspace for 𝑡 = 0 only, since no other 𝑡 values yield the origin as a member of the subset.
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Proposition. Let 𝑉 be an 𝐹-vector space. Let 𝑈,𝑊 ≤ 𝑉 . Then 𝑈 ∩𝑊 is a subspace of 𝑉 .

Proof. First, note 0𝑉 ∈ 𝑈, 0𝑉 ∈ 𝑊 ⟹ 0𝑉 ∈ 𝑈 ∩𝑊 . Now, consider stability:

𝜆1, 𝜆2 ∈ 𝐹, 𝑣1, 𝑣2 ∈ 𝑈 ∩𝑊 ⟹ 𝜆1𝑣1 + 𝜆2𝑣2 ∈ 𝑈, 𝜆1𝑣1𝜆2𝑣2 ∈ 𝑊

Hence stability holds.

1.3. Sum of subspaces
Remark. The union of two subspaces is not, in general, a subspace. For instance, consider
ℝ, 𝑖ℝ ⊂ ℂ. Their union does not span the space; for example, 1 + 𝑖 ∉ ℝ ∪ 𝑖ℝ.
Definition. Let 𝑉 be an 𝐹-vector space. Let 𝑈,𝑊 ≤ 𝑉 . The sum 𝑈 + 𝑊 is defined to be
the set

𝑈 +𝑊 = {𝑢 + 𝑤∶ 𝑢 ∈ 𝑈,𝑤 ∈ 𝑊}

Proposition. 𝑈 +𝑊 is a subspace of 𝑉 .

Proof. First, note 0𝑈+𝑊 = 0𝑈 + 0𝑊 = 0𝑉 . Then, for 𝜆1, 𝜆2 ∈ 𝐹, and 𝑢 ∈ 𝑈,𝑤 ∈ 𝑊 ,

𝜆1𝑢 + 𝜆2𝑤 = 𝑢′ + 𝑤′ ∈ 𝑈 +𝑊

since𝑢′ ∈ 𝑈,𝑤′ ∈ 𝑊 . We can decompose a vector from𝑈+𝑊 into its𝑈 and𝑊 components.
Adding these components independently (noting that 𝑉 is abelian) yields the requirements
of a subspace.

Proposition. The sum 𝑈 +𝑊 is the smallest subspace of 𝑉 that contains both 𝑈 and𝑊 .

1.4. Quotients
Definition. Let 𝑉 be an 𝐹-vector space. Let 𝑈 ≤ 𝑉 . The quotient space 𝑉/𝑈 is the abelian
group 𝑉/𝑈 equipped with the scalar multiplication function

𝐹 × 𝑉/𝑈 → 𝑉/𝑈; (𝜆, 𝑣 + 𝑈) ↦ 𝜆𝑣 + 𝑈

Proposition. 𝑉/𝑈 is an 𝐹-vector space.

Proof. We must check that the multiplication operation is well-defined. Indeed, suppose
𝑣1 + 𝑈 = 𝑣2 + 𝑈 . Then,

𝑣1 − 𝑣2 ∈ 𝑈 ⟹ 𝜆(𝑣1 − 𝑣2) ∈ 𝑈 ⟹ 𝜆𝑣1 + 𝑈 = 𝜆𝑣2 + 𝑈 ∈ 𝑉/𝑈
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1.5. Span
Definition. Let 𝑉 be an 𝐹-vector space. Let 𝑆 ⊂ 𝑉 . We define the span of 𝑆, written ⟨𝑆⟩, as
the set of finite linear combinations of elements of 𝑆. In particular,

⟨𝑆⟩ = {∑
𝑠∈𝑆

𝜆𝑠𝑣𝑠∶ 𝜆𝑠 ∈ 𝐹, 𝑣𝑠 ∈ 𝑆, only finitely many nonzero 𝜆𝑠}

By convention, we specify
⟨∅⟩ = {0}

so that all spans are subspaces.

Remark. ⟨𝑆⟩ is the smallest vector subspace of 𝑉 containing 𝑆.
Example. Let 𝑉 = ℝ3, and

𝑆 = {(
1
0
0
) , (

0
1
2
)}, (

3
−2
−4

)

Then we can check that

⟨𝑆⟩ = {(
𝑎
𝑏
2𝑏
) ∶ (𝑎, 𝑏) ∈ ℝ}

Example. Let 𝑉 = ℝ𝑛. We define

𝑒𝑖 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
⋮
0
1
0
⋮
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where the 1 is in the 𝑖th position. Then 𝑉 = ⟨(𝑒𝑖)1≤𝑖≤𝑛⟩.
Example. Let 𝑋 be a set, and ℝ𝑋 = {𝑓∶ 𝑋 → ℝ}. Then let 𝑆𝑥 ∶ 𝑋 → ℝ be defined by

𝑆𝑥(𝑦) = {1 𝑦 = 𝑥
0 otherwise

Then, ⟨(𝑆𝑥)𝑥∈𝑋⟩ = {𝑓 ∈ ℝ𝑋 ∶ 𝑓 has finite support}, where the support of 𝑓 is defined to be
{𝑥∶ 𝑓(𝑥) ≠ 0}.

1.6. Dimensionality
Definition. Let 𝑉 be an 𝐹-vector space. Let 𝑆 ⊂ 𝑉 . We say that 𝑆 spans 𝑉 if ⟨𝑆⟩ = 𝑉 . If 𝑆
spans 𝑉 , we say that 𝑆 is a generating family of 𝑉 .
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Definition. Let 𝑉 be an 𝐹-vector space. 𝑉 is finite-dimensional if it is spanned by a finite
set.

Example. Consider the set𝑉 = ℙ[𝑥]which is the set of polynomials onℝ. Further, consider
𝑉𝑛 = ℙ𝑛[𝑥] which is the subspace with degree less than or equal to 𝑛. Then 𝑉𝑛 is spanned
by {1, 𝑥, 𝑥2,… , 𝑥𝑛}, so 𝑉𝑛 is finite-dimensional. Conversely, 𝑉 is infinite-dimensional; there
is no finite set 𝑆 such that ⟨𝑆⟩ = 𝑉 .

1.7. Linear independence

Definition. We say that 𝑣1,… , 𝑣𝑛 ∈ 𝑉 are linearly independent if, for 𝜆𝑖 ∈ 𝐹,

𝑛
∑
𝑖=1

𝜆𝑖𝑣𝑖 = 0 ⟹ ∀𝑖, 𝜆𝑖 = 0

Definition. Similarly, 𝑣1,… , 𝑣𝑛 ∈ 𝑉 are linearly dependent if

∃𝛌 ∈ 𝐹𝑛,
𝑛
∑
𝑖=1

𝜆𝑖𝑣𝑖 = 0, ∃𝑖, 𝜆𝑖 ≠ 0

Equivalently, one of the vectors can be written as a linear combination of the remaining
ones.

Remark. If (𝑣𝑖)1≤𝑖≤𝑛 are linearly independent, then

∀𝑖 ∈ {1,… , 𝑛}, 𝑣𝑖 ≠ 0

1.8. Bases

Definition. 𝑆 ⊂ 𝑉 is a basis of 𝑉 if

(i) ⟨𝑆⟩ = 𝑉

(ii) 𝑆 is a linearly independent set

So, a basis is a linearly independent (also known as free) generating family.

Example. Let 𝑉 = ℝ𝑛. The canonical basis (𝑒𝑖) is a basis since we can show that they are
free and span 𝑉 .

Example. Let 𝑉 = ℂ, considered as a ℂ-vector space. Then {1} is a basis. If 𝑉 is a ℝ-vector
space, {1, 𝑖} is a basis.

Example. Consider again ℙ[𝑥]. Then 𝑆 = {𝑥𝑛∶ 𝑛 ∈ ℕ} is a basis of ℙ.
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Lemma. Let 𝑉 be an 𝐹-vector space. Then, (𝑣1,… , 𝑣𝑛) is a basis of 𝑉 if and only if any
vector 𝑣 ∈ 𝑉 has a unique decomposition

𝑣 =
𝑛
∑
𝑖=1

𝜆𝑖𝑣𝑖, ∀𝑖, 𝜆𝑖 ∈ 𝐹

In the above definition, we call (𝜆1,… , 𝜆𝑛) the coordinates of 𝑣 in the basis (𝑣1,… , 𝑣𝑛).

Proof. Suppose (𝑣1,… , 𝑣𝑛) is a basis of 𝑉 . Then ∀𝑣 ∈ 𝑉 there exists 𝜆1,… , 𝜆𝑛 ∈ 𝐹 such that

𝑣 =
𝑛
∑
𝑖=1

𝜆𝑖𝑣𝑖

So there exists a tuple of 𝜆 values. Suppose two such 𝜆 tuples exist. Then

𝑣 =
𝑛
∑
𝑖=1

𝜆𝑖𝑣𝑖 =
𝑛
∑
𝑖=1

𝜆′𝑖𝑣𝑖 ⟹
𝑛
∑
𝑖=1
(𝜆𝑖 − 𝜆′𝑖)𝑣𝑖 = 0 ⟹ 𝜆𝑖 = 𝜆′𝑖

The converse is left as an exercise.

Lemma. If ⟨{𝑣1,… , 𝑣𝑛}⟩ = 𝑉 , then some subset of this set is a basis of 𝑉 .

Proof. If (𝑣1,… , 𝑣𝑛) are linearly independent, this is a basis. Otherwise, one of the vectors
can be written as a linear combination of the others. So, up to reordering,

𝑣𝑛 ∈ ⟨{𝑣1,… , 𝑣𝑛−1}⟩ = 𝑉
So we have removed a vector from this set and preserved the span. By induction, we will
eventually reach a basis.

1.9. Steinitz exchange lemma
Theorem. Let 𝑉 be a finite dimensional 𝐹-vector space. Let (𝑣1,… , 𝑣𝑚) be linearly inde-
pendent, and (𝑤1,… ,𝑤𝑛) which spans 𝑉 . Then,
(i) 𝑚 ≤ 𝑛; and
(ii) up to reordering, (𝑣1,… , 𝑣𝑚, 𝑤𝑚+1,…𝑤𝑛) spans 𝑉 .

Proof. Suppose that we have replaced ℓ ≥ 0 of the 𝑤𝑖.

⟨𝑣1,… , 𝑣ℓ, 𝑤ℓ+1,…𝑤𝑛⟩ = 𝑉
If𝑚 = ℓ, we are done. Otherwise, ℓ < 𝑚. Then, 𝑣ℓ+1 ∈ 𝑉 = ⟨𝑣1,… , 𝑣ℓ, 𝑤ℓ+1,…𝑤𝑛⟩Hence
𝑣ℓ+1 can be expressed as a linear combination of the generating set. Since the (𝑣𝑖)1≤𝑖≤𝑚
are linearly independent (free), one of the coefficients on the 𝑤𝑖 are nonzero. In particular,
up to reordering we can express 𝑤ℓ+1 as a linear combination of 𝑣1,… , 𝑣ℓ+1, 𝑤ℓ+2,… ,𝑤𝑛.
Inductively, wemay replace𝑚 of the𝑤 termswith 𝑣 terms. Sincewehave replaced𝑚 vectors,
necessarily𝑚 ≤ 𝑛.
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1.10. Consequences of Steinitz exchange lemma

Corollary. Let 𝑉 be a finite-dimensional 𝐹-vector space. Then, any two bases of 𝑉 have the
same number of vectors. This number is called the dimension of 𝑉 , dim𝐹 𝑉 .

Proof. Suppose the two bases are (𝑣1,… , 𝑣𝑛) and (𝑤1,… ,𝑤𝑚). Then, (𝑣1,… , 𝑣𝑛) is free and
(𝑤1,… ,𝑤𝑚) is generating, so the Steinitz exchange lemma shows that 𝑛 ≤ 𝑚. Vice versa,
𝑚 ≤ 𝑛. Hence𝑚 = 𝑛.

Corollary. Let 𝑉 be an 𝐹-vector space with finite dimension 𝑛. Then,

(i) Any independent set of vectors has at most 𝑛 elements, with equality if and only if it
is a basis.

(ii) Any spanning set of vectors has at least 𝑛 elements, with equality if and only if it is a
basis.

Proof. Exercise.

1.11. Dimensionality of sums

Proposition. Let 𝑉 be an 𝐹-vector space. Let 𝑈,𝑊 be subspaces of 𝑉 . If 𝑈,𝑊 are finite-
dimensional, then so is 𝑈 +𝑊 , with

dim𝐹(𝑈 +𝑊) = dim𝐹 𝑈 + dim𝐹 𝑊 − dim𝐹(𝑈 ∩𝑊)

Proof. Consider a basis (𝑣1,… , 𝑣𝑛) of the intersection. Extend this basis to a basis

(𝑣1,… , 𝑣𝑛, 𝑢1,… , 𝑢𝑚) of 𝑈; (𝑣1,… , 𝑣𝑛, 𝑤1,… ,𝑤𝑘) of𝑊

Then, we will show that (𝑣1,… , 𝑣𝑛, 𝑢1,… , 𝑢𝑚, 𝑤1,… ,𝑤𝑘) is a basis of dim𝐹(𝑈 +𝑊), which
will conclude the proof. Indeed, since any component of𝑈+𝑊 can be decomposed as a sum
of some element of 𝑈 and some element of 𝑊 , we can add their decompositions together.
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Now we must show that this new basis is free.

𝑛
∑
𝑖=1

𝛼𝑖𝑣𝑖 +
𝑚
∑
𝑖=1

𝛽𝑖𝑢𝑖 +
𝑘
∑
𝑖=1

𝛾𝑖𝑤𝑖 = 0

𝑛
∑
𝑖=1

𝛼𝑖𝑣𝑖 +
𝑚
∑
𝑖=1

𝛽𝑖𝑢𝑖
⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

∈𝑈

=
𝑘
∑
𝑖=1

𝛾𝑖𝑤𝑖
⏟⎵⏟⎵⏟

∈𝑊
𝑘
∑
𝑖=1

𝛾𝑖𝑤𝑖 ∈ 𝑈 ∩𝑊

𝑘
∑
𝑖=1

𝛾𝑖𝑤𝑖 =
𝑛
∑
𝑖=1

𝛿𝑖𝑣𝑖
𝑛
∑
𝑖=1
(𝛼𝑖 + 𝛿𝑖)𝑣𝑖 +

𝑚
∑
𝑖=1

𝛽𝑖𝑢𝑖 = 0

𝛽𝑖 = 0, 𝛼𝑖 = −𝛿𝑖
𝑛
∑
𝑖=1

𝛼𝑖𝑣𝑖 +
𝑘
∑
𝑖=1

𝛾𝑖𝑤𝑖 = 0

𝛼𝑖 = 0, 𝛾𝑖 = 0

Proposition. If 𝑉 is a finite-dimensional 𝐹-vector space, and 𝑈 ≤ 𝑉 , then 𝑈 and 𝑉/𝑈 are
also finite-dimensional. In particular, dim𝐹 𝑉 = dim𝐹 𝑈 + dim𝐹(𝑉/𝑈).

Proof. Let (𝑢1,… , 𝑢ℓ) be a basis of 𝑈 . We extend this basis to a basis of 𝑉 , giving

(𝑢1,… , 𝑢ℓ, 𝑤ℓ+1,… ,𝑤𝑛)

We claim that (𝑤ℓ+1 + 𝑈,… ,𝑤𝑛 + 𝑈) is a basis of the vector space 𝑉/𝑈 .

Remark. If 𝑉 is an 𝐹-vector space, and 𝑈 ≤ 𝑉 , then we say 𝑈 is a proper subspace if 𝑈 ≠ 𝑉 .
Then if 𝑈 is proper, then dim𝐹 𝑈 < dim𝐹 𝑉 and dim𝐹(𝑉/𝑈) > 0 because (𝑉/𝑈) ≠ ∅.

1.12. Direct sums
Definition. Let𝑉 be an𝐹-vector space and𝑈,𝑊 be subspaces of𝑉 . We say that𝑉 = 𝑈⊕𝑊 ,
read as the direct sum of 𝑈 and𝑊 , if ∀𝑣 ∈ 𝑉, ∃!𝑢 ∈ 𝑈, ∃!𝑤 ∈ 𝑊, 𝑢 +𝑤 = 𝑣. We say that𝑊
is a direct complement of 𝑈 in 𝑉 ; there is no uniqueness of such a complement.
Lemma. Let 𝑉 be an 𝐹-vector space, and 𝑈,𝑊 ≤ 𝑉 . Then the following statements are
equivalent.

357



VII. Linear Algebra

(i) 𝑉 = 𝑈 ⊕𝑊
(ii) 𝑉 = 𝑈 +𝑊 and 𝑈 ∩𝑊 = {0}
(iii) For any basis 𝐵1 of 𝑈 and 𝐵2 of𝑊 , 𝐵1 ∪ 𝐵2 is a basis of 𝑉

Proof. First, we show that (ii) implies (i). If 𝑉 = 𝑈 + 𝑊 , then certainly ∀𝑣 ∈ 𝑉, ∃𝑢 ∈
𝑈, ∃𝑤 ∈ 𝑊, 𝑣 = 𝑢 + 𝑤, so it suffices to show uniqueness. Note, 𝑢1 + 𝑤1 = 𝑢2 + 𝑤2 ⟹
𝑢1 − 𝑢2 = 𝑤2 − 𝑤1. The left hand side is an element of 𝑈 and the right hand side is an
element of𝑊 , so they must be the zero vector; 𝑢1 = 𝑢2, 𝑤1 = 𝑤2.

Now, we show (i) implies (iii). Suppose 𝐵1 is a basis of 𝑈 and 𝐵2 is a basis of 𝑊 . Let 𝐵 =
𝐵1 ∪𝐵2. First, note that 𝐵 is a generating family of𝑈 +𝑊 . Now we must show that 𝐵 is free.

∑
𝑢∈𝐵1

𝜆𝑢𝑢
⏟⎵⏟⎵⏟

∈𝑈

+ ∑
𝑤∈𝐵2

𝜆𝑤𝑤
⏟⎵⎵⏟⎵⎵⏟

∈𝑊

= 0

Hence both sums must be zero. Since 𝐵1, 𝐵2 are bases, all 𝜆 are zero, so 𝐵 is free and hence
a basis.

Now it remains to show that (iii) implies (ii). Wemust show that𝑉 = 𝑈+𝑊 and𝑈∩𝑊 = {0}.
Now, suppose 𝑣 ∈ 𝑉 . Then, 𝑣 = ∑𝑢∈𝐵1 𝜆𝑢𝑢 + ∑𝑤 ∈ 𝐵2𝜆𝑤𝑤. In particular, 𝑉 = 𝑈 + 𝑊 ,
since the 𝜆𝑢, 𝜆𝑤 are arbitrary. Now, let 𝑣 ∈ 𝑈 ∩𝑊 . Then

𝑣 = ∑
𝑢∈𝐵1

𝜆𝑢𝑢 = ∑
𝑤∈𝐵2

𝜆𝑤𝑤 ⟹ 𝜆𝑢 = 𝜆𝑤 = 0

Definition. Let 𝑉 be an 𝐹-vector space, with subspaces 𝑉1,… , 𝑉𝑝 ≤ 𝑉 . Then

𝑝
∑
𝑖=1

𝑉 𝑖 = {𝑣1,… , 𝑣ℓ, 𝑣𝑖 ∈ 𝑉 𝑖, 1 ≤ 𝑖 ≤ ℓ}

We say the sum is direct, written
𝑝

⨁
𝑖=1

𝑉 𝑖

if the decomposition is unique. Equivalently,

𝑉 =
𝑝

⨁
𝑖=1

𝑉 𝑖 ⟺ ∃!𝑣1 ∈ 𝑉1,… , 𝑣𝑛 ∈ 𝑉𝑛, 𝑣 =
𝑛
∑
𝑖=1

𝑣𝑖

Lemma. The following are equivalent:

(i) ∑𝑝
𝑖=1 𝑉 𝑖 =⨁𝑝

𝑖=1 𝑉 𝑖
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(ii) ∀1 ≤ 𝑖 ≤ 𝑙, 𝑉 𝑖 ∩ (∑𝑗≠𝑖 𝑉 𝑗) = {0}

(iii) For any basis 𝐵𝑖 of 𝑉 𝑖, 𝐵 = ⋃𝑛
𝑖=1 𝐵𝑖 is a basis of∑

𝑛
𝑖=1 𝑉 𝑖.

Proof. Exercise.
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2. Linear maps

2.1. Linear maps

Definition. If 𝑉,𝑊 are 𝐹-vector spaces, a map 𝛼∶ 𝑉 → 𝑊 is linear if

∀𝜆1, 𝜆2 ∈ 𝐹, ∀𝑣1, 𝑣2 ∈ 𝑉, 𝛼(𝜆1𝑣1 + 𝜆2𝑣2) = 𝜆1𝛼(𝑣1) + 𝜆2𝛼(𝑣2)

Example. Let 𝑀 be a matrix with 𝑛 rows and 𝑚 columns. Then the map 𝛼∶ ℝ𝑚 → ℝ𝑛

defined by 𝑥 ↦ 𝑀𝑥 is a linear map.

Example. Let 𝛼∶ 𝒞([0, 1], ℝ) → 𝒞([0, 1], ℝ) defined by 𝑓 ↦ 𝑎(𝑓)(𝑥) = ∫𝑥
0 𝑓(𝑡) d𝑡. This is

linear.

Example. Let 𝑥 ∈ [𝑎, 𝑏]. Then 𝛼∶ 𝒞([𝑎, 𝑏], ℝ) → ℝ defined by 𝑓 ↦ 𝑓(𝑥) is a linear map.

Remark. Let 𝑈,𝑉,𝑊 be 𝐹-vector spaces. Then,

(i) The identity function 𝑖𝑉 ∶ 𝑉 → 𝑉 defined by 𝑥 ↦ 𝑥 is linear.

(ii) If 𝛼∶ 𝑈 → 𝑉 and 𝛽∶ 𝑉 → 𝑊 are linear, then 𝛽 ∘ 𝛼 is linear.

Lemma. Let 𝑉,𝑊 be 𝐹-vector spaces. Let 𝐵 be a basis for 𝑉 . If 𝛼0∶ 𝐵 → 𝑉 is any map
(not necessarily linear), then there exists a unique linear map 𝛼∶ 𝑉 → 𝑊 extending 𝛼0:
∀𝑣 ∈ 𝐵, 𝛼0(𝑣) = 𝛼(𝑣).

Proof. Let 𝑣 ∈ 𝑉 . Then, given 𝐵 = (𝑣1,… , 𝑣𝑛).

𝑣 =
𝑛
∑
𝑖=1

𝜆𝑖𝑣𝑖

By linearity,

𝛼(𝑣) = 𝛼(
𝑛
∑
𝑖=1

𝜆𝑖𝑣𝑖) =
𝑛
∑
𝑖=1

𝛼(𝜆𝑖𝑣𝑖) =
𝑛
∑
𝑖=1

𝛼0(𝜆𝑖𝑣𝑖)

Remark. This lemma is also true in infinite-dimensional vector spaces. Often, to define a
linearmap, we instead define its action on the basis vectors, and thenwe ‘extend by linearity’
to construct the entire map.

Remark. If 𝛼1, 𝛼2∶ 𝑉 → 𝑊 are linear maps, then if they agree on any basis of 𝑉 then they
are equal.
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2.2. Isomorphism
Definition. Let 𝑉,𝑊 be 𝐹-vector spaces. A map 𝛼∶ 𝑉 → 𝑊 is an isomorphism if and only
if

(i) 𝛼 is linear
(ii) 𝛼 is bijective

If such an 𝛼 exists, we say that 𝑉 and𝑊 are isomorphic, written 𝑉 ≃ 𝑊 .

Remark. If 𝛼 in the above definition is an isomorphism, then 𝛼−1∶ 𝑊 → 𝑉 is linear. Indeed,
if 𝑤1, 𝑤2 ∈ 𝑊 with 𝑤1 = 𝛼(𝑣1) and 𝑤2 = 𝛼(𝑣2),

𝛼−1(𝑤1 + 𝑤2) = 𝛼−1(𝛼(𝑣1) + 𝛼(𝑣2)) = 𝛼−1𝛼(𝑣1 + 𝑣2) = 𝑣1 + 𝑣2 = 𝛼−1(𝑤1) + 𝛼−1(𝑤2)

Similarly, for 𝜆 ∈ 𝐹,𝑤 ∈ 𝑊 ,
𝛼−1(𝜆𝑤) = 𝜆𝛼−1(𝑤)

Lemma. Isomorphism is an equivalence relation on the class of all vector spaces over 𝐹.

Proof. (i) 𝑖𝑉 ∶ 𝑉 → 𝑉 is an isomorphism

(ii) If 𝛼∶ 𝑉 → 𝑊 is an isomorphism, 𝛼−1∶ 𝑊 → 𝑉 is an isomorphism.

(iii) If 𝛽∶ 𝑈 → 𝑉, 𝛼∶ 𝑉 → 𝑊 are isomorphisms, then 𝛼 ∘ 𝛽∶ 𝑈 → 𝑊 is an isomorphism.

The proofs of each part are left as an exercise.

Theorem. If 𝑉 is an 𝐹-vector space of dimension 𝑛, then 𝑉 ≃ 𝐹𝑛.

Proof. Let 𝐵 = (𝑣1,… , 𝑣𝑛) be a basis for 𝑉 . Then, consider 𝛼∶ 𝑉 → 𝐹𝑛 defined by

𝑣 =
𝑛
∑
𝑖=1

𝜆𝑖𝑣𝑖 ↦ (
𝜆1
⋮
𝜆𝑛
)

We claim that this is an isomorphism. This is left as an exercise.

Remark. Choosing a basis for 𝑉 is analogous to choosing an isomorphism from 𝑉 to 𝐹𝑛.
Theorem. Let 𝑉,𝑊 be 𝐹-vector spaces with finite dimensions 𝑛,𝑚. Then,

𝑉 ≃ 𝑊 ⟺ 𝑛 = 𝑚

Proof. If dim𝑉 = dim𝑊 = 𝑛, then there exist isomorphisms from both 𝑉 and𝑊 to 𝐹𝑛. By
transitivity, therefore, there exists an isomorphism between 𝑉 and𝑊 .

Conversely, if 𝑉 ≃ 𝑊 then let 𝛼∶ 𝑉 → 𝑊 be an isomorphism. Let 𝐵 be a basis of 𝑉 , then
we claim that 𝛼(𝐵) is a basis of𝑊 . Indeed, 𝛼(𝐵) spans𝑊 from the surjectivity of 𝛼, and 𝛼(𝐵)
is free due to injectivity.
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2.3. Kernel and image
Definition. Let 𝑉,𝑊 be 𝐹-vector spaces. Let 𝛼∶ 𝑉 → 𝑊 be a linear map. We define the
kernel and image as follows.

𝑁(𝛼) = ker𝛼 = {𝑣 ∈ 𝑉 ∶ 𝛼(𝑣) = 0}

Im(𝛼) = {𝑤 ∈ 𝑊 ∶ ∃𝑣 ∈ 𝑉,𝑤 = 𝛼(𝑣)}

Lemma. ker𝛼 is a subspace of 𝑉 , and Im𝛼 is a subspace of𝑊 .

Proof. Let 𝜆1, 𝜆2 ∈ 𝐹 and 𝑣1, 𝑣2 ∈ ker𝛼. Then

𝛼(𝜆1𝑣1 + 𝜆2𝑣2) = 𝜆1𝛼(𝑣1) + 𝜆2𝛼(𝑣2) = 0

Hence 𝜆1𝑣1 + 𝜆2𝑣2 ∈ ker𝛼.

Now, let 𝜆1, 𝜆2 ∈ 𝐹, 𝑣1, 𝑣2 ∈ 𝑉 , and 𝑤1 = 𝛼(𝑣1), 𝑤2 = 𝛼(𝑣2). Then

𝜆1𝑤1 + 𝜆2𝑤2 = 𝜆1𝛼(𝑣1) + 𝜆2𝛼(𝑣2) = 𝛼(𝜆1𝑣1 + 𝜆2𝑣2) ∈ Im𝛼

Remark. 𝛼∶ 𝑉 → 𝑊 is injective if and only if ker𝛼 = {0}. Further, 𝛼∶ 𝑉 → 𝑊 is surjective
if and only if Im𝛼 = 𝑊 .

Theorem. Let𝑉,𝑊 be𝐹-vector spaces. Let𝛼∶ 𝑉 → 𝑊 be a linearmap. Then𝛼∶ 𝑉/ ker𝛼 →
Im𝛼 defined by

𝛼(𝑣 + ker𝛼) = 𝛼(𝑣)

is an isomorphism. This is the isomorphism theorem from IA Groups.

Proof. First, note that 𝛼 is well defined. Suppose 𝑣+ker𝛼 = 𝑣′+ker𝛼. Then 𝑣−𝑣′ ∈ ker𝛼,
hence

𝛼(𝑣 − 𝑣′) = 0 ⟹ 𝛼(𝑣) − 𝛼(𝑣′) = 0

so 𝛼 is indeed well defined.

Now, we show 𝛼 is injective.

𝛼(𝑣 + ker𝛼) = 0 ⟹ 𝛼(𝑣) = 0 ⟹ 𝑣 ∈ ker𝛼

Hence, 𝑣 + ker𝛼 = 0 + ker𝛼.

Further, 𝛼 is surjective. This follows from the definition the image.
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2.4. Rank and nullity
Definition. The rank of 𝛼 is

𝑟(𝛼) = dim Im𝛼
The nullity of 𝛼 is

𝑛(𝛼) = dimker𝛼

Theorem (Rank-nullity theorem). Let 𝑈,𝑉 be 𝐹-vector spaces such that the dimension of
𝑈 is finite. Let 𝛼∶ 𝑈 → 𝑉 be a linear map. Then,

dim𝑈 = 𝑟(𝛼) + 𝑛(𝛼)

Proof. We have proven that 𝑈/ ker𝛼 ≃ Im𝛼. Hence, the dimensions on the left and right
match: dim(𝑈/ ker𝛼) = dim Im𝛼.

dim𝑈 − dimker𝛼 = dim Im𝛼

and the result follows.

Lemma (Characterisation of isomorphisms). Let 𝑉,𝑊 be 𝐹-vector spaces with equal, finite
dimension. Let 𝛼∶ 𝑉 → 𝑊 be a linear map. Then, the following are equivalent.

(i) 𝛼 is injective.
(ii) 𝛼 is surjective.
(iii) 𝛼 is an isomorphism.

Proof. Clearly, (iii) follows from (i) and (ii) and vice versa. The rest of the proof is left as an
exercise, which follows from the rank-nullity theorem.

2.5. Space of linear maps
Let 𝑉 and 𝑊 be 𝐹-vector spaces. Consider the space of linear maps from 𝑉 to 𝑊 . Then
𝐿(𝑉,𝑊) = {𝛼∶ 𝑉 → 𝑊 linear}.
Proposition. 𝐿(𝑉,𝑊) is an 𝐹-vector space under the operation

(𝛼1 + 𝛼2)(𝑣) = 𝛼1(𝑣) + 𝛼2(𝑣);

(𝜆𝛼)(𝑣) = 𝜆(𝛼(𝑣))
Further, if 𝑉 and𝑊 are finite-dimensional, then so is 𝐿(𝑉,𝑊) with

dim𝐹 𝐿(𝑉,𝑊) = dim𝐹 𝑉 dim𝐹 𝑊

Proof. Proving that 𝐿(𝑉,𝑊) is a vector space is left as an exercise. The dimensionality part
is proven later.
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2.6. Matrices
Definition. An 𝑚 × 𝑛 matrix over 𝐹 is an array of 𝑚 rows and 𝑛 columns, with entries in
𝐹.
We write𝑀𝑚×𝑛(𝐹) for the set of𝑚× 𝑛matrices over 𝐹.
Proposition. 𝑀𝑚×𝑛(𝐹) is an 𝐹-vector space under

((𝑎𝑖𝑗) + (𝑏𝑖𝑗)) = (𝑎𝑖𝑗 + 𝑏𝑖𝑗);

𝜆(𝑎𝑖𝑗) = (𝜆𝑎𝑖𝑗)

Proposition. dim𝐹 𝑀𝑚,𝑛(𝐹) = 𝑚𝑛.

Proof. Consider the basis defined by, the ‘elementary matrix’ for all 𝑖, 𝑗:

𝑒𝑝𝑞 = 𝛿𝑖𝑝𝛿𝑗𝑞

Then (𝑒𝑖𝑗) is a basis of𝑀𝑚×𝑛(𝐹), since it spans𝑀𝑚×𝑛(𝐹) and we can show that it is free.

2.7. Linear maps as matrices
Consider bases 𝐵 of 𝑉 and 𝐶 of𝑊 :

𝐵 = (𝑣1,… , 𝑣𝑛); 𝐶 = (𝑤1,… ,𝑤𝑛)

Then let 𝑣 ∈ 𝑉 . We have

𝑣 =
𝑛
∑
𝑗=1

𝜆𝑗𝑣𝑗 ≡ [𝑣]𝐵 = (
𝜆1
⋮
𝜆𝑛
) ∈ 𝐹𝑛

where the vector given is the coordinates in basis 𝐵. We can equivalently find [𝑤]𝐶 , the
coordinates of 𝑤 in basis 𝐶. We can now define a matrix of some linear map 𝛼 in the 𝐵, 𝐶
basis.

Definition.
[𝛼]𝐵,𝐶 = ([𝛼(𝑣1)]𝐶 ,… , [𝛼(𝑣𝑛)]𝐶) ∈ 𝑀𝑚×𝑛(𝐹)

Note that if [𝛼]𝐵𝐶 = (𝑎𝑖𝑗), then by definition

𝛼(𝑣𝑗) =
𝑛
∑
𝑖=1

𝑎𝑖𝑗𝑤𝑖

Lemma. For all 𝑣 ∈ 𝑉 ,
[𝛼(𝑣)]𝐶 = [𝛼]𝐵𝐶 ⋅ [𝑣]𝐵
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Proof. We have

𝑣 =
𝑛
∑
𝑖=1

𝜆𝑗𝑣𝑗

Hence

𝛼(
𝑛
∑
𝑖=1

𝜆𝑗𝑣𝑗) =
𝑛
∑
𝑗=1

𝜆𝑗𝛼(𝑣𝑗) =
𝑛
∑
𝑗=1

𝜆𝑖
𝑚
∑
𝑖=1

𝑎𝑖𝑗𝑤𝑖 =
𝑚
∑
𝑖=1

(
𝑛
∑
𝑗=1

𝑎𝑖𝑗𝜆𝑗)𝑤𝑖

Lemma. Let 𝛽∶ 𝑈 → 𝑉 and 𝛼∶ 𝑉 → 𝑊 be linear maps. Then, if 𝐴, 𝐵, 𝐶 are bases of
𝑈,𝑉,𝑊 respectively, then

[𝛼 ∘ 𝛽]𝐴,𝐶 = [𝛼]𝐵,𝐶 ⋅ [𝛽]𝐴,𝐵

Proof. Consider 𝑢 ∈ 𝐴. Then
(𝛼 ∘ 𝛽)(𝑢) = 𝛼(𝛽(𝑢))

giving

𝛼(∑
𝑗
𝑏𝑗𝑝𝑣𝑖) = ∑

𝑗
𝑏𝑗𝑝𝛼(𝑣𝑗) = ∑

𝑗
𝑏𝑗𝑝∑

𝑖
𝑎𝑖𝑗𝑤𝑖 = ∑

𝑖
(∑
𝑗
𝑎𝑖𝑗𝑏𝑗𝑝)𝑤𝑖

where 𝑎𝑖𝑗𝑝𝑗𝑝 is the (𝑖, 𝑗) element of 𝐴𝐵 by the definition of the product of matrices.

Proposition. If 𝑉,𝑊 are 𝐹-vector spaces, and dim𝑉 = 𝑛, dim𝑊 = 𝑚, then

𝐿(𝑉,𝑊) ≃ 𝑀𝑚×𝑛(𝐹)

which implies the dimensionality of 𝐿(𝑉,𝑊) in 𝐹 is𝑚× 𝑛.

Proof. Consider two bases 𝐵, 𝐶 of 𝑉,𝑊 . We claim that

𝜃∶ 𝐿(𝑉,𝑊) → 𝑀𝑚×𝑛(𝐹)

defined by 𝜃(𝛼) = [𝛼]𝐵,𝐶 . is an isomorphism. First, note that 𝜃 is linear. Then, 𝜃 is surjective;
consider any matrix 𝐴 = (𝑎𝑖𝑗) and consider 𝛼∶ 𝑣𝑗 ↦ ∑𝑚

𝑖=1 𝑎𝑖𝑗𝑤𝑖. Then this is certainly a
linear map which extends uniquely by linearity to 𝐴, giving [𝛼]𝐵,𝐶 = (𝑎𝑖𝑗) = 𝐴. Now, 𝜃 is
injective since [𝛼]𝐵,𝐶 = 0 ⟹ 𝛼 = 0.

Remark. If 𝐵, 𝐶 are bases of 𝑉,𝑊 respectively, and 𝜀𝐵 ∶ 𝑉 → 𝐹𝑛 is defined by 𝑣 ↦ [𝑣]𝐵, and
analogously for 𝜀𝐶 , then

[𝛼]𝐵,𝐶 ∘ 𝜀𝐵 = 𝜀𝐶 ∘ 𝛼

so the operations commute.
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Example. Let 𝛼∶ 𝑉 → 𝑊 be a linear map and 𝑌 ≤ 𝑉 , where 𝑉,𝑊 are finite-dimensional.
Then let 𝛼(𝑌) = 𝑍 ≤ 𝑊 . Consider a basis 𝐵 of 𝑉 , such that 𝐵′ = (𝑣1,… , 𝑣𝑘) is a basis of
𝑌 completed by 𝐵″ = (𝑣𝑘+1,… , 𝑣𝑛) into 𝐵 = 𝐵′ ∪ 𝐵″. Then let 𝐶 be a basis of W, such that
𝐶′ = (𝑤1,… ,𝑤ℓ) is a basis of 𝑍 completed by 𝐶″ = (𝑤ℓ+1,… ,𝑤𝑚) into 𝐶 = 𝐶′ ∪ 𝐶″. Then

[𝛼]𝐵,𝐶 = (𝛼(𝑣1) … 𝛼(𝑣𝑘) 𝛼(𝑣𝑘+1) … 𝛼(𝑣𝑛))

For 1 ≤ 𝑖 ≤ 𝑘, 𝛼(𝑣𝑖) ∈ 𝑍 since 𝑣𝑖 ∈ 𝑌, 𝛼(𝑌) = 𝑍. So the matrix has an upper-left ℓ × 𝑘
block 𝐴 which is 𝛼∶ 𝑌 → 𝑍 on the basis 𝐵′, 𝐶′. We can show further that 𝛼 induces a map
𝛼∶ 𝑉/𝑌 → 𝑊/𝑍 by 𝑣 + 𝑌 ↦ 𝛼(𝑣) + 𝑍. This is well-defined; 𝑣1 + 𝑌 = 𝑣2 + 𝑌 implies
𝑣1 − 𝑣2 ∈ 𝑌 hence 𝛼(𝑣1 − 𝑣2) ∈ 𝑍 as required. The bottom-right block is [𝛼]𝐵″,𝐶″ .

2.8. Change of basis
Suppose we have two bases 𝐵 = {𝑣1,… , 𝑣𝑛}, 𝐵′ = {𝑣′1,… , 𝑣′𝑛} of 𝑉 and corresponding 𝐶, 𝐶′

for𝑊 . If we have a linear map [𝛼]𝐵,𝐶 , we are interested in finding the components of this
linear map in another basis, that is,

[𝛼]𝐵,𝐶 ↦ [𝛼]𝐵′,𝐶′

Definition. The change of basismatrix 𝑃 from 𝐵′ to 𝐵 is

𝑃 = ([𝑣′1]𝐵 ⋯ [𝑣′𝑛]𝐵)

which is the identity map in 𝐵′, written

𝑃 = [𝐼]𝐵′,𝐵

Lemma. For a vector 𝑣,
[𝑣]𝐵 = 𝑃[𝑣]𝐵′

Proof. We have
[𝛼(𝑣)]𝐶 = [𝛼]𝐵,𝐶 ⋅ [𝑣]𝐶

Since 𝑃 = [𝐼]𝐵′,𝐵,
[𝐼(𝑣)]𝐵 = [𝐼]𝐵′,𝐵 ⋅ [𝑣]𝐵′ ⟹ [𝑣]𝐵 = 𝑃[𝑣]𝐵′

as required.

Remark. 𝑃 is an invertible 𝑛 × 𝑛 square matrix. In particular,

𝑃−1 = [𝐼]𝐵,𝐵′

Indeed,
𝐼𝑛 = [𝐼 ⋅ 𝐼]𝐵,𝐵 = [𝐼]𝐵′,𝐵 ⋅ [𝐼]𝐵′,𝐵

where 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix.
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Proposition. If 𝛼 is a linear map from 𝑉 to𝑊 , and 𝑃 = [𝐼]𝐵′,𝐵, 𝑄 = [𝐼]𝐶′,𝐶 , we have

𝐴′ = [𝛼]𝐵′,𝐶′ = [𝐼]𝐶,𝐶′[𝛼]𝐵,𝐶[𝐼]𝐵,′𝐵 = 𝑄−1𝐴𝑃

where 𝐴 = [𝛼]𝐵,𝐶 , 𝐴′ = [𝛼]𝐵′,𝐶′ .

Proof.

[𝛼(𝑣)]𝐶 = 𝑄[𝛼(𝑣)]𝐶′

= 𝑄[𝛼]𝐵′,𝐶′[𝑣]𝐵′
[𝛼(𝑣)]𝐶 = [𝛼]𝐵,𝐶[𝑣]𝐵

= 𝐴𝑃[𝑣]𝐵′
∴ ∀𝑣, 𝑄𝐴[𝑣]𝐵′ = 𝐴𝑃[𝑣]𝐵′

∴ 𝑄𝐴 = 𝐴𝑃

as required.

2.9. Equivalent matrices
Definition. Matrices 𝐴,𝐴′ are called equivalent if

𝐴′ = 𝑄−1𝐴𝑃

for some invertible𝑚×𝑚, 𝑛 × 𝑛matrices 𝑄, 𝑃.

Remark. This defines an equivalence relation on𝑀𝑚,𝑛(𝐹).

• 𝐴 = 𝐼−1𝑚 𝐴𝐼𝑛;

• 𝐴′ = 𝑄−1𝐴𝑃 ⟹ 𝐴 = 𝑄𝐴′𝑃−1;

• 𝐴′ = 𝑄−1𝐴𝑃,𝐴″ = (𝑄′)−1𝐴′𝑃′ ⟹ 𝐴″ = (𝑄𝑄′)−1𝐴(𝑃𝑃′).

Proposition. Let 𝛼∶ 𝑉 → 𝑊 be a linear map. Then there exists a basis 𝐵 of 𝑉 and a basis
𝐶 of𝑊 such that

[𝛼]𝐵,𝐶 = (𝐼𝑟 0
0 0)

so the components of thematrix are exactly the identitymatrix of size 𝑟 in the top-left corner,
and zeroes everywhere else.

Proof. We first fix 𝑟 ∈ ℕ such that dimker𝛼 = 𝑛 − 𝑟. Then we will construct a basis
{𝑣𝑟+1,… , 𝑣𝑛} of the kernel. We extend this to a basis of the entirety of 𝑉 , that is, {𝑣1,… , 𝑣𝑛}.
Then, we want to show that

{𝛼(𝑣1),… , 𝛼(𝑣𝑟)}
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is a basis of Im𝛼. Indeed, it is a generating family:

𝑣 =
𝑛
∑
𝑖=1

𝜆𝑖𝑣𝑖

𝛼(𝑣) =
𝑛
∑
𝑖=1

𝜆𝑖𝛼(𝑣𝑖)

=
𝑟
∑
𝑖=1

𝜆𝑖𝛼(𝑣𝑖)

Then if 𝑦 ∈ Im𝛼, there exists 𝑣 such that 𝛼(𝑣) = 𝑦. Further, it is a free family:
𝑟
∑
𝑖=1

𝜆𝑖𝛼(𝑣𝑖) = 0

𝛼(
𝑟
∑
𝑖=1

𝜆𝑖𝑣𝑖) = 0

𝑟
∑
𝑖=1

𝜆𝑖𝑣𝑖 ∈ ker𝛼

𝑟
∑
𝑖=1

𝜆𝑖𝑣𝑖 =
𝑛
∑

𝑖=𝑟+1
𝜆𝑖𝑣𝑖

𝑟
∑
𝑖=1

𝜆𝑖𝑣𝑖 −
𝑛
∑

𝑖=𝑟+1
𝜆𝑖𝑣𝑖 = 0

But since {𝑣1,… , 𝑣𝑛} is a basis, 𝜆𝑖 = 0 for all 𝑖. Hence {𝛼(𝑣𝑖)} is a basis of Im𝛼. Now, we wish
to extend this basis to the whole of𝑊 to form

{𝛼(𝑣1),… , 𝛼(𝑣𝑟), 𝑤𝑟+1,… ,𝑤𝑛}

Now,

[𝛼]𝐵𝐶 = (𝛼(𝑣1) ⋯ 𝛼(𝑣𝑟) 𝛼(𝑣𝑟+1) ⋯ 𝛼(𝑣𝑛))

= (𝐼𝑟 0
0 0)

Remark. This also proves the rank-nullity theorem:

rank𝛼 + null𝛼 = 𝑛
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Corollary. Any𝑚× 𝑛matrix 𝐴 is equivalent to a matrix of the form

(𝐼𝑟 0
0 0)

where 𝑟 = rank𝐴.

2.10. Column rank and row rank
Definition. Let 𝐴 ∈ 𝑀𝑚,𝑛(𝐹). Then, the column rank of 𝐴, here denoted 𝑟𝑐(𝐴), is the
dimension of the subspace of 𝐹𝑛 spanned by the column vectors.

𝑟𝑐(𝐴) = dim span {𝑐1,… , 𝑐𝑛}

Remark. If 𝛼 is a linear map, represented in bases 𝐵, 𝐶 by the matrix 𝐴, then

rank𝛼 = 𝑟𝑐(𝐴)

Proposition. Two matrices are equivalent if they have the same column rank:

𝑟𝑐(𝐴) = 𝑟𝑐(𝐴′)

Proof. If the matrices are equivalent, then 𝐴 = [𝛼]𝐵𝐶 , 𝐴′ = [𝛼]𝐵′,𝐶′ . Then

𝑟𝑐(𝐴) = 𝑟𝑐(𝛼) = 𝑟𝑐(𝐴′)

Conversely, if 𝑟𝑐(𝐴) = 𝑟𝑐(𝐴′) = 𝑟, then 𝐴,𝐴′ are equivalent to

(𝐼𝑟 0
0 0)

By transitivity, 𝐴,𝐴′ are equivalent.

Theorem. Column rank 𝑟𝑐(𝐴) and row rank 𝑟𝑐(𝐴⊺) are equivalent.

Proof. Let 𝑟 = 𝑟𝐶(𝐴). Then,

𝑄−1𝐴𝑃 = (𝐼𝑟 0
0 0)𝑚×𝑛

Then, consider

𝑃⊺𝐴⊺(𝑄−1)⊺ = (𝑄−1𝐴𝑃)⊺ = (𝐼𝑟 0
0 0)

⊺

𝑚×𝑛
= (𝐼𝑟 0

0 0)𝑛×𝑚
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Note that we can swap the transpose and inverse on 𝑄 because

(𝐴𝐵)⊺ = 𝐵⊺𝐴⊺

(𝑄𝑄−1)⊺ = 𝑄⊺(𝑄−1)⊺
𝐼 = 𝑄⊺(𝑄−1)⊺

(𝑄⊺)−1 = (𝑄−1)⊺

Then 𝑟𝑐(𝐴) = rank(𝐴) = rank(𝐴⊺) = 𝑟𝑐(𝐴⊺).

Sowe candrop the concepts of columnand row rank, and just talk about rank as awhole.

2.11. Conjugation and similarity
Consider the following special case of changing basis. If 𝛼∶ 𝑉 → 𝑉 is linear, 𝛼 is called
an endomorphism. If 𝐵 = 𝐶, 𝐵′ = 𝐶′ then the special case of the change of basis formula
is

[𝛼]𝐵′,𝐵′ = 𝑃−1[𝛼]𝐵,𝐵𝑃
Then, we say square matrices 𝐴,𝐴′ are similar or conjugate if there exists 𝑃 such that 𝐴′ =
𝑃−1𝐴𝑃.

2.12. Elementary operations
Definition. An elementary column operation is

(i) swap columns 𝑖, 𝑗
(ii) replace column 𝑖 by 𝜆multiplied by the column
(iii) add 𝜆multiplied by column 𝑖 to column 𝑗
We define analogously the elementary row operations. Note that these elementary oper-
ations are invertible (for 𝜆 ≠ 0). These operations can be realised through the action of
elementary matrices. For instance, the column swap operation can be realised using

𝑇𝑖𝑗 = (
𝐼𝑛 0 0
0 𝐴 0
0 0 𝐼𝑚

) ; 𝐴 = (
0 0 1
0 𝐼𝑘 0
1 0 1

)

To multiply a column by 𝜆,

𝑛𝑖,𝜆 = (
𝐼𝑛 0 0
0 𝜆 0
0 0 𝐼𝑚

)

To add a multiple of a column,
𝑐𝑖𝑗,𝜆 = 𝐼 + 𝜆𝐸𝑖𝑗
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where 𝐸𝑖𝑗 is the matrix defined by elements (𝑒𝑖𝑗)𝑝𝑞 = 𝛿𝑖𝑝𝛿𝑗𝑞. An elementary column (or
row) operation can be performed by multiplying 𝐴 by the corresponding elementary matrix
from the right (on the left for row operations). This will essentially provide a constructive
proof that any 𝑛 × 𝑛matrix is equivalent to

(𝐼𝑟 0
0 0)

Wewill start with amatrix𝐴. If all entries are zero, we are done. So we will pick 𝑎𝑖𝑗 = 𝜆 ≠ 0,
and swap rows 𝑖, 1 and columns 𝑗, 0. This ensures that 𝑎11 = 𝜆 ≠ 0. Now we multiply
column 1 by 1

𝜆
. Finally, we can clear out row 1 and column 1 by subtracting multiples of the

first row or column. Then we can perform similar operations on the (𝑛−1)× (𝑛−1)matrix
in the bottom right block and inductively finish this process.

2.13. Gauss’ pivot algorithm
If only row operations are used, we can reach the ‘row echelon’ form of thematrix, a specific
case of an upper triangular matrix. On each row, there are a number of zeroes until there is
a one, called the pivot. First, we assume that 𝑎𝑖𝑗 ≠ 0. We swap rows 𝑖, 1. Then divide the
first row by 𝜆 = 𝑎𝑖1 to get a one in the top left. We can use this one to clear the rest of the
first column. Then, we can repeat on the next column, and iterate. This is a technique for
solving a linear system of equations.

2.14. Representation of square invertible matrices
Lemma. If 𝐴 is an 𝑛 × 𝑛 square invertible matrix, then we can obtain 𝐼𝑛 using only row
elementary operations, or only column elementary operations.

Proof. We show an algorithm that constructs this 𝐼𝑛. This is exactly going to invert the mat-
rix, since the resultant operations can be combined to get the inverse matrix. We will show
here the proof for column operations. We argue by induction on the number of rows. Sup-
pose we can make the form

(𝐼𝑘 0
𝐴 𝐵)

Wewant to obtain the same structure with 𝑘+1 rows. We claim that there exists 𝑗 > 𝑘 such
that 𝑎𝑘+1,𝑗 ≠ 0. Indeed, otherwise we can show that the vector

⎛
⎜
⎜
⎜
⎝

0
⋮
1
⋮
0

⎞
⎟
⎟
⎟
⎠

= 𝛿𝑘+1,𝑖
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is not in the span of the column vectors of 𝐴. This contradicts the invertibility of the matrix.
Now, we will swap columns 𝑘 + 1, 𝑗 and divide this column by 𝜆. We can now use this 1 to
clear the rest of the 𝑘 + 1 row.
Inductively, we have found 𝐴𝐸1…𝐸𝑛 = 𝐼𝑛 where 𝐸𝑛 are elementary. Thus, we can find
𝐴−1.

Proposition. Any invertible square matrix is a product of elementary matrices.

The proof is exactly the proof of the lemma above.
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3. Dual spaces

3.1. Dual spaces

Definition. Let 𝑉 be an 𝐹-vector space. Then 𝑉⋆ is the dual of 𝑉 , defined by

𝑉⋆ = 𝐿(𝑉, 𝐹) = {𝛼∶ 𝑉 → 𝐹}

where the 𝛼 are linear. If 𝛼∶ 𝑉 → 𝐹 is linear, then we say 𝛼 is a linear form. So the dual of
𝑉 is the set of linear forms on 𝑉 .

Example. For instance, the trace tr∶ 𝑀𝑛,𝑛(𝐹) → 𝐹 is a linear form on𝑀𝑛,𝑛(𝐹).

Example. Consider functions [0, 1] → ℝ. We can define 𝑇𝑓 ∶ 𝒞∞([0, 1], ℝ) → ℝ such that
𝜙 ↦ ∫1

0 𝑓(𝑥)𝜙(𝑥) d𝑥. Then 𝑇𝑓 is a linear form on 𝒞∞([0, 1], ℝ). We can then reconstruct 𝑓
given 𝑇𝑓. This mathematical formulation is called distribution.

Lemma. Let 𝑉 be an 𝐹-vector space with a finite basis 𝐵 = {𝑒1,… , 𝑒𝑛}. Then there exists a
basis 𝐵⋆ for 𝑉⋆ given by

𝐵⋆ = {𝜀1,… , 𝜀𝑛}; 𝜀𝑗(
𝑛
∑
𝑖=1

𝑎𝑖𝑒𝑖) = 𝑎𝑗

We call 𝐵⋆ the dual basis for 𝐵.

Proof. We know

𝜀𝑗(
𝑛
∑
𝑖=1

𝑎𝑖𝑒𝑖) = 𝑎𝑗

Equivalently,
𝜀𝑗(𝑒𝑖) = 𝛿𝑖𝑗

First, we will show that the set of linear forms as defined is free. For all 𝑖,

𝑛
∑
𝑗=1

𝜆𝑗𝜀𝑗 = 0

∴ (
𝑛
∑
𝑗=1

𝜆𝑗𝜀𝑗)𝑒𝑖 = 0

𝑛
∑
𝑗=1

𝜆𝑗𝜀𝑗(𝑒𝑖) = 0

𝜆𝑖 = 0
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Now we show that the set spans 𝑉⋆. Suppose 𝛼 ∈ 𝑉⋆, 𝑥 ∈ 𝑉 .

𝛼(𝑥) = 𝛼(
𝑛
∑
𝑗=1

𝜆𝑗𝑒𝑗)

=
𝑛
∑
𝑖=1

𝜆𝑗𝛼(𝑒𝑗)

Conversely, we can write
𝑛
∑
𝑖=1

𝛼(𝑒𝑗)𝜀(𝑗) ∈ 𝑉⋆

Thus,

(
𝑛
∑
𝑖=1

𝛼(𝑒𝑗)𝜀𝑗)(𝑥) =
𝑛
∑
𝑗=1

𝛼(𝑒𝑗)𝜀𝑗(
𝑛
∑
𝑘=1

𝜆𝑘𝑒𝑘)

=
𝑛
∑
𝑗=1

𝛼(𝑒𝑗)
𝑛
∑
𝑘=1

𝜆𝑘𝜀𝑗(𝑒𝑘)

=
𝑛
∑
𝑗=1

𝛼(𝑒𝑗)
𝑛
∑
𝑘=1

𝜆𝑘𝛿𝑗𝑘

=
𝑛
∑
𝑗=1

𝛼(𝑒𝑗)𝜆𝑗

= 𝛼(𝑥)
We have then shown that

𝛼 =
𝑛
∑
𝑗=1

𝛼(𝑒𝑗)𝜀𝑗

as required.

Corollary. If 𝑉 is finite-dimensional, 𝑉⋆ has the same dimension.

Remark. It is sometimes convenient to think of 𝑉⋆ as the spaces of row vectors of length
dim𝑉 over 𝐹. For instance, consider the basis 𝐵 = (𝑒1,… , 𝑒𝑛), so 𝑥 = ∑𝑛

𝑖=1 𝑥𝑖𝑒𝑖. Then we
can pick (𝜀1,… , 𝜀𝑛) a basis of 𝑉⋆, so 𝛼 = ∑𝑛

𝑖=1 𝛼𝑖𝜀𝑖. Then

𝛼(𝑥) =
𝑛
∑
𝑖=1

𝛼𝑖𝜀𝑖(𝑥) =
𝑛
∑
𝑖=1

𝛼𝑖𝜀(
𝑛
∑
𝑗=1

𝑥𝑗𝑒𝑗) =
𝑛
∑
𝑖=1

𝛼𝑖𝑥𝑖

This is exactly

(𝛼1 ⋯ 𝛼𝑛) (
𝑥1
⋮
𝑥𝑛
)

which essentially defines a scalar product between the two spaces.
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3.2. Annihilators
Definition. Let 𝑈 ⊆ 𝑉 . Then the annihilator of 𝑈 is

𝑈0 = {𝛼 ∈ 𝑉⋆∶ ∀𝑢 ∈ 𝑈, 𝛼(𝑢) = 0}

Lemma. (i) 𝑈0 ≤ 𝑉⋆;

(ii) If 𝑈 ≤ 𝑉 and dim𝑉 < ∞, then dim𝑉 = dim𝑈 + dim𝑈0.

Proof. (i) First, note that 0 ∈ 𝑈0 since 𝛼(0) = 0 by linearity. If 𝛼, 𝛼′ ∈ 𝑈0, then for all
𝑢 ∈ 𝑈 ,

(𝛼 + 𝛼′)(𝑢) = 𝛼(𝑢) + 𝛼′(𝑢) = 0

Further, for all 𝜆 ∈ 𝐹,
(𝜆𝛼)(𝑢) = 𝜆𝛼(𝑢) = 0

Hence 𝑈0 ≤ 𝑉⋆.

(ii) Let (𝑒1,… , 𝑒𝑘) be a basis of 𝑈 , completed into a basis 𝐵 = (𝑒1,… , 𝑒𝑘, 𝑒𝑘+1,… , 𝑒𝑛) of 𝑉 .
Let (𝜀1,… , 𝜀𝑛) be the dual basis 𝐵⋆. We then will prove that

𝑈0 = ⟨𝜀𝑘+1,… , 𝜀𝑛⟩

If 𝑖 > 𝑘, then 𝜀𝑖(𝑒𝑘) = 𝛿𝑖𝑘 = 0. Hence 𝜀𝑖 ∈ 𝑈0. Thus ⟨𝜀𝑘+1,… , 𝜀𝑛⟩ ⊂ 𝑈0. Conversely,
let 𝛼 ∈ 𝑈0. Then 𝛼 = ∑𝑛

𝑖=1 𝛼𝑖𝜀𝑖. For 𝑖 ≤ 𝑘, 𝛼 ∈ 𝑈0 hence 𝛼(𝑒𝑖) = 0. Hence,

𝛼 =
𝑛
∑

𝑖=𝑘+1
𝛼𝑖𝜀𝑖

Thus
𝛼 ∈ ⟨𝜀𝑘+1,… , 𝜀𝑛⟩

as required.

3.3. Dual maps
Lemma. Let 𝑉,𝑊 be 𝐹-vector spaces. Let 𝛼 ∈ 𝐿(𝑉,𝑊). Then there exists a unique 𝛼⋆ ∈
𝐿(𝑊 ⋆, 𝑉⋆) such that

𝜀 ↦ 𝜀 ∘ 𝛼

called the dual map.
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Proof. First, note 𝜀(𝛼)∶ 𝑉 → 𝐹 is a linear map. Hence, 𝜀 ∘ 𝛼 ∈ 𝑉⋆. Now we must show 𝛼⋆

is linear.
𝛼⋆(𝜃1 + 𝜃2) = (𝜃1 + 𝜃2)(𝛼) = 𝜃1 ∘ 𝛼 + 𝜃2 ∘ 𝛼 = 𝛼⋆(𝜃1) + 𝛼⋆(𝜃2)

Similarly, we can show
𝛼⋆(𝜆𝜃) = 𝜆𝛼⋆(𝜃)

as required. Hence 𝛼⋆ ∈ 𝐿(𝑊 ⋆, 𝑉⋆).

Proposition. Let 𝑉,𝑊 be finite-dimensional 𝐹-vector spaces with bases 𝐵, 𝐶 respectively.
Then

[𝛼⋆]𝐶⋆,𝐵⋆ = [𝛼]⊺𝐵,𝐶
Thus, we can think of the dual map as the adjoint of 𝛼.

Proof. This follows from the definition of the dualmap. Let𝐵 = (𝑏1,… , 𝑏𝑛),𝐶 = (𝑐1,… , 𝑐𝑚),
𝐵⋆ = (𝛽1,… , 𝛽𝑛), 𝐶⋆ = (𝛾1,… , 𝛾𝑚). Let [𝛼]𝐵,𝐶 = (𝑎𝑖𝑗). Then, we compute

𝛼⋆(𝛾𝑟)(𝑏𝑠) = 𝛾𝑟 ∘ 𝛼(𝑏𝑠)

= 𝛾𝑟(∑
𝑡
𝑎𝑡𝑠𝑐𝑡)

= ∑
𝑡
𝑎𝑡𝑠𝛾𝑟(𝑐𝑡)

= ∑
𝑡
𝑎𝑡𝑠𝛿𝑡𝑟

= 𝑎𝑟𝑠

We can conversely write [𝛼⋆]𝐶⋆,𝐵⋆ = (𝑚𝑖𝑗) and

𝛼⋆(𝛾𝑟) =
𝑛
∑
𝑖=1

𝑚𝑖𝑟𝛽𝑖

𝛼⋆(𝛾𝑟)(𝑏𝑠) =
𝑛
∑
𝑖=1

𝑚𝑖𝑟𝛽𝑖(𝑏𝑠)

=
𝑛
∑
𝑖=1

𝑚𝑖𝑟𝛿𝑖𝑠

= 𝑚𝑠𝑟

Thus,
𝑎𝑟𝑠 = 𝑚𝑠𝑟

as required.
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3.4. Properties of dual map
Let 𝛼 ∈ 𝐿(𝑉,𝑊), and 𝛼⋆ ∈ 𝐿(𝑊 ⋆, 𝑉⋆). Let 𝐵 and𝐶 be bases of𝑉,𝑊 respectively, and 𝐵⋆, 𝐶⋆

be their duals. We have proven that

[𝛼]𝐵,𝐶 = [𝛼⋆]⊺𝐵,𝐶

Lemma. Suppose that 𝐸 = (𝑒1,… , 𝑒𝑛) and 𝐹 = (𝑓1,… , 𝑓𝑛) are bases of 𝑉 . Let 𝑃 = [𝐼]𝐹,𝐸 be
a change of basis matrix from 𝐹 to 𝐸. The bases 𝐸⋆ = (𝜀1,… , 𝜀𝑛), 𝐹⋆ = (𝜂1,… , 𝜂𝑛) are the
corresponding dual bases. Then, the change of basis matrix from 𝐹⋆ to 𝐸⋆ is

(𝑃−1)⊺

Proof. Consider
[𝐼]𝐹⋆,𝐸⋆ = [𝐼]⊺𝐸,𝐹 = ([𝐼]−1𝐹,𝐸)

⊺ = (𝑃−1)⊺

Lemma. Let 𝑉,𝑊 be 𝐹-vector spaces. Let 𝛼 ∈ 𝐿(𝑉,𝑊). Let 𝛼⋆ be the corresponding dual
map. Then, denoting 𝑁(𝛼) for the kernel of 𝛼,

(i) 𝑁(𝛼⋆) = (Im𝛼)0, so 𝛼⋆ is injective if and only if 𝛼 is surjective.

(ii) Im𝛼⋆ ≤ (𝑁(𝛼))0, with equality if𝑉,𝑊 are finite-dimensional. In this finite-dimensional
case, 𝛼⋆ is surjective if and only if 𝛼 is injective.

Remark. In many applications, it is often simpler to understand the dual map 𝛼⋆ than it is
to understand 𝛼.

Proof. First, we prove (i). Let 𝜀 ∈ 𝑊 ⋆. Then, 𝜀 ∈ 𝑁(𝛼⋆) means 𝛼⋆(𝜀) = 0. Hence, 𝛼⋆(𝜀) =
𝜀 ∘ 𝛼 = 0 So for any 𝑣 ∈ 𝑉 , 𝜀(𝛼(𝑣)) = 0. Equivalently, 𝜀 is an element of the annihilator of
Im𝛼.

Now, we will show (ii). Let 𝜀 ∈ Im𝛼⋆. Then 𝛼⋆(𝜙) = 𝜀 for some 𝜙 ∈ 𝑊 ⋆. Then, for all
𝑢 ∈ 𝑁(𝛼), 𝜀(𝑢) = (𝛼⋆(𝜙))(𝑢) = 𝜙 ∘ 𝛼(𝑢) = 𝜙(𝛼(𝑢)) = 0. Certainly then 𝜀 ∈ (𝑁(𝛼))0. Then,
Im𝛼⋆ ≤ (𝑁(𝛼))0.

In the finite-dimensional case, we can compare the dimension of these two spaces.

dim Im𝛼⋆ = 𝑟(𝛼⋆) = 𝑟([𝛼⋆]𝐶⋆,𝐵⋆) = 𝑟([𝛼]⊺𝐵,𝐶) = 𝑟([𝛼]𝐵,𝐶) = 𝑟(𝛼) = dim Im𝛼

Due to the rank-nullity theorem, dim Im𝛼⋆ = dim𝑉 − dim𝑁(𝛼) = dim [(𝑁(𝛼))0]. Hence,

Im𝛼⋆ ≤ (𝑁(𝛼))0; dim Im𝛼⋆ = dim(𝑁(𝛼))0

The dimensions are equal, and one is a subspace of the other, hence the spaces are equal.
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3.5. Double duals
Definition. Let 𝑉 be an 𝐹-vector space. Let 𝑉⋆ be the dual of 𝑉 . The double dual or bidual
of 𝑉 is

𝑉⋆⋆ = 𝐿(𝑉⋆, 𝐹) = (𝑉⋆)⋆

Remark. In general, there is no obvious relation between 𝑉 and 𝑉⋆. However, the following
useful facts hold about 𝑉 and 𝑉⋆⋆.

(i) There is a canonical embedding from 𝑉 to 𝑉⋆⋆. In particular, there exists 𝑖 in 𝐿(𝑉, 𝑉⋆⋆)
which is injective.

(ii) There are examples of infinite-dimensional spaces where 𝑉 ≃ 𝑉⋆⋆. These are called
reflexive spaces. Such spaces are investigated in the study of Banach spaces.

Theorem. 𝑉 embeds into 𝑉⋆⋆.

Proof. Choose a vector 𝑣 ∈ 𝑉 and define the linear form ̂𝑣 ∈ 𝐿(𝑉⋆, 𝐹) such that

̂𝑣(𝜀) = 𝜀(𝑣)

So clearly ̂𝑣 is linear. We want to show ̂𝑣 ∈ 𝑉⋆⋆. If 𝜀 ∈ 𝑉⋆, 𝜀(𝑣) ∈ 𝐹. Further, 𝜆1, 𝜆2 ∈ 𝐹 and
𝜀1, 𝜀2 ∈ 𝑉⋆ give

̂𝑣(𝜆1𝜀1 + 𝜆2𝜀2) = (𝜆1𝜀1 + 𝜆2𝜀2)(𝑣) = 𝜆1𝜀1(𝑣) + 𝜆2𝜀2(𝑣) = 𝜆1 ̂𝑣(𝜀1) + 𝜆2 ̂𝑣(𝜀2)

Theorem. If𝑉 is finite-dimensional, then 𝑖 ∶ 𝑉 → 𝑉⋆⋆ given by 𝑖(𝑣) = ̂𝑣 is an isomorphism.

Proof. We will show 𝑖 is linear. If 𝑣1, 𝑣2 ∈ 𝑉, 𝜆1, 𝜆2 ∈ 𝐹, then

𝑖(𝜆1𝑣1 + 𝜆2𝑣2)(𝜀) = 𝜀(𝜆1𝑣1 + 𝜆2𝑣2) = 𝜆1𝜀(𝑣1) + 𝜆2𝜀(𝑣2) = 𝜆1 ̂𝑣1(𝜀) + 𝜆2 ̂𝑣2(𝜀)

Now, we will show that 𝑖 is injective for finite-dimensional 𝑉 . Let 𝑒 ∈ 𝑉 ∖ {0}. We will show
that 𝑒 ∉ ker 𝑖. We extend 𝑒 into a basis (𝑒, 𝑒2,… , 𝑒𝑛) of 𝑉 . Now, let (𝜀, 𝜀2,… , 𝜀𝑛) be the dual
basis. Then ̂𝑒(𝜀) = 𝜀(𝑒) = 1. In particular, ̂𝑒 ≠ 0. Hence ker 𝑖 = {0}, so it is injective.
We now show that 𝑖 is an isomorphism. We need to simply compute the dimension of the
image under 𝑖. Certainly, dim𝑉 = dim𝑉⋆ = dim(𝑉⋆)⋆ = dim𝑉⋆⋆. Since 𝑖 is injective,
dim𝑉 = dim𝑉⋆⋆. So 𝑖 is surjective as required.

Lemma. Let 𝑉 be a finite-dimensional 𝐹-vector space. Let 𝑈 ≤ 𝑉 . Then,

�̂� = 𝑈00

After identifying 𝑉 and 𝑉⋆⋆, we typically say

𝑈 = 𝑈00

although this is is incorrect notation and not an equality.
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Proof. We will show that �̂� ≤ 𝑈00. Indeed, let 𝑢 ∈ 𝑈 , then by definition

∀𝜀 ∈ 𝑈0, 𝜀(𝑢) = 0 ⟹ �̂�(𝜀) = 0

Hence ̂𝑢 ∈ 𝑈00 and so �̂� ≤ 𝑈00.

Now, we will compute dimension: dim𝑈00 = dim𝑉 −dim𝑈0 = dim𝑈 . Since �̂� ≃ 𝑈 , their
dimensions are the same, so 𝑈00 = �̂� .

Remark. Due to this identification of 𝑉⋆⋆ and 𝑉 , we can define

𝑇 ≤ 𝑉⋆, 𝑇0 = {𝑣 ∈ 𝑉 ∶ ∀𝜃 ∈ 𝑇, 𝜃(𝑣) = 0}

Lemma. Let 𝑉 be a finite-dimensional 𝐹-vector space. Let 𝑈1, 𝑈2 be subspaces of 𝑉 . Then
(i) (𝑈1 + 𝑈2)0 = 𝑈0

1 ∩ 𝑈0
2 ;

(ii) (𝑈1 ∩ 𝑈2)0 = 𝑈0
1 + 𝑈0

2

Proof. Let 𝜃 ∈ 𝑉⋆. Then 𝜃 ∈ (𝑈1 + 𝑈2)0 ⟺ ∀𝑢1 ∈ 𝑈1, 𝑢2 ∈ 𝑈2, 𝜃(𝑢1 + 𝑢2) = 0. Hence
𝜃(𝑢) = 0 for all 𝑢 ∈ 𝑈1 ∪ 𝑈2 by linearity. Hence 𝜃 ∈ 𝑈0

1 ∩ 𝑈0
2 . Now, take the annihilator of

(i) and 𝑈00 = 𝑈 to complete part (ii).
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4. Bilinear forms
4.1. Introduction
Definition. Let𝑈,𝑉 be 𝐹-vector spaces. Then 𝜙∶ 𝑈×𝑉 → 𝐹 is a bilinear form if it is linear
in both components. For example, 𝜙 at a fixed 𝑢 ∈ 𝑈 is a linear form 𝑉 → 𝐹 and an element
of 𝑉⋆.

Example. Consider the map 𝑉 × 𝑉⋆ → 𝐹 given by
(𝑣, 𝜃) ↦ 𝜃(𝑣)

Example. The scalar product on 𝑈 = 𝑉 = ℝ𝑛 is given by

𝜓(𝑥, 𝑦) =
𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖

Example. Let 𝑈 = 𝑉 = 𝐶([0, 1], ℝ) and consider

𝜙(𝑓, 𝑔) = ∫
1

0
𝑓(𝑡)𝑔(𝑡) d𝑡

Definition. If 𝐵 = (𝑒1,… , 𝑒𝑚) is a basis of 𝑈 and 𝐶 = (𝑓1,… , 𝑓𝑛) is a basis of 𝑉 , and
𝜙∶ 𝑈 × 𝑉 → 𝐹 is a bilinear form, then the matrix of the bilinear form in this basis is

[𝜙]𝐵,𝐶 = (𝜙(𝑒𝑖, 𝑓𝑗))1≤𝑖≤𝑚,1≤𝑗≤𝑛

Lemma. We can link 𝜙 with its matrix in a given basis as follows.
𝜙(𝑢, 𝑣) = [𝑢]⊺𝐵[𝜙]𝐵,𝐶[𝑣]𝐶

Proof. Let 𝑢 = ∑𝑚
𝑖=1 𝜆𝑖𝑢𝑖 and 𝑣 = ∑𝑛

𝑗=1 𝜇𝑗𝑣𝑗 . Then

𝜙(𝑢, 𝑣) = 𝜙(
𝑚
∑
𝑖=1

𝜆𝑖𝑢𝑖,
𝑛
∑
𝑗=1

𝜇𝑗𝑣𝑗) =
𝑚
∑
𝑖=1

𝑛
∑
𝑗=1

𝜆𝑖𝜇𝑗𝜙(𝑢𝑖, 𝑣𝑗) = [𝑢]⊺𝐵[𝜙]𝐵,𝐶[𝑣]𝐶

Remark. Note that [𝜙]𝐵,𝐶 is the only matrix such that 𝜙(𝑢, 𝑣) = [𝑢]⊺𝐵[𝜙]𝐵,𝐶[𝑣]𝐶 .
Definition. Let 𝜙∶ 𝑈 × 𝑉 → 𝐹 be a bilinear form. Then 𝜙 induces two linear maps given
by the partial application of a single parameter to the function.

𝜙𝐿∶ 𝑈 → 𝑉⋆; 𝜙𝐿(𝑢)∶ 𝑉 → 𝐹; 𝑣 ↦ 𝜙(𝑢, 𝑣)
𝜙𝑅 ∶ 𝑉 → 𝑈⋆; 𝜙𝑅(𝑣)∶ 𝑈 → 𝐹; 𝑢 ↦ 𝜙(𝑢, 𝑣)

In particular,
𝜙𝐿(𝑢)(𝑣) = 𝜙(𝑢, 𝑣) = 𝜙𝑅(𝑣)(𝑢)
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Lemma. Let 𝐵 = (𝑒1,… , 𝑒𝑚) be a basis of 𝑈 , and let 𝐵⋆ = (𝜀1,… , 𝜀𝑚) be its dual; and let
𝐶 = (𝑓1,… , 𝑓𝑛) be a basis of 𝑉 , and let 𝐶⋆ = (𝜂1,… , 𝜂𝑛) be its dual. Let 𝐴 = [𝜙]𝐵,𝐶 . Then

[𝜙𝑅]𝐶,𝐵⋆ = 𝐴; [𝜙𝐿]𝐵,𝐶⋆ = 𝐴⊺

Proof.
𝜙𝐿(𝑒𝑖)(𝑓𝑗) = 𝜙(𝑒𝑖, 𝑓𝑗) = 𝐴𝑖𝑗

Since 𝜂𝑗 is the dual of 𝑓𝑗 ,
𝜙𝐿(𝑒𝑖) = ∑

𝑖
𝐴𝑖𝑗𝜂𝑗

Further,
𝜙𝑅(𝑓𝑗)(𝑒𝑖) = 𝜙(𝑒𝑖, 𝑓𝑗) = 𝐴𝑖𝑗

and then similarly
𝜙𝑅(𝑓𝑗) = ∑

𝑖
𝐴𝑖𝑗𝜀𝑖

Definition. ker𝜙𝐿 is called the left kernel of 𝜙. ker𝜙𝑅 is the right kernel of 𝜙.
Definition. We say that 𝜙 is non-degenerate if ker𝜙𝐿 = ker𝜙𝑅 = {0}. Otherwise, 𝜙 is
degenerate.

Theorem. Let 𝐵 be a basis of𝑈 , and let𝐶 be a basis of𝑉 , where𝑈,𝑉 are finite-dimensional.
Let 𝜙∶ 𝑈×𝑉 → 𝐹 be a bilinear form. Let𝐴 = [𝜙]𝐵,𝐶 . Then, 𝜙 is non-degenerate if and only
if 𝐴 is invertible.

Corollary. If 𝜙 is non-degenerate, then dim𝑈 = dim𝑉 .

Proof. Suppose 𝜙 is non-degenerate. Then ker𝜙𝐿 = ker𝜙𝑅 = {0}. This is equivalent to
saying that 𝑛(𝜙𝐿) = 𝑛(𝜙𝑅) = 0. We can use the rank-nullity theorem to state that 𝑟(𝐴⊺) =
dim𝑉 and 𝑟(𝐴) = dim𝑉 . This is equivalent to saying that 𝐴 is invertible. Note that this
forces dim𝑈 = dim𝑉 .

Remark. The canonical example of a non-degenerate bilinear form is the scalar product
ℝ𝑛 × ℝ𝑛 → ℝ represented by the identity matrix in the standard basis.

Corollary. If 𝑈 and 𝑉 are finite-dimensional with dim𝑈 = dim𝑉 , then choosing a non-
degenerate bilinear form 𝜙∶ 𝑈×𝑉 → 𝐹 is equivalent to choosing an isomorphism 𝜙𝐿∶ 𝑈 ≃
𝑉⋆.

Definition. If 𝑇 ⊂ 𝑈 , then we define
𝑇⟂ = {𝑣 ∈ 𝑉 ∶ ∀𝑡 ∈ 𝑇, 𝜙(𝑡, 𝑣) = 0}

Further, if 𝑆 ⊂ 𝑉 , we define
⟂𝑆 = {𝑢 ∈ 𝑈 ∶ ∀𝑠 ∈ 𝑆, 𝜙(𝑢, 𝑠) = 0}

These are called the orthogonals of 𝑇 and 𝑆.
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4.2. Change of basis for bilinear forms
Proposition. Let 𝐵, 𝐵′ be bases of𝑈 and 𝑃 = [𝐼]𝐵′,𝐵, let 𝐶, 𝐶′ be bases of 𝑉 and𝑄 = [𝐼]𝐶′,𝐶 ,
and finally let 𝜙∶ 𝑈 × 𝑉 → 𝐹 be a bilinear form. Then

[𝜙]𝐵′,𝐶′ = 𝑃⊺[𝜙]𝐵,𝐶𝑄

Proof. We have 𝜙(𝑢, 𝑣) = [𝑢]⊺𝐵[𝜙]𝐵,𝐶[𝑣]𝐶 . Changing coordinates, we have

𝜙(𝑢, 𝑣) = (𝑃[𝑢]𝐵′)⊺[𝜙]𝐵,𝐶(𝑄[𝑣]𝐶′) = [𝑢]⊺𝐵′(𝑃⊺[𝜙]𝐵,𝐶𝑄)[𝑣]𝐶′

Lemma. The rank of a bilinear form 𝜙, denoted 𝑟(𝜙) is the rank of any matrix representing
𝜙. This quantity is well-defined.
Remark. 𝑟(𝜙) = 𝑟(𝜙𝑅) = 𝑟(𝜙𝐿), since 𝑟(𝐴) = 𝑟(𝐴⊺).

Proof. For any invertible matrices 𝑃,𝑄, 𝑟(𝑃⊺𝐴𝑄) = 𝑟(𝐴).
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5. Trace and determinant
5.1. Trace
Definition. The trace of a square matrix 𝐴 ∈ 𝑀𝑛,𝑛(𝐹) ≡ 𝑀𝑛(𝐹) is defined by

tr𝐴 =
𝑛
∑
𝑖=1

𝑎𝑖𝑖

The trace is a linear form.

Lemma. tr(𝐴𝐵) = tr(𝐵𝐴) for any matrices 𝐴, 𝐵 ∈ 𝑀𝑛(𝐹).

Proof. We have

tr(𝐴𝐵) =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑎𝑖𝑗𝑏𝑗𝑖 =
𝑛
∑
𝑗=1

𝑛
∑
𝑖=1

𝑏𝑗𝑖𝑎𝑖𝑗 = tr(𝐵𝐴)

Corollary. Similar matrices have the same trace.

Proof.
tr(𝑃−1𝐴𝑃) = tr(𝐴𝑃−1𝑃) = tr𝐴

Definition. If 𝛼∶ 𝑉 → 𝑉 is linear, we can define the trace of 𝛼 as
tr𝛼 = tr[𝛼]𝐵

for any basis 𝐵. This is well-defined by the corollary above.
Lemma. If 𝛼∶ 𝑉 → 𝑉 is linear, 𝛼⋆∶ 𝑉⋆ → 𝑉⋆ satisfies

tr𝛼 = tr𝛼⋆

Proof.
tr𝛼 = tr[𝛼]𝐵 = tr[𝛼]⊺𝐵 = tr[𝛼⋆]𝐵⋆ = tr𝛼⋆

5.2. Permutations and transpositions
Recall the following facts about permutations and transpositions. 𝑆𝑛 is the group of permuta-
tions of the set {1,… , 𝑛}; the group of bijections 𝜎∶ {1,… , 𝑛} → {1,… , 𝑛}. A transposition
𝜏𝑘ℓ = (𝑘, ℓ) is defined by 𝑘 ↦ ℓ, ℓ ↦ 𝑘, 𝑥 ↦ 𝑥 for 𝑥 ≠ 𝑘, ℓ. Any permutation 𝜎 can be
decomposed as a product of transpositions. This decomposition is not necessarily unique,
but the parity of the number of transpositions is well-defined. We say that the signature of
a permutation, denoted 𝜀∶ 𝑆𝑛 → {−1, 1}, is 1 if the decomposition has even parity and −1 if
it has odd parity. We can then show that 𝜀 is a homomorphism.
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5.3. Determinant

Definition. Let 𝐴 ∈ 𝑀𝑛(𝐹). We define

det𝐴 = ∑
𝜎∈𝑆𝑛

𝜀(𝜎)𝐴𝜎(1)1…𝐴𝜎(𝑛)𝑛

Example. Let 𝑛 = 2. Then,

𝐴 = (𝑎11 𝑎12
𝑎21 𝑎22

) ⟹ det𝐴 = 𝑎11𝑎22 − 𝑎12𝑎21

Lemma. If 𝐴 = (𝑎𝑖𝑗) is an upper (or lower) triangular matrix (with zeroes on the diagonal),
then det𝐴 = 0.

Proof. Let (𝑎𝑖𝑗) = 0 for 𝑖 > 𝑗. Then

det𝐴 = ∑
𝜎∈𝑆𝑛

𝜀(𝜎)𝑎𝜎(1)1…𝑎𝜎(𝑛)𝑛

For the summand to be nonzero, 𝜎(𝑗) ≤ 𝑗 for all 𝑗. Thus,

det𝐴 = 𝑎11…𝑎𝑛𝑛 = 0

Lemma. Let 𝐴 ∈ 𝑀𝑛(𝐹). Then, det𝐴 = det𝐴⊺.

Proof.

det𝐴 = ∑
𝜎∈𝑆𝑛

𝜀(𝜎)𝑎𝜎(1)1…𝑎𝜎(𝑛)𝑛

= ∑
𝜎−1∈𝑆𝑛

𝜀(𝜎)𝑎𝜎(1)1…𝑎𝜎(𝑛)𝑛

= ∑
𝜎∈𝑆𝑛

𝜀(𝜎−1)𝑎1𝜎(1)…𝑎𝑛𝜎(𝑛)

= ∑
𝜎∈𝑆𝑛

𝜀(𝜎)𝑎1𝜎(1)…𝑎𝑛𝜎(𝑛)

= det𝐴⊺
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5. Trace and determinant

5.4. Volume forms
Definition. A volume form 𝑑 on 𝐹𝑛 is a function 𝑑∶ 𝐹𝑛 ×⋯× 𝐹𝑛⏟⎵⎵⎵⏟⎵⎵⎵⏟

𝑛 times
→ 𝐹 satisfying

(i) 𝑑 is multilinear: for all 𝑖 ∈ {1,… , 𝑛} and for all 𝑣1,… , 𝑣𝑖−1, 𝑣𝑖+1,… , 𝑣𝑛 ∈ 𝐹𝑛, the map
from 𝐹𝑛 to 𝐹 defined by

𝑣 ↦ (𝑣1,… , 𝑣𝑖−1, 𝑣, 𝑣𝑖+1,… , 𝑣𝑛)

is linear. In other words, this map is an element of (𝐹𝑛)⋆.
(ii) 𝑑 is alternating: for 𝑣𝑖 = 𝑣𝑗 for some 𝑖 ≠ 𝑗, 𝑑 = 0.

So an alternating multilinear form is a volume form. We want to show that, up to multiplic-
ation by a scalar, the determinant is the only volume form.

Lemma. The map (𝐹𝑛)𝑛 → 𝐹 defined by (𝐴(1),… , 𝐴(𝑛)) ↦ det𝐴 is a volume form. This
map is the determinant of 𝐴, but thought of as acting on the column vectors of 𝐴.

Proof. We first show that this map is multilinear. Fix 𝜎 ∈ 𝑆𝑛, and consider∏
𝑛
𝑖=1 𝑎𝜎(𝑖)𝑖. This

product contains exactly one term in each column of 𝐴. Thus, the map (𝐴(1),… , 𝐴(𝑛)) ↦
∏𝑛

𝑖=1 𝑎𝜎(𝑖)𝑖 is multilinear. This then clearly implies that the determinant, a sum of such
multilinear maps, is itself multilinear.

Now, we show that the determinant is alternating. Let 𝑘 ≠ ℓ, and 𝐴(𝑘) = 𝐴(ℓ). Let 𝜏 = (𝑘ℓ)
be the transposition exchanging 𝑘 and ℓ. Then, for all 𝑖, 𝑗 ∈ {1,… , 𝑛}, 𝑎𝑖𝑗 = 𝑎𝑖𝜏(𝑗). We can
decompose permutations into two disjoint sets: 𝑆𝑛 = 𝐴𝑛 ∪ 𝜏𝐴𝑛, where 𝐴𝑛 is the alternating
group of order 𝑛. Now, note that∏𝑛

𝑖=1 𝑎𝜎(𝑖)𝑖+∏
𝑛
𝑖=1 𝑎(𝜏∘𝜎)(𝑖)𝑖 = 0. So the sum over all 𝜎 ∈ 𝐴𝑛

gives zero. So the determinant is alternating, and hence a volume form.

Lemma. Let 𝑑 be a volume form. Then, swapping two entries changes the sign.

Proof. Take the sum of these two results:

𝑑(𝑣1,… , 𝑣𝑖,… , 𝑣𝑗 ,… , 𝑣𝑛) + 𝑑(𝑣1,… , 𝑣𝑗 ,… , 𝑣𝑖,… , 𝑣𝑛)
= 𝑑(𝑣1,… , 𝑣𝑖,… , 𝑣𝑗 ,… , 𝑣𝑛)
+ 𝑑(𝑣1,… , 𝑣𝑗 ,… , 𝑣𝑖,… , 𝑣𝑛)
+ 𝑑(𝑣1,… , 𝑣𝑖,… , 𝑣𝑖,… , 𝑣𝑛)
+ 𝑑(𝑣1,… , 𝑣𝑗 ,… , 𝑣𝑗 , 𝑣𝑛)
= 2𝑑(𝑣1,… , 𝑣𝑖 + 𝑣𝑗 ,… , 𝑣𝑖 + 𝑣𝑗 ,… , 𝑣𝑛)
= 0

as required.

Corollary. If 𝜎 ∈ 𝑆𝑛 and 𝑑 is a volume form, 𝑑(𝑣𝜎(1),… , 𝑣𝜎(𝑛)) = 𝜀(𝜎)𝑑(𝑣1,… , 𝑣𝑛).
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Proof. We can decompose 𝜎 as a product of transpositions∏𝑛𝜎
𝑖=1 𝑒𝑖.

Theorem. Let 𝑑 be a volume form on 𝐹𝑛. Let 𝐴 be a matrix whose columns are 𝐴(𝑖). Then
𝑑(𝐴(1),… , 𝐴(𝑛)) = det𝐴 ⋅ 𝑑(𝑒1,… , 𝑒𝑛)

So there is a unique volume form up to a constant multiple. We can then see that det𝐴 is
the only volume form such that 𝑑(𝑒1,… , 𝑒𝑛) = 1.

Proof.

𝑑(𝐴(1),… , 𝐴(𝑛)) = 𝑑(
𝑛
∑
𝑖=1

𝑎𝑖1𝑒𝑖, 𝐴(2),… , 𝐴(𝑛))

Since 𝑑 is multilinear,

𝑑(𝐴(1),… , 𝐴(𝑛)) =
𝑛
∑
𝑖=1

𝑎𝑖1𝑑(𝑒𝑖, 𝐴(2),… , 𝐴(𝑛))

Inductively on all columns,

𝑑(𝐴(1),… , 𝐴(𝑛)) =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑎𝑖1𝑎𝑗2𝑑(𝑒𝑖, 𝑒𝑗 , 𝐴(3),… , 𝐴(𝑛)) = ⋯ = ∑
1≤𝑖1,≤⋯≤𝑛

𝑛
∏
𝑘=1

𝑎𝑖ℓ𝑘𝑑(𝑒𝑖1 ,… 𝑒𝑖𝑛)

Since 𝑑 is alternating, we know that for 𝑑(𝑒𝑖1 ,… , 𝑒𝑖𝑛) to be nonzero, the 𝑖𝑘 must be different,
so this corresponds to a permutation 𝜎 ∈ 𝑆𝑛.

𝑑(𝐴(1),… , 𝐴(𝑛)) = ∑
𝜎∈𝑆𝑛

𝑛
∏
𝑘=1

𝑎𝜎(𝑘)𝑘𝜀(𝜎)𝑑(𝑒1,… , 𝑒𝑛)

which is exactly the determinant up to a constant multiple.

5.5. Multiplicative property of determinant
Lemma. Let 𝐴, 𝐵 ∈ 𝑀𝑛(𝐹). Then det(𝐴𝐵) = det(𝐴) det(𝐵).

Proof. Given 𝐴, we define the volume form 𝑑𝐴∶ (𝐹𝑛)𝑛 → 𝐹 by
𝑑𝐴(𝑣1,… , 𝑣𝑛) ↦ det(𝐴𝑣1,… , 𝐴𝑣𝑛)

𝑣𝑖 ↦ 𝐴𝑣𝑖 is linear, and the determinant is multilinear, so 𝑑𝐴 is multilinear. If 𝑖 ≠ 𝑗 and 𝑣𝑖 =
𝑣𝑗 , then det(… ,𝐴𝑣𝑖,… , 𝐴𝑣𝑗 ,…) = 0 so 𝑑𝐴 is alternating. Hence 𝑑𝐴 is a volume form. Hence
there exists a constant 𝐶𝐴 such that 𝑑𝐴(𝑣1,… , 𝑣𝑛) = 𝐶𝐴 det(𝑣1,… , 𝑣𝑛). We can compute 𝐶𝐴
by considering the basis vectors; 𝐴𝑒𝑖 = 𝐴𝑖 where 𝐴𝑖 is the 𝑖th column vector of 𝐴. Then,

𝐶𝐴 = 𝑑𝐴(𝑒1,… , 𝑒𝑛) = det(𝐴𝑒1,… , 𝐴𝑒𝑛) = det𝐴
Hence,

det(𝐴𝐵) = 𝑑𝐴(𝐵) = det𝐴 det𝐵

386



5. Trace and determinant

5.6. Singular and non-singular matrices

Definition. Let 𝐴 ∈ 𝑀𝑛(𝐹). We say that

(i) 𝐴 is singular if det𝐴 = 0;

(ii) 𝐴 is non-singular if det𝐴 ≠ 0.

Lemma. If 𝐴 is invertible, it is non-singular.

Proof. If 𝐴 is invertible, there exists 𝐴−1. Then, since the determinant is a homomorphism,

det(𝐴𝐴−1) = det 𝐼 = 1

Thus det𝐴 det𝐴−1 = 1 and hence neither of these determinants can be zero.

Theorem. Let 𝐴 ∈ 𝑀𝑛(𝐹). The following are equivalent.

(i) 𝐴 is invertible;

(ii) 𝐴 is non-singular;

(iii) 𝑟(𝐴) = 𝑛.

Proof. We have already shown that (i) implies (ii). We have also shown that (i) and (iii) are
equivalent by the rank-nullity theorem. So it suffices to show that (ii) implies (iii).

Suppose 𝑟(𝐴) < 𝑛. Then we will show 𝐴 is singular. We have dim span(𝐴1,… , 𝐴𝑛) < 𝑛.
Therefore, since there are 𝑛 vectors, (𝐴1,… , 𝐴𝑛) is not free. So there exist scalars 𝜆𝑖 not all
zero such that∑𝑖 𝜆𝑖𝐴𝑖 = 0. Choose 𝑗 such that 𝜆𝑗 ≠ 0. Then,

𝐴𝑗 = − 1
𝜆𝑗
∑
𝑖≠𝑗

𝜆𝑖𝐴𝑖

So we can compute the determinant of 𝐴 by

det𝐴 = det(𝐴1,… ,− 1
𝜆𝑗
∑
𝑖≠𝑗

𝜆𝑖𝐴𝑖,… , 𝐴𝑛)

Since the determinant is alternating and linear in the 𝑗th entry, its value is zero. So 𝐴 is
singular as required.

Remark. The above theorem gives necessary and sufficient conditions for invertibility of a
set of 𝑛 linear equations with 𝑛 unknowns.
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5.7. Determinants of linear maps

Lemma. Similar matrices have the same determinant.

Proof.
det(𝑃−1𝐴𝑃) = det(𝑃−1) det𝐴 det𝑃 = det𝐴 det(𝑃−1𝑃) = det𝐴

Definition. If 𝛼 is an endomorphism, then we define

det𝛼 = det[𝛼]𝐵,𝐵

where𝐵 is any basis of the vector space. This iswell-defined, since this value does not depend
on the choice of basis.

Theorem. det∶ 𝐿(𝑉, 𝑉) → 𝐹 satisfies the following properties.

(i) det 𝐼 = 1;

(ii) det(𝛼𝛽) = det𝛼 det 𝛽;

(iii) det𝛼 ≠ 0 if and only if 𝛼 is invertible, and in this case, det(𝛼−1) det𝛼 = 1.

This is simply a reformulation of the previous theorem for matrices. The proof is simple,
and relies on the invariance of the determinant under a change of basis.

5.8. Determinant of block-triangular matrices

Lemma. Let 𝐴 ∈ 𝑀𝑘(𝐹), 𝐵 ∈ 𝑀ℓ(𝐹), 𝐶 ∈ 𝑀𝑘,ℓ(𝐹). Consider the matrix

𝑀 = (𝐴 𝐶
0 𝐵)

Then det𝑀 = det𝐴 det𝐵.

Proof. Let 𝑛 = 𝑘 + ℓ, so𝑀 ∈ 𝑀𝑛(𝐹). Let𝑀 = (𝑚𝑖𝑗). We must compute

det𝑀 = ∑
𝜎∈𝑆𝑛

𝜀(𝜎)
𝑛
∏
𝑖=1

𝑚𝜎(𝑖)𝑖

Observe that𝑚𝜎(𝑖)𝑖 = 0 if 𝑖 ≤ 𝑘 and 𝜎(𝑖) > 𝑘. Then, we need only sum over 𝜎 ∈ 𝑆𝑛 such that
for all 𝑗 ≤ 𝑘, we have 𝜎(𝑗) ≤ 𝑘. Thus, for all 𝑗 ∈ {𝑘 + 1,… , 𝑛}, we have 𝜎(𝑗) ∈ {𝑘 + 1,… , 𝑛}.
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We can then uniquely decompose 𝜎 into two permutations 𝜎 = 𝜎1𝜎2, where 𝜎1 is restricted
to {1,… , 𝑘} and 𝜎2 is restricted to {𝑘 + 1,… , 𝑛}. Hence,

det𝑀 = ∑
𝜎1∈𝑆𝑘

∑
𝜎2∈𝑆𝑛−𝑘

𝜀(𝜎)
𝑛
∏
𝑖=1

𝑚𝜎(𝑖)𝑖

= ∑
𝜎1∈𝑆𝑘

∑
𝜎2∈𝑆𝑛−𝑘

𝜀(𝜎1)𝜀(𝜎2)
𝑘
∏
𝑖=1

𝑚𝜎(𝑖)𝑖

𝑛
∏
𝑖=𝑘+1

𝑚𝜎(𝑖)𝑖

= ∑
𝜎1∈𝑆𝑘

𝜀(𝜎1)
𝑘
∏
𝑖=1

𝑚𝜎(𝑖)𝑖 ∑
𝜎2∈𝑆𝑛−𝑘

𝜀(𝜎2)
𝑛
∏
𝑖=𝑘+1

𝑚𝜎(𝑖)𝑖

= det𝐴 det𝐵

Corollary. We need not restrict ourselves to just two blocks, since we can apply the above
lemma inductively. In particular, this implies that an upper-triangular matrix with diagonal
elements 𝜆𝑖 has determinant∏𝑖 𝜆𝑖.
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6. Adjugate matrices
6.1. Column and row expansions
Let 𝐴 ∈ 𝑀𝑛(𝐹) with column vectors 𝐴(𝑖). We know that

det(𝐴(1),… , 𝐴(𝑗),… , 𝐴(𝑘),… , 𝐴(𝑛)) = − det(𝐴(1),… , 𝐴(𝑘),… , 𝐴(𝑗),… , 𝐴(𝑛))

Using the fact that det𝐴 = det𝐴⊺ we can similarly see that swapping two rows will invert
the sign of the determinant.

Remark. We could have proven all of the properties of the determinant above by using the
decomposition of 𝐴 into elementary matrices.

Definition. Let 𝐴 ∈ 𝑀𝑛(𝐹). Let 𝑖, 𝑗 ∈ {1,… , 𝑛}. We define theminor 𝐴𝑖𝑗 ∈ 𝑀𝑛−1(𝐹) to be
the matrix obtained by removing the 𝑖th row and the 𝑗th column.
Lemma. Let 𝐴 ∈ 𝑀𝑛(𝐹).
(i) Let 𝑗 ∈ {1,… , 𝑛}. The determinant of 𝐴 is given by the column expansion with respect

to the 𝑗th column:

det𝐴 =
𝑛
∑
𝑖=1
(−1)𝑖+𝑗𝑎𝑖𝑗 det𝐴𝑖𝑗

(ii) Let 𝑖 ∈ {1,… , 𝑛}. The same determinant is also given by the row expansionwith respect
to the 𝑖th row:

det𝐴 =
𝑛
∑
𝑗=1

(−1)𝑖+𝑗𝑎𝑖𝑗 det𝐴𝑖𝑗

This is a process of reducing the computation of 𝑛 × 𝑛 determinants to (𝑛 − 1) × (𝑛 − 1)
determinants.

Proof. We will prove case (i), the column expansion with respect to the 𝑗th column. Then
(ii) will follow from the transpose of the matrix. Let 𝑗 ∈ {1,… , 𝑛}. We can write 𝐴(𝑗) =
∑𝑛

𝑖=1 𝑎𝑖𝑗𝑒𝑖 where the 𝑒𝑖 are the canonical basis. Then, by swapping rows and columns,

det𝐴 = det (𝐴(1),… ,
𝑛
∑
𝑖=1

𝑎𝑖𝑗𝑒𝑖,… , 𝐴(𝑛))

=
𝑛
∑
𝑖=1

𝑎𝑖𝑗 det (𝐴(1),… , 𝑒𝑖,… , 𝐴(𝑛))

=
𝑛
∑
𝑖=1

𝑎𝑖𝑗(−1)𝑗−1 det (𝑒𝑖, 𝐴(1),… , 𝐴(𝑛))

=
𝑛
∑
𝑖=1

𝑎𝑖𝑗(−1)𝑗−1(−1)𝑖−1 det (𝑒1, 𝐴
(1)
,… , 𝐴

(𝑛)
)
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This has brought the matrix into block form, where there is an element of value 1 in the top
left, and the matrix 𝐴𝑖𝑗 in the bottom right. The bottom left block is entirely zeroes. Hence,

det𝐴 =
𝑛
∑
𝑖=1
(−1)𝑖+𝑗𝑎𝑖𝑗 det𝐴𝑖𝑗

as required.

Remark. We have proven that

det(𝐴(1),… , 𝑒𝑖,… , 𝐴(𝑛)) = (−1)𝑖+𝑗 det𝐴𝑖𝑗

6.2. Adjugates

Definition. Let 𝐴 ∈ 𝑀𝑛(𝐹). The adjugate matrix of 𝐴, denoted adj𝐴, is the 𝑛 × 𝑛 matrix
given by

(adj𝐴)𝑖𝑗 = (−1)𝑖+𝑗 det𝐴𝑗𝑖

Hence,
det(𝐴(1),… , 𝑒𝑖,… , 𝐴(𝑛)) = (adj𝐴)𝑗𝑖

Theorem. Let 𝐴 ∈ 𝑀𝑛(𝐹). Then

(adj𝐴)𝐴 = (det𝐴)𝐼

In particular, when 𝐴 is invertible,

𝐴−1 = adj𝐴
det𝐴

Proof. We have

det𝐴 =
𝑛
∑
𝑖=1
(−1)𝑖+𝑗𝑎𝑖𝑗 det𝐴𝑖𝑗

Hence,

det𝐴 =
𝑛
∑
𝑖=1
(adj𝐴)𝑗𝑖𝑎𝑖𝑗 = ((adj𝐴)𝐴)𝑗𝑗

So the diagonal terms match. Off the diagonal,

0 = det(𝐴(1),… , 𝐴(𝑘)⏟
𝑗th position

,… , 𝐴(𝑘),… , 𝐴(𝑛))
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By linearity,

0 = det
⎛
⎜
⎜
⎜
⎝

𝐴(1),… ,
𝑛
∑
𝑖=1

𝑎𝑖𝑘𝑒𝑖
⏟⎵⏟⎵⏟
𝑗th position

,… , 𝐴(𝑘),… , 𝐴(𝑛)
⎞
⎟
⎟
⎟
⎠

=
𝑛
∑
𝑖=1

𝑎𝑖𝑘 det(𝐴(1),… , 𝑒𝑖⏟
𝑗th position

,… , 𝐴(𝑘),… , 𝐴(𝑛))

=
𝑛
∑
𝑖=1

𝑎𝑖𝑘(adj𝐴)𝑗𝑖

= ((adj𝐴)𝐴)𝑗𝑘

6.3. Cramer’s rule
Proposition. Let 𝐴 be an invertible square matrix of dimension 𝑛. Let 𝑏 ∈ 𝐹𝑛. Then the
unique solution to 𝐴𝑥 = 𝑏 is given by

𝑥𝑖 =
1

det𝐴 det(𝐴𝑖𝑏)

where𝐴𝑖𝑏 is obtained by replacing the 𝑖th column of𝐴 by 𝑏. This is an algorithm to compute
𝑥, avoiding the computation of 𝐴−1.

Proof. Let 𝐴 be invertible. Then there exists a unique 𝑥 ∈ 𝐹𝑛 such that 𝐴𝑥 = 𝑏. Then, since
the determinant is alternating,

det(𝐴𝑖𝑏) = det(𝐴(1),… , 𝐴(𝑖−1), 𝑏, 𝐴(𝑖+1),… , 𝐴(𝑛))

= det(𝐴(1),… , 𝐴(𝑖−1),
𝑛
∑
𝑗=1

𝑥𝑗𝐴(𝑗), 𝐴(𝑖+1),… , 𝐴(𝑛))

= det (𝐴(1),… , 𝐴(𝑖−1), 𝑥𝑖𝐴(𝑖), 𝐴(𝑖+1),… , 𝐴(𝑛))
= 𝑥𝑖 det𝐴

So the formula works.
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7. Eigenvectors and eigenvalues
7.1. Eigenvalues
Let 𝑉 be an 𝐹-vector space. Let dim𝑉 = 𝑛 < ∞, and let 𝛼 be an endomorphism of 𝑉 .
We wish to find a basis 𝐵 of 𝑉 such that, in this basis, [𝛼]𝐵 ≡ [𝛼]𝐵,𝐵 has a simple (e.g.
diagonal, triangular) form. Recall that if 𝐵′ is another basis and 𝑃 is the change of basis
matrix, [𝛼]𝐵′ = 𝑃−1[𝛼]𝐵𝑃. Equivalently, given a square matrix 𝐴 ∈ 𝑀𝑛(𝐹) we want to
conjugate it by a matrix 𝑃 such that the result is ‘simpler’.

Definition. Let 𝛼 ∈ 𝐿(𝑉) be an endomorphism. We say that 𝛼 is diagonalisable if there
exists a basis 𝐵 of 𝑉 such that the matrix [𝛼]𝐵 is diagonal. We say that 𝛼 is triangulable if
there exists a basis 𝐵 of 𝑉 such that [𝛼]𝐵 is triangular.

Remark. We can express this equivalently in terms of conjugation of matrices.

Definition. A scalar 𝜆 ∈ 𝐹 is an eigenvalue of an endomorphism 𝛼 if and only if there exists
a vector 𝑣 ∈ 𝑉 ∖ {0} such that 𝛼(𝑣) = 𝜆𝑣. Such a vector is an eigenvector with eigenvalue 𝜆.
𝑉 𝜆 = {𝑣 ∈ 𝑉 ∶ 𝛼(𝑣) = 𝜆𝑣} ≤ 𝑉 is the eigenspace associated to 𝜆.

Lemma. 𝜆 is an eigenvalue if and only if det(𝛼 − 𝜆𝐼) = 0.

Proof. If 𝜆 is an eigenvalue, there exists a nonzero vector 𝑣 such that 𝛼(𝑣) = 𝜆𝑣, so (𝛼 −
𝜆)(𝑣) = 0. So the kernel is non-trivial. So 𝛼 − 𝜆𝐼 is not injective, so it is not surjective by the
rank-nullity theorem. Hence this matrix is not invertible, so it has zero determinant.

Remark. If 𝛼(𝑣𝑗) = 𝜆𝑣𝑗 for 𝑗 ∈ {1,… ,𝑚}, we can complete the family 𝑣𝑗 into a basis
(𝑣1,… , 𝑣𝑛) of 𝑉 . Then in this basis, the first𝑚 columns of the matrix 𝛼 has diagonal entries
𝜆𝑗 .

7.2. Polynomials
Recall the following facts about polynomials on a field, for instance

𝑓(𝑡) = 𝑎𝑛𝑡𝑛 +⋯+ 𝑎1𝑡 + 𝑎0

We say that the degree of 𝑓, written deg𝑓 is 𝑛. The degree of 𝑓 + 𝑔 is at most the maximum
degree of 𝑓 and 𝑔. deg(𝑓𝑔) = deg𝑓+deg 𝑔. Let 𝐹[𝑡] be the vector space of polynomials with
coefficients in 𝐹. If 𝜆 is a root of 𝑓, then (𝑡 − 𝜆) divides 𝐹.

Proof.
𝑓(𝑡) = 𝑎𝑛𝑡𝑛 +⋯+ 𝑎1𝑡 + 𝑎0

Hence,
𝑓(𝜆) = 𝑎𝑛𝜆𝑛 +⋯+ 𝑎1𝜆 + 𝑎0 = 0
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which implies that

𝑓(𝑡) = 𝑓(𝑡) − 𝑓(𝜆) = 𝑎𝑛(𝑡𝑛 − 𝜆𝑛) +⋯ + 𝑎1(𝑡 − 𝜆)

But note that, for all 𝑛,

𝑡𝑛 − 𝜆𝑛 = (1 − 𝜆)(𝑡𝑛−1 + 𝜆𝑡𝑛−2 +⋯+ 𝜆𝑛−2𝑡 + 𝜆𝑛−1)

Remark. We say that 𝜆 is a root ofmultiplicity 𝑘 if (𝑡 − 𝜆)𝑘 divides 𝑓 but (𝑡 − 𝜆)𝑘+1 does not.

Corollary. Anonzero polynomial of degree 𝑛 has at most 𝑛 roots, counted withmultiplicity.

Corollary. If 𝑓1, 𝑓2 are two polynomials of degree less than 𝑛 such that 𝑓1(𝑡𝑖) = 𝑓2(𝑡𝑖) for
𝑖 ∈ {1,… , 𝑛} and 𝑡𝑖 distinct, then 𝑓1 ≡ 𝑓2.

Proof. 𝑓1 − 𝑓2 has degree less than 𝑛, but has 𝑛 roots. Hence it is zero.

Theorem. Any polynomial 𝑓 ∈ ℂ[𝑡] of positive degree has a complex root. When counted
with multiplicity, 𝑓 has a number of roots equal to its degree.

Corollary. Any polynomial 𝑓 ∈ ℂ[𝑡] can be factorised into an amount of linear factors
equal to its degree.

7.3. Characteristic polynomials
Definition. Let 𝛼 be an endomorphism. The characteristic polynomial of 𝛼 is

𝜒𝛼(𝜆) = det(𝛼 − 𝜆𝐼)

Remark. 𝜒𝛼 is a polynomial because the determinant is defined as a polynomial in the
terms of the matrix. Note further that conjugate matrices have the same characteristic poly-
nomial, so the above definition is well defined in any basis. Indeed, det(𝑃−1𝛼𝑃 − 𝜆𝐼) =
det(𝑃−1(𝛼 − 𝜆𝐼)𝑃) = det(𝛼 − 𝜆𝐼).

Theorem. Let 𝛼 ∈ 𝐿(𝑉). 𝛼 is triangulable if and only if 𝜒𝛼 can be written as a product of
linear factors over 𝐹. In particular, all complex matrices are triangulable.

Proof. Suppose 𝛼 is triangulable. Then for a basis 𝐵, [𝛼]𝐵 is triangulable with diagonal
entries 𝑎𝑖. Then

𝜒𝛼(𝑡) = (𝑎1 − 𝑡)(𝑎2 − 𝑡)⋯ (𝑎𝑛 − 𝑡)

Conversely, let 𝜒𝛼(𝑡) be the characteristic polynomial of 𝛼 with a root 𝜆. Then, 𝜒𝛼(𝜆) = 0
implies 𝜆 is an eigenvalue. Let 𝑉 𝜆 be the corresponding eigenspace. Let (𝑣1,… , 𝑣𝑘) be the
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basis of this eigenspace, completed to a basis (𝑣1,… , 𝑣𝑛) of 𝑉 . Let𝑊 = span {𝑣𝑘+1,… , 𝑣𝑛},
and then 𝑉 = 𝑉 𝜆 ⊕𝑊 . Then

[𝛼]𝐵 = (𝜆𝐼 ⋆
0 𝐶)

where ⋆ is arbitrary, and 𝐶 is a block of size (𝑛−𝑘)×(𝑛−𝑘). Then 𝛼 induces an endomorph-
ism 𝛼∶ 𝑉/𝑈 → 𝑉/𝑈 with respect to the basis (𝑣𝑘+1,… , 𝑣𝑛), where𝑈 = 𝑉 𝜆. By induction on
the dimension, we can find a basis (𝑤𝑘+1,… ,𝑤𝑛) for which 𝐶 has a triangular form. Then
the basis (𝑣1,… , 𝑣𝑘, 𝑤𝑘+1,… ,𝑤𝑛) is a basis for which 𝛼 is triangular.

Lemma. Let 𝑛 = dim𝑉 , and 𝑉 be a vector space over ℝ or ℂ. Let 𝛼 be an endomorphism
on 𝑉 . Then

𝜒𝛼(𝑡) = (−1)𝑛𝑡𝑛 + 𝑐𝑛−1𝑡𝑛−1 +⋯+ 𝑐0
with

𝑐0 = det𝐴; 𝑐𝑛−1 = (−1)𝑛−1 tr𝐴

Proof.
𝜒𝛼(𝑡) = det(𝛼 − 𝑡𝐼) ⟹ 𝜒𝛼(0) = det(𝛼)

Further, for ℝ,ℂ we know that 𝛼 is triangulable over ℂ. Hence 𝜒𝛼(𝑡) is the determinant of
a triangular matrix;

𝜒𝛼(𝑡) =
𝑛
∏
𝑖=1

(𝑎𝑖 − 𝑡)

Hence
𝑐𝑛−1 = (−1)𝑛−1𝑎𝑖

Since the trace is invariant under a change of basis, this is exactly the trace as required.

7.4. Polynomials for matrices and endomorphisms
Let 𝑝(𝑡) be a polynomial over 𝐹. We will write

𝑝(𝑡) = 𝑎𝑛𝑡𝑛 +⋯+ 𝑎0

For a matrix 𝐴 ∈ 𝑀𝑛(𝐹), we write

𝑝(𝐴) = 𝑎𝑛𝐴𝑛 +⋯+ 𝑎0 ∈ 𝑀𝑛(𝐹)

For an endomorphism 𝛼 ∈ 𝐿(𝑉),

𝑝(𝛼) = 𝑎𝑛𝛼𝑛 +⋯+ 𝑎0𝐼 ∈ 𝐿(𝑉); 𝛼𝑘 ≡ 𝛼 ∘⋯ ∘ 𝛼⏟⎵⏟⎵⏟
𝑘 times
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7.5. Sharp criterion of diagonalisability
Theorem. Let 𝑉 be a vector space over 𝐹 of finite dimension 𝑛. Let 𝛼 be an endomorphism
of 𝑉 . Then 𝛼 is diagonalisable if and only if there exists a polynomial 𝑝 which is a product
of distinct linear factors, such that 𝑝(𝛼) = 0. In other words, there exist distinct 𝜆1,… , 𝜆𝑘
such that

𝑝(𝑡) =
𝑛
∏
𝑖=1

(𝑡 − 𝜆𝑖) ⟹ 𝑝(𝛼) = 0

Proof. Suppose 𝛼 is diagonalisable in a basis 𝐵. Let 𝜆1,… , 𝜆𝑘 be the 𝑘 ≤ 𝑛 distinct eigenval-
ues. Let

𝑝(𝑡) =
𝑘
∏
𝑖=1

(𝑡 − 𝜆𝑖)

Let 𝑣 ∈ 𝐵. Then 𝛼(𝑣) = 𝜆𝑖𝑣 for some 𝑖. Then, since the terms in the following product
commute,

(𝛼 − 𝜆𝑖𝐼)(𝑣) = 0 ⟹ 𝑝(𝛼)(𝑣) = [
𝑘
∏
𝑖=1

(𝛼 − 𝜆𝑖𝐼)] (𝑣) = 0

So for all basis vectors, 𝑝(𝛼)(𝑣). By linearity, 𝑝(𝛼) = 0.

Conversely, suppose that 𝑝(𝛼) = 0 for some polynomial 𝑝(𝑡) = ∏𝑘
𝑖=1(𝑡 − 𝜆𝑖)with distinct 𝜆𝑖.

Let 𝑉 𝜆𝑖 = ker(𝛼 − 𝜆𝑖𝐼). We claim that

𝑉 =
𝑘

⨁
𝑖=1

𝑉 𝜆𝑖

Consider the polynomials

𝑞𝑗(𝑡) =
𝑘
∏

𝑖=1,𝑖≠𝑗

𝑡 − 𝜆𝑖
𝜆𝑗 − 𝜆𝑖

These polynomials evaluate to one at 𝜆𝑗 and zero at 𝜆𝑖 for 𝑖 ≠ 𝑗. Hence 𝑞𝑗(𝜆𝑖) = 𝛿𝑖𝑗 . We now
define the polynomial

𝑞 = 𝑞1 +⋯+ 𝑞𝑘
The degree of 𝑞 is at most (𝑘 − 1). Note, 𝑞(𝜆𝑖) = 1 for all 𝑖 ∈ {1,… , 𝑘}. The only polynomial
that evaluates to one at 𝑘 points with degree at most (𝑘 − 1) is exactly given by 𝑞(𝑡) = 1.
Consider the endomorphism

𝜋𝑗 = 𝑞𝑗(𝛼) ∈ 𝐿(𝑉)

These are called the ‘projection operators’. By construction,

𝑘
∑
𝑗=1

𝜋𝑗 =
𝑘
∑
𝑗=1

𝑞𝑗(𝛼) = 𝐼
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So the sum of the 𝜋𝑗 is the identity. Hence, for all 𝑣 ∈ 𝑉 ,

𝐼(𝑣) = 𝑣 =
𝑘
∑
𝑗=1

𝜋𝑗(𝑣) =
𝑘
∑
𝑗=1

𝑞𝑗(𝛼)(𝑣)

So we can decompose any vector as a sum of its projections 𝜋𝑗(𝑣). Now, by definition of 𝑞𝑗
and 𝑝,

(𝛼 − 𝜆𝑗𝐼)𝑞𝑗(𝛼)(𝑣) =
1

∏𝑖≠𝑗(𝜆𝑗 − 𝜆𝑖)
(𝛼 − 𝜆𝑗𝐼)[∏

𝑖≠𝑗
(𝑡 − 𝜆𝑖)] (𝛼)

= 1
∏𝑖≠𝑗(𝜆𝑗 − 𝜆𝑖)

𝑘
∏
𝑖=1

(𝛼 − 𝜆𝑖𝐼)(𝑣)

= 1
∏𝑖≠𝑗(𝜆𝑗 − 𝜆𝑖)

𝑝(𝛼)(𝑣)

By assumption, this is zero. For all 𝑣, we have (𝛼 − 𝜆𝑗𝐼)𝑞𝑗(𝛼)(𝑣). Hence,

(𝛼 − 𝜆𝑗𝐼)𝜋𝑗(𝑣) = 0 ⟹ 𝜋𝑗(𝑣) ∈ ker(𝛼 − 𝜆𝑗𝐼) = 𝑣𝑗

We have then proven that, for all 𝑣 ∈ 𝑉 ,

𝑣 =
𝑘
∑
𝑗=1

𝜋𝑗(𝑣)⏟
∈𝑉𝑗

Hence,

𝑉 =
𝑘
∑
𝑗=1

𝑉 𝑗

It remains to show that the sum is direct. Indeed, let

𝑣 ∈ 𝑉 𝜆𝑗 ∩ (∑
𝑖≠𝑗

𝑉 𝜆𝑖)

We must show 𝑣 = 0. Applying 𝜋𝑗 ,

𝜋𝑗(𝑣) = 𝑞𝑗(𝛼)(𝑣) =∏
𝑖≠𝑗

(𝛼 − 𝜆𝑖𝐼)(𝑣)
𝜆𝑗 − 𝜆𝑖

Since 𝛼(𝑣) = 𝜆𝑗𝑣,

𝜋𝑗(𝑣) =∏
𝑖≠𝑗

(𝜆𝑗 − 𝜆𝑖)𝑣
𝜆𝑗 − 𝜆𝑖

= 𝑣
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Hence 𝜋𝑗 really projects onto 𝑉 𝜆𝑗 . However, we also know 𝑣 ∈ ∑𝑖≠𝑗 𝑉 𝜆𝑖 . So we can write
𝑣 = ∑𝑖≠𝑗 𝑤𝑖 for 𝑤 ∈ 𝑉 𝜆𝑖 . Thus,

𝜋𝑗(𝑤𝑖) = ∏
𝑚≠𝑗

(𝛼 − 𝜆𝑚𝐼)(𝑣)
𝜆𝑚 − 𝜆𝑗

Since 𝛼(𝑤𝑖) = 𝜆𝑖𝑤𝑖, one of the factors will vanish, hence

𝜋𝑗(𝑤𝑖) = 0

So
𝑣 = ∑

𝑖≠𝑗
𝑤𝑖 ⟹ 𝜋𝑗(𝑣) = ∑

𝑖≠𝑗
𝜋𝑗(𝑤𝑖) = 0

But 𝑣 = 𝜋𝑗(𝑣) hence 𝑣 = 0. So the sum is direct. Hence, 𝐵 = (𝐵1,… , 𝐵𝑘) is a basis of 𝑉 ,
where the 𝐵𝑖 are bases of 𝑉 𝜆𝑖 . Then [𝛼]𝐵 is diagonal.

Remark. We have shown further that if 𝜆1,… , 𝜆𝑘 are distinct eigenvalues of 𝛼, then
𝑘
∑
𝑖=1

𝑉 𝜆𝑖 =
𝑘

⨁
𝑖=1

𝑉 𝜆𝑖

Therefore, the only way that diagonalisation fails is when this sum is not direct, so
𝑘
∑
𝑖=1

𝑉 𝜆𝑖 < 𝑉

Example. Let 𝐹 = ℂ. Let 𝐴 ∈ 𝑀𝑛(𝐹) such that 𝐴 has finite order; there exists𝑚 ∈ ℕ such
that 𝐴𝑚 = 𝐼. Then 𝐴 is diagonalisable. This is because

𝑡𝑚 − 1 = 𝑝(𝑡) =
𝑚
∏
𝑗=1

(𝑡 − 𝜉𝑗𝑚); 𝜉𝑚 = 𝑒2𝜋𝑖/𝑚

and 𝑝(𝐴) = 0.

7.6. Simultaneous diagonalisation
Theorem. Let 𝛼, 𝛽 be endomorphisms of 𝑉 which are diagonalisable. Then 𝛼, 𝛽 are simul-
taneously diagonalisable (there exists a basis 𝐵 of 𝑉 such that [𝛼]𝐵, [𝛽]𝐵 are diagonal) if and
only if 𝛼 and 𝛽 commute.

Proof. Two diagonal matrices commute. If such a basis exists, 𝛼𝛽 = 𝛽𝛼 in this basis. So this
holds in any basis. Conversely, suppose 𝛼𝛽 = 𝛽𝛼. We have

𝑉 =
𝑘

⨁
𝑖=1

𝑉 𝜆𝑖
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where 𝜆𝑖,… , 𝜆𝑘 are the 𝑘 distinct eigenvalues of 𝛼. We claim that 𝛽(𝑉 𝜆𝑗) ≤ 𝑉 𝜆𝑗 . Indeed, for
𝑣 ∈ 𝑉 𝜆𝑗 ,

𝛼𝛽(𝑣) = 𝛽𝛼(𝑣) = 𝛽(𝜆𝑗𝑣) = 𝜆𝑗𝛽(𝑣) ⟹ 𝛼(𝛽(𝑣)) = 𝜆𝑗𝛽(𝑣)
Hence, 𝛽(𝑣) ∈ 𝑉 𝜆𝑗 . By assumption, 𝛽 is diagonalisable. Hence, there exists a polynomial
𝑝 with distinct linear factors such that 𝑝(𝛽) = 0. Now, 𝛽(𝑉 𝜆𝑗) ≤ 𝑉 𝜆𝑗 so we can consider
𝛽|𝑉𝜆𝑗 . This is an endomorphism of 𝑉 𝜆𝑗 . We can compute

𝑝(𝛽|||𝑉𝜆𝑗
) = 0

Hence, 𝛽|𝑉𝜆𝑗 is diagonalisable. Let 𝐵𝑖 be the basis of 𝑉 𝜆𝑖 in which 𝛽|𝑉𝜆𝑗 is diagonal. Since
𝑉 = ⨁𝑉 𝜆𝑖 , 𝐵 = (𝐵1,… , 𝐵𝑘) is a basis of 𝑉 . Then the matrices of 𝛼 and 𝛽 in 𝑉 are diagonal.

7.7. Minimal polynomials
Recall from IB Groups, Rings and Modules the Euclidean algorithm for dividing polynomi-
als. Given 𝑎, 𝑏 polynomials over 𝐹 with 𝑏 nonzero, there exist polynomials 𝑞, 𝑟 over 𝐹 with
deg 𝑟 < deg 𝑏 and 𝑎 = 𝑞𝑏 + 𝑟.
Definition. Let 𝑉 be a finite dimensional 𝐹-vector space. Let 𝛼 be an endomorphism on 𝑉 .
Theminimal polynomial𝑚𝛼 of 𝛼 is the nonzero polynomial with smallest degree such that
𝑚𝛼(𝛼) = 0.
Remark. If dim𝑉 = 𝑛 < ∞, then dim𝐿(𝑉) = 𝑛2. In particular, the family {𝐼, 𝛼,… , 𝛼𝑛2}
cannot be free since it has 𝑛2 + 1 entries. This generates a polynomial in 𝛼 which evaluates
to zero. Hence, a minimal polynomial always exists.

Lemma. Let 𝛼 ∈ 𝐿(𝑉) and 𝑝 ∈ 𝐹[𝑡] be a polynomial. Then 𝑝(𝛼) = 0 if and only if𝑚𝛼 is a
factor of 𝑝. In particular,𝑚𝛼 is well-defined and unique up to a constant multiple.

Proof. Let 𝑝 ∈ 𝐹[𝑡] such that 𝑝(𝛼) = 0. If 𝑚𝛼(𝛼) = 0 and deg𝑚𝛼 < deg𝑝, we can perform
the division 𝑝 = 𝑚𝛼𝑞+𝑟 for deg 𝑟 < deg𝑚𝛼. Then 𝑝(𝛼) = 𝑚𝛼(𝛼)𝑞(𝛼)+𝑟(𝛼). But𝑚𝛼(𝛼) = 0.
But deg 𝑟 < deg𝑚𝛼 and𝑚𝛼 is the smallest degree polynomial which evaluates to zero for 𝛼,
so 𝑟 ≡ 0 so 𝑝 = 𝑚𝛼𝑞. In particular, if 𝑚1, 𝑚2 are both minimal polynomials that evaluate
to zero for 𝛼, we have 𝑚1 divides 𝑚2 and 𝑚2 divides 𝑚1. Hence they are equivalent up to a
constant.

Example. Let 𝑉 = 𝐹2 and
𝐴 = (1 0

0 1) ; 𝐵 = (1 1
0 1)

We can check 𝑝(𝑡) = (𝑡 − 1)2 gives 𝑝(𝐴) = 𝑝(𝐵) = 0. So the minimal polynomial of 𝐴 or 𝐵
must be either (𝑡 − 1) or (𝑡 − 1)2. For 𝐴, we can find the minimal polynomial is (𝑡 − 1), and
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for 𝐵 we require (𝑡 − 1)2. So 𝐵 is not diagonalisable, since its minimal polynomial is not a
product of distinct linear factors.

7.8. Cayley–Hamilton theorem
Theorem. Let 𝑉 be a finite dimensional 𝐹-vector space. Let 𝛼 ∈ 𝐿(𝑉) with characteristic
polynomial 𝜒𝛼(𝑡) = det(𝛼 − 𝑡𝐼). Then 𝜒𝛼(𝛼) = 0.
Two proofs will provided; one more physical and based on 𝐹 = ℂ and one more algeb-
raic.

Proof. Let 𝐵 = {𝑣1,… , 𝑣𝑛} be a basis of 𝑉 such that [𝛼]𝐵 is triangular. This can be done
when 𝐹 = ℂ. Note, if the diagonal entries in this basis are 𝑎𝑖,

𝜒𝛼(𝑡) =
𝑛
∏
𝑖=1

(𝑎𝑖 − 𝑡) ⟹ 𝜒𝛼(𝛼) = (𝛼 − 𝑎1𝐼)… (𝛼 − 𝑎𝑛𝐼)

We want to show that this expansion evaluates to zero. Let 𝑈𝑗 = span {𝑣1,… , 𝑣𝑗}. Let
𝑣 ∈ 𝑉 = 𝑈𝑛. We want to compute 𝜒𝛼(𝛼)(𝑣). Note, by construction of the triangular matrix.

𝜒𝛼(𝛼)(𝑣) = (𝛼 − 𝑎1𝐼)… (𝛼 − 𝑎𝑛𝐼)(𝑣)⏟⎵⎵⏟⎵⎵⏟
∈𝑈𝑛−1

= (𝛼 − 𝑎1𝐼)… (𝛼 − 𝑎𝑛−1𝐼)(𝛼 − 𝑎𝑛𝐼)(𝑣)⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
∈𝑈𝑛−2

= …
∈ 𝑈0

Hence this evaluates to zero.

The following proof works for any field where we can equate coefficients, but is much less
intuitive.

Proof. We will write

det(𝑡𝐼 − 𝛼) = (−1)𝑛𝜒𝛼(𝑡) = 𝑡𝑛 + 𝑎𝑛−1𝑡𝑛−1 +⋯+ 𝑎0

For any matrix 𝐵, we have proven 𝐵 adj𝐵 = (det𝐵)𝐼. We apply this relation to the matrix
𝐵 = 𝑡𝐼 − 𝐴. We can check that

adj𝐵 = adj(𝑡𝐼 − 𝐴) = 𝐵𝑛−1𝑡𝑛−1 +⋯+ 𝐵1𝑡 + 𝐵0

since adjugate matrices are degree (𝑛− 1) polynomials for each element. Then, by applying
𝐵 adj𝐵 = (det𝐵)𝐼,

(𝑡𝐼 − 𝐴)[𝐵𝑛−1𝑡𝑛−1 +⋯+ 𝐵1𝑡 + 𝐵0] = (det𝐵)𝐼 = (𝑡𝑛 +⋯+ 𝑎0)𝐼
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Since this is true for all 𝑡, we can equate coefficients. This gives

𝑡𝑛 ∶ 𝐼 = 𝐵𝑛−1
𝑡𝑛−1 ∶ 𝑎𝑛−1𝐼 = 𝐵𝑛−2 − 𝐴𝐵𝑛−1

⋮ ⋮
𝑡0 ∶ 𝑎0𝐼 = −𝐴𝐵1

Then, substituting 𝐴 for 𝑡 in each relation will give, for example, 𝐴𝑛𝐼 = 𝐴𝑛𝐵𝑛−1. Computing
the sum of all of these identities, we recover the original polynomial in terms of 𝐴 instead
of in terms of 𝑡. Many terms will cancel since the sum telescopes, yielding

𝐴𝑛 + 𝑎𝑛−1𝐴𝑛−1 +⋯+ 𝑎0𝐼 = 0

7.9. Algebraic and geometric multiplicity
Definition. Let 𝑉 be a finite dimensional 𝐹-vector space. Let 𝛼 ∈ 𝐿(𝑉) and let 𝜆 be an
eigenvalue of 𝛼. Then

𝜒𝛼(𝑡) = (𝑡 − 𝜆)𝑎𝜆𝑞(𝑡)
where 𝑞(𝑡) is a polynomial over 𝐹 such that (𝑡 − 𝜆) does not divide 𝑞. 𝑎𝜆 is known as the
algebraic multiplicity of the eigenvalue 𝜆. We define the geometric multiplicity 𝑔𝜆 of 𝜆 to be
the dimension of the eigenspace associated with 𝜆, so 𝑔𝜆 = dimker(𝛼 − 𝜆𝐼).
Lemma. If 𝜆 is an eigenvalue of 𝛼 ∈ 𝐿(𝑉), then 1 ≤ 𝑔𝜆 ≤ 𝑎𝜆.

Proof. We have 𝑔𝜆 = dimker(𝛼 − 𝜆𝐼). There exists a nontrivial vector 𝑣 ∈ 𝑉 such that
𝑣 ∈ ker(𝛼 − 𝜆𝐼) since 𝜆 is an eigenvalue. Hence 𝑔𝜆 ≥ 1. We will show that 𝑔𝜆 ≤ 𝑎𝜆.
Indeed, let 𝑣1,… , 𝑣𝑔𝜆 be a basis of 𝑉 𝜆 ≡ ker(𝛼 − 𝜆𝐼). We complete this into a basis 𝐵 ≡
(𝑣1,… , 𝑣𝑔𝜆 , 𝑣𝑔𝜆+1,… , 𝑣𝑛) of 𝑉 . Then note that

[𝛼]𝐵 = (𝜆𝐼𝑔𝜆 ⋆
0 𝐴1

)

for some matrix 𝐴1. Now,

det(𝛼 − 𝑡𝐼) = det ((𝜆 − 𝑡)𝐼𝑔𝜆 ⋆
0 𝐴1 − 𝑡𝐼)

By the formula for determinants of block matrices with a zero block on the off diagonal,

det(𝛼 − 𝑡𝐼) = (𝜆 − 𝑡)𝑔𝜆 det(𝐴1 − 𝑡𝐼)

Hence 𝑔𝜆 ≤ 𝑎𝜆 since the determinant is a polynomial that could have more factors of the
same form.
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Lemma. Let 𝑉 be a finite dimensional 𝐹-vector space. Let 𝛼 ∈ 𝐿(𝑉) and let 𝜆 be an eigen-
value of 𝛼. Let 𝑐𝜆 be the multiplicity of 𝜆 as a root of the minimal polynomial of 𝛼. Then
1 ≤ 𝑐𝜆 ≤ 𝑎𝜆.

Proof. By the Cayley–Hamilton theorem, 𝜒𝛼(𝛼) = 0. Since 𝑚𝛼 is linear, 𝑚𝛼 divides 𝜒𝛼.
Hence 𝑐𝜆 ≤ 𝑎𝜆. Now we show 𝑐𝜆 ≥ 1. Indeed, 𝜆 is an eigenvalue hence there exists a
nonzero 𝑣 ∈ 𝑉 such that 𝛼(𝑣) = 𝜆𝑣. For such an eigenvector, 𝛼𝑃(𝑣) = 𝜆𝑃𝑣 for 𝑃 ∈ ℕ. Hence
for 𝑝 ∈ 𝐹[𝑡], 𝑝(𝛼)(𝑣) = [𝑝(𝜆)](𝑣). Hence𝑚𝛼(𝛼)(𝑣) = [𝑚𝛼(𝜆)](𝑣). Since the left hand side is
zero,𝑚𝛼(𝜆) = 0. So 𝑐𝜆 ≥ 1.

Example. Let

𝐴 = (
1 0 −2
0 1 1
0 0 2

)

The minimal polynomial can be computed by considering the characteristic polynomial

𝜒𝐴(𝑡) = (𝑡 − 1)2(𝑡 − 2)
So the minimal polynomial is either (𝑡 − 1)2(𝑡 − 2) or (𝑡 − 1)(𝑡 − 2)We check (𝑡 − 1)(𝑡 − 2).
(𝐴 − 𝐼)(𝐴 − 2𝐼) can be found to be zero. So𝑚𝐴(𝑡) = (𝑡 − 1)(𝑡 − 2). Since this is a product of
distinct linear factors, 𝐴 is diagonalisable.

Example. Let 𝐴 be a Jordan block of size 𝑛 ≥ 2. Then 𝑔𝜆 = 1, 𝑎𝜆 = 𝑛, and 𝑐𝜆 = 𝑛.

7.10. Characterisation of diagonalisable complex endomorphisms
Lemma. Let 𝐹 = ℂ. Let 𝑉 be a finite-dimensional ℂ-vector space. Let 𝛼 be an endomorph-
ism of 𝑉 . Then the following are equivalent.
(i) 𝛼 is diagonalisable;
(ii) for all 𝜆 eigenvalues of 𝛼, we have 𝑎𝜆 = 𝑔𝜆;
(iii) for all 𝜆 eigenvalues of 𝛼, 𝑐𝜆 = 1.

Proof. First, the fact that (i) is true if and only if (iii) is true has already been proven. Now
let us show that (i) is equivalent to (ii). Let 𝜆1,… , 𝜆𝑘 be the distinct eigenvalues of 𝛼. We
have already found that 𝛼 is diagonalisable if and only if 𝑉 = ⨁𝑉 𝜆𝑖 . The sum was found
to be always direct, regardless of diagonalisability. We will compute the dimension of 𝑉 in
two ways;

𝑛 = dim𝑉 = deg𝜒𝛼; 𝑛 = dim𝑉 =
𝑘
∑
𝑖=1

𝑎𝜆𝑖

since 𝜒𝛼 is a product of (𝑡 − 𝜆𝑖) factors as 𝐹 = ℂ. Since the sum is direct,

dim(
𝑘

⨁
𝑖=1

𝑉 𝜆𝑖) =
𝑘
∑
𝑖=1

𝑔𝜆𝑖

402



7. Eigenvectors and eigenvalues

𝛼 is diagonalisable if and only if the dimensions are equal, so

𝑘
∑
𝑖=1

𝑔𝜆𝑖 =
𝑘
∑
𝑖=1

𝑎𝜆𝑖

Conversely, we have proven that for all eigenvalues 𝜆𝑖, we have 𝑔𝜆𝑖 ≤ 𝑎𝜆𝑖 . Hence,∑
𝑘
𝑖=1 𝑔𝜆𝑖 =

∑𝑘
𝑖=1 𝑎𝜆𝑖 holds if and only if 𝑔𝜆𝑖 = 𝑎𝜆𝑖 for all 𝑖.
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8. Jordan normal form
For this section, let 𝐹 = ℂ.

8.1. Definition
Definition. Let 𝐴 ∈ 𝑀𝑛(ℂ). We say that 𝐴 is in Jordan normal form if it is a block diagonal
matrix, where each block is of the form

𝐽𝑛𝑖 (𝜆) =
⎛
⎜
⎜
⎜
⎝

𝜆 1 0 ⋯ 0
0 𝜆 1 ⋯ 0
0 0 𝜆 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝜆

⎞
⎟
⎟
⎟
⎠

We say that 𝐽𝑛𝑖 (𝜆) ∈ 𝑀𝑛𝑖 (ℂ) are Jordan blocks. The 𝜆𝑖 ∈ ℂ need not be distinct.

Remark. In three dimensions,

𝐴 = (
𝜆 0 0
0 𝜆 0
0 0 𝜆

)

is in Jordan normal form, with three one-dimensional Jordan blocks with the same 𝜆 value.

8.2. Similarity to Jordan normal form
Theorem. Any complex matrix 𝐴 ∈ 𝑀𝑛(ℂ) is similar to a matrix in Jordan normal form,
which is unique up to reordering the Jordan blocks.

The proof is non-examinable. This follows from IB Groups, Rings and Modules.

Example. Let dim𝑉 = 2. Then any matrix is similar to one of

(𝜆1 0
0 𝜆2

) ; (𝜆 0
0 𝜆) ; (𝜆 1

0 𝜆)

The minimal polynomials are

(𝑡 − 𝜆1)(𝑡 − 𝜆2); (𝑡 − 𝜆); (𝑡 − 𝜆)2

8.3. Direct sum of eigenspaces
Theorem. Let 𝑉 be a ℂ-vector space. Let dim𝑉 = 𝑛 < ∞. Then, the minimal polynomial
𝑚𝛼(𝑡) of an endomorphism 𝛼 ∈ 𝐿(𝑉) satisfies

𝑉 =
𝑘

⨁
𝑗=1

𝑉 𝑗
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where 𝑉 𝑗 = ker[(𝛼 − 𝜆𝑗𝐼)𝑐𝑗 ], and where

𝑚𝛼(𝑡) =
𝑘
∏
𝑖=1

(𝑡 − 𝜆𝑖)𝑐𝑖

𝑉 𝑗 is called a generalised eigenspace associated with 𝜆𝑗 .
Remark. Note that 𝑉 𝑗 is stable by 𝛼, that is, 𝛼(𝑉 𝑗) = 𝑉 𝑗 . Note further that (𝛼 − 𝜆𝑗𝐼)||𝑉𝑗 = 𝜇𝑗
gives that 𝜇𝑗 is a nilpotent endomorphism; 𝜇

𝑐𝑗
𝑗 = 0. So the Jordan normal form theorem is

a statement about nilpotent matrices.

Note, when 𝛼 is diagonalisable, 𝑐𝑗 = 1 and hence we recover 𝑉 𝑗 = ker(𝛼 − 𝜆𝑗𝐼) and 𝑉 =
⨁𝑉 𝑗 .

Proof. The key to this proof is that the projectors onto 𝑉 𝑗 are ‘explicit’. First, recall

𝑚𝛼(𝑡) =
𝑘
∏
𝑗=1

(𝑡 − 𝜆𝑗)𝑐𝑗

Then, let
𝑝𝑗(𝑡) =∏

𝑖≠𝑗
(𝑡 − 𝜆𝑖)𝑐𝑖

Then 𝑝𝑗 have by definition no common factor. So by Euclid’s algorithm, we can find poly-
nomials 𝑞𝑖 such that

𝑘
∑
𝑖=1

𝑞𝑖𝑝𝑖 = 1

We define the projector 𝜋𝑗 = 𝑞𝑗𝑝𝑗(𝛼), which is an endomorphism. By construction, for all
𝑣 ∈ 𝑉 , we have

𝑘
∑
𝑗=1

𝜋𝑗(𝑣) =
𝑘
∑
𝑗=1

𝑎𝑗𝑝𝑗(𝛼(𝑣)) = 𝐼(𝑣) = 𝑣

Hence,

𝑣 =
𝑘
∑
𝑖=1

𝜋𝑖(𝑣)

Observe further that 𝜋𝑗(𝑣) ∈ 𝑉 𝑗 . Indeed,

(𝛼 − 𝜆𝑗𝐼)𝑐𝑗𝜋𝑗(𝑣) = (𝛼 − 𝜆𝑗𝐼)𝑐𝑗𝑞𝑗𝑝𝑗(𝛼(𝑣)) = 𝑞𝑗𝑚𝛼(𝛼(𝑣)) = 0

Hence 𝜋𝑗(𝑣) ∈ 𝑉 𝑗 . In particular, 𝑉 = ∑𝑘
𝑗=1 𝑉 𝑗 . We need to show that this sum is direct.

Note, for 𝑖 ≠ 𝑗, 𝜋𝑖𝜋𝑗 = 0 from the definition of 𝜋. Hence, observe that

𝜋𝑖 = 𝜋𝑖(
𝑘
∑
𝑗=1

𝜋𝑗) ⟹ 𝜋𝑖 = 𝜋𝑖𝜋𝑖
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Thus, 𝜋 is a projector. In particular, this implies that 𝜋𝑖|𝑉𝑗 is the identity if 𝑖 = 𝑗 and zero if
𝑖 ≠ 𝑗. This immediately implies that th sum is direct;

𝑉 =
𝑘

⨁
𝑗=1

𝑉 𝑗

Indeed, suppose
𝑘
∑
𝑗=1

𝛼𝑗𝑣𝑗 = 0; 𝑣𝑗 ∈ 𝑉 𝑗 ; 𝛼1 = 0

Then

𝑣1 = − 1
𝛼1

𝑘
∑
𝑗=2

𝛼𝑗𝑣𝑗

Applying 𝜋1,

𝑣1 = − 1
𝛼1

𝑘
∑
𝑗=2

𝛼𝑗𝜋1(𝑣𝑗) = 0

Iterating, we find 𝑣 = 0.

Remark. We can compute the quantities 𝑎𝜆, 𝑔𝜆, 𝑐𝜆 on the Jordan normal form of a matrix.
Indeed, let𝑚 ≥ 2 and consider a Jordan block 𝐽𝑚(𝜆). Then 𝐽𝑚(𝜆)−𝜆𝐼 is the zeromatrix with
ones on the off-diagonal. (𝐽𝑚(𝜆) − 𝜆𝐼)𝑘 pushes the ones onto the next line iteratively, so

(𝐽𝑚(𝜆) − 𝜆𝐼)𝑘 = (0 𝐼𝑚−𝑘
0 0 )

Hence 𝐽 is nilpotent of order exactly𝑚. In Jordan normal form,

(i) 𝑎𝜆 is the sum of sizes of blocks with eigenvalue 𝜆. This is the amount of times 𝜆 is seen
on the diagonal.

(ii) 𝑔𝜆 is the amount of blocks with eigenvalue 𝜆, since each block represents one eigen-
vector.

(iii) 𝑐𝜆 is the size of the largest block with eigenvalue 𝜆.

Example. Let

𝐴 = (0 −1
1 2 )

We wish to convert this matrix into Jordan normal form; so we seek a basis for which this
matrix becomes Jordan normal form.

𝜒𝐴(𝑡) = (𝑡 − 1)2
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Hence there exists only one eigenvalue, 𝜆 = 1. 𝐴 − 𝐼 ≠ 0 hence𝑚𝛼(𝑡) = (𝑡 − 1)2. Thus, the
Jordan normal form of 𝐴 is of the form

𝐵 = (1 1
0 1)

Now,
ker(𝐴 − 𝐼) = ⟨𝑣1⟩ ; 𝑣1 = ( 1−1)

Further, we seek a 𝑣2 such that

(𝐴 − 𝐼)𝑣2 = 𝑣1 ⟹ 𝑣2 = (−10 )

Such a 𝑣2 is not unique. Now,

𝐴 = ( 1 −1
−1 0 ) (

1 1
0 1) (

1 −1
−1 0 )

−1
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9. Properties of bilinear forms
9.1. Changing basis
Let 𝜙∶ 𝑉 × 𝑉 → 𝔽 be a bilinear form. Let 𝑉 be a finite-dimensional 𝐹-vector space. Let 𝐵
be a basis of 𝑉 and let [𝜙]𝐵 = [𝜙]𝐵𝐵 be the matrix with entries 𝜙(𝑒𝑖, 𝑒𝑗).

Lemma. Let 𝜙 be a bilinear form 𝑉 × 𝑉 → 𝐹. Then if 𝐵, 𝐵′ are bases for 𝑉 , and 𝑃 = [𝐼]𝐵′,𝐵
we have

[𝜙]𝐵′ = 𝑃⊺[𝜙]𝐵𝑃

Proof. This is a special case of the general change of basis formula.

Definition. Let 𝐴, 𝐵 ∈ 𝑀𝑛(𝐹) be square matrices. We say that 𝐴, 𝐵 are congruent if there
exists 𝑃 ∈ 𝑀𝑛(𝐹) such that 𝐴 = 𝑃⊺𝐵𝑃.

Remark. Congruence is an equivalence relation.

Definition. A bilinear form 𝜙 on 𝑉 is symmetric if, for all 𝑢, 𝑣 ∈ 𝑉 , we have

𝜙(𝑢, 𝑣) = 𝜙(𝑣, 𝑢)

Remark. If 𝐴 is a square matrix, we say 𝐴 is symmetric if 𝐴 = 𝐴⊺. Equivalently, 𝐴𝑖𝑗 = 𝐴𝑗𝑖
for all 𝑖, 𝑗. So 𝜙 is symmetric if and only if [𝜙]𝐵 is symmetric for any basis 𝐵. Note further
that to represent 𝜙 by a diagonal matrix in some basis 𝐵, it must necessarily be symmetric,
since

𝑃⊺𝐴𝑃 = 𝐷 ⟹ 𝐷 = 𝐷⊺ = (𝑃⊺𝐴𝑃)⊺ = 𝑃⊺𝐴⊺𝑃 ⟹ 𝐴 = 𝐴⊺

9.2. Quadratic forms
Definition. Amap𝑄∶ 𝑉 → 𝐹 is a quadratic form if there exists a bilinear form 𝜙∶ 𝑉×𝑉 →
𝐹 such that, for all 𝑢 ∈ 𝑉 ,

𝑄(𝑢) = 𝜙(𝑢, 𝑢)

So a quadratic form is the restriction of a bilinear form to the diagonal.

Remark. Let 𝐵 = (𝑒𝑖) be a basis of 𝑉 . Let 𝐴 = [𝜙]𝐵 = (𝜙(𝑒𝑖, 𝑒𝑗)) = (𝑎𝑖𝑗). Then, for 𝑢 =
∑𝑖 𝑥𝑖𝑒𝑖 ∈ 𝑉 ,

𝑄(𝑢) = 𝜙(𝑢, 𝑢) = 𝜙(∑
𝑖
𝑥𝑖𝑒𝑖,∑

𝑗
𝑥𝑗𝑒𝑗) = ∑

𝑖
∑
𝑗
𝑥𝑖𝑥𝑗𝜙(𝑒𝑖, 𝑒𝑗) = ∑

𝑖
∑
𝑗
𝑥𝑖𝑥𝑗𝑎𝑖𝑗

We can check that this is equal to
𝑄(𝑢) = 𝑥⊺𝐴𝑥
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where [𝑢]𝐵 = 𝑥. Note further that

𝑥⊺𝐴𝑥 = ∑
𝑖
∑
𝑗
𝑎𝑖𝑗𝑥𝑖𝑥𝑗 = ∑

𝑖
∑
𝑗
𝑎𝑗𝑖𝑥𝑖𝑥𝑗 = ∑

𝑖
∑
𝑗

𝑎𝑖𝑗 + 𝑎𝑗𝑖
2 𝑥𝑖𝑥𝑗 = 𝑥⊺

⎛
⎜⎜
⎝

𝐴 + 𝐴⊺

2⏟⎵⏟⎵⏟
symmetric

⎞
⎟⎟
⎠
𝑥

So we can always express the quadratic form as a symmetric matrix in any basis.

Proposition. If 𝑄∶ 𝑉 → 𝐹 is a quadratic form, then there exists a unique symmetric bilin-
ear form 𝜙∶ 𝑉 × 𝑉 → 𝐹 such that 𝑄(𝑢) = 𝜙(𝑢, 𝑢).

Proof. Let 𝜓 be a bilinear form on 𝑉 such that for all 𝑢 ∈ 𝑉 , we have 𝑄(𝑢) = 𝜓(𝑢, 𝑢). Then,
let

𝜙(𝑢, 𝑣) = 1
2[𝜓(𝑢, 𝑣) + 𝜓(𝑣, 𝑢)]

Certainly 𝜙 is a bilinear form and symmetric. Further, 𝜙(𝑢, 𝑢) = 𝜓(𝑢, 𝑢) = 𝑄(𝑢). So there
exists a symmetric bilinear form𝜙 such that𝑄(𝑢) = 𝜙(𝑢, 𝑢), so it suffices to proveuniqueness.
Let 𝜙 be a symmetric bilinear form such that for all 𝑢 ∈ 𝑉 we have 𝑄(𝑢) = 𝜙(𝑢, 𝑢). Then,
we can find

𝑄(𝑢 + 𝑣) = 𝜙(𝑢 + 𝑣, 𝑢 + 𝑣) = 𝜙(𝑢, 𝑢) + 𝜙(𝑣, 𝑣) + 2𝜙(𝑢, 𝑣)

Thus 𝜙(𝑢, 𝑣) is defined uniquely by 𝑄, since

2𝜙(𝑢, 𝑣) = 𝑄(𝑢 + 𝑣) − 𝑄(𝑢) − 𝑄(𝑣)

So 𝜙 is unique (when 2 is invertible in 𝐹). This identity for 𝜙(𝑢, 𝑣) is known as the polarisa-
tion identity.

9.3. Diagonalisation of symmetric bilinear forms
Theorem. Let 𝜙∶ 𝑉 ×𝑉 → 𝐹 be a symmetric bilinear form, where 𝑉 is finite-dimensional.
Then there exists a basis 𝐵 of 𝑉 such that [𝜙]𝐵 is diagonal.

Proof. By induction on the dimension, suppose the theorem holds for all dimensions less
than 𝑛 for 𝑛 ≥ 2. If 𝜙(𝑢, 𝑢) = 0 for all 𝑢 ∈ 𝑉 , then 𝜙 = 0 by the polarisation identity, which
is diagonal. Otherwise 𝜙(𝑒1, 𝑒1) ≠ 0 for some 𝑒1 ∈ 𝑉 . Let

𝑈 = (⟨𝑒1⟩)
⟂ = {𝑣 ∈ 𝑉 ∶ 𝜙(𝑒1, 𝑣) = 0}

This is a vector subspace of 𝑉 , which is in particular

ker {𝜙(𝑒1, ⋅ )∶ 𝑉 → 𝐹}

By the rank-nullity theorem, dim𝑈 = 𝑛 − 1. We now claim that 𝑈 + ⟨𝑒1⟩ is a direct sum.
Indeed, for 𝑣 = ⟨𝑒1⟩∩𝑈 , we have 𝑣 = 𝜆𝑒1 and𝜙(𝑒1, 𝑣) = 0. Hence 𝜆 = 0, since by assumption
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𝜙(𝑒1, 𝑒1) ≠ 0. So we find a basis 𝐵′ = (𝑒2,… , 𝑒𝑛) of 𝑈 , which we extend by 𝑒1 to 𝐵 =
(𝑒1, 𝑒2,… , 𝑒𝑛). Since𝑈⊕⟨𝑒1⟩ has dimension 𝑛, this is a basis of 𝑉 . Under this basis, we find

[𝜙]𝐵 = (𝜙(𝑒1, 𝑒1) 0
0 [𝜙|𝑈]𝐵′

)

because
𝜙(𝑒1, 𝑒𝑗) = 𝜙(𝑒𝑗 , 𝑒1) = 0

for all 𝑗 ≥ 2. By the inductive hypothesis we can take a basis 𝐵′ such that the restricted 𝜙 to
be diagonal, so [𝜙]𝐵 is diagonal in this basis.

Example. Let 𝑉 = ℝ3 and choose the canonical basis (𝑒𝑖). Let

𝑄(𝑥1, 𝑥2, 𝑥3) = 𝑥21 + 𝑥22 + 2𝑥23 + 2𝑥1𝑥2 + 2𝑥1𝑥3 − 2𝑥2𝑥3
Then, if 𝑄(𝑥1, 𝑥2, 𝑥3) = 𝑥⊺𝐴𝑥, we have

𝐴 = (
1 1 1
1 1 −1
1 −1 2

)

Note that the off-diagonal terms are halved from their coefficients since in the expansion of
𝑥⊺𝐴𝑥 they are included twice. Then, we can find a basis in which 𝐴 is diagonal. We could
use the above algorithm to find a basis, or complete the square in each component. We can
write

𝑄(𝑥1, 𝑥2, 𝑥3) = (𝑥1 + 𝑥2 + 𝑥3)2 + 𝑥23 − 4𝑥2𝑥3 = (𝑥1 + 𝑥2 + 𝑥3)2 + (𝑥3 − 2𝑥2)2 − (2𝑥2)2

This yields a new coordinate basis 𝑥′1, 𝑥′2, 𝑥′3. Then 𝑃−1𝐴𝑃 is diagonal. 𝑃 is given by

(
𝑥′1
𝑥′2
𝑥′3
) = (

1 1 1
0 −2 1
0 −2 0

)
⏟⎵⎵⎵⏟⎵⎵⎵⏟

𝑃−1

(
𝑥1
𝑥2
𝑥3
)

9.4. Sylvester’s law
Corollary. If 𝐹 = ℂ, for any symmetric bilinear form 𝜙 there exists a basis of 𝑉 such that
[𝜙]𝐵 is

(𝐼𝑟 0
0 0)

Proof. Since any symmetric bilinear form 𝜙 in a finite-dimensional 𝐹-vector space 𝑉 can be
diagonalised, let 𝐸 = (𝑒1,… , 𝑒𝑛) such that [𝜙]𝐸 is diagonal with diagonal entries 𝑎𝑖. Order
the 𝑎𝑖 such that 𝑎𝑖 is nonzero for 1 ≤ 𝑖 ≤ 𝑟, and the remaining values (if any) are zero. For
𝑖 ≤ 𝑟, let √𝑎𝑖 be a choice of a complex root for 𝑎𝑖. Then 𝑣𝑖 =

𝑒𝑖
√𝑎𝑖

for 𝑖 ≤ 𝑟 and 𝑣𝑖 = 𝑒𝑖 for
𝑖 > 𝑟 gives the basis 𝐵 as required.
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Corollary. Every symmetric matrix of𝑀𝑛(ℂ) is congruent to a unique matrix of the form

(𝐼𝑟 0
0 0)

where 𝑟 is the rank of the matrix.
Corollary. Let 𝐹 = ℝ, and let 𝑉 be a finite-dimensionalℝ-vector space. Let 𝜙 be a symmet-
ric bilinear form on 𝑉 . Then there exists a basis 𝐵 = (𝑣1,… , 𝑣𝑛) of 𝑉 such that

[𝜙]𝐵 = (
𝐼𝑝 0 0
0 −𝐼𝑞 0
0 0 0

)

for some integers 𝑝, 𝑞.

Proof. Since square roots do not necessarily exist in ℝ, we cannot use the form above. We
first diagonalise the bilinear form in some basis 𝐸. Then, reorder and group the 𝑎𝑖 into a
positive group of size 𝑝, a negative group of size 𝑞, and a zero group. Then,

𝑣𝑖 =
⎧⎪
⎨⎪
⎩

𝑒𝑖
√𝑎𝑖

𝑖 ∈ {1,… , 𝑝}
𝑒𝑖

√−𝑎𝑖
𝑖 ∈ {𝑝 + 1,… , 𝑝 + 𝑞}

𝑒𝑖 𝑖 ∈ {𝑝 + 𝑞 + 1,… , 𝑛}

This gives a new basis as required.

Definition. Let 𝐹 = ℝ. The signature of a bilinear form 𝜙 is

𝑠(𝜙) = 𝑝 − 𝑞

where 𝑝 and 𝑞 are defined as in the corollary above.
Theorem. Let 𝐹 = ℝ. Let 𝑉 be a finite-dimensional ℝ-vector space. If a real symmetric
bilinear form is represented by some matrix

(
𝐼𝑝 0 0
0 −𝐼𝑞 0
0 0 0

)

in some basis 𝐵, and some other matrix

(
𝐼𝑝′ 0 0
0 −𝐼𝑞′ 0
0 0 0

)

in another basis 𝐵′, then 𝑝 = 𝑝′ and 𝑞 = 𝑞′. Thus, the signature of the matrix is well defined.
Definition. Let 𝜙 be a symmetric bilinear form on a real vector space 𝑉 . We say that
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(i) 𝜙 is positive definite if 𝜙(𝑢, 𝑢) > 0 for all nonzero 𝑢 ∈ 𝑉 ;
(ii) 𝜙 is positive semidefinite if 𝜙(𝑢, 𝑢) ≥ 0 for all 𝑢 ∈ 𝑉 ;
(iii) 𝜙 is negative definite or negative semidefinite if 𝜙(𝑢, 𝑢) < 0 or 𝜙(𝑢, 𝑢) ≤ 0 respectively

for all nonzero 𝑢 ∈ 𝑉 .
Example. The matrix

(𝐼𝑟 0
0 0)

is positive definite for 𝑟 = 𝑛, and positive semidefinite for 𝑟 < 𝑛.
We now prove Sylvester’s law.

Proof. In order to prove uniqueness of 𝑝, we will characterise the matrix in a way that does
not depend on the basis. In particular, wewill show that𝑝 is the largest dimension of a vector
subspace of 𝑉 such that the restriction of 𝜙 on this subspace is positive definite. Suppose we
have 𝐵 = (𝑣1,… , 𝑣𝑛) and

[𝜙]𝐵 = (
𝐼𝑝 0 0
0 −𝐼𝑞 0
0 0 0

)

We consider
𝑋 = ⟨𝑣1,… , 𝑣𝑝⟩

Then we can easily compute that 𝜙|𝑋 is positive definite. Let

𝑌 = ⟨𝑣𝑝+1,… , 𝑣𝑛⟩

Then, as above, 𝜙|𝑌 is negative semidefinite. Suppose that 𝜙 is positive definite on another
subspace 𝑋 ′. In this case, 𝑌 ∩ 𝑋 ′ = {0}, since if 𝑦 ∈ 𝑌 ∩ 𝑋 ′ we must have 𝑄(𝑦) ≤ 0, but
since 𝑦 ∈ 𝑋 ′ we have 𝑦 = 0. Thus, 𝑌 + 𝑋 ′ = 𝑌 ⊕ 𝑋 ′, so 𝑛 = dim𝑉 ≥ dim𝑌 + dim𝑋 ′. But
dim𝑌 = 𝑛−𝑝, so dim𝑋 ′ ≤ 𝑝. The same argument can be executed for 𝑞, hence both 𝑝 and
𝑞 are independent of basis.

9.5. Kernels of bilinear forms
Definition. Let 𝐾 = {𝑣 ∈ 𝑉 ∶ ∀𝑢 ∈ 𝑉, 𝜙(𝑢, 𝑣) = 0}. This is the kernel of the bilinear form.
Remark. By the rank-nullity theorem,

dim𝐾 + rank𝜙 = 𝑛

Using the above notation, we can show that there exists a subspace 𝑇 of dimension 𝑛− (𝑝+
𝑞) +min {𝑝, 𝑞} such that 𝜙|𝑇 = 0. Indeed, let 𝐵 = (𝑣1,… , 𝑣𝑛) such that

[𝜙]𝐵 = (
𝐼𝑝 0 0
0 −𝐼𝑞 0
0 0 0

)
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The quadratic form has a zero subspace of dimension 𝑛 − (𝑝 + 𝑞) in the bottom right. But
by setting

𝑇 = {𝑣1 + 𝑣𝑝+1,… , 𝑣𝑞 + 𝑣𝑝+𝑞, 𝑣𝑝+𝑞+1,… , 𝑣𝑛}
we can combine the positive and negative blocks (assuming here that 𝑝 ≥ 𝑞) to produce
more linearly independent elements of the kernel. In particular, dim𝑇 is the largest possible
dimension of a subspace 𝑇 ′ of 𝑉 such that 𝜙|𝑇′ = 0.

9.6. Sesquilinear forms
Let 𝐹 = ℂ. The standard inner product on ℂ𝑛 is defined to be

⟨(
𝑥1
⋮
𝑣𝑛
) , (

𝑦1
⋮
𝑦𝑛
)⟩ =

𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖

This is not a bilinear formonℂdue to the complex conjugate, it is linear in the first entry.

Definition. Let 𝑉,𝑊 be ℂ-vector spaces. A form 𝜙∶ 𝑉 ×𝑊 → ℂ is called sesquilinear if it
is linear in the first entry, and

𝜙(𝑣, 𝜆1𝑤1 + 𝜆2𝑤2) = 𝜆1𝜙(𝑣, 𝑤1) + 𝜆2𝜙(𝑣, 𝑤2)

so it is antilinear with respect to the second entry.

Lemma. Let 𝐵 = (𝑣1,… , 𝑣𝑚) be a basis of 𝑉 and 𝐶 = (𝑤1,… ,𝑤𝑛) be a basis of 𝑊 . Let
[𝜙]𝐵,𝐶 = (𝜙(𝑣𝑖, 𝑤𝑗)). Then,

𝜙(𝑣, 𝑤) = [𝑣]⊺𝐵[𝜙]𝐵,𝐶[𝑤]𝐶

Proof. Let 𝐵, 𝐵′ be bases of 𝑉 and 𝐶, 𝐶′ be bases of𝑊 . Let 𝑃 = [𝐼]𝐵′,𝐵 and𝑄 = [𝐼]𝐶′,𝐶 . Then

[𝜙]𝐵′,𝐶′ = 𝑃⊺[𝜙]𝐵,𝐶𝑄

9.7. Hermitian forms
Definition. Let 𝑉 be a finite-dimensional ℂ-vector space. Let 𝜙 be a sesquilinear form on
𝑉 . Then 𝜙 is Hermitian if, for all 𝑢, 𝑣 ∈ 𝑉 ,

𝜙(𝑢, 𝑣) = 𝜙(𝑣, 𝑢)

Remark. If 𝜙 is Hermitian, then 𝜙(𝑢, 𝑢) = 𝜙(𝑢, 𝑢) ∈ ℝ. Further, 𝜙(𝜆𝑢, 𝜆𝑢) = |𝜆|2𝜙(𝑢, 𝑢).
This allows us to define positive and negative definite Hermitian forms.
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Lemma. A sesquilinear form 𝜙∶ 𝑉 × 𝑉 → ℂ is Hermitian if and only if, for any basis 𝐵 of
𝑉 ,

[𝜙]𝐵 = [𝜙]†𝐵

Proof. Let 𝐴 = [𝜙]𝐵 = (𝑎𝑖𝑗). Then 𝑎𝑖𝑗 = 𝜙(𝑒𝑖, 𝑒𝑗), and 𝑎𝑗𝑖 = 𝜙(𝑒𝑗 , 𝑒𝑖) = 𝜙(𝑒𝑖, 𝑒𝑗) = 𝑎𝑖𝑗 . So
𝐴
⊺
= 𝐴. Conversely suppose that [𝜙]𝐵 = 𝐴 = 𝐴

⊺
. Now let

𝑢 =
𝑛
∑
𝑖=1

𝜆𝑖𝑒𝑖; 𝑣 =
𝑛
∑
𝑖=1

𝜇𝑖𝑒𝑖

Then,

𝜙(𝑢, 𝑣) = 𝜙(
𝑛
∑
𝑖=1

𝜆𝑖𝑒𝑖,
𝑛
∑
𝑖=1

𝜇𝑖𝑒𝑖) =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝜆𝑖𝜇𝑗𝑎𝑖𝑗

Further,

𝜙(𝑣, 𝑢) = 𝜙(
𝑛
∑
𝑖=1

𝜇𝑖𝑒𝑖,
𝑛
∑
𝑖=1

𝜆𝑖𝑒𝑖) =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝜇𝑗𝜆𝑖𝑎𝑖𝑗

which is equivalent. Hence 𝜙 is Hermitian.

9.8. Polarisation identity
AHermitian form 𝜙 on a complex vector space 𝑉 is entirely determined by a quadratic form
𝑄∶ 𝑉 → ℝ such that 𝑣 ↦ 𝜙(𝑣, 𝑣) by the formula

𝜙(𝑢, 𝑣) = 1
4[𝑄(𝑢 + 𝑣) − 𝑄(𝑢 − 𝑣) + 𝑖𝑄(𝑢 + 𝑖𝑣) − 𝑖𝑄(𝑢 − 𝑖𝑣)]

9.9. Hermitian formulation of Sylvester’s law
Theorem. Let 𝑉 be a finite-dimensionalℂ-vector space. Let 𝜙∶ 𝑉 ×𝑉 → ℂ be a Hermitian
form on 𝑉 . Then there exists a basis 𝐵 = (𝑣1,… , 𝑣𝑛) of 𝑉 such that

[𝜙]𝐵 = (
𝐼𝑝 0 0
0 −𝐼𝑞 0
0 0 0

)

where 𝑝, 𝑞 depend only on 𝜙 and not 𝐵.

Proof. The following is a sketch proof; it is nearly identical to the case of real symmetric
bilinear forms. If 𝜙 = 0, existence is trivial. Otherwise, using the polarisation identity there
exists 𝑒1 ≠ 0 such that 𝜙(𝑒1, 𝑒1) ≠ 0. Let

𝑣1 =
𝑒1

√|𝜙(𝑒1, 𝑒1)|
⟹ 𝜙(𝑣1, 𝑣1) = ±1
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Consider the orthogonal space𝑊 = {𝑤 ∈ 𝑉 ∶ 𝜙(𝑣1, 𝑤) = 0}. We can check, arguing analog-
ously to the real case, that 𝑉 = ⟨𝑣1⟩ ⊕𝑊 . Hence, we can inductively diagonalise 𝜙.
𝑝, 𝑞 are unique. Indeed, we can prove that 𝑝 is the maximal dimension of a subspace on
which 𝜙 is positive definite (which is well-defined since 𝜙(𝑢, 𝑢) ∈ ℝ). The geometric inter-
pretation of 𝑞 is similar.

9.10. Skew-symmetric forms
Definition. Let 𝑉 be a finite-dimensional ℝ-vector space. Let 𝜙 be a bilinear form on 𝑉 .
Then 𝜙 is skew-symmetric if, for all 𝑢, 𝑣 ∈ 𝑉 ,

𝜙(𝑢, 𝑣) = −𝜙(𝑣, 𝑢)

Remark. 𝜙(𝑢, 𝑢) = −𝜙(𝑢, 𝑢) = 0. Also, in any basis 𝐵 of 𝑉 , we have [𝜙]𝐵 = −[𝜙]⊺𝐵. Any real
matrix can be decomposed as the sum

𝐴 = 1
2(𝐴 + 𝐴⊺) + 1

2(𝐴 − 𝐴⊺)

where the first summand is symmetric and the second is skew-symmetric.

9.11. Skew-symmetric formulation of Sylvester’s law
Theorem. Let 𝑉 be a finite-dimensional ℝ-vector space. Let 𝜙∶ 𝑉 × 𝑉 → ℝ be a skew-
symmetric form on 𝑉 . Then there exists a basis

𝐵 = (𝑣1, 𝑤1, 𝑣2, 𝑤2,… , 𝑣𝑚, 𝑤𝑚, 𝑣2𝑚+1, 𝑣2𝑚+2,… , 𝑣𝑛)

of 𝑉 such that

[𝜙]𝐵 =

⎛
⎜
⎜
⎜
⎜
⎝

0 1
−1 0

0 1
−1 0

⋱
0

⎞
⎟
⎟
⎟
⎟
⎠

Corollary. Skew-symmetric matrices have an even rank.

Proof. This is again very similar to the previous case. We will perform an inductive step on
the dimension of 𝑉 . If 𝜙 ≠ 0, there exist 𝑣1, 𝑤1 such that 𝜙1(𝑣1, 𝑤1) ≠ 0. After scaling one of
the vectors, we can assume 𝜙(𝑣1, 𝑤1) = 1. Since 𝜙 is skew-symmetric, 𝜙(𝑤1, 𝑣1) = −1. Then
𝑣1, 𝑤1 are linearly independent; if they were linearly dependent we would have 𝜙(𝑣1, 𝑤1) =
𝜙(𝑣1, 𝜆𝑣1) = 0. Let 𝑈 = ⟨𝑣1, 𝑤1⟩ and let𝑊 = {𝑣 ∈ 𝑉 ∶ 𝜙(𝑣1, 𝑣) = 𝜙(𝑤1, 𝑣) = 0} and we can
show 𝑉 = 𝑈 ⊕𝑊 . Then induction gives the required result.
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VII. Linear Algebra

10. Inner product spaces
10.1. Definition
Definition. Let 𝑉 be a vector space over ℝ or ℂ. A scalar product or inner product is a
positive-definite symmetric (respectively Hermitian) bilinear form 𝜙 on 𝑉 . We write

𝜙(𝑢, 𝑣) = ⟨𝑢, 𝑣⟩

𝑉 , when equipped with this inner product, is called a real (respectively complex) inner
product space.

Example. In ℂ𝑛, we define

⟨𝑥, 𝑦⟩ =
𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖

Example. Let 𝑉 = 𝐶0([0, 1], ℂ). Then we can define

⟨𝑓, 𝑔⟩ = ∫
1

0
𝑓(𝑡)𝑔(𝑡) d𝑡

This is the 𝐿2 scalar product.
Example. Let 𝜔∶ [0, 1]∶ ℝ⋆

+ where ℝ⋆
+ = ℝ+ ∖ {0} and define

⟨𝑓, 𝑔⟩ = ∫
1

0
𝑓(𝑡)𝑔(𝑡)𝑤(𝑡) d𝑡

Remark. Typically it suffices to check ⟨𝑢, 𝑢⟩ = 0 ⟹ 𝑢 = 0 since linearity and positivity
are usually trivial.

Definition. Let 𝑉 be an inner product space. Then for 𝑣 ∈ 𝑉 , the norm of 𝑣 induced by the
inner product is defined by

‖𝑣‖ = (⟨𝑣, 𝑣⟩)1/2

This is real, and positive if 𝑣 ≠ 0.

10.2. Cauchy–Schwarz inequality
Lemma. For an inner product space,

|⟨𝑢, 𝑣⟩| ≤ ‖𝑎‖ ⋅ ‖𝑏‖

Proof. Let 𝑡 ∈ 𝐹. Then,

0 ≤ ‖𝑡𝑢 − 𝑣‖ = ⟨𝑡𝑢 − 𝑣, 𝑡𝑢 − 𝑣⟩ = 𝑡𝑡 ⟨𝑢, 𝑢⟩ − 𝑢 ⟨𝑢, 𝑣⟩ − 𝑡 ⟨𝑣, 𝑢⟩ + ‖𝑣‖2
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10. Inner product spaces

Since the inner product is Hermitian,

0 ≤ |𝑡|2‖𝑢‖2 + ‖𝑣‖2 − 2Re(𝑡 ⟨𝑢, 𝑣⟩)

By choosing

𝑡 = ⟨𝑢, 𝑣⟩
‖𝑢‖2

we have

0 ≤ |⟨𝑢, 𝑣⟩|2

‖𝑢‖2
+ ‖𝑣‖2 − 2Re (|⟨𝑢, 𝑣⟩|

2

‖𝑢‖2
)

Since the term under the real part operator is real, the result holds.

Note that equality implies collinearity in the Cauchy–Schwarz inequality.

Corollary (triangle inequality). In an inner product space,

‖𝑢 + 𝑣‖ ≤ ‖𝑢‖ + ‖𝑣‖

Proof. We have

‖𝑢 + 𝑣‖2 = ⟨𝑢 + 𝑣, 𝑢 + 𝑣⟩ = ‖
‖𝑢2

‖
‖+2Re(⟨𝑢, 𝑣⟩)+‖𝑣‖

2 ≤ ‖
‖𝑢2

‖
‖+‖𝑣‖

2+2‖𝑢‖⋅‖𝑣‖ = (‖𝑢‖+‖𝑣‖)2

Remark. Any inner product induces a norm, but not all norms derive from scalar products.

10.3. Orthogonal and orthonormal sets
Definition. A set (𝑒1,… , 𝑒𝑘) of vectors of 𝑉 is said to be orthogonal if ⟨𝑒𝑖, 𝑒𝑗⟩ = 0 for all
𝑖 ≠ 𝑗. The set is said to be orthonormal if it is orthogonal and ‖𝑒𝑖‖ = 1 for all 𝑖. In this case,
⟨𝑒𝑖, 𝑒𝑗⟩ = 𝛿𝑖𝑗 .
Lemma. If (𝑒1,… , 𝑒𝑘) are orthogonal and nonzero, then they are linearly independent. Fur-
ther, let 𝑣 ∈ ⟨{𝑒𝑖}⟩. Then,

𝑣 =
𝑘
∑
𝑗=1

𝜆𝑗𝑒𝑗 ⟹ 𝜆𝑗 =
⟨𝑣, 𝑒𝑗⟩
‖
‖𝑒𝑗

‖
‖
2

Proof. Suppose
𝑘
∑
𝑖=1

𝜆𝑖𝑒𝑖 = 0

Then,

0 = ⟨
𝑘
∑
𝑖=1

𝜆𝑖, 𝑒𝑗⟩ ⟹ 0 =
𝑘
∑
𝑖=1

𝜆𝑖 ⟨𝑒𝑖, 𝑒𝑗⟩
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Thus 𝜆𝑗 = 0 for all 𝑗. Further, for 𝑣 in the span of these vectors,

⟨𝑣, 𝑒𝑗⟩ =
𝑘
∑
𝑖=1

𝜆𝑖 ⟨𝑒𝑖, 𝑒𝑗⟩ = 𝜆𝑗‖‖𝑒𝑗
‖
‖
2

10.4. Parseval’s identity

Corollary. Let 𝑉 be a finite-dimensional inner product space. Let (𝑒1,… , 𝑒𝑛) be an or-
thonormal basis. Then, for any vectors 𝑢, 𝑣 ∈ 𝑉 , we have

⟨𝑢, 𝑣⟩ =
𝑛
∑
𝑖=1

⟨𝑢, 𝑒𝑖⟩ ⟨𝑣, 𝑒𝑖⟩

Hence,

‖𝑢‖2 =
𝑛
∑
𝑖=1

|⟨𝑢, 𝑒𝑖⟩|
2

Proof. By orthonormality,

𝑢 =
𝑛
∑
𝑖=1

⟨𝑢, 𝑒𝑖⟩ 𝑒𝑖; 𝑣 =
𝑛
∑
𝑖=1

⟨𝑣, 𝑒𝑖⟩ 𝑒𝑖

Hence, by sesquilinearity,

⟨𝑢, 𝑣⟩ =
𝑛
∑
𝑖=1

⟨𝑢, 𝑒𝑖⟩ ⟨𝑣, 𝑒𝑖⟩

By taking 𝑢 = 𝑣 we find

‖𝑢‖2 = ⟨𝑢, 𝑢⟩ =
𝑛
∑
𝑖=1

|⟨𝑢, 𝑒𝑖⟩|
2

10.5. Gram–Schmidt orthogonalisation process

Theorem. Let 𝑉 be an inner product space. Let (𝑣𝑖)𝑖∈𝐼 be a linearly independent family of
vectors such that 𝐼 is countable. Then there exists a family (𝑒𝑖)𝑖∈𝐼 of orthonormal vectors
such that for all 𝑘 ≥ 1,

⟨𝑣1,… , 𝑣𝑘⟩ = ⟨𝑒1,… , 𝑒𝑘⟩
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Proof. This proof is an explicit algorithm to compute the family (𝑒𝑖), whichwill be computed
by induction on 𝑘. For 𝑘 = 1, take 𝑒1 =

𝑣1
‖𝑣1‖

. Inductively, suppose (𝑒1,… , 𝑒𝑘) satisfy the
conditions as above. Then we will find a valid 𝑒𝑘+1. We define

𝑒′𝑘+1 = 𝑣𝑘+1 −
𝑘
∑
𝑖=1

⟨𝑣𝑘+1, 𝑒𝑖⟩ 𝑒𝑖

This ensures that the inner product between 𝑒′𝑘+1 and any basis vector 𝑒𝑗 is zero, while main-
taining the same span. Suppose 𝑒′𝑘+1 = 0. Then, 𝑣𝑘+1 ∈ ⟨𝑒1,… , 𝑒𝑘⟩ = ⟨𝑣1,… , 𝑣𝑘⟩ which
contradicts the fact that the family is free. Thus,

𝑒𝑘+1 =
𝑒′𝑘+1
‖
‖𝑒

′
𝑘+1

‖
‖

satisfies the requirements.

Corollary. In finite-dimensional inner product spaces, there always exists an orthonormal
basis. In particular, any orthonormal set of vectors can be extended into an orthonormal
basis.

Remark. Let 𝐴 ∈ 𝑀𝑛(ℝ) be a real-valued (or complex-valued) matrix. Then, the column
vectors of 𝐴 are orthogonal if 𝐴⊺𝐴 = 𝐼 (or 𝐴⊺𝐴 = 𝐼 in the complex-valued case).

10.6. Orthogonality of matrices
Definition. A matrix 𝐴 ∈ 𝑀𝑛(ℝ) is orthogonal if 𝐴⊺𝐴 = 𝐼, hence 𝐴⊺ = 𝐴−1. A matrix
𝐴 ∈ 𝑀𝑛(ℂ) is unitary if 𝐴⊺𝐴 = 𝐼, hence 𝐴† = 𝐴−1.
Proposition. Let𝐴 be a square, non-singular, real-valued (or complex-valued)matrix. Then
𝐴 can be written as 𝐴 = 𝑅𝑇 where 𝑇 is upper triangular and 𝑅 is orthogonal (or respectively
unitary).

Proof. We apply the Gram–Schmidt process to the column vectors of the matrix. This gives
us an orthonormal set of vectors, which gives an upper triangular matrix in this new basis.

10.7. Orthogonal complement and projection
Definition. Let 𝑉 be an inner product space. Let 𝑉1, 𝑉2 ≤ 𝑉 . Then we say that 𝑉 is the
orthogonal direct sum of 𝑉1 and 𝑉2 if 𝑉 = 𝑉1⊕𝑉2 and for all vectors 𝑣1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2 we have
⟨𝑣1, 𝑣2⟩ = 0. When this holds, we write 𝑉 = 𝑉1

⟂
⊕𝑉2.

Remark. If for all vectors 𝑣1, 𝑣2 we have ⟨𝑣1, 𝑣2⟩ = 0, then 𝑣 ∈ 𝑉1 ∩ 𝑉2 ⟹ ‖𝑣‖2 = 0 ⟹
𝑣 = 0. Hence the sum is always direct if the subspaces are orthogonal.
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Definition. Let 𝑉 be an inner product space and let𝑊 ≤ 𝑉 . We define the orthogonal of
𝑊 to be

𝑊 ⟂ = {𝑣 ∈ 𝑉 ∶ ∀𝑤 ∈ 𝑊, ⟨𝑣, 𝑤⟩ = 0}

Lemma. For any inner product space 𝑉 and any subspace𝑊 ≤ 𝑉 , we have 𝑉 = 𝑊
⟂
⊕𝑊 ⟂.

Proof. First note that𝑊 ⟂ ≤ 𝑉 . Then, if 𝑤 ∈ 𝑊 , 𝑤 ∈ 𝑊 ⟂, we have

‖𝑤‖2 = ⟨𝑤,𝑤⟩ = 0
since they are orthogonal, so the vector subspaces intersect only in the zero vector. Now, we
need to show 𝑉 = 𝑊 +𝑊 ⟂. Let (𝑒1,… , 𝑒𝑘) be an orthonormal basis of𝑊 and extend it into
(𝑒1,… , 𝑒𝑘, 𝑒𝑘+1,… , 𝑒𝑛) which can be made orthonormal. Then, (𝑒𝑘+1,… , 𝑒𝑛) are elements
of𝑊 ⟂ and form a basis.

10.8. Projection maps
Definition. Suppose 𝑉 = 𝑈 ⊕ 𝑊 , so 𝑈 is a complement of 𝑊 in 𝑉 . Then, we define
𝜋∶ 𝑉 → 𝑊 which maps 𝑣 = 𝑢 + 𝑤 to 𝑤. This is well defined, since the sum is direct. 𝜋 is
linear, and 𝜋2 = 𝜋. We say that 𝜋 is the projection operator onto𝑊 .

Remark. The map 𝜄 − 𝜋 is the projection onto 𝑈 , where 𝜄 is the identity map.
Lemma. Let 𝑉 be an inner product space. Let 𝑊 ≤ 𝑉 be a finite-dimensional subspace.
Let (𝑒1,… , 𝑒𝑘) be an orthonormal basis for𝑊 . Then,

(i) 𝜋(𝑣) = ∑𝑘
𝑖=1 ⟨𝑣, 𝑒𝑖⟩ 𝑒𝑖; and

(ii) for all 𝑣 ∈ 𝑉,𝑤 ∈ 𝑊 , ‖𝑣 − 𝜋(𝑣)‖ ≤ ‖𝑣 − 𝑤‖ with equality if and only if 𝑤 = 𝜋(𝑣),
hence 𝜋(𝑣) is the point in𝑊 closest to 𝑣.

Proof. We define 𝜋(𝑣) = ∑𝑘
𝑖=1 ⟨𝑣, 𝑒𝑖⟩ 𝑒𝑖. Since 𝑊 = ⟨{𝑒𝑘}⟩, 𝜋(𝑣) ∈ 𝑊 for all 𝑣 ∈ 𝑉 . Then,

𝑣 = (𝑣−𝜋(𝑣))+𝜋(𝑣) has a term in𝑊 . We claim that the remaining term is in the orthogonal;
𝑣 − 𝜋(𝑣) ∈ 𝑊 ⟂. Indeed, we must show ⟨𝑣 − 𝜋(𝑣), 𝑤⟩ = 0 for all 𝑤 ∈ 𝑊 . Equivalently,
⟨𝑣 − 𝜋(𝑣), 𝑒𝑖⟩ = 0 for all basis vectors 𝑒𝑖 of𝑊 . We can explicitly compute

⟨𝑣 − 𝜋(𝑣), 𝑒𝑗⟩ = ⟨𝑣, 𝑒𝑗⟩ − ⟨
𝑘
∑
𝑖=1

⟨𝑣, 𝑒𝑖⟩ 𝑒𝑖, 𝑒𝑗⟩ = ⟨𝑣, 𝑒𝑗⟩ −
𝑘
∑
𝑖=1

⟨𝑣, 𝑒𝑖⟩ ⟨𝑒𝑖, 𝑒𝑗⟩ = ⟨𝑣, 𝑒𝑗⟩ − ⟨𝑣, 𝑒𝑗⟩ = 0

Hence, 𝑣 = (𝑣 − 𝜋(𝑣)) + 𝜋(𝑣) is a decomposition into𝑊 and𝑊 ⟂. Since𝑊 ∩𝑊 ⟂ = {0}, we
have 𝑉 = 𝑊

⟂
⊕𝑊 ⟂. For the second part, let 𝑣 ∈ 𝑉 , 𝑤 ∈ 𝑊 , and we compute

‖𝑣 − 𝑤‖2 =
‖
‖‖‖
𝑣 − 𝜋(𝑣)⏟⎵⏟⎵⏟

∈𝑊⟂

+𝜋(𝑣) − 𝑤⏟⎵⏟⎵⏟
∈𝑊

‖
‖‖‖

2

= ‖𝑣 − 𝜋(𝑣)‖2 + ‖𝜋(𝑣) − 𝑤‖2 ≥ ‖𝑣 − 𝜋(𝑣)‖2

with equality if and only if 𝑤 = 𝜋(𝑣).
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10.9. Adjoint maps
Definition. Let 𝑉,𝑊 be finite-dimensional inner product spaces. Let 𝛼 ∈ 𝐿(𝑉,𝑊). Then
there exists a unique linear map 𝛼⋆∶ 𝑊 → 𝑉 such that for all 𝑣, 𝑤 ∈ 𝑉,𝑊 ,

⟨𝛼(𝑣), 𝑤⟩ = ⟨𝑣, 𝛼⋆(𝑤)⟩

Moreover, if 𝐵 is an orthonormal basis of 𝑉 , and 𝐶 is an orthonormal basis of𝑊 , then

[𝛼⋆]𝐶,𝐵 = ([𝛼]𝐵,𝐶)
⊺

Proof. Let𝐵 = (𝑣1,… , 𝑣𝑛) and𝐶 = (𝑤1,… ,𝑤𝑚) and𝐴 = [𝛼]𝐵,𝐶 = (𝑎𝑖𝑗). To check existence,
we define [𝛼⋆]𝐶,𝐵 = 𝐴

⊺
= (𝑐𝑖𝑗) and explicitly check the definition. By orthogonality,

⟨𝛼(∑𝜆𝑖𝑣𝑖),∑𝜇𝑗𝑤𝑗⟩ = ⟨∑
𝑖,𝑘
𝜆𝑖𝑎𝑘𝑖𝑤𝑘,∑

𝑗
𝜇𝑗𝑤𝑗⟩ = ∑

𝑖,𝑗
𝜆𝑖𝑎𝑗𝑖𝜇𝑗

Then,

⟨∑𝜆𝑖𝑣𝑖, 𝛼⋆(∑𝜇𝑗𝑤𝑗)⟩ = ⟨∑
𝑖
𝜆𝑖𝑣𝑖,∑

𝑗,𝑘
𝜇𝑗𝑐𝑘𝑗𝑣𝑘⟩ = ∑

𝑖,𝑗
𝜆𝑖𝑐𝑖𝑗𝜇𝑗

So equality requires 𝑐𝑖𝑗 = 𝑎𝑗𝑖. Uniqueness follows from the above; the expansions are equi-
valent for any vector if and only if 𝑐𝑖𝑗 = 𝑎𝑗𝑖.

Remark. The same notation, 𝛼⋆, is used for the adjoint as just defined, and the dual map as
defined before. If 𝑉,𝑊 are real product inner spaces and 𝛼 ∈ 𝐿(𝑉,𝑊), we define 𝜓∶ 𝑉 →
𝑉⋆ such that 𝜓(𝑣)(𝑥) = ⟨𝑥, 𝑣⟩ and similarly for𝑊 . Then we can check that the adjoint for
𝛼 is given by the composition of 𝜓 from 𝑉 → 𝑉⋆, then applying the dual, then applying the
inverse of 𝜓 for𝑊 .

10.10. Self-adjoint and isometric maps
Definition. Let 𝑉 be a finite-dimensional inner product space, and 𝛼 be an endomorphism
of 𝑉 . Let 𝛼⋆ ∈ 𝐿(𝑉) be the adjoint map. Then,

(i) the condition ⟨𝛼𝑣, 𝑤⟩ = ⟨𝑣, 𝛼𝑤⟩ is equivalent to the condition 𝛼 = 𝛼⋆, and such an 𝛼
is called self-adjoint (for ℝ we call such endomorphisms symmetric, and for ℂ we call
such endomorphisms Hermitian);

(ii) the condition ⟨𝛼𝑣, 𝛼𝑤⟩ = ⟨𝑣, 𝑤⟩ is equivalent to the condition 𝛼⋆ = 𝛼−1, and such an
𝛼 is called an isometry (for ℝ it is called orthogonal, and for ℂ it is called unitary).

Proposition. The conditions for isometries defined as above are equivalent.
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Proof. Suppose ⟨𝛼𝑣, 𝛼𝑤⟩ = ⟨𝑣, 𝑤⟩. Then for 𝑣 = 𝑤, we find ‖𝛼𝑣‖2 = ‖𝑣‖2, so 𝛼 preserves
the norm. In particular, this implies ker𝛼 = {0}. Since 𝛼 is an endomorphism and 𝑉 is
finite-dimensional, 𝛼 is bijective. Then for all 𝑣, 𝑤 ∈ 𝑉 ,

⟨𝑣, 𝛼⋆(𝑤)⟩ = ⟨𝛼𝑣, 𝑤⟩ = ⟨𝛼𝑣, 𝛼(𝛼−1(𝑤))⟩ = ⟨𝑣, 𝛼−1(𝑤)⟩

Hence 𝛼⋆ = 𝛼−1. Conversely, if 𝛼⋆ = 𝛼−1 we have

⟨𝛼𝑣, 𝛼𝑤⟩ = ⟨𝑣, 𝛼⋆(𝛼𝑤)⟩ = ⟨𝑣, 𝑤⟩

as required.

Remark. Using the polarisation identity, we can show that 𝛼 is isometric if and only if for
all 𝑣 ∈ 𝑉 , ‖𝛼(𝑣)‖ = ‖𝑣‖.

Lemma. Let 𝑉 be a finite-dimensional real (or complex) inner product space. Then for
𝛼 ∈ 𝐿(𝑉),

(i) 𝛼 is self-adjoint if and only if for all orthonormal bases 𝐵 of 𝑉 , we have [𝛼]𝐵 is sym-
metric (or Hermitian);

(ii) 𝛼 is an isometry if and only if for all orthonormal bases 𝐵 of 𝑉 , we have [𝛼]𝐵 is ortho-
gonal (or unitary).

Proof. Let 𝐵 be an orthonormal basis for 𝑉 . Then we know [𝛼⋆]𝐵 = [𝛼]†𝐵. We can then
check that [𝛼]†𝐵 = [𝛼]𝐵 and [𝛼]†𝐵 = [𝛼]−1𝐵 respectively.

Definition. For 𝐹 = ℝ, we define the orthogonal group of 𝑉 by

𝑂(𝑉) = {𝛼 ∈ 𝐿(𝑉)∶ 𝛼 is an isometry}

Note that 𝑂(𝑉) is bijective with the set of orthogonal bases of 𝑉 . For 𝐹 = ℂ, we define the
unitary group of 𝑉 by

𝑈(𝑉) = {𝛼 ∈ 𝐿(𝑉)∶ 𝛼 is an isometry}

Again, note that 𝑈(𝑉) is bijective with the set of orthogonal bases of 𝑉 .

10.11. Spectral theory for self-adjoint maps
Spectral theory is the study of the spectrum of operators. Recall that in finite-dimensional
inner product spaces 𝑉,𝑊 , 𝛼 ∈ 𝐿(𝑉,𝑊) yields the adjoint 𝛼⋆ ∈ 𝐿(𝑊,𝑉) such that for all
𝑣 ∈ 𝑉,𝑤 ∈ 𝑊 , we have ⟨𝛼(𝑣), 𝑤⟩ = ⟨𝑣, 𝛼⋆(𝑤)⟩.

Lemma. Let 𝑉 be a finite-dimensional inner product space. Let 𝛼 ∈ 𝐿(𝑉) be a self-adjoint
endomorphism. Then 𝛼 has real eigenvalues, and eigenvectors of 𝛼with respect to different
eigenvalues are orthogonal.
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Proof. Suppose 𝜆 ∈ ℂ, 𝑣 ∈ 𝑉 nonzero such that 𝛼(𝑣) = 𝜆𝑣. Then, ⟨𝜆𝑣, 𝑣⟩ = 𝜆‖𝑣‖2 and also

⟨𝛼𝑣, 𝑣⟩ = ⟨𝑣, 𝛼𝑣⟩ = ⟨𝑣, 𝜆𝑣⟩ = 𝜆‖𝑣‖2

Hence 𝜆 = 𝜆 since 𝑣 ≠ 0. Now, suppose 𝜇 ≠ 𝜆 and 𝑤 ∈ 𝑉 nonzero such that 𝛼(𝑤) = 𝜇𝑤.
Then,

𝜆 ⟨𝑣, 𝑤⟩ = ⟨𝛼𝑣, 𝑤⟩ = ⟨𝑣, 𝛼𝑤⟩ = 𝜇 ⟨𝑣, 𝑤⟩ = 𝜇 ⟨𝑣, 𝑤⟩
So if 𝜆 ≠ 𝜇 we must have ⟨𝑣, 𝑤⟩ = 0.

Theorem (spectral theorem for self-adjoint maps). Let 𝑉 be a finite-dimensional inner
product space. Let 𝛼 ∈ 𝐿(𝑉) be self-adjoint. Then 𝑉 has an orthonormal basis of eigen-
vectors of 𝛼. Hence 𝛼 is diagonalisable in an orthonormal basis.

Proof. Wewill consider induction on the dimension of 𝑉 . Suppose 𝐴 = [𝛼]𝐵 with respect to
the fundamental basis 𝐵. By the fundamental theorem of algebra, we know that 𝜒𝐴(𝜆) has
a (complex) root. But since 𝜆 is an eigenvalue of 𝛼 and 𝛼 is self-adjoint, 𝜆 ∈ ℝ. Now, we
choose an eigenvector 𝑣1 = 𝑉 ∖ {0} such that 𝛼(𝑣1) = 𝜆𝑣1. We can set ‖𝑣1‖ = 1 by linearity.
Let 𝑈 = ⟨𝑣1⟩

⟂ ≤ 𝑉 . We then observe that 𝑈 is stable by 𝛼; 𝛼(𝑈) ≤ 𝑈 . Indeed, let 𝑢 ∈ 𝑈 .
Then ⟨𝛼(𝑢), 𝑣1⟩ = ⟨𝑢, 𝛼(𝑣1)⟩ = 𝜆 ⟨𝑢, 𝑣1⟩ = 0 by orthogonality. Hence 𝛼(𝑢) ∈ 𝑈 . We can then
restrict 𝛼 to the domain 𝑈 , and by induction we can then choose an orthonormal basis of
eigenvectors for 𝑈 . Since 𝑉 = ⟨𝑣1⟩

⟂
⊕𝑈 we have an orthonormal basis of eigenvectors for 𝑉

when including 𝑣1.

Corollary. Let 𝑉 be a finite-dimensional inner product space. Let 𝛼 ∈ 𝐿(𝑉) be self-adjoint.
Then 𝑉 is the orthogonal direct sum of the eigenspaces of 𝛼.

10.12. Spectral theory for unitary maps
Lemma. Let 𝑉 be a complex inner product space. Let 𝛼 be unitary, so 𝛼⋆ = 𝛼−1. Then all
eigenvalues of 𝛼 have unit norm. Eigenvectors corresponding to different eigenvalues are
orthogonal.

Proof. Let 𝜆 ∈ ℂ, 𝑣 ∈ 𝑉 ∖ {0} such that 𝛼(𝑣) = 𝜆𝑣. First, 𝜆 ≠ 0 since 𝛼 is invertible, and in
particular ker𝛼 = {0}. Since 𝑣 = 𝜆𝛼−1(𝑣), we can compute

𝜆 ⟨𝑣, 𝑣⟩ = ⟨𝜆𝑣, 𝑣⟩ = ⟨𝛼𝑣, 𝑣⟩ = ⟨𝑣, 𝛼−1𝑣⟩ = ⟨𝑣, 1𝜆𝑣⟩ =
1
𝜆
⟨𝑣, 𝑣⟩

Hence (𝜆𝜆 − 1)‖𝑣‖2 = 0 giving |𝜆| = 1. Further, suppose 𝜇 ∈ ℂ and 𝑤 ∈ 𝑉 ∖ {0} such that
𝛼(𝑤) = 𝜇𝑤, 𝜆 ≠ 𝜇. Then

𝜆 ⟨𝑣, 𝑤⟩ = ⟨𝜆𝑣, 𝑤⟩ = ⟨𝛼𝑣, 𝑤⟩ = ⟨𝑣, 𝛼−1𝑤⟩ = ⟨𝑣, 1𝜇𝑤⟩ =
1
𝜇 ⟨𝑣, 𝑤⟩ = 𝜇 ⟨𝑣, 𝑤⟩

since 𝜇𝜇 = 1.
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Theorem (spectral theorem for unitarymaps). Let𝑉 be a finite-dimensional complex inner
product space. Let 𝛼 ∈ 𝐿(𝑉) be unitary. Then 𝑉 has an orthonormal basis of eigenvectors
of 𝛼. Hence 𝛼 is diagonalisable in an orthonormal basis.

Proof. Let 𝐴 = [𝛼]𝐵 where 𝐵 is an orthonormal basis. Then 𝜒𝐴(𝜆) has a complex root 𝜆. As
before, let 𝑣1 ≠ 0 such that 𝛼(𝑣1) = 𝜆𝑣1 and ‖𝑣1‖ = 1. Let 𝑈 = ⟨𝑣1⟩

⟂, and we claim that
𝛼(𝑈) = 𝑈 . Indeed, let 𝑢 ∈ 𝑈 , and we find

⟨𝛼(𝑢), 𝑣1⟩ = ⟨𝑢, 𝛼−1(𝑣1)⟩ = ⟨𝑢, 1𝜆𝑣1⟩ =
1
𝜆
⟨𝑢, 𝑣1⟩

Since ⟨𝑢, 𝑣1⟩ = 0, we have 𝛼(𝑢) ∈ 𝑈 . Hence, 𝛼 restricted to 𝑈 is a unitary endomorphism
of 𝑈 . By induction we have an orthonormal basis of eigenvectors of 𝛼 for 𝑈 and hence for
𝑉 .

Remark. We used the fact that the field is complex to find an eigenvalue. In general, a real-
valued orthonormal matrix 𝐴 giving 𝐴𝐴⊺ = 𝐼 cannot be diagonalised over ℝ. For example,
consider

𝐴 = (cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 )

This is orthogonal and normalised. However,𝜒𝐴(𝜆) = 1+2𝜆 cos 𝜃+𝜆2 hence 𝜆 = 𝑒±𝑖𝜃 which
are complex in the general case.

10.13. Application to bilinear forms
We wish to extend the previous statements about spectral theory into statements about bi-
linear forms.

Corollary. Let 𝐴 ∈ 𝑀𝑛(ℝ) (or 𝑀𝑛(ℂ)) be a symmetric (or respectively Hermitian) matrix.
Then there exists an orthonormal (respectively unitary) matrix 𝑃 such that 𝑃⊺𝐴𝑃 (or 𝑃†𝐴𝑃)
is diagonal with real-valued entries.

Proof. Using the standard inner product, 𝐴 ∈ 𝐿(𝐹𝑛) is self-adjoint and hence there exists an
orthonormal basis 𝐵 of 𝐹𝑛 such that 𝐴 is diagonal in this basis. Let 𝑃 = (𝑣1,… , 𝑣𝑛) be the
matrix of this basis. Since 𝐵 is orthonormal, 𝑃 is orthogonal (or unitary). The result follows
from the fact that 𝑃−1𝐴𝑃 is diagonal. The eigenvalues are real, hence the diagonal matrix is
real.

Corollary. Let 𝑉 be a finite-dimensional real (or complex) inner product space. Let 𝜙∶ 𝑉 ×
𝑉 → 𝐹 be a symmetric (or Hermitian) bilinear form. Then, there exists an orthonormal
basis 𝐵 of 𝑉 such that [𝜙]𝐵 is diagonal.

Proof. 𝐴⊺ = 𝐴 (or respectively 𝐴† = 𝐴), hence there exists an orthogonal (respectively
unitary) matrix 𝑃 such that 𝑃−1𝐴𝑃 is diagonal. Let (𝑣𝑖) be the 𝑖th row of 𝑃−1 = 𝑃⊺ (or 𝑃†).
Then (𝑣1,… , 𝑣𝑛) is an orthonormal basis 𝐵 of 𝑉 such that [𝜙]𝑉 is this diagonal matrix.
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Remark. The diagonal entries of 𝑃−1𝐴𝑃 are the eigenvalues of 𝐴. Moreover, we can define
the signature 𝑠(𝜙) to be the difference between the number of positive eigenvalues of 𝐴 and
the number of negative eigenvalues of 𝐴.

10.14. Simultaneous diagonalisation
Corollary. Let 𝑉 be a finite-dimensional real (or complex) vector space. Let 𝜙, 𝜓 be sym-
metric (or Hermitian) bilinear forms on 𝑉 . Let 𝜙 be positive definite. Then there exists a
basis (𝑣1,… , 𝑣𝑛) of 𝑉 with respect to which 𝜙 and 𝜓 are represented with a diagonal matrix.

Proof. Since 𝜙 is positive definite, 𝑉 equipped with 𝜙 is a finite-dimensional inner product
space where ⟨𝑢, 𝑣⟩ = 𝜙(𝑢, 𝑣). Hence, there exists a basis of 𝑉 in which 𝜓 is represented by a
diagonal matrix, which is orthonormal with respect to the inner product defined by 𝜙. Then,
𝜙 in this basis is represented by the identity matrix given by 𝜙(𝑣𝑖, 𝑣𝑗) = ⟨𝑣𝑖, 𝑣𝑗⟩ = 𝛿𝑖𝑗 , which
is diagonal.

Corollary. Let 𝐴, 𝐵 ∈ 𝑀𝑛(ℝ) (or ℂ) which are symmetric (or Hermitian). Suppose for all
𝑥 ≠ 0 we have 𝑥†𝐴𝑥 > 0, so 𝐴 is positive definite. Then there exists an invertible matrix
𝑄 ∈ 𝑀𝑛(ℝ) (or ℂ) such that 𝑄⊺𝐴𝑄 (or 𝑄⊺𝐴𝑄) and 𝑄⊺𝐵𝑄 (or 𝑄⊺𝐵𝑄) are diagonal.

Proof. 𝐴 induces a quadratic form 𝑄(𝑥) = 𝑥†𝐴𝑥 which is positive definite by assumption.
Similarly, 𝑄(𝑥) = 𝑥†𝐵𝑥 is induced by 𝐵. Then we can apply the previous corollary and
change basis.
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Lectured in Lent 2022 by Dr. R. Zhou
A ring is a an algebraic structure with an addition and multiplication operation. Common
examples of rings include ℤ,ℚ,ℝ, ℂ, the Gaussian integers ℤ[𝑖] = {𝑎 + 𝑏𝑖 ∣ 𝑎, 𝑏 ∈ ℤ}, the
quotient ℤ⟋𝑛ℤ, and the set of polynomials with complex coefficients. We can study factor-
isation in a general ring, generalising the idea of factorising integers or polynomials. Cer-
tain rings, called unique factorisation domains, have the property like the integers that every
nonzero non-invertible element can be expressed as a unique product of irreducibles (in ℤ,
the irreducibles are the prime numbers). This property, andmany others, are studied in this
course.

Modules are like vector spaces, but instead of being defined over a field, they are defined
over an arbitrary ring. In particular, every vector space is a module, because every field is a
ring. We use the theory built up over the course to prove that every 𝑛-dimensional complex
matrix can be written in Jordan normal form.
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VIII. Groups, Rings and Modules

1. Review of IA Groups
This section contains material covered by IA Groups.

1.1. Definitions
A group is a pair (𝐺, ⋅) where 𝐺 is a set and ⋅∶ 𝐺 × 𝐺 → 𝐺 is a binary operation on 𝐺,
satisfying

• 𝑎 ⋅ (𝑏 ⋅ 𝑐) = (𝑎 ⋅ 𝑏) ⋅ 𝑐;

• there exists 𝑒 ∈ 𝐺 such that for all 𝑔 ∈ 𝐺, we have 𝑔 ⋅ 𝑒 = 𝑒 ⋅ 𝑔 = 𝑔; and

• for all 𝑔 ∈ 𝐺, there exists an inverse ℎ ∈ 𝐺 such that 𝑔 ⋅ ℎ = ℎ ⋅ 𝑔 = 𝑒.

Remark. (i) Sometimes, such as in IAGroups, a closure axiom is also specified. However,
this is implicit in the type definition of ⋅. In practice, this must normally be checked
explicitly.

(ii) Additive and multiplicative notation will be used interchangeably. For additive nota-
tion, the inverse of 𝑔 is denoted −𝑔, and for multiplicative notation, the inverse is in-
stead denoted 𝑔−1. The identity element is sometimes denoted 0 in additive notation
and 1 in multiplicative notation.

A subset 𝐻 ⊆ 𝐺 is a subgroup of 𝐺, written 𝐻 ≤ 𝐺, if ℎ ⋅ ℎ′ ∈ 𝐻 for all ℎ, ℎ′ ∈ 𝐻, and (𝐻, ⋅)
is a group. The closure axiommust be checked, since we are restricting the definition of ⋅ to
a smaller set.

Remark. A non-empty subset 𝐻 ⊆ 𝐺 is a subgroup of 𝐺 if and only if

𝑎, 𝑏 ∈ 𝐻 ⟹ 𝑎 ⋅ 𝑏−1 ∈ 𝐻

An abelian group is a group such that 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎 for all 𝑎, 𝑏 in the group. The direct product
of two groups 𝐺,𝐻, written 𝐺 × 𝐻, is the group over the Cartesian product 𝐺 × 𝐻 with
operation ⋅ defined such that (𝑔1, ℎ1) ⋅ (𝑔2, ℎ2) = (𝑔1 ⋅𝐺 𝑔2, ℎ1 ⋅𝐻 ℎ2).

1.2. Cosets
Let 𝐻 ≤ 𝐺. Then, the left cosets of 𝐻 in 𝐺 are the sets 𝑔𝐻 for all 𝑔 ∈ 𝐺. The set of left cosets
partitions 𝐺. Each coset has the same cardinality as 𝐻. Lagrange’s theorem states that if 𝐺
is a finite group and 𝐻 ≤ 𝐺, we have |𝐺| = |𝐻| ⋅ [𝐺∶ 𝐻], where [𝐺∶ 𝐻] is the number of
left cosets of 𝐻 in 𝐺. [𝐺∶ 𝐻] is known as the index of 𝐻 in 𝐺. We can construct Lagrange’s
theorem analogously using right cosets. Hence, the index of a subgroup is independent of
the choice of whether to use left or right cosets; the number of left cosets is equal to the
number of right cosets.
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1.3. Order
Let 𝑔 ∈ 𝐺. If there exists 𝑛 ≥ 1 such that 𝑔𝑛 = 1, then the least such 𝑛 is the order of 𝐺. If
no such 𝑛 exists, we say that 𝑔 has infinite order. If 𝑔 has order 𝑑, then:
(i) 𝑔𝑛 = 1 ⟹ 𝑑 ∣ 𝑛;
(ii) ⟨𝑔⟩ = {1, 𝑔,… , 𝑔𝑑−1} ≤ 𝐺, and by Lagrange’s theorem (if 𝐺 is finite) 𝑑 ∣ |𝐺|.

1.4. Normality and quotients
A subgroup 𝐻 ≤ 𝐺 is normal, written 𝐻 ⊴ 𝐺, if 𝑔−1𝐻𝑔 = 𝐻 for all 𝑔 ∈ 𝐺. In other words,
𝐻 is preserved under conjugation over 𝐺. If𝐻 ⊴ 𝐺, then the set 𝐺⟋𝐻 of left cosets of𝐻 in 𝐺
forms the quotient group. The group action is defined by 𝑔1𝐻 ⋅ 𝑔2𝐻 = (𝑔1 ⋅ 𝑔2)𝐻. This can
be shown to be well-defined.

1.5. Homomorphisms
Let𝐺,𝐻 be groups. A function 𝜙∶ 𝐺 → 𝐻 is a group homomorphism if 𝜙(𝑔1 ⋅𝐺 𝑔2) = 𝜙(𝑔1)⋅𝐻
𝜙(𝑔2) for all 𝑔1, 𝑔2 ∈ 𝐺. The kernel of 𝜙 is defined to be ker𝜙 = {𝑔 ∈ 𝐺∶ 𝜙(𝑔) = 1}, and the
image of 𝜙 is Im𝜙 = {𝜙(𝑔)∶ 𝑔 ∈ 𝐺}. The kernel is a normal subgroup of 𝐺, and the image is
a subgroup of 𝐻.

1.6. Isomorphisms
An isomorphism is a homomorphism that is bijective. This yields an inverse function, which
is of course also an isomorphism. If 𝜑∶ 𝐺 → 𝐻 is an isomorphism, we say that 𝐺 and 𝐻
are isomorphic, written 𝐺 ≅ 𝐻. Isomorphism is an equivalence relation. The isomorphism
theorems are

(i) if 𝜑∶ 𝐺 → 𝐻, then 𝐺⟋ker𝜑 ≅ Im𝜑;

(ii) if 𝐻 ≤ 𝐺 and 𝑁 ⊴ 𝐺, then 𝐻 ∩ 𝑁 ⊴ 𝐻 and 𝐻⟋𝐻 ∩ 𝑁 ≅ 𝐻𝑁⟋𝑁;

(iii) if 𝑁 ≤ 𝑀 ≤ 𝐺 such that 𝑁 ⊴ 𝐺 and𝑀 ⊴ 𝐺, then𝑀⟋𝑁 ⊴ 𝐺⟋𝑁, and 𝐺/𝑁⟋𝑀/𝑁 = 𝐺⟋𝑀.
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2. Simple groups
2.1. Introduction
If𝐾 ⊴ 𝐺, then studying the groups𝐾 and𝐺⟋𝐾 give information about𝐺 itself. This approach
is available only if 𝐺 has nontrivial normal subgroups. It therefore makes sense to study
groups with no normal subgroups, since they cannot be decomposed into simpler structures
in this way.

Definition. A group 𝐺 is simple if {1} and 𝐺 are its only normal subgroups.

By convention, we do not consider the trivial group to be a simple group. This is analogous
to the fact that we do not consider one to be a prime.

Lemma. Let 𝐺 be an abelian group. 𝐺 is simple if and only if 𝐺 ≅ 𝐶𝑝 for some prime 𝑝.

Proof. Certainly 𝐶𝑝 is simple by Lagrange’s theorem. Conversely, since 𝐺 is abelian, all sub-
groups are normal. Let 1 ≠ 𝑔 ∈ 𝐺. Then ⟨𝑔⟩ ⊴ 𝐺. Hence ⟨𝑔⟩ = 𝐺 by simplicity. If 𝐺 is
infinite, then 𝐺 ≅ ℤ, which is not a simple group; 2ℤ ⊲ ℤ. Hence 𝐺 is finite, so 𝐺 ≅ 𝐶𝑜(𝑔).
If 𝑜(𝑔) = 𝑚𝑛 for𝑚, 𝑛 ≠ 1, 𝑝, then ⟨𝑔𝑚⟩ ≤ 𝐺, contradicting simplicity.

Lemma. If 𝐺 is a finite group, then 𝐺 has a composition series

1 ≅ 𝐺0 ⊲ 𝐺1 ⊲ ⋯ ⊲ 𝐺𝑛 = 𝐺

where each quotient 𝐺𝑖+1⟋𝐺𝑖
is simple.

Remark. It is not the case that necessarily 𝐺𝑖 be normal in 𝐺𝑖+𝑘 for 𝑘 ≥ 2.

Proof. Wewill consider an inductive step on |𝐺|. If |𝐺| = 1, then trivially𝐺 = 1. Conversely,
if |𝐺| > 1, let 𝐺𝑛−1 be a normal subgroup of largest possible order not equal to |𝐺|. Then,𝐺⟋𝐺𝑛−1 exists, and is simple by the correspondence theorem.
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3. Group actions
3.1. Definitions
Definition. Let 𝑋 be a set. Then Sym(𝑋) is the group of permutations of 𝑋 ; that is, the
group of all bijections of 𝑋 to itself under composition. The identity can be written id or id𝑋 .

Definition. A group 𝐺 is a permutation group of degree 𝑛 if 𝐺 ≤ Sym(𝑋) where |𝑋| = 𝑛.

Example. The symmetric group 𝑆𝑛 is exactly equal to Sym({1,… , 𝑛}), so is a permutation
group of order 𝑛. 𝐴𝑛 is also a permutation group of order 𝑛, as it is a subgroup of 𝑆𝑛. 𝐷2𝑛 is
a permutation group of order 𝑛.

Definition. A group action of a group 𝐺 on a set 𝑋 is a function 𝛼∶ 𝐺 × 𝑋 → 𝑋 satisfying

𝛼(𝑒, 𝑥) = 𝑥; 𝛼(𝑔1 ⋅ 𝑔2, 𝑥) = 𝛼(𝑔1, 𝛼(𝑔2, 𝑥))

for all 𝑔1, 𝑔2 ∈ 𝐺, 𝑥 ∈ 𝑋 . The group action may be written ∗, defined by 𝑔 ∗ 𝑥 ≡ 𝛼(𝑔, 𝑥).

Proposition. An action of a group 𝐺 on a set 𝑋 is uniquely characterised by a group homo-
morphism 𝜑∶ 𝐺 → Sym(𝑋).

Proof. For all 𝑔 ∈ 𝐺, we can define 𝜑𝑔∶ 𝑋 → 𝑋 by 𝑥 ↦ 𝑔 ∗ 𝑥. Then, for all 𝑥 ∈ 𝑋 ,

𝜑𝑔1𝑔2(𝑥) = (𝑔1𝑔2) ∗ 𝑥 = 𝑔1 ∗ (𝑔2 ∗ 𝑥) = 𝜑𝑔1(𝜑𝑔2(𝑥))

Thus 𝜑𝑔1𝑔2 = 𝜑𝑔1 ∘ 𝜑𝑔2 . In particular, 𝜑𝑔 ∘ 𝜑𝑔−1 = 𝜑𝑒. We now define

𝜑∶ 𝐺 → Sym(𝑋); 𝜑(𝑔) = 𝜑𝑔 ⟹ 𝜑(𝑔)(𝑥) = 𝑔 ∗ 𝑥

This is a homomorphism.

Conversely, any group homomorphism 𝜑∶ 𝐺 → Sym(𝑋) induces a group action ∗ by 𝑔∗𝑥 =
𝜑(𝑔). This yields 𝑒 ∗ 𝑥 = 𝜑(𝑒)(𝑥) = id𝑥 = 𝑥 and (𝑔1𝑔2) ∗ 𝑥 = 𝜑(𝑔1𝑔2)𝑥 = 𝜑(𝑔1)𝜑(𝑔2)𝑥 =
𝑔1 ∗ (𝑔2 ∗ 𝑥) as required.

Definition. The homomorphism 𝜑∶ 𝐺 → Sym(𝑋) defined in the above proof is called a
permutation representation of 𝐺.

Definition. Let 𝐺 ↷ 𝑋 . Then,

(i) the orbit of 𝑥 ∈ 𝑋 is Orb𝐺(𝑥) = {𝑔 ∗ 𝑥∶ 𝑔 ∈ 𝐺} ⊆ 𝑋 ;

(ii) the stabiliser of 𝑥 ∈ 𝑋 is 𝐺𝑥 = {𝑔 ∈ 𝐺∶ 𝑔 ∗ 𝑥 = 𝑥} ≤ 𝐺.

Theorem (Orbit-stabiliser theorem). The orbit Orb𝐺(𝑥) bijects with the set 𝐺⟋𝐺𝑥 of left
cosets of 𝐺𝑥 in 𝐺 (which may not be a quotient group). In particular, if 𝐺 is finite, we have

|𝐺| = |Orb(𝑥)| ⋅ |𝐺𝑥|
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Example. If𝐺 is the group of symmetries of a cube and we let 𝑋 be the set of vertices in the
cube, 𝐺 ↷ 𝑋 . Here, for all 𝑥 ∈ 𝑋 , |Orb(𝑥)| = 8 and |𝐺𝑥| = 6 (including reflections), hence
|𝐺| = 48.
Remark. Note that ker𝜑 = ⋂𝑥∈𝑋 𝐺𝑥. The kernel of the permutation representation 𝜑 is also
referred to as the kernel of the group action itself. If the kernel is trivial the action is said to
be faithful.

The orbits partition 𝑋 . In particular, if there is exactly one orbit, the group action is said to
be transitive.

Note that 𝐺𝑔∗𝑥 = 𝑔𝐺𝑥𝑔−1. Hence, if 𝑥, 𝑦 lie in the same orbit, their stabilisers are conjugate.
Example. 𝐺 acts on itself by leftmultiplication. This is known as the left regular action. The
kernel is trivial, hence the action is faithful. The action is transitive, since for all 𝑔1, 𝑔2 ∈ 𝐺,
the element 𝑔2𝑔−11 maps 𝑔1 to 𝑔2.

3.2. Cayley’s theorem
Theorem (Cayley’s theorem). Any finite group 𝐺 is a permutation group of order |𝐺|; it is
isomorphic to a subgroup of 𝑆|𝐺|.

Example. Let 𝐻 ≤ 𝐺. Then 𝐺 ↷ 𝐺⟋𝐻 by left multiplication, where 𝐺⟋𝐻 is the set of left
cosets of 𝐻 in 𝐺. This is known as the left coset action. This action is transitive using the
construction above for the left regular action. We have ker𝜑 = ⋂𝑥∈𝐺 𝑥𝐻𝑥−1, which is the
largest normal subgroup of 𝐺 contained within 𝐻.
Theorem. Let 𝐺 be a non-abelian simple group, and 𝐻 ≤ 𝐺 with index 𝑛 > 1. Then 𝑛 ≥ 5
and 𝐺 is isomorphic to a subgroup of 𝐴𝑛.

Proof. Let 𝐺 ↷ 𝑋 = 𝐺⟋𝐻 by left multiplication. Let 𝜑∶ 𝐺 → Sym(𝑋) be the permutation
representation associated to this group action. Since 𝐺 is simple, ker𝜑 = 1 or ker𝜑 = 𝐺. If
ker𝜑 = 𝐺, then Im𝜑 = id, which is a contradiction since 𝐺 acts transitively on 𝑋 , which
has index greater than one. Thus ker𝜑 = 1, and 𝐺 ≅ Im𝜑 ≤ 𝑆𝑛. Since 𝐺 ≤ 𝑆𝑛 and 𝐴𝑛 ⊲ 𝑆𝑛,
the second isomorphism theorem shows that 𝐺 ∩ 𝐴𝑛 ⊲ 𝐺, and

𝐺⟋𝐺 ∩ 𝐴𝑛
≅ 𝐺𝐴𝑛⟋𝐴𝑛

≤ 𝑆𝑛⟋𝐴𝑛
≅ 𝐶2

Since 𝐺 is simple, 𝐺 ∩ 𝐴𝑛 = 1 or 𝐺 ∩ 𝐴𝑛 = 𝐺. If 𝐺 ∩ 𝐴𝑛 = 1, then 𝐺 is isomorphic to
a subgroup of 𝐶2, but this is false, since 𝐺 is non-abelian. Hence 𝐺 ∩ 𝐴𝑛 = 𝐺 so 𝐺 ≤ 𝐴𝑛.
Finally, if 𝑛 ≤ 4we can check manually that 𝐴𝑛 is not simple; 𝐴𝑛 has no non-abelian simple
subgroups.

3.3. Conjugation actions
Example. Let 𝐺 ↷ 𝐺 by conjugation, so 𝑔 ∗ 𝑥 = 𝑔𝑥𝑔−1. This is known as the conjugation
action.
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Definition. The orbit of the conjugation action is called the conjugacy class of a given ele-
ment𝑥 ∈ 𝐺, written ccl𝐺(𝑥). The stabiliser of the conjugation action is the set𝐶𝑥 of elements
which commute with a given element 𝑥, called the centraliser of 𝑥 in 𝐺. The kernel of 𝜑 is
the set 𝑍(𝐺) of elements which commute with all elements in 𝑥, which is the centre of 𝐺.
This is always a normal subgroup.

Remark. 𝜑∶ 𝐺 → 𝐺 satisfies

𝜑(𝑔)(ℎ1ℎ2) = 𝑔ℎ1ℎ2𝑔−1 = ℎℎ1𝑔−1𝑔ℎ2𝑔−1 = 𝜑(𝑔)(ℎ1)𝜑(𝑔)(ℎ2)

Hence 𝜑(𝑔) is a group homomorphism for all 𝑔. It is also a bijection, hence 𝜑(𝑔) is an iso-
morphism from 𝐺 → 𝐺.
Definition. An isomorphism from a group to itself is known as an automorphism. We
define Aut(𝐺) to be the set of all group automorphisms of a given group. This set is a group.
Note, Aut(𝐺) ≤ Sym(𝐺), and the 𝜑∶ 𝐺 → Sym(𝐺) above has image in Aut(𝐺).
Example. Let 𝑋 be the set of subgroups of 𝐺. Then 𝐺 ↷ 𝑋 by conjugation: 𝑔 ∗𝐻 = 𝑔𝐻𝑔−1.
The stabiliser of a subgroup𝐻 is {𝑔 ∈ 𝐺∶ 𝑔𝐻𝑔−1 = 𝐻} = 𝑁𝐺(𝐻), called the normaliser of𝐻
in𝐺. The normaliser of𝐻 is the largest subgroup of𝐺 that contains𝐻 as a normal subgroup.
In particular, 𝐻 ⊲ 𝐺 if and only if 𝑁𝐺(𝐻) = 𝐺.
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4. Alternating groups
4.1. Conjugation in alternating groups
We know that elements in 𝑆𝑛 are conjugate if and only if they have the same cycle type.
However, elements of 𝐴𝑛 that are conjugate in 𝑆𝑛 are not necessarily conjugate in 𝐴𝑛. Let
𝑔 ∈ 𝐴𝑛. Then 𝐶𝐴𝑛(𝑔) = 𝐶𝑆𝑛(𝑔) ∩ 𝐴𝑛. There are two possible cases.

• If there exists an odd permutation that commutes with 𝑔, then 2||𝐶𝐴𝑛
||(𝑔) = ||𝐶𝑆𝑛 ||(𝑔).

By the orbit-stabiliser theorem, ||ccl𝐴𝑛(𝑔)|| = ||ccl𝑆𝑛(𝑔)||.

• If there is no odd permutation that commutes with 𝑔, we have ||𝐶𝐴𝑛
||(𝑔) = ||𝐶𝑆𝑛 ||(𝑔).

Similarly, 2||ccl𝐴𝑛(𝑔)|| = ||ccl𝑆𝑛(𝑔)||.

Example. For 𝑛 = 5, the product (1 2)(3 4) commutes with (1 2), and (1 2 3) commutes with
(4 5). Both of these elements are odd. So the conjugacy classes of the above inside 𝑆5 and 𝐴5
are the same. However, (1 2 3 4 5) does not commute with any odd permutation. Indeed, if
that were true for some ℎ, we would have

(1 2 3 4 5) = ℎ(1 2 3 4 5)ℎ−1 = (ℎ(1) ℎ(2) ℎ(3) ℎ(4) ℎ(5))

Hence ℎmust be a 5-cycle in the subgroup of 𝐴5 generated by (1 2 3 4 5).

We can then show that 𝐴5 has conjugacy classes of size 1, 15, 20, 12, 12. If 𝐻 ⊴ 𝐴5, |𝐻|must
be a sum of the sizes of the above conjugacy classes. By Lagrange’s theorem, |𝐻|must divide
60. We can check explicitly that this is not possible unless |𝐻| = 1 or |𝐻| = 60. Hence 𝐴5 is
simple.

4.2. Simplicity of alternating groups
Lemma. 𝐴𝑛 is generated by 3-cycles.

Proof. All elements of 𝐴𝑛 are generated by an even number of transpositions. It therefore
suffices to show that a product of two transpositions can be written as a product of 3-cycles.
Explicitly,

(𝑎 𝑏)(𝑐 𝑑) = (𝑎 𝑐 𝑏)(𝑎 𝑐 𝑑); (𝑎 𝑏)(𝑏 𝑐) = (𝑎 𝑏 𝑐)

Lemma. If 𝑛 ≥ 5, all 3-cycles in 𝐴𝑛 are conjugate (in 𝐴𝑛).

Proof. We claim that every 3-cycle is conjugate to (1 2 3). If (𝑎 𝑏 𝑐) is a 3-cycle, we have
(𝑎 𝑏 𝑐) = 𝜎(1 2 3)𝜎−1 for some 𝜎 ∈ 𝑆𝑛. If 𝜎 ∈ 𝐴𝑛, then the proof is finished. Otherwise,
𝜎 ↦ 𝜎(4 5) ∈ 𝐴𝑛 suffices, since (4 5) commutes with (1 2 3).

Theorem. 𝐴𝑛 is simple for 𝑛 ≥ 5.
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Proof. Suppose 1 ≠ 𝑁 ⊲ 𝐴𝑛. To disprove normality, it suffices to show that 𝑁 contains a
3-cycle by the lemmas above, since the normality of 𝑁 would imply 𝑁 contains all 3-cycles
and hence all elements of 𝐴𝑛.

Let 1 ≠ 𝜎 ∈ 𝑁, writing 𝜎 as a product of disjoint cycles.
(i) Suppose𝜎 contains a cycle of length 𝑟 ≥ 4. Without loss of generality, let𝜎 = (1 2 3… 𝑟)𝜏

where 𝜏 fixes 1,… , 𝑟. Now, let 𝛿 = (1 2 3). We have

𝜎−1⏟
∈𝑁

𝛿−1𝜎𝛿⏟
∈𝑁

= (𝑟…2 1)(1 3 2)(1 2… 𝑟) = (2 3 𝑟)

So 𝑁 contains a 3-cycle.

(ii) Suppose 𝜎 contains two 3-cycles, which can be written without loss of generality as
(1 2 3)(4 5 6)𝜏. Let 𝛿 = (1 2 4), and then

𝜎−1𝛿−1𝜎𝛿 = (1 3 2)(4 6 5)(1 4 2)(1 2 3)(4 5 6)(1 2 4) = (1 2 4 3 6)

Therefore, there exists an element of 𝑁 which contains a cycle of length 5 ≥ 4. This
reduces the problem to case (i).

(iii) Finally, suppose 𝜎 contains two 2-cycles, which will be written (1 2)(3 4)𝜏. Then let
𝛿 = (1 2 3) and

𝜎−1𝛿−1𝜎𝛿 = (1 2)(3 4)(1 3 2)(1 2)(3 4)(1 2 3) = (1 4)(2 3) = 𝜋

Let 𝜀 = (2 3 5). Then

𝜋−1⏟
∈𝑁

𝜀−1𝜋𝜀⏟
∈𝑁

= (1 4)(2 3)(2 5 3)(1 4)(2 3)(2 3 5) = (2 5 3)

Thus 𝑁 contains a 3-cycle.

There are now three remaining cases, where 𝜎 is a transposition, a 3-cycle, or a transposition
composedwith a 3-cycle. Note that the remaining cases containing transpositions cannot be
elements of 𝐴𝑛. If 𝜎 is a 3-cycle, we already know 𝐴𝑛 contains a 3-cycle, namely 𝜎 itself.
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5. 𝑝-groups
5.1. 𝑝-groups
Definition. Let 𝑝 be a prime. A finite group 𝐺 is a 𝑝-group if |𝐺| = 𝑝𝑛 for 𝑛 ≥ 1.

Theorem. If 𝐺 is a 𝑝-group, the centre 𝑍(𝐺) is non-trivial.

Proof. For 𝑔 ∈ 𝐺, due to the orbit-stabiliser theorem, |ccl(𝑔)||𝐶(𝑔)| = 𝑝𝑛. In particular,
|ccl(𝑔)| divides 𝑝𝑛, and they partition 𝐺. Since 𝐺 is a disjoint union of conjugacy classes,
modulo 𝑝 we have

|𝐺| ≡ number of conjugacy classes of size 1 ≡ 0 ⟹ |𝑍(𝐺)| ≡ 0

Hence 𝑍(𝐺) has order zero modulo 𝑝 so it cannot be trivial. We can check this by noting
that 𝑔 ∈ 𝑍(𝐺) ⟺ 𝑥−1𝑔𝑥 = 𝑔 for all 𝑥, which is true if and only if ccl𝐺(𝑔) = {𝑔}.

Corollary. The only simple 𝑝-groups are the cyclic groups of order 𝑝.

Proof. Let 𝐺 be a simple 𝑝-group. Since 𝑍(𝐺) is a normal subgroup of 𝐺, we have 𝑍(𝐺) = 1
or 𝑍(𝐺) = 𝐺. But 𝑍(𝐺)may not be trivial, so 𝑍(𝐺) = 𝐺. This implies 𝐺 is abelian. The only
abelian simple groups are cyclic of prime order, hence 𝐺 ≅ 𝐶𝑝.

Corollary. Let 𝐺 be a 𝑝-group of order 𝑝𝑛. Then 𝐺 has a subgroup of order 𝑝𝑟 for all 𝑟 ∈
{0,… , 𝑛}.

Proof. Recall that any group𝐺 has a composition series 1 = 𝐺1 ⊲ ⋯ ⊲ 𝐺𝑁 = 𝐺 where each
quotient 𝐺𝑖+1⟋𝐺𝑖

is simple. Since 𝐺 is a 𝑝-group, 𝐺𝑖+1⟋𝐺𝑖
is also a 𝑝-group. Each successive

quotient is an order 𝑝 group by the previous corollary, so we have a composition series of
nested subgroups of order 𝑝𝑟 for all 𝑟 ∈ {0,… , 𝑛}.

Lemma. Let 𝐺 be a group. If 𝐺⟋𝑍(𝐺) is cyclic, then 𝐺 is abelian. This then implies that
𝑍(𝐺) = 𝐺, so in particular 𝐺⟋𝑍(𝐺) = 1.

Proof. Let 𝑔𝑍(𝐺) be a generator for 𝐺⟋𝑍(𝐺). Then, each coset of 𝑍(𝐺) in 𝐺 is of the form
𝑔𝑟𝑍(𝐺) for some 𝑟 ∈ ℤ. Thus, 𝐺 = {𝑔𝑟𝑧∶ 𝑟 ∈ ℤ, 𝑧 ∈ 𝑍(𝐺)}. Now, we multiply two elements
of this group and find

𝑔𝑟1𝑧1𝑔𝑟2𝑧2 = 𝑔𝑟1+𝑟2𝑧1𝑧2 = 𝑔𝑟1+𝑟2𝑧2𝑧1 = 𝑧2𝑧1𝑔𝑟1+𝑟2 = 𝑔𝑟2𝑧2𝑔𝑟1𝑧1

So any two elements in 𝐺 commute.

Corollary. Any group of order 𝑝2 is abelian.
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Proof. Let 𝐺 be a group of order 𝑝2. Then |𝑍(𝐺)| ∈ {1, 𝑝, 𝑝2}. The centre cannot be trivial
as proven above, since 𝐺 is a 𝑝-group. If |𝑍(𝐺)| = 𝑝, we have that 𝐺⟋𝑍(𝐺) is cyclic as it has
order 𝑝. Applying the previous lemma, 𝐺 is abelian. However, this is a contradiction since
the centre of an abelian group is the group itself. If |𝑍(𝐺)| = 𝑝2 then 𝑍(𝐺) = 𝐺 and then 𝐺
is clearly abelian.

5.2. Sylow theorems
Theorem. Let 𝐺 be a finite group of order 𝑝𝑎𝑚where 𝑝 is a prime and 𝑝 does not divide𝑚.
Then:

(i) The set Syl𝑝(𝐺) = {𝑃 ≤ 𝐺∶ |𝑃| = 𝑝𝑎} of Sylow 𝑝-subgroups is non-empty.
(ii) All Sylow 𝑝-subgroups are conjugate.
(iii) The amount of Sylow 𝑝-subgroups 𝑛𝑝 = ||Syl𝑝(𝐺)|| satisfies

𝑛𝑝 ≡ 1 mod 𝑝; 𝑛𝑝 ∣ |𝐺| ⟹ 𝑛𝑝 ∣ 𝑚

Proof. (i) Let Ω be the set of all subsets of 𝐺 of order 𝑝𝑎. We can directly find

|Ω| = (𝑝
𝑎𝑚
𝑝𝑎 ) = 𝑝𝑎𝑚

𝑝𝑎 ⋅ 𝑝
𝑎𝑚− 1
𝑝𝑎 − 1 ⋯ 𝑝𝑎𝑚− 𝑝𝑎 + 1

1

Note that for 0 ≤ 𝑘 < 𝑝𝑎, the numbers 𝑝𝑎𝑚 − 𝑘 and 𝑝𝑎 − 𝑘 are divisible by the same
power of 𝑝. In particular, |Ω| is coprime to 𝑝.
Let 𝐺 ↷ Ω by left-multiplication, so 𝑔 ∗ 𝑋 = {𝑔𝑥∶ 𝑥 ∈ 𝑋}. For any 𝑋 ∈ Ω, the orbit-
stabiliser theorem can be applied to show that

|𝐺𝑋 ||orb𝐺(𝑋)| = |𝐺| = 𝑝𝑎𝑚

By the above, there must exist an orbit with size coprime to 𝑝, since orbits partitionΩ.
For such an 𝑋 , 𝑝𝑎 ∣ |𝐺𝑋 |.
Conversely, note that if 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝑋 , then 𝑔 ∈ (𝑔𝑥−1)∗𝑋 . Hence, we can consider

𝐺 = ⋃
𝑔∈𝐺

𝑔 ∗ 𝑋 = ⋃
𝑌∈orb𝐺(𝑋)

𝑌

Thus |𝐺| ≤ |orb𝐺(𝑋)| ⋅ |𝑋|, giving |𝐺𝑋 | =
|𝐺|

||orb𝐺(𝑋)||
≤ |𝑋| = 𝑝𝑎.

Combining with the above, we must have |𝐺𝑋 | = 𝑝𝑎. In other words, the stabiliser
𝐺𝑋 is a Sylow 𝑝-subgroup of 𝐺.

(ii) We will prove a stronger result for this part of the proof. We claim that if 𝑃 is a Sylow
𝑝-subgroup and 𝑄 ≤ 𝐺 is a 𝑝-subgroup, then 𝑄 ≤ 𝑔𝑃𝑔−1 for some 𝑔 ∈ 𝐺. Indeed, let
𝑄 act on the set of left cosets of 𝑃 in 𝐺 by left multiplication. By the orbit-stabiliser
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theorem, each orbit has size which divides |𝑄| = 𝑝𝑘 for some 𝑘. Hence each orbit has
size 𝑝𝑟 for some 𝑟.
Since 𝐺⟋𝑃 has size𝑚, which is coprime to 𝑝, there must exist an orbit of size 1. There-
fore there exists 𝑔 ∈ 𝐺 such that 𝑞∗𝑔𝑃 = 𝑔𝑃 for all 𝑞 ∈ 𝑄. Equivalently, 𝑔−1𝑞𝑔 ∈ 𝑃 for
all 𝑞 ∈ 𝑄. This implies that 𝑄 ≤ 𝑔𝑃𝑔−1 as required. This then weakens to the second
part of the Sylow theorems.

(iii) Let 𝐺 act on Syl𝑝(𝐺) by conjugation. Part (ii) of the Sylow theorems implies that this
action is transitive. By the orbit-stabiliser theorem, 𝑛𝑝 = ||Syl𝑝(𝐺)|| ∣ |𝐺|.

Let 𝑃 ∈ Syl𝑝(𝐺). Then let 𝑃 act on Syl𝑝(𝐺) by conjugation. Since 𝑃 is a Sylow 𝑝-
subgroup, the orbits of this action have size dividing |𝑃| = 𝑝𝑎, so the size is some
power of 𝑝. To show 𝑛𝑝 ≡ 1mod 𝑝, it suffices to show that {𝑃} is the unique orbit
of size 1. Suppose {𝑄} is another orbit of size 1, so 𝑄 is a Sylow 𝑝-subgroup which is
preserved under conjugation by 𝑃. 𝑃 normalises 𝑄, so 𝑃 ≤ 𝑁𝐺(𝑄). Notice that 𝑃 and
𝑄 are both Sylow 𝑝-subgroups of 𝑁𝐺(𝑄). By (ii), 𝑃 and 𝑄 are conjugate inside 𝑁𝐺(𝑄).
Hence 𝑃 = 𝑄 since𝑄 ⊴ 𝑁𝐺(𝑄). Thus, |𝑃| is the unique orbit of size 1, so 𝑛𝑝 ≡ 1mod 𝑝
as required.

Corollary. If 𝑛𝑝 = 1, then there is only one Sylow 𝑝-subgroup, and it is normal.

Proof. Let 𝑔 ∈ 𝐺 and 𝑃 ∈ Syl𝑝(𝐺). Then 𝑔𝑃𝑔−1 is a Sylow 𝑝-subgroup, hence 𝑔𝑃𝑔−1 = 𝑃. 𝑃
is normal in 𝐺.

Example. Let 𝐺 be a group with |𝐺| = 1000 = 23 ⋅ 53. Here, 𝑛5 ≡ 1mod 5, and 𝑛5 ∣ 8,
hence 𝑛5 = 1. Thus the unique Sylow 5-subgroup is normal. Hence no group of order 1000
is simple.

Example. Let 𝐺 be a group with |𝐺| = 132 = 22 ⋅ 3 ⋅ 11. 𝑛11 satisfies 𝑛11 ≡ 1mod 11
and 𝑛11 ∣ 12, thus 𝑛11 ∈ {1, 12}. Suppose 𝐺 is simple. Then 𝑛11 = 12. The amount of
Sylow 3-subgroups satisfies 𝑛3 ≡ 1mod 3 and 𝑛3 ∣ 44 so 𝑛3 ∈ {1, 4, 22}. Since 𝐺 is simple,
𝑛3 ∈ {4, 22}.
Suppose 𝑛3 = 4. Then𝐺 ↷ Syl3(𝐺) by conjugation, and this generates a group homomorph-
ism 𝜑∶ 𝐺 → 𝑆4. But the kernel of this homomorphism is a normal subgroup of 𝐺, so ker𝜑
is trivial or 𝐺 itself. If ker𝜑 = 𝐺, then Im𝜑 is trivial, contradicting Sylow’s second theorem.
If ker𝜑 = 1, then Im𝜑 has order 132, which is impossible.
Thus 𝑛3 = 22. This means that 𝐺 has 22 ⋅ (3 − 1) = 44 elements of order 3, and further 𝐺
has 12 ⋅ (11 − 1) = 120 elements of order 11. However, the sum of these two totals is more
than the total of 132 elements, so this is a contradiction. Hence 𝐺 is not simple.
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6. Matrix groups

6.1. Definitions
Definition. Let 𝐹 be a field, such as ℂ or ℤ⟋𝑝ℤ. Let 𝐺𝐿𝑛(𝐹) be set of 𝑛 × 𝑛 invertible
matrices over 𝐹, which is called the general linear group. Let 𝑆𝐿𝑛(𝐹) be set of 𝑛×𝑛matrices
with determinant one over 𝐹, which is called the special linear group. 𝑆𝐿𝑛(𝐹) is the kernel
of the determinant homomorphism on 𝐺𝐿𝑛(𝐹), so 𝑆𝐿𝑛(𝐹) ⊲ 𝐺𝐿𝑛(𝐹).

Let 𝑍 ⊲ 𝐺𝐿𝑛(𝐹) denote the subgroup of scalar matrices, the group of nonzero multiples of
the identity. The group 𝑃𝐺𝐿𝑛(𝐹) = 𝐺𝐿𝑛(𝐹)⟋𝑍 is called the projective general linear group.
Let 𝑃𝑆𝐿𝑛(𝐹) = 𝑆𝐿𝑛(𝐹)⟋𝑍 ∩ 𝑆𝐿𝑛(𝐹). By the second isomorphism theorem, 𝑃𝑆𝐿𝑛(𝐹) is iso-
morphic to 𝑍 ⋅ 𝑆𝐿𝑛(𝐹)⟋𝑍, which is a subgroup of 𝑃𝐺𝐿𝑛(𝐹).

Example. Consider the finite group 𝐺 = 𝐺𝐿𝑛(ℤ⟋𝑝ℤ). A list of 𝑛 vectors in ℤ⟋𝑝ℤ are the
columns of a matrix 𝐴 ∈ 𝐺 if and only if the vectors are linearly independent. Hence, by
considering dimensionality of subspaces generated by each column,

|𝐺| = (𝑝𝑛 − 1)(𝑝𝑛 − 𝑝)(𝑝𝑛 − 𝑝2)⋯ (𝑝𝑛 − 𝑝𝑛−1)
= 𝑝1+2+⋯+(𝑛−1)(𝑝𝑛 − 1)(𝑝𝑛−1 − 1)⋯ (𝑝 − 1)

= 𝑝(
𝑛
2)

𝑛
∏
𝑖=1

(𝑝𝑖 − 1)

Hence the Sylow 𝑝-subgroups have size 𝑝(
𝑛
2). Let 𝑈 be the set of upper triangular matrices

with ones on the diagonal. This forms a Sylow 𝑝-subgroup of 𝐺, since there are (𝑛
2
) entries

in a given upper triangular matrix, and there are 𝑝 choices for such an entry.

6.2. Möbius maps in modular arithmetic

Recall that 𝑃𝐺𝐿2(ℂ) acts onℂ∪{∞} byMöbius transformations. Likewise, 𝑃𝐺𝐿2(ℤ⟋𝑝ℤ) acts
on ℤ⟋𝑝ℤ ∪ {∞} by Möbius transformations. For a matrix

𝐴 = (𝑎 𝑏
𝑐 𝑑) ∈ 𝐺𝐿2(ℤ⟋𝑝ℤ); 𝐴∶ 𝑧 ↦ 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑

Since the scalar matrices act trivially, we obtain an action on the projective general linear
group instead of the general linear group. We can represent∞ as an integer, say, 𝑝, for the
purposes of constructing a permutation representation.

Lemma. The permutation representation 𝑃𝐺𝐿2(ℤ⟋𝑝ℤ) → 𝑆𝑝+1 is injective (and is an iso-
morphism if 𝑝 = 2 or 𝑝 = 3).
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Proof. Suppose that 𝑎𝑧+𝑏
𝑐𝑧+𝑑

= 𝑧 for all 𝑧 ∈ ℤ⟋𝑝ℤ ∪ {∞}. Since 𝑧 = 0, we have 𝑏 = 0. Since
𝑧 = ∞, we find 𝑐 = 0. Thus the matrix is diagonal. Finally, since 𝑧 = 1, 𝑎

𝑑
= 1 hence 𝑎 = 𝑑.

Thus the matrix is scalar. So the permutation representation from 𝑃𝐺𝐿2(ℤ⟋𝑝ℤ) has trivial
kernel, giving injectivity as required.

If 𝑝 = 2 or 𝑝 = 3we can compute the orders of relevant groups manually and show that the
permutation representation is an isomorphism.

Lemma. Let 𝑝 be an odd prime. Then

||𝑃𝑆𝐿2(ℤ⟋𝑝ℤ)|| =
(𝑝 − 1)𝑝(𝑝 + 1)

2

Proof. By the example above,

||𝐺𝐿2(ℤ⟋𝑝ℤ)|| = 𝑝(𝑝2 − 1)(𝑝 − 1)

The homomorphism 𝐺𝐿2(ℤ⟋𝑝ℤ) → (ℤ⟋𝑝ℤ)
×
given by the determinant is surjective. Since

𝑆𝐿2(ℤ⟋𝑝ℤ) is the kernel of this homomorphism, we have

||𝑆𝐿2(ℤ⟋𝑝ℤ)|| = 𝑝(𝑝 − 1)(𝑝 + 1)

Now, if (𝜆 0
0 𝜆) is an element of the special linear group, then 𝜆2 ≡ 1mod 𝑝. Then, 𝑝 ∣

(𝜆 − 1)(𝜆 + 1) hence 𝜆 ≡ ±1mod 𝑝. Thus,

𝑍 ∩ 𝑆𝐿2(ℤ⟋𝑝ℤ) = {±1}

and the elements are distinct since 𝑝 > 2. Hence the order of the projective special linear
group is half the order of the special linear group as required.

Example. Let 𝐺 = 𝑃𝑆𝐿2(ℤ⟋5ℤ). Then by the previous lemma, |𝐺| = 60. Let 𝐺 ↷ ℤ⟋5ℤ ∪
{∞} byMöbius transformations. The permutation representation𝜑∶ 𝐺 → Sym({0, 1, 2, 3, 4,∞})
is injective, since the permutation representation of 𝑃𝐺𝐿2(ℤ⟋𝑝ℤ) is known to be injective
by a previous lemma.

We claim that Im𝜑 ⊆ 𝐴6. Let 𝜓 = sgn ∘𝜑. If we can show 𝜓 is trivial, Im𝜑 ⊆ 𝐴6. Let
ℎ ∈ 𝐺, and suppose ℎ has order 2𝑛𝑚 for odd 𝑚. If 𝜓(ℎ𝑚) = 1, then since 𝜓 is a group
homomorphism we have 𝜓(ℎ)𝑚 = 1 giving 𝜓(ℎ) ≠ −1 ⟹ 𝜓(ℎ) = 1. So to show 𝜓 is
trivial, it suffices to show 𝜓(𝑔) = 1 for all 𝑔 ∈ 𝐺 with order a power of 2. By the second
Sylow theorem, if 𝑔 has order a power of 2, it is contained in a Sylow 2-subgroup. Then it
suffices to show that𝜓(𝐻) = 1 for all Sylow 2-subgroups𝐻. But since ker𝜓 is normal and all
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Sylow 2-subgroups are conjugate, it suffices to show 𝜓(𝐻) = 1 for a single Sylow 2-subgroup
𝐻. The Sylow 2-subgroup must have order 4. Hence consider

𝐻 = ⟨(2 0
0 3) {±𝐼}, (

0 1
−1 0) {±𝐼}⟩

Both of these elements square to the identity element inside the projective special linear
group. This generates a group of order 4 which is necessarily a Sylow 2-subgroup. We can
explicitly compute the action of 𝐻 on {0, 1, 2, 3, 4,∞}.

𝜑((2 0
0 3)) = (1 4)(2 3); 𝜑(( 0 1

−1 0)) = (0 ∞)(1 4)

These are products of two transpositions, hence even permutations. Thus𝜓(𝐻) = 1, proving
the claim that 𝐺 ≤ 𝐴6. We can prove that for any 𝐺 ≤ 𝐴6 of order 60, we have 𝐺 ≅ 𝐴5; this
is a question from the example sheets.

6.3. Properties
The following properties will not be proven in this course.

• 𝑃𝑆𝐿𝑛(ℤ⟋𝑝ℤ) is simple for all 𝑛 ≥ 2 and 𝑝 prime, except where 𝑛 = 2 and 𝑝 = 2, 3.
Such groups are called finite groups of Lie type.

• The smallest non-abelian simple groups are 𝐴5 ≅ 𝑃𝑆𝐿2(ℤ⟋5ℤ), then 𝑃𝑆𝐿2(ℤ⟋7ℤ) ≅
𝐺𝐿3(ℤ⟋2ℤ) which has order 168.
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7. Finite abelian groups
7.1. Products of cyclic groups
Theorem. Every finite abelian group is isomorphic to a product of cyclic groups.

The proof for this theorem will be provided later in the course. Note that the isomorphism
provided for by the theorem is not unique. An example of such behaviour is the following
lemma.

Lemma. Let𝑚, 𝑛 be coprime integers. Then 𝐶𝑚 × 𝐶𝑛 ≅ 𝐶𝑚𝑛.

Proof. Let 𝑔, ℎ be generators of 𝐶𝑚 and 𝐶𝑛. Then consider the element (𝑔, ℎ)𝑘 = (𝑔𝑘, ℎ𝑘),
which has order𝑚𝑛. Thus ⟨(𝑔, ℎ)⟩ has order𝑚𝑛. So every element in 𝐶𝑚 ×𝐶𝑛 is expressible
in this way, giving ⟨(𝑔, ℎ)⟩ = 𝐶𝑚 × 𝐶𝑛.

Corollary. Let 𝐺 be a finite abelian group. Then 𝐺 ≅ 𝐶𝑛1 × ⋯ × 𝐶𝑛𝑘 where each 𝑛𝑖 is a
power of a prime.

Proof. If 𝑛 = 𝑝1𝑎1⋯𝑝𝑟𝑎𝑟 where the 𝑝𝑖 are distinct primes, then applying the above lemma
inductively gives 𝐶𝑛 as a product of cyclic groups which have orders that are powers of
primes. We can apply this to the theorem that every finite abelian group is isomorphic to a
product of cyclic groups to find the result.

Later, we will prove the following refinement of this theorem.

Theorem. Let 𝐺 be a finite abelian group. Then 𝐺 ≅ 𝐶𝑑1 ×⋯×𝐶𝑑𝑡 where 𝑑𝑖 ∣ 𝑑𝑖+1 for all 𝑖.
Remark. The integers 𝑛1,… , 𝑛𝑘 in the corollary above are unique up to ordering. The in-
tegers 𝑑1,… , 𝑑𝑡 are also unique, assuming that 𝑑1 > 1. The proofs will be omitted.
Example. The abelian groups of order 8 are exactly 𝐶8, 𝐶2 × 𝐶4, and 𝐶2 × 𝐶2 × 𝐶2. The
abelian groups of order 12 are, using the corollary above, 𝐶2 × 𝐶2 × 𝐶3, 𝐶4 × 𝐶3, and using
the above theorem, 𝐶2 × 𝐶6 and 𝐶12. However, 𝐶2 × 𝐶3 ≅ 𝐶6 and 𝐶3 × 𝐶4 ≅ 𝐶12, so the
groups derived are isomorphic.

Definition. The exponent of a group 𝐺 is the least integer 𝑛 ≥ 1 such that 𝑔𝑛 = 1 for all
𝑔 ∈ 𝐺. Equivalently, the exponent is the lowest common multiple of the orders of elements
in 𝐺.
Example. The exponent of 𝐴4 is lcm{2, 3} = 6.
Corollary. Let 𝐺 be a finite abelian group. Then 𝐺 contains an element which has order
equal to the exponent of 𝐺.

Proof. If 𝐺 ≅ 𝐶𝑑1 × ⋯ × 𝐶𝑑𝑡 for 𝑑𝑖 ∣ 𝑑𝑖+1, every 𝑔 ∈ 𝐺 has order dividing 𝑑𝑡. Hence the
exponent is 𝑑𝑡, and we can choose a generator of 𝐶𝑑𝑡 to obtain an element in 𝐺 of the same
order.
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8. Rings
8.1. Definitions
Definition. A ring is a triple (𝑅, +, ⋅)where 𝑅 is a set and+, ⋅ are binary operations 𝑅×𝑅 →
𝑅, satisfying the following axioms.
(i) (𝑅, +) is an abelian group, and we will denote the identity element 0 and the inverse

of 𝑥 as −𝑥;
(ii) (𝑅, ⋅) satisfies the group axioms except for the invertibility axiom, and we will denote

the identity element 1 and the inverse of 𝑥 as 𝑥−1 if it exists;
(iii) for all 𝑥, 𝑦, 𝑧 ∈ 𝑅 we have 𝑥 ⋅ (𝑦 + 𝑧) = 𝑥 ⋅ 𝑦 + 𝑥 ⋅ 𝑧 and (𝑦 + 𝑧) ⋅ 𝑥 = 𝑦 ⋅ 𝑥 + 𝑧 ⋅ 𝑥.
If multiplication is commutative, we say that 𝑅 is a commutative ring. In this course, we will
study only commutative rings.

Remark. For all 𝑥 ∈ 𝑅,

0 ⋅ 𝑥 = (0 + 0) ⋅ 𝑥 = 0 ⋅ 𝑥 + 0 ⋅ 𝑥 ⟹ 0 ⋅ 𝑥 = 0

Further,
0 = 0 ⋅ 𝑥 = (1 + −1) ⋅ 𝑥 = 𝑥 + (−1 ⋅ 𝑥) ⟹ −1 ⋅ 𝑥 = −𝑥

Definition. A subset 𝑆 ⊆ 𝑅 is a subring, denoted 𝑆 ≤ 𝑅, if (𝑆, +, ⋅) is a ring with the same
identity elements.

Remark. It suffices to check the closure axioms for addition and multiplication; the other
properties are inherited.

Example. ℤ ≤ ℚ ≤ ℝ ≤ ℂ are rings. The set ℤ[𝑖] = {𝑎 + 𝑏𝑖∶ 𝑎, 𝑏 ∈ ℤ} is a subring of ℂ.
This is known as the ring of Gaussian integers. The set ℚ[√2] = {𝑎 + 𝑏√2∶ 𝑎, 𝑏 ∈ ℚ} is a
subring of ℝ.
Example. The set ℤ⟋𝑛ℤ is a ring.
Example. Let 𝑅, 𝑆 be rings. Then the product 𝑅 × 𝑆 is a ring under the binary operations

(𝑎, 𝑏) + (𝑐, 𝑑) = (𝑎 + 𝑐, 𝑏 + 𝑑); (𝑎, 𝑏) ⋅ (𝑐, 𝑑) = (𝑎 ⋅ 𝑐, 𝑏 ⋅ 𝑑)

The additive identity is (0𝑅, 0𝑆) and the multiplicative identity is (1𝑅, 1𝑆). Note that the sub-
set𝑅×{0} is preserved under addition andmultiplication, so it is a ring, but it is not a subring
because the multiplicative identity is different.

8.2. Polynomials
Definition. Let 𝑅 be a ring. A polynomial 𝑓 over 𝑅 is an expression

𝑓 = 𝑎0 + 𝑎1𝑋 + 𝑎2𝑋2 +⋯+ 𝑎𝑛𝑋𝑛
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for 𝑎𝑖 ∈ 𝑅. The term 𝑋 is a formal symbol, no substitution of 𝑋 for a value will be made.
We could alternatively define polynomials as finite sequences of terms in 𝑅. The degree of a
polynomial 𝑓 is the largest 𝑛 such that 𝑎𝑛 ≠ 0. A degree-n polynomial is monic if 𝑎𝑛 = 1.
We write 𝑅[𝑋] for the set of all such polynomials over 𝑅. Let 𝑔 = 𝑏0 + 𝑏1𝑋 + ⋯ + 𝑏𝑛𝑋𝑛.
Then we define

𝑓 + 𝑔 = (𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑋 +⋯+ (𝑎𝑛 + 𝑏𝑛)𝑋𝑛; 𝑓 ⋅ 𝑔 = ∑
𝑖
(

𝑖
∑
𝑗=0

𝑎𝑗𝑏𝑖−𝑗)𝑋 𝑖

Then (𝑅[𝑋], +, ⋅) is a ring. The identity elements are the constant polynomials 0 and 1. We
can identify the ring 𝑅 with the subring of 𝑅[𝑋] of constant polynomials.
Definition. An element 𝑟 ∈ 𝑅 is a unit if 𝑟 has a multiplicative inverse. The units in a
ring, denoted 𝑅×, form an abelian group under multiplication. For instance, ℤ× = {±1} and
ℚ× = ℚ ∖ {0}.
Definition. A field is a ring where all nonzero elements are units and 0 ≠ 1.
Example. ℤ⟋𝑛ℤ is a field only if 𝑛 is a prime.
Remark. If𝑅 is a ring such that 0 = 1, then every element in the ring is equal to zero. Indeed,
𝑥 = 1 ⋅ 𝑥 = 0 ⋅ 𝑥 = 0. Thus, the exclusion of rings with 0 = 1 in the definition of a field
simply excludes the trivial ring.

Proposition. Let 𝑓, 𝑔 ∈ 𝑅[𝑋] such that the leading coefficient of 𝑔 is a unit. Then there
exist polynomials 𝑞, 𝑟 ∈ 𝑅[𝑋] such that 𝑓 = 𝑞𝑔 + 𝑟, where the degree of 𝑟 is less than the
degree of 𝑔.
Remark. This is the Euclidean algorithm for division, adapted to polynomial rings.

Proof. Let 𝑛 be the degree of 𝑓 and𝑚 be the degree of 𝑔, so

𝑓 = 𝑎𝑛𝑋𝑛 +⋯+ 𝑎0; 𝑔 = 𝑏𝑚𝑋𝑚 +⋯+ 𝑏0

By assumption, 𝑏𝑚 ∈ 𝑅×. If 𝑛 < 𝑚 then let 𝑞 = 0 and 𝑟 = 𝑓. Conversely, we have 𝑛 ≥ 𝑚.
Consider the polynomial 𝑓1 = 𝑓 − 𝑎𝑛𝑏−1𝑚 𝑔𝑋𝑛−𝑚. This has degree at most 𝑛 − 1. Hence, we
can use induction on 𝑛 to decompose 𝑓1 as 𝑓1 = 𝑞1𝑔 + 𝑟. Thus 𝑓 = (𝑞1 + 𝑎𝑛𝑏−1𝑚 𝑋𝑛−𝑚)𝑔 + 𝑟
as required.

Remark. If 𝑅 is a field, then every nonzero element of 𝑅 is a unit. Therefore, the above
algorithm can be applied for all polynomials 𝑔 unless 𝑔 is the constant polynomial zero.
Example. Let 𝑅 be a ring and 𝑋 be a set. Then the set of functions 𝑋 → 𝑅 is a ring under

(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥); (𝑓 ⋅ 𝑔)(𝑥) = 𝑓(𝑥) ⋅ 𝑔(𝑥)

The set of continuous functionsℝ → ℝ is a subring of the ring of all functionsℝ → ℝ, since
they are closed under addition and multiplication. The set of polynomial functions ℝ → ℝ
is also a subring, and we can identify this with the ring ℝ[𝑋].
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Example. Let 𝑅 be a ring. Then the power series ring 𝑅⟦𝑋⟧ is the set of power series on
𝑋 . This is defined similarly to the polynomial ring, but we permit infinitely many nonzero
elements in the expansion. The power series is defined formally; we cannot actually carry
out infinitely many additions in an arbitrary ring. We instead consider the power series as a
sequence of numbers.

Example. Let 𝑅 be a ring. Then the ring of Laurent polynomials is 𝑅[𝑋, 𝑋−1] with the re-
striction that 𝑎𝑖 ≠ 0 for finitely many 𝑖.

8.3. Homomorphisms
Definition. Let 𝑅 and 𝑆 be rings. A function 𝜑∶ 𝑅 → 𝑆 is a ring homomorphism if

(i) 𝜑(𝑟1 + 𝑟2) = 𝜑(𝑟1) + 𝜑(𝑟2);

(ii) 𝜑(𝑟1 ⋅ 𝑟2) = 𝜑(𝑟1) ⋅ 𝜑(𝑟2);

(iii) 𝜑(1𝑅) = 1𝑆.

We can derive that 𝜑(0𝑅) = 0𝑆 from (i).

A ring homomorphism is an isomorphism if it is bijective. The kernel of a ring homomorph-
ism is ker𝜑 = {𝑟 ∈ 𝑅 ∶ 𝜑(𝑟) = 0}.

Lemma. Let 𝑅, 𝑆 be rings. Then a ring homomorphism 𝜑∶ 𝑅 → 𝑆 is injective if and only if
ker𝜑 = {0}.

Proof. Let 𝜑∶ (𝑅, +) → (𝑆, +) be the induced group homomorphism on addition. The result
then follows from the corresponding fact about group homomorphisms.

8.4. Ideals
Definition. A subset 𝐼 ⊆ 𝑅 is an ideal, written 𝐼 ⊴ 𝑅, if

(i) 𝐼 is a subgroup of (𝑅, +);

(ii) if 𝑟 ∈ 𝑅 and 𝑥 ∈ 𝐼, then 𝑟𝑥 ∈ 𝐼.

We say that an ideal is proper if 𝐼 ≠ 𝑅.

Lemma. Let 𝜑∶ 𝑅 → 𝑆 be a ring homomorphism. Then ker𝜑 is an ideal of 𝑅.

Proof. We know that ker𝜑 is a subgroup by the equivalent fact from groups. If 𝑟 ∈ 𝑅 and
𝑥 ∈ ker𝜑, then

𝜑(𝑟𝑥) = 𝜑(𝑟)𝜑(𝑥) = 𝜑(𝑟) ⋅ 0 = 0

Hence 𝑟𝑥 ∈ ker𝜑.
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Remark. If 𝐼 contains a unit, then the multiplicative identity lies in 𝐼. Then all elements lie
in 𝐼. In particular, if 𝐼 is a proper ideal, 1 ∉ 𝐼. Hence a proper ideal 𝐼 is not a subring of 𝑅.

Lemma. The ideals in ℤ are precisely the subsets of the form 𝑛ℤ for any 𝑛 = 0, 1, 2,….

Proof. First, we can check directly that any subset of the form 𝑛ℤ is an ideal. Now, let 𝐼 be
any nonzero ideal of ℤ and let 𝑛 be the smallest positive element. Then 𝑛ℤ ⊆ 𝐼. Let 𝑚 ∈ 𝐼.
Then by the Euclidean algorithm, 𝑚 = 𝑞𝑛 + 𝑟 for 𝑞, 𝑟 ∈ ℤ and 𝑟 ∈ {0, 1,… , 𝑛 − 1}. Then
𝑟 = 𝑚 − 𝑞𝑛. We know 𝑞𝑛 ∈ 𝐼 since 𝑛 ∈ 𝐼, so 𝑟 ∈ 𝐼. If 𝑟 ≠ 0, this contradicts the minimality
of 𝑛 as chosen above. So 𝐼 = 𝑛ℤ exactly.

Definition. For an element 𝑎 ∈ 𝑅, we write (𝑎) to denote the subset of 𝑅 given by mul-
tiples of 𝑎; that is, (𝑎) = {𝑟𝑎∶ 𝑟 ∈ 𝑅}. This is an ideal, known as the ideal generated by 𝑎.
More generally, if 𝑎1,… , 𝑎𝑛 ∈ 𝑅, then (𝑎1,… , 𝑎𝑛) is the set of elements in 𝑅 given by linear
combinations of the 𝑎𝑖. This is also an ideal.

Definition. Let 𝐼 ⊴ 𝑅. Then 𝐼 is principal if there exists some 𝑎 ∈ 𝑅 such that 𝐼 = (𝑎).

8.5. Quotients
Theorem. Let 𝐼 ⊴ 𝑅. Then the set 𝑅⟋𝐼 of cosets of 𝐼 in (𝑅, +) forms the quotient ring under
the operations

(𝑟1 + 𝐼) + (𝑟2 + 𝐼) = (𝑟1 + 𝑟2) + 𝐼; (𝑟1 + 𝐼) ⋅ (𝑟2 + 𝐼) = (𝑟1 ⋅ 𝑟2) + 𝐼

This ring has the identity elements

0𝑅⟋𝐼 = 0𝑅 + 𝐼; 1𝑅⟋𝐼 = 1𝑅 + 𝐼

Further, the map 𝑅 → 𝑅⟋𝐼 defined by 𝑟 ↦ 𝑟 + 𝐼 is a ring homomorphism called the quotient
map. The kernel of the quotientmap is 𝐼. Hence any ideal is the kernel of some homomorph-
ism.

Proof. From the analogous result fromgroups, the addition defined on the set of cosets yields
the group (𝑅⟋𝐼, +). If 𝑟1 + 𝐼 = 𝑟′1 + 𝐼 and 𝑟2 + 𝐼 = 𝑟′2 + 𝐼, then 𝑟′1 = 𝑟1 + 𝑎1 and 𝑟′2 = 𝑟2 + 𝑎2 for
some 𝑎1, 𝑎2 ∈ 𝐼. Then

𝑟′1𝑟′2 = (𝑟1 + 𝑎1)(𝑟2 + 𝑎2) = 𝑟1𝑟2 + 𝑎1𝑟2 + 𝑟1𝑎2 + 𝑎1𝑎2

Hence (𝑟′1𝑟′2) + 𝐼 = (𝑟1𝑟2) + 𝐼. The remainder of the proof is trivial.

Example. In the integers ℤ, the ideals are 𝑛ℤ. Hence we can form the quotient ring ℤ⟋𝑛ℤ.
The ringℤ⟋𝑛ℤ has elements 𝑛ℤ, 1+𝑛ℤ,… , (𝑛−1)+𝑛ℤ. Addition andmultiplication behave
like in modular arithmetic modulo 𝑛.
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Example. Consider the ideal (𝑋) inside the polynomial ring ℂ[𝑋]. This ideal is the set of
polynomials with zero constant term. Let 𝑓(𝑋) = 𝑎𝑛𝑋𝑛 +⋯ + 𝑎0 be an arbitrary element
of ℂ[𝑋]. Then 𝑓(𝑋) + 𝑋 = 𝑎0 + 𝑋 . Thus, there exists a bijection between ℂ[𝑋]⟋(𝑋) and ℂ,
defined by 𝑓(𝑥)+(𝑋) ↦ 𝑓(0), with inverse 𝑎 ↦ 𝑎+(𝑋). This bijection is a ring homomorph-
ism, hence ℂ[𝑋]⟋(𝑋) ≅ ℂ.

Example. Consider (𝑋2 + 1) ⊲ ℝ[𝑋]. For 𝑓(𝑋) = 𝑎𝑛𝑋𝑛 + ⋯ + 𝑎0 ∈ ℝ[𝑋], we can apply
the Euclidean algorithm to write 𝑓(𝑋) as 𝑞(𝑋)(𝑋2 + 1) + 𝑟(𝑋) where the degree of 𝑟 is less
than two. Hence 𝑟(𝑋) = 𝑎 + 𝑏𝑋 for some real numbers 𝑎 and 𝑏. Thus, any element of
ℝ[𝑋]⟋(𝑋2 + 1) can be written 𝑎 + 𝑏𝑋 + (𝑋2 + 1). Suppose a coset can be represented by two
representatives: 𝑎 + 𝑏𝑋 + (𝑋2 + 1) = 𝑎′ + 𝑏′𝑋 + (𝑋2 + 1). Then,

𝑎 + 𝑏𝑋 − 𝑎′ − 𝑏′𝑋 = (𝑎 − 𝑎′) − (𝑏 − 𝑏′)𝑋 = 𝑔(𝑋)(𝑋2 + 1)

Hence 𝑔(𝑋) = 0, giving 𝑎 − 𝑎′ = 0 and 𝑏 − 𝑏′ = 0. Hence the coset representative is
unique. Consider the bijection 𝜑 between this quotient ring and the complex numbers given
by 𝑎 + 𝑏𝑋 + (𝑋2 + 1) ↦ 𝑎 + 𝑏𝑖. We can show that 𝜑 is a ring homomorphism. Indeed,
it preserves addition, and 1 + (𝑋2 + 1) ↦ 1, so it suffices to check that multiplication is
preserved.

𝜑((𝑎 + 𝑏𝑋 + (𝑋2 + 1)) ⋅ (𝑐 + 𝑑𝑋 + (𝑋2 + 1))) = 𝜑((𝑎 + 𝑏𝑋)(𝑐 + 𝑑𝑋) + (𝑋2 + 1))
= 𝜑(𝑎𝑐 + (𝑎𝑑 + 𝑏𝑐)𝑋 + 𝑏𝑑(𝑋2 + 1) − 𝑏𝑑 + (𝑋2 + 1))
= 𝜑(𝑎𝑐 − 𝑏𝑑 + (𝑎𝑑 + 𝑏𝑐)𝑋 + (𝑋2 + 1))
= 𝑎𝑐 − 𝑏𝑑 + (𝑎𝑑 + 𝑏𝑐)𝑖
= (𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖)
= 𝜑((𝑎 + 𝑏𝑋) + (𝑋2 + 1))𝜑((𝑐 + 𝑑𝑋) + (𝑋2 + 1))

Thus ℝ[𝑋]⟋(𝑋2 + 1) ≅ ℂ.

8.6. Isomorphism theorems
Theorem (first isomorphism theorem). Let 𝜑∶ 𝑅 → 𝑆 be a ring homomorphism. Then,

ker𝜑 ⊲ 𝑅; Im𝜑 ≤ 𝑆; 𝑅⟋ker𝜑 ≅ Im𝜑

Proof. We have ker𝜑 ⊲ 𝑅 from above. We know that Im𝜑 ≤ (𝑆, +). Nowwe show that Im𝜑
is closed under multiplication.

𝜑(𝑟1)𝜑(𝑟2) = 𝜑(𝑟1𝑟2) ∈ Im𝜑

Finally,
1𝑆 = 𝜑(1𝑅) ∈ Im𝜑
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Hence Im𝜑 is a subring of 𝑆. Let 𝐾 = ker𝜑. Then, we define Φ∶ 𝑅⟋𝐾 → Im𝜑 by 𝑟 + 𝐾 ↦
𝜑(𝑟). By appealing to the first isomorphism theorem from groups, this is well-defined, a
bijection, and a group homomorphism under addition. It therefore suffices to show that Φ
preserves multiplication and maps the multiplicative identities to each other.

Φ(1𝑅 + 𝐾) = 𝜑(1𝑅) = 1𝑆; Φ((𝑟1 + 𝐾)(𝑟2 + 𝐾)) = Φ(𝑟1𝑟2 + 𝐾) = 𝜑(𝑟1𝑟2) = 𝜑(𝑟1)𝜑(𝑟2)

The result follows as required.

Theorem (second isomorphism theorem). Let 𝑅 ≤ 𝑆 and 𝐽 ⊲ 𝑆. Then,

𝑅 ∩ 𝐽 ⊲ 𝑅; 𝑅 + 𝐽 = {𝑟 + 𝑎∶ 𝑟 ∈ 𝑅, 𝑎 ∈ 𝐽} ≤ 𝑆; 𝑅⟋𝑅 ∩ 𝐽 ≅ 𝑅 + 𝐽⟋𝐽 ≤ 𝑆⟋𝐽

Proof. By the second isomorphism theorem for groups, 𝑅+𝐽 ≤ (𝑆, +). Further, 1𝑆 = 1𝑆+0𝑆,
and since 𝑅 is a subring, 1𝑆 + 0𝑆 ∈ 𝑅 + 𝐽 hence 1𝑆 ∈ 𝑅 ∩ 𝐽. If 𝑟1, 𝑟2 ∈ 𝑅 and 𝑎1, 𝑎2 ∈ 𝐽, we
have

(𝑟1 + 𝑎1)(𝑟2 + 𝑎2) = 𝑟1𝑟2⏟
∈𝑅

+𝑟1𝑎2⏟
∈𝐽

+𝑟2𝑎1⏟
∈𝐽

+𝑟2𝑎2⏟
∈𝐽

∈ 𝑅 + 𝐽

Hence 𝑅 + 𝐽 is closed under multiplication, giving 𝑅 + 𝐽 ≤ 𝑆.

Let 𝜑∶ 𝑅 → 𝑆⟋𝐽 be defined by 𝑟 ↦ 𝑟 + 𝐽. This is a ring homomorphism, since it is the
composite of the inclusionhomomorphism𝑅 ⊆ 𝑆 and the quotientmap𝑆 → 𝑆⟋𝐽. The kernel
of𝜑 is the set {𝑟 ∈ 𝑅∶ 𝑟 + 𝐽 = 𝐽} = 𝑅∩𝐽. Since this is the kernel of a ring homomorphism,𝑅∩
𝐽 is an ideal in 𝑅. The image of 𝜑 is {𝑟 + 𝐽 ∣ 𝑟 ∈ 𝑅} = 𝑅 + 𝐽⟋𝐽 ≤ 𝑆⟋𝐽. By the first isomorphism
theorem, 𝑅⟋𝑅 ∩ 𝐽 ≅ 𝑅 + 𝐽⟋𝐽 as required.

Remark. If 𝐼 ⊲ 𝑅, there exists a bijection between ideals in 𝑅⟋𝐼 and the ideals of𝑅 containing
𝐼. Explicitly,

𝐾 ↦ {𝑟 ∈ 𝑅 ∣ 𝑟 + 𝐼 ∈ 𝐾}; 𝐽 ↦ 𝐽⟋𝐼

Theorem (third isomorphism theorem). Let 𝐼 ⊲ 𝑅 and 𝐽 ⊲ 𝑅 with 𝐼 ⊆ 𝐽. Then,

𝐽⟋𝐼 ⊲ 𝑅⟋𝐼; 𝑅/𝐼⟋𝐽/𝐼 ≅ 𝑅⟋𝐽

Proof. Let 𝜑∶ 𝑅⟋𝐼 → 𝑅⟋𝐽 defined by 𝑟 + 𝐼 ↦ 𝑟 + 𝐽. We can check that this is a surjective
ring homomorphism by considering the third isomorphism theorem for groups. Its kernel
is {𝑟 + 𝐼 ∶ 𝑟 ∈ 𝐽} = 𝐽⟋𝐼, which is an ideal in 𝑅⟋𝐼, andwe conclude by use of the first isomorph-
ism theorem.

Remark. 𝐽⟋𝐼 is not a quotient ring, since 𝐽 is not in general a ring; this notation should be
interpreted as a set of cosets.
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Example. Consider the surjective ring homomorphism 𝜑∶ ℝ[𝑋] → ℂ which is defined by

𝑓 = ∑
𝑛
𝑎𝑛𝑋𝑛 ↦ 𝑓(𝑖) = ∑

𝑛
𝑎𝑛𝑖𝑛

Its kernel can be found by the Euclidean algorithm, yielding ker𝜑 = (𝑋2+1). Applying the
first isomorphism theorem, we immediately find ℝ[𝑋]⟋(𝑋2 + 1) ≅ ℂ.

Example. Let 𝑅 be a ring. Then there exists a unique ring homomorphism 𝑖 ∶ ℤ → 𝑅.
Indeed, we must have

0ℤ ↦ 0𝑅; 1ℤ ↦ 1𝑅
This inductively defines

𝑛 ↦ 1𝑅 +⋯+ 1𝑅⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝑛 times

The negative integers are also uniquely defined, since any ring homomorphism is a group
homomorphism.

−𝑛 ↦ −(1𝑅 +⋯+ 1𝑅⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝑛 times

)

We can show that any such construction is a ring homomorphism as required. Then, the
kernel of the ring homomorphism is an ideal of ℤ, hence it is 𝑛ℤ for some 𝑛. Hence, by the
first isomorphism theorem, any ring contains a copy of ℤ⟋𝑛ℤ, since it is isomorphic to the
image of 𝑖. If 𝑛 = 0, then the ring contains a copy of ℤ itself, and if 𝑛 = 1, then the ring is
trivial since 0 = 1. The number 𝑛 is known as the characteristic of 𝑅.
For example, ℤ,ℚ,ℝ, ℂ have characteristic zero. The rings ℤ⟋𝑝ℤ, ℤ⟋𝑝ℤ[𝑋] have character-
istic 𝑝.

8.7. Integral domains
Definition. An integral domain is a ring 𝑅 with 0 ≠ 1 such that for all 𝑎, 𝑏 ∈ 𝑅, 𝑎𝑏 = 0
implies 𝑎 = 0 or 𝑏 = 0. A zero divisor in a ring 𝑅 is a nonzero element 𝑎 ∈ 𝑅 such that
𝑎𝑏 = 0 for some nonzero 𝑏 ∈ 𝑅. A ring is an integral domain if and only if it has no zero
divisors.

Example. All fields are integral domains. Any subring of an integral domain is an integral
domain. For instance, ℤ[𝑖] ≤ ℂ is an integral domain.

Example. The ring ℤ × ℤ is not an integral domain. Indeed, (1, 0) ⋅ (0, 1) = (0, 0).
Lemma. Let 𝑅 be an integral domain. Then 𝑅[𝑋] is an integral domain.

Proof. Wewill show that any two nonzero elements produce a nonzero element. In particu-
lar, let

𝑓 = ∑
𝑛
𝑎𝑛𝑋𝑛; 𝑔 = ∑

𝑛
𝑏𝑛𝑋𝑛
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Since these are nonzero, the leading coefficients 𝑎𝑛 and 𝑏𝑚 are nonzero. Here, the leading
term of the product 𝑓𝑔 has form 𝑎𝑛𝑏𝑚𝑋𝑛+𝑚. Since 𝑅 is an integral domain, 𝑎𝑛𝑏𝑚 ≠ 0, so 𝑓𝑔
is nonzero. Further, the degree of 𝑓𝑔 is 𝑛 + 𝑚, the sum of the degrees of 𝑓 and 𝑔.

Lemma. Let 𝑅 be an integral domain, and 𝑓 ≠ 0 be a nonzero polynomial in 𝑅[𝑋]. We
define roots(𝑓) = {𝑎 ∈ 𝑅∶ 𝑓(𝑎) = 0}. Then |roots(𝑓)| ≤ deg(𝑓).

Proof. Exercise on the example sheets.

Theorem. Let 𝐹 be a field. Then any finite subgroup 𝐺 of (𝐹×, ⋅) is cyclic.

Proof. 𝐺 is a finite abelian group. If 𝐺 is not cyclic, we can apply a previous structure the-
orem for finite abelian groups to show that there exists 𝐻 ≤ 𝐺 such that 𝐻 ≅ 𝐶𝑑1 × 𝐶𝑑1 for
some integer 𝑑1 ≥ 2. The polynomial 𝑓(𝑋) = 𝑋𝑑1 − 1 ∈ 𝐹[𝑋] has degree 𝑑1, but has at least
𝑑21 roots, since any element of 𝐻 is a root. This contradicts the previous lemma.

Example. (ℤ⟋𝑝ℤ)
×
is cyclic.

Proposition. Any finite integral domain is a field.

Proof. Let 0 ≠ 𝑎 ∈ 𝑅, where 𝑅 is an integral domain. Consider the map 𝜑∶ 𝑅 → 𝑅 given by
𝑥 ↦ 𝑎𝑥. If 𝜑(𝑥) = 𝜑(𝑦), then 𝑎(𝑥 − 𝑦) = 0. But 𝑎 ≠ 0, hence 𝑥 − 𝑦 = 0. Hence 𝜑 is injective.
Since 𝑅 is finite, 𝜑 is a bijection, hence it has an inverse 𝜑−1, which yields the multiplicative
inverse of 𝑎 by considering 𝜑−1(𝑎). This may be repeated for all 𝑎.

Theorem. Any integral domain 𝑅 is a subring of a field 𝐹, and every element of 𝐹 can be
written in the form 𝑎𝑏−1 where 𝑎, 𝑏 ∈ 𝑅 and 𝑏 ≠ 0. Such a field 𝐹 is called the field of
fractions of 𝑅.

Proof. Consider the set 𝑆 = {(𝑎, 𝑏) ∈ 𝑅∶ 𝑏 ≠ 0}. We can define an equivalence relation

(𝑎, 𝑏) ∼ (𝑐, 𝑑) ⟺ 𝑎𝑑 = 𝑏𝑐

This is reflexive and commutative. We can show directly that it is transitive.

(𝑎, 𝑏) ∼ (𝑐, 𝑑) ∼ (𝑒, 𝑓) ⟹ 𝑎𝑑 = 𝑏𝑐; 𝑐𝑓 = 𝑑𝑒
⟹ 𝑎𝑑𝑓 = 𝑏𝑐𝑓 = 𝑏𝑑𝑒
⟹ 𝑎𝑓 = 𝑏𝑒
⟹ (𝑎, 𝑏) ∼ (𝑒, 𝑓)

Hence ∼ is indeed an equivalence relation. Now, let 𝐹 = 𝑆⟋∼, and we write
𝑎
𝑏
for the class

[(𝑎, 𝑏)]. We define the ring operations

𝑎
𝑏 +

𝑐
𝑑 = 𝑎𝑑 + 𝑏𝑐

𝑏𝑑 ; 𝑎
𝑏 ⋅

𝑐
𝑑 = 𝑎𝑐

𝑏𝑑
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8. Rings

These can be shown to bewell-defined. Thus, 𝐹 is a ringwith identities 0𝐹 = 0𝑅
1𝑅
and 1𝐹 = 1𝑅

1𝑅
.

If 𝑎
𝑏
≠ 0𝐹 , then 𝑎 ≠ 0. Thus, 𝑏

𝑎
exists, and 𝑎

𝑏
⋅ 𝑏
𝑎
= 1. Hence 𝐹 is a field.

We can identify 𝑅 with the subring of 𝐹 given by 𝑟
1
for all 𝑟 ∈ 𝑅. This is clearly isomorphic

to 𝑅. Further, any element of 𝐹 can be written as 𝑎
𝑏
= 𝑎𝑏−1 as required.

This is analogous to the construction of the rationals using the integers.

Example. Consider ℂ[𝑋]. This has field of fractions ℂ(𝑋), called the field of rational func-
tions in 𝑋 .

8.8. Maximal ideals
Definition. An ideal 𝐼 ⊲ 𝑅 ismaximal if 𝐼 ≠ 𝑅 and, if 𝐼 ⊆ 𝐽 ⊲ 𝑅, we have 𝐽 = 𝐼 or 𝐽 = 𝑅.

Lemma. A nonzero ring 𝑅 is a field if and only if its only ideals are zero or 𝑅.

Proof. Suppose 𝑅 is a field. If 0 ≠ 𝐼 ⊲ 𝑅, then 𝐼 contains a nonzero element, which is a unit
since 𝑅 is a field. Hence 𝐼 = 𝑅.

Now, suppose a ring 𝑅 has ideals that are only zero or 𝑅. If 0 ≠ 𝑥 ∈ 𝑅, consider (𝑥). This
is nonzero since it contains 𝑥. By assumption, (𝑥) = 𝑅. Thus, the element 1 lies in (𝑥).
Hence, there exists 𝑦 ∈ 𝑅 such that 𝑥𝑦 = 1, and hence this 𝑦 is the multiplicative inverse as
required.

Proposition. Let 𝐼 ⊲ 𝑅. Then 𝐼 is maximal if and only if 𝑅⟋𝐼 is a field.

Proof. 𝑅⟋𝐼 is a field if and only if its ideals are either zero, denoted 𝐼⟋𝐼, or 𝑅⟋𝐼 itself. By the
correspondence theorem, 𝐼 and 𝑅 are the only ideals in 𝑅 which contain 𝐼. Equivalently,
𝐼 ⊲ 𝑅 is maximal.

8.9. Prime ideals
Definition. An ideal 𝐼 ⊲ 𝑅 is prime if 𝐼 ≠ 𝑅 and, for all 𝑎, 𝑏 ∈ 𝑅 such that 𝑎𝑏 ∈ 𝐼, we have
𝑎 ∈ 𝐼 or 𝑏 ∈ 𝐼.

Example. The ideals in the integers are (𝑛) for some 𝑛 ≥ 0. 𝑛ℤ is a prime ideal if and only
if 𝑛 is prime or zero. The case for 𝑛 = 0 is trivial. If 𝑛 ≠ 0we can use the property that 𝑝 ∣ 𝑎𝑏
implies either 𝑝 ∣ 𝑎 or 𝑝 ∣ 𝑏. Conversely, if 𝑛 is composite, we can write 𝑛 = 𝑢𝑣 for 𝑢, 𝑣 > 1.
Then 𝑢𝑣 ∈ 𝑛ℤ but 𝑢, 𝑣 ∉ 𝑛ℤ.

Proposition. Let 𝐼 ⊲ 𝑅. Then 𝐼 is prime if and only if 𝑅⟋𝐼 is an integral domain.
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Proof. If 𝐼 is prime, then for all 𝑎𝑏 ∈ 𝐼 we have 𝑎 ∈ 𝐼 or 𝑏 ∈ 𝐼. Equivalently, for all 𝑎+ 𝐼, 𝑏 +
𝐼 ∈ 𝑅⟋𝐼, we have (𝑎 + 𝐼)(𝑏 + 𝐼) = 0 + 𝐼 if 𝑎 + 𝐼 = 0 + 𝐼 or 𝑏 + 𝐼 = 0 + 𝐼. This is the definition
of an integral domain.

Remark. If 𝐼 is a maximal ideal, then 𝑅⟋𝐼 is a field. A field is an integral domain. Hence any
maximal ideal is prime.

Remark. If the characteristic of a ring is 𝑛, then ℤ⟋𝑛ℤ ≤ 𝑅. In particular, if 𝑅 is an integral
domain, then ℤ⟋𝑛ℤ must be an integral domain. Equivalently, 𝑛ℤ ⊲ ℤ is a prime ideal.
Hence 𝑛 is zero or prime. Thus, in an integral domain, the characteristic must either be zero
or prime. A field always has a characteristic, which is either zero (in which case it contains
ℤ and hence ℚ) or prime (in which case it contains ℤ⟋𝑝ℤ = 𝔽𝑝 which is already a field).
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9. Factorisation in integral domains

9. Factorisation in integral domains
In this section, let 𝑅 be an integral domain.

9.1. Prime and irreducible elements
Recall that an element 𝑎 ∈ 𝑅 is a unit if it has a multiplicative inverse in 𝑅. Equivalently, an
element 𝑎 is a unit if and only if (𝑎) = 𝑅. Indeed, if (𝑎) = 𝑅, then 1 ∈ (𝑎) hence there exists
a multiple of 𝑎 equal to 1. We denote the set of units in 𝑅 by 𝑅×.

Definition. An element 𝑎 ∈ 𝑅 divides 𝑏 ∈ 𝑅, written 𝑎 ∣ 𝑏, if there exists 𝑐 ∈ 𝑅 such that
𝑏 = 𝑎𝑐. Equivalently, (𝑏) ⊆ (𝑎).

Two elements 𝑎, 𝑏 ∈ 𝑅 are associates if 𝑎 = 𝑏𝑐where 𝑐 is a unit. Informally, the two elements
differ by multiplication by a unit. Equivalently, (𝑎) = (𝑏).

Definition. An element 𝑟 ∈ 𝑅 is irreducible if 𝑟 is not zero or a unit, and 𝑟 = 𝑎𝑏 implies 𝑎
is a unit or 𝑏 is a unit. An element 𝑟 ∈ 𝑅 is prime if 𝑟 is not zero or a unit, and 𝑟 ∣ 𝑎𝑏 implies
𝑟 ∣ 𝑎 or 𝑟 ∣ 𝑏.

Remark. These properties depend on the ambient ring 𝑅; for instance, 2 is prime and irredu-
cible in ℤ, but neither prime nor irreducible inℚ. The polynomial 2𝑋 is irreducible inℚ[𝑋],
but not in ℤ[𝑋].

Lemma. (𝑟) ⊲ 𝑅 is a prime ideal if and only if 𝑟 = 0 or 𝑟 is prime.

Proof. Suppose (𝑟) is a prime ideal with 𝑟 ≠ 0. Since prime ideals are proper, 𝑟 cannot be a
unit. Suppose 𝑟 ∣ 𝑎𝑏, or equivalently, 𝑎𝑏 ∈ (𝑟). By the definition of a prime ideal, 𝑎 ∈ (𝑟) or
𝑏 ∈ (𝑟). Hence, 𝑟 ∣ 𝑎 or 𝑟 ∣ 𝑏. By definition of a prime element, 𝑟 is prime.

Conversely, first note that the zero ideal (0) = {0} is a prime ideal, since 𝑅 is an integral
domain. Suppose 𝑟 is prime. We know (𝑟) ≠ 𝑅 since 𝑟 is not a unit. If 𝑎𝑏 ∈ (𝑟), then 𝑟 ∣ 𝑎𝑏,
so 𝑟 ∣ 𝑎 or 𝑟 ∣ 𝑏, giving 𝑎 ∈ (𝑟) or 𝑏 ∈ (𝑟) as required for (𝑟) to be a prime ideal.

Lemma. Prime elements are irreducible.

Proof. Let 𝑟 be prime. Then 𝑟 is nonzero and not a unit. Suppose 𝑟 = 𝑎𝑏. Then, in particular,
𝑟 ∣ 𝑎𝑏, so 𝑟 ∣ 𝑎 or 𝑟 ∣ 𝑏 by primality. Let 𝑟 ∣ 𝑎 without loss of generality. Hence 𝑎 = 𝑟𝑐 for
some element 𝑐 ∈ 𝑅. Then, 𝑟 = 𝑎𝑏 = 𝑟𝑐𝑏, so 𝑟(1 − 𝑐𝑏) = 0. Since 𝑅 is an integral domain,
and 𝑟 ≠ 0, we have 𝑐𝑏 = 1, so 𝑏 is a unit.

Example. The converse does not hold in general. Let

𝑅 = ℤ[√−5] = {𝑎 + 𝑏√−5∶ 𝑎, 𝑏 ∈ ℤ} ≤ ℂ; 𝑅 ≅ ℤ[𝑋]⟋(𝑋2 + 5)
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Since 𝑅 is a subring of the field ℂ, it is an integral domain. We can define the norm𝑁∶ 𝑅 →
ℤ by 𝑁(𝑎 + 𝑏√−5) = 𝑎2 + 5𝑏2 ≥ 0. Note that this norm is multiplicative: 𝑁(𝑧1𝑧2) =
𝑁(𝑧1)𝑁(𝑧2).

We claim that the units are exactly ±1. Indeed, if 𝑟 ∈ 𝑅×, then 𝑟𝑠 = 1 for some element
𝑠 ∈ 𝑅. Then, 𝑁(𝑟)𝑁(𝑠) = 𝑁(1) = 1, so 𝑁(𝑟) = 𝑁(𝑠) = 1. But the only elements 𝑟 ∈ 𝑅 with
𝑁(𝑟) = 1 are 𝑟 = ±1.

We will now show that the element 2 ∈ 𝑅 is irreducible. Suppose 2 = 𝑟𝑠 for 𝑟, 𝑠 ∈ 𝑅. By
the multiplicative property of 𝑁, 𝑁(2) = 4 = 𝑁(𝑟)𝑁(𝑠) can only be satisfied by 𝑁(𝑟), 𝑁(𝑠) ∈
{1, 2, 4}. Since 𝑎2 + 5𝑏2 = 2 has no integer solutions, 𝑅 has no elements of norm 2. Hence,
either 𝑟 or 𝑠 has unit norm and is thus a unit by the above discussion. We can show similarly
that 3, 1 + √−5, 1 − √−5 are irreducible, as there exist no elements of norm 3.

We can now compute directly that (1+√−5)(1−√−5) = 6 = 2 ⋅ 3, hence 2 ∣ (1+√−5)(1−
√−5). But 2 ∤ (1+√−5) and 2 ∤ (1−√−5), which can be checked by taking norms. Hence,
2 is irreducible but not a prime.

In order to construct this example, we have exhibited two factorisations of 6 into irreducibles:
(1 + √−5)(1 − √−5) = 6 = 2 ⋅ 3. Since 𝑅× = {±1}, these irreducibles in the factorisations
are not associates.

9.2. Principal ideal domains
Definition. An integral domain𝑅 is a principal ideal domain if all ideals are principal ideals.
In other words, for all ideals 𝐼, there exists an element 𝑟 such that 𝐼 = (𝑟).

Example. ℤ is a principal ideal domain.

Proposition. In a principal ideal domain, all irreducible elements are prime.

Proof. Let 𝑟 ∈ 𝑅 be irreducible, and suppose 𝑟 ∣ 𝑎𝑏. If 𝑟 ∣ 𝑎, the proof is complete, so suppose
𝑟 ∤ 𝑎. Since 𝑅 is a principal ideal domain, the ideal (𝑎, 𝑟) is generated by a single element
𝑑 ∈ 𝑅. In particular, since 𝑟 ∈ (𝑑), we have 𝑑 ∣ 𝑟 so 𝑟 = 𝑐𝑑 for some 𝑐 ∈ 𝑅.

Since 𝑟 is irreducible, either 𝑐 or 𝑑 is a unit. If 𝑐 is a unit, (𝑎, 𝑟) = (𝑟), so in particular 𝑟 ∣ 𝑎,
which contradicts the assumption that 𝑟 ∤ 𝑎, so 𝑐 cannot be a unit. Thus, 𝑑 is a unit. In
this case, (𝑎, 𝑟) = 𝑅. By definition of (𝑎, 𝑟), there exist 𝑠, 𝑡 ∈ 𝑅 such that 1 = 𝑠𝑎 + 𝑡𝑟. Then,
𝑏 = 𝑠𝑎𝑏+𝑡𝑟𝑏. We have 𝑟 ∣ 𝑠𝑎𝑏 since 𝑟 ∣ 𝑎𝑏, and we know 𝑟 ∣ 𝑡𝑟𝑏. Hence 𝑟 ∣ 𝑏 as required.

Lemma. Let 𝑅 be a principal ideal domain. Then an element 𝑟 is irreducible if and only if
(𝑟) is maximal.

Proof. Suppose 𝑟 is irreducible. Since 𝑟 is not a unit, (𝑟) ≠ 𝑅. Suppose (𝑟) ⊆ 𝐽 ⊆ 𝑅 where 𝐽
is an ideal in 𝑅. Since 𝑅 is a principal ideal domain, 𝐽 = (𝑎) for some 𝑎 ∈ 𝑅. In particular,
𝑟 = 𝑎𝑏 for some 𝑏 ∈ 𝑅, since (𝑟) ⊆ 𝐽. Since 𝑟 is irreducible, either 𝑎 or 𝑏 is a unit. But if 𝑎
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is a unit, we have 𝐽 = 𝑅. If 𝑏 is a unit, then 𝑎 and 𝑟 are associates so they generate the same
ideal. Hence, (𝑟) is maximal.

Conversely, suppose (𝑟) is maximal. Note that 𝑟 is not a unit, since (𝑟) ≠ 𝑅. Suppose 𝑟 = 𝑎𝑏.
Then (𝑟) ⊆ (𝑎) ⊆ 𝑅. But since (𝑟) is maximal, either (𝑎) = (𝑟) or (𝑎) = 𝑅. If (𝑎) = (𝑟), then
𝑏 is a unit. If (𝑎) = 𝑅, then 𝑎 is a unit. Hence 𝑟 is irreducible. Note that this direction of
the proof did not require that 𝑅 was a principal ideal domain, however 𝑅 must still be an
integral domain.

Remark. Let 𝑅 be a principal ideal domain, and 0 ≠ 𝑟 ∈ 𝑅. Then, (𝑟) is maximal if and only
if 𝑟 is irreducible, which is true if and only if 𝑟 is prime, which is equivalent to the fact that
(𝑟) is prime. Hence, the maximal ideals are the nonzero prime ideals.

Definition. An integral domain is aEuclideandomain if there exists a function𝜑∶ 𝑅∖{0} →
ℤ≥0 such that, for all 𝑎, 𝑏 ∈ 𝑅.

(i) if 𝑎 ∣ 𝑏 then 𝜑(𝑎) ≤ 𝜑(𝑏);

(ii) if 𝑏 ≠ 0 then ∃𝑞, 𝑟 ∈ 𝑅 such that 𝑎 = 𝑏𝑞 + 𝑟 and either 𝑟 = 0 or 𝜑(𝑟) < 𝜑(𝑏).

Such a 𝜑 is called a Euclidean function.

Example. ℤ is a Euclidean domain, where the Euclidean function 𝜑 is the absolute value
function.

Proposition. Euclidean domains are principal ideal domains.

Proof. Let 𝑅 have Euclidean function 𝜑. Let 𝐼 ⊲ 𝑅 be a nonzero ideal. Let 𝑏 ∈ 𝐼 ∖ {0} that
minimises 𝜑(𝑏). Then (𝑏) ⊆ 𝐼. For any element 𝑎 ∈ 𝐼, we can use the Euclidean algorithm
to show 𝑎 = 𝑏𝑞 + 𝑟 where 𝑟 = 0 or 𝜑(𝑟) < 𝜑(𝑏). But since 𝑟 = 𝑎 − 𝑏𝑞 ∈ 𝐼, 𝜑(𝑟) cannot be
lower than the minimal element 𝜑(𝑏). Thus 𝑟 = 0, so 𝑎 = 𝑏𝑞. Hence, 𝐼 = (𝑏), so all ideals
are principal.

Remark. In the above proof, only the second property of the Euclidean function was used.
The first property is included in the definition since it will allow us to easily describe the
units in the ring.

𝑅× = {𝑢 ∈ 𝑅∶ 𝑢 ≠ 0, 𝜑(𝑢) = 𝜑(1)}

It can be shown that, if there exists a function 𝜑 satisfying (ii), there exists a (possibly not
unique) function 𝜑′ satisfying (i) and (ii).

Example. Let 𝐹 be a field. Then 𝐹[𝑋] is a Euclidean domain with Euclidean function
𝜑(𝑓) = deg(𝑓). We have already proven the requisite properties of Euclidean functions.

The ring 𝑅 = ℤ[𝑖] is a Euclidean domain with 𝜑(𝑢 + 𝑖𝑣) = 𝑁(𝑢 + 𝑖𝑣) = 𝑢2 + 𝑣2. Since
the norm is multiplicative, 𝑁(𝑧𝑤) = 𝑁(𝑧)𝑁(𝑤) which immediately gives property (i) in the
definition. Consider 𝑧, 𝑤 ∈ ℤ[𝑖] where 𝑤 ≠ 0. Consider 𝑧

𝑤
∈ ℂ. This has distance less than
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1 from the nearest element 𝑞 of 𝑅. Let 𝑟 = 𝑧 − 𝑤𝑞 ∈ 𝑅. Then 𝑧 = 𝑤𝑞 + 𝑟 where

𝜑(𝑟) = |𝑟|2 = |𝑧 − 𝑤𝑞|2 < |𝑤|2 = 𝜑(𝑤)

So property (ii) is satisfied.

Hence 𝐹[𝑋] and ℤ[𝑖] are principal ideal domains.

Example. Let 𝐴 be a nonzero 𝑛 × 𝑛 matrix over a field 𝐹. Let 𝐼 = {𝑓 ∈ 𝐹[𝑋]∶ 𝑓(𝐴) = 0}.
𝐼 is an ideal. Indeed, if 𝑓, 𝑔 ∈ 𝐼, then (𝑓 − 𝑔)(𝐴) = 𝑓(𝐴) − 𝑔(𝐴) = 0, and for 𝑓 ∈ 𝐼 and
𝑔 ∈ 𝐹[𝑋], we have (𝑓 ⋅ 𝑔)(𝐴) = 𝑓(𝐴) ⋅ 𝑔(𝐴) = 0 as required. Since 𝐹[𝑋] is a principal ideal
domain, 𝐼 = (𝑓) for some polynomial 𝑓 ∈ 𝐹[𝑋]. All units in 𝐹[𝑋] are the nonzero constant
polynomials. Hence, the polynomial of smallest degree in 𝐼 is unique up to multiplication
by a unit, so without loss of generality we may assume 𝑓 is monic. This yields the minimal
polynomial of 𝐴.

Example. Let 𝔽2 be the finite field of order 2, which is isomorphic to ℤ⟋2ℤ. Let 𝑓(𝑋) be the
polynomial 𝑋3 + 𝑋 + 1 ∈ 𝔽2[𝑋].

We claim that 𝑓 is irreducible. Suppose 𝑓 = 𝑔ℎ where the degrees of 𝑔, ℎ are positive. Since
the degree of 𝑓 is 3, one of 𝑔, ℎ must have degree 1. Hence 𝑓 has a root. But we can check
that 𝑓(0) = 𝑓(1) = 1 so 𝑓 has no root in 𝔽2. Hence 𝑓 is irreducible as required.

Since 𝔽2[𝑋] is a principal ideal domain, we have that (𝑓) ⊲ 𝔽2[𝑋] is a maximal ideal. Hence,
𝔽2[𝑋]⟋(𝑓) is a field. We can verify that this field has order 8, using the Euclidean algorithm.
Any element in this quotient has coset representative 𝑎𝑋2 + 𝑏𝑋 + 𝑐 for 𝑎, 𝑏, 𝑐 ∈ 𝔽2. We can
show that all 8 of these possibilities yields different polynomials. So we have constructed a
field of order 8. This technique will be explored further in Part II Galois Theory.

Example. The ring ℤ[𝑋] is not a principal ideal domain. Consider the ideal 𝐼 = (2, 𝑋) ⊲
ℤ[𝑋]. We can write

𝐼 = {2𝑓1(𝑋) + 𝑋𝑓2(𝑋)∶ 𝑓1, 𝑓2 ∈ ℤ[𝑋]} = {𝑓 ∈ ℤ[𝑋]∶ 2 ∣ 𝑓(0)}

Suppose 𝐼 = (𝑓) for some element 𝑓. Since 2 ∈ 𝐼, we must have 2 = 𝑓𝑔 for some polynomial
𝑔. By comparing degrees, the degrees of 𝑓 and 𝑔must be zero, since ℤ is an integral domain.
Hence 𝑓 is an integer, so 𝑓 = ±1 or 𝑓 = ±2. If 𝑓 = ±1 then 𝐼 = ℤ[𝑋], and if 𝑓 = ±2 then
𝐼 = 2ℤ[𝑋]. These both lead to contradictions, since 1 ∉ 𝐼 and 𝑋 ∈ 𝐼.

9.3. Unique factorisation domains
Definition. An integral domain is a unique factorisation domain if

(i) every nonzero, non-unit element is a product of irreducibles;

(ii) if𝑝1⋯𝑝𝑚 = 𝑞1⋯𝑞𝑛where𝑝𝑖, 𝑞𝑖 are irreducible, then𝑚 = 𝑛, and𝑝𝑖, 𝑞𝑖 are associates,
up to reordering.
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Proposition. Let 𝑅 be an integral domain satisfying property (i) above (every nonzero, non-
unit element is a product of irreducibles). Then 𝑅 is a unique factorisation domain if and
only if every irreducible is prime.

Proof. Suppose 𝑅 is a unique factorisation domain. Let 𝑝 ∈ 𝑅 be irreducible, and 𝑝 ∣ 𝑎𝑏.
Then 𝑎𝑏 = 𝑝𝑐 for some 𝑐 ∈ 𝑅. Writing 𝑎, 𝑏, 𝑐 as products of irreducibles, it follows from
uniqueness of factorisation that 𝑝 ∣ 𝑎 or 𝑝 ∣ 𝑏. Hence 𝑝 is prime.
Conversely, suppose every irreducible is prime. Suppose 𝑝1⋯𝑝𝑚 = 𝑞1⋯𝑞𝑛 where 𝑝𝑖, 𝑞𝑖 are
irreducible and hence prime. Since 𝑝1 ∣ 𝑞1⋯𝑞𝑛, we have 𝑝1 ∣ 𝑞𝑖 for some 𝑖. After reordering,
we may assume that 𝑝1 ∣ 𝑞1, so 𝑝1𝑢 = 𝑞1 for 𝑢 ∈ 𝑅. Since 𝑞1 is irreducible, 𝑢 is a unit since
𝑝1 cannot be a unit. Hence 𝑝1, 𝑞1 are associates. Cancelling 𝑝1 from both sides, we find
𝑝2⋯𝑝𝑚 = 𝑢𝑞2⋯𝑞𝑛. Wemay absorb this unit into 𝑞2 without loss of generality. Inductively,
all 𝑝𝑖 and 𝑞𝑖 are associates, for each 𝑖. Hence 𝑅 is a unique factorisation domain.

Definition. Let 𝑅 be a ring. Suppose, for all nested sequences of ideals in 𝑅 written 𝐼1 ⊆
𝐼2 ⊆ ⋯, there exists 𝑁 such that 𝐼𝑛 = 𝐼𝑛+1 for all 𝑛 ≥ 𝑁. Then, we say that 𝑅 is a Noetherian
ring.

This condition is known as the ‘ascending chain condition’. In other words, we cannot in-
finitely nest distinct ideals in a Noetherian ring.

Lemma. Principal ideal domains are Noetherian rings.

Proof. Let 𝐼 = ⋃∞
𝑖=1 𝐼𝑖. Then, 𝐼 is an ideal in 𝑅. Since 𝑅 is a principal ideal domain, 𝐼 = (𝑎)

for some 𝑎 ∈ 𝑅. Then 𝑎 ∈ ⋃∞
𝑖=1 𝐼𝑖, so in particular 𝑎 ∈ 𝐼𝑁 for some 𝑁. But then for all

𝑛 ≥ 𝑁, (𝑎) ⊆ 𝐼𝑁 ⊆ 𝐼𝑛 ⊆ 𝐼𝑛+1 ⊆ 𝐼 = (𝑎). So all inclusions are equalities, so in particular
𝐼𝑛 = 𝐼𝑛+1.

Theorem. If 𝑅 is a principal ideal domain, then it is a unique factorisation domain.

Proof. First, we verify property (i), that every nonzero, non-unit element is a product of
irreducibles. Let 𝑥 ≠ 0 be an element of 𝑅 which is not a unit. Suppose 𝑥 does not factor as
a product of irreducibles. This implies in particular that 𝑥 is not irreducible. By definition,
we can write 𝑥 as the product of two elements 𝑥1, 𝑦1 where 𝑥1, 𝑦1 are not units. Then either
𝑥1 or 𝑦1 is not a product of irreducibles, so without loss of generality we can suppose 𝑥1 is
not a product of irreducibles. We have (𝑥) ⊂ (𝑥1). This inclusion is strict, since 𝑦1 is not
a unit. Now, we can write 𝑥1 = 𝑥2𝑦2 where 𝑥2 is not a unit, and inductively we can create
(𝑥) ⊂ (𝑥1) ⊂ (𝑥2) ⊂ ⋯. But 𝑅 is Noetherian, so this is a contradiction. So every nonzero,
non-unit element is indeed a product of irreducibles.

By the proposition above, it suffices to show that every irreducible is prime. This has already
been shown previously. Hence 𝑅 is a unique factorisation domain.

Example. We have shown that all Euclidean domains are principal ideal domains, and
all principal ideal domains are unique factorisation domains, and all unique factorisation
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domains are integral domains. We now provide examples for counterexamples to the con-
verses.

The ring ℤ⟋4ℤ is not an integral domain since 2 is a zero divisor.

The ring ℤ[√−5] ≤ ℂ is integral, but not a unique factorisation domain.

The ring ℤ[𝑋] has been shown to be not a principal ideal domain. We can show using later
results that this is a unique factorisation domain.

We can construct the ring ℤ[ 1+√−19
2

], which can be shown to be not a Euclidean domain,
but is a principal ideal domain. This proof is beyond the scope of Part IB Groups, Rings and
Modules, but will be proved in Part II Number Fields.

Finally, ℤ[𝑖] is a Euclidean domain, and is hence a principal ideal domain, a unique factor-
isation domain, and an integral domain.

Definition. Let 𝑅 be an integral domain.

(i) 𝑑 ∈ 𝑅 is a common divisor of 𝑎1,… , 𝑎𝑛 ∈ 𝑅 if 𝑑 ∣ 𝑎𝑖 for all 𝑖;

(ii) 𝑑 ∈ 𝑅 is a greatest common divisor of 𝑎1,… , 𝑎𝑛 if for all common divisors 𝑑′, we have
𝑑′ ∣ 𝑑;

(iii) 𝑚 ∈ 𝑅 is a common multiple of 𝑎1,… , 𝑎𝑛 if 𝑎𝑖 ∣ 𝑚 for all 𝑖;

(iv) 𝑚 ∈ 𝑅 is a least commonmultiple of 𝑎1,… , 𝑎𝑛 if for all commonmultiples𝑚′, we have
𝑚 ∣ 𝑚′.

Remark. Greatest common divisors and lowest common multiples are unique up to associ-
ates, if they exist.

Proposition. In unique factorisation domains, greatest common divisors and least com-
mon multiples always exist.

Proof. Let 𝑎𝑖 = 𝑢𝑖∏𝑗 𝑝
𝑛𝑖𝑗
𝑗 where the 𝑝𝑗 are irreducible and pairwise non-associate, 𝑢𝑖 is a

unit, and 𝑛𝑖𝑗 ∈ ℤ≥0. We claim that 𝑑 = ∏𝑗 𝑝
𝑚𝑗
𝑗 , where 𝑚𝑗 = min1≤𝑖≤𝑛 𝑛𝑖𝑗 , is the greatest

common divisor. Certainly 𝑑 is a common divisor. If 𝑑′ is a common divisor, then 𝑑′ can
be written as a product of irreducibles, which will be denoted 𝑑′ = 𝑤∏𝑗 𝑝

𝑡𝑗
𝑖 . We can see

that 𝑡𝑗 ≤ 𝑛𝑖𝑗 for all 𝑖, so in particular, 𝑡𝑗 ≤ 𝑚𝑗 . This implies 𝑑′ ∣ 𝑑. Hence 𝑑 is a greatest
common divisor. The argument for the least commonmultiple is similar, replacing minima
with maxima.

9.4. Factorisation in polynomial rings
Theorem. Let 𝑅 be a unique factorisation domain. Then 𝑅[𝑋] is also a unique factorisation
domain.
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The proof for this theorem will require a number of key lemmas. In this subsection, 𝑅 will
denote a unique factorisation domain, with field of fractions 𝐹. We have 𝑅[𝑋] ≤ 𝐹[𝑋]. Since
polynomial rings over fields are Euclidean domains, 𝐹[𝑋] is a principal ideal domain, and
hence a unique factorisation domain. This does not immediately imply that𝑅[𝑋] is a unique
factorisation domain, however.

Definition. The content of a polynomial 𝑓 = ∑𝑛
𝑖=0 𝑎𝑖𝑋 𝑖 ∈ 𝑅[𝑋] is 𝑐(𝑓) = gcd{𝑎0,… , 𝑎𝑛}.

This is well-defined up to multiplication by a unit.

We say that 𝑓 is primitive if 𝑐(𝑓) is a unit.
Lemma. The product of primitive polynomials is primitive. Further, for 𝑓, 𝑔 ∈ 𝑅[𝑋], 𝑐(𝑓𝑔)
and 𝑐(𝑓)𝑐(𝑔) are associates.

Proof. Let 𝑓 = ∑𝑛
𝑖=0 𝑎𝑖𝑋 𝑖 and 𝑔 = ∑𝑚

𝑖=0 𝑏𝑖𝑋 𝑖. Suppose 𝑓𝑔 is not primitive, so 𝑐(𝑓𝑔) is not a
unit. This implies that there exists a prime 𝑝 such that 𝑝 ∣ 𝑐(𝑓𝑔). Since 𝑓, 𝑔 are primitive,
𝑝 ∤ 𝑐(𝑓) and 𝑝 ∤ 𝑐(𝑔).
Suppose 𝑝 does not divide all of the 𝑎𝑘 or the 𝑏ℓ. Let 𝑘, ℓ be the smallest values such that
𝑝 ∤ 𝑎𝑘 and 𝑝 ∤ 𝑏ℓ. Then, the coefficient of 𝑋𝑘+ℓ in 𝑓𝑔 is given by

∑
𝑖+𝑗=𝑘+ℓ

𝑎𝑖𝑏𝑗 = ⋯+ 𝑎𝑘−1𝑏ℓ+1⏟⎵⎵⎵⏟⎵⎵⎵⏟
divisible by 𝑝

+𝑎𝑘𝑏ℓ + 𝑎𝑘+1𝑏ℓ−1 +⋯⏟⎵⎵⎵⏟⎵⎵⎵⏟
divisible by 𝑝

Thus 𝑝 ∣ 𝑎𝑘𝑏ℓ. This is a contradiction as we have 𝑝 ∣ 𝑎𝑘 or 𝑝 ∣ 𝑏ℓ.
To prove the second part, let 𝑓 = 𝑐(𝑓)𝑓0 for some 𝑓0 ∈ 𝑅[𝑋]. Here, 𝑓0 is primitive. Similarly,
𝑔 = 𝑐(𝑔)𝑔0 for a primitive 𝑔0. Thus 𝑓𝑔 = 𝑐(𝑓)𝑐(𝑔)𝑓0𝑔0. The expression 𝑓0𝑔0 is a primitive
polynomial by the first part, so 𝑐(𝑓𝑔) is equal to 𝑐(𝑓)𝑐(𝑔) up to associates.

Corollary. If 𝑝 ∈ 𝑅 is prime in 𝑅, then 𝑝 is prime in 𝑅[𝑋].

Proof. Since 𝑅 is an integral domain, we have 𝑅[𝑋]× = 𝑅×, so 𝑝 is not a unit. Let 𝑓 ∈ 𝑅[𝑋].
Then 𝑝 ∣ 𝑓 in 𝑅[𝑋] if and only if 𝑝 ∣ 𝑐(𝑓) in 𝑅. Thus, if 𝑝 ∣ 𝑔ℎ in 𝑅[𝑋], we have 𝑝 ∣ 𝑐(𝑔ℎ) =
𝑐(𝑔)𝑐(ℎ). In particular, since 𝑝 is prime in 𝑅, we have 𝑝 ∣ 𝑐(𝑔) or 𝑝 ∣ 𝑐(ℎ), so 𝑝 ∣ 𝑔 or 𝑝 ∣ ℎ. So
𝑝 is prime in 𝑅[𝑋].

Lemma. Let 𝑓, 𝑔 ∈ 𝑅[𝑋], where 𝑔 is primitive. Then if 𝑔 ∣ 𝑓 in 𝐹[𝑋], then 𝑔 ∣ 𝑓 in 𝑅[𝑋].

Proof. Let 𝑓 = 𝑔ℎ, where ℎ ∈ 𝐹[𝑋]. We can find a nonzero 𝑎 ∈ 𝑅, such that 𝑎ℎ ∈ 𝑅[𝑋].
In particular, we can multiply the denominators of the coefficients of ℎ to form 𝑎. Now,
𝑎ℎ = 𝑐(𝑎ℎ)ℎ0 where ℎ0 is primitive. Then 𝑎𝑓 = 𝑐(𝑎ℎ)ℎ0𝑔. Since ℎ0 and 𝑔 are primitive, so
is ℎ0𝑔. Thus, taking contents, 𝑎 ∣ 𝑐(𝑎ℎ). This implies ℎ ∈ 𝑅[𝑋]. Hence 𝑔 ∣ 𝑓 in 𝑅[𝑋].

Lemma (Gauss’ lemma). Let 𝑓 ∈ 𝑅[𝑋] be primitive. Then if 𝑓 is irreducible in 𝑅[𝑋], we
have that 𝑓 is irreducible in 𝐹[𝑋].
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Proof. Since 𝑓 ∈ 𝑅[𝑋] is irreducible and primitive, its degree must be larger than zero.
Hence 𝑓 is not a unit in 𝐹[𝑋]. Suppose 𝑓 is not irreducible in 𝐹[𝑋], so 𝑓 = 𝑔ℎ for 𝑔, ℎ ∈ 𝐹[𝑋]
with degree larger than zero. Let 𝜆 ∈ 𝐹× such that 𝜆−1𝑔 ∈ 𝑅[𝑋] is primitive. For example,
let 𝑏 ∈ 𝑅 such that 𝑏𝑔 ∈ 𝑅[𝑋] to clear denominators, then 𝑏𝑔 = 𝑐(𝑏𝑔)𝑔0, giving 𝜆 = 𝑐(𝑏𝑔)𝑏−1.
Replacing 𝑔 by 𝜆−1𝑔 and ℎ by 𝜆ℎ, we still have a factorisation of 𝑓. Hence, we may assume
without loss of generality that 𝑔 ∈ 𝑅[𝑋] and is primitive. By the previous lemma, we have
that ℎ ∈ 𝑅[𝑋], with degrees larger than zero. This contradicts irreducibility.

Remark. We will see that the reverse implication in Gauss’ lemma also holds.

Lemma. Let 𝑔 ∈ 𝑅[𝑋] be primitive. If 𝑔 is prime in 𝐹[𝑋], then 𝑔 is prime in 𝑅[𝑋].

Proof. It suffices to show that if 𝑓1, 𝑓2 ∈ 𝑅[𝑋], then 𝑔 ∣ 𝑓1𝑓2 implies 𝑔 ∣ 𝑓1 or 𝑔 ∣ 𝑓2. Since 𝑔
is prime in 𝐹[𝑋], 𝑔 ∣ 𝑓1 or 𝑔 ∣ 𝑓2 in 𝐹[𝑋]. By the previous lemma, 𝑔 ∣ 𝑓1 or 𝑔 ∣ 𝑓2 in 𝑅[𝑋] as
required.

We can now prove the first theorem of this subsection, that polynomial rings over unique
factorisation domains are unique factorisation domains.

Proof. Let 𝑓 ∈ 𝑅[𝑋]. Then, 𝑓 = 𝑐(𝑓)𝑓0 for 𝑓0 primitive in 𝑅[𝑋]. Since 𝑅 is a unique factor-
isation domain, 𝑐(𝑓) is a product of irreducibles in 𝑅. If an element of 𝑅 is irreducible, it is
irreducible as an element of 𝑅[𝑋]. Hence, it suffices to find a factorisation of 𝑓0.

Suppose 𝑓0 is not irreducible, so 𝑓0 = 𝑔ℎ for 𝑔, ℎ ∈ 𝑅[𝑋]. Since 𝑓0 is primitive, 𝑔 and ℎ are
primitive, and the degrees of 𝑔, ℎ are larger than zero. By induction on the degree, we can
factor 𝑓0 as a product of primitive irreducibles in 𝑅[𝑋].

It now suffices to show uniqueness of the factorisation. By a previous proposition, it in fact
suffices to show that every irreducible element of 𝑅[𝑋] is prime. Let 𝑓 be irreducible. Write
𝑓 = 𝑐(𝑓)𝑓0, where 𝑓0 is primitive. Since 𝑓 is irreducible, 𝑓must be constant or primitive.

Suppose 𝑓 is constant. Since 𝑓 is irreducible in 𝑅[𝑋], it must be irreducible in 𝑅. As 𝑅 is a
unique factorisation domain, 𝑓 is prime in 𝑅. By a previous corollary, 𝑓 is prime in 𝑅[𝑋].

Now, suppose 𝑓 is primitive. Since 𝑓 is irreducible in 𝑅[𝑋], we can use Gauss’ lemma to
show that 𝑓 is irreducible in 𝐹[𝑋]. Thus, 𝑓 is prime in 𝐹[𝑋], as 𝐹[𝑋] is a unique factorisation
domain. Finally, we can see that 𝑓 is prime in 𝑅[𝑋] by the previous lemma.

Remark. We know that the prime elements in an integral domain are irreducible. This im-
plies that the implications in the last paragraph above are in fact equivalences. In particular,
in Gauss’ lemma, the implication is an equivalence.

Example. The above theorem implies that ℤ[𝑋] is a unique factorisation domain.

Let𝑅[𝑋1,… , 𝑋𝑛] be the ring of polynomials in𝑛 variables. We can rewrite this as𝑅[𝑋1]… [𝑋𝑛],
so by induction this is a unique factorisation domain if 𝑅 is.
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9. Factorisation in integral domains

9.5. Eisenstein’s criterion
Proposition. Let 𝑅 be a unique factorisation domain, and 𝑓(𝑋) = ∑𝑛

𝑖=0 𝑎𝑖𝑋 𝑖 ∈ 𝑅[𝑋] be a
primitive polynomial. Let 𝑝 ∈ 𝑅 be irreducible (or, equivalently, prime) such that
(i) 𝑝 ∤ 𝑎𝑛;
(ii) 𝑝 ∣ 𝑎𝑖 for all 𝑖 < 𝑛; and
(iii) 𝑝2 ∤ 𝑎0.
Then 𝑓 is irreducible in 𝑅[𝑋].

Proof. Suppose 𝑓 = 𝑔ℎ for 𝑔, ℎ ∈ 𝑅[𝑋] not units. Since 𝑓 is primitive, 𝑔, ℎmust have positive
degree. Let 𝑔(𝑋) = ∑𝑘

𝑖=0 𝑟𝑖𝑋 𝑖 and ℎ(𝑋) = ∑ℓ
𝑖=0 𝑠𝑖𝑋 𝑖, so 𝑘 + ℓ = 𝑛. Then 𝑝 ∤ 𝑎𝑛 = 𝑟𝑘𝑠ℓ, so

𝑝 ∤ 𝑟𝑘 and 𝑝 ∤ 𝑠ℓ. Further, 𝑝 ∣ 𝑎0 = 𝑟0𝑠0 so 𝑝 ∣ 𝑟0 or 𝑝 ∣ 𝑠0. Without loss of generality, we
may assume 𝑝 ∣ 𝑟0. There exists a minimal 𝑗 ≤ 𝑘 such that 𝑝 ∣ 𝑟𝑖 for all 𝑖 < 𝑗 but 𝑝 ∤ 𝑟𝑗 .

𝑎𝑗 = 𝑟0𝑠𝑗 + 𝑟1𝑠𝑗−1 +⋯+ 𝑟𝑗−1𝑠1 + 𝑟𝑗𝑠0

By assumption, 𝑎𝑗 is divisible by 𝑝 since 𝑗 < 𝑛. Further, the first 𝑗 terms in the expansion are
divisible by 𝑝. Thus, 𝑝 ∣ 𝑟𝑗𝑠0. By assumption, 𝑝 ∤ 𝑟𝑗 , so 𝑝 ∣ 𝑠0. In particular, 𝑝2 ∣ 𝑟0𝑠0 = 𝑎0,
contradicting the third criterion.

Example. Let 𝑓(𝑋) = 𝑋3+2𝑋 +5 ∈ ℤ[𝑋]. We will show this is irreducible as a polynomial
over ℚ. If 𝑓 is not irreducible in ℤ[𝑋], then it factorises as 𝑓(𝑋) = (𝑋 + 𝑎)(𝑋2 + 𝑏𝑋 + 𝑐) up
to multiplication by units. Here, 𝑎𝑐 = 5. But ±1,±5 are not roots of 𝑓, so this is irreducible
in ℤ[𝑋]. By Gauss’ lemma, 𝑓 is irreducible in ℚ[𝑋], since ℚ is the field of fractions of ℤ. In
particular, ℚ[𝑋]⟋(𝑓) is a field, since the ideal (𝑓) is maximal.

Example. Let 𝑝 ∈ ℤ be a prime, and let 𝑓(𝑋) = 𝑋𝑛 − 𝑝. By Eisenstein’s criterion, 𝑓 is
irreducible in ℤ[𝑋]. It is then irreducible in ℚ[𝑋] by Gauss’ lemma.
Example. Consider 𝑓(𝑋) = 𝑋𝑝−1+𝑋𝑝−2+⋯+𝑋+1 ∈ ℤ[𝑋], where 𝑝 is prime. Eisenstein’s
criterion does not apply directly. Consider

𝑓(𝑋) = 𝑋𝑝 − 1
𝑋 − 1 ; 𝑌 = 𝑋 − 1

By using this substitution of 𝑌 ,

𝑓(𝑌 + 1) = (𝑌 + 1)𝑝 − 1
𝑌 − 1 + 1 = 𝑌𝑝−1 + (𝑝1)𝑌

𝑝−2 +⋯+ ( 𝑝
𝑝 − 2)𝑌 + ( 𝑝

𝑝 − 1)

We can apply Eisenstein’s criterion to this new polynomial, since 𝑝 ∣ (𝑝
𝑖
) for all 1 ≤ 𝑖 ≤ 𝑝−1,

and 𝑝2 ∤ ( 𝑝
𝑝−1

) = 𝑝. Thus, 𝑓(𝑌 + 1) is irreducible in ℤ[𝑌], so 𝑓(𝑋) is irreducible in ℤ[𝑋]. Of
course, 𝑓(𝑋) is therefore irreducible in ℚ[𝑋] as before.
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VIII. Groups, Rings and Modules

10. Algebraic integers
10.1. Gaussian integers
Recall the ring of Gaussian integers ℤ[𝑖] = {𝑎 + 𝑏𝑖∶ 𝑎, 𝑏 ∈ ℤ} ≤ ℂ. There is a norm func-
tion 𝑁∶ ℤ[𝑖] → ℤ≥0 given by 𝑎 + 𝑏𝑖 ↦ 𝑎2 + 𝑏2, and 𝑁(𝑥𝑦) = 𝑁(𝑥)𝑁(𝑦). This norm is a
Euclidean function, giving the Gaussian integers the structure of a Euclidean domain and
hence a principal ideal domain and a unique factorisation domain. In particular, the primes
are the irreducibles. The units in ℤ[𝑖] are ±1,±𝑖, since they are the only elements of unit
norm.

Example. 2 is not irreducible in ℤ[𝑖], since it factors as (1 + 𝑖)(1 − 𝑖). 5 is not irreducible,
since it factors as (2 + 𝑖)(2 − 𝑖). These are nontrivial factorisations since the norms of the
factors are not unit length.

3 is a prime, since it is irreducible. Indeed, 𝑁(3) = 9, so if 3 were reducible it would factor
as 𝑎𝑏 where 𝑁(𝑎) = 𝑁(𝑏) = 3. But ℤ[𝑖] has no elements of norm 3. Similarly, 7 is a prime.

Proposition. Let 𝑝 ∈ ℤ be a prime. Then, the following are equivalent.

(i) 𝑝 is not prime in ℤ[𝑖];

(ii) 𝑝 = 𝑎2 + 𝑏2 for 𝑎, 𝑏 ∈ ℤ;

(iii) 𝑝 = 2 or 𝑝 ≡ 1mod 4.

Proof. Suppose 𝑝 is not prime in ℤ[𝑖]. So let 𝑝 = 𝑥𝑦 for 𝑥, 𝑦 ∈ ℤ[𝑖] not units. Then, 𝑝2 =
𝑁(𝑝) = 𝑁(𝑥)𝑁(𝑦). Since 𝑥, 𝑦 are not units, 𝑁(𝑥), 𝑁(𝑦) > 1 and in particular 𝑁(𝑥) = 𝑁(𝑦) =
𝑝. Writing 𝑥 = 𝑎 + 𝑏𝑖 for 𝑎, 𝑏 ∈ ℤ, we have 𝑝 = 𝑁(𝑥) = 𝑎2 + 𝑏2, which is the condition in
(ii).

Now, suppose 𝑝 = 𝑎2+𝑏2. The only squares modulo 4 are 0 and 1. Since 𝑝 ≡ 𝑎2+𝑏2 mod 4,
we have that 𝑝 cannot be congruent to 3, modulo 4.

Finally, suppose 𝑝 = 2 or 𝑝 ≡ 1mod 4. We have already observed above that 2 is not prime.
It hence suffices to consider the case where 𝑝 ≡ 1mod 4. We have that (ℤ⟋𝑝ℤ)

×
is cyclic of

order 𝑝−1 by a previous theorem. Hence, if 𝑝 ≡ 1mod 4, we have that 4 ∣ 𝑝− 1, and hence
(ℤ⟋𝑝ℤ)

×
contains an element of order 4. In particular, there exists 𝑥 ∈ ℤwith 𝑥4 ≡ 1mod 𝑝,

but 𝑥2 ≢ 1mod 𝑝. Then 𝑥2 ≡ −1mod 𝑝, or in other words, 𝑝 ∣ (𝑥2 + 1). But this factorises
as 𝑝 ∣ (𝑥 + 𝑖)(𝑥 − 𝑖). We can see that 𝑝 ∤ 𝑥 + 𝑖, 𝑝 ∤ 𝑥 − 𝑖, so 𝑝 cannot be prime.

Remark. The proof that (iii) implies (ii) is entirely nontrivial. It required lots of theory in
order to reach the result, even though its statement did not require even the notion of a
complex number.

Theorem. The primes in ℤ[𝑖] are, up to associates,

(i) 𝑎+ 𝑏𝑖, where 𝑎, 𝑏 ∈ ℤ and 𝑎2 +𝑏2 = 𝑝 is a prime in ℤwith 𝑝 = 2 or 𝑝 ≡ 1mod 4; and
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10. Algebraic integers

(ii) the primes 𝑝 in ℤ satisfying 𝑝 ≡ 3mod 4.

Proof. First, wemust check that all such elements are prime. For (i), note that𝑁(𝑎+𝑏𝑖) = 𝑝
is prime, so 𝑎 + 𝑏𝑖 is irreducible. We can use the above proof to deduce that primes in ℤ of
form (ii) are primes in ℤ[𝑖].
It now suffices to show that any prime in the Gaussian integers satisfies one of the two above
conditions. Let 𝑧 be prime in ℤ[𝑖]. We note that 𝑧 is also irreducible. Now,𝑁(𝑧) = 𝑧𝑧, which
is a factorisation of the norm into irreducibles.

Let 𝑝 be a prime in ℤ dividing 𝑁(𝑧). If 𝑝 ≡ 3mod 4, 𝑝 is prime in ℤ[𝑖]. So 𝑝 ∣ 𝑧 or 𝑝 ∣ 𝑧 so 𝑝
is associate to 𝑧 or 𝑧.
Otherwise, 𝑝 = 𝑎2 + 𝑏2 = (𝑎 + 𝑏𝑖)(𝑎 − 𝑏𝑖) where 𝑎 ± 𝑏𝑖 are prime in ℤ[𝑖] as they have norm
𝑝. So we have 𝑝 = (𝑎 + 𝑏𝑖)(𝑎 − 𝑏𝑖) ∣ 𝑧𝑧, so 𝑧 is an associate of 𝑎+ 𝑏𝑖 or 𝑎− 𝑏𝑖 by uniqueness
of factorisation.

Remark. In the above theorem, if 𝑝 = 𝑎2 + 𝑏2, 𝑎 + 𝑏𝑖 and 𝑎 − 𝑏𝑖 are not associate unless
𝑝 = 2.
Corollary. An integer 𝑛 ≥ 1 is the sum of two squares if and only if every prime factor 𝑝 of
𝑛 with 𝑝 ≡ 3mod 4 divides 𝑛 to an even power.

Proof. Suppose 𝑛 = 𝑎2 + 𝑏2. So 𝑛 = 𝑁(𝑎 + 𝑏𝑖). Hence 𝑛 is a product of norms of primes in
the Gaussian integers. By the classification above, those norms are

(i) the primes 𝑝 ∈ ℤ with 𝑝 ≢ 3mod 4; and
(ii) squares of primes 𝑝 ∈ ℤ with 𝑝 ≡ 3mod 4.

The result follows.

Example. We can write 65 = 5 ⋅13 as the sum of two primes since 5, 13 ≡ 1mod 4. We first
factorise 5 and 13 into primes in the Gaussian integers.

5 = (2 + 𝑖)(2 − 𝑖); 13 = (2 + 3𝑖)(2 − 3𝑖)

Thus, the factorisation of 65 into irreducibles in ℤ[𝑖] is

65 = (2 + 3𝑖)(2 + 𝑖)(2 − 3𝑖)(2 − 𝑖)
= [(2 + 3𝑖)(2 + 𝑖)][(2 + 3𝑖)(2 + 𝑖)]
= 𝑁((2 + 3𝑖)(2 − 𝑖))
= 𝑁(1 + 8𝑖) = 12 + 82

This was dependent on the choice of grouping of terms. Alternatively,

65 = 𝑁((2 + 𝑖)(2 − 3𝑖)) = 𝑁(7 + 4𝑖) = 72 + 42
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VIII. Groups, Rings and Modules

10.2. Algebraic integers
Definition. A number 𝛼 ∈ ℂ is algebraic if 𝛼 is a root of some nonzero polynomial 𝑓 ∈
ℚ[𝑋]. 𝛼 is an algebraic integer if it is a root of some monic polynomial 𝑓 ∈ ℤ[𝑋].

Let 𝑅 ≤ 𝑆, and 𝛼 ∈ 𝑆. We write 𝑅[𝛼] to denote the smallest subring of 𝑆 containing 𝑅 and
𝛼. Alternatively, 𝑅[𝛼] is the intersection of all subrings of 𝑆 containing 𝑅 and 𝛼. Further,
𝑅[𝛼] = Im𝜑 where 𝜑∶ 𝑅[𝑋] → 𝑆 is the homomorphism 𝑔(𝑋) ↦ 𝑔(𝛼).

Definition. Let 𝛼 be an algebraic number. Consider the homomorphism 𝜑∶ ℚ[𝑋] → ℂ
where 𝑔(𝑋) ↦ 𝑔(𝛼). Sinceℚ[𝑋] is a a principal ideal domain, ker𝜑 = (𝑓) for some 𝑓 ∈ ℚ[𝑋].
This ideal contains a nonzero element since 𝛼 is an algebraic number, hence 𝑓 is nonzero.
Multiplying 𝑓 by a unit, we may assume 𝑓 is monic without loss of generality. This unique
𝑓 is known as theminimal polynomial of 𝛼.

Corollary. All minimal polynomials are irreducible. By the first isomorphism theorem,
ℚ[𝑋]⟋(𝑓) ≅ ℚ[𝛼] ≤ ℂ. Any subring of a field is an integral domain. Hence (𝑓) is a prime
ideal in ℚ[𝑋], and hence 𝑓 is irreducible. In particular, this implies that ℚ[𝛼] is a field.

Proposition. Let 𝛼 be an algebraic integer, and 𝑓 ∈ ℚ[𝑋] be its minimal polynomial. Then
𝑓 ∈ ℤ[𝑋], and (𝑓) = ker 𝜃 ⊲ ℤ[𝑋] where 𝜃∶ ℤ[𝑋] → ℂ is given by 𝑔(𝑋) ↦ 𝑔(𝛼).

Remark. If 𝛼 is an algebraic integer, then the polynomial in the definition can be taken to
be minimal without loss of generality. ℤ[𝑋] is not a principal ideal domain, so the above
argument cannot work verbatim.

Proof. Let 𝑓 be the minimal polynomial of 𝛼. Let 𝜆 ∈ ℚ× such that 𝜆𝑓 has coefficients in ℤ
and is primitive. Then 𝜆𝑓(𝛼) = 0, so 𝜆𝑓 ∈ ker 𝜃.

Let 𝑔 ∈ ker 𝜃, so in particular 𝑔 ∈ ℤ[𝑋]. Then 𝑔 ∈ ker𝜑, and hence 𝜆𝑓 ∣ 𝑔 in ℚ[𝑋]. By a
previous lemma, 𝜆𝑓 ∣ 𝑔 in ℤ[𝑋]. Thus, ker 𝜃 = (𝜆𝑓).

Now, since 𝛼 is an algebraic integer, we know that there exists a monic polynomial 𝑔 ∈ ker 𝜃
such that 𝑔(𝛼) = 0. Then 𝜆𝑓 ∣ 𝑔 in ℤ[𝑋], so 𝜆 = ±1 as both 𝑓, 𝑔 are monic. Hence, 𝑓 ∈ ℤ[𝑋],
and (𝜆𝑓) = (𝑓) = ker 𝜃.

Let𝛼 ∈ ℂ be an algebraic integer. Then, applying the isomorphism theorem to 𝜃,ℤ[𝑋]⟋(𝑓) ≅
ℤ[𝛼]. For example:

ℤ[𝑋]⟋(𝑋2 + 1) ≅ ℤ[𝑖]
ℤ[𝑋]⟋(𝑋2 − 2) ≅ ℤ[√2]

ℤ[𝑋]⟋(𝑋2 + 𝑋 + 1) ≅ ℤ[−1 + √−3
2 ]

ℤ[𝑋]⟋(𝑋𝑛 − 𝑝) ≅ ℤ[𝑛√𝑝]
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10. Algebraic integers

Corollary. If 𝛼 is an algebraic integer, and 𝛼 ∈ ℚ, then 𝛼 ∈ ℤ.

Proof. Let 𝛼 ≠ 0, since the case where 𝛼 = 0 is trivial. Then the minimal polynomial of 𝛼
has coefficients in ℤ. Since 𝛼 is rational, the minimal polynomial is 𝑋 − 𝛼. Hence 𝛼 ∈ ℤ as
it is a coefficient of the minimal polynomial.
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VIII. Groups, Rings and Modules

11. Noetherian rings
11.1. Definition
Recall the definition of a Noetherian ring.

Definition. A ring 𝑅 is Noetherian if, for all sequences of nested ideals 𝐼1 ⊆ 𝐼2 ⊆ ⋯, there
exists 𝑁 ∈ ℕ such that for all 𝑛 > 𝑁, 𝐼𝑛 = 𝐼𝑛+1.
Lemma. Let𝑅 be a ring. Then𝑅 satisfies the ascending chain condition (so𝑅 is Noetherian)
if and only if all ideals in 𝑅 are finitely generated.
We have already shown that principal ideal domains are Noetherian, since they satisfy this
‘ascending chain’ condition. This now will immediately follow from the lemma.

Proof. First, suppose that all ideals in 𝑅 are finitely generated. Let 𝐼1 ⊆ 𝐼2 ⊆ ⋯ be an
ascending chain of ideals. Consider 𝐼 = ⋃∞

𝑖=1 𝐼𝑖, which is an ideal. 𝐼 is finitely generated,
so 𝐼 = (𝑎1,… , 𝑎𝑛). These elements belong to a nested union of ideals. In particular, we can
choose 𝑁 ∈ ℕ such that all 𝑎𝑖 are contained within 𝐼𝑁 . Then, for 𝑛 ≥ 𝑁, we find

(𝑎1,… , 𝑎𝑛) ⊆ 𝐼𝑁 ⊆ 𝐼𝑛 ⊆ 𝐼 = (𝑎1,… , 𝑎𝑛)
So the inclusions are all equalities, so 𝐼𝑁 = 𝐼𝑛.
Conversely, suppose that 𝑅 is Noetherian. Suppose that there exists an ideal 𝐽 ⊲ 𝑅 which is
not finitely generated. Let 𝑎1 ∈ 𝐽. Then since 𝐽 is not finitely generated, (𝑎1) ⊂ 𝐽. We can
therefore choose 𝑎2 ∈ 𝐽 ∖ (𝑎1), and then (𝑎1) ⊂ (𝑎1, 𝑎2) ⊂ 𝐽. Continuing inductively, we
contradict the ascending chain condition.

11.2. Hilbert’s basis theorem
Theorem. Let 𝑅 be a Noetherian ring. Then 𝑅[𝑋] is Noetherian.

Proof. Suppose there exists an ideal 𝐽 that is not finitely generated. Let 𝑓1 ∈ 𝐽 be an ele-
ment of minimal degree. Then (𝑓1) ⊂ 𝐽. So we can choose 𝑓2 ∈ 𝐽 ∖ (𝑓1), which is also of
minimal degree. Inductively we can construct a sequence 𝑓1, 𝑓2,…, where the degrees are
non-decreasing. Let 𝑎𝑖 be the leading coefficient of 𝑓𝑖, for all 𝑖. We then obtain a sequence
of ideals (𝑎1) ⊆ (𝑎1, 𝑎2) ⊆ (𝑎1, 𝑎2, 𝑎3) ⊆ ⋯ in 𝑅. Since 𝑅 is Noetherian, there exists 𝑚 ∈ ℕ
such that for all 𝑛 ≥ 𝑚, we have 𝑎𝑛 ∈ (𝑎1,… , 𝑎𝑚). Let 𝑎𝑚+1 = ∑𝑚

𝑖=1 𝜆𝑖𝑎𝑖, since 𝑎𝑚+1 lies in
the ideal (𝑎1,… , 𝑎𝑚). Now we define

𝑔(𝑋) =
𝑚
∑
𝑖=1

𝜆𝑖𝑋deg(𝑓𝑚+1−𝑓𝑖)𝑓𝑖

The degree of 𝑔 is equal to the degree of 𝑓𝑚+1, and they have the same leading coefficient
𝑎𝑚+1. Then, consider 𝑓𝑚+1 − 𝑔 ∈ 𝐽 and deg(𝑓𝑚+1 − 𝑔) < deg𝑓𝑚+1. By minimality of the
degree of 𝑓𝑚+1, 𝑓𝑚+1−𝑔 ∈ (𝑓1,… , 𝑓𝑚), hence 𝑓𝑚+1 ∈ (𝑓1,… , 𝑓𝑚). This contradicts the choice
of 𝑓𝑚+1, so 𝐽 is in fact finitely generated.
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Corollary. ℤ[𝑋1,… , 𝑋𝑛] is Noetherian. Similarly, 𝐹[𝑋1,… , 𝑋𝑛] is Noetherian for any field
𝐹, since fields satisfy the ascending chain condition.
Example. Let 𝑅 = ℂ[𝑋1,… , 𝑋𝑛]. Let 𝑉 ⊆ ℂ𝑛 be a subset of the form

𝑉 = {(𝑎1,… , 𝑎𝑛) ∈ ℂ𝑛∶ 𝑓(𝑎1,… , 𝑎𝑛) = 0, ∀𝑓 ∈ ℱ}

whereℱ ⊆ 𝑅 is a (possibly infinite) set of polynomials. Such a set is referred to as analgebraic
variety. Let

𝐼 = {
𝑚
∑
𝑖=1

𝜆𝑖𝑓𝑖 ∶ 𝑚 ∈ ℕ, 𝜆𝑖 ∈ 𝑅𝑖, 𝑓𝑖 ∈ ℱ}

We can check that 𝐼 ⊲ 𝑅. Since 𝑅 is Noetherian, 𝐼 = (𝑔1,… , 𝑔𝑟). Hence

𝑉 = {(𝑎1,… , 𝑎𝑛) ∈ ℂ𝑛∶ 𝑔(𝑎1,… , 𝑎𝑛) = 0, ∀𝑔 ∈ 𝐼}

Lemma. Let 𝑅 be a Noetherian ring, and 𝐼 ⊲ 𝑅. Then 𝑅⟋𝐼 is Noetherian.

Proof. Let 𝐽′1 ⊆ 𝐽′2 ⊆ ⋯ be a chain of ideals in 𝑅⟋𝐼. By the ideal correspondence, 𝐽′𝑖 corres-
ponds to an ideal 𝐽𝑖 that contains 𝐼, so 𝐽′𝑖 = 𝐽𝑖⟋𝐼. So 𝐽1 ⊆ 𝐽2 ⊆ ⋯ is a chain of ideals in 𝑅.
Since 𝑅 is Noetherian, there exists 𝑁 ∈ ℕ such that for all 𝑛 ≥ 𝑁, we have 𝐽𝑁 = 𝐽𝑛, and so
𝐽′𝑁 = 𝐽′𝑛. Hence 𝑅⟋𝐼 satisfies the ascending chain condition.

Example. The ring of Gaussian integers ℤ⟋(𝑋2 + 1) is Noetherian. If 𝑅[𝑋] is Noetherian,
then 𝑅[𝑋]⟋(𝑋) ≅ 𝑅 is Noetherian. This is a converse to the Hilbert basis theorem.

The ring of polynomials in countably many variables is not Noetherian.

ℤ[𝑋1, 𝑋2,… ] = ⋃
𝑛∈ℕ

ℤ[𝑋1,… , 𝑋𝑛]

In particular, consider the ascending chain (𝑋1) ⊂ (𝑋1, 𝑋2) ⊂ (𝑋1, 𝑋2, 𝑋3) ⊂ ⋯.

Let 𝑅 = {𝑓 ∈ ℚ[𝑋]∶ 𝑓(0) ∈ ℤ} ≤ ℚ[𝑋]. Even though ℚ[𝑋] is Noetherian, 𝑅 is not. Indeed,
consider (𝑋) ⊂ ( 1

2
𝑋) ⊂ ( 1

4
𝑋) ⊂ ( 1

8
𝑋) ⊂ ⋯. These inclusions are strict, since 2 ∈ 𝑅 is not a

unit.
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12. Modules
12.1. Definitions
Definition. Let 𝑅 be a ring. A module over 𝑅 is a triple (𝑀,+, ⋅) consisting of a set 𝑀 and
two operations +∶ 𝑀 ×𝑀 → 𝑀 and ⋅∶ 𝑅 × 𝑀 → 𝑀, that satisfy

(i) (𝑀,+) is an abelian group with identity 0 = 0𝑀 ;
(ii) (𝑟1 + 𝑟2) ⋅ 𝑚 = 𝑟1 ⋅ 𝑚 + 𝑟2 ⋅ 𝑚;
(iii) 𝑟 ⋅ (𝑚1 +𝑚2) = 𝑟 ⋅ 𝑚1 + 𝑟 ⋅ 𝑚2;

(iv) 𝑟1 ⋅ (𝑟2 ⋅ 𝑚) = (𝑟1 ⋅ 𝑟2) ⋅ 𝑚;
(v) 1𝑅 ⋅ 𝑚 = 𝑚;

Remark. Closure is implicitly required by the types of the + and ⋅ operations.
Example. Amodule over a field is precisely a vector space.

A ℤ-module is precisely the same as an abelian group, since

⋅∶ ℤ × 𝐴 → 𝐴; 𝑛 ⋅ 𝑎 =

⎧⎪⎪
⎨⎪⎪
⎩

𝑎 +⋯+ 𝑎⏟⎵⎵⏟⎵⎵⏟
𝑛 times

if 𝑛 > 0

0 if 𝑛 = 0

−(𝑎 +⋯+ 𝑎⏟⎵⎵⏟⎵⎵⏟
−𝑛 times

) if 𝑛 < 0

Let 𝐹 be a field, and 𝑉 be a vector space over 𝐹. Let 𝛼∶ 𝑉 → 𝑉 be an endomorphism. We
can turn 𝑉 into an 𝐹[𝑋]-module by

⋅∶ 𝐹[𝑋] × 𝑉 → 𝑉; 𝑓 ⋅ 𝑣 = (𝑓(𝛼))(𝑣)
Note that the structure of the 𝐹[𝑋]-module depends on the choice of 𝛼. We canwrite𝑉 = 𝑉𝛼
to disambiguate.

For any ring 𝑅, we can consider 𝑅𝑛 as an 𝑅-module via
𝑟 ⋅ (𝑟1,… , 𝑟𝑛) = (𝑟 ⋅ 𝑟1,… , 𝑟 ⋅ 𝑟𝑛)

In particular, the case 𝑛 = 1 shows that any ring 𝑅 can be considered an 𝑅-module where
the scalar multiplication in the ring and the module agree.

For an ideal 𝐼 ⊲ 𝑅, we can regard 𝐼 as an 𝑅-module, since 𝐼 is preserved undermultiplication
by elements in 𝑅. The quotient ring 𝑅⟋𝐼 is also an 𝑅-module, defining multiplication as
𝑟 ⋅ (𝑠 + 𝐼) = 𝑟𝑠 + 𝐼.
Let 𝜑∶ 𝑅 → 𝑆 be a ring homomorphism. Then any 𝑆-module can be regarded as an 𝑅-
module. We define 𝑟 ⋅ 𝑚 = 𝜑(𝑟) ⋅ 𝑚. In particular, this applies when 𝑅 is a subring of 𝑆,
and 𝜑 is the inclusion map. So any module over a ring can be viewed as a module over any
subring.
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12. Modules

Definition. Let𝑀 be an 𝑅-module. Then 𝑁 ⊆ 𝑀 is an 𝑅-submodule of 𝑀, written 𝑁 ≤ 𝑀,
if (𝑁,+) ≤ (𝑀,+), and for all 𝑟𝑛 ∈ 𝑁 for all 𝑟 ∈ 𝑅 and 𝑛 ∈ 𝑁.

Example. By considering 𝑅 as an 𝑅-module, a subset of 𝑅 is an 𝑅-submodule if and only
if it is an ideal. If 𝑅 = 𝐹 is a field, this definition corresponds to the definition of a vector
subspace.

Definition. Let 𝑁 ≤ 𝑀 be 𝑅-modules. Then, the quotient 𝑀⟋𝑁 is defined as the quotient
of groups under addition, and with scalar multiplication defined as 𝑟 ⋅ (𝑚 + 𝑁) = 𝑟𝑚 + 𝑁.
This is well-defined, since 𝑁 is preserved under scalar multiplication. This makes𝑀⟋𝑁 an
𝑅-module.

Remark. Submodules are analogous both to subrings and to ideals.

Definition. Let 𝑀,𝑁 be 𝑅-modules. Then 𝑓∶ 𝑀 → 𝑁 is a 𝑅-module homomorphism if it
is a homomorphism of (𝑀,+) and (𝑁,+), and scalar multiplication is preserved: 𝑓(𝑟 ⋅ 𝑚) =
𝑟 ⋅ 𝑓(𝑚). An 𝑅-module isomorphism is an 𝑅-module homomorphism that is a bijection.

Example. If 𝑅 = 𝐹 is a field, 𝐹-module homomorphisms are exactly linear maps.

Theorem. Let 𝑓∶ 𝑀 → 𝑁 be an 𝑅-module homomorphism. Then

(i) ker𝑓 = {𝑚 ∈ 𝑀∶ 𝑓(𝑚) = 0} ≤ 𝑀;

(ii) Im𝑓 = {𝑓(𝑚) ∈ 𝑁∶ 𝑚 ∈ 𝑀} ≤ 𝑁;

(iii) 𝑀⟋ker𝑓 ≅ Im𝑓.

Theorem. Let 𝐴, 𝐵 ≤ 𝑀 be 𝑅-submodules. Then

(i) 𝐴 + 𝐵 = {𝑎 + 𝑏∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} ≤ 𝑀;

(ii) 𝐴 ∩ 𝐵 ≤ 𝑀;

(iii) 𝐴⟋𝐴 ∩ 𝐵 ≅ 𝐴 + 𝐵⟋𝐵.

Theorem. For 𝑁 ≤ 𝐿 ≤ 𝑀 are 𝑅-submodules, then

𝑀/𝑁⟋𝐿/𝑁 ≅ 𝑀⟋𝐿

For 𝑁 ≤ 𝑀, there is a correspondence between submodules of 𝑀⟋𝑁 and submodules of 𝑀
containing𝑁. These isomorphism theorems can be proved exactly as before. Note that these
results apply to vector spaces; for example, the first isomorphism theorem immediately gives
the rank-nullity theorem.

12.2. Finitely generated modules
Definition. Let 𝑀 be an 𝑅-module. If 𝑚 ∈ 𝑀, then we write 𝑅𝑚 = {𝑟𝑚∶ 𝑟 ∈ 𝑅}. This is
an 𝑅-submodule of𝑀, known as the submodule generated by𝑚.
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If 𝐴, 𝐵 ≤ 𝑀, we can define 𝐴+𝐵 = {𝑎 + 𝑏∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}, known as the sum of submodules.
In particular, this sum is commutative.

Definition. A module 𝑀 is finitely generated if it is the sum of finitely many submodules
generated by a single element. In other words,𝑀 = 𝑅𝑚1 +⋯+ 𝑅𝑚𝑛.

This is the analogue of finite dimensionality in linear algebra.

Lemma. An 𝑅-module 𝑀 is finitely generated if and only if there exists a surjective 𝑅-
module homomorphism 𝑓∶ 𝑅𝑛 → 𝑀 for some 𝑛.

Proof. If𝑀 is finitely generated, we have𝑀 = 𝑅𝑚1 +⋯+ 𝑅𝑚𝑛. We define 𝑓∶ 𝑅𝑛 → 𝑀 by
(𝑟1,… , 𝑟𝑛) ↦ 𝑟1𝑚1 +⋯+ 𝑟𝑛𝑚𝑛. This is surjective.

Conversely, suppose such a surjective homomorphism 𝑓 exists. Let 𝑒𝑖 = (0,… , 1,… , 0) be
the element of 𝑅𝑛 with all entries zero except for 1 in the 𝑖th place. Let 𝑚𝑖 = 𝑓(𝑒𝑖). Then,
since 𝑓 is surjective, any element 𝑚 ∈ 𝑀 is contained in the image of 𝑓, so is of the form
𝑓(𝑟1,… , 𝑟𝑛) = 𝑟1𝑚1 +⋯+ 𝑟𝑛𝑚𝑛.

Corollary. Any quotient by a submodule of a finitely generatedmodule is finitely generated.

Proof. Let 𝑁 ≤ 𝑀, where 𝑀 is finitely generated. Then there exists a surjective 𝑅-module
homomorphism 𝑓∶ 𝑅𝑛 → 𝑀. Then 𝑞 ∘ 𝑓, where 𝑞 is the quotient map, is also a surjective
homomorphism. So𝑀⟋𝑁 is finitely generated.

Example. It is not always the case that a submodule of a finitely generatedmodule is finitely
generated. Let 𝑅 be a non-Noetherian ring, and 𝐼 an ideal in 𝑅 that is not finitely generated
(in the ring sense). 𝑅 is a finitely generated 𝑅-module, since 𝑅1 = 𝑅. 𝐼 is a submodule of 𝑅,
which is not finitely generated (in the module sense).

Remark. If 𝑅 is Noetherian, it is always the case that submodules of finitely generated 𝑅-
modules are finitely generated. This will be shown on the example sheets.

12.3. Torsion
Definition. Let𝑀 be an 𝑅-module.

(i) 𝑚 ∈ 𝑀 is torsion if there exists 0 ≠ 𝑟 ∈ 𝑅 such that 𝑟𝑚 = 0;

(ii) 𝑀 is a torsion module if every element is torsion;

(iii) 𝑀 is a torsion-free module if 0 is the only torsion element.

Example. The torsion elements in aℤ-module (which is an abelian group) are precisely the
elements of finite order. If 𝐹 is a field, any 𝐹-module is torsion-free.
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12.4. Direct sums
Definition. Let𝑀1,… ,𝑀𝑛 be 𝑅-modules. Then the direct sum of𝑀1,… ,𝑀𝑛, written𝑀1⊕
⋯⊕𝑀𝑛, is the set𝑀1 ×⋯×𝑀𝑛, with the operations of addition and scalar multiplication
defined componentwise. We can show that the direct sum of (finitely many) 𝑅-modules is
an 𝑅-module.

Example. 𝑅𝑛 = 𝑅 ⊕⋯⊕𝑅, where we take the direct sum of 𝑛 copies of 𝑅.

Lemma. Let𝑀 =⨁𝑛
𝑖=1𝑀𝑖, and for each𝑀𝑖, let 𝑁 𝑖 ≤ 𝑀𝑖. Then 𝑁 =⨁𝑛

𝑖=1𝑁 𝑖 is a submod-
ule of𝑀. Further,

𝑀⟋𝑁 =

𝑛

⨁
𝑖=1

𝑀𝑖⟋ 𝑛

⨁
𝑖=1

𝑁 𝑖
≅

𝑛

⨁
𝑖=1

𝑀𝑖⟋𝑁 𝑖

Proof. First, we can see that this𝑁 is a submodule. Applying the first isomorphism theorem
to the surjective𝑅-module homomorphism𝑀 →⨁𝑛

𝑖=1
𝑀𝑖⟋𝑁 𝑖

given by (𝑚1,… ,𝑚𝑛) ↦ (𝑚1+
𝑁1,… ,𝑚𝑛 + 𝑁𝑛), the result follows as required, since the kernel is 𝑁.

12.5. Free modules
Definition. Let 𝑚1,… ,𝑚𝑛 ∈ 𝑀. The set {𝑚1,… ,𝑚𝑛} is independent if ∑

𝑛
𝑖=1 𝑟𝑖𝑚𝑖 = 0

implies that the 𝑟𝑖 are all zero.

Definition. A subset 𝑆 ⊆ 𝑀 generates𝑀 freely if:

(i) 𝑆 generates𝑀, so for all 𝑚 ∈ 𝑀, we can find finitely many entries 𝑠𝑖 and coefficients
𝑟𝑖 such that𝑚 = ∑𝑘

𝑖=1 𝑟𝑖𝑠𝑖;

(ii) any function 𝜓∶ 𝑆 → 𝑁, where 𝑁 is an 𝑅-module, extends to an 𝑅-module homo-
morphism 𝜃∶ 𝑀 → 𝑁.

Remark. In (ii), such an extension 𝜃 is always unique if it exists, by (i).

Definition. An 𝑅-module𝑀 freely generated by some subset 𝑆 ⊆ 𝑀 is called free. We say
that 𝑆 is a free basis for𝑀.

Remark. Free bases in the study of modules are analogous to bases in linear algebra. All
vector spaces are free modules, but not all modules are free.

Proposition. For a finite subset 𝑆 = {𝑚1,… ,𝑚𝑛} ⊆ 𝑀, the following are equivalent.

(i) 𝑆 generates𝑀 freely;

(ii) 𝑆 generates𝑀, and 𝑆 is independent;

(iii) every element of𝑀 can be written uniquely as 𝑟1𝑚1 +⋯+ 𝑟𝑛𝑚𝑛 for some 𝑟𝑖 ∈ 𝑅;
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(iv) the 𝑅-module homomorphism 𝑅𝑛 → 𝑀 given by (𝑟1,… , 𝑟𝑛) ↦ 𝑟1𝑚1 + ⋯ + 𝑟𝑛𝑚𝑛 is
bijective, so is an isomorphism.

Proof. Not all implications are shown, but they are similar to arguments found in Part IB
Linear Algebra. We show (i) implies (ii). Let 𝑆 generate𝑀 freely. Suppose 𝑆 is not independ-
ent. Then there exist 𝑟𝑖 such that∑

𝑛
𝑖=1 𝑟𝑖𝑚𝑖 = 0 but not all 𝑟𝑖 are zero. Let 𝑟𝑗 ≠ 0. Since 𝑆

generates𝑀 freely, consider the module homomorphism 𝜓∶ 𝑆 → 𝑅 given by

𝜓(𝑚𝑖) = {1 if 𝑖 = 𝑗
0 otherwise

Then

0 = 𝜃(0) = 𝜃(
𝑛
∑
𝑖=1

𝑟𝑖𝑚𝑖) =
𝑛
∑
𝑖=1

𝑟𝑖𝜃(𝑚𝑖) = 𝑟𝑗 ≠ 0

This is a contradiction, so 𝑆 is independent.
To show (ii) implies (iii), it suffices to show uniqueness. If there exist two ways to write an
element as a linear combination, consider their difference to find a contradiction from (ii).

We can show (iii) implies (i). Then it remains to show (iii) and (iv) are equivalent.

Example. A non-trivial finite abelian group is not a free ℤ-module.
The set {2, 3} generates ℤ as a ℤ-module. This is not a free basis, since they are not independ-
ent: 2 ⋅ 3 − 3 ⋅ 2 = 0. However, it contains no subset that is a free basis. This is different to
vector spaces, where we can always construct a basis from a subset of a spanning set.

Proposition (invariance of dimension). Let 𝑅 be a nonzero ring. If 𝑅𝑚 ≅ 𝑅𝑛 as 𝑅-modules,
then𝑚 = 𝑛.

Proof. Let 𝐼 ⊲ 𝑅, and 𝑀 an 𝑅-module. We define 𝐼𝑀 = {∑𝑎𝑖𝑚𝑖 ∶ 𝑎𝑖 ∈ 𝐼,𝑚𝑖 ∈ 𝑀}. Since
𝐼 is an ideal, we can show that 𝐼𝑀 is a submodule of 𝑀. The quotient module 𝑀⟋𝐼𝑀 is an
𝑅-module, but we can also show that it is an 𝑅⟋𝐼-module, by defining scalar multiplication
as

(𝑟 + 𝐼) ⋅ (𝑚 + 𝐼𝑀) = (𝑟 ⋅ 𝑚 + 𝐼𝑀)
We can check that this is well-defined; this follows from the fact that for 𝑏 ∈ 𝐼, 𝑏⋅(𝑚+𝐼𝑀) =
𝑏𝑚 + 𝐼𝑀, but 𝑏 ∈ 𝐼 so 𝑏𝑚 ∈ 𝐼𝑀.

Now, suppose that 𝑅𝑚 ≅ 𝑅𝑛. Then let 𝐼 ⊲ 𝑅 be a maximal ideal in 𝑅. We can prove the
existence of such an ideal under the assumption of the axiom of choice, and in particular
using Zorn’s lemma. By the above discussion, we find an isomorphism of 𝑅⟋𝐼-modules

(𝑅⟋𝐼)
𝑚
≅ 𝑅𝑚⟋𝐼𝑅𝑚 ≅ 𝑅𝑛⟋𝐼𝑅𝑛 ≅ (𝑅⟋𝐼)

𝑛

This is an isomorphism of vector spaces over 𝑅⟋𝐼 which is a field, since 𝐼 is maximal. Hence,
using the corresponding result from linear algebra, 𝑛 = 𝑚.
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12.6. Row and column operations
We will assume that 𝑅 is a Euclidean domain in this subsection, and let 𝜑 be a Euclidean
function for 𝑅. We will consider an𝑚× 𝑛matrix with entries in 𝑅.

Definition. The elementary row operations on a matrix are

(i) add 𝜆 ∈ 𝑅multiplied by the 𝑗th row to the 𝑖th row, where 𝑖 ≠ 𝑗;

(ii) swap the 𝑖th row and the 𝑗th row;

(iii) multiply the 𝑖th row by 𝑢 ∈ 𝑅×.

Each of these operations can be realised by left-multiplication by some𝑚×𝑚matrix. These
operations are all invertible, so their matrices are all invertible.

We candefine elementary columnoperations in an analogousway, using right-multiplication
by an 𝑛 × 𝑛matrix instead.

Definition. Two𝑚×𝑛matrices 𝐴, 𝐵 are equivalent if there exists a sequence of elementary
row and column operations that transforms onematrix into the other. If they are equivalent,
then there exist invertible matrices 𝑃,𝑄 such that 𝐵 = 𝑄𝐴𝑃.

Definition. A 𝑘 × 𝑘minor of an𝑚×𝑛matrix 𝐴 is the determinant of a 𝑘 × 𝑘 submatrix of
𝐴, which is a matrix of 𝐴 produced by removing𝑚− 𝑘 rows and 𝑛 − 𝑘 columns.

The 𝑘th Fitting ideal Fit𝑘(𝐴) ⊲ 𝑅 is the ideal generated by the 𝑘 × 𝑘minors of 𝐴.

Lemma. The 𝑘th Fitting ideal of a matrix is invariant under elementary row and column
operations.

Proof. It suffices by symmetry to show that the elementary row operations do not change the
Fitting ideal. For the first elementary row operation on a matrix 𝐴, suppose we add 𝜆 ∈ 𝑅
multiplied by the 𝑗th row to the 𝑖th row, yielding a matrix 𝐴′. In particular, 𝑎𝑖𝑘 ↦ 𝑎𝑖𝑘+𝜆𝑎𝑗𝑘
for all 𝑘. Let 𝐶 be a 𝑘 × 𝑘 submatrix of 𝐴 and 𝐶′ the corresponding submatrix of 𝐴′.

If row 𝑖 was not chosen in 𝐶, then 𝐶 and 𝐶′ are the same matrix. Hence the corresponding
minors are equal. If row 𝑖 and row 𝑗 were both chosen in 𝐶, we have that 𝐶, 𝐶′ differ by
a row operation. Since the determinant is invariant under this elementary row operations,
the corresponding minors are equal.

If row 𝑖 was chosen but row 𝑗 was not chosen, by expanding the determinant along the 𝑖th
row, we find

det𝐶′ = det𝐶 + 𝜆 det𝐷

where we can show that 𝐷 is a 𝑘 × 𝑘 submatrix of 𝐴 that includes row 𝑗 but not row 𝑖. By
definition, det𝐷 ∈ Fit𝑘(𝐴) and det𝐶 ∈ Fit𝑘(𝐴), so certainly det𝐶′ ∈ Fit𝑘(𝐴). Hence
Fit𝑘(𝐴′) ⊆ Fit𝑘(𝐴). By the invertibility of the elementary row operations, Fit𝑘(𝐴′) ⊇ Fit𝑘(𝐴).

The proofs for the other elementary row operations are left as an exercise.
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12.7. Smith normal form
Theorem. An𝑚× 𝑛matrix 𝐴 = (𝑎𝑖𝑗) over a Euclidean domain 𝑅 is equivalent to a matrix
of the form

⎛
⎜
⎜
⎜
⎜
⎝

𝑑1
⋱

𝑑𝑡
0

⋱

⎞
⎟
⎟
⎟
⎟
⎠

; 𝑑1 ∣ 𝑑2 ∣ ⋯ ∣ 𝑑𝑡

The 𝑑𝑖 are known as invariant factors, and they are unique up to associates.

Proof. If 𝐴 = 0, the matrix is already in Smith normal form. Otherwise, we can swap
columns and rows such that 𝑎11 ≠ 0. We will reduce 𝜑(𝑎11) as much as possible until it
divides every other element in the matrix, using the following algorithm.

If 𝑎11 ∤ 𝑎1𝑗 for some 𝑗 ≥ 2, then 𝑎1𝑗 = 𝑞𝑎11 + 𝑟 where 𝑞, 𝑟 ∈ 𝑅 and 𝜑(𝑟) < 𝜑(𝑎11). We can
subtract 𝑞multiplied by column 1 from column 𝑗. Swapping such columns leaves 𝑎11 = 𝑟. If
𝑎11 ∤ 𝑎𝑖1 for some 𝑖 ≥ 2, then repeat the above process using row operations. Now, 𝑎11 ∣ 𝑎𝑖𝑗
for all 𝑖, 𝑗. These steps are repeated until 𝑎11 divides all entries of the first row and first
column. This algorithm will always terminate, for example because the Euclidean function
takes values in ℤ≥0 and 𝜑(𝑎11) strictly decreases in each iteration.
Now, we can subtract multiples of the first row and column from the others to give

𝐴 =
⎛
⎜
⎜
⎝

𝑎11 0 ⋯ 0
0
⋮ 𝐴′
0

⎞
⎟
⎟
⎠

If 𝑎11 ∤ 𝑎𝑖𝑗 for 𝑖, 𝑗 ≥ 2, then add the 𝑖th row to the first row. There is now an element in
the first row that does 𝑎11 not divide. We can then perform column operations as above to
decrease 𝜑(𝑎11). Wewill then restart the algorithm. After finitelymany steps, this algorithm
will terminate and 𝑎11 will divide all elements 𝑎𝑖𝑗 of the matrix.

𝐴 =
⎛
⎜
⎜
⎝

𝑎11 0 ⋯ 0
0
⋮ 𝐴′
0

⎞
⎟
⎟
⎠

; 𝑎11 ≡ 𝑑1 ∣ 𝑎𝑖𝑗

We can now apply the algorithm to 𝐴′, since column and row operations not including the
first row or column do not change whether 𝑎11 ∣ 𝑎𝑖𝑗 .
We now demonstrate uniqueness of the invariant factors. Suppose𝐴 has Smith normal form
with invariant factors 𝑑𝑖 where 𝑑1 ∣ ⋯ ∣ 𝑑𝑡. Then, for all 𝑘, Fit𝑘(𝐴) can be evaluated in Smith
normal form by invariance of the Fitting ideal under row and column operations. Hence
Fit𝑘(𝐴) = (𝑑1𝑑2⋯𝑑𝑘) ⊲ 𝑅. Thus, the product 𝑑1⋯𝑑𝑘 depends only on 𝐴, and is unique up
to associates. Cancelling, we can see that each 𝑑𝑖 depends only on 𝐴, up to associates.
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Example. Consider the matrix over ℤ given by

𝐴 = (2 −1
1 2 )

Using elementary row and column operations,

(2 −1
1 2 )

𝑐1↦𝑐1+𝑐2−−−−−−→ (1 −1
3 2 )

𝑐2↦𝑐1+𝑐2−−−−−−→ (1 0
3 5)

𝑟2↦−3𝑟1+𝑟2−−−−−−−−→ (1 0
0 5)

This is in Smith normal form as 1 ∣ 5.
Alternatively, (𝑑1) = (2, −1, 1, 2) = (1). So 𝑑1 = ±1. Further, (𝑑1𝑑2) = (det𝐴) = (5). So
𝑑1𝑑2 = ±5 and hence 𝑑2 = ±5.

12.8. The structure theorem
Lemma. Let 𝑅 be a Euclidean domain with Euclidean function 𝜑 (or, indeed, a principal
ideal domain). Any submodule of the free module 𝑅𝑚 is generated by at most𝑚 elements.

Proof. Let 𝑁 ≤ 𝑅𝑚. Consider

𝐼 = {𝑟 ∈ 𝑅∶ ∃𝑟2,… , 𝑟𝑚 ∈ 𝑅, (𝑟, 𝑟2,… , 𝑟𝑚) ∈ 𝑁}

Since𝑁 is a submodule, this is an ideal. Since 𝑅 is a principal ideal domain, 𝐼 = (𝑎) for some
𝑎 ∈ 𝑅. Let 𝑛 = (𝑎, 𝑎2,… , 𝑎𝑚) ∈ 𝑁. For (𝑟1,… , 𝑟𝑚) ∈ 𝑁, we have 𝑟1 = 𝑟𝑎 for some 𝑟. Hence
(𝑟1,… , 𝑟𝑚)−𝑟𝑛 = (0, 𝑟2−𝑟𝑎2,… , 𝑟𝑚−𝑟𝑎𝑚), which lies in𝑁′ = 𝑁∩{0}×𝑅𝑚−1 ≤ 𝑅𝑚−1, hence
𝑁 = 𝑅𝑛 + 𝑁′. By induction, 𝑁′ is generated by 𝑛2,… , 𝑛𝑚, hence (𝑛, 𝑛2,… , 𝑛𝑚) generate
𝑁.

Theorem. Let 𝑅 be a Euclidean domain, and 𝑁 ≤ 𝑅𝑚. Then there is a free basis 𝑥1,… , 𝑥𝑚
for 𝑅𝑚 such that 𝑁 is generated by 𝑑1𝑥1,… , 𝑑𝑡𝑥𝑡 for some 𝑑𝑖 ∈ 𝑅 and 𝑡 ≤ 𝑚, and such that
𝑑1 ∣ ⋯ ∣ 𝑑𝑡.

Proof. By the above lemma, we have 𝑁 = 𝑅𝑦1 + ⋯ + 𝑅𝑦𝑛 for some 𝑦𝑖 ∈ 𝑅𝑚 for some
𝑛 ≤ 𝑚. Each 𝑦𝑖 belongs to 𝑅𝑚 so we can form the𝑚× 𝑛matrix 𝐴 which has columns 𝑦𝑖. 𝐴
is equivalent to a matrix 𝐴′ in Smith normal form with invariant factors 𝑑1 ∣ ⋯ ∣ 𝑑𝑡.
𝐴′ is obtained from 𝐴 by elementary row and column operations. Switching row 𝑖 and row 𝑗
in 𝐴 corresponds to reassigning the standard basis elements 𝑒𝑖 and 𝑒𝑗 to each other. Adding
a multiple of row 𝑖 to row 𝑗 corresponds to replacing 𝑒1,… , 𝑒𝑚 with a linear combination of
these basis elements which is a free basis. In general, each row operation simply changes
the choice of free basis used for 𝑅𝑚. Analogously, each column operation changes the set of
generators 𝑦𝑖 for 𝑁.
Hence, after applying these row and column operations, the free basis 𝑒𝑖 of 𝑅𝑚 is converted
into 𝑥1,… , 𝑥𝑚, and 𝑁 is generated by 𝑑1𝑥1,… , 𝑑𝑡𝑥𝑡.
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Theorem (structure theorem for finitely generated modules over Euclidean domains). Let
𝑅 be a Euclidean domain, and𝑀 a finitely generated module over 𝑅. Then

𝑀 ≅ 𝑅⟋(𝑑1) ⊕⋯⊕ 𝑅⟋(𝑑𝑡) ⊕ 𝑅 ⊕⋯⊕ 𝑅⏟⎵⎵⏟⎵⎵⏟
𝑘 copies

≅ 𝑅⟋(𝑑1) ⊕⋯⊕ 𝑅⟋(𝑑𝑡) ⊕ 𝑅𝑘

for some 0 ≠ 𝑑𝑖 ∈ 𝑅 and 𝑑1 ∣ ⋯ ∣ 𝑑𝑡, and where 𝑘 ≥ 0. The 𝑑𝑖 are called invariant factors.

Proof. Since 𝑀 is a finitely generated module, there exists a surjective 𝑅-module homo-
morphism 𝜑∶ 𝑅𝑚 → 𝑀 for some 𝑚. By the first isomorphism theorem, 𝑀 ≅ 𝑅𝑚⟋ker𝜑.
By the previous theorem, there exists a free basis 𝑥1,… , 𝑥𝑚 for 𝑅𝑚 such that ker𝜑 ≤ 𝑅𝑚 is
generated by 𝑑1𝑥1,… , 𝑑𝑡𝑥𝑡 and where 𝑑1 ∣ ⋯ ∣ 𝑑𝑡. Then,

𝑀 ≅

𝑅 ⊕…𝑅⏟⎵⏟⎵⏟
𝑘 copies

𝑑1𝑅 ⊕⋯⊕ 𝑑𝑡𝑅 ⊕ 0⊕⋯⊕ 0⏟⎵⎵⏟⎵⎵⏟
𝑚−𝑡 copies

≅ 𝑅⟋(𝑑1) ⊕⋯⊕ 𝑅⟋(𝑑𝑡) ⊕ 𝑅 ⊕⋯⊕ 𝑅⏟⎵⎵⏟⎵⎵⏟
𝑚−𝑡 copies

Remark. After deleting those 𝑑𝑖 which are units, the invariant factors of𝑀 are unique up to
associates. The proof is omitted.

Corollary. Let 𝑅 be a Euclidean domain. Then any finitely generated torsion-free module
is free.

Proof. Since 𝑀 is torsion-free, there are no submodules of the form 𝑅⟋(𝑑) with 𝑑 nonzero,
since then multiplying an element of𝑀 by 𝑑 would give zero. Hence, by the structure the-
orem,𝑀 ≅ 𝑅𝑚 for some𝑚.

Example. Consider𝑅 = ℤ, and the abelian group𝐺 = ⟨𝑎, 𝑏⟩ subject to the relations 2𝑎+𝑏 =
0 and −𝑎 + 2𝑏 = 0, so 𝐺 ≅ ℤ2⟋𝑁 where 𝑁 is the ℤ-submodule of ℤ2 generated by (2, 1) and
(−1, 2). Consider

𝐴 = (2 −1
1 2 )

which has Smith normal form 𝑑1 = 1 and 𝑑2 = 5. Hence, by changing basis for ℤ2, we can
let 𝑁 be generated by (1, 0) and (0, 5). Hence,

𝐺 ≅ ℤ⊕ ℤ⟋ℤ⊕ 5ℤ ≅ ℤ⟋5ℤ

478



12. Modules

12.9. Primary decomposition theorem
More generally, applying the structure theorem to ℤ-modules, we obtain the structure the-
orem for finitely generated abelian groups:

Theorem. Let 𝐺 be a finitely generated abelian group. Then

𝐺 ≅ 𝐶𝑑1 ×⋯× 𝐶𝑑𝑡 × ℤ𝑟

where 𝑑1 ∣ ⋯ ∣ 𝑑𝑡 in ℤ, and 𝑟 ≥ 0.
We have replaced the submodule notation ℤ⟋𝑛ℤ and ⊕ with the group notation 𝐶𝑛 and ×.
The previous theorem for the structure of finite abelian groups is a special case of this the-
orem, where 𝑟 = 0. We have also seen that any finite abelian group can be written as a
product of cyclic groups of prime power order. This also has a generalisation for modules.
The previous result relied on the lemma 𝐶𝑚𝑛 ≅ 𝐶𝑚×𝐶𝑛 where𝑚 and 𝑛 are coprime. There
is an analogous result for principal ideal domains.

Lemma. Let 𝑅 be a principal ideal domain, and 𝑎, 𝑏 ∈ 𝑅with unit greatest common divisor.
Then, treating these quotients as 𝑅-modules,

𝑅⟋(𝑎𝑏) ≅ 𝑅⟋(𝑎) ⊕ 𝑅⟋(𝑏)

Proof. Since𝑅 is a principal ideal domain, (𝑎, 𝑏) = (𝑑) for some𝑑 ∈ 𝑅. The greatest common
divisor of 𝑎, 𝑏 is a unit, so 𝑑 is a unit, giving (𝑎, 𝑏) = 𝑅. Hence, there exist 𝑟, 𝑠 ∈ 𝑅 such that
𝑟𝑎 + 𝑠𝑏 = 1. This is a generalisation of Bézout’s theorem.
Now, we define an 𝑅-module homomorphism 𝜓∶ 𝑅 → 𝑅⟋(𝑎)+𝑅⟋(𝑏) by 𝜓(𝑥) = (𝑥+ (𝑎), 𝑥+
(𝑏)). Then 𝜓(𝑠𝑏) = (𝑠𝑏+ (𝑎), 𝑠𝑏+ (𝑏)) = (1−𝑟𝑎+(𝑎), 𝑠𝑏+ (𝑏)) = (1+ (𝑎), (𝑏)), and similarly
𝜓(𝑟𝑎) = ((𝑎), 1 + (𝑏)). Hence, 𝜓(𝑠𝑏𝑥 + 𝑟𝑏𝑦) = (𝑥 + (𝑎), 𝑦 + (𝑏)) so 𝜓 is surjective.
Clearly we have (𝑎𝑏) ⊂ ker𝜓, so it suffices to show the converse. If 𝑥 ∈ ker𝜓, then 𝑥 ∈ (𝑎)
and 𝑥 ∈ (𝑏), so 𝑥 ∈ (𝑎) ∩ (𝑏). Since 𝑥 = 𝑥(𝑟𝑎 + 𝑠𝑏) = 𝑟(𝑎𝑥) + 𝑠(𝑏𝑥), we must have that
𝑠(𝑏𝑥) ∈ (𝑎) and 𝑟(𝑎𝑥) ∈ (𝑏), so 𝑥 ∈ (𝑎𝑏). Hence ker𝜓 = (𝑎𝑏), and the result follows from
the first isomorphism theorem for modules.

Lemma (primary decomposition theorem). Let 𝑅 be a Euclidean domain and𝑀 a finitely
generated 𝑅-module. Then

𝑀 ≅ 𝑅⟋(𝑝𝑛11 ) ⊕⋯⊕ 𝑅⟋(𝑝𝑛𝑘𝑘 ) ⊕ 𝑅𝑚

where the quotients are considered as 𝑅-modules, where 𝑝𝑖 are primes in 𝑅, which are not
necessarily distinct, and where𝑚 ≥ 0.

Proof. By the structure theorem,

𝑀 ≅ 𝑅⟋(𝑑1) ⊕⋯⊕ 𝑅⟋(𝑑𝑡) ⊕ 𝑅 ⊕⋯⊕ 𝑅⏟⎵⎵⏟⎵⎵⏟
𝑘 copies

≅ 𝑅⟋(𝑑1) ⊕⋯⊕ 𝑅⟋(𝑑𝑡) ⊕ 𝑅𝑚
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where 𝑑1 ∣ ⋯ ∣ 𝑑𝑡. So it suffices to show that each 𝑅⟋(𝑑𝑖) can be written as a product of
factors of the form 𝑅⟋(𝑝𝑛𝑗𝑗 ). Since 𝑅 is a unique factorisation domain and a principal ideal

domain, 𝑑𝑖 can be written as a product 𝑢𝑝𝛼11 ⋯𝑝𝛼𝑟𝑟 where 𝑢 is a unit and the 𝑝𝑗 are pairwise
non-associate primes. By the previous lemma,

𝑅⟋(𝑑𝑖) ≅
𝑅⟋(𝑝𝛼11 ) ⊕…𝑅⟋(𝑝𝛼𝑟𝑟 )

12.10. Rational canonical form

Let 𝑉 be a vector space over a field 𝐹, and 𝛼∶ 𝑉 → 𝑉 be a linear map. Let 𝑉𝛼 denote the
𝐹[𝑋]-module 𝑉 where scalar multiplication is defined by 𝑓(𝑋) ⋅ 𝑣 = 𝑓(𝛼)(𝑣).

Lemma. If 𝑉 is finite-dimensional as a vector space, then 𝑉𝛼 is finitely generated as an
𝐹[𝑋]-module.

Proof. Consider a basis 𝑣1,… , 𝑣𝑛 of 𝑉 , so 𝑣1,… , 𝑣𝑛 generate 𝑉 as an 𝐹-vector space. Then,
these vectors generate 𝑉𝛼 as an 𝐹[𝑋]-module, since 𝐹 ≤ 𝐹[𝑋].

Example. Suppose 𝑉𝛼 ≅ 𝐹[𝑋]⟋(𝑋𝑛) as an 𝐹[𝑋]-module. Then, 1, 𝑋, 𝑋2,… , 𝑋𝑛−1 is a basis
for 𝐹[𝑋]⟋(𝑋𝑛) as an 𝐹-vector space. With respect to this basis, 𝛼 has the matrix form

⎛
⎜
⎜
⎜
⎜
⎝

0 0 0 ⋯ 0 0
1 0 0 ⋯ 0 0
0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1 0

⎞
⎟
⎟
⎟
⎟
⎠

(∗)

Example. Suppose𝑉𝛼 ≅ 𝐹[𝑋]⟋(𝑋 − 𝜆)𝑛 as an𝐹[𝑋]-module. Consider the basis 1, 𝑋−𝜆, (𝑋−
𝜆)2,… , (𝑋 −𝜆)𝑛−1 for 𝐹[𝑋]⟋(𝑋 − 𝜆)𝑛 as an 𝐹-vector space. Here, 𝛼−𝜆 id has matrix (∗) from
the previous example. Hence, 𝛼 has matrix (∗) + 𝜆𝐼.

Example. Suppose𝑉𝛼 ≅ 𝐹[𝑋]⟋(𝑓)where𝑓 ∈ 𝐹[𝑋] as an𝐹[𝑋]-module, such that𝑓 ismonic.
Let

𝑓(𝑋) = 𝑋𝑛 + 𝑎𝑛−1𝑋𝑛−1 +⋯+ 𝑎0
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With respect to basis 1, 𝑋,… , 𝑋𝑛−1, 𝛼 has matrix

𝐶(𝑓) =

⎛
⎜
⎜
⎜
⎜
⎝

0 0 0 ⋯ 0 −𝑎0
1 0 0 ⋯ 0 −𝑎1
0 1 0 ⋯ 0 −𝑎2
0 0 1 ⋯ 0 −𝑎3
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1 −𝑎𝑛−1

⎞
⎟
⎟
⎟
⎟
⎠

since 𝑓 is monic and the last column represents 𝑋𝑛. The above matrix is known as the
companion matrix of the monic polynomial.

Theorem (Rational canonical form). Let 𝐹 be a field, 𝑉 be a finite-dimensional 𝐹-vector
space, and 𝛼∶ 𝑉 → 𝑉 be a linear map. Then the 𝐹[𝑋]-module 𝑉𝛼 decomposes as

𝑉𝛼 ≅ 𝐹[𝑋]⟋(𝑓1) ⊕⋯⊕ 𝐹[𝑋]⟋(𝑓𝑡)
for somemonic polynomials 𝑓𝑖 ∈ 𝐹[𝑋], and 𝑓1 ∣ ⋯ ∣ 𝑓𝑡. Moreover, with respect to a suitable
basis, 𝛼 has matrix

⎛
⎜
⎜
⎝

𝐶(𝑓1)
𝐶(𝑓2)

⋱
𝐶(𝑓𝑡)

⎞
⎟
⎟
⎠

(∗∗)

Proof. Weknow that𝑉𝛼 is finitely generated as an𝐹[𝑋]-module, since𝑉 is finite-dimensional.
Since 𝐹[𝑋] is a Euclidean domain, the structure theorem applies, and

𝑉𝛼 ≅ 𝐹[𝑋]⟋(𝑓1) ⊕⋯⊕ 𝐹[𝑋]⟋(𝑓𝑡) ⊕ 𝐹[𝑋]𝑚

for some𝑚, where 𝑓1 ∣ ⋯ ∣ 𝑓𝑡. Since 𝑉 is finite-dimensional,𝑚 = 0. As 𝐹 is a field, without
loss of generality we may multiply each 𝑓𝑖 by a unit to ensure that they are monic. Then,
using the previous example, we can construct the companion matrices for each polynomial
and obtain the matrix as required.

Remark. If 𝛼 is represented by an 𝑛×𝑛matrix𝐴, there exists a change of basis matrix 𝑃 such
that 𝑃𝐴𝑃−1 has form (∗) as stated in the theorem, so 𝐴 is similar to such a block diagonal
matrix of companion matrices. Note further that (∗∗) can be used to find the minimal and
characteristic polynomials of 𝛼; the minimal polynomial is 𝑓𝑡, and the characteristic polyno-
mial is 𝑓1⋯𝑓𝑡. In particular, the minimal polynomial divides the characteristic polynomial,
and this implies the Cayley–Hamilton theorem.

Example. Consider dim𝑉 = 2. Here, ∑ deg𝑓𝑖 = 2, so there are two cases: one poly-
nomial of degree two, or two polynomials of degree one. Consider 𝑉𝛼 ≅ 𝐹[𝑋]⟋(𝑋 − 𝜆) ⊕
𝐹[𝑋]⟋(𝑋 − 𝜇). Since one of the 𝑓𝑖 must divide the other, we have 𝜆 = 𝜇. If we have one
polynomial of degree two, we have 𝑉𝛼 ≅ 𝐹[𝑋]⟋(𝑓), where 𝑓 is the characteristic polynomial
of 𝛼.
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Corollary. Let 𝐴, 𝐵 be invertible 2 × 2 non-scalar matrices over a field 𝐹. Then 𝐴, 𝐵 are
similar if and only if their characteristic polynomials are equal.

Proof. Certainly if 𝐴, 𝐵 are similar they have the same characteristic polynomial, which is
proven in Part IB Linear Algebra. Conversely, if the matrices are non-scalar, the modules
𝑉𝛼, 𝑉 𝛽 are of the form 𝐹[𝑋]⟋(𝑓) by the previous example, so they are both similar to the
companion matrix of 𝑓, where 𝑓 is the characteristic polynomial of 𝐴 or 𝐵.

Definition. The annihilator of an 𝑅-module𝑀 is

Ann𝑅(𝑀) = {𝑟 ∈ 𝑅∶ ∀𝑚 ∈ 𝑀, 𝑟𝑚 = 0} ⊲ 𝑅

Example. Let 𝐼 ⊲ 𝑅. Then the annihilator of 𝑅⟋𝐼 is Ann𝑅(𝑅⟋𝐼) = 𝐼.
Let 𝐴 be a finite abelian group. Then, considering 𝐴 as a ℤ-module, Annℤ(𝐴) = (𝑒) where 𝑒
is the exponent of the group, which is the lowest commonmultiple of the orders of elements
in the group.

Let 𝑉𝛼 be as above. Then Ann𝐹[𝑋](𝑉𝛼) = (𝑓) where 𝑓 is the minimal polynomial of 𝛼.

12.11. Jordan normal form
Jordan normal form concerns matrix similarity in ℂ. The following results are therefore
restricted to this particular field.

Lemma. The primes (or equivalently, irreducibles) in ℂ[𝑋] are the polynomials 𝑋 − 𝜆 for
𝜆 ∈ ℂ, up to associates.

Proof. By the fundamental theorem of algebra, any non-constant polynomial with complex
coefficients has a complex root. By the Euclidean algorithm, we can show that having a root
𝜆 is equivalent to having a linear factor 𝑋 − 𝜆. Hence the irreducibles have degree one, and
thus are 𝑋 − 𝜆 exactly, up to associates.

Theorem. Let 𝛼∶ 𝑉 → 𝑉 be an endomorphism of a finite-dimensional ℂ-vector space 𝑉 .
Let𝑉𝛼 be the set𝑉 as aℂ[𝑋]-module, where scalarmultiplication is defined by𝑓⋅𝑣 = 𝑓(𝛼)(𝑣).
Then, there exists an isomorphism of ℂ[𝑋]-modules

𝑉𝛼 ≅ ℂ[𝑋]⟋((𝑋 − 𝜆1)𝑛1) ⊕⋯⊕ℂ[𝑋]⟋((𝑋 − 𝜆𝑡)𝑛𝑡)
where 𝜆𝑖 ∈ ℂ are not necessarily distinct. In particular, there exists a basis for this vector
space such that 𝛼 has matrix in block diagonal form

⎛
⎜
⎜
⎝

𝐽𝑛1(𝜆1)
𝐽𝑛2(𝜆2)

⋱
𝐽𝑛𝑡(𝜆𝑡)

⎞
⎟
⎟
⎠
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where each Jordan block 𝐽𝑛𝑖 (𝜆𝑖) is an 𝑛𝑖 × 𝑛𝑖 matrix of the form

𝐽𝑛𝑖 (𝜆𝑖) =
⎛
⎜
⎜
⎜
⎝

𝜆𝑖 0 0 ⋯ 0
1 𝜆𝑖 0 ⋯ 0
0 1 𝜆𝑖 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝜆𝑖

⎞
⎟
⎟
⎟
⎠

Proof. Note ℂ[𝑋] is a Euclidean domain using the degree function, and 𝑉𝛼 is finitely gener-
ated as a ℂ[𝑋]-module. These are the assumptions of the primary decomposition theorem.
Applying this, we find themodule decomposition as required, noting that the primes inℂ[𝑋]
are the linear polynomials. Note that the free factor ℂ[𝑋] cannot appear in the decomposi-
tion since 𝑉 is finite-dimensional.

We have already seen that for a module 𝑊𝛼 ≅ 𝐹[𝑋]⟋((𝑋 − 𝜆)𝑛), multiplication by 𝑋 is rep-
resented by the matrix 𝐽𝑛(𝜆) with respect to the basis 1, (𝑋 − 𝜆),… , (𝑋 − 𝜆)𝑛−1. Hence the
result follows by considering the union of these bases.

Remark. If 𝛼 is represented by a matrix 𝐴, then 𝐴 is similar to a matrix in Jordan normal
form. This is the form of the result often used in linear algebra.

The Jordan blocks are uniquely determined up to reordering. This can be proven by con-
sidering the dimensions of the generalised eigenspaces, which are ker ((𝛼 − 𝜆 id)𝑚) for some
𝑚 ∈ ℕ.
The minimal polynomial of 𝛼 is∏𝜆(𝑋 −𝜆)𝑐𝜆 where 𝑐𝜆 is the size of the largest 𝜆-block. The
characteristic polynomial of 𝛼 is∏𝜆(𝑋−𝜆)𝑎𝜆 where 𝑎𝜆 is the sum of the sizes of the 𝜆-blocks.
The number of 𝜆-blocks is the dimension of the eigenspace of 𝜆.

12.12. Modules over principal ideal domains (non-examinable)
The structure theorem above was proven for Euclidean domains. This also holds for prin-
cipal ideal domains. Some of the ideas relevant to this proof are illustrated in this subsec-
tion.

Theorem. Let 𝑅 be a principal ideal domain. Then any finitely generated torsion-free 𝑅-
module is free.

If 𝑅 is a Euclidean domain, this was proven as a corollary to the structure theorem.
Lemma. Let 𝑅 be a principal ideal domain and 𝑀 be an 𝑅-module. Let 𝑟1, 𝑟2 ∈ 𝑅 be not
both zero, and let 𝑑 be their greatest common divisor. Then,
(i) there exists 𝐴 ∈ 𝑆𝐿2(𝑅) such that

𝐴(𝑟1𝑟2
) = (𝑑0)
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(ii) if 𝑥1, 𝑥2 ∈ 𝑀, then there exist 𝑥′1, 𝑥′2 ∈ 𝑀 such that 𝑅𝑥1 + 𝑅𝑥2 = 𝑅𝑥′1 + 𝑅𝑥′2, and
𝑟1𝑥1 + 𝑟2𝑥2 = 𝑑𝑥′1 + 0 ⋅ 𝑥′2.

Proof. Since 𝑅 is a principal ideal domain, (𝑟1, 𝑟2) = (𝑑). Hence, by definition, 𝑑 = 𝛼𝑟1 +𝛽𝑟2
for some 𝛼, 𝛽 ∈ 𝑅. Let 𝑟1 = 𝑠1𝑑 and 𝑟2 = 𝑠2𝑑. Then 𝛼𝑠1 + 𝛽𝑠2 = 1. Now, let

𝐴 = ( 𝛼 𝛽
−𝑠2 𝑠1

) ⟹ det𝐴 = 1; 𝐴 (𝑟1𝑟2
) = (𝑑0)

as required.

For the second part, let 𝑥′1 = 𝑠1𝑥1+𝑠2𝑥2 and 𝑥′2 = −𝛽𝑥1+𝛼𝑥2. Then 𝑅𝑥′1+𝑅𝑥′2 ⊆ 𝑅𝑥1+𝑅𝑥2.
The matrix defining 𝑥′1, 𝑥′2 in terms of 𝑥1, 𝑥2 is invertible since its determinant is a unit; we
can solve for 𝑥1, 𝑥2 in terms of 𝑥′1, 𝑥′2. So𝑅𝑥′1+𝑅𝑥′2 = 𝑅𝑥1+𝑅𝑥2. Then by direct computation
we can see that 𝑟1𝑥2 + 𝑟2𝑥2 = 𝑑𝑥′1 + 0 ⋅ 𝑥′2.

The structure theorem for principal ideal domains follows the same method; it is deduced
for Smith normal form. That theorem also holds for principal ideal domains. The above
lemma allows one to prove Smith normal form for principal ideal domains. In a Euclidean
domain, we used the Euclidean function for a notion of size in order to perform induction;
in a principal ideal domain we can count the irreducibles in a factorisation.

Proof of theorem. Let𝑀 = 𝑅𝑥1+⋯+𝑅𝑥𝑛 where 𝑛 is minimal. If 𝑥1,… , 𝑥𝑛 are independent,
then𝑀 is free as required. Suppose that the 𝑥𝑖 are not independent, so there exists 𝑟𝑖 such
that∑𝑟𝑖𝑥𝑖 = 0 but not all of the 𝑟𝑖 are zero. By reordering, we can suppose that 𝑟1 ≠ 0. By
using part (ii) of the previous lemma, after replacing 𝑥1 and 𝑥2 by suitable 𝑥′1, 𝑥′2, we may
assume that 𝑟1 ≠ 0 and 𝑟2 = 0. By repeating this process with 𝑥1 and 𝑥𝑖 for all 𝑖 ≥ 2, we
obtain 𝑟1 ≠ 0 and 𝑟2 = ⋯ = 𝑟𝑛 = 0, so 𝑟1𝑥″1 = 0 for some nonzero 𝑥″1 ∈ 𝑀. But 𝑀 is
torsion-free, so 𝑟1 must be zero, and this is a contradiction.
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Lectured in Lent 2022 by Prof. N. Wickramasekera
Complex differentiation is a stronger notion than real differentiation. Many functions that
are differentiable as a function of two real variables are not complex differentiable, for ex-
ample the complex conjugate function. This stronger notion allows us to prove some surpris-
ing results. It turns out that if a function is complex differentiable once in a neighbourhood
of a point, then it is given by a convergent power series in some neighbourhood of that
point.

Another interesting result is Cauchy’s integral formula: if a function is complex differenti-
able in a neighbourhood around a point, one can evaluate the function at that point using a
certain integral over any loop around that point. A similar result can be used to obtain an
arbitrary derivative of a function at a point by using a single integral.
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IX. Complex Analysis

1. Differentiation
1.1. Basic notions
We use the following definitions.

• The complex plane is denoted ℂ.
• The complex conjugate of a complex number 𝑧 is denoted 𝑧.
• The modulus is denoted |𝑧|.
• The function 𝑑(𝑧, 𝑤) = |𝑧 − 𝑤| is a metric on ℂ. All topological notions will be with
respect to this metric.

• We define the disc𝐷(𝑎, 𝑟) = {𝑧 ∈ ℂ∶ |𝑧 − 𝑎| < 𝑟} to be the open ball with centre 𝑎 and
radius 𝑟.

• A subset 𝑈 ⊂ ℂ is said to be open if it is open with respect to the above metric. In
particular, by identifying ℂ with ℝ2, we can see that 𝑈 ⊂ ℂ is open if and only if
𝑈 ⊂ ℝ2 is open with respect to the Euclidean metric.

The course concerns itselfwith complex-valued functions of a single complex variable. Identi-
fying ℂ with ℝ2 allows us to construct 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦), where 𝑢, 𝑣 are real-valued
functions. We can denote these parts by 𝑢 = Re(𝑓) and 𝑣 = Im(𝑓).

1.2. Continuity and differentiability
The definition of continuity is carried over from metric spaces. That is, 𝑓∶ 𝐴 → ℂ is con-
tinuous at a point 𝑤 ∈ 𝐴 if

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑧 ∈ 𝐴, |𝑧 − 𝑤| < 𝛿 ⟹ |𝑓(𝑧) − 𝑓(𝑤)| < 𝜀

Equivalently, the limit lim𝑧→𝑤 𝑓(𝑧) exists and takes the value 𝑓(𝑤). We can easily check that
𝑓 is continuous at 𝑤 = 𝑐 + 𝑖𝑑 ∈ 𝐴 if and only if 𝑢, 𝑣 are continuous at (𝑐, 𝑑) with respect to
the Euclidean metric on 𝐴 ⊂ ℝ2.

Definition. Let 𝑓∶ 𝑈 → ℂ, where 𝑈 is open in ℂ.
(i) 𝑓 is differentiable at 𝑤 ∈ 𝑈 if the limit

𝑓′(𝑤) = lim
𝑧→𝑤

𝑓(𝑧) − 𝑓(𝑤)
𝑧 − 𝑤

exists, and its value is complex. We say that 𝑓′(𝑤) is the derivative of 𝑓 at 𝑤.
(ii) 𝑓 is holomorphic at 𝑤 ∈ 𝑈 if there exists 𝜀 > 0 such that 𝐷(𝑤, 𝜀) ⊂ 𝑈 and 𝑓 is differ-

entiable at every point in 𝐷(𝑤, 𝜀).
(iii) 𝑓 is holomorphic in 𝑈 if 𝑓 is holomorphic at every point in 𝑈 , or equivalently, 𝑓 is

differentiable everywhere.
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Differentiation of composite functions, sums, products and quotients can be computed in
the complex case exactly as they are in the real case.

Example. Polynomials 𝑝(𝑧)∑𝑛
𝑗=0 𝑎𝑗𝑧𝑗 for complex coefficients 𝑎𝑗 are holomorphic on ℂ.

Further, if 𝑝, 𝑞 are polynomials, 𝑝
𝑞
is holomorphic on ℂ ∖ {𝑧∶ 𝑞(𝑧) = 0}.

Remark. The differentiability of 𝑓 at a point 𝑐+ 𝑖𝑑 is not equivalent to the differentiability of
𝑢, 𝑣 at (𝑐, 𝑑). 𝑢∶ 𝑈 → ℝ is differentiable at (𝑐, 𝑑) ∈ 𝑈 if there is a ‘good’ affine approximation
of 𝑢 at (𝑐, 𝑑); there exists a linear transformation 𝐿∶ ℝ2 → ℝ such that

lim
(𝑥,𝑦)→(𝑐,𝑑)

𝑢(𝑥, 𝑦) − (𝑢(𝑐, 𝑑) − 𝐿(𝑥 − 𝑐, 𝑦 − 𝑑))
√(𝑥 − 𝑐)2 + (𝑦 − 𝑑)2

= 0

If 𝑢 is differentiable at (𝑐, 𝑑), then 𝐿 is uniquely defined, and can be denoted 𝐿 = 𝐷𝑢(𝑐, 𝑑). 𝐿
is given by the partial derivatives of 𝑢, which are

𝐿(𝑥, 𝑦) = (𝜕𝑢𝜕𝑥(𝑐, 𝑑))𝑥 + (𝜕𝑢𝜕𝑦 (𝑐, 𝑑))𝑦

This seems to imply that the differentiability of 𝑓 requires more than the differentiability of
𝑢, 𝑣.

1.3. Cauchy–Riemann equations
Theorem. 𝑓 = 𝑢+𝑖𝑣∶ 𝑈 → ℂ is differentiable at𝑤 = 𝑐+𝑖𝑑 ∈ 𝑈 if and only if 𝑢, 𝑣∶ 𝑈 → ℝ
are differentiable at (𝑐, 𝑑) ∈ 𝑈 and 𝑢, 𝑣 satisfy the Cauchy–Riemann equations at (𝑐, 𝑑),
which are

𝜕𝑢
𝜕𝑥 = 𝜕𝑣

𝜕𝑦 ;
𝜕𝑢
𝜕𝑦 = −𝜕𝑣𝜕𝑥

If 𝑓 is differentiable at 𝑤 = 𝑐 + 𝑖𝑑, then

𝑓′(𝑤) = 𝜕𝑢
𝜕𝑥(𝑐, 𝑑) + 𝑖 𝜕𝑣𝜕𝑥(𝑐, 𝑑)

and other expressions, which follow directly from the Cauchy–Riemann equations.

Proof. All of the following statements will be bi-implications. Suppose 𝑓 is differentiable at
𝑤 with 𝑓′(𝑤) = 𝑝 + 𝑖𝑞, so

lim
𝑧→𝑤

𝑓(𝑧) − 𝑓(𝑤)
𝑧 − 𝑤 = 𝑝 + 𝑖𝑞

lim
𝑧→𝑤

𝑓(𝑧) − 𝑓(𝑤) − (𝑧 − 𝑤)(𝑝 + 𝑖𝑞)
|𝑧 − 𝑤| = 0

By separating real and imaginary parts, writing 𝑤 = 𝑐 + 𝑖𝑑 we have

lim
(𝑥,𝑦)→(𝑐,𝑑)

𝑢(𝑥, 𝑦) − 𝑢(𝑐, 𝑑) − 𝑝(𝑥 − 𝑐) + 𝑞(𝑦 − 𝑑)
√(𝑥 − 𝑐)2 + (𝑦 − 𝑑)2

= 0

lim
(𝑥,𝑦)→(𝑐,𝑑)

𝑣(𝑥, 𝑦) − 𝑣(𝑐, 𝑑) − 𝑞(𝑥 − 𝑐) − 𝑝(𝑦 − 𝑑)
√(𝑥 − 𝑐)2 + (𝑦 − 𝑑)2

= 0
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Thus, 𝑢 is differentiable at (𝑐, 𝑑)with𝐷𝑢(𝑐, 𝑑)(𝑥, 𝑦) = 𝑝𝑥−𝑞𝑦 and 𝑣 is differentiable at (𝑐, 𝑑)
with 𝐷𝑣(𝑐, 𝑑)(𝑥, 𝑦) = 𝑞𝑥 + 𝑝𝑦.

𝑢𝑥(𝑐, 𝑑) = 𝑣𝑦(𝑐, 𝑑) = 𝑝; −𝑢𝑦(𝑐, 𝑑) = 𝑣𝑥(𝑐, 𝑑) = 𝑞

Hence the Cauchy–Riemann equations hold at (𝑐, 𝑑). We also find that if 𝑓 is differentiable
at 𝑤, we have 𝑓′(𝑤) = 𝑢𝑥(𝑐, 𝑑) + 𝑖𝑣𝑥(𝑐, 𝑑).

Remark. If 𝑢, 𝑣 simply satisfy the Cauchy–Riemann equations alone, that does not imply
differentiability of 𝑓. 𝑢, 𝑣must also be differentiable.

Remark. If we simply want to show that the differentiability of 𝑓 implies that the Cauchy–
Riemann equations hold, we can proceed in a simpler way. For 𝑡 ∈ ℝ,

𝑓′(𝑤) = lim
𝑡→0

(𝑢(𝑐 + 𝑡, 𝑑) − 𝑢(𝑐, 𝑑)
𝑡 + 𝑖𝑣(𝑐 + 𝑡, 𝑑) − 𝑣(𝑐, 𝑑)

𝑡 )

Hence the real part and the complex part both exist, so𝑢𝑥(𝑐, 𝑑) and 𝑣𝑥(𝑐, 𝑑) exist, and𝑓′(𝑤) =
𝑢𝑥(𝑐, 𝑑)+𝑖𝑣𝑥(𝑐, 𝑑). If we instead considered a perturbation along the imaginary axis, we find
𝑓′(𝑤) = 𝑣𝑦(𝑐, 𝑑) − 𝑖𝑢𝑦(𝑐, 𝑑), giving the Cauchy–Riemann equations.

Example. The complex conjugate function 𝑧 ↦ 𝑧 is not differentiable. Here, 𝑢(𝑥, 𝑦) = 𝑥,
and 𝑣(𝑥, 𝑦) = −𝑦, so the Cauchy–Riemann equations do not hold.

Corollary. If𝑢, 𝑣have continuous partial derivatives at (𝑐, 𝑑) and satisfy theCauchy–Riemann
equations at this point, then 𝑓 is differentiable at 𝑐 + 𝑖𝑑. In particular, if 𝑢, 𝑣 are 𝐶1 func-
tions on 𝑈 (i.e. have continuous partial derivatives in 𝑈) satisfying the Cauchy–Riemann
equations everywhere, then 𝑓 is holomorphic (in 𝑈).

Proof. If 𝑢, 𝑣 have continuous partial derivatives then 𝑢, 𝑣 are differentiable at (𝑐, 𝑑) by Ana-
lysis and Topology.

1.4. Curves and path-connectedness
Definition. A curve is a continuous function 𝛾∶ [𝑎, 𝑏] → ℂ, where 𝑎, 𝑏 ∈ ℝ. 𝛾 is a 𝐶1 curve
if 𝛾′ exists and is continuous on [𝑎, 𝑏]. An open set 𝑈 ⊂ ℂ is path-connected if for any two
points 𝑧, 𝑤 ∈ 𝑈 , there exists 𝛾∶ [0, 1] → 𝑈 such that 𝛾(0) = 𝑧 and 𝛾(1) = 𝑤. A domain is a
non-empty, open, path-connected subset of ℂ.

Corollary. Let 𝑈 be a domain. Let 𝑓∶ 𝑈 → ℂ be a holomorphic function with derivative
zero everywhere. Then 𝑓 is constant on 𝑈 .

Proof. By the Cauchy–Riemann equations, 𝑓′ = 0 implies that 𝐷𝑢 = 𝐷𝑣 = 0 in 𝑈 . By
Analysis and Topology, the path-connectedness of 𝑈 implies that 𝑢 and 𝑣 are constant func-
tions.
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1.5. Power series

Recall the following theorem from IA Analysis.

Theorem. Let (𝑐𝑛)∞𝑛=0 be a sequence of complex numbers. Then, the power series

∞
∑
𝑛=0

𝑐𝑛(𝑧 − 𝑎)𝑛

has a unique radius of convergence 𝑅 ∈ [0,∞] such that the power series converges abso-
lutely for |𝑧 − 𝑎| < 𝑅 and diverges if |𝑧 − 𝑎| > 𝑅. Further, if 0 < 𝑟 < 𝑅, the series converges
uniformly with respect to 𝑧 on the compact disc 𝐷(𝑎, 𝑟).

Note that
𝑅 = sup {𝑟 ≥ 0∶ lim

𝑛→∞
|𝑐𝑛|𝑟𝑛 = 0}; 1

𝑅 = lim sup
𝑛→∞

|𝑐𝑛|
1
𝑛

Theorem. Let the sequence (𝑐𝑛) define a power series 𝑓 centred around 𝑎 with positive
radius of convergence 𝑅. Then, the function 𝑓∶ 𝐷(𝑎, 𝑅) → ℂ satisfies

(i) 𝑓 is holomorphic on 𝐷(𝑎, 𝑅);

(ii) the term-by-term differentiated series ∑∞
𝑛=1 𝑛𝑐𝑛(𝑧 − 𝑎)𝑛−1 also has radius of conver-

gence equal to 𝑅, and this series is exactly the value of 𝑓′;

(iii) 𝑓 has derivatives of all orders on 𝐷(𝑎, 𝑅) and 𝑐𝑛 =
𝑓(𝑛)(𝑎)

𝑛!
;

(iv) if 𝑓 vanishes on 𝐷(𝑎, 𝜀) for any 𝜀 > 0, then 𝑓 ≡ 0 on 𝐷(𝑎, 𝑅).

Proof. (i) Without loss of generality, let 𝑎 = 0. ∑∞
𝑛=1 𝑛𝑐𝑛(𝑧 − 𝑎)𝑛−1 has some radius of

convergence 𝑅1.

Let 𝑧 ∈ 𝐷(0, 𝑅) and choose 𝜌 such that |𝑧| < 𝜌 < 𝑅. Then,

𝑛|𝑐𝑛||𝑧|
𝑛−1 = 𝑛|𝑐𝑛|

|||
𝑧
𝜌
|||
𝑛−1

𝜌𝑛−1 ≤ |𝑐𝑛|𝜌𝑛−1

for sufficiently large 𝑛, since 𝑛|||
𝑧
𝜌
|||
𝑛−1

→ 0 as 𝑛 → ∞. Since ∑|𝑐𝑛|𝜌𝑛 converges, we
must have that 𝑛|𝑐𝑛||𝑧|

𝑛−1 converges. Hence 𝑅1 ≥ 𝑅.

Now, since
|𝑐𝑛||𝑧|

𝑛 ≤ 𝑛|𝑐𝑛||𝑧|
𝑛 = |𝑧|(𝑛|𝑐𝑛||𝑧|

𝑛−1)

If ∑𝑛|𝑐𝑛|𝑧𝑛−1 converges then so does ∑|𝑐𝑛||𝑧|
𝑛. Hence 𝑅1 ≤ 𝑅. This leads us to

conclude 𝑅1 = 𝑅.
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(ii) Let 𝑧 ∈ 𝐷(0, 𝑅). The statement that 𝑓′ is the above differentiated power series at 𝑧 is
equivalent to continuity at 𝑧 of the function

𝑔∶ 𝐷(0, 𝑅) → ℂ; 𝑔(𝑤) = {
𝑓(𝑤)−𝑓(𝑧)

𝑤−𝑧
𝑤 ≠ 𝑧

∑∞
𝑛=1 𝑛𝑐𝑛𝑧𝑛−1 𝑤 = 𝑧

Substituting for 𝑓, we have 𝑔(𝑤) = ∑∞
𝑛=1 ℎ𝑛(𝑤) for 𝑤 ∈ 𝐷(0, 𝑅) where

ℎ𝑛(𝑤) = {
𝑐𝑛(𝑤𝑛−𝑧𝑛)

𝑤−𝑧
𝑤 ≠ 𝑧

𝑛𝑐𝑛𝑧𝑛−1 𝑤 = 𝑧

Note that ℎ𝑛 is continuous on 𝐷(0, 𝑅). Further, note that

𝑤𝑛 − 𝑧𝑛
𝑤 − 𝑧 =

𝑛−1
∑
𝑗=0

𝑧𝑗𝑤𝑛−1−𝑗

We have that for all 𝑟 with |𝑧| < 𝑟 < 𝑅 and all 𝑤 ∈ 𝐷(0, 𝑟), |ℎ𝑛|(𝑤) ≤ 𝑛|𝑐𝑛|𝑟𝑛−1 ≡ 𝑀𝑛.
Since ∑𝑀𝑛 < ∞, the Weierstrass 𝑀 test shows that ∑ℎ𝑛 converges uniformly on
𝐷(0, 𝑟). A uniform limit of continuous functions is continuous, hence 𝑔 = ∑ℎ𝑛 is
continuous in 𝐷(0, 𝑟) and in particular at 𝑧.

(iii) Part (ii) can be applied inductively. The equation 𝑐𝑛 =
𝑓(𝑛)(𝑎)

𝑛!
can be found by differ-

entiating the series 𝑛 times.
(iv) If 𝑓 ≡ 0 in some disc 𝐷(𝑎, 𝜀), then 𝑓(𝑛)(𝑎) = 0 for all 𝑛. Thus the power series is

identically zero.

1.6. Exponentials
Definition. If 𝑓∶ ℂ → ℂ is holomorphic on ℂ, we say that 𝑓 is entire.
Definition. The complex exponential function is defined by

𝑒𝑧 = exp(𝑧) =
∞
∑
𝑛=0

𝑧𝑛
𝑛!

Proposition. (i) 𝑒𝑧 is entire, and (𝑒𝑧)′ = 𝑒𝑧;
(ii) 𝑒𝑧 ≠ 0 and 𝑒𝑧+𝑤 = 𝑒𝑧𝑒𝑤 for all complex 𝑧, 𝑤;
(iii) 𝑒𝑥+𝑖𝑦 = 𝑒𝑥(cos 𝑦 + 𝑖 sin 𝑦) for real 𝑥, 𝑦;
(iv) 𝑒𝑧 = 1 if and only if 𝑧 = 2𝜋𝑛𝑖 for an integer 𝑛;
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(v) if 𝑧 ∈ ℂ, then there exists 𝑤 such that 𝑒𝑤 = 𝑧 if and only if 𝑧 ≠ 0.

Proof. (i) We can show that the radius of convergence is infinite. We can thus differenti-
ate term by term and find (𝑒𝑧)′ = 𝑒𝑧.

(ii) Let 𝑤 ∈ ℂ, and 𝐹(𝑧) = 𝑒𝑧+𝑤𝑒−𝑤. Then we have
𝐹′(𝑧) = −𝑒𝑧+𝑤𝑒−𝑧 + 𝑒𝑧+𝑤𝑒−𝑧 = 0

Hence𝐹(𝑧) is constant. But𝐹(0) = 𝑒𝑤, so𝐹(𝑧) = 𝑒𝑤. Taking𝑤 = 0, wehave 𝑒𝑧𝑒−𝑧 = 1,
so 𝑒𝑧 ≠ 0. Further, 𝑒𝑧+𝑤 = 𝑒𝑧𝑒𝑤.

(iii) By part (ii), 𝑒𝑥+𝑖𝑦 = 𝑒𝑥𝑒𝑖𝑦. Then, the series expansions of the sine and cosine functions
can be used to finish the proof.

The rest of the proof is left as an exercise, which follows from (iii).

1.7. Logarithms
Definition. Let 𝑧 ∈ ℂ. Then, 𝑤 ∈ ℂ is a logarithm of 𝑧 if 𝑒𝑤 = 𝑧.
By part (v) above, 𝑧 has a logarithm if and only if 𝑧 ≠ 0. In particular, 𝑧 ≠ 0 has infinitely
many logarithms of the form 𝑤 + 2𝜋𝑖𝑛 for 𝑛 ∈ ℤ. If 𝑤 is a logarithm of 𝑧, then 𝑒Re𝑤 = |𝑧|,
and hence Re(𝑤) = ln |𝑧|, where ln here is the unique real logarithm. In particular, Re(𝑤)
is uniquely determined by 𝑧.
Definition. Let 𝑈 ⊂ ℂ ∖ {0} be an open set. A branch of logarithm on 𝑈 is a continuous
function 𝜆∶ 𝑈 → ℂ such that 𝑒𝜆(𝑧) = 𝑧 for all 𝑧 ∈ 𝑈 .
Remark. Note that if 𝜆 is a branch of logarithm on𝑈 then 𝜆 is holomorphic in𝑈 with 𝜆′(𝑧) =
1
𝑧
.

Proof. If 𝑤 ∈ 𝑈 we have

lim
𝑧→𝑤

𝜆(𝑧) − 𝜆(𝑤)
𝑧 − 𝑤 = lim

𝑧→𝑤
𝜆(𝑧) − 𝜆(𝑤)
𝑒𝜆(𝑧) − 𝑒𝜆(𝑤)

= lim
𝑧→𝑤

1
( 𝑒

𝜆(𝑧)−𝑒𝜆(𝑤)

𝜆(𝑧)−𝜆(𝑤)
)

= 1
𝑒𝜆(𝑤) lim𝑧→𝑤

1
( 𝑒

𝜆(𝑧)−𝜆(𝑤)−1
𝜆(𝑧)−𝜆(𝑤)

)

= 1
𝑒𝜆(𝑤) limℎ→0

1
( 𝑒

ℎ−1
ℎ
)

= 1
𝑒𝜆(𝑤)

= 1
𝑤
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Definition. The principal branch of logarithm is the function

Log∶ 𝑈1 = ℂ ∖ {𝑥 ∈ ℝ∶ 𝑥 ≤ 0} → ℂ; Log(𝑧) = ln |𝑧| + 𝑖 arg(𝑧)

where arg(𝑧) is the unique argument of 𝑧 ∈ 𝑈1 in (−𝜋, 𝜋).
This is a branch of logarithm. Indeed, to check continuity, note that 𝑧 ↦ log |𝑧| is continuous
on ℂ ∖ {0}, and 𝑧 ↦ arg(𝑧) is continuous since 𝜃 ↦ 𝑒𝑖𝜃 is a homeomorphism (−𝜋, 𝜋) →
𝕊1 ∖ {−1}, and 𝑧 ↦ 𝑧

|𝑧|
is continuous on ℂ ∖ {0}. Further,

𝑒Log(𝑧) = 𝑒ln |𝑧|𝑒𝑖 arg(𝑧) = |𝑧|(cos arg 𝑧 + 𝑖 sin arg 𝑧) = 𝑧

Note that Log cannot be continuously extended to ℂ ∖ {0}, since arg 𝑧 → 𝜋 as 𝑧 → −1 with
Im(𝑧) > 0, and arg 𝑧 → −𝜋 as 𝑧 → −1 with Im(𝑧) < 0. We will later prove that no branch
of logarithm can exist on all of ℂ ∖ {0}.

Proposition. (i) Log is holomorphic on 𝑈1 with (Log 𝑧)′ =
1
𝑧
; and

(ii) for |𝑧| < 1, we have

Log(1 + 𝑧) =
∞
∑
𝑛=1

(−1)𝑛−1𝑧𝑛
𝑛

Proof. Part (i) follows from the above. The radius of convergence of the given series is one,
and 1 + 𝑧 ∈ 𝑈1, so both sides of the equation are defined on the unit disc. Then,

𝐹(𝑧) = Log(1+𝑧)−
∞
∑
𝑛=1

(−1)𝑛−1𝑧𝑛
𝑛 ⟹ 𝐹′(𝑧) = 1

1 + 𝑧−
∞
∑
𝑛=1

(−𝑧)𝑛−1 = 0 ⟹ 𝐹(𝑧) = 𝐹(0) = 0

We can now define the principal branch of 𝑧𝛼 by

𝑧𝛼 = 𝑒𝛼Log(𝑧)

Note that 𝑧𝛼 is holomorphic on 𝑈1 with (𝑧𝛼)′ = 𝛼𝑧𝛼−1. We can use exponentials to define
the trigonometric and hyperbolic functions, which are all entire functions with derivatives
matching those of the real definitions of these functions.

1.8. Conformality
Let 𝑓∶ 𝑈 → ℂ be holomorphic, where 𝑈 is an open set. Let 𝑤 ∈ 𝑈 and suppose that
𝑓′(𝑤) ≠ 0. Let 𝛾1, 𝛾2∶ [−1, 1] → 𝑈 be 𝐶1 curves, such that 𝛾𝑖(0) = 𝑤 and 𝛾′𝑖 (0) ≠ 0. Then
𝑓∘𝛾𝑖 are𝐶1 curves passing through 𝑓(𝑤). Further, (𝑓∘𝛾𝑖)′(0) = 𝑓′(𝑤)𝛾′𝑖 (0) ≠ 0. Thus

(𝑓 ∘ 𝛾1)′(0)
(𝑓 ∘ 𝛾2)′(0)

= 𝛾′1(0)
𝛾′2(0)
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Hence,
arg(𝑓 ∘ 𝛾1)′(0) − arg(𝑓 ∘ 𝛾2)′(0) = arg 𝛾′1(0) − arg 𝛾′2(0)

In otherwords, the angle that the curvesmakewhen they intersect at𝑤 is the same angle that
their images 𝑓 ∘ 𝛾𝑖 make when they intersect at 𝑓(𝑤), and the orientation also is preserved
(clockwise or anticlockwise). Hence, 𝑓 is angle-preserving at 𝑤 whenever 𝑓′(𝑤) ≠ 0. In
particular, if 𝛾𝑖 are tangential at 𝑤, the curves 𝑓 ∘ 𝛾𝑖 are tangential at 𝑓(𝑤).
Remark. If 𝑓 is 𝐶1, then the converse holds. If 𝑤 ∈ 𝑈 and (𝑓 ∘ 𝛾)′(0) ≠ 0 for any 𝐶1 curve 𝛾
with 𝛾(0) = 𝑤 and 𝛾′(0) ≠ 0, and if 𝑓 is angle-preserving at 𝑤 in the above sense, then 𝑓′(𝑤)
exists and is nonzero.

Definition. A holomorphic function 𝑓∶ 𝑈 → ℂ on an open set 𝑈 is conformal at 𝑤 ∈ 𝑈 if
𝑓′(𝑤) ≠ 0.
Definition. Let 𝑈,𝑈 be domains in ℂ. A map 𝑓∶ 𝑈 → 𝑈 is a conformal equivalence
between 𝑈,𝑈 if 𝑓 is a bijective holomorphic map with 𝑓′(𝑧) ≠ 0 for all 𝑧 ∈ 𝑈 .
Remark. We will prove later that if 𝑓 is holomorphic and injective, then 𝑓′(𝑧) ≠ 0 for all 𝑧.
Thus, in the above definition, the condition 𝑓′(𝑧) ≠ 0 is redundant.
Remark. It is automatic that 𝑓−1∶ 𝑈 → 𝑈 is holomorphic, which will follow from the holo-
morphic inverse function theorem.

Example. Möbius maps
𝑓(𝑧) = 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
are conformal on ℂ ∖ {−𝑑/𝑐} if 𝑐 ≠ 0, and conformal on ℂ if 𝑐 = 0. Möbius maps are
sometimes used as explicit conformal equivalences between subdomains of ℂ. For instance,
let ℍ be the open upper half plane in ℂ. Then

𝑧 ∈ ℍ ⟺ |𝑧 − 𝑖| < |𝑧 + 𝑖| ⟺ |||
𝑧 − 𝑖
𝑧 + 𝑖

||| < 1

Thus the map 𝑧 ↦ 𝑧−𝑖
𝑧+𝑖

maps ℍ onto 𝐷(0, 1), so 𝑔 is a conformal equivalence.

Example. Let 𝑓∶ 𝑧 ↦ 𝑧𝑛 for 𝑛 ≥ 1. Then

𝑓∶ {𝑧 ∈ ℂ ∖ {0}∶ 0 < arg 𝑧 < 𝜋
𝑛} → ℍ

is the restricted map on a sector. The restricted 𝑓 is a conformal equivalence with 𝑓−1(𝑧) =
𝑧1/𝑛, the principal branch of 𝑧1/𝑛.
Example. The function

exp∶ {𝑧 ∈ ℂ∶ − 𝜋 < Im 𝑧 < 𝜋} → ℂ ∖ {𝑥 ∈ ℝ∶ 𝑥 ≤ 0}

is a conformal equivalence, with inverse Log.

Theorem (Riemann mapping theorem). This theorem is non-examinable.

Any simply connected domain 𝑈 ⊂ ℂ with 𝑈 ≠ ℂ is conformally equivalent to 𝐷(0, 1).
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2. Integration
2.1. Introduction
Definition. If 𝑓∶ [𝑎, 𝑏] ⊂ ℝ → ℂ is a complex function, and the real and imaginary parts
of 𝑓 are Riemann integrable, then we define

∫
𝑏

𝑎
𝑓(𝑡) d𝑡 = ∫

𝑏

𝑎
Re(𝑓(𝑡)) d𝑡 + 𝑖∫

𝑏

𝑎
Im(𝑓(𝑡)) d𝑡

In particular, for 𝑔∶ [𝑎, 𝑏] → ℝ, we have

∫
𝑏

𝑎
𝑖𝑔(𝑡) d𝑡 = 𝑖∫

𝑏

𝑎
𝑔(𝑡) d𝑡

Thus, for a complex constant 𝑤 ∈ ℂ, we can find

∫
𝑏

𝑎
𝑤𝑓(𝑡) d𝑡 = 𝑤∫

𝑏

𝑎
𝑓(𝑡) d𝑡

Proposition (basic estimate). If 𝑓∶ [𝑎, 𝑏] → ℂ is continuous, then
||||
∫

𝑏

𝑎
𝑓(𝑡) d𝑡

||||
≤ ∫

𝑏

𝑎
|𝑓(𝑡)| d𝑡 ≤ (𝑏 − 𝑎) sup

𝑡∈[𝑎,𝑏]
|𝑓(𝑡)|

Equality holds if and only if 𝑓 is constant.

Proof. If ∫𝑏
𝑎 𝑓(𝑡) d𝑡 = 0 then the proof is complete. Otherwise, we can write the value of the

integral as 𝑟𝑒𝑖𝜃 for 𝜃 ∈ [0, 2𝜋). Let𝑀 = sup𝑡∈[𝑎,𝑏] |𝑓(𝑡)|. Then we have

||||
∫

𝑏

𝑎
𝑓(𝑡) d𝑡

||||
= 𝑟

= 𝑒−𝑖𝜃∫
𝑏

𝑎
𝑓(𝑡) d𝑡

= ∫
𝑏

𝑎
𝑒−𝑖𝜃𝑓(𝑡) d𝑡

= ∫
𝑏

𝑎
Re(𝑒−𝑖𝜃𝑓(𝑡)) d𝑡 + 𝑖∫

𝑏

𝑎
Im(𝑒−𝑖𝜃𝑓(𝑡)) d𝑡

Since the left hand side is real, the imaginary integral vanishes.
||||
∫

𝑏

𝑎
𝑓(𝑡) d𝑡

||||
= ∫

𝑏

𝑎
Re(𝑒−𝑖𝜃𝑓(𝑡)) d𝑡

≤ ∫
𝑏

𝑎
||𝑒−𝑖𝜃𝑓(𝑡)|| d𝑡 = ∫

𝑏

𝑎
|𝑓(𝑡)| d𝑡

≤ (𝑏 − 𝑎)𝑀
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Equality holds if and only if |𝑓(𝑡)| = 𝑀 and Re(𝑒−𝑖𝜃𝑓(𝑡)) = 𝑀 for all 𝑡 ∈ [𝑎, 𝑏], which is true
only if |𝑓(𝑡)| = 𝑀 and arg(𝑓(𝑡)) = 𝜃 hence 𝑓 = 𝑀𝑒𝑖𝜃 for all 𝑡.

2.2. Integrating along curves
Definition. Let𝑈 ⊂ ℂ be an open set and let 𝑓∶ 𝑈 → ℂ be continuous. Let 𝛾∶ [𝑎, 𝑏] → 𝑈
be a 𝐶1 curve. Then the integral of 𝑓 along 𝛾 is

∫
𝛾
𝑓(𝑧) d𝑧 = ∫

𝑏

𝑎
𝑓(𝛾(𝑡))𝛾′(𝑡) d𝑡

This definition is consistent with the previous definition of the integral of a function 𝑓 along
the interval [𝑎, 𝑏]. The integral along a curve has various convenient properties.
(i) It is invariant under the choice of parametrisation. Let 𝜑∶ [𝑎1, 𝑏1] → [𝑎, 𝑏] be 𝐶1 and

injective with 𝜑(𝑎1) = 𝑎 and 𝜑(𝑏1) = 𝑏. Let 𝛿 = 𝛾 ∘ 𝜑∶ [𝑎1, 𝑏1] → 𝑈 . Then

∫
𝛿
𝑓(𝑧) d𝑧 = ∫

𝛾
𝑓(𝑧) d𝑧

Indeed,

∫
𝛿
𝑓(𝑧) d𝑧 = ∫

𝑏1

𝑎1
𝑓(𝛾(𝜑(𝑡)))𝛾′(𝜑(𝑡))𝜑′(𝑡) d𝑡

= ∫
𝑏

𝑎
𝑓(𝛾(𝑠))𝛾′(𝑠) d𝑠

= ∫
𝛾
𝑓(𝑧) d𝑧

(ii) The integral is linear. It is easy to check that

∫
𝛾
(𝜆𝑓(𝑧) + 𝜇𝑔(𝑧)) d𝑧 = 𝜆∫

𝛾
𝑓(𝑧) d𝑧 + 𝜇∫

𝛾
𝑔(𝑧) d𝑧

for complex constants 𝜆, 𝜇 ∈ ℂ.
(iii) The additivity property states that if 𝛾∶ [𝑎, 𝑏] → 𝑈 is 𝐶1 and 𝑎 < 𝑐 < 𝑏, then

∫
𝛾
𝑓(𝑧) d𝑧 = ∫

𝛾|[𝑎,𝑐]
𝑓(𝑧) d𝑧 +∫

𝛾|𝑐,𝑏
𝑓(𝑧) d𝑧

(iv) We define the inverse path (−𝛾)∶ [−𝑏,−𝑎] → 𝑈 by (−𝛾)(𝑡) = 𝛾(−𝑡). Then

∫
(−𝛾)

𝑓(𝑧) d𝑧 = −∫
𝛾
𝑓(𝑧) d𝑧
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Definition. Let 𝛾∶ [𝑎, 𝑏] → ℂ be a 𝐶1 curve. Then the length of 𝛾 is

length(𝛾) = ∫
𝑏

𝑎
|𝛾′(𝑡)| d𝑡

Definition. A piecewise 𝐶1 curve is a continuous map 𝛾∶ [𝑎, 𝑏] → ℂ such that there exists
a finite subdivision

𝑎 = 𝑎0 < 𝑎1 < ⋯ < 𝑎𝑛 = 𝑏

such that each 𝛾𝑗 = 𝛾|[𝑎𝑗−1,𝑎𝑗] is 𝐶
1 for 1 ≤ 𝑗 ≤ 𝑛. Then, for such a piecewise 𝐶1 curve, we

define

∫
𝛾
𝑓(𝑧) d𝑧 =

𝑛
∑
𝑗=1

∫
𝛾𝑗
𝑓(𝑧) d𝑧

and

length(𝛾) =
𝑛
∑
𝑗=1

length(𝛾𝑗) =
𝑛
∑
𝑗=1

∫
𝑎𝑗

𝑎𝑗−1
|𝛾′(𝑡)| d𝑡

By the additivity property, both definitions are invariant under changing the subdivision.
From here, we will use ‘curve’ to refer to ‘piecewise 𝐶1 curve’, unless stated otherwise.

Definition. If 𝛾1∶ [𝑎, 𝑏] → ℂ and 𝛾2∶ [𝑐, 𝑑] are curves with 𝛾1(𝑏) = 𝛾2(𝑐), we define the
sum of 𝛾1 and 𝛾2 to be the curve

(𝛾1 + 𝛾2)∶ [𝑎, 𝑏 + 𝑑 − 𝑐] → ℂ; (𝛾1 + 𝛾2)(𝑡) = {𝛾1(𝑡) 𝑎 ≤ 𝑡 ≤ 𝑏
𝛾2(𝑡 − 𝑏 + 𝑐) 𝑏 ≤ 𝑡 ≤ 𝑏 + 𝑑 − 𝑐

Proposition. Let 𝑓∶ 𝑈 → ℂ be continuous and 𝛾∶ [𝑎, 𝑏] → ℂ, we have

||||
∫
𝛾
𝑓(𝑧) d𝑧

||||
≤ length(𝛾) sup

𝛾
|𝑓|

where sup𝛾 𝑔 ≡ sup𝑡∈[𝑎,𝑏] 𝑔(𝛾(𝑡)).

Proof. If 𝛾 is 𝐶1, then

||||
∫
𝛾
𝑓(𝑧) d𝑧

||||
=
||||
∫

𝑏

𝑎
𝑓(𝛾(𝑡))𝛾′(𝑡) d𝑡

||||
≤ ∫

𝑏

𝑎
|𝑓(𝛾(𝑡))| ⋅ |𝛾′(𝑡)| d𝑡 ≤ sup

𝑡∈[𝑎,𝑏]
|𝑓(𝛾(𝑡))|length(𝛾)

If 𝛾 is piecewise 𝐶1, then the result follows from the definition of a piecewise 𝐶1 function
and the above.
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2.3. Fundamental theorem of calculus
Theorem (fundamental theorem of calculus). Let 𝑓∶ 𝑈 → ℂ be continuous on an open
set 𝑈 ⊂ ℂ. Let 𝐹 ∶ 𝑈 → ℂ be a function such that 𝐹′(𝑧) = 𝑓(𝑧) for all 𝑧 ∈ 𝑈 . Then, for any
curve 𝛾∶ [𝑎, 𝑏] → 𝑈 , we have

∫
𝛾
𝑓(𝑧) d𝑧 = 𝐹(𝛾(𝑏)) − 𝐹(𝛾(𝑎))

If 𝛾 is a closed curve, then ∫𝛾 𝑓(𝑧) = 0. Such a function 𝐹 is known as an antiderivative of 𝑓.

Proof.

∫
𝛾
𝑓(𝑧) d𝑧 = ∫

𝑏

𝑎
𝑓(𝛾(𝑡))𝛾′(𝑡) d𝑡 = ∫

𝑏

𝑎

d
d𝑡𝐹(𝛾(𝑡)) d𝑡 = 𝐹(𝛾(𝑏)) − 𝐹(𝛾(𝑎))

Remark. Note that we assume that 𝐹 exists such that 𝐹′(𝑧) = 𝑓(𝑧); such an 𝐹 is not provided
for by the theorem.

Example. For an integer 𝑛 and the curve 𝛾(𝑡) = 𝑅𝑒2𝜋𝑖𝑡 for 𝑡 = [0, 1], consider the integral
∫𝛾 𝑧𝑛 d𝑧. For 𝑛 ≠ −1, the function 𝑧𝑛+1

𝑛+1
is an antiderivative of 𝑧𝑛. Hence, ∫𝛾 𝑧𝑛 d𝑧 = 0 since

𝛾 is a closed curve. If 𝑛 = −1, we can use the definition of the integral to find

∫
𝛾

1
𝑧 d𝑧 = ∫

1

0

1
𝛾(𝑡)𝛾

′(𝑡) d𝑡 = ∫
1

0

1
𝑅𝑒2𝜋𝑖𝑡 2𝜋𝑖𝑅𝑒

2𝜋𝑖𝑡 d𝑡 = 2𝜋𝑖

This is not zero, hence for all 𝑅 > 0, 1
𝑧
has no antiderivative in any open set containing the

circle {|𝑧| = 𝑅}. In particular, for any branch of logarithm 𝜆, it has derivative 1
𝑧
, hence there

exists no branch of logarithm on ℂ⋆ = ℂ ∖ {0}.
Theorem (converse to fundamental theorem of calculus). Let 𝑈 ⊂ ℂ be a domain. If
𝑓∶ 𝑈 → ℂ is continuous and if ∫𝛾 𝑓(𝑧) d𝑧 = 0 for every closed curve 𝛾 in 𝑈 , then 𝑓 has
an antiderivative. In other words, there exists a holomorphic function 𝐹 ∶ 𝑈 → ℂ such that
𝐹′ = 𝑓 in 𝑈 .

Proof. Let 𝑎0 ∈ 𝑈 . Then for 𝑤 ∈ 𝑈 , we can define

𝐹(𝑤) = ∫
𝛾𝑤
𝑓(𝑧) d𝑧

where 𝛾𝑤 ∶ [0, 1] → ℂ is a curve with 𝛾𝑤(0) = 𝑎0 and 𝛾𝑤(1) = 𝑤.
The definition of 𝐹 is independent of the choice of 𝛾𝑤. Indeed, suppose two paths 𝛾𝑤, 𝛾′𝑤
exist. Then the curve 𝛾𝑤 + (−𝛾′𝑤) is a closed path, and by assumption the integral along this
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curve is zero. Thus 𝐹 is independent of the choice of path as claimed. So 𝐹 is a well-defined
function.

Now, let 𝑤 ∈ 𝑈 . Since 𝑈 is an open set, there exists 𝑟 > 0 such that 𝐷(𝑤, 𝑟) ⊂ 𝑈 . For ℎ ∈ ℂ
with 0 < |ℎ| < 𝑟, let 𝛿ℎ be the radial path 𝑡 ↦ 𝑤 + 𝑡ℎ for 𝑡 ∈ [0, 1]. Now we define

𝛾 = 𝛾𝑤 + 𝛿ℎ + (−𝛾𝑤+ℎ)

This is a closed curve contained within 𝑈 , hence ∫𝛾 𝑓(𝑧) d𝑧 = 0. Thus

∫
𝛾𝑤+ℎ

𝑓(𝑧) d𝑧 = ∫
𝛾𝑤
𝑓(𝑧) d𝑧 +∫

𝛿ℎ
𝑓(𝑧) d𝑧

Informally, the integral has an additivity property which is independent of the path taken.
Rewriting this using 𝐹,

𝐹(𝑤 + ℎ) = 𝐹(𝑤) +∫
𝛿ℎ
𝑓(𝑧) d𝑧

= 𝐹(𝑤) +∫
𝛿ℎ
(𝑓(𝑧) + 𝑓(𝑤) − 𝑓(𝑤)) d𝑧

= 𝐹(𝑤) + ℎ𝑓(𝑤) +∫
𝛿ℎ
(𝑓(𝑧) − 𝑓(𝑤)) d𝑧

Hence, by continuity of 𝑓,

|||
𝐹(𝑤 + ℎ) − 𝐹(𝑤)

ℎ − 𝑓(𝑤)||| =
1
|ℎ|

||||
∫
𝛿ℎ
(𝑓(𝑧) − 𝑓(𝑤)) d𝑧

||||

≤ 1
|ℎ| length(𝛿ℎ) sup

𝑧∈Im𝛿ℎ
|𝑓(𝑧) − 𝑓(𝑤)|

= sup
𝑧∈Im𝛿ℎ

|𝑓(𝑧) − 𝑓(𝑤)|

∴ lim
ℎ→0

|||
𝐹(𝑤 + ℎ) − 𝐹(𝑤)

ℎ − 𝑓(𝑤)||| = lim
ℎ→0

sup
𝑧∈Im𝛿ℎ

|𝑓(𝑧) − 𝑓(𝑤)| = 0

Thus, 𝐹 is differentiable at 𝑤 with 𝐹′(𝑤) = 𝑓(𝑤).

2.4. Star-shaped domains
Definition. A domain 𝑈 is star-shaped, or a star domain, if there exists a (not necessarily
unique) centre 𝑎0 ∈ 𝑈 such that for all𝑤 ∈ 𝑈 , the straight line segment [𝑎0, 𝑤] is contained
within 𝑈 .
Remark. Any disc is convex; any convex domain is star-shaped; any star-shaped domain is
path-connected. The reverse implications are not true in general.
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Definition. A triangle in ℂ is the convex hull of three points in ℂ. The (closed) convex hull
of a set 𝑆 is the smallest (closed) convex set 𝐶 such that 𝑆 ⊆ 𝐶. In this case, if 𝑧1, 𝑧2, 𝑧3 ∈ ℂ,
we have

𝑇 = {𝑎𝑧1 + 𝑏𝑧2 + 𝑐𝑧3∶ 0 ≤ 𝑎, 𝑏, 𝑐 ≤ 1, 𝑎 + 𝑏 + 𝑐 = 1}

When used as a curve, the boundary 𝜕𝑇 represents the piecewise affine closed curve 𝛾 = 𝛾1+
𝛾2+𝛾3 where 𝛾𝑖 are affine functions parametrising the three line segments on the boundary
of 𝑇.

Corollary. Let𝑈 be a star-shaped domain. Let 𝑓∶ 𝑈 → ℂ be continuous and∫𝜕𝑇 𝑓(𝑧) d𝑧 =
0 for any triangle 𝑇 ⊂ 𝑈 . Then 𝑓 has an antiderivative in 𝑈 .

Remark. This is a relaxation of the conditions from the previous theorem.

Proof. Let 𝑎0 be a centre for the domain 𝑈 . Let 𝑤 be an arbitrary point in 𝑈 . Then let
𝛾𝑤 be the affine function parametrising the directed line segment [𝑎0, 𝑤], and let 𝐹(𝑤) =
∫𝛾𝑤 𝑓(𝑧) d𝑧. Using ℎ and 𝛿ℎ as above, by letting 𝛾 = 𝛾𝑤 + 𝛿ℎ + (−𝛾𝑤+ℎ) we then have
∫𝑓(𝑧) d𝑧 = ±∫𝜕𝑇 𝑓(𝑧) d𝑧 for a triangle 𝑇 ⊂ 𝑈 . Since the integral around a triangle is zero
by hypothesis, ∫𝛾 𝑓(𝑧) d𝑧 = 0. We then complete the proof in analogous way to the general
case.

Theorem (Cauchy’s theorem for triangles). Let 𝑈 ⊂ ℂ be an open set and 𝑓∶ 𝑈 → ℂ be a
holomorphic function. Then ∫𝜕𝑇 𝑓(𝑧) d𝑧 = 0 for all triangles 𝑇 ⊂ 𝑈 .

Proof. Let 𝜂(𝑡) = ∫𝜕𝑇 𝑓(𝑧) d𝑧. We will subdivide the triangle 𝑇 into four smaller triangles
𝑇 (1), 𝑇 (2), 𝑇 (3), 𝑇 (4). The vertices of the inner triangle are the midpoints of the sides of 𝑇,
and the three other triangles are constructed to fill the remaining area of 𝑇. Thus,

𝜂(𝑇) = ∫
𝜕𝑇(1)

𝑓(𝑧) d𝑧 +∫
𝜕𝑇(2)

𝑓(𝑧) d𝑧 +∫
𝜕𝑇(3)

𝑓(𝑧) d𝑧 +∫
𝜕𝑇(4)

𝑓(𝑧) d𝑧

Then, by the triangle inequality, there exists a triangle 𝑇 (𝑗) such that

|||∫𝜕𝑇(𝑗)
𝑓(𝑧) d𝑧||| ≥

|𝜂(𝑇)|
4

Let 𝑇0 = 𝑇, and 𝑇1 = 𝑇 (𝑗), so |𝜂(𝑇1)| ≥
1
4
|𝜂(𝑇0)|. We can show geometrically that for any

choice of 𝑇𝑖, length(𝜕𝑇1) =
1
2
length(𝜕𝑇0). Inductively, we can subdivide 𝑇𝑖 and produce 𝑇𝑖+1,

such that

𝑇0 ⊃ 𝑇1 ⊃ ⋯ ; |𝜂(𝑇𝑛)| ≥
1
4|𝜂(𝑇𝑛−1)|; length(𝜕𝑇𝑛) =

1
2 length(𝜕𝑇𝑛−1)

Hence,
|𝜂(𝑇𝑛)| ≥

1
4𝑛 |𝜂(𝑇0)|; length(𝜕𝑇𝑛) =

1
2𝑛 length(𝜕𝑇0)
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Since 𝑇𝑛 are non-empty, nested closed subsets with diameter converging to zero, we can
show that⋂∞

𝑛=1 𝑇𝑛 = {𝑧0} for some 𝑧0 ∈ ℂ. Let 𝜀 > 0. Since 𝑓 is differentiable at 𝑧0, there
exists 𝛿 > 0 such that

𝑧 ∈ 𝑈, |𝑧 − 𝑧0| < 𝛿 ⟹ |||
𝑓(𝑧) − 𝑓(𝑧0)

𝑧 − 𝑧0
− 𝑓′(𝑧0)

||| ≤ 𝜀

⟹ |𝑓(𝑧) − 𝑓(𝑧0) − 𝑓′(𝑧0)(𝑧 − 𝑧0)| ≤ 𝜀|𝑧 − 𝑧0|

Now, observe that for all 𝑛,

∫
𝜕𝑇𝑛

𝑓(𝑧) d𝑧 = ∫
𝜕𝑇𝑛

(𝑓(𝑧) − 𝑓(𝑧0) − 𝑓′(𝑧0)(𝑧 − 𝑧0)) d𝑧

since ∫𝜕𝑇𝑛 d𝑧 = ∫𝜕𝑇𝑛 𝑧 d𝑧 = 0 by the fundamental theorem of calculus. Let 𝑛 such that
𝑇𝑛 ⊂ 𝐷(𝑧0, 𝛿). Hence,

1
4𝑛 |𝜂(𝑇0)| ≤ |𝜂(𝑇𝑛)|

=
||||
∫
𝜕𝑇𝑛

𝑓(𝑧) d𝑧
||||

=
||||
∫
𝜕𝑇𝑛

(𝑓(𝑧) − 𝑓(𝑧0) − 𝑓′(𝑧0)(𝑧 − 𝑧0)) d𝑧
||||

≤ ( sup
𝑧∈𝜕𝑇𝑛

|𝑓(𝑧) − 𝑓(𝑧0) − 𝑓′(𝑧0)(𝑧 − 𝑧0)|)length(𝜕𝑇𝑛)

≤ 𝜀( sup
𝑧∈𝜕𝑇𝑛

|𝑧 − 𝑧0|)length(𝜕𝑇𝑛)

≤ 𝜀 ⋅ length(𝜕𝑇𝑛)2

= 𝜀
4𝑛 length(𝜕𝑇0)

2

∴ |𝜂(𝑇0)| ≤ 𝜀 ⋅ length(𝜕𝑇0)2

𝜀 was arbitrary, hence 𝜂(𝑇0)must be zero.

We can generalise the above theorem for functions that are holomorphic except at a finite
number of points.

Theorem. Let 𝑈 ⊂ ℂ be an open set and 𝑓∶ 𝑈 → ℂ be a continuous function. Let 𝑆 ⊂ 𝑈
be a finite set and suppose that 𝑓 is holomorphic on 𝑈 ∖ 𝑆. Then ∫𝜕𝑇 𝑓(𝑧) d𝑧 = 0 for all
triangles 𝑇 ⊂ 𝑈 .

Proof. By the procedure above, we can subdivide 𝑇 into a total of 4𝑛 smaller triangles; at
each step we join the midpoints of the sides of the triangles of the previous step. We will
keep all of the smaller triangles, and let the sequence of such smaller triangles be denoted
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𝑇1,… , 𝑇𝑁 . Then, since the integrals along the sides of the smaller triangles that are interior
to 𝑇 cancel, we have

∫
𝜕𝑇
𝑓(𝑧) d𝑧 =

𝑁
∑
𝑗=1

∫
𝜕𝑇𝑗

𝑓(𝑧) d𝑧

By the previous theorem, ∫𝜕𝑇𝑗 𝑓(𝑧) d𝑧 = 0 unless 𝑇𝑗 intersects with 𝑆. So by letting 𝐼 =
{𝑗∶ 𝑇𝑗 ∩ 𝑆 ≠ ∅}, we have

∫
𝜕𝑇
𝑓(𝑧) d𝑧 = ∑

𝑗∈𝐼
∫
𝜕𝑇𝑗

𝑓(𝑧) d𝑧

Since anypointmaybe in atmost six of the smaller triangles, and length(𝜕𝑇𝑗) =
1
2𝑛
length(𝜕𝑇),

we find
|||∫𝜕𝑇

𝑓(𝑧) d𝑧||| ≤ 6|𝑆|(sup
𝑧∈𝑇

|𝑓(𝑧)|) length(𝜕𝑇)2𝑛

Then let 𝑛 → ∞ and the result then holds as required.

We can now prove the ‘convex Cauchy’ theorem.

Corollary (Cauchy’s theorem for convex sets). Let 𝑈 ⊂ ℂ be convex, or more generally, a
star domain. Let 𝑓∶ 𝑈 → ℂ be continuous on 𝑈 and holomorphic in 𝑈 ∖ 𝑆 where 𝑆 is a
finite set. Then ∫𝛾 𝑓(𝑧) d𝑧 = 0 for any closed curve 𝛾 in 𝑈 .

Proof. By the theorems above, ∫𝜕𝑇 𝑓(𝑧) d𝑧 = 0 for any triangle 𝑇 ⊂ 𝑈 . Since 𝑈 is a star
domain and 𝑓 is continuous, this means that 𝑓 has an antiderivative in 𝑈 . The result then
follows from the fundamental theorem of calculus.

Remark. We will soon show that if 𝑓∶ 𝑈 → ℂ is continuous and holomorphic in 𝑈 ∖ 𝑆
where 𝑆 is finite, then 𝑓 is holomorphic in 𝑈 .

2.5. Cauchy’s integral formula
For a disc 𝐷(𝑎, 𝜌) we will write ∫𝜕𝐷(𝑎,𝜌) 𝑓(𝑧) d𝑧 to mean ∫𝛾 𝑓(𝑧) d𝑧 where 𝛾∶ [0, 1] → ℂ is
the curve 𝛾(𝑡) = 𝑎 + 𝜌𝑒2𝜋𝑖𝑡.
Theorem (Cauchy’s integral formula for a disc). Let 𝐷 = 𝐷(𝑎, 𝑟) and let 𝑓∶ 𝐷 → ℂ be
holomorphic. Then, for any 𝜌 with 0 < 𝜌 < 𝑟 and any 𝑤 ∈ 𝐷(𝑎, 𝜌), we have

𝑓(𝑤) = 1
2𝜋𝑖 ∫𝜕𝐷(𝑎,𝜌)

𝑓(𝑧) d𝑧
𝑧 − 𝑤

In particular, taking 𝑤 = 𝑎,

𝑓(𝑎) = 1
2𝜋𝑖 ∫𝜕𝐷(𝑎,𝜌)

𝑓(𝑧) d𝑧
𝑧 − 𝑎 = ∫

1

0
𝑓(𝑎 + 𝜌𝑒2𝜋𝑖𝑡) d𝑡

This final equation is called themean value property for holomorphic functions.
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IX. Complex Analysis

We first need the following lemma.

Lemma. If 𝛾∶ [𝑎, 𝑏] → ℂ is a curve and (𝑓𝑛) is a sequence of continuous complex functions
on Im 𝛾 converging uniformly to 𝑓 on Im 𝛾, then ∫𝛾 𝑓𝑛(𝑧) d𝑧 → ∫𝛾 𝑓(𝑧) d𝑧.

Proof. We have

||||
∫
𝛾
𝑓𝑛(𝑧) d𝑧 −∫

𝛾
𝑓(𝑧) d𝑧

||||
=
||||
∫
𝛾
(𝑓𝑛(𝑧) − 𝑓(𝑧)) d𝑧

||||
≤ sup

𝑧∈Im𝛾
|𝑓𝑛(𝑧) − 𝑓(𝑧)|length(𝛾)

We can now prove Cauchy’s integral formula for a disc.

Proof. Let 𝑤 ∈ 𝐷(𝑎, 𝜌) be fixed, and define ℎ∶ 𝐷 → ℂ by

ℎ(𝑧) = {
𝑓(𝑧)−𝑓(𝑤)

𝑧−𝑤
if 𝑧 ≠ 𝑤

𝑓′(𝑤) if 𝑧 = 𝑤

Then ℎ is continuous on 𝐷 and holomorphic in 𝐷 ∖ {𝑤}. By Cauchy’s theorem for convex
sets,

∫
𝜕𝐷(𝑎,𝜌)

ℎ(𝑧) d𝑧 = 0

Substituting for ℎ, we find

𝑓(𝑤)∫
𝜕𝐷(𝑎,𝜌)

d𝑧
𝑧 − 𝑤 = ∫

𝜕𝐷(𝑎,𝜌)

𝑓(𝑧) d𝑧
𝑧 − 𝑤

It now suffices to prove that
∫
𝜕𝐷(𝑎,𝜌)

d𝑧
𝑧 − 𝑤 = 2𝜋𝑖

Note that
1

𝑧 − 𝑤 = 1
𝑧 − 𝑎 + 𝑎 − 𝑤 = 1

(𝑧 − 𝑎)(1 − 𝑤−𝑎
𝑧−𝑎

)
=

∞
∑
𝑗=0

(𝑤 − 𝑎)𝑗
(𝑧 − 𝑎)𝑗+1

where the convergence is uniform for 𝑧 ∈ 𝜕𝐷(𝑎, 𝜌) by the Weierstrass𝑀-test. Therefore, by
the above lemma, we interchange summation and integration to find

∫
𝜕𝐷(𝑎,𝜌)

d𝑧
𝑧 − 𝑤 =

∞
∑
𝑗=0

(𝑤 − 𝑎)𝑗∫
𝜕𝐷(𝑎,𝜌)

d𝑧
(𝑧 − 𝑎)𝑗+1

For 𝑗 ≥ 1, the function 1
(𝑧−𝑎)𝑗+1

has an antiderivative in a neighbourhood of 𝜕𝐷(𝑎, 𝜌), hence
all integrals on the right hand side for 𝑗 ≥ 1 vanish. For 𝑗 = 0, we can compute directly that
∫𝜕𝐷(𝑎,𝜌)

d𝑧
𝑧−𝑎

= 2𝜋𝑖. Hence, ∫𝜕𝐷(𝑎,𝜌)
d𝑧
𝑧−𝑤

= 2𝜋𝑖, proving Cauchy’s integral formula.
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2. Integration

Now, taking 𝑤 = 𝑎 in Cauchy’s integral formula, we find

𝑓(𝑎) = 1
2𝜋𝑖 ∫𝜕𝐷(𝑎,𝜌)

𝑓(𝑧) d𝑧
𝑧 − 𝑎

By direct computation using the parametrisation 𝑡 ↦ 𝑎 + 𝜌𝑒2𝜋𝑖𝑡 for 𝑡 ∈ [0, 1], we find

𝑓(𝑎) = ∫
1

0
𝑓(𝑎 + 𝜌𝑒2𝜋𝑖𝑡) d𝑡

as required.

2.6. Liouville’s theorem
Theorem. Let 𝑓∶ ℂ → ℂ be entire and bounded. Then 𝑓 is constant. More generally, if 𝑓
is entire with sublinear growth (there exist 𝐾 ≥ 0 and 𝛼 < 1 such that |𝑓(𝑧)| ≤ 𝐾(1 + |𝑧|𝛼)
for all 𝑧 ∈ ℂ) then 𝑓 is constant.

Proof. Let 𝑤 ∈ ℂ and 𝜌 > |𝑤|. By Cauchy’s integral formula, we have

𝑓(𝑤) = 1
2𝜋𝑖 ∫𝜕𝐷(0,𝜌)

𝑓(𝑧) d𝑧
𝑧 − 𝑤 ; 𝑓(0) = 1

2𝜋𝑖 ∫𝜕𝐷(0,𝜌)
𝑓(𝑧) d𝑧

𝑧

Thus,

|𝑓(𝑤) − 𝑓(0)| = 1
2𝜋

||||
∫
𝜕𝐷(0,𝜌)

𝑤𝑓(𝑧) d𝑧
𝑧(𝑧 − 𝑤)

||||

≤ |𝑤|
2𝜋 sup

𝑧∈𝜕𝐷(0,𝜌)

|𝑓(𝑧)|
|𝑧| ⋅ ||𝑧| − |𝑤|| length(𝜕𝐷(0, 𝜌))

≤ |𝑤|𝐾(1 + 𝜌𝛼)
2𝜋𝜌(𝜌 − |𝑤|) 2𝜋𝜌

= |𝑤|𝐾(1 + 𝜌𝛼)
𝜌 − |𝑤|

By letting 𝜌 → ∞, we can conclude 𝑓(𝑤) = 𝑓(0).

Theorem (fundamental theoremof algebra). Every non-constant polynomial with complex
coefficients has a complex root.

Proof. Let 𝑝(𝑧) = 𝑎𝑛𝑧𝑛 +⋯ + 𝑎0 be a complex polynomial of degree 𝑛 ≥ 1. Then 𝑎𝑛 ≠ 0,
and for 𝑧 ≠ 0 we can write

𝑝(𝑧) = 𝑧𝑛(𝑎𝑛 +
𝑎𝑛−1
𝑧 +⋯+ 𝑎0

𝑧𝑛 )
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IX. Complex Analysis

By the triangle inequality,

|𝑝(𝑧)| ≥ |𝑧|𝑛(|𝑎𝑛| −
|𝑎𝑛−1|
|𝑧| − ⋯ − |𝑎0|

|𝑧|𝑛
)

Hence, there exists 𝑅 > 0 such that |𝑝(𝑧)| ≥ 1 for |𝑧| > 𝑅.

Now, if 𝑝(𝑧) ≠ 0 for all 𝑧, then 𝑔(𝑧) = 1
𝑝(𝑧)

is entire. By the above, |𝑔(𝑧)| ≤ 1 for |𝑧| > 𝑅.
By continuity of 𝑔, we have further that |𝑔(𝑧)| is bounded from above on the compact set
{|𝑧| ≤ 𝑅}. Hence, 𝑔 is a bounded entire function. By Liouville’s theorem, 𝑔 is constant. Since
𝑝 is non-constant, this is a contradiction. Hence 𝑝 has a zero.

Theorem (local maximum modulus principle). Let 𝑓∶ 𝐷(𝑎, 𝑅) → ℂ be holomorphic, and
|𝑓(𝑧)| ≤ |𝑓(𝑎)| for all 𝑧 ∈ 𝐷(𝑎, 𝑅). Then 𝑓 is constant.

Proof. By the mean value property,

𝑓(𝑎) = ∫
1

0
𝑓(𝑎 + 𝜌𝑒2𝜋𝑖𝑡) d𝑡

Therefore,

|𝑓(𝑎)| =
||||
∫

1

0
𝑓(𝑎 + 𝜌𝑒2𝜋𝑖𝑡) d𝑡

||||
≤ sup

𝑡∈[0,1]
||𝑓(𝑎 + 𝜌𝑒2𝜋𝑖𝑡)|| ≤ |𝑓(𝑎)|

where the last inequality is by hypothesis. Therefore, both inequalities must be equalities.
Equality in the first inequality implies that 𝑓(𝑎 + 𝜌𝑒2𝜋𝑖𝑡) = 𝑐𝜌 for some constant 𝑐𝜌 and all
𝑡 ∈ [0, 1]. Then, by the first equality, ||𝑐𝜌|| = |𝑓(𝑎)| for all 𝜌 ∈ (0, 𝑅). Thus, ||𝑓(𝑎 + 𝜌𝑒2𝜋𝑖𝑡)||
is constant for all 𝜌 ∈ (0, 𝑅) and 𝑡 ∈ [0, 1]. Hence |𝑓(𝑧)| is constant on 𝐷(𝑎, 𝑅). By the
Cauchy–Riemann equations, 𝑓must be constant.

2.7. Taylor series
Theorem. Let 𝑓∶ 𝐷(𝑎, 𝑅) → ℂ be holomorphic. Then 𝑓 has a convergent power series rep-
resentation on𝐷(𝑎, 𝑅). More precisely, there exists a sequence of complex numbers 𝑐0, 𝑐1,…
such that

𝑓(𝑤) =
∞
∑
𝑛=0

𝑐𝑛(𝑤 − 𝑎)𝑛

The coefficient 𝑐𝑛 is given by

𝑐𝑛 =
1
2𝜋𝑖 ∫𝜕𝐷(𝑎,𝜌)

𝑓(𝑧) d𝑧
(𝑧 − 𝑎)𝑛+1

for any 𝜌 ∈ (0, 𝑅).
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2. Integration

Proof. Let 0 < 𝜌 < 𝑅. Then, for any 𝑤 ∈ 𝐷(0, 𝜌), we have by Cauchy’s integral formula that

𝑓(𝑤) = 1
2𝜋𝑖 ∫𝜕𝐷(𝑎,𝜌)

𝑓(𝑧) d𝑧
𝑧 − 𝑤

= 1
2𝜋𝑖 ∫𝜕𝐷(𝑎,𝜌)

𝑓(𝑧)
∞
∑
𝑛=0

(𝑤 − 𝑎)𝑛
(𝑧 − 𝑎)𝑛+1 d𝑧

=
∞
∑
𝑛=0

( 1
2𝜋𝑖 ∫𝜕𝐷(𝑎,𝜌)

𝑓(𝑧) d𝑧
(𝑧 − 𝑎)𝑛+1)(𝑤 − 𝑎)𝑛

The last equality holds since the series under the integral converges uniformly for all 𝑧 ∈
𝜕𝐷(𝑎, 𝜌). Let

𝑐𝑛(𝜌) =
1
2𝜋𝑖 ∫𝜕𝐷(𝑎,𝜌)

𝑓(𝑧) d𝑧
(𝑧 − 𝑎)𝑛+1

Then we have shown that 𝑓(𝑤) = ∑∞
𝑛=0 𝑐𝑛(𝜌)(𝑤 − 𝑎)𝑛+1 for all 𝑤 ∈ 𝐷(𝑎, 𝜌). By a previous

theorem, the function 𝑓 has derivatives of all orders in 𝐷(𝑎, 𝜌) and hence 𝑐𝑛(𝜌) =
𝑓(𝑛)(𝑎)

𝑛!
,

which is independent of 𝜌, so we can let 𝑐𝑛 = 𝑐𝑛(𝜌) for an arbitrary 𝜌.

Corollary. If 𝑓 is holomorphic on an open set𝑈 ⊂ ℂ, then 𝑓 has derivatives of all orders in
𝑈 , and those derivatives are holomorphic on 𝑈 .

Proof. We have a power series representation for 𝑓 near every points, so its derivatives of all
orders exist everywhere. Hence, the derivatives of all orders are holomorphic.

Remark. We can explicitly compute from the 𝑐𝑛 above that

𝑓(𝑛)(𝑎) = 𝑛!
2𝜋𝑖 ∫𝜕𝐷(𝑎,𝜌)

𝑓(𝑧) d𝑧
(𝑧 − 𝑎)𝑛+1

This is a special case of a Cauchy integral formula for derivatives.

Note also that by taking 𝑛 = 1, we can apply the estimate for the integral to find

|𝑓′(𝑎)| ≤ 1
𝜌( sup

𝑧∈𝜕𝐷(𝑎,𝜌)
|𝑓(𝑧)|)

This can be thought of as a localised version of Liouville’s theorem, and it directly implies
Liouville’s theorem. Indeed, if 𝑓 is entire and bounded, let 𝑎 ∈ ℂ and by applying the
estimate and letting 𝜌 → ∞ we can conclude 𝑓′ = 0 on ℂ, giving that 𝑓 is constant.

Definition. A function 𝑓 is analytic at a point 𝑎 ∈ ℂ (or ℝ) if there exists a neighbourhood
of 𝑎 such that 𝑓 is given by a convergent power series about 𝑎.
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IX. Complex Analysis

Remark. If 𝑓 is analytic at 𝑎, we must have derivatives of all orders of 𝑓 near 𝑎. The above
corollary implies that if 𝑓 is complex, the following are equivalent.
(i) 𝑓 is analytic at 𝑎
(ii) 𝑓 has complex derivatives of all orders in a neighbourhood of 𝑎
(iii) 𝑓 is complex differentiable once in a neighbourhood in a neighbourhood of 𝑎 (so 𝑓 is

holomorphic at 𝑎)
For real functions, this is not the case. For example, consider 𝑓∶ ℝ → ℝ defined by 𝑓(𝑥) =
exp(−𝑥−2). This has 𝑓(𝑛)(0) = 0 for all 𝑛, so 𝑓 is not given by a convergent power series near
zero.

Let 𝑈 ⊂ ℂ be an open set. Now, we have that 𝑓 = 𝑢 + 𝑖𝑣 is holomorphic in 𝑈 if and only if
𝑢 and 𝑣 have continuous partial derivatives in 𝑈 , and that 𝑢.𝑣 satisfy the Cauchy–Riemann
equations. Further, the corollary above implies that 𝑢, 𝑣 are 𝐶2 functions. This shows that
𝑢 and 𝑣 are harmonic.
Theorem (Morera’s theorem). Let𝑈 ⊆ ℂ be open, and 𝑓∶ 𝑈 → ℂ be a continuous function
such that ∫𝛾 𝑓(𝑧) d𝑧 = 0 for all closed curves 𝛾 in 𝑈 . Then 𝑓 is holomorphic in 𝑈 .
Remark. This can be thought of as a converse to Cauchy’s theorem.

Proof. We know that 𝑓 has a holomorphic antiderivative 𝐹 on 𝑈 . Then, we know that 𝐹 is
twice differentiable in 𝑈 . Since 𝐹′ = 𝑓, 𝑓 is holomorphic.

Corollary. Let 𝑈 ⊆ ℂ be an open set. Let 𝑓∶ 𝑈 → ℂ be a continuous function and holo-
morphic in 𝑈 ∖ 𝑆, where 𝑆 is a finite set. Then 𝑓 is holomorphic in 𝑈 .

Proof. For all 𝑎 ∈ 𝑈 , there exists 𝑟 > 0 such that𝐷 = 𝐷(𝑎, 𝑟) ⊂ 𝑈 . Since𝐷 is convex, we can
apply Cauchy’s formula for convex sets to observe that ∫𝛾 𝑓(𝑧) d𝑧 = 0 for all closed curves in
𝐷. Then by Morera’s theorem, 𝑓 is holomorphic.

2.8. Zeroes of holomorphic functions
Definition. Let 𝑓 be a holomorphic function on a disc 𝐷 = 𝐷(𝑎, 𝑅). By the Taylor series
theorem, there exist constants 𝑐𝑛 such that

𝑓(𝑧) =
∞
∑
𝑛=0

𝑐𝑛(𝑧 − 𝑎)𝑛

for all 𝑧 ∈ 𝐷. Then if 𝑓 is not identically zero, there exists 𝑛 such that 𝑐𝑛 ≠ 0. Let 𝑚 =
min {𝑛∶ 𝑐𝑛 ≠ 0}. Then,

𝑓(𝑧) = (𝑧 − 𝑎)𝑚𝑔(𝑧); 𝑔(𝑧) =
∞
∑
𝑛=𝑚

𝑐𝑛(𝑧 − 𝑎)𝑛−𝑚
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Note that 𝑔 is holomorphic on 𝐷, and 𝑔(𝑎) = 𝑐𝑚 ≠ 0.

If 𝑚 ≠ 0, we say that 𝑓 has a zero of order 𝑚 at 𝑧 = 𝑎. Hence 𝑚 is the smallest natural
number 𝑛 such that 𝑓(𝑛)(𝑎) ≠ 0. If 𝑆 ⊆ ℂ, then a point𝑤 ∈ 𝑆 is an isolated point of 𝑆 if there
exists 𝑟 > 0 such that 𝑆 ∩ 𝐷(𝑤, 𝑟) = {𝑤}.

Theorem (principle of isolated zeroes). Let 𝑓∶ 𝐷(𝑎, 𝑅) → ℂ be holomorphic and not
identically zero. Then there exists 𝑟 ∈ (0, 𝑅) such that 𝑓(𝑧) ≠ 0 whenever 0 < |𝑧 − 𝑎| < 𝑟.

Remark. If 𝑓(𝑎) = 0, then {𝑧∶ 𝑓(𝑧) = 0} intersects 𝐷(𝑎, 𝑟) only at 𝑎. Hence, 𝑎 is an isolated
point of the set of zeroes. For instance, there exists no nonzero holomorphic function that
vanishes on a line segment or a disc.

We can show that certain identities from real analysis hold for complex functions. For in-
stance, consider the function 𝑔(𝑧) = sin2 𝑧 + cos2 𝑧 − 1. Since this 𝑔 is holomorphic and
vanishes on the real line, 𝑔must be identically zero in the complex plane.

The zero set may have an accumulation point on the boundary of the domain of 𝑓. Consider
𝑓(𝑧) = sin 1

𝑧
for 𝑧 ∈ 𝐷(1, 1). Here, if 𝑎𝑛 = 1

2𝑛𝜋
, then 𝑎𝑛 ∈ 𝐷(1, 1) and 𝑓(𝑎𝑛) = 0 and

𝑎𝑛 → 0 ∈ 𝜕𝐷(1, 1).

Proof. If 𝑓(𝑎) ≠ 0, then by continuity of 𝑓 there exists 𝑟 > 0 such that 𝑓(𝑧) ≠ 0 for all
𝑧 ∈ 𝐷(𝑎, 𝑟). If 𝑓(𝑎) = 0, then there exists an integer 𝑚 ≥ 1 such that 𝑓(𝑧) = (𝑧 − 𝑎)𝑚𝑔(𝑧)
for 𝑧 ∈ 𝐷(𝑎, 𝑅), where 𝑔 is holomorphic with 𝑔(𝑎) ≠ 0. In this case, we find that there exists
𝑟 > 0 such that 𝑔(𝑧) ≠ 0 for 𝑧 ∈ 𝐷(𝑎, 𝑟) and hence 𝑓(𝑧) ≠ 0 for 𝑧 ∈ 𝐷(𝑎, 𝑟) ∖ {𝑎}.

2.9. Analytic continuation
Theorem. Let 𝑈 ⊂ 𝑉 be domains. If 𝑔1, 𝑔2∶ 𝑉 → ℂ are analytic and 𝑔1 = 𝑔2 on 𝑈 , then
𝑔1 = 𝑔2 on 𝑉 . Equivalently, if 𝑓∶ 𝑈 → ℂ is analytic, then there is at most one analytic
function 𝑔∶ 𝑉 → ℂ such that 𝑔 = 𝑓 on 𝑈 . We say that 𝑔 is the analytic continuation of 𝑓 to
𝑉 , if it exists.

Proof. Let 𝑔1, 𝑔2∶ 𝑉 → ℂ be analytic with 𝑔1|𝑈 = 𝑔2|𝑈 . Then, ℎ = 𝑔1 − 𝑔2∶ 𝑉 → ℂ is
analytic, and ℎ|𝑈 ≡ 0. We want to show that ℎ ≡ 0. Let

𝑉0 = {𝑧 ∈ 𝑉 ∶ ∃𝑟 > 0, ℎ|||𝐷(𝑧,𝑟)
≡ 0}

and
𝑉1 = {𝑧 ∈ 𝑉 ∶ ∃𝑛 ≥ 0, ℎ(𝑛)(𝑧) ≠ 0}

Let 𝑧 ∈ 𝑉 and suppose that 𝑧 ∉ 𝑉0. Then for any disc 𝐷 = 𝐷(𝑧, 𝑟) ⊂ 𝑉 , we have ℎ ≢ 0 in 𝐷.
Hence, by Taylor series, ℎ(𝑛)(𝑧) ≠ 0 for some 𝑛, so 𝑧 ∈ 𝑉1. Thus, 𝑉 = 𝑉0 ∪𝑉1. We also know
that 𝑉0 ∩ 𝑉1 = ∅.
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IX. Complex Analysis

Note that 𝑉0 is open by definition, and 𝑉1 is by continuity of the derivatives ℎ(𝑛). By con-
nectedness of the domain 𝑉 , either 𝑉0 or 𝑉1 is empty. Since 𝑈 ⊂ 𝑉0, we must have 𝑉1 = ∅.
Thus, 𝑉 = 𝑉0 so ℎ ≡ 0.

Remark. The above proof does not rely on holomorphicity but on analyticity. Thus, the
theorem holds for real analytic functions. For example, due to elliptic regularity (see Part II
Analysis of Functions), we can show that harmonic functions are real analytic, and hence
have a unique analytic continuation if one exists.

Given a holomorphic function 𝑓 defined on a disc, we can compute the largest domain con-
taining the disc to which there exists an analytic continuation of 𝑓. This is nontrivial to
answer in general.

Example. Let 𝑓(𝑧) = ∑∞
𝑛=0 𝑧𝑛. The radius of convergence of this series is 1, so 𝑓 is analytic

in 𝐷(0, 1), and there is no larger disc 𝐷(0, 𝑟) ⊃ 𝐷(0, 1) such that 𝑔 has an analytic continu-
ation to 𝐷(0, 𝑟). However, since 𝑓(𝑧) = 1

1−𝑧
for 𝑧 ∈ 𝐷(0, 1) and the function 1

1−𝑧
is analytic

in ℂ ∖ {1}, 𝑓 indeed has an analytic continuation to the larger domain ℂ ∖ {1}.

Example. Let 𝑓(𝑧) = ∑∞
𝑛=1

(−1)𝑛+1𝑧𝑛

𝑛
. This function also has a radius of convergence of

1, so 𝑓 is analytic on 𝐷(0, 1). It has analytic continuation Log(1 + 𝑧) to the domain ℂ ∖
{𝑥 ∈ ℝ∶ 𝑥 ≤ −1} containing 𝐷(0, 1).

Example. Let 𝑓(𝑧) = ∑∞
𝑛=0 𝑧𝑛!. This has radius of convergence 1, so 𝑓 is analytic in𝐷(0, 1).

However, 𝑓 has no analytic continuation to any larger domain containing 𝐷(0, 1). The
boundary 𝜕𝐷(0, 1) is known as the natural boundary of 𝑓.

We can find in fact that for any given domain 𝑈 ⊂ ℂ, there exists a holomorphic function
𝑓∶ 𝑈 → ℂ which has no analytic continuation to a domain properly containing 𝑈 .

The failure of analytic continuation in some cases can be explained as the result of loss of a
regularity condition, such as boundedness, continuity, differentiability, or so on. However,
this is not always the reason, and analytic continuation may remain impossible even when
regularity conditions are all satisfied.

Example. Let 𝑓(𝑧) = ∑∞
𝑛=0 exp(−2𝑛/2)𝑧2

𝑛 , which has unit radius of convergence. 𝑓, and
its derivatives of any order, are uniformly continuous on the closed disc 𝐷(0, 1). However,
we can prove that it has natural boundary 𝜕𝐷(0, 1), using the following theorem which will
not be proven.

Theorem (Ostrowski–Hadamard gap theorem). Let (𝑝𝑛) be a sequence of positive integers
such that 𝑝𝑛+1 > (1 + 𝛿)𝑝𝑛 for all 𝑛 and some fixed 𝛿 > 0. If (𝑐𝑛) is a sequence of complex
numbers such that 𝑓(𝑧) = ∑∞

𝑛=0 𝑐𝑛𝑧𝑝𝑛 has unit radius of convergence, then 𝜕𝐷(0, 1) is the
natural boundary of 𝑓.

Corollary (identity principle). Let 𝑓, 𝑔∶ 𝑈 → ℂ be holomorphic functions in a domain 𝑈 .
If the set 𝑆 = {𝑧 ∈ 𝑈 ∶ 𝑓(𝑧) = 𝑔(𝑧)} contains a non-isolated point, then 𝑓 = 𝑔 in 𝑈 .
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Proof. Let ℎ = 𝑓 − 𝑔, so 𝑆 = {𝑧 ∈ 𝑈 ∶ ℎ(𝑧) = 0}. Suppose that 𝑆 has a non-isolated point 𝑤.
If there exists 𝑟 > 0 such that ℎ ≢ 0 in 𝐷(𝑤, 𝑟), then by the principle of isolated zeroes, we
can find 𝜀 > 0 such that 𝑓(𝑧) ≠ 0 whenever 0 < |𝑧 − 𝑤| < 𝜀. However, this contradicts the
assumption that 𝑤 is a non-isolated point of 𝑆. Thus, ℎ ≡ 0 on 𝐷(𝑤, 𝑟) for all 𝐷(𝑤, 𝑟) ⊂ 𝑈 .
Thus, ℎ ≡ 0 on 𝑈 , so 𝑓 = 𝑔 on 𝑈 .

Corollary (global maximum principle). Let 𝑈 be a bounded open set. Suppose 𝑓∶ 𝑈 → ℂ
is a continuous function such that 𝑓 is holomorphic in 𝑈 . Then |𝑓| attains its maximum on
𝜕𝑈 .

Proof. 𝑈 is compact, and |𝑓| is continuous on𝑈 . Hence, it attains its maximum; there exists
𝑤 ∈ 𝑈 such that |𝑓(𝑤)| = max𝑧∈𝑈 |𝑓(𝑧)|. If𝑤 ∉ 𝑈 , then𝑤 ∈ 𝜕𝑈 as required. Otherwise, let
𝐷 = 𝐷(𝑤, 𝑟) ⊂ 𝑈 . Since |𝑓(𝑧)| ≤ |𝑓(𝑤)| for all 𝑧 ∈ 𝐷, the local maximum principle implies
that 𝑓 is constant on 𝐷. Hence, by the identity principle, 𝑓 is constant on the connected
component of 𝑈 containing 𝐷, which will be written 𝑈 ′. By continuity, 𝑓 is constant on the
closure of this connected component 𝑈 ′. In particular, |𝑓(𝑧)| = |𝑓(𝑤)| for all 𝑧 ∈ 𝜕𝑈 ′ ⊆ 𝜕𝑈
as required.

Theorem (Cauchy’s integral formula for derivatives). Let 𝑓∶ 𝐷(𝑎, 𝑅) → ℂ be holomorphic.
For any 𝜌 ∈ (0, 𝑅) and 𝑤 ∈ 𝐷(𝑎, 𝜌), we have

𝑓(𝑘)(𝑤) = 𝑘!
2𝜋𝑖 ∫𝜕𝐷(𝑎,𝜌)

𝑓(𝑧) d𝑧
(𝑧 − 𝑤)𝑘+1

Further,

sup
𝑧∈𝐷(𝑎,𝑅/2)

||𝑓(𝑘)(𝑧)|| ≤ 𝐶
𝑅𝑘 sup

𝑧∈𝐷(𝑎,𝑅)
|𝑓(𝑧)|

where 𝐶 = 𝑘!2𝑘+1 is a constant which depends only on 𝑘. This final result is called a Cauchy
estimate for the 𝑘th derivative.

Remark. Directly applying Cauchy’s integral formula to 𝑓(𝑛), we find a formula for 𝑓(𝑛)(𝑤)
in terms of an integral involving 𝑓(𝑛). The significance of the above theorem is that the
integral involves 𝑓 alone, and not its derivatives.

Note that we have already observed the special case 𝑤 = 𝑎. This was proven during the
discussion on Taylor series.

Proof. If 𝑘 = 0, we have the usual Cauchy integral formula. For 𝑘 = 1, let 𝑔(𝑧) = 𝑓(𝑧)
𝑧−𝑤

,
which is holomorphic in 𝐷(𝑎, 𝑅) ∖ {𝑤}, with derivative

𝑔′(𝑧) = 𝑓′(𝑧)
𝑧 − 𝑤 − 𝑓(𝑧)

(𝑧 − 𝑤)2
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Since 𝜕𝐷(𝑎, 𝜌) ⊂ 𝐷(𝑎, 𝑅) ∖ {𝑤}, we know that ∫𝜕𝐷(𝑎,𝜌) 𝑔′(𝑧) d𝑧 = 0 by the fundamental
theorem of calculus. Applying the usual Cauchy integral formula to 𝑓′,

𝑓′(𝑤) = 1
2𝜋𝑖 ∫𝜕𝐷(𝑎,𝜌)

𝑓′(𝑧) d𝑧
𝑧 − 𝑤

Combining these results give the result for 𝑘 = 1. For higher derivatives, we can proceed
by induction. Let 𝑘 ≥ 2, and then suppose the formula holds for this value of 𝑘, for all holo-
morphic functions 𝐷(𝑎, 𝑅) → ℂ. For any holomorphic function 𝑓∶ 𝐷(𝑎, 𝑅) → ℂ, consider

𝑔(𝑧) = 𝑓(𝑧)
(𝑧 − 𝑤)𝑘+1 ⟹ 𝑔′(𝑧) = 𝑓′(𝑧)

(𝑧 − 𝑤)𝑘+1 −
(𝑘 + 1)𝑓(𝑧)
(𝑧 − 𝑤)𝑘+2

which is defined in 𝐷(𝑎, 𝑅) ∖ {𝑤}. Then, since ∫𝜕𝐷(𝑎,𝜌) 𝑔′(𝑧) d𝑧 = 0, we find

∫
𝜕𝐷(𝑎,𝜌)

𝑓′(𝑧) d𝑧
(𝑧 − 𝑤)𝑘+1 = (𝑘 + 1)∫

𝜕𝐷(𝑎,𝜌)

𝑓(𝑧) d𝑧
(𝑧 − 𝑤)𝑘+2

By substituting 𝑓′ into the induction hypothesis,

𝑓(𝑘+1)(𝑤) = 𝑘!
2𝜋𝑖 ∫𝜕𝐷(𝑎,𝜌)

𝑓′(𝑧) d𝑧
(𝑧 − 𝑤)𝑘+1

We can then combine the previous two expressions to find

𝑓(𝑘+1)(𝑤) = (𝑘 + 1)!
2𝜋𝑖 ∫

𝜕𝐷(𝑎,𝜌)

𝑓(𝑧) d𝑧
(𝑧 − 𝑤)𝑘+2

as required.

For the second part, let sup𝑧∈𝐷(𝑎,𝑅) |𝑓(𝑧)| < ∞ without loss of generality. Let 𝜌 ∈ (𝑅/2, 𝑅).
Then, by the first part, for all 𝑤 ∈ 𝐷(𝑎, 𝑅/2) we have

||𝑓(𝑘)(𝑤)|| ≤ 𝑘!
2𝜋( sup

𝑧∈𝜕𝐷(𝑎,𝜌)

|𝑓(𝑧)|
|𝑧 − 𝑤|𝑘+1

)length(𝜕𝐷(𝑎, 𝜌))

As |𝑧 − 𝑤| ≥ 𝜌 − 𝑅/2 for all 𝑧 ∈ 𝜕𝐷(𝑎, 𝜌) and all 𝑤 ∈ 𝐷(𝑎, 𝑅/2), this implies

sup
𝑤∈𝐷(𝑎,𝑅/2)

||𝑓(𝑘)(𝑤)|| ≤
𝑘!𝜌

(𝜌 − 𝑅/2)𝑘+1 sup
𝑧∈𝐷(𝑎,𝑅)

|𝑓(𝑧)|

Now, as 𝜌 → 𝑅, the result follows.

2.10. Uniform limits of holomorphic functions
Definition. Let 𝑈 ⊆ ℂ be open, and let 𝑓𝑛∶ 𝑈 → ℂ be a sequence of functions. We say
that (𝑓𝑛) converges locally uniformly on 𝑈 if, for all 𝑎 ∈ 𝑈 , there exists 𝑟 > 0 such that (𝑓𝑛)
converges uniformly on 𝐷(𝑎, 𝑟).
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Example. Let 𝑓𝑛(𝑧) = 𝑧𝑛. Then 𝑓𝑛 → 0 locally uniformly, but not uniformly.
Proposition. (𝑓𝑛) converges locally uniformly on an open set 𝑈 ⊆ ℂ if and only if (𝑓𝑛)
converges uniformly on each compact subset 𝐾 ⊆ 𝑈 .

Proof. The forward implication is simple, due to the definition of compactness. The con-
verse follows since for all 𝑎 ∈ 𝑈 , there exists a compact disc 𝐷(𝑎, 𝑟) ⊂ 𝑈 .

Theorem (uniform limits of holomorphic functions). Let 𝑈 ⊆ ℂ be open, and 𝑓𝑛∶ 𝑈 → ℂ
be holomorphic for each 𝑛 ∈ ℕ. If (𝑓𝑛) converges locally uniformly on 𝑈 to some function
𝑓∶ 𝑈 → ℂ, then 𝑓 is holomorphic.

Further, 𝑓′𝑛 → 𝑓′ locally uniformly on 𝑈 , and by induction, for each 𝑘 we have 𝑓(𝑘)𝑛 → 𝑓(𝑘)
locally uniformly on 𝑈 as 𝑛 → ∞.

Remark. This is not true for real analytic functions. TheWeierstrass approximation theorem
states the following. Let 𝑓∶ [𝑎, 𝑏] → ℝ be a continuous function on a compact interval
[𝑎, 𝑏] ⊂ ℝ. Then, there exists a sequence of polynomials (𝑝𝑛) converging uniformly to 𝑓 on
[𝑎, 𝑏].
There exist continuous, nowhere differentiable functions 𝑓∶ [𝑎, 𝑏] → ℝ. Applying the Wei-
erstrass approximation theorem to such functions 𝑓 shows that the uniform limit of real
analytic functions need not have a single point of differentiability.

Proof. Let 𝑎 ∈ 𝑈 and choose 𝑟 > 0 such that 𝐷(𝑎, 𝑟) ⊂ 𝑈 and 𝑓𝑛 → 𝑓 uniformly on
𝐷(𝑎, 𝑟). Since the 𝑓𝑛 are continuous, by a result from Analysis and Topology we have that 𝑓
is continuous in 𝐷(𝑎, 𝑟).
Let 𝛾 be a closed curve in 𝐷(𝑎, 𝑟). Since 𝐷(𝑎, 𝑟) is convex, by the convex Cauchy theorem we
have ∫𝛾 𝑓𝑛(𝑧) d𝑧 = 0. Since 𝑓𝑛 → 𝑓 uniformly on 𝐷(𝑎, 𝑟), it follows that

∫
𝛾
𝑓(𝑧) d𝑧 = lim

𝑧→∞
∫
𝛾
𝑓𝑛(𝑧) d𝑧 = 0

By Morera’s theorem, 𝑓 is holomorphic in 𝐷(𝑎, 𝑟). Since 𝑎 is arbitrary, 𝑓 is holomorphic on
all of 𝑈 .
Now, let 𝑎 ∈ 𝑈 be arbitrary and let 𝐷(𝑎, 𝑟) be as above. We can apply the Cauchy estimate
for 𝑘 = 1, 𝑅 = 𝑟, applied to the function 𝑓𝑛 − 𝑓. This gives

sup
𝑧∈𝐷(𝑎,𝑟/2)

|𝑓′𝑛(𝑧) − 𝑓′(𝑧)| ≤ 4
𝑟 sup
𝑧∈𝐷(𝑎,𝑟)

|𝑓𝑛(𝑧) − 𝑓(𝑧)|

Since the right hand side converges to zero as 𝑛 → ∞, the claim follows.

Remark. Many of the key results proven for holomorphic functions have analogues for real
harmonic functions on domains not just in ℝ2 but in ℝ𝑛 for any 𝑛. For instance:
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(i) (Liouville’s theorem) if𝑢∶ ℝ𝑛 → ℝ is a bounded harmonic function then𝑢 is constant;
(ii) (local maximum principle) if 𝑢∶ 𝐷(𝑎, 𝑟) is a 𝐶2 harmonic function on an open ball

𝐷(𝑎, 𝑟) in ℝ𝑛, and if 𝑢(𝑥) ≤ 𝑢(𝑎) for all 𝑥 ∈ 𝐷(𝑎, 𝑟), then 𝑢 is constant;
(iii) (global maximum principle) a harmonic function on a bounded open set 𝑈 that is

continuous on 𝑈 attains its maximum on 𝜕𝑈 ;
(iv) harmonic functions are real analytic;

(v) the unique analytic continuation principle holds;

(vi) uniform limits of harmonic functions are harmonic;

(vii) derivative estimates hold: if 𝑢∶ 𝐷(𝑎, 𝑅) ⊆ ℝ𝑛 → ℝ is harmonic, then

sup
𝐷(𝑎,𝑅/2)

||𝐷𝑘𝑢|| ≤ 𝐶𝑅−𝑘 sup
𝐷(𝑎,𝑅)

|𝑢|; 𝐶 = 𝐶(𝑛, 𝑘)

For the case 𝑛 = 2, the result for harmonic functions can often be deduced directly from
the corresponding results for holomorphic functions. For instance, for Liouville’s theorem,
given that𝑢 is a harmonic function onℝ2, we find a function 𝑣 such that𝑢+𝑖𝑣 is holomorphic
on ℂ (which is always possible in a simply connected domain). Then 𝑔 = 𝑒𝑓 is holomorphic
with |𝑔| = 𝑒𝑢, so if 𝑢 is bounded then 𝑔 is bounded. By Liouville’s theorem for holomorphic
functions, 𝑔 and hence 𝑓 is constant.
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3. More integration
3.1. Winding numbers
Let 𝛾∶ [𝑎, 𝑏] → ℂ be a closed, piecewise 𝐶1 curve, and let 𝑤 ∉ Im 𝛾. For all 𝑡, there exists
𝑟(𝑡) > 0 and 𝜃(𝑡) ∈ ℝ such that 𝛾(𝑡) = 𝑤 + 𝑟(𝑡)𝑒𝑖𝜃(𝑡). Then, the function 𝑟∶ [𝑎, 𝑏] → ℝ is
given by 𝑟(𝑡) = |𝛾(𝑡) − 𝑤|, so it is uniquely determined and piecewise 𝐶1.

Definition. If we have a continuous choice of 𝜃∶ [𝑎, 𝑏] → ℝ such that 𝛾(𝑡) = 𝑤+ 𝑟(𝑡)𝑒𝑖𝜃(𝑡),
then we define the winding number or the index of 𝛾 about 𝑤 as

𝐼(𝛾; 𝑤) = 𝜃(𝑏) − 𝜃(𝑎)
2𝜋

If 𝛾 is a closed curve, 𝐼(𝛾; 𝑤) is an integer. This is because

𝛾(𝑎) = 𝛾(𝑏) ⟹ exp(𝑖𝜃(𝑏) − 𝑖𝜃(𝑎)) = 1

If 𝜃1∶ [𝑎, 𝑏] → ℂ is also continuous such that 𝛾(𝑡) = 𝑤+𝑟𝑒𝑖𝜃1(𝑡), then exp(𝑖𝜃(𝑡) − 𝑖𝜃1(𝑡)) = 1,
so

𝜃1(𝑡) − 𝜃(𝑡)
2𝜋 ∈ ℤ

Since 𝜃1 − 𝜃 is continuous, this quotient must be a constant. Hence, 𝐼(𝛾; 𝑤) is well-defined
and independent of the (continuous) choice of 𝜃.
Lemma. Let 𝑤 ∈ ℂ and 𝛾∶ [𝑎, 𝑏] → ℂ ∖ {𝑤}, where 𝛾 is piecewise 𝐶1. Then, there exists a
piecewise 𝐶1 function 𝜃∶ [𝑎, 𝑏] → ℝ such that 𝛾(𝑡) = 𝑤 + 𝑟(𝑡)𝑒𝑖𝜃(𝑡), where 𝑟(𝑡) = |𝛾(𝑡) − 𝑤|.
If 𝛾 is closed, then we also have

𝐼(𝛾; 𝑤) = 1
2𝜋𝑖 ∫𝛾

d𝑧
𝑧 − 𝑤

Remark. If 𝛾 is 𝐶1, and there is a 𝐶1 function 𝜃 such that 𝛾(𝑡) = 𝑤 + 𝑟(𝑡)𝑒𝑖𝜃(𝑡), then

𝛾′(𝑡) = (𝑟′(𝑡) + 𝑖𝑟(𝑡)𝜃′(𝑡))𝑒𝑖𝜃(𝑡) = (𝑟
′(𝑡)
𝑟(𝑡) + 𝑖𝜃′(𝑡))𝑟(𝑡)𝑒𝑖𝜃(𝑡) = (𝑟

′(𝑡)
𝑟(𝑡) + 𝑖𝜃′(𝑡))(𝛾(𝑡) − 𝑤)

Hence,

𝜃′(𝑡) = Im 𝛾′(𝑡)
𝛾(𝑡) − 𝑤 ⟹ 𝜃(𝑡) = 𝜃(𝑎) + Im∫

𝑡

𝑎

𝛾′(𝑠) d𝑠
𝛾(𝑠) − 𝑤

Proof. Let ℎ(𝑡) = ∫𝑡
𝑎

𝛾′(𝑠)
𝛾(𝑠)−𝑤

d𝑠. The integrand is bounded on [𝑎, 𝑏], and is continuous except
at the finite number of points at which 𝛾′ may be discontinuous. Hence, ℎ∶ [𝑎, 𝑏] → ℂ is
continuous. Further, ℎ is differentiable with ℎ′(𝑡) = 𝛾′(𝑡)

𝛾(𝑡)−𝑤
at each 𝑡 where 𝛾′ is continuous.

Hence, ℎ is piecewise 𝐶1. This induces an ordinary differential equation for 𝛾(𝑡) − 𝑤.

(𝛾(𝑡) − 𝑤)′ − (𝛾(𝑡) − 𝑤)ℎ′(𝑡) = 0
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which is true for all 𝑡 ∈ [𝑎, 𝑏] except possibly for a finite set. Hence,
d
d𝑡 ((𝛾(𝑡) − 𝑤)𝑒−ℎ(𝑡)) = 𝛾′(𝑡)𝑒−ℎ(𝑡) − (𝛾(𝑡) − 𝑤)𝑒−ℎ(𝑡)ℎ′(𝑡) = 0

except for finitelymany 𝑡. Since (𝛾(𝑡)−𝑤)𝑒−ℎ(𝑡) is continuous, it must be constant, and equal
to its value at 𝑡 = 𝑎. Hence

𝛾(𝑡) − 𝑤 = (𝛾(𝑎) − 𝑤)𝑒ℎ(𝑡) = (𝛾(𝑎) − 𝑤)𝑒Reℎ(𝑡)𝑒𝑖 Imℎ(𝑡) = |𝛾(𝑎) − 𝑤|𝑒Reℎ(𝑡)𝑒𝑖(𝛼+Imℎ(𝑡)

for 𝛼 such that 𝑒𝑖𝛼 = 𝛾(𝑎)−𝑤
||𝛾(𝑎)−𝑤||

. Hence, we can set 𝜃(𝑡) = 𝛼 + Imℎ(𝑡).

For the second part, note that

𝐼(𝛾; 𝑤) = 𝜃(𝑏) − 𝜃(𝑎)
2𝜋 = Im(ℎ(𝑏) − ℎ(𝑎))

2𝜋 = Imℎ(𝑏)
2𝜋

Since 𝛾(𝑡) − 𝑤 = (𝛾(𝑎) − 𝑤)𝑒ℎ(𝑡) and 𝛾(𝑏) = 𝛾(𝑎), we have 𝑒ℎ(𝑏) = 1, so Reℎ(𝑏) = 0 and
Imℎ(𝑏) = −𝑖ℎ(𝑏). Thus,

𝐼(𝛾; 𝑤) = 1
2𝜋𝑖ℎ(𝑏) =

1
2𝜋𝑖 ∫

𝑏

𝑎

𝛾′(𝑠)
𝛾(𝑠) − 𝑤 d𝑠 = 1

2𝜋𝑖 ∫𝛾
d𝑧

𝑧 − 𝑤

Remark. It is also true that 𝜃 exists and is continuous if 𝛾 is merely continuous, but the
formula for the winding number is not useful, so we omit this proof.

Proposition. If 𝛾∶ [𝑎, 𝑏] → ℂ is a closed curve, then the function𝑤 ↦ 𝐼(𝛾; 𝑤) is continuous
on ℂ ∖ Im 𝛾. Since 𝐼(𝛾; 𝑤) is integer-valued, 𝐼(𝛾; 𝑤) is locally constant. So 𝐼(𝛾; 𝑤) is constant
for each connected component of the open set ℂ ∖ Im 𝛾.

Proof. Exercise.

Proposition. If 𝛾∶ [𝑎, 𝑏] → 𝐷(𝑧0, 𝑅) is a closed curve, then 𝐼(𝛾; 𝑤) = 0 for all 𝑤 ∈ ℂ ∖
𝐷(𝑧0, 𝑅).
If 𝛾∶ [𝑎, 𝑏] → ℂ is a closed curve, then there exists a unique unbounded connected compon-
ent Ω of ℂ ∖ 𝛾([𝑎, 𝑏]), and 𝐼(𝛾; 𝑤) = 0 for all 𝑤 ∈ Ω.

Proof. For the first part, if 𝑤 ∈ ℂ ∖ 𝐷(𝑧0, 𝑅), then the function 𝑓(𝑧) =
1

𝑧−𝑤
is holomorphic

in 𝐷(𝑧0, 𝑅). Hence 𝐼(𝛾; 𝑤) = 0 by the convex version of Cauchy’s theorem.
For the second part, since 𝛾([𝑎, 𝑏]) is compact (by continuity of 𝛾), there exists 𝑅 > 0 such
that 𝛾([𝑎, 𝑏]) ⊂ 𝐷(0, 𝑅). Since ℂ ∖ 𝐷(0, 𝑅) is a connected subset of ℂ ∖ 𝛾([𝑎, 𝑏]), there exists
a connected component Ω of ℂ ∖ 𝛾([𝑎, 𝑏]) such that ℂ ∖ 𝐷(0, 𝑅) ⊆ Ω. This component
is unbounded. Any other component is disjoint from ℂ ∖ 𝐷(0, 𝑅), so is contained within
𝐷(0, 𝑅) and is hence bounded. So the unbounded component is unique. Since 𝐼(𝛾; 𝑤) is
locally constant and zero on ℂ ∖ 𝐷(0, 𝑅), it is zero on Ω.
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3.2. Continuity of derivative function
Lemma. Let 𝑓∶ 𝑈 → ℂ be holomorphic, and define 𝑔∶ 𝑈 × 𝑈 → ℂ by

𝑔(𝑧, 𝑤) = {
𝑓(𝑧)−𝑓(𝑤)

𝑧−𝑤
if 𝑧 ≠ 𝑤

𝑓′(𝑤) if 𝑧 = 𝑤

Then 𝑔 is continuous. Moreover, if 𝛾 is a closed curve in 𝑈 , then the function ℎ(𝑤) =
∫𝛾 𝑔(𝑧, 𝑤) d𝑧 is holomorphic on 𝑈 .

Proof. It is clear that 𝑔 is continuous at (𝑧, 𝑤) if 𝑧 ≠ 𝑤. To check continuity at a point
(𝑎, 𝑎) ∈ 𝑈 × 𝑈 , let 𝜀 > 0 and choose 𝛿 > 0 such that 𝐷(𝑎, 𝛿) ⊆ 𝑈 and |𝑓′(𝑧) − 𝑓′(𝑎)| < 𝜀 for
all 𝑧 ∈ 𝐷(𝑎, 𝛿). This is always possible since 𝑓′ is continuous.

Let 𝑧, 𝑤 ∈ 𝐷(𝑎, 𝛿). If 𝑧 = 𝑤, then |𝑔(𝑧, 𝑤) − 𝑔(𝑎, 𝑎)| = |𝑓′(𝑧) − 𝑓′(𝑎)| < 𝜀. If 𝑧 ≠ 𝑤, we have
𝑡𝑧 + (1 − 𝑡)𝑤 ∈ 𝐷(𝑎, 𝛿) for 𝑡 ∈ [0, 1]. Hence,

𝑓(𝑧) − 𝑓(𝑤) = ∫
1

0

d
d𝑡𝑓(𝑡𝑧 + (1 − 𝑡)𝑤) d𝑡

= ∫
1

0
𝑓′(𝑡𝑧 + (1 − 𝑡)𝑤)(𝑧 − 𝑤) d𝑡

= (𝑧 − 𝑤)∫
1

0
𝑓′(𝑡𝑧 + (1 − 𝑡)𝑤) d𝑡

Thus,

|𝑔(𝑧, 𝑤) − 𝑔(𝑎, 𝑎)| = |||
𝑓(𝑧) − 𝑓(𝑤)

𝑧 − 𝑤 − 𝑓′(𝑎)|||

=
||||
∫

1

0
[𝑓′(𝑡𝑧 + (1 − 𝑡)𝑤) − 𝑓′(𝑎)] d𝑡

||||
≤ sup

𝑡∈[0,1]
|𝑓′(𝑡𝑧 + (1 − 𝑡)𝑤) − 𝑓′(𝑎)| < 𝜀

Hence |(𝑧, 𝑤) − (𝑎, 𝑎)| < 𝛿 implies |𝑔(𝑧, 𝑤) − 𝑔(𝑎, 𝑎)| < 𝜀, so 𝑔 is continuous at (𝑎, 𝑎).

To show ℎ is holomorphic, we must first check that ℎ is continuous. Let 𝑤0 ∈ 𝑊 , and
suppose 𝑤𝑛 → 𝑤0. Let 𝛿 > 0 such that 𝐷(𝑤0, 𝛿) ⊂ 𝑈 . The function 𝑔 is continuous on
𝑈 ×𝑈 , so it is uniformly continuous on the compact subset Im 𝛾×𝐷(𝑤0, 𝛿) ⊂ 𝑈 ×𝑈 . Thus,
if we let 𝑔𝑛(𝑧) = 𝑔(𝑧, 𝑤𝑛) and 𝑔0(𝑧) = 𝑔(𝑧, 𝑤0) for 𝑧 ∈ Im 𝛾, then 𝑔𝑛 → 𝑔0 uniformly on Im 𝛾.
Hence ∫𝛾 𝑔𝑛(𝑧) d𝑧 → ∫𝛾 𝑔0(𝑧) d𝑧. In other words, ℎ(𝑤𝑛) → ℎ(𝑤0). Thus, ℎ is continuous.

Now, we can use the convex Cauchy’s theorem and Morera’s theorem to show ℎ is holo-
morphic on 𝑈 . For 𝑤0 ∈ 𝑈 , we can choose a disc 𝐷(𝑤0, 𝛿) ⊂ 𝑈 . Suppose that 𝛾 is
parametrised over [𝑎, 𝑏], and let 𝛽∶ [𝑐, 𝑑] → 𝐷(𝑤0, 𝛿) be any closed curve. Then ℎ(𝑤) =
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∫𝛾 𝑔(𝑧, 𝑤) d𝑧 = ∫𝑏
𝑎 𝑔(𝛾(𝑡), 𝑤)𝛾′(𝑡) d𝑡, hence

∫
𝛽
ℎ(𝑤) d𝑤 = ∫

𝑑

𝑐
(∫

𝑏

𝑎
𝑔(𝛾(𝑡), 𝛽(𝑠))𝛾′(𝑡)𝛽′(𝑠) d𝑡) d𝑠

= ∫
𝑏

𝑎
(∫

𝑑

𝑐
𝑔(𝛾(𝑡), 𝛽(𝑠))𝛾′(𝑡)𝛽′(𝑠) d𝑠) d𝑡

= ∫
𝛾
(∫

𝛽
𝑔(𝑧, 𝑤) d𝑤) d𝑧

by Fubini’s theorem, which will be proven below. By a previous theorem, for all 𝑧 ∈ 𝑈 , the
function 𝑤 ↦ 𝑔(𝑧, 𝑤) is holomorphic in 𝐷(𝑤0, 𝛿) (and hence in 𝑈), since it is continuous
in 𝑈 and holomorphic except at a single point 𝑧. Hence, by the convex version of Cauchy’s
theorem, ∫𝛽 𝑔(𝑧, 𝑤) d𝑤 = 0. Hence, ∫𝛽 ℎ(𝑤) d𝑤 = 0. ByMorera’s theorem, ℎ is holomorphic
in 𝐷(𝑤0, 𝛿) and hence on 𝑈 .

Lemma (Fubini’s theorem). If𝜑∶ [𝑎, 𝑏]×[𝑐, 𝑑] → ℝ is continuous, then𝑓1∶ 𝑠 ↦ ∫𝑑
𝑐 𝜑(𝑠, 𝑡) d𝑡

is continuous on [𝑎, 𝑏], the function 𝑓2∶ 𝑡 ↦ ∫𝑏
𝑎 𝜑(𝑠, 𝑡) d𝑡 is continuous on [𝑐, 𝑑], and

∫
𝑏

𝑎
(∫

𝑑

𝑐
𝜑(𝑠, 𝑡) d𝑡) d𝑠 = ∫

𝑑

𝑐
(∫

𝑏

𝑎
𝜑(𝑠, 𝑡) d𝑠) d𝑡

Proof. Since 𝜑 is continuous on the compact set [𝑎, 𝑏] × [𝑐, 𝑑], it is uniformly continuous.
Hence, given 𝜀 > 0, there exists 𝛿 > 0 such that |𝑠1 − 𝑠2| < 𝛿 ⟹ |𝜑(𝑠1, 𝑡) − 𝜑(𝑠2, 𝑡)| < 𝜀
for all 𝑡 ∈ [𝑐, 𝑑], so |𝑓1(𝑠1) − 𝑓1(𝑠2)| < (𝑑 − 𝑐)𝜀, so 𝑓1 is continuous. Similarly, 𝑓2 is con-
tinuous. Note that since 𝜑 is uniformly continuous, it is the uniform limit of a sequence
of step functions of the form 𝑔(𝑥, 𝑦) = ∑𝑁

𝑗=1 𝛼𝑗𝜒𝑅𝑗 (𝑥, 𝑦) where 𝛼𝑗 are constants, and 𝑅𝑗
are sub-rectangles of the form 𝑅𝑗 = [𝑎𝑗 , 𝑏𝑗) × [𝑐𝑗 , 𝑑𝑗) such that⋃𝑅𝑗 is a finite partition of
[𝑎, 𝑏) × [𝑐, 𝑑), and 𝜒𝑅𝑗 is the characteristic function of 𝑅𝑗 For such step functions, we can
easily check the interchangability of the integrals.

3.3. Cauchy’s theorem and Cauchy’s integral formula
Definition. Let 𝑈 ⊆ ℂ be open. A closed curve 𝛾∶ [𝑎, 𝑏] → 𝑈 is said to be homologous to
zero in 𝑈 if 𝐼(𝛾; 𝑤) = 0 for all 𝑤 ∈ ℂ ∖ 𝑈 .
Theorem. Let𝑈 be a non-empty open subset ofℂ, and 𝛾 be a closed curve in𝑈 homologous
to zero in 𝑈 . Then,

𝐼(𝛾; 𝑤)𝑓(𝑤) = 1
2𝜋𝑖 ∫𝛾

𝑓(𝑧) d𝑧
𝑧 − 𝑤

for every holomorphic function 𝑓∶ 𝑈 → ℂ and every 𝑤 ∈ 𝑈 ∖ Im 𝛾. Further,

∫
𝛾
𝑓(𝑧) d𝑧 = 0
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for every holomorphic 𝑓∶ 𝑈 → ℂ.

Remark. Cauchy’s theorem states that if ∫𝛾 𝑓(𝑧) d𝑧 = 0 for a specific family of holomorphic
functions on 𝑈 , namely for 𝑓𝑤(𝑧) =

1
𝑧−𝑤

where 𝑤 ∈ ℂ ∖ 𝑈 , then ∫𝛾 𝑓(𝑧) d𝑧 = 0 for any
holomorphic function 𝑓∶ 𝑈 → ℂ.

The first and second parts as statements are equivalent. Indeed, if we assume the Cauchy
integral formula holds, simply apply the formula with 𝐹(𝑧) = (𝑧 − 𝑤)𝑓(𝑧). Since 𝐹(𝑤) = 0,
we have ∫𝛾 𝑓(𝑧) d𝑧 = 0. If we assume Cauchy’s theorem, for any 𝑤 ∈ 𝑈 , the function

𝑔(𝑧) = {
𝑓(𝑧)−𝑓(𝑤)

𝑧−𝑤
if 𝑧 ≠ 𝑤

𝑓′(𝑤) if 𝑧 = 𝑤

is holomorphic in 𝑈 as seen above. Hence ∫𝛾 𝑔(𝑧) d𝑧 = 0, so 1
2𝜋𝑖

∫𝛾
𝑓(𝑧)d𝑧
𝑧−𝑤

= 𝐼(𝛾; 𝑤)𝑓(𝑤) for
all 𝑤 ∉ Im 𝛾.

Note that the statement that 𝛾 is homologous to zero is equivalent to Cauchy’s theorembeing
valid for all 𝑓. For example, given𝑤 ∈ ℂ∖𝑈 , we can apply Cauchy’s theorem to 𝑓(𝑧) = 1

𝑧−𝑤
to get 𝐼(𝛾; 𝑤) = 0. The converse is proven in the theorem following this proof. This is also
equivalent to Cauchy’s integral formula being valid for all 𝑓.

Proof. It suffices to prove part (i). Equivalently, for all 𝑤 ∈ 𝑈 ∖ Im 𝛾,

∫
𝛾

𝑓(𝑧) − 𝑓(𝑤)
𝑧 − 𝑤 d𝑧 = 0 ⟺ ∫

𝛾
𝑔(𝑧, 𝑤) d𝑧 = 0

where

𝑔(𝑧, 𝑤) = {
𝑓(𝑧)−𝑓(𝑤)

𝑧−𝑤
if 𝑧 ≠ 𝑤

𝑓′(𝑤) if 𝑧 = 𝑤

Now, define

ℎ∶ 𝑈 → ℂ; ℎ(𝑤) = ∫
𝛾
𝑔(𝑧, 𝑤) d𝑧

By the above lemma, this is holomorphic on 𝑈 . We will show that ℎ = 0. We will extend ℎ
to a holomorphic function 𝐻∶ ℂ → ℂ and prove that 𝐻(𝑤) → 0 as 𝑤 → ∞, then we can
apply Liouville’s theorem.

To extend ℎ into an entire function 𝐻, by definition of 𝛾 being homologous to zero in 𝑈 , we
have ℂ ∖ 𝑈 ⊆ 𝑉 ≡ {𝑤 ∈ ℂ ∖ Im 𝛾∶ 𝐼(𝛾; 𝑤) = 0}. So ℂ = 𝑈 ∪ 𝑉 , and 𝑉 is open since 𝐼(𝛾; ⋅ )
is locally constant. For 𝑤 ∈ 𝑈 ∩ 𝑉 , we have

ℎ(𝑤) = ∫
𝛾

𝑓(𝑧) − 𝑓(𝑤)
𝑧 − 𝑤 d𝑧 = ∫

𝛾

𝑓(𝑧) d𝑧
𝑧 − 𝑤
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since ∫𝛾
d𝑧
𝑧−𝑤

= 2𝜋𝑖 ⋅ 𝐼(𝛾; 𝑤) = 0 as 𝑤 ∈ 𝑉 . Hence, on 𝑈 ∩ 𝑉 , the function ℎ agrees with

ℎ1∶ 𝑉 → ℂ; ℎ1(𝑤) = ∫
𝛾

𝑓(𝑧) d𝑧
𝑧 − 𝑤

We know that ℎ1 is holomorphic on 𝑉 . Hence, the function 𝐻∶ ℂ → ℂ defined by

𝐻(𝑤) = {ℎ(𝑤) 𝑤 ∈ 𝑈
ℎ1(𝑤) 𝑤 ∈ 𝑉

is well-defined and holomorphic.

Now, we will show 𝐻(𝑤) → 0 as |𝑤| → ∞. Let 𝑅 > 0 such that Im 𝛾 ⊂ 𝐷(0, 𝑅), which is
possible since Im 𝛾 is compact. Hence, ℂ ∖ 𝐷(0, 𝑅) ⊆ 𝑉 . If |𝑤| > 𝑅,

|𝐻(𝑤)| = |ℎ1(𝑤)| =
||||
∫
𝛾

𝑓(𝑧) d𝑧
𝑧 − 𝑤

||||
≤ 1
|𝑤| − 𝑅( sup

𝑧∈Im𝛾
|𝑓(𝑧)|)length(𝛾)

Hence,𝐻(𝑤) → 0 as |𝑤| → ∞, as claimed. Hence𝐻 is bounded, since𝐻 is continuous, and
|𝐻(𝑤)| ≤ 1 outside some closed disc 𝐷(0, 𝑅1). By Liouville’s theorem, 𝐻 is constant, and by
the claim, 𝐻 = 0. In particular, ℎ = 0.

Corollary. Let𝑈 ⊂ ℂ be open and 𝛾1,… , 𝛾𝑛 be closed curves in𝑈 such that∑𝑛
𝑗=1 𝐼(𝛾𝑗 ; 𝑤) =

0 for all 𝑤 ∈ ℂ ∖ 𝑈 . Then, for any holomorphic 𝑓∶ 𝑈 → ℂ, we have

𝑓(𝑤)
𝑛
∑
𝑗=1

𝐼(𝛾𝑗 ; 𝑤) =
𝑛
∑
𝑗=1

1
2𝜋𝑖 ∫𝛾𝑗

𝑓(𝑧) d𝑧
𝑧 − 𝑤

for all 𝑤 ∈ 𝑈 ∖⋃𝑛
𝑗=1 Im 𝛾𝑗 , and

𝑛
∑
𝑗=1

∫
𝛾𝑗
𝑓(𝑧) d𝑧 = 0

Proof. For the first part, define 𝑔(𝑧, 𝑤) as before, but let

𝑉 = {𝑤 ∈ ℂ ∖
𝑛

⋃
𝑗=1

Im 𝛾𝑗 ∶
𝑛
∑
𝑗=1

𝐼(𝛾𝑗 ; 𝑤) = 0}

In the definitions of ℎ and ℎ1, use the sum of the integrals over 𝛾𝑗 . Then we can proceed as
above. The second part follows from the first as before.

Corollary. Let 𝑈 ⊂ ℂ be open and let 𝛽1, 𝛽2 be closed curves in 𝑈 such that 𝐼(𝛽1; 𝑤) =
𝐼(𝛽2; 𝑤) for all 𝑤 ∈ ℂ ∖ 𝑈 . Then

∫
𝛽1
𝑓(𝑧) d𝑧 = ∫

𝛽2
𝑓(𝑧) d𝑧

for all holomorphic functions 𝑓∶ 𝑈 → ℂ.
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Proof. We can apply the second part of the previous corollary with 𝛾1 = 𝛽1 and 𝛾2 = −𝛽2,
noting that 𝐼(−𝛽2; 𝑤) = −𝐼(𝛽2; 𝑤) for any 𝑤 ∉ Im 𝛽2.

3.4. Homotopy
The set of closed curves in 𝑈 such that Cauchy’s theorem is valid is the set of holomorphic
functions homologous to zero. We will now construct a more restrictive condition, the con-
dition of being null-homotopic.

Definition. Let 𝑈 ⊆ ℂ be a domain, and let 𝛾0, 𝛾1∶ [𝑎, 𝑏] → 𝑈 be closed curves. We say
that 𝛾0 is homotopic to 𝛾1 in 𝑈 if there exists a continuous map 𝐻∶ [0, 1] × [𝑎, 𝑏] → 𝑈 such
that for all 𝑠 ∈ [0, 1], 𝑡 ∈ [𝑎, 𝑏],

𝐻(0, 𝑡) = 𝛾0(𝑡); 𝐻(1, 𝑡) = 𝛾1(𝑡); 𝐻(𝑠, 𝑎) = 𝐻(𝑠, 𝑏)

Such a map is called a homotopy between 𝛾0, 𝛾1.

For 0 ≤ 𝑠 ≤ 1, if we let 𝛾𝑠∶ [𝑎, 𝑏] → 𝑈 be defined by 𝛾𝑠(𝑡) = 𝐻(𝑠, 𝑡) for 𝑡 ∈ [𝑎, 𝑏], then
the above conditions imply that {𝛾𝑠∶ 𝑠 ∈ [0, 1]} is a family of continuous closed curves in 𝑈
which deform 𝛾0 to 𝛾1 continuously without leaving 𝑈 .

Definition. A closed curve is null-homotopic in a certain domain if it is homotopic to a
constant curve in the domain, such as 𝛾(𝑡) = 𝑧 for 𝑧 fixed.

Theorem. If 𝛾0, 𝛾1∶ [𝑎, 𝑏] → 𝑈 are homotopic closed curves in 𝑈 , then 𝐼(𝛾0; 𝑤) = 𝐼(𝛾1; 𝑤)
for all 𝑤 ∈ ℂ ∖ 𝑈 . In particular, if a closed curve 𝛾 is null-homotopic in 𝑈 , it is homologous
to zero in 𝑈 .

Proof. Let 𝐻∶ [0, 1] × [𝑎, 𝑏] → 𝑈 be a homotopy between 𝛾0 and 𝛾1. Since 𝐻 is continuous
and [0, 1]×[𝑎, 𝑏] is compact, the image𝐾 = 𝐻([0, 1]×[𝑎, 𝑏]) is a compact subset of the open
set 𝑈 . Therefore, there exists 𝜀 > 0 such that for all 𝑤 ∈ ℂ ∖ 𝑈 , |𝑤 − 𝐻(𝑠, 𝑡)| > 2𝜀 for all
(𝑠, 𝑡) ∈ [0, 1] × [𝑎, 𝑏]. Since 𝐻 is uniformly continuous on [0, 1] × [𝑎, 𝑏], there exists 𝑛 ∈ ℕ
such that

∀(𝑠, 𝑡), (𝑠′, 𝑡′) ∈ [0, 1] × [𝑎, 𝑏], |𝑠 − 𝑠′| + |𝑡 − 𝑡′| ≤ 1
𝑛 ⟹ |𝐻(𝑠, 𝑡) − 𝐻(𝑠′, 𝑡′)| < 𝜀

For 𝑘 = 0, 1, 2,… , 𝑛, we letΓ𝑘(𝑡) = 𝐻(𝑘/𝑛, 𝑡) for𝑎 ≤ 𝑡 ≤ 𝑏. Then theΓ𝑘 are closed continuous
curves with Γ0 = 𝛾0 and Γ𝑛 = 𝛾1. Hence, for all 𝑡 ∈ [𝑎, 𝑏],

|Γ𝑘−1(𝑡) − Γ𝑘(𝑡)|⏟⎵⎵⎵⏟⎵⎵⎵⏟
<𝜀

< |𝑤 − Γ𝑘−1(𝑡)|⏟⎵⎵⎵⏟⎵⎵⎵⏟
>2𝜀

On the example sheets we have shown that for piecewise 𝐶1 closed curves 𝛾, ̃𝛾, if we have
|𝛾(𝑡) − ̃𝛾(𝑡)| < |𝑤 − 𝛾(𝑡)| for all 𝑡, then 𝐼(𝛾; 𝑤) = 𝐼( ̃𝛾; 𝑤). Hence, if Γ𝑘 are piecewise 𝐶1, we
can see that 𝐼(Γ𝑘−1; 𝑤) = 𝐼(Γ𝑘; 𝑤) for all 𝑘, and hence 𝐼(𝛾0; 𝑤) = 𝐼(𝛾1; 𝑤) as required.
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IX. Complex Analysis

We have only assumed that𝐻 is continuous, so Γ𝑘 need not be piecewise 𝐶1. We can fix this
problem by approximating each Γ𝑘 by a polygonal curve. We can take

Γ̃𝑘(𝑡) = (1 −
𝑛(𝑡 − 𝑎𝑗−1)
𝑏 − 𝑎 )𝐻(𝑘𝑛, 𝑎𝑗−1) +

𝑛(𝑡 − 𝑎𝑗−1)
𝑏 − 𝑎 𝐻(𝑘𝑛, 𝑎𝑗)

for 𝑎𝑗−1 ≤ 𝑡 ≤ 𝑎𝑗 , where
𝑎𝑗 = 𝑎 + (𝑏 − 𝑎)𝑗

𝑛
If we choose 𝑛 so that

|𝑠 − 𝑠′| + |𝑡 − 𝑡′| ≤ min {1, 𝑏 − 𝑎}
𝑛 ⟹ |𝐻(𝑠, 𝑡) − 𝐻(𝑠′, 𝑡′)| < 𝜀

the curves Γ̃𝑘 satisfy
||Γ̃𝑘−1(𝑡) − Γ̃𝑘(𝑡)|| < ||𝑤 − Γ̃𝑘−1(𝑡)||

for all 𝑡 ∈ [𝑎, 𝑏]. This is because for 𝑡 ∈ [𝑎𝑗−1, 𝑎𝑗],

||Γ̃𝑘−1(𝑡) − Γ̃𝑘(𝑡)|| ≤ (1 −
𝑛(𝑡 − 𝑎𝑗−1)
𝑏 − 𝑎 )|||𝐻(

𝑘 − 1
𝑛 , 𝑎𝑗−1) − 𝐻(𝑘𝑛, 𝑎𝑗−1)

|||

+
𝑛(𝑡 − 𝑎𝑗−1)
𝑏 − 𝑎

|||𝐻(
𝑘 − 1
𝑛 , 𝑎𝑗) − 𝐻(𝑘𝑛, 𝑎𝑗)

|||
< 𝜀

and
||𝑤 − Γ̃𝑘−1(𝑡)|| ≥ |𝑤 − Γ𝑘−1(𝑡)| − ||Γ𝑘−1(𝑡) − Γ̃𝑘−1(𝑡)|| > 2𝜀 − 𝜀 = 𝜀

We also have, for all 𝑡 ∈ [𝑎, 𝑏],

||Γ̃0(𝑡) − 𝛾0(𝑡)||; ||Γ̃𝑛 − 𝛾1(𝑡)|| < |𝑤 − 𝛾1(𝑡)|

Hence the result follows from the same example sheet question.

Remark. If 𝛾 is homologous to zero in𝑈 , it is not necessarily the case that 𝛾 is null-homotopic.
For insance, let 𝑈 = ℂ ∖ {𝑤1, 𝑤2} for 𝑤1 ≠ 𝑤2, and let 𝑈1 = 𝑈 ∪ {𝑤1} = ℂ ∖ {𝑤2} and
𝑈2 = 𝑈 ∪ {𝑤2} = ℂ ∖ {𝑤1}. Then, consider a curve 𝛾 which is not null-homotopic in 𝑈 , but
null-homotopic in each of the larger domains 𝑈1, 𝑈2. Then 𝛾 is homologous to zero in 𝑈1
and 𝑈2. Hence 𝐼(𝛾; 𝑤1) = 𝐼(𝛾; 𝑤2) = 0, so 𝛾 is homologous to zero in 𝑈 .
Corollary. If 𝛾0, 𝛾1∶ [𝑎, 𝑏] → 𝑈 are homotopic closed curves in 𝑈 , then

∫
𝛾0
𝑓(𝑧) d𝑧 = ∫

𝛾1
𝑓(𝑧) d𝑧

for all holomorphic 𝑓∶ 𝑈 → ℂ.
This is immediate from previous results. However, we can make a direct proof that does not
require the most general form of Cauchy’s theorem.
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3. More integration

Proof. With Γ̃𝑘 as above, consider the closed curve comprised of
(i) the curve Γ̃𝑘−1 on [𝑎𝑗−1, 𝑎𝑗];
(ii) the line segment [Γ̃𝑘−1(𝑎𝑗), Γ̃𝑘(𝑎𝑗)];
(iii) the curve −Γ̃𝑘 on [𝑎𝑗 , 𝑎𝑗−1];
(iv) the line segment [Γ̃𝑘(𝑎𝑗−1), Γ̃𝑘−1(𝑎𝑗−1)].
This curve is contained in the disc 𝐷(Γ̃𝑘−1(𝑎𝑗−1), 𝜀) ⊆ 𝑈 . We can apply the convex version of
Cauchy’s theorem and sum over 𝑗 to find

∫
Γ̃𝑘−1

𝑓(𝑧) d𝑧 = ∫
Γ̃𝑘
𝑓(𝑧) d𝑧

Similarly we can find

∫
Γ̃0
𝑓(𝑧) d𝑧 = ∫

𝛾0
𝑓(𝑧) d𝑧 ; ∫

Γ̃𝑛
𝑓(𝑧) d𝑧 = ∫

𝛾1
𝑓(𝑧) d𝑧

3.5. Simply connected domains
Definition. A domain𝑈 is simply connected if every closed curve in 𝑢 is null-homotopic in
𝑈 .
Star domains𝑈 are simply connected. Indeed, there exists a centre 𝑎 ∈ 𝑈 such that [𝑎, 𝑧] ⊂
𝑈 for all 𝑧 ∈ 𝑈 . If 𝛾∶ [𝑎, 𝑏] → 𝑈 is a closed curve, let 𝐻(𝑧, 𝑡) = (1 − 𝑠)𝑎 + 𝑠𝛾(𝑡) ∈ 𝑈 for
(𝑠, 𝑡) ∈ [0, 1] × [𝑎, 𝑏]. Then 𝐻(𝑠, 𝑡) ∈ 𝑈 , and 𝐻 is a homotopy between 𝛾 and the constant
curve 𝛾0(𝑡) = 𝑎.
Theorem (Cauchy’s theorem for simply connected domains). If 𝑈 is simply connected,
then

∫
𝛾
𝑓(𝑧) d𝑧 = 0

for all holomorphic 𝑓∶ 𝑈 → ℂ, and every closed curve 𝛾 in 𝑈 .
This is an immediate application of the above. The converse is also true, but is harder to
prove.

Hence, 𝑈 is simply connected if and only if ∫𝛾 𝑓(𝑧) d𝑧 = 0 for all holomorphic 𝑓 and all
closed 𝛾 in 𝑈 . In particular, 𝑈 is simply connected if and only if every closed curve in 𝑈 is
homologous to zero in𝑈 . Contrast this to the previous remark that if a curve is homologous
to zero it is not necessarily null-homotopic.
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IX. Complex Analysis

4. Singularities
4.1. Motivation
Let𝑈 be open, and 𝛾 be a closed curve in𝑈 homologous to zero in𝑈 . Then, if 𝑓∶ 𝑈 → ℂ is
holomorphic, we have Cauchy’s integral formula

∫
𝛾

𝑓(𝑧) d𝑧
𝑧 − 𝑎⏟⎵⏟⎵⏟
𝑔(𝑧)d𝑧

= 2𝜋𝑖 ⋅ 𝐼(𝛾; 𝑎)𝑓(𝑎)

for all 𝑎 ∈ 𝑈 ∖ Im 𝛾. This allows us to compute∫𝛾 𝑔(𝑧) d𝑧 for a holomorphic function 𝑔∶ 𝑈 ∖
{𝑎} → ℂ where 𝛾 does not pass through the point 𝑎, provided that 𝑔 satisfies a particular
condition: (𝑧 − 𝑎)𝑔(𝑧) is the restriction to 𝑈 ∖ {𝑎} of a holomorphic function 𝑓∶ 𝑈 → ℂ.
We wish to drop this restriction and observe the consequences; that is, we wish to compute
∫𝛾 𝑔(𝑧) d𝑧 for arbitrary holomorphic functions 𝑔∶ 𝑈 ∖ {𝑎} → ℂ for 𝑎 ∈ 𝑈 and 𝑎 ∉ Im 𝛾. For
example, consider 𝑔(𝑧) = 𝑒𝑧−1 for 𝑈 = ℂ and 𝑎 = 0, 𝛾 = 𝜕𝐷(0, 1). Note that 𝑧𝑔(𝑧) = 𝑧𝑒𝑧−1
is not continuous at 𝑧 = 0, so it is certainly not holomorphic. This leads us to the study of
singularities, and to eventually prove the residue theorem.

4.2. Removable singularities
Definition. Let 𝑈 ⊆ ℂ be open. If 𝑎 ∈ 𝑈 and 𝑓∶ 𝑈 ∖ {𝑎} → ℂ is holomorphic, we say that
𝑓 has an isolated singularity at 𝑎.
Definition. An isolated singularity 𝑎 of 𝑓 is a removable singularity if 𝑓 can be defined at 𝑎
such that the extended function is holomorphic on 𝑈 .
Proposition. Let 𝑈 be open, 𝑎 ∈ 𝑈 , and 𝑓∶ 𝑈 ∖ {𝑎} → ℂ be holomorphic. Then, the
following are equivalent.

(i) 𝑓 has a removable singularity at 𝑎;
(ii) lim𝑧→𝑎 𝑓(𝑧) exists in ℂ;
(iii) there exists 𝐷(𝑎, 𝜀) ⊆ 𝑈 such that |𝑓(𝑧)| is bounded in 𝐷(𝑎, 𝜀) ∖ {𝑎};
(iv) lim𝑧→𝑎(𝑧 − 𝑎)𝑓(𝑧) = 0.

Proof. We can see that (i) implies (ii). If 𝑎 is a removable singularity of 𝑓, then by definition
there is a holomorphic function 𝑔∶ 𝑈 → ℂ such that 𝑓(𝑧) = 𝑔(𝑧) for all 𝑧 ∈ 𝑈 ∖ {𝑎}. Then
lim𝑧→𝑎 𝑓(𝑧) = lim𝑧→𝑎 𝑔(𝑧) = 𝑔(𝑎) ∈ ℂ. Similarly, (ii) implies (iii) and (iii) implies (iv) are
clear.

It suffices to check (iv) implies (i). Consider the function

ℎ(𝑧) = {(𝑧 − 𝑎)2𝑓(𝑧) if 𝑧 ≠ 𝑎
0 if 𝑧 = 𝑎
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4. Singularities

We have
lim
𝑧→𝑎

ℎ(𝑧) − ℎ(𝑎)
𝑧 − 𝑎 = lim

𝑧→𝑎
(𝑧 − 𝑎)𝑓(𝑧) = 0

Hence ℎ is differentiable at 𝑎with ℎ′(𝑎) = 0. Since ℎ is differentiable in𝑈∖{𝑎}, wemust have
that ℎ is holomorphic in 𝑈 . Since ℎ(𝑎) = ℎ′(𝑎) = 0, we can find 𝑟 > 0 and a holomorphic
𝑔∶ 𝐷(𝑎, 𝑟) → ℂ such that ℎ(𝑧) = (𝑧 − 𝑎)2𝑔(𝑧) for 𝑧 ∈ 𝐷(𝑎, 𝑟). Comparing this to the
definition of ℎ, we have that 𝑓(𝑧) = 𝑔(𝑧) for 𝐷(𝑎, 𝑟) ∖ {𝑎}. By defining 𝑓(𝑎) = 𝑔(𝑎), we have
that 𝑓 is differentiable at 𝑎 with 𝑓′(𝑎) = 𝑔′(𝑎). So 𝑎 is a removable singularity of 𝑓.

Example. Consider 𝑓(𝑧) = 𝑒𝑧−1
𝑧
. Certainly 𝑓 is holomorphic onℂ∖{0}, and lim𝑧→0 𝑧𝑓(𝑧) =

0. So 𝑧 = 0 is a removable singularity. We can also see directly by the Taylor series of 𝑒𝑧 at
𝑧 = 0 that 𝑓(𝑧) = ∑∞

𝑘=1
𝑧𝑘−1

𝑘!
for 𝑧 ≠ 0, and the series on the right hand side defines an entire

function.

Remark. If 𝑢∶ 𝐷(0, 1) ∖ {0} → ℝ is a 𝐶2 harmonic function, when can we say that 𝑧 = 0 is a
removable singularity, i.e. that 𝑢 extends to 𝑧 = 0 as a harmonic function? We can relate this
to the study of holomorphic functions. However, unlike with previous cases, the analogy is
more subtle in this case. We cannot necessarily construct a harmonic conjugate 𝑣 such that
𝑢 + 𝑖𝑣 is holomorphic in 𝐷(0, 1) ∖ {0}, because 𝑈 is not simply connected.

There is a similar result, however. If lim𝑧→0 𝑢(𝑧) exists, then the extended function is in
fact 𝐶2 and harmonic. More generally, if 𝑢 is bounded near 𝑧 = 0, there exists a harmonic
extension. We can also consider the case lim𝑧→0 |𝑧||𝑢(𝑧)| = 0; this is explored on the example
sheets.

4.3. Poles
Note, if a holomorphic function 𝑓 has a non-removable singularity, 𝑓 is not bounded in
𝐷(𝑎, 𝑟) ∖ {𝑎} for any 𝑟 > 0.
Definition. If 𝑎 ∈ 𝑈 is an isolated singularity of 𝑓, then 𝑎 is a pole of 𝑓 if

lim
𝑧→𝑎

|𝑓(𝑧)| = ∞

Example. 𝑓(𝑧) = (𝑧 − 𝑎)−𝑘 for 𝑘 ∈ ℕ has a pole at 𝑎.
Definition. If 𝑎 ∈ 𝑈 is an isolated singularity of 𝑓 that is not removable or a pole, it is an
essential singularity.

Remark. An equivalent characterisation for 𝑎 to be an essential singularity is that the limit
lim𝑧→𝑎 |𝑓(𝑧)| does not exist. This follows from the previous proposition and the definition
of a pole.

Example. 𝑓(𝑧) = 𝑒
1
𝑧 has |𝑓(𝑖𝑦)| = 1 for all 𝑦 ∈ ℝ ∖ {0} and lim𝑥→0+ 𝑓(𝑥) = ∞. So 𝑧 = 0 is

an essential singularity of 𝑓.
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IX. Complex Analysis

Proposition. Let 𝑓∶ 𝑈 ∖ {𝑎} → ℂ be holomorphic. The following are equivalent.

(i) 𝑓 has a pole at 𝑎;

(ii) there exists 𝜀 > 0 and a holomorphic function ℎ∶ 𝐷(𝑎, 𝜀) → ℂ with ℎ(𝑎) = 0 and
ℎ(𝑧) ≠ 0 for all 𝑧 ≠ 𝑎 such that 𝑓(𝑧) = 1

ℎ(𝑧)
for 𝑧 ∈ 𝐷(𝑎, 𝜀) ∖ {𝑎};

(iii) there exists a unique integer 𝑘 ≥ 1 and a unique holomorphic function 𝑔∶ 𝑈 → ℂ
with 𝑔(𝑎) ≠ 0 such that 𝑓(𝑧) = (𝑧 − 𝑎)−𝑘𝑔(𝑧) for 𝑧 ∈ 𝑈 ∖ {𝑎}.

Remark. Since (i) implies (iii), there exists no holomorphic function on a punctured disc
𝑓∶ 𝐷(𝑎, 𝑅) ∖ {𝑎} → ℂ such that |𝑓(𝑧)| → ∞ as 𝑧 → 𝑎 at the rate of a negative non-integer
power of |𝑧 − 𝑎|, i.e. with 𝑐|𝑧 − 𝑎|−𝑠 ≤ |𝑓(𝑧)| ≤ 𝐶|𝑧 − 𝑎|−𝑠 for some constants 𝑠 ∈ (0,∞)∖ℕ,
𝑐 > 0, 𝐶 > 0, and all 𝑧 ∈ 𝐷(𝑎, 𝑅) ∖ {𝑎}.

Proof. We show (i) implies (ii). Since lim𝑧→𝑎 |𝑓(𝑧)| = ∞, there exists 𝜀 > 0 such that |𝑓(𝑧)| ≥
1 for all 0 < |𝑧 − 𝑎| < 𝜀. Hence 1

𝑓(𝑧)
is holomorphic and bounded in 𝐷(𝑎, 𝜀) ∖ {𝑎}. By the

above proposition, 1
𝑓
has a removable singularity at 𝑎, so there exists a holomorphic function

ℎ∶ 𝐷(𝑎, 𝜀) → ℂ such that 1
𝑓
= ℎ, or equivalently, 𝑓 = 1

ℎ
, for 𝑧 ∈ 𝐷(𝑎, 𝜀) ∖ {𝑎}. Since

|𝑓(𝑧)| → ∞ as 𝑧 → 𝑎, we have that ℎ(𝑎) = 0.

Now we show (ii) implies (iii). Let 𝜀 and ℎ be as in the definition of (ii). By Taylor series,
there exists 𝑘 ≥ 1 and a holomorphic function ℎ1∶ 𝐷(𝑎, 𝜀) → ℂ with ℎ1(𝑧) ≠ 0 for all
𝑧 ∈ 𝐷(𝑎, 𝜀) such that ℎ(𝑧) = (𝑧 − 𝑎)𝑘ℎ1(𝑧). If 𝑔1 =

1
ℎ1
, then 𝑔1 is holomorphic in 𝐷(𝑎, 𝜀),

𝑔1 ≠ 0 in 𝐷(𝑎, 𝜀), and 𝑓(𝑧) = (𝑧 − 𝑎)−𝑘𝑔1(𝑧) in 𝐷(𝑎, 𝜀) ∖ {𝑎}.

We can now define 𝑔∶ 𝑈 → ℂ by 𝑔(𝑧) = 𝑔1(𝑧) for 𝑧 ∈ 𝐷(𝑎, 𝜀), and 𝑔(𝑧) = (𝑧 − 𝑎)𝑘𝑓(𝑧)
for 𝑧 ∈ 𝑈 ∖ {𝑎}. Since 𝑓(𝑧) = (𝑧 − 𝑎)−𝑘𝑔1(𝑧), the definitions agree on 𝐷(𝑎, 𝜀) ∖ {𝑎}, so 𝑔 is
well-defined and holomorphic in 𝑈 , and 𝑔(𝑎) = 𝑔1(𝑎) ≠ 0. This proves the existence of an
integer 𝑘 ≥ 1 and a holomorphic 𝑔∶ 𝑈 → ℂ with 𝑔(𝑎) ≠ 0 such that 𝑓(𝑧) = (𝑧 − 𝑎)−𝑘𝑔(𝑧)
for all 𝑧 ∈ 𝑈 ∖ {𝑎}.

To prove uniqueness of 𝑘 and 𝑔, suppose there exists ̃𝑘 ≥ 1 and a holomorphic ̃𝑔∶ 𝑈 → ℂ
with ̃𝑔(𝑎) ≠ 0 such that 𝑓(𝑧) = (𝑧 − 𝑎)−𝑘 ̃𝑔(𝑧) for all 𝑧 ∈ 𝑈 ∖ {𝑎}. Then we have 𝑔(𝑧) =
(𝑧 − 𝑎)𝑘−𝑘 ̃𝑔(𝑧) for 𝑧 ∈ 𝑈 ∖ {𝑎}. Since 𝑔, ̃𝑔 are holomorphic with 𝑔(𝑎) ≠ 0 and ̃𝑔(𝑎) ≠ 0, this
can only be true if 𝑘 = ̃𝑘, and hence 𝑔 = ̃𝑔 on 𝑈 ∖ {𝑎}, and then at 𝑎 by continuity.

It is clear that (iii) implies (i).

Definition. If 𝑓 has a pole at 𝑧 = 𝑎, then the unique positive integer 𝑘 given by the above
proposition is the order of the pole at 𝑎. If 𝑘 = 1, we say that 𝑓 has a simple pole at 𝑎.

Let𝑈 be open and 𝑆∖𝑈 be a discrete subset of𝑈 , so all points of 𝑆 are isolated. If 𝑓∶ 𝑈∖𝑆 →
ℂ is holomorphic and each 𝑎 ∈ 𝑆 is either a removable singularity or a pole of 𝑓, then 𝑓 is a
meromorphic function on 𝑈 . In particular, if 𝑆 = ∅, 𝑓 is holomorphic.
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Remark. If 𝑓∶ 𝑈 ∖ {𝑎} → ℂ is holomorphic and the singularity 𝑧 = 𝑎 is a pole of 𝑓, we can
regard 𝑓 as a continuous mapping onto the Riemann sphere 𝑓∶ 𝑈 → ℂ ∪ {∞}, by setting
𝑓(𝑎) = ∞. Here, 𝑓 is holomorphic on 𝑈 . Holomorphicity of the extended map near the
pole 𝑎 follows from the fact that in a punctured disc about 𝑎, 1

𝑓
has the form (𝑧−𝑎)𝑘

𝑔(𝑧)
for

some holomorphic 𝑔 with 𝑔(𝑧) ≠ 0 near 𝑎; and the fact that any function ℎ defined in a
neighbourhood of∞ in the Riemann sphere is holomorphic, by definition, if the function
ℎ̃(𝑧) = ℎ( 1

𝑧
) if 𝑧 ≠ 0, ℎ̃(0) = ℎ(∞) is holomorphic near zero. Hence ℎ ∘ 𝑓 = ℎ̃ ∘ ( 1

𝑓
) is

holomorphic near 𝑎 for all holomorphic ℎ in a neighbourhood of∞ in the Riemann sphere.

Hence, any meromorphic function 𝑓∶ 𝑈 ∖ 𝑆 → ℂ can be viewed as a holomorphic func-
tion 𝑈 → ℂ ∪ {∞}. Geometrically, therefore, poles are not ‘real’ singularities, and the only
true isolated singularities are the essential singularities. This is explored further in Part II
Riemann Surfaces.

4.4. Essential singularities

Remark. Suppose 𝑧 = 𝑎 is an essential singularity of a holomorphic 𝑓∶ 𝑈 ∖ {𝑎} → ℂ. Then
there exists a sequence of points 𝑎𝑛 ∈ 𝑈∖{𝑎}, 𝑎𝑛 → 𝑎, such that 𝑓(𝑎𝑛) → ∞. This is because
𝑎 is not removable. There is also another sequence of points 𝑏𝑛 ∈ 𝑈 ∖ {𝑎}, 𝑏𝑛 → 𝑎 such that
(𝑓(𝑏𝑛)) is bounded. This is because 𝑎 is not a pole. We can generalise this further.

Theorem (Casorati–Weierstrass theorem). If 𝑓∶ 𝑈 ∖ {𝑎} → ℂ is holomorphic and 𝑎 ∈ 𝑈 is
an essential singularity of 𝑓, then for any 𝜀 > 0, the set 𝑓(𝐷(𝑎, 𝜀) ∖ {𝑎}) is dense in ℂ.

The proof is an exercise on the second example sheet.

Theorem (Picard’s theorem). If 𝑓∶ 𝑈 ∖ {𝑎} → ℂ is holomorphic and 𝑎 ∈ 𝑈 is an essential
singularity of 𝑓, then there exists 𝑤 ∈ ℂ such that for any 𝜀 > 0, ℂ ∖ {𝑤} ⊆ 𝑓(𝐷(𝑎, 𝜀) ∖ {𝑎}).
In other words, in any neighbourhood 𝐷(𝑎, 𝜀) ∖ {𝑎}, 𝑓 attains all complex numbers except
possibly one.

The proof is omitted.

4.5. Laurent series

If 𝑧 = 𝑎 is a removable singularity of 𝑓, then for some 𝑅 > 0, 𝑓 is given by a power series
∑∞

𝑛=0 𝑐𝑛(𝑧 − 𝑎)𝑛, which is the Taylor series of the holomorphic extension of 𝑓 to 𝐷(𝑎, 𝑅),
for all 𝑧 ∈ 𝐷(𝑎, 𝑅) ∖ {𝑎}. If 𝑎 is a pole of some order 𝑘 ≥ 1, then for some 𝑅 > 0 we have
𝑓(𝑧) = (𝑧 − 𝑎)−𝑘𝑔(𝑧) for some holomorphic 𝑔∶ 𝐷(𝑎, 𝑅) → ℂ and all 𝑧 ∈ 𝐷(𝑎, 𝑅) ∖ {𝑎},
so using the Taylor seires of 𝑔, we find a series of the form 𝑓(𝑧) = ∑∞

𝑛=−𝑘 𝑐𝑛(𝑧 − 𝑎)𝑛, for
𝑧 ∈ 𝐷(𝑎, 𝑅) ∖ {𝑎}. When 𝑎 is an essential singularity, we can still obtain an analogous series
expansion with infinitely many terms with negative powers. More generally, we have the
following.
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Theorem (Laurent expansion). Let 𝑓 be holomorphic on an annulus

𝐴 = {𝑧 ∈ ℂ∶ 𝑟 < |𝑧 − 𝑎| < 𝑅}

for 0 ≤ 𝑟 < 𝑅 ≤ ∞. Then:

(i) 𝑓 has a unique convergent series expansion

𝑓(𝑧) =
∞
∑

𝑛=−∞
𝑐𝑛(𝑧 − 𝑎)𝑛 ≡

∞
∑
𝑛=1

𝑐−𝑛(𝑧 − 𝑎)−𝑛 +
∞
∑
𝑛=0

𝑐𝑛(𝑧 − 𝑎)𝑛

where the 𝑐𝑛 are constants;
(ii) for any 𝜌 ∈ (𝑟, 𝑅), the coefficient 𝑐𝑛 is given by

𝑐𝑛 =
1
2𝜋𝑖 ∫𝜕𝐷(𝑎,𝜌)

𝑓(𝑧) d𝑧
(𝑧 − 𝑎)𝑛+1

(iii) if 𝑟 < 𝜌′ ≤ 𝜌 < 𝑅, then the two series in (i) separately converge uniformly on the set

{𝑧 ∈ ℂ∶ 𝜌′ ≤ |𝑧 − 𝑎| ≤ 𝜌}

Remark. If 𝑓 is the restriction of 𝐴 of a holomorphic function 𝑔 on the full disc 𝐷(𝑎, 𝑅),
then by the formula in part (ii), we have for any negative 𝑛 = −𝑚, 𝑚 ≥ 1, the coefficient
𝑐−𝑚 is zero by Cauchy’s theorem. In this case, the Laurent series of 𝑓 is the Taylor series
of 𝑔 restricted to 𝐴. The new content of the theorem is simply when 𝑓 has no holomorphic
extension to 𝐷(𝑎, 𝑅).

Proof. Let 𝑤 ∈ 𝐴 and consider the function

𝑔(𝑧) = {
𝑓(𝑧)−𝑓(𝑤)

𝑧−𝑤
if 𝑧 ≠ 𝑤

𝑓′(𝑤) if 𝑧 = 𝑤

This 𝑔 is continuous in 𝐴 and holomorphic in 𝐴∖ {𝑤}. Hence, this is holomorphic in 𝐴 since
this is a removable singularity. Let 𝜌1, 𝜌2 such that 𝑟 < 𝜌1 < |𝑤 − 𝑎| < 𝜌2 < 𝑅. The two
positively oriented curves 𝜕𝐷(𝑎, 𝜌1) and 𝜕𝐷(𝑎, 𝜌2) are homotopic in 𝐴. Hence,

∫
𝜕𝐷(𝑎,𝜌1)

𝑔(𝑧) d𝑧 = ∫
𝜕𝐷(𝑎,𝜌2)

𝑔(𝑧) d𝑧

Substituting for 𝑔,

∫
𝜕𝐷(𝑎,𝜌1)

𝑓(𝑧) d𝑧
𝑧 − 𝑤 − 2𝜋𝑖 ⋅ 𝐼(𝜕𝐷(𝑎, 𝜌1); 𝑤)𝑓(𝑤) = ∫

𝜕𝐷(𝑎,𝜌2)

𝑓(𝑧) d𝑧
𝑧 − 𝑤 − 2𝜋𝑖 ⋅ 𝐼(𝜕𝐷(𝑎, 𝜌2); 𝑤)𝑓(𝑤)

We have
𝐼(𝜕𝐷(𝑎, 𝜌1); 𝑤) = 0; 𝐼(𝜕𝐷(𝑎, 𝜌2); 𝑤) = 𝐼(𝜕𝐷(𝑎, 𝜌2); 𝑎) = 1
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Hence,
𝑓(𝑤) = 1

2𝜋𝑖 ∫𝜕𝐷(𝑎,𝜌2)
𝑓(𝑧) d𝑧
𝑧 − 𝑤 − 1

2𝜋𝑖 ∫𝜕𝐷(𝑎,𝜌1)
𝑓(𝑧) d𝑧
𝑧 − 𝑤

This is an analogue of Cauchy’s integral formula for annular domains. We can now proceed
as before when proving the Taylor series expansion for holomorphic functions.

For the first integral, consider the expansion

1
𝑧 − 𝑤 = 1

𝑧 − 𝑎 − (𝑤 − 𝑎) =
∞
∑
𝑛=0

(𝑤 − 𝑎)𝑛
(𝑧 − 𝑎)𝑛+1

This series converges uniformly over 𝑧 ∈ 𝜕𝐷(𝑎, 𝜌2), since ||
𝑤−𝑎
𝑧−𝑎

|| < 1. For the second integral,
consider

1
𝑧 − 𝑤 = 1

𝑧 − 𝑎 − (𝑤 − 𝑎) = − 1
(𝑤 − 𝑎)(1 − 𝑧−𝑎

𝑤−𝑎
)
= −

∞
∑
𝑛=0

(𝑧 − 𝑎)𝑛
(𝑤 − 𝑎)𝑛+1

Likewise, this series converges uniformly over 𝑧 ∈ 𝜕𝐷(𝑎, 𝜌1), since ||
𝑧−𝑎
𝑤−𝑎

|| < 1 in this disc.
Substituting these into the representation formula, we can switch integration and summa-
tion due to uniform convergence. This gives

𝑓(𝑤) =
∞
∑
𝑛=0

𝑐𝑛(𝑤 − 𝑎)𝑛 +
∞
∑
𝑛=1

𝑐−𝑛(𝑤 − 𝑎)−𝑛

where
𝑐𝑛 =

1
2𝜋𝑖 ∫𝜕𝐷(𝑎,𝜌2)

𝑓(𝑧) d𝑧
(𝑧 − 𝑎)𝑛+1

for 𝑛 ≥ 0, and
𝑐𝑛 =

1
2𝜋𝑖 ∫𝜕𝐷(𝑎,𝜌1)

𝑓(𝑧) d𝑧
(𝑧 − 𝑎)𝑛+1

for 𝑛 ≤ −1. Since 𝜕𝐷(𝑎, 𝜌1) and 𝜕𝐷(𝑎, 𝜌2) are homotopic in 𝐴 to 𝜕𝐷(𝑎, 𝜌) for any 𝜌 ∈ (𝑟, 𝑅),
we have that

𝑐𝑛 =
1
2𝜋𝑖 ∫𝜕𝐷(𝑎,𝜌)

𝑓(𝑧) d𝑧
𝑧 − 𝑎

for any 𝜌 ∈ (𝑟, 𝑅) and 𝑛 ∈ ℤ, so (i) and the formula (ii) both hold.
To show (iii) and uniqueness, suppose there exist constants 𝑐𝑛 such that, for all 𝑧 ∈ 𝐴, we
have

𝑓(𝑧) =
∞
∑

𝑛=−∞
𝑐𝑛(𝑧 − 𝑎)𝑛 (∗)

Let 𝑟 < 𝜌′ ≤ 𝜌 < 𝑅. Then the power series∑∞
𝑛=0 𝑐𝑛(𝑧 − 𝑎)𝑛 converges for 𝑧 ∈ 𝐴, so it has

radius of convergence at least 𝑅, and converges uniformly for |𝑧 − 𝑎| ≤ 𝜌. Further, the series

529



IX. Complex Analysis

∑∞
𝑛=1 𝑐−𝑛(𝑧 − 𝑎)−𝑛 converges on 𝐴. Let 𝜁 = (𝑧 − 𝑎)−1. Then the power series∑∞

𝑛=1 𝑐−𝑛𝜁𝑛
converges for 1

𝑅
< |𝜁| < 1

𝑟
so it has radius of convergence at least 1

𝑟
and converges uniformly

for |𝜁| ≤ 1
𝜌′
. Thus, the series∑∞

𝑛=1 𝑐−𝑛(𝑧−𝑎)−𝑛 converges uniformly for |𝑧 − 𝑎| ≥ 𝜌′. Hence
(∗) converges uniformly in 𝜌′ ≤ |𝑧 − 𝑎| ≤ 𝜌. Hence, for any𝑚 ∈ ℤ, we have

∫
𝜕𝐷(𝑎,𝜌)

𝑓(𝑧) d𝑧
(𝑧 − 𝑎)𝑚+1 =

∞
∑

𝑛=−∞
𝑐𝑛∫

𝜕𝐷(𝑎,𝜌)
(𝑧 − 𝑎)𝑛−𝑚−1 d𝑧

By the fundamental theorem of calculus, the only nonzero integral on the right hand side
occurs when 𝑛 − 𝑚 − 1 = −1, which occurs for 𝑛 = 𝑚 only. This integral gives

𝑐𝑚 = 1
2𝜋𝑖 ∫𝜕𝐷(𝑎,𝜌)

𝑓(𝑧) d𝑧
(𝑧 − 𝑎)𝑚+1

for all 𝜌 ∈ (𝑟, 𝑅). This formula also implies the uniqueness of the 𝑐𝑛 for which the series
expansion is valid.

Remark. The above proof shows that if 𝑓∶ 𝐴 ≡ 𝐷(𝑎, 𝑅) ∖ 𝐷(𝑎, 𝑟) → ℂ is holomorphic,
then there is a holomorphic function 𝑓1∶ 𝐷(𝑎, 𝑅) → ℂ and a holomorphic function 𝑓2∶ ℂ ∖
𝐷(𝑎, 𝑟) → ℂ such that 𝑓 = 𝑓1+𝑓2 on𝐴. This decomposition is not unique, since we can take
𝑓1 ↦ 𝑓1 + 𝑔 and 𝑓2 ↦ 𝑓2 − 𝑔 for an entire function 𝑔. However, if we also require 𝑓2(𝑧) → 0
as 𝑧 → ∞, the decomposition into two series given in (ii) above is unique.

4.6. Coefficients of Laurent series
Let 𝑓∶ 𝐷(𝑎, 𝑅) ∖ {𝑎} → ℂ be holomorphic, so 𝑧 = 𝑎 is an isolated singularity of 𝑓. Then, by
the Laurent series with 𝑟 = 0, we have a unique set of complex numbers 𝑐𝑛 such that

𝑓(𝑧) =
∞
∑

𝑛=−∞
𝑐𝑛(𝑧 − 𝑎)𝑛

Then,

(i) If 𝑐𝑛 = 0 for all 𝑛 < 0, we have 𝑓(𝑧) = ∑∞
𝑛=0 𝑐𝑛(𝑧 − 𝑎)𝑛 ≡ 𝑔(𝑧) on 𝐷(𝑎, 𝑅) ∖ {𝑎}. Since

𝑔 is holomorphic on 𝐷(𝑎, 𝑅), 𝑧 = 𝑎 is a removable singularity.
(ii) If 𝑐−𝑘 ≠ 0 for some 𝑘 ≥ 1 and 𝑐−𝑛 = 0 for all 𝑛 ≥ 𝑘 + 1, we have

𝑓(𝑧) = 𝑐−𝑘
(𝑧 − 𝑎)𝑘 +

𝑐−𝑘+1
(𝑧 − 𝑎)𝑘+1 +⋯+ 𝑐−1

𝑧 − 𝑎 +
∞
∑
𝑛=0

𝑐𝑛(𝑧 − 𝑎)𝑛

Hence, 𝑓(𝑧) = (𝑧 − 𝑎)−𝑘𝑔(𝑧) for a function 𝑔 which is holomorphic on 𝐷(𝑎, 𝑅), and
where 𝑔(𝑎) = 𝑐−𝑘 ≠ 0. Equivalently, 𝑧 = 𝑎 is a pole of order 𝑘.

(iii) If 𝑐𝑛 ≠ 0 for infinitely many 𝑛 < 0, 𝑧 = 𝑎 is an essential singularity. This holds since
the above two parts were all bidirectional implications.
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4.7. Residues
Definition. Let 𝑓∶ 𝐷(𝑎, 𝑅) ∖ {𝑎} → ℂ be holomorphic. The coefficient 𝑐−1 of the Laurent
series of 𝑓 in 𝐷(𝑎, 𝑅) ∖ {𝑎} is called the residue of 𝑓 at 𝑎, denoted Res𝑓(𝑎). The series

𝑓𝑃 =
∞
∑
𝑛=1

𝑐−𝑛(𝑧 − 𝑎)−𝑛

is known as the principal part of 𝑓 at 𝑎.
We know that 𝑓𝑃 is holomorphic onℂ∖{𝑎}, with the series defining 𝑓𝑃 converging uniformly
on compact subsets of ℂ ∖ {𝑎}. By the Laurent series, 𝑓 = 𝑓𝑃 +ℎ on 𝐷(𝑎, 𝑅) ∖ {𝑎}, where ℎ is
holomorphic on𝐷(𝑎, 𝑅). Let 𝛾 be a closed curve in𝐷(𝑎, 𝑅)with 𝑎 ∉ Im 𝛾. Then∫𝛾 ℎ(𝑧) d𝑧 =
0 by Cauchy’s theorem, and hence ∫𝛾 𝑓(𝑧) d𝑧 = ∫𝛾 𝑓𝑃(𝑧) d𝑧 = 2𝜋𝑖 ⋅ 𝐼(𝛾; 𝑎)Res𝑓(𝑎), where
the last inequality holds by uniform convergence of the series for 𝑓𝑃 and the fundamental
theorem of calculus. This reasoning can be extended to the case of more then one isolated
singularity.

Theorem (residue theorem). Let 𝑈 be an open set, {𝑎1,… , 𝑎𝑘} ⊂ 𝑈 be finite, and 𝑓∶ 𝑈 ∖
{𝑎1,… , 𝑎𝑘} → ℂ be holomorphic. If 𝛾 is a closed curve in 𝑈 homologous to zero in 𝑈 , and if
𝑎𝑗 ∉ Im 𝛾 for each 𝑗, then

1
2𝜋𝑖 ∫𝛾

𝑓(𝑧) d𝑧 =
𝑘
∑
𝑗=1

𝐼(𝛾; 𝑎𝑗)Res𝑓(𝑎𝑗)

This is a generalisation of Cauchy’s integral formula.

Proof. Let 𝑓(𝑗)𝑃 = ∑∞
𝑛=1 𝑐

(𝑗)
−𝑛(𝑧 − 𝑎𝑗)−𝑛 be the principal part of 𝑓 at 𝑎𝑗 . Then 𝑓(𝑗)𝑃 is holo-

morphic in ℂ ∖ {𝑎𝑗}, and hence is holomorphic in ℂ ∖ {𝑎1,… , 𝑎𝑘}. Let

ℎ ≡ 𝑓 − (𝑓(1)𝑃 +⋯+ 𝑓(𝑘)𝑃 )

This ℎ is holomorphic in 𝑈 ∖ {𝑎1,… , 𝑎𝑘}. Let 𝑗 be fixed. Then 𝑓 − 𝑓(𝑗)𝑃 has a removable
singularity at 𝑧 = 𝑎𝑗 . For all ℓ ≠ 𝑗, 𝑓(ℓ)𝑃 is holomorphic at 𝑎𝑗 . Hence ℎ has a removable
singularity at 𝑎𝑗 . This is true for all 𝑗, so ℎ extends to all of 𝑈 as a holomorphic function. By
Cauchy’s theorem, ∫𝛾 ℎ(𝑧) d𝑧 = 0. Hence

1
2𝜋𝑖 ∫𝛾

𝑓(𝑧) d𝑧 =
𝑘
∑
𝑗=1

1
2𝜋𝑖 ∫𝛾

𝑓(𝑗)𝑃 (𝑧) d𝑧

By termwise integration of the series for𝑓(𝑗)𝑃 , which converges uniformly on compact subsets
of ℂ ∖ {𝑎𝑗}, we have

1
2𝜋𝑖 ∫𝛾

𝑓(𝑗)𝑃 (𝑧) d𝑧 = 𝐼(𝛾; 𝑎𝑗)Res𝑓(𝑎𝑗)

as required.
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There are simple ways to calculate residues if we know information about the singularity in
question.

(i) If 𝑓 has a simple pole at 𝑧 = 𝑎, then

Res𝑓(𝑎) = lim
𝑧→𝑎

(𝑧 − 𝑎)𝑓(𝑧)

Indeed, near 𝑎, we have 𝑓(𝑧) = (𝑧 − 𝑎)−1𝑔(𝑧) where 𝑔 is holomorphic and 𝑔(𝑎) ≠ 0.
Hence, by the Taylor expansion of 𝑔, we have that Res𝑓(𝑎) = 𝑔(𝑎).

(ii) If 𝑓 has a pole of order 𝑘 at 𝑎, then near 𝑎 we have that 𝑓(𝑧) = (𝑧 − 𝑎)−𝑘𝑔(𝑧) where 𝑔
is holomorphic and 𝑔(𝑎) ≠ 0. In this case, the residue Res𝑓(𝑎) is the coefficient of the
(𝑧 − 𝑎)𝑘−1 term of the Taylor series of 𝑔 at 𝑎, which is

Res𝑓(𝑎) =
𝑔(𝑘−1)(𝑎)
(𝑘 − 1)!

(iii) If 𝑓 = 𝑔
ℎ
where 𝑔 and ℎ are holomorphic at 𝑧 = 𝑎, such that 𝑔(𝑎) ≠ 0 and ℎ has a

simple zero at 𝑧 = 𝑎, then from (i) we have

Res𝑓(𝑎) = lim
𝑧→𝑎

(𝑧 − 𝑎)𝑔(𝑧)
ℎ(𝑧) = lim

𝑧→𝑎
𝑔(𝑧)

ℎ(𝑧)−ℎ(𝑎)
𝑧−𝑎

= 𝑔(𝑎)
ℎ′(𝑎)

Example. For 0 < 𝛼 < 1, we will show that

∫
∞

0

𝑥−𝛼
1 + 𝑥 d𝑥 =

𝜋
sin𝜋𝛼

Let 𝑔(𝑧) = 𝑧−𝛼 be the branch of 𝑧−𝛼 defined by 𝑔(𝑧) = 𝑒−𝛼ℓ(𝑧), where ℓ(𝑧) is the holomorphic
branch of logarithm on𝑈 = ℂ∖{𝑥 ∈ ℝ∶ 𝑥 ≥ 0}. given by ℓ(𝑧) = log |𝑧|+𝑖 arg 𝑧where arg(𝑧)
takes values in (0, 2𝜋). Let 𝑓(𝑧) = 𝑔(𝑧)

1+𝑧
. Then

𝑓(𝑧) = |𝑧|−𝛼𝑒−𝑖𝛼 arg𝑧
1 + 𝑧

and𝑓 is holomorphic in𝑈∖{−1}where 𝑧 = −1 is a simple polewithRes𝑓(−1) = lim𝑧→−1(𝑧+
1)𝑓(𝑧) = 𝑒−𝑖𝜋𝛼.
Let 𝜀, 𝑅 be such that 0 < 𝜀 < 1 < 𝑅 and 𝜃 > 0 be small. Let 𝛾 be the positively-oriented
‘keyhole countour’ determined by the two circular arcs 𝛾𝑅 ∶ [𝜃, 2𝜋 − 𝜃] → 𝑈 and the two
line segments 𝛾1, 𝛾2∶ [𝜀, 𝑅] → 𝑈 given by

𝛾𝑅(𝑡) = 𝑅𝑒𝑖𝑡; 𝛾𝜀(𝑡) = 𝜀𝑒𝑖(2𝜋−𝑡); 𝛾1(𝑡) = 𝑡𝑒𝑖𝜃; 𝛾2(𝑡) = 𝑡𝑒𝑖(2𝜋−𝜃)

The domain𝑈 is star shaped and hence simply connected, and so 𝛾 is homologous to zero in
𝑈 . Directly from the definitions of 𝛾 and thewinding number, we can show that 𝐼(𝛾; −1) = 1.
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By the residue theorem, we find ∫𝛾 𝑓(𝑧) d𝑧 = 2𝜋𝑖𝑒−𝑖𝜋𝛼. Now,

∫
𝛾1
𝑓(𝑧) d𝑧 = ∫

𝑅

𝜀
𝑓(𝑡𝑒𝑖𝜃)𝑒𝑖𝜃 d𝑡 = ∫

𝑅

𝜀

𝑡−𝛼𝑒𝑖(1−𝛼)𝜃
1 + 𝑡𝑒𝑖𝜃 d𝑡

and

∫
𝛾2
𝑓(𝑧) d𝑧 = ∫

𝑅

𝜀
𝑓(𝑡𝑒𝑖(2𝜋−𝜃))𝑒𝑖(2𝜋−𝜃) d𝑡 = ∫

𝑅

𝜀

𝑡−𝛼𝑒𝑖(1−𝛼)(2𝜋−𝜃)
1 + 𝑡𝑒𝑖(2𝜋−𝜃) d𝑡

As 𝜃 → 0+, we can show that the integrands converge uniformly on [𝜀, 𝑅] to 𝑡−𝛼

1+𝑡
and 𝑒−2𝑖𝜋𝛼𝑡−𝛼

1+𝑡
respectively. Hence,

lim
𝜃→0+

[∫
𝛾1
𝑓(𝑧) d𝑧 +∫

(−𝛾2)
𝑓(𝑧) d𝑧] = (1 − 𝑒−2𝑖𝜋𝛼)∫

𝑅

𝜀

𝑡−𝛼
1 + 𝑡 d𝑡

For all 𝑧 ∈ Im 𝛾𝑅, we have |𝑓(𝑧)| ≤
𝑅−𝛼

𝑅−1
; and for all 𝑧 ∈ Im 𝛾𝜀, we have |𝑓(𝑧)| ≤

𝜀−𝛼

1−𝜀
. Hence,

||||
∫
𝛾𝑅
𝑓(𝑧) d𝑧 +∫

𝛾𝜀
𝑓(𝑧) d𝑧

||||
≤ 2𝜋𝑅1−𝛼

𝑅 − 1 + 2𝜋𝜀1−𝛼
1 − 𝜀

Note that the right hand side is independent of 𝜃, even though 𝛾𝑅 and 𝛾𝜀 depend on 𝜃. Since

∫
𝛾
𝑓(𝑧) d𝑧 − (∫

𝛾1
𝑓(𝑧) d𝑧 +∫

(−𝛾2)
𝑓(𝑧) d𝑧) = ∫

𝛾𝑅
𝑓(𝑧) d𝑧 +∫

𝛾𝜀
𝑓(𝑧) d𝑧

we then have that
||||
2𝜋𝑖𝑒−𝑖𝜋𝛼 − (∫

𝛾1
𝑓(𝑧) d𝑧 +∫

(−𝛾2)
𝑓(𝑧) d𝑧)

||||
≤ 2𝜋𝑅1−𝛼

𝑅 − 1 + 2𝜋𝜀1−𝛼
1 − 𝜀

First letting 𝜃 → 0+ in this, and then letting 𝜀 → 0+ and 𝑅 → ∞, we conclude

(1 − 𝑒−2𝜋𝑖𝛼)∫
∞

0

𝑡−𝛼
1 + 𝑡 d𝑡 = 2𝜋𝑖𝑒−𝑖𝜋𝛼

or,

∫
∞

0

𝑡−𝛼
1 + 𝑡 d𝑡 =

𝜋
sin𝜋𝛼

4.8. Jordan’s lemma
Lemma. Let 𝑓 be a continuous complex-valued function on the semicircle 𝐶+

𝑅 = Im 𝛾+𝑅 in
the upper half-plane, where 𝑅 > 0 and 𝛾+𝑅 (𝑡) = 𝑅𝑒𝑖𝑡 for 0 ≤ 𝑡 ≤ 𝜋. Then, for 𝛼 > 0,

||||
∫
𝛾+𝑅
𝑓(𝑧)𝑒𝑖𝛼𝑧 d𝑧

||||
≤ 𝜋
𝛼 sup

𝑧∈𝐶+
𝑅

|𝑓(𝑧)|
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In particular, if 𝑓 is continuous in 𝐻+ ∖ 𝐷(0, 𝑅0) for 𝑅0 > 0 where 𝐻+ = {𝑧∶ Im 𝑧 ≥ 0} and
if sup𝑧∈𝐶+

𝑅
|𝑓(𝑧)| → 0 as 𝑅 → ∞, then for each 𝛼 > 0, we have

∫
𝛾+𝑅
𝑓(𝑧)𝑒𝑖𝛼𝑧 d𝑧 → 0

as 𝑅 → ∞.

A similar statement holds for 𝛼 < 0 and the semicircle 𝐶−
𝑅 = Im 𝛾−𝑅 in the lower half-plane

where 𝛾−𝑅 (𝑡) = −𝑅𝑒𝑖𝑡 for 𝑅 > 0 and 0 ≤ 𝑡 ≤ 𝜋.

Proof. Let𝑀𝑅 = sup𝑧∈𝐶+
𝑅
|𝑓(𝑧)|. Then,

||||
∫
𝛾+𝑅
𝑓(𝑧)𝑒𝑖𝛼𝑧 d𝑧

||||
=
|
|
|
∫

𝜋

0
𝑓(𝑅𝑒𝑖𝑡)𝑒−𝛼𝑅 sin 𝑡+𝑖𝛼𝑅 cos 𝑡𝑖𝑅𝑒𝑖𝑡 d𝑡

|
|
|

≤ 𝑅𝑀𝑅∫
𝜋

0
𝑒−𝛼𝑅 sin 𝑡 d𝑡

= 𝑅𝑀𝑅(∫
𝜋
2

0
𝑒−𝛼𝑅 sin 𝑡 d𝑡 +∫

𝜋

𝜋
2

𝑒−𝛼𝑅 sin 𝑡 d𝑡)

= 2𝑅𝑀𝑅∫
𝜋
2

0
𝑒−𝛼𝑅 sin 𝑡 d𝑡

≤ 2𝑅𝑀𝑅∫
𝜋
2

0
𝑒
−2𝛼𝑅𝑡

𝜋 d𝑡

= 𝜋𝑀𝑅
𝛼 (1 − 𝑒−𝛼𝑅) ≤ 𝜋𝑀𝑅

𝛼

where we have used the fact that for 𝑡 ∈ (0, 𝜋
2
], 𝜑(𝑡) ≡ sin 𝑡

𝑡
≥ 2

𝜋
since 𝜑(𝜋

2
) = 2

𝜋
and 𝜑′(𝑡) ≤ 0

on [0, 𝜋
2
].

Lemma (integrals on small circular arcs). Let 𝑓 be holomorphic in 𝐷(𝑎, 𝑅) ∖ {𝑎} with a
simple pole at 𝑧 = 𝑎. Let 𝛾𝜀∶ [𝛼, 𝛽] → ℂ be the circular arc 𝛾𝜀(𝑡) = 𝑎 + 𝜀𝑒𝑖𝑡. Then

lim
𝜀→0+

∫
𝛾𝜀
𝑓(𝑧) d𝑧 = (𝛽 − 𝛼)𝑖Res𝑓(𝑎)

Proof. Let 𝑓(𝑧) = 𝑐
𝑧−𝑎

+ 𝑔(𝑧) where 𝑔 is holomorphic in 𝐷(𝑎, 𝑅) and 𝑐 = Res𝑓(𝑎). Then

||||
∫
𝛾𝜀
𝑔(𝑧) d𝑧

||||
=
||||
∫

𝛽

𝛼
𝑔(𝑎 + 𝜀𝑒𝑖𝑡)𝜀𝑖𝑒𝑖𝑡

||||
≤ 𝜀(𝛽 − 𝛼) sup

𝑡∈[𝛼,𝛽]
||𝑔(𝑎 + 𝜀𝑒𝑖𝑡)|| → 0
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as 𝜀 → 0+. By direct calculation,

∫
𝛾𝜀

𝑐
𝑧 − 𝑎 d𝑧 = (𝛽 − 𝛼)𝑖Res𝑓(𝑎)

Hence the claim follows.

Example. Consider ∫∞
0

sin𝑥
𝑥

d𝑥. Let 𝑓(𝑧) = 𝑒𝑖𝑧

𝑧
. Consider the integral ∫𝛾 𝑓(𝑧) d𝑧 over the

curve 𝛾 = 𝛾𝑅 + 𝛾1 + 𝛾𝜀 + 𝛾2 where
(i) 𝛾𝑅(𝑡) = 𝑅𝑒𝑖𝑡 for 0 ≤ 𝑡 ≤ 𝜋;
(ii) 𝛾1(𝑡) = 𝑡 for −𝑅 ≤ 𝑡 ≤ −𝜀;
(iii) 𝛾𝜀(𝑡) = 𝜀𝑒−𝑖𝑡 for −𝜋 ≤ 𝑡 ≤ 0;
(iv) 𝛾2(𝑡) = 𝑡 for 𝜀 ≤ 𝑡 ≤ 𝑅.
By Jordan’s lemma, ∫𝛾𝑅 𝑓(𝑧) d𝑧 → 0 as 𝑅 → ∞. 𝑓 has a simple pole at 𝑧 = 0 with Res𝑓(0) =
lim𝑧→0 𝑧𝑓(𝑧) = 1. By the above lemma, ∫−𝛾𝜀 𝑓(𝑧) d𝑧 → 𝜋𝑖 as 𝜀 → 0+.
Since 𝑓 is holomorphic in 𝑈 = ℂ ∖ {0} and 𝛾 is homologous to zero in 𝑈 , Cauchy’s theorem
gives that

∫
𝛾
𝑓(𝑧) d𝑧 = 0 ⟹ ∫

𝛾𝑅
𝑓(𝑧) d𝑧 +∫

−𝜀

−𝑅

𝑒𝑖𝑡
𝑡 d𝑡 +∫

𝛾𝜀
𝑓(𝑧) d𝑧 +∫

𝑅

𝜀

𝑒𝑖𝑡
𝑡 d𝑡 = 0

Combining the two integrals on the real axis under a change of variables,

∫
𝑅

𝜀

𝑒𝑖𝑡 − 𝑒−𝑖𝑡
𝑡 d𝑡 +∫

𝛾𝑅
𝑓(𝑧) d𝑧 +∫

𝛾𝜀
𝑓(𝑧) d𝑧 = 0

Letting 𝑅 → ∞ and 𝜀 → 0+, we have

∫
∞

0

sin 𝑡
𝑡 d𝑡 = 𝜋

2

Example. We prove that∑∞
𝑛=1

1
𝑛2
= 𝜋2

6
. Consider the function

𝑓(𝑧) = 𝜋 cot(𝜋𝑧)
𝑧2 = 𝜋 cos(𝜋𝑧)

𝑧2 sin(𝜋𝑧)

This is holomorphic in ℂ except for simple poles at each point in ℤ∖ {0}, and an order 3 pole
at zero. Near 𝑛 ∈ ℤ ∖ {0}, we have 𝑓(𝑧) = 𝑔(𝑧)

ℎ(𝑧)
where 𝑔(𝑛) ≠ 0 and ℎ has a simple zero at 𝑛,

and so
Res𝑓(𝑛) =

𝑔(𝑛)
ℎ′(𝑛) =

1
𝑛2
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To compute the residue at zero, consider

cot 𝑧 = cos 𝑧
sin 𝑧 = (1 − 𝑧2

2 + 𝑂(𝑧4))(𝑧 − 𝑧3
6 + 𝑂(𝑧5))

−1
= 1
𝑧 −

𝑧
3 + 𝑂(𝑧2)

Hence,
𝜋 cot(𝜋𝑧)

𝑧2 = 1
𝑧3 −

𝜋2
3𝑧 +…

This shows that Res𝑓(0) = −𝜋2

3
. For 𝑁 ∈ ℕ, let 𝛾𝑁 be the positively oriented boundary of

the square defined by the lines 𝑥 = ±(𝑁 + 1
2
) and 𝑦 = ±(𝑁 + 1

2
). By the residue theorem,

∫
𝛾𝑁
𝑓(𝑧) d𝑧 = 2𝜋𝑖[2(

𝑁
∑
𝑛=1

1
𝑛2) −

𝜋2
3 ] (∗)

Since length(𝛾𝑁) = 4(2𝑁 + 1), we have

||||
∫
𝛾𝑁
𝑓(𝑧) d𝑧

||||
≤ sup

𝛾𝑁

|||
𝜋 cot(𝜋𝑧)

𝑧2
||| ⋅ 4(2𝑁 + 1)

≤ sup
𝛾𝑁

|cot(𝜋𝑧)| ⋅ 4(2𝑁 + 1)𝜋
(𝑁 + 1

2
)2

= 16𝜋
2𝑁 + 1 ⋅ sup𝛾𝑁

|cot(𝜋𝑧)|

On 𝛾𝑁 , it is possible to show that cot(𝜋𝑧) is bounded independently of 𝑁. Hence,

∫
𝛾𝑁
𝑓(𝑧) d𝑧 → 0

as 𝑁 → ∞. Letting 𝑁 → ∞ in (∗), we find
∞
∑
𝑛=1

1
𝑛2 =

𝜋2
6
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5. The argument principle, local degree, and Rouché’s
theorem

5.1. The argument principle

Proposition. If 𝑓 has a zero (or pole) of order 𝑘 ≥ 1 at 𝑧 = 𝑎, then 𝑓′

𝑓
has a simple pole at

𝑧 = 𝑎 with residue 𝑘 (or −𝑘, respectively).

Proof. If 𝑧 = 𝑎 is a zero of order 𝑘, there is a disc 𝐷(𝑎, 𝑟) such that 𝑓(𝑧) = (𝑧 − 𝑎)𝑘𝑔(𝑧) for
𝑧 ∈ 𝐷(𝑎, 𝑟) where 𝑔∶ 𝐷(𝑎, 𝑟) → ℂ is holomorphic with 𝑔(𝑧) ≠ 0 for all 𝑧 ∈ 𝐷(𝑎, 𝑟). Hence,

𝑓′(𝑧) = 𝑘(𝑧 − 𝑎)𝑘−1𝑔(𝑧) + (𝑧 − 𝑎)𝑘𝑔′(𝑧)

and
𝑓′(𝑧)
𝑓(𝑧) =

𝑘
𝑧 − 𝑎 +

𝑔′(𝑧)
𝑔(𝑧)

for all 𝑧 ∈ 𝐷(𝑎, 𝑟) ∖ {𝑎}. Since 𝑔′

𝑔
is holomorphic in 𝐷(𝑎, 𝑅), the claim follows. A similar

argument holds for poles.

Definition. The order of a zero or pole 𝑎 of a holomorphic function 𝑓 is denoted ord𝑓(𝑎).
Theorem (the argument principle). Let 𝑓 be a meromorphic function on a domain 𝑈 with
finitely many zeroes 𝑎1,… , 𝑎𝑘 and finitely many poles 𝑏1,… , 𝑏ℓ. If 𝛾 is a closed curve in 𝑈
homologous to zero in 𝑈 , and if 𝑎𝑖, 𝑏𝑗 ∉ Im 𝛾 for all 𝑖, 𝑗, then

1
2𝜋𝑖 ∫𝛾

𝑓′(𝑧)
𝑓(𝑧) d𝑧 =

𝑘
∑
𝑖=1

𝐼(𝛾; 𝑎𝑖) ord𝑓(𝑎𝑖) −
ℓ
∑
𝑗=1

𝐼(𝛾; 𝑏𝑗) ord𝑓(𝑏𝑗)

Proof. Apply the residue theorem to 𝑔 = 𝑓′

𝑓
. If 𝑧0 ∈ 𝑈 is not a pole of 𝑓, then 𝑓 and hence

𝑓′ are holomorphic near 𝑧0. If additionally 𝑧0 is not a zero of 𝑓, 𝑔 is holomorphic near 𝑧0. So
the set of singularities of 𝑔 is precisely {𝑎1,… , 𝑎𝑘} ∪ {𝑏1,… , 𝑏ℓ}. By the previous proposition,
their residues are known, and the result follows.

Remark. Let 𝑓, 𝛾 be as in the theorem, and let Γ(𝑡) = 𝑓(𝛾(𝑡)). Then Γ(𝑡) is a closed curve
with image ImΓ ⊂ ℂ∖ {0}, since no zeroes or poles of 𝑓 are in Im 𝛾. Moreover, if [𝑎, 𝑏] is the
domain of 𝛾, we have

𝐼(Γ; 0) = 1
2𝜋𝑖 ∫Γ

d𝑧
𝑧 = 1

2𝜋𝑖 ∫
𝑏

𝑎

Γ′(𝑡)
Γ(𝑡) d𝑡 =

1
2𝜋𝑖 ∫

𝑏

𝑎

𝑓′(𝛾(𝑡))𝛾′(𝑡)
𝑓(𝛾(𝑡)) d𝑡 = 1

2𝜋𝑖 ∫𝛾
𝑓′(𝑧)
𝑓(𝑧) d𝑧

Thus, 1
2𝜋𝑖

∫𝛾
𝑓′(𝑧)
𝑓(𝑧)

is the number of times the image curve 𝑓∘𝛾winds around zero as wemove
along 𝛾.
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Definition. Let Ω be a domain, and let 𝛾 be a closed curve in ℂ. We say that 𝛾 bounds Ω if
𝐼(𝛾; 𝑤) = 1 for all 𝑤 ∈ Ω, and 𝐼(𝛾; 𝑤) = 0 for all 𝑤 ∈ ℂ ∖ (Ω ∪ Im 𝛾).

Example. 𝜕𝐷(0, 1) bounds 𝐷(0, 1), but does not bound 𝐷(0, 1) ∖ {0}.

Remark. If 𝛾 bounds Ω, then

(i) Ω is bounded. Indeed, let 𝐷(𝑎, 𝑅) such that Im 𝛾 ⊆ 𝐷(𝑎, 𝑅). Then 𝐼(𝛾; 𝑤) = 0 for
𝑤 ∈ ℂ ∖ 𝐷(𝑎, 𝑅). Since 𝐼(𝛾; 𝑤) = 1 for all 𝑤 ∈ Ω, we must have Ω ⊂ 𝐷(𝑎, 𝑅).

(ii) the topological boundary 𝜕Ω is contained within Im 𝛾, but it need not be the case that
𝜕Ω = Im 𝛾.

There is a large class of closed curves that bound domains, namely, simple closed curves,
which are curves 𝛾∶ [𝑎, 𝑏] → ℂ with 𝛾(𝑎) = 𝛾(𝑏), and such that 𝛾(𝑡1) = 𝛾(𝑡2) implies 𝑡1 = 𝑡2
or 𝑡1, 𝑡2 ∈ {𝑎, 𝑏}. That a simple closed curve bounds a domain is a highly non-trivial fact
guaranteed by the Jordan curve theorem: if 𝛾 is a simple closed curve, thenℂ∖ Im 𝛾 consists
precisely of two connected components, one of which is bounded and the other unbounded,
and moreover, 𝛾 (or −𝛾) bounds the bounded component, and Im 𝛾 is the boundary of each
of the two components. Thus, if Ω1 is the bounded component and Ω2 is the unbounded
component, then after possibly changing the orientation of 𝛾, we have 𝐼(𝛾; 𝑤) = 1 for𝑤 ∈ Ω1,
and 𝐼(𝛾; 𝑤) = 0 for𝑤 ∈ Ω2. This last assertion is simply that for any disc 𝐷(𝑎, 𝑅) ⊃ Im 𝛾, we
have 𝐼(𝛾; 𝑤) = 0 for all 𝑤 ∈ ℂ ∖ 𝐷(𝑎, 𝑅).

For a domain bounded by a closed curve, the argument principle gives the following.

Corollary. Let 𝛾 be a closed curve bounding a domain Ω, and let 𝑓 be meromorphic in an
open set 𝑈 with Ω ∪ Im 𝛾 ⊆ 𝑈 . Suppose that 𝑓 has no zeroes or poles on Im 𝛾. Then 𝑓 has
finitely many zeroes and finitely many poles in Ω.

Let the number of zeroes in Ω be 𝑁, and the number of poles in Ω be 𝑃, both counted with
multiplicity. Then in addition we have that

𝑁 − 𝑃 = 1
2𝜋𝑖 ∫𝛾

𝑓′(𝑧)
𝑓(𝑧) d𝑧 = 𝐼(Γ; 0)

where Γ = 𝑓 ∘ 𝛾.

Proof. Since 𝑓 is meromorphic in 𝑈 , its singularities form a discrete set 𝑆 ⊂ 𝑈 consisting of
poles or removable singularities. Since 𝛾 bounds Ω, we have that Ω is bounded and hence
Ω is compact. Also,Ω ⊆ Ω∪ Im 𝛾 ⊆ 𝑈 . IfΩ∩ 𝑆 is infinite, then by compactness ofΩ, there
exists a point 𝑤 ∈ Ω and distinct points 𝑤𝑗 ∈ Ω ∩ 𝑆 such that 𝑤𝑗 → 𝑤. If 𝑤 ∉ 𝑆, then 𝑓 is
defined and holomorphic near 𝑤 which is impossible since 𝑤𝑗 ∈ 𝑆 and 𝑤𝑗 → 𝑤. So 𝑤 ∈ 𝑆,
but this is impossible since 𝑆 is a discrete set. So Ω ∩ 𝑆 is finite, and in particular 𝑃 is finite.

If 𝑓 has infinitely many zeroes in Ω, then by compactness there exists 𝑧 ∈ Ω ⊂ 𝑈 and
distinct zeroes 𝑧𝑗 ∈ Ω such that 𝑧𝑗 → 𝑧. Then either 𝑧 ∈ 𝑈 ∖𝑆, or (if 𝑧 ∈ 𝑆) 𝑧 is a removable
singularity, since otherwise 𝑧 would be a pole and hence |𝑓(𝜁)| → ∞ as 𝜁 → 𝑧 which is
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impossible since 𝑧𝑗 → 𝑧 and 𝑓(𝑧𝑗) = 0. In either case, by the principle of isolated zeroes,
𝑓 must be identically zero in 𝐷(𝑧, 𝜌) ∖ {𝑧} for some 𝜌 > 0. Since 𝑓 is holomorphic in Ω ∖ 𝑆
which is connected (since Ω ∩ 𝑆 is finite and Ω) is connected, it follows from the unique
continuation principle that 𝑓 ≡ 0 in Ω. This is impossible since 𝑓 has no zeroes in Im 𝛾, so
𝑁 must be finite.

By the definition of 𝛾 bounding Ω, we have that 𝐼(𝛾; 𝑤) = 1 for all 𝑤 ∈ Ω, and 𝐼(𝛾; 𝑤) = 0
for all 𝑤 ∈ ℂ∖ (Ω ∪ Im 𝛾). In particular, 𝛾 is homologous to zero in 𝑈 . The final conclusion
then follows from the fact that Γ is a closed curve in ℂ ∖ {0} and 𝐼(𝛾; 0) = 1

2𝜋𝑖
∫𝛾

𝑓′(𝑧)
𝑓(𝑧)

d𝑧 as
proven above.

5.2. Local degree theorem
Definition. Let 𝑓 be a holomorphic function on a disc 𝐷(𝑎, 𝑅) that is not constant. Then
the local degree of 𝑓 at 𝑎, denoted deg𝑓(𝑎), is the order of the zero of 𝑓(𝑧) − 𝑓(𝑎) at 𝑧 = 𝑎.
This is a finite positive integer.

Example. If 𝑓(𝑧) = (𝑧 − 1)4 + 1 has deg𝑓(1) = 4.

Theorem. Let 𝑓∶ 𝐷(𝑎, 𝑅) → ℂ be holomorphic and non-constant, with deg𝑓(𝑎) = 𝑑. Then
there exists 𝑟0 > 0 such that for any 𝑟 ∈ (0, 𝑟0], there exists 𝜀 > 0 such that for all 𝑤 with
0 < |𝑓(𝑎) − 𝑤| < 𝜀, the equation 𝑓(𝑧) = 𝑤 has precisely 𝑑 distinct roots in 𝐷(𝑎, 𝑟) ∖ {𝑎}.

Proof. Let 𝑔(𝑧) = 𝑓(𝑧) − 𝑓(𝑎). Since 𝑔 is non-constant, 𝑔′ ≢ 0 in 𝐷(𝑎, 𝑅). Applying the
principle of isolated zeroes to 𝑔 and 𝑔′, there exists 𝑟0 ∈ (0, 𝑅) such that 𝑔(𝑧) ≠ 0 and 𝑔′(𝑧) ≠
0 for 𝑧 ∈ 𝐷(𝑎, 𝑟0) ∖ {𝑎}.

We will show that the conclusion holds for this choice of 𝑟0. Let 𝑟 ∈ (0, 𝑟0], and for 𝑡 ∈ [0, 1],
let 𝛾(𝑡) = 𝑎 + 𝑟𝑒2𝜋𝑖𝑡 and Γ(𝑡) = 𝑔(𝛾(𝑡)). Note that ImΓ is compact and hence closed in ℂ,
and 0 ∉ ImΓ since 𝑔 ≠ 0 on 𝜕𝐷(𝑎, 𝑟). Hence there exists 𝜀 > 0 such that 𝐷(0, 𝜀) ⊆ ℂ ∖ ImΓ.

We now show that this 𝜀 satisfies the conditions in the theorem for this 𝑟. Let 𝑤 such that
0 < |𝑤 − 𝑓(𝑎)| < 𝜀. Then𝑤−𝑓(𝑎) ∈ 𝐷(0, 𝜀) ⊆ ℂ∖ImΓ. Since 𝑧 ↦ 𝐼(Γ; 𝑧) is locally constant,
it is constant on 𝐷(0, 𝜀), so in particular 𝐼(Γ; 𝑤 − 𝑓(𝑎)) = 𝐼(Γ; 0).

By direct calculation,

𝐼(Γ; 𝑤 − 𝑓(𝑎)) = 1
2𝜋𝑖 ∫

1

0

𝑔′(𝛾(𝑡))𝛾′(𝑡)
𝑔(𝛾(𝑡)) − (𝑤 − 𝑓(𝑎)) d𝑡 =

1
2𝜋𝑖 ∫𝜕𝐷(𝑎,𝑟)

𝑓′(𝑧)
𝑓(𝑧) − 𝑤 d𝑧

By the argument principle, 𝐼(Γ; 0) = 𝑑, since 𝐼(Γ; 0) is the number of zeroes of 𝑔 in 𝐷(𝑎, 𝑟)
counted with multiplicity; the zero of 𝑔 at 𝑧 = 𝑎 has order 𝑑, and it is the only zero in𝐷(𝑎, 𝑟).
Hence,

1
2𝜋𝑖 ∫𝜕𝐷(𝑎,𝑟)

𝑓′(𝑧)
𝑓(𝑧) − 𝑤 d𝑧 = 𝑑
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Again, the argument principle shows that the number of zeroes of 𝑓(𝑧) − 𝑤 in 𝐷(𝑎, 𝑟) is
𝑑, counted with multiplicity. None of these zeroes is equal to 𝑎 since 𝑤 ≠ 𝑓(𝑎). Since
𝑓′(𝑧) = 𝑔′(𝑧) ≠ 0 in 𝐷(𝑎, 𝑟) ∖ {𝑎}, it follows from the Taylor series that these zeroes are
simple. Thus 𝑓(𝑧) − 𝑤 has 𝑑 distinct zeroes in 𝐷(𝑎, 𝑟) ∖ {𝑎}.

5.3. Open mapping theorem
Corollary. Anon-constant holomorphic functionmaps open sets to open sets. That is, non-
constant holomorphic functions are open maps.

Proof. Let 𝑓∶ 𝑈 → ℂ be holomorphic and non-constant, and let 𝑉 ⊆ 𝑈 be an open set.
Let 𝑏 ∈ 𝑓(𝑉). Then 𝑏 = 𝑓(𝑎) for some 𝑎 ∈ 𝑉 . Since 𝑉 is open, there exists 𝑟 > 0 such
that 𝐷(𝑎, 𝑟) ⊆ 𝑉 . By the local degree theorem, if 𝑟 is sufficiently small, there exists 𝜀 > 0
such that 𝑤 ∈ 𝐷(𝑓(𝑎), 𝜀) ∖ {𝑓(𝑎)} ⟹ 𝑤 = 𝑓(𝑧) for some 𝑧 ∈ 𝐷(𝑎, 𝑟) ∖ {𝑎}, hence
𝐷(𝑓(𝑎), 𝜀) ∖ {𝑓(𝑎)} ⊆ 𝑓(𝐷(𝑎, 𝑟) ∖ {𝑎}). Hence 𝐷(𝑏, 𝜀) = 𝐷(𝑓(𝑎), 𝜀) ⊆ 𝑓(𝐷(𝑎, 𝑟)) ⊆ 𝑓(𝑉). Thus,
for all 𝑏 ∈ 𝑓(𝑉), there exists a disc 𝐷(𝑏, 𝜀) ⊆ 𝑓(𝑉), so 𝑓(𝑉) is open.

5.4. Rouché’s theorem
Theorem. Let 𝛾 be a closed curve bounding a domainΩ, and let 𝑓, 𝑔 be holomorphic func-
tions on an open set 𝑈 containingΩ∪ Im 𝛾. If |𝑓(𝑧) − 𝑔(𝑧)| < |𝑔(𝑧)| for all 𝑧 ∈ Im 𝛾, then 𝑓
and 𝑔 have the same number of zeroes in Ω, counted with multiplicity.

Proof. The strict inequality |𝑓 − 𝑔| < |𝑔| on Im 𝛾 implies that 𝑓, 𝑔 are never zero on Im 𝛾
and hence never zero on some open set 𝑉 containing Im 𝛾. So ℎ = 𝑓

𝑔
is holomorphic and

nonzero in 𝑉 . In particular, 𝑔 is not identically zero inΩ, and hence the zeroes of 𝑔 inΩ∪𝑉
are isolated. Hence ℎ is meromorphic in Ω ∪ 𝑉 , and ℎ has no zeroes or poles on Im 𝛾. Also,
𝑓, 𝑔 have finitely many zeroes in Ω.

Now, |ℎ(𝑧) − 1| < 1 for all 𝑧 ∈ Im 𝛾. Hence, the curve Γ = ℎ ∘ 𝛾 has image contained within
𝐷(1, 1). Since zero is outside this disc, 𝐼(Γ; 0) = 0, and so by the argument principle,

∑
𝑤∈𝒫

ordℎ(𝑤) = ∑
𝑤∈𝒵

ordℎ(𝑤)

where 𝒫 and 𝒵 denote the sets of distinct poles and zeroes of ℎ respectively, and the sums
are finite. Now, 𝒫 = 𝒫1 + 𝒫2 and 𝒵 = 𝒵1 ∪ 𝒵2, where

𝒫1 = {𝑤 ∈ Ω∶ 𝑔(𝑤) = 0; 𝑓(𝑤) ≠ 0};
𝒫2 = {𝑤 ∈ Ω∶ 𝑔(𝑤) = 𝑓(𝑤) = 0; ord𝑔(𝑤) > ord𝑓(𝑤)};
𝒵1 = {𝑤 ∈ Ω∶ 𝑓(𝑤) = 0; 𝑔(𝑤) ≠ 0};
𝒵2 = {𝑤 ∈ Ω∶ 𝑓(𝑤) = 𝑔(𝑤) = 0; ord𝑓(𝑤) > ord𝑔(𝑤)}
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Hence,

∑
𝑤∈𝒫1

ord𝑔(𝑤) + ∑
𝑤∈𝒫2

(ord𝑔(𝑤) − ord𝑓(𝑤)) = ∑
𝑤∈𝒵1

ord𝑓(𝑤) + ∑
𝑤∈𝒵2

(ord𝑓(𝑤) − ord𝑔(𝑤))

Equivalently,

∑
𝑤∈𝒫1

ord𝑔(𝑤)+ ∑
𝑤∈𝒫2

ord𝑔(𝑤)+ ∑
𝑤∈𝒵2

ord𝑔(𝑤) = ∑
𝑤∈𝒵1

ord𝑓(𝑤)+ ∑
𝑤∈𝒵2

ord𝑓(𝑤)+ ∑
𝑤∈𝒫2

ord𝑓(𝑤)

Adding ∑𝑤∈ℛ ord𝑔(𝑤) to the left hand side and the equal number ∑𝑤∈ℛ ord𝑓(𝑤) to the
right hand side, where

ℛ = {𝑤 ∈ Ω∶ 𝑓(𝑤) = 𝑔(𝑤) = 0; ord𝑓(𝑤) = ord𝑔(𝑤)}

we have
∑

𝑤∈Ω∶ 𝑔(𝑤)=0
ord𝑔(𝑤) = ∑

𝑤∈Ω∶ 𝑓(𝑤)=0
ord𝑓(𝑤)

as required.

Example. 𝑧4 +6𝑧+ 3 has three roots counted with multiplicity in {1 < |𝑧| < 2}. Let 𝑓(𝑧) =
𝑧4 + 6𝑧 + 3.
On |𝑧| = 2 we have ||𝑧4|| = 16 and |6𝑧 + 3| ≤ 6|𝑧| + 3 = 15, so |𝑧|4 > |6𝑧 + 3|. By Rouché’s
theorem, 𝑓 has the same number of roots inside {|𝑧| < 2} as 𝑧4, counting with multiplicity.
Thus, all roots of 𝑧4+6𝑧+3 lie inside {|𝑧| < 2}; this is all of the roots since 𝑓 is a polynomial
with degree 4.

On |𝑧| = 1, we have |6𝑧| = 6 and ||𝑧4 + 3|| ≤ |𝑧|4 + 3 ≤ 4. Again by Rouché’s theorem, 𝑓 has
one root inside {|𝑧| < 1}, as 6𝑧 has one root in this region. From the strict inequalities, no
roots lie on {|𝑧| = 2} or {|𝑧| = 1}. Hence three roots of 𝑓 lie in |𝑧 ∈ ℂ∶ 1 < |𝑧| < 2|.
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X. Geometry

Lectured in Lent 2022 by Prof. I. Smith
This course serves as an introduction to themodern study of surfaces in geometry. A surface
is a topological space that locally looks like the plane. The notions of length and area on a
surface are governed bymathematical objects called the fundamental forms of the surface at
particular points. We can use integrals towork out exact lengths and areas. We study various
spaces, including spaces of constant curvature, such as the plane, spheres, and hyperbolic
space.
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X. Geometry

1. Surfaces
1.1. Basic definitions
Definition. A topological surface is a topological space Σ such that
(i) for all points 𝑝 ∈ Σ, there exists an open neighbourhood 𝑝 ∈ 𝑈 ⊂ Σ such that 𝑈 is

homeomorphic to ℝ2, or a disc 𝐷2 ⊂ ℝ2, with its usual Euclidean topology;

(ii) Σ is Hausdorff and second countable.
Remark. ℝ2 is homeomorphic to the open disc 𝐷(0, 1) = {𝑥 ∈ ℝ2∶ ‖𝑥‖ < 1}. Recall that a
space 𝑋 is Hausdorff if two points 𝑝 ≠ 𝑞 ∈ 𝑋 have open neighbourhoods 𝑈,𝑉 such that
𝑈 ∩𝑉 = ∅. A space 𝑋 is second countable if it has a countable base; there exists a countable
family of open sets 𝑈 𝑖, such that every open set is a union of some of the 𝑈 𝑖.

Note that subspaces ofHausdorff and second countable spaces are alsoHausdorff and second
countable. In particular, Euclidean space ℝ𝑛 is Hausdorff (as ℝ𝑛 is a metric space) and
second countable (consider the set of balls 𝐷(𝑝, 𝑞) for points 𝑝 with rational coordinates,
and rational radii 𝑞). Hence, any subspace of ℝ𝑛 is implicitly Hausdorff and second count-
able. These topological requirements are typically not the purpose of considering topological
spaces, but they are occasionally technical requirements to prove interesting theorems.

Example. ℝ2 is a topological surface. Any open subset of ℝ2 is also a topological surface.
For example, ℝ2 ∖ {0} and ℝ2 ∖ {(0, 0)} ∪ {(0, 1

𝑛
)∶ 𝑛 = 1, 2,… } are topological surfaces.

Example. Let 𝑓∶ ℝ2 → ℝ be a continuous function. The graph of 𝑓, denoted Γ𝑓, is defined
by

Γ𝑓 = {(𝑥, 𝑦, 𝑓(𝑥, 𝑦))∶ (𝑥, 𝑦) ∈ ℝ2}
with the subspace topology when embedded inℝ3. Recall that a product topology 𝑋 ×𝑌 has
the feature that 𝑓∶ 𝑍 → 𝑋×𝑌 is continuous if and only if𝜋𝑥 ∘𝑓∶ 𝑍 → 𝑋 and𝜋𝑦 ∘𝑓∶ 𝑍 → 𝑌
are continuous. Hence, any graph Γ ⊆ 𝑋 × 𝑌 is homeomorphic to 𝑋 if 𝑓 is continuous.
Indeed, the projection 𝜋𝑥 projects each point in the graph onto the domain. The function
𝑠∶ 𝑥 ↦ (𝑥, 𝑓(𝑥)) is continuous by the above. In particular, in our case, the graph Γ𝑓 is
homeomorphic to ℝ2, which we know is a surface.

Remark. As a topological surface, Γ𝑓 is independent of the function 𝑓. However, we will
later introduce more ways to describe topological spaces that will ascribe new properties to
Γ𝑓 which do depend on 𝑓.
Example. The sphere:

𝑆2 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3∶ 𝑥2 + 𝑦2 + 𝑧2 = 1}

is a topological surface, when using the subspace topology inℝ3. Consider the stereographic
projection of 𝑆2 onto ℝ2 from the north pole (0, 0, 1). The projection satisfies 𝜋+∶ 𝑆2 ∖
{(0, 0, 1)} and

(𝑥, 𝑦, 𝑧) ↦ ( 𝑥
1 − 𝑧,

𝑦
1 − 𝑧)
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Certainly, 𝜋+ is continuous, since we do not consider the point (0, 0, 1) to be in its domain.
The inverse map is given by

(𝑢, 𝑣) ↦ ( 2𝑢
𝑢2 + 𝑣2 + 1,

2𝑣
𝑢2 + 𝑣2 + 1,

𝑢2 + 𝑣2 − 1
𝑢2 + 𝑣2 + 1)

This is also a continuous function. Hence 𝜋+ is a homeomorphism. Similarly, we can con-
struct the stereographic projection from the south pole, 𝜋−. This is a homeomorphism.
Hence, every point in 𝑆2 lies either in the domain of 𝜋+ or 𝜋−, and hence sits in an open
set 𝑆2 ∖ {(0, 0, 1)} or 𝑆2 ∖ {(0, 0, −1)} which is homeomorphic to ℝ2.

Remark. 𝑆2 is compact by the Heine–Borel theorem; it is a closed bounded set in ℝ3.

Example. The real projective plane is a topological surface. The group ℤ/2 acts on 𝑆2 by
homeomorphisms via the antipodal map 𝑎∶ 𝑆2 → 𝑆2, mapping 𝑥 ↦ −𝑥. There exists a
homeomorphism ℤ/2 to the group Homeo(𝕊2) of homeomorphisms of 𝑆2, by mapping 1 +
ℤ ↦ 𝑎. We now define the real projective plane to be the quotient of 𝑆2 given by identifying
every point 𝑥 with its image −𝑥 under 𝑎.

ℝℙ2 = 𝑆2⟋ℤ/2 =
𝑆2⟋∼; 𝑥 ∼ 𝑎(𝑥)

Lemma. ℝℙ2 bijects with the set of straight lines in ℝ3 through the origin.

Proof. Any line through the origin intersects 𝑆2 exactly in a pair of antipodal points 𝑥,−𝑥.
Similarly, pairs of antipodal points uniquely define a line through the origin.

Lemma. ℝℙ2 is a topological surface.

Proof. Wemust check that ℝℙ2 is Hausdorff since it is constructed by a quotient, not a sub-
space. If 𝑋 is a space and 𝑞∶ 𝑋 → 𝑌 is a quotient map, then by definition 𝑉 ⊂ 𝑌 is open if
and only if 𝑞−1(𝑉) ⊂ 𝑋 is open. If [𝑝] ≠ [𝑞] ∈ ℝℙ2, then ±𝑝,±𝑞 ∈ 𝑆2 are distinct antipodal
pairs. We can therefore construct distinct open discs around 𝑝, 𝑞 in 𝑆2, and their antipodal
images. These uniquely define open neighbourhoods of [𝑝], [𝑞], which are disjoint.
Similarly, we can check thatℝℙ2 is second countable. We know that 𝑆2 is second countable,
so let𝒰 be a countable base for the topology on 𝑆2. Without loss of generality, we can assert
that for all sets 𝑈 ∈ 𝒰, we have −𝑈 ∈ 𝒰. Let 𝒰 be the family of open sets in ℝℙ2 of the
form 𝑞(𝑈) ∪ 𝑞(−𝑈) for 𝑈 ∈ 𝒰, where 𝑞 is the quotient map. Now, if 𝑉 ⊆ ℝℙ2 is open, then
by definition 𝑞−1(𝑉) is open in 𝑆2 hence 𝑞−1(𝑉) contains some 𝑈 ∈ 𝒰 and hence contains
𝑈 ∪ (−𝑈). Hence 𝒰 is a countable base for the quotient topology on ℝℙ2.
Finally, let 𝑝 ∈ 𝑆2 and [𝑝] ∈ ℝℙ2 its image. Let 𝐷 be a small (contained in an open hemi-
sphere) closed disc, which is a neighbourhood of 𝑝 ∈ 𝑆2. The quotient map restricted to 𝐷,
written 𝑞|𝐷 ∶ 𝐷 → 𝑞(𝐷) ⊂ ℝℙ2, is a continuous function from a compact space to a Haus-
dorff space. Further, 𝑞 is injective on 𝐷 since the disc was contained entirely in a single
hemisphere. The topological inverse function theorem states that a continuous bijection
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from a compact space to a Hausdorff space is a homeomorphism. So 𝑞|𝐷 is a homeomorph-
ism from 𝐷 to 𝑞(𝐷). This then induces the homeomorphism 𝑞|𝐷 from the open disc 𝐷 = 𝐷

∘

to 𝑞(𝐷). So by construction, [𝑝] ∈ 𝑞(𝐷); it has an open neighbourhood in ℝℙ2 which is
homeomorphic to an open disc, concluding the proof.

Example. Let 𝑆1 be the unit circle inℂ, and thenwe define the torus to be the product space
𝑆1 × 𝑆1, with the subspace topology from ℂ2 (which is identical to the product topology).

Lemma. The torus is a topological surface.

Proof. Consider the map 𝑒∶ ℝ2 → 𝑆1 × 𝑆1 defined by

(𝑠, 𝑡) ↦ (𝑒2𝜋𝑖𝑠, 𝑒2𝜋𝑖𝑡)

Note that this induces a map ̂𝑒 from ℝ2
⟋ℤ2, since 𝑒 is constant under translations by ℤ

2.

ℝ2 𝑆1 × 𝑆1

ℝ2
⟋ℤ2

𝑞

𝑒

̂𝑒

Under the quotient topology given by the quotient map 𝑞, ℝ
2
⟋ℤ2 is a topological space. The

map [0, 1]2 → ℝ2 → ℝ2
⟋ℤ2 is surjective, so

ℝ2
⟋ℤ2 is compact. So ̂𝑒 is a continuous map

from a compact space to a Hausdorff space, and ̂𝑒 is bijective, so ̂𝑒 is a homeomorphism. We
already have that 𝑆1 × 𝑆1 is compact and Hausdorff (as a closed and bounded set in ℂ2), so
it suffices to show it is locally homeomorphic to ℝ2. Let [𝑝] = 𝑞(𝑝) ∈ 𝑆1 × 𝑆1, then we can
choose a small disc 𝐷(𝑝) such that 𝐷(𝑝) ∩ (𝐷(𝑝) + (𝑛,𝑚)) = ∅ for nonzero (𝑛,𝑚) ∈ ℤ2.
Hence 𝑒|𝐷(𝑝) is injective and 𝑞|𝐷(𝑝) is injective. Now, restricting to the open disc as before,
we can find an open disc neighbourhood of [𝑝]. Since [𝑝] was chosen arbitrarily, 𝑆1 × 𝑆1 is
a topological surface.

Example. Let 𝑃 be a planar Euclidean polygon, with oriented edges. Wewill pair the edges,
and without loss of generality we will assume that paired edges have the same Euclidean
length.

𝑏−1

𝑎
𝑏
𝑎−1

𝑏

𝑎
𝑏
𝑎−1
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We can assign letter names to each edge pair, and denote a polygon by the sequence of edges
found when traversing in a clockwise orientation. The edge pair name is inverted if the edge
is traversed in the reverse direction. Note the difference between the annotations on the first
two shapes above, due to the reversed direction of the edge. If two edges 𝑒, ̂𝑒 are paired, this
defines a unique Euclidean isometry from 𝑒 to ̂𝑒 respecting the orientation, which will be
written 𝑓𝑒 ̂𝑒∶ 𝑒 → ̂𝑒. The set of all such functions generate an equivalence relation on the
polygon, identifying paired edges with each other.

Lemma. 𝑃⟋∼, with the quotient topology, is a topological surface.

Example. Consider the torus, defined here as 𝑇2 = [0, 1]2⟋∼. Let 𝑃 be the polygon [0, 1]2.
If 𝑝 is in the interior of 𝑃, then construct a sufficiently small disc that lies entirely within the
interior. The quotient map is injective on the closure of the disc and is a homeomorphism
on its interior.

Let 𝑝 be on an edge, but not a vertex. Let us say without loss of generality that 𝑝 = (0, 𝑦0) ∼
(1, 𝑦0). Let 𝛿 be sufficiently small that the closed half-discs 𝑈,𝑉 centred on 𝑝 with radius
𝛿 do not intersect any vertices. Then we define a map from the union of the two half-discs
to the disc 𝐵(0, 𝛿) ⊆ ℝ2 via (𝑥, 𝑦) ↦ (𝑥, 𝑦 − 𝑦0) or (𝑥, 𝑦) ↦ (𝑥 − 1, 𝑦 − 𝑦0), which will be a
bijective map. Recall the gluing lemma from Analysis and Topology: that if 𝑋 = 𝐴 ∪ 𝐵 is a
union of closed subspaces, and 𝑓∶ 𝐴 → 𝑌 , 𝑔∶ 𝐵 → 𝑌 are continuous and 𝑓|𝐴∩𝐵 = 𝑔|𝐴∩𝐵,
they define a continuous map on 𝑋 . Let 𝑓𝑈 , 𝑓𝑉 be the maps on the half-discs 𝑈,𝑉 . By the
definition of the quotient topology, 𝑞∘𝑓𝑈 and 𝑞∘𝑓𝑉 are also continuous. On the overlapping
area, the functions 𝑞 ∘ 𝑓𝑈 and 𝑞 ∘ 𝑓𝑉 agree. Hence, by the gluing lemma, we can construct a
function 𝑓∶ 𝑈 ∪ 𝑉 → 𝐵(0, 𝛿). We can show that this is a homeomorphism using the usual
process: pass to the closed disc, apply the topological inverse function theorem, then apply
the result to the interior. If [𝑝] ∈ 𝑇2 lies on the image of an edge in [0, 1]2, it has indeed a
neighbourhood homeomorphic to a disc.

Now it suffices to consider points 𝑝 on a vertex. All four vertices of the square are identified
to the same point in the torus. A neighbourhood of each vertex can be identified with a
quarter-disc in ℝ2. We can repeatedly apply the gluing lemma to construct the whole disc
𝐵(0, 𝛿) ⊆ ℝ2 and complete the argument as before.

Thus, [0, 1]
2
⟋∼ is a topological surface.

We can generalise this proof to an arbitrary planar Euclidean polygon 𝑃, such as the hexagon
above. The equivalence relation 𝑥 ∼ 𝑓𝑒 ̂𝑒(𝑥) induces an equivalence relation on the vertices
of 𝑃, by considering the images of the vertices under all 𝑓𝑒 ̂𝑒. However, it is not necessarily
the case that an equivalence class of vertices contains exactly four vertices, so quarter-discs
are not necessarily applicable. Again, there are three types of point:

• interior points, for which a neighbourhood not intersecting the boundary is chosen;

• points on edges, forwhich a corresponding point exists and two half-discs can be glued
to form the neighbourhood; and
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• points on vertices. For this case, all vertices of the polygon have a neighbourhood
which is a sector of a circle. Let there be 𝑟 vertices in a given equivalence class. Let 𝛼
be the sum of the angles of the sectors in a given class. Any sector can be identified
with a given sector in the disc 𝐵(0, 𝛿) ⊆ ℝ2, which we will choose to have angle 𝛼/𝑟.
Then, we can glue each sector together in ℝ2, compatibly with the orientations of the
edges and arrows, inducing a neighbourhoodwhich is locally homeomorphic to a disc.
If 𝑟 = 1, we have an equivalence class comprising a single vertex, which gives a single
sector. For 𝑟 to be one, the two edges attached to this vertex must be paired and have
the same direction (either both inwards or outwards from the vertex). This quotient
space is simply a cone, which is homeomorphic to a disc as required.

We can also show that the quotient space is Hausdorff and second countable. By construc-
tion, two distinct points in the quotient space can be separated by open neighbourhoods by
selecting a sufficiently small radius such that the discs considered in the derivation above
are disjoint. For second countability, consider

• discs in the interior of 𝑃 with rational centres and radii;

• for each edge of 𝑃, consider an isometry 𝑒 → [0, ℓ] where ℓ is the length of 𝑒, taking
discs on 𝑒 which are centred at rational values in [0, ℓ]; and

• for each vertex, consider discs centred at these vertices with rational radii.

Example. Given topological surfaces Σ1, Σ2 we can remove an open disc from each and
glue the resulting circles. Explicitly, we form a quotient relation on the disjoint union of the
surfaces with the discs removed. This process is known as forming the connect sum of the
surfaces, written Σ1 # Σ2. Typically, the information about where the discs were removed
from is discarded when considering the connect sum. The connect sum of two topological
surfaces is a topological surface.

Example. Consider the following octagon.

The associated quotient space 𝑃⟋∼ can be seen to be homeomorphic to a surface with two
holes, known as a double torus. All vertices are identified as the same vertex in the quotient
space. We can cut the octagon along a diagonal, leaving two topological surfaces which are
homeomorphic to a torus.

↦
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Thus, the connect sum of the two half-octagons are the connect sum of two toruses.

Example. Consider the following square.

This is homeomorphic to the real projective planeℝℙ2. This is becausewe identify points on
the boundary with their antipodes, when interpreting the square as the closed disc 𝐵(0, 1).
The real projective plane was constructed by identifying points on the unit sphere with their
antipodes. Thus, we can construct a homeomorphism by considering only points in the
upper hemisphere (taking antipodes as required), and then orthographically projecting onto
the 𝑥𝑦 plane. Under this transformation, points on the boundary are identified with their
antipodes as required.

1.2. Subdivisions

Definition. A subdivision of a compact topological surface Σ comprises

(i) a finite subset 𝑉 ⊆ Σ of vertices;

(ii) a finite subset 𝐸 = {𝑒𝑖 ∶ [0, 1] → Σ} which are continuous injections and pairwise dis-
joint except perhaps at the endpoints;

(iii) such that each connected component of the complement of 𝑉 ∪ 𝐸 in Σ is homeo-
morphic to an open disc, and each such component will be called a face. In particular,
the boundary of each face has boundary inside the union of the edges and the vertices.

We say that a subdivision is a triangulation if each closed face (closure of a face) contains
exactly three edges, and two closed faces meet either at exactly one edge or not at any edges.

Example. A cube displays a subdivision of 𝑆2. A tetrahedron displays a triangulation of 𝑆2.

Example. We can display subdivisions of surfaces constructed from polygons.

𝑏−1

𝑎
𝑏
𝑎−1

This is a subdivision of a torus with one edge, two edges, and one face. We can construct
additional subdivisions of a torus, for example:
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The first of these examples is not a triangulation, since the two faces meet in more than one
edge. The second is a triangulation.

Remark. The following is a very degenerate subdivision of 𝑆2.
•

This has one vertex, no edges, and one face.

1.3. Euler classification
Definition. The Euler characteristic of a subdivision is

#𝑉 − #𝐸 + #𝐹

Theorem. (i) Every compact topological surface has a subdivision (and indeed triangu-
lations).

(ii) The Euler characteristic is invariant under choice of subdivision, and is topologically
invariant.

Hence, we might say that a surface has a particular Euler characteristic, without referring
to subdivisions. We write this 𝜒(Σ).

No proof will be given.

Example. The Euler characteristic of 𝑆2 is 𝜒(𝑆2) = 2. For the torus, 𝜒(𝑇2) = 0. If Σ1, Σ2 are
compact surfaces, then the connect sum Σ1 # Σ2 can be constructed by removing a face of a
triangulation, then gluing together the boundary circles (three edges) in a way that matches
the edges. Then the connect sum inherits a subdivision, and we can find that it has Euler
characteristic 𝜒(Σ1 # Σ2) = 𝜒(Σ1) + 𝜒(Σ2) − 2, where the remaining term corresponds to
the two faces that were removed; the changes of three vertices and three edges cancel each
other. In particular, a surface Σ𝑔 with 𝑔 holes can be written#𝑔

𝑖=1𝑇2, so 𝜒(Σ𝑔) = 2−2𝑔. We
call 𝑔 the genus of Σ.

Remark. It is not trivial to prove part (i). For part (ii), note that subdivisions can be converted
into triangulations by constructing triangle fans.
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Triangulations can be related by local moves, such as

It is easy to check that both of these moves do not change the Euler characteristic. However,
it is hard to make this argument rigorous, and it does not give much explanation for why
the result is true. In Part II Algebraic Topology, a more advanced definition of the Euler
characteristic is given, which admits a more elegant proof.
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2. Smooth surfaces
2.1. Charts and atlases
Recall that if Σ is a topological surface, any point lies in an open neighbourhood homeo-
morphic to a disc.

Definition. A pair (𝑈, 𝜑), where𝑈 is an open set in Σ and 𝜑∶ 𝑈 → 𝑉 is a homeomorphism
to an open set 𝑉 ⊆ ℝ2, is called a chart for Σ. If 𝑝 ∈ 𝑈 , we might say that (𝑈, 𝜑) is a chart for
Σ at 𝑝. A collection of charts whose domains cover Σ is known as an atlas for Σ. The inverse
𝜎 = 𝜑−1∶ 𝑉 → 𝑈 is known as a local parametrisation for the surface.

Example. If 𝑍 ⊆ ℝ2 is closed, ℝ2 ∖ 𝑍 is a topological surface with an atlas containing one
chart, (ℝ2 ∖ 𝑍, 𝜙 = id).
For 𝑆2, there is an atlas with two charts, which are the two stereographic projections from
the poles. We could consider alternative charts, for instance the projection to the 𝑦𝑧 plane,
but this would be insufficient for describing the poles.

Definition. Let (𝑈 𝑖, 𝜑𝑖) be charts containing the point 𝑝 ∈ Σ, for 𝑖 = 1, 2. Then the map

∗∶ 𝜑1(𝑈1 ∩ 𝑈2) → 𝜑2(𝑈1 ∩ 𝑈2); ∗ = 𝜑2 ∘ 𝜑−11
|||𝜑1(𝑈1∩𝑈2)

converts between the corresponding charts, and is called a transition map. This is a homeo-
morphism of open sets in ℝ2.

Recall fromAnalysis and Topology that if 𝑉 ⊆ ℝ𝑛 and 𝑉 ′ ⊆ ℝ𝑚 are open, then a continuous
map 𝑓∶ 𝑉 → 𝑉 ′ is called smooth if it is infinitely differentiable. Equivalently, it is smooth if
partial derivatives of all orders in all variables exist at all points. If 𝑛 = 𝑚, then in particular
the homeomorphism 𝑓∶ 𝑉 → 𝑉 ′ is called a diffeomorphism if it is smooth and has smooth
inverse.

Definition. An abstract smooth surface is a topological space Σ together with an atlas of
charts (𝑈 𝑖, 𝜑𝑖) such that all transition maps 𝜑𝑖 ∘ 𝜑−1𝑗 ∶ 𝜑𝑗(𝑈 𝑖 ∩ 𝑈𝑗) → 𝜑𝑖(𝑈 𝑖 ∩ 𝑈𝑗) are
diffeomorphisms.

Remark. Wecould not simply consider a smoothness condition forΣ itself without appealing
to atlases, since Σ is an arbitrary topological space and could have almost any topology.
Example. The atlas of two charts with stereographic projections gives 𝑆2 the structure of
an abstract smooth surface.

Example. For the torus𝑇2 = ℝ2
⟋ℤ2, we can find charts of all points by choosing sufficiently

small discs in ℝ2 such that they do not intersect any of their non-trivial integer translates.
The transition maps for this atlas are all translations of ℝ2. Hence 𝑇2 inherits the structure
of an abstract smooth surface. Explicitly, let us define 𝑒∶ ℝ2 → 𝑇2 by (𝑡, 𝑠) ↦ (𝑒2𝜋𝑖𝑡, 𝑒2𝜋𝑖𝑠),
then consider the atlas

{(𝑒(𝐷𝜀(𝑥, 𝑦)), 𝑒−1 on this image)}
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for 𝜀 < 1
3
. These are charts on 𝑇2, and the transition maps are (restricted to appropriate

domains) translations inℝ2. Hence 𝑇2, via this atlas, has the structure of an abstract smooth
surface.

Remark. The definition of a topological surface is a notion of structure. One can observe
a topological space and determine whether it is a topological surface. Conversely, to be an
abstract smooth surface is to have a specific set of data; that is, we must provide charts for
the surface in order to see that it is indeed an abstract smooth surface.

Definition. Let Σ be an abstract smooth surface, and 𝑓∶ Σ → ℝ𝑛 be a continuous map. We
say that 𝑓 is smooth at 𝑝 ∈ Σ if, for all charts (𝑈, 𝜑) of 𝑝 belonging to the smooth atlas for Σ,
the map

𝑓 ∘ 𝜑−1∶ 𝜑(𝑈) → ℝ𝑛

is smooth at 𝜑(𝑝) ∈ ℝ2.

Remark. Note that the choice of chart and atlas was arbitrary, but smoothness of 𝑓 at 𝑝 is
independent of the choice of chart, since the transition maps between two such charts are
diffeomorphisms.

Definition. Let Σ1, Σ2 be abstract smooth surfaces. Then a map 𝑓∶ Σ1 → Σ2 is smooth if
it is ‘smooth in the local charts’. Given a chart (𝑈, 𝜑) at 𝑝 and a chart (𝑈 ′, 𝜓) at 𝑓(𝑝), both
mapping to open subsets ofℝ2, the map 𝜓∘𝑓 ∘𝜑−1 is smooth at 𝜑(𝑝). Smoothness of 𝑓 does
not depend on the choice of chart, provided that the charts all belong to the same atlas.

Definition. Two surfacesΣ1, Σ2 arediffeomorphic if there exists a homeomorphism𝑓∶ Σ1 →
Σ2 which is smooth and has smooth inverse.
Remark. Often, we convert from a given smooth atlas for an abstract smooth surface Σ to
the maximal compatible smooth atlas. That is, we consider the atlas with the maximal pos-
sible set of charts, all of which have transition maps that are diffeomorphisms. This can be
accomplished formally by use of Zorn’s lemma.
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3. Smooth surfaces in ℝ3

3.1. Definitions and equivalent characterisations
Recall that if 𝑉 ⊆ ℝ𝑛 and 𝑉 ′ ⊆ ℝ𝑚, then 𝑓∶ 𝑉 → 𝑉 ′ is smooth if it is infinitely differenti-
able.

Definition. If 𝑍 is an arbitrary subset ofℝ𝑛, we say that a continuous function 𝑓∶ 𝑍 → ℝ𝑚

is smooth at 𝑝 ∈ 𝑍 if there exists an open ball 𝑝 ∈ 𝐵 ⊆ ℝ𝑛 and a smooth map 𝐹 ∶ 𝐵 → ℝ𝑚

which extends 𝑓 such that they agree on 𝐵 ∩𝑍. In other words, 𝑓 is locally the restriction of
a smooth map defined on an open set.

Definition. Let 𝑋 ⊆ ℝ𝑛 and 𝑌 ⊆ ℝ𝑚. We say that 𝑋 and 𝑌 are diffeomorphic if there exists
a continuous function 𝑓∶ 𝑋 → 𝑌 such that 𝑓 is a smooth homeomorphism with smooth
inverse.

Definition. A smooth surface inℝ3 is a subspace of ℝ3 such that for all points 𝑝 ∈ Σ, there
exists an open subset 𝑝 ∈ 𝑈 ⊆ Σ that is diffeomorphic to an open set in ℝ2. In other words,
for all 𝑝 ∈ Σ, there exists an open ball 𝑝 ∈ 𝐵 ⊆ ℝ3 such that if 𝑈 = 𝐵 ∩ Σ and there exists
a map 𝑓∶ 𝐵 → 𝑉 ⊆ ℝ2 such that 𝑓|𝑈 ∶ 𝑈 → 𝑉 is a homeomorphism, and the inverse map
𝑉 → 𝑈 ⊆ Σ ⊆ ℝ3 is smooth.

Definition. Let 𝜎∶ 𝑉 → 𝑈 where 𝑉 ⊆ ℝ2 is open and 𝑈 ⊆ Σ ⊆ ℝ3 is open in Σ, such
that 𝜎 is a smooth homeomorphism and 𝐷 𝜎|𝑥 has rank 2 for all 𝑥 ∈ 𝑉 . Then 𝜎 is called an
allowable parametrisation. If 𝜎(0) = 𝑝, we say that 𝜎 is an allowable parametrisation near
𝑝.
Theorem. For a subset Σ ⊆ ℝ3, the following are equivalent.

(a) Σ is a smooth surface in ℝ3;

(b) Σ is locally the graph of a smooth function, over one of the three coordinate planes:
for all 𝑝 ∈ Σ there exists an open ball 𝑝 ∈ 𝐵 ⊆ ℝ3 and an open set 𝑉 ⊆ ℝ2 such that

Σ ∩ 𝐵 = {(𝑥, 𝑦, 𝑔(𝑥, 𝑦))∶ 𝑔∶ 𝑉 → ℝ smooth}

or one of the other coordinate planes;

(c) Σ is locally cut out by a smooth function: for all 𝑝 ∈ Σ there exists an open ball 𝑝 ∈
𝐵 ⊆ ℝ3 and a smooth function 𝑓∶ 𝐵 → ℝ such that

Σ ∩ 𝐵 = 𝑓−1(0); 𝐷 𝑓|||𝑥
≠ 0

for all 𝑥 ∈ 𝐵;
(d) Σ is locally the image of an allowable parametrisation near all points.

Remark. Part (b) implies that if Σ is a smooth surface in ℝ3, each 𝑝 ∈ Σ belongs to a
chart (𝑈, 𝜑) where 𝜑 is (the restriction of) one of the three coordinate plane projections
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𝜋𝑥𝑦, 𝜋𝑦𝑧, 𝜋𝑥𝑧 from ℝ3 to ℝ2. Consider the transition map between two such charts. If the
two charts are based on the same projection such as 𝜋𝑥𝑦, then the transition map is the
identity. If they are based on different projections 𝜋𝑥𝑦 and 𝜋𝑦𝑧, then the transition map is

(𝑥, 𝑦) ↦ (𝑥, 𝑦, 𝑔(𝑥, 𝑦)) ↦ (𝑦, 𝑔(𝑥, 𝑦))

which has inverse
(𝑦, 𝑧) ↦ (ℎ(𝑦, 𝑧), 𝑦, 𝑧) ↦ (ℎ(𝑦, 𝑧), 𝑦)

Hence all of the transitionmaps between such charts involve projectionmaps and the smooth
maps involved in defining Σ as a graph. This gives Σ the structure of an abstract smooth sur-
face.

Some of the relations given in the above theorem are easy to prove, but others come as a
result of the inverse function theorem.

3.2. Inverse and implicit function theorems
Theorem (inverse function theorem). Let 𝑈 ⊆ ℝ𝑛 be open, and 𝑓∶ 𝑈 → ℝ𝑛 be continu-
ously differentiable. Let 𝑝 ∈ 𝑈 and 𝑓(𝑝) = 𝑞. Suppose 𝐷 𝑓|𝑝 is invertible. Then there is an
open neighbourhood 𝑉 of 𝑞 and a differentiable map 𝑔∶ 𝑉 → ℝ𝑛 and 𝑔(𝑞) = 𝑝 with image
an open neighbourhood 𝑈 ′ ⊆ 𝑈 of 𝑝 such that 𝑓 ∘ 𝑔 = id𝑉 . If 𝑓 is smooth, then 𝑔 is also.

Remark. The chain rule then implies that 𝐷 𝑔|𝑞 = (𝐷 𝑓|𝑝)
−1
. The inverse function theorem

concerns functions ℝ𝑛 → ℝ𝑛, where 𝐷 𝑓|𝑝 is an isomorphism. If we have a map ℝ𝑛 → ℝ𝑚

for 𝑛 > 𝑚, then we can discuss the behaviour when𝐷 𝑓|𝑝 is surjective. The derivative𝐷 𝑓|𝑝
is an 𝑛 × 𝑚matrix, so if it has full rank, up to the permutation of coordinates we have that
the last𝑚 columns are linearly independent.

Theorem (implicit function theorem). Let 𝑝 = (𝑥0, 𝑦0) be a point in an open set 𝑈 ⊂
ℝ𝑘 × ℝℓ. Let 𝑓∶ 𝑈 → ℝℓ such that 𝑝 ↦ 0 and (𝜕𝑓𝑖

𝜕𝑦𝑗
)
ℓ×ℓ

is an isomorphism. Then there is

an open neighbourhood 𝑉 of 𝑥0 in ℝ𝑘 and a continuously differentiable map 𝑔∶ 𝑉 → ℝℓ

with 𝑥0 ↦ 𝑦0 such that if (𝑥, 𝑦) ∈ 𝑈 ∩ (𝑉 × ℝℓ), then 𝑓(𝑥, 𝑦) = 0 ⟺ 𝑦 = 𝑔(𝑥). If 𝑓 is
smooth, so is 𝑔.

Proof. Let 𝐹 ∶ 𝑈 → ℝ𝑘 × ℝℓ be defined by (𝑥, 𝑦) ↦ (𝑥, 𝑓(𝑥, 𝑦)). Then note that

𝐷𝐹 = (
𝐼 ∗
0 𝜕𝑓𝑖

𝜕𝑦𝑗
)

hence 𝐷𝐹 is an isomorphism at (𝑥0, 𝑦0). By the inverse function theorem, 𝐹 is locally invert-
ible near 𝐹(𝑥0, 𝑦0) = (𝑥0, 𝑓(𝑥0, 𝑦0)) = (𝑥0, 0). Consider an open neighbourhood 𝑉 × 𝑉 ′ ⊆
ℝ𝑘×ℝℓ on which this continuously differentiable inverse𝐺∶ 𝑉 ×𝑉 ′ → 𝑈 ′ ⊆ 𝑈 ⊆ ℝ𝑘×ℝℓ

exists, such that 𝐹 ∘ 𝐺 = id𝑉×𝑉 ′ . Then,

𝐺(𝑥, 𝑦) = (𝜑(𝑥, 𝑦), 𝜓(𝑥, 𝑦)) ⟹ 𝐹 ∘ 𝐺(𝑥, 𝑦) = (𝜑(𝑥, 𝑦), 𝑓(𝜑(𝑥, 𝑦), 𝜓(𝑥, 𝑦))) = (𝑥, 𝑦)
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Hence 𝜑(𝑥, 𝑦) = 𝑥. We have 𝑓(𝑥, 𝜓(𝑥, 𝑦)) = 𝑦 when (𝑥, 𝑦) ∈ 𝑉 × 𝑉 ′. This gives 𝑓(𝑥, 𝑦) =
0 ⟺ 𝑦 = 𝜓(𝑥, 0). We then define 𝑔∶ 𝑉 → ℝℓ by 𝑥 ↦ 𝜓(𝑥, 0).

Example. Let 𝑓∶ ℝ2 → ℝ be smooth and 𝑓(𝑥0, 𝑦0) = 0, and suppose 𝜕𝑓
𝜕𝑦

≠ 0 at (𝑥0, 𝑦0).
Then there exists a smooth map 𝑔∶ (𝑥0 − 𝜀, 𝑥0 + 𝜀) → ℝ with 𝑔(𝑥0) = 𝑦0 and 𝑓(𝑥, 𝑦) =
0 ⟺ 𝑦 = 𝑔(𝑥) for (𝑥, 𝑦) in some open neighbourhood of (𝑥0, 𝑦0). Since 𝑓(𝑥, 𝑔(𝑥)) = 0 in
this open neighbourhood, we can differentiate that expression to find

𝑔′(𝑥) = −𝑓𝑥
𝑓𝑦

noting that 𝑓𝑦 ≠ 0 in some neighbourhood near (𝑥0, 𝑦0). Note that the level set 𝑓(𝑥, 𝑦) = 0
is implicitly defined by 𝑔, which is a function for which we have an integral expression.

Example. Let 𝑓∶ ℝ3 → ℝ be a smooth map with 𝑓(𝑥0, 𝑦0, 𝑧0) = 0. Consider the level set
Σ = 𝑓−1(0), assuming that 𝐷𝑓 ≠ 0 at (𝑥0, 𝑦0, 𝑧0). Permuting coordinates if necessary, we
can assume 𝜕𝑓

𝜕𝑧
≠ 0 at this point. Then there exists an open neighbourhood 𝑉 of (𝑥0, 𝑦0) and

a smooth function 𝑔∶ 𝑉 → ℝ such that (𝑥0, 𝑦0) ↦ 𝑧0 with the property that for an open
set (𝑥0, 𝑦0, 𝑧0) ∈ 𝑈 , the set 𝑓−1(0) ∩ 𝑈 = Σ ∩ 𝑈 is the graph of the function 𝑔, which is
{(𝑥, 𝑦, 𝑔(𝑥, 𝑦))∶ (𝑥, 𝑦) ∈ 𝑉}.

3.3. Conditions for smoothness
We now prove the theorem stated above, relating equivalent conditions for smoothness of a
surface Σ.

Proof. First, we show that (b) implies all of the other conditions. If Σ is locally a graph
{(𝑥, 𝑦, 𝑔(𝑥, 𝑦))}, we find a chart from the coordinate plane projection 𝜋𝑥𝑦 of that graph. Since
this projection is smooth and defined on an open neighbourhood of points of Σ in its do-
mains, this shows that Σ is a smooth surface in ℝ3 (a). Further, since Σ is locally the given
graph, it is cut out by the function 𝑓(𝑥, 𝑦, 𝑧) = 𝑧 − 𝑔(𝑥, 𝑦) and 𝜕𝑓

𝜕𝑧
≠ 0 (c). Finally, the local

parametrisation 𝜎(𝑥, 𝑦) = (𝑥, 𝑦, 𝑔(𝑥, 𝑦)) is allowable; 𝑔 is smooth, the partial derivatives of 𝜎
are linearly independent by considering the 𝑥 and 𝑦 components, and 𝜎 is injective where
required (d).

Now, we show (a) implies (d). This is simply part of the definition of being a smooth surface
in ℝ3, being locally diffeomorphic to ℝ2. In particular, at 𝑝 ∈ Σ, Σ is locally diffeomorphic
to ℝ2 and the inverse of such a local diffeomorphism is an allowable parametrisation.

We have already shown (c) implies (b); this was the example of the implicit function theorem
provided above.

Finally, we must prove (d) implies (a) and (b), and then the result will hold. Let 𝑝 ∈ Σ
and 𝑉 be an open set in ℝ2 with an allowable parametrisation to Σ such that 𝜎(0) = 𝑝. If
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𝜎 = (𝜎1(𝑢, 𝑣), 𝜎2(𝑢, 𝑣), 𝜎3(𝑢, 𝑣)), we have

𝐷𝜎 =
⎛
⎜
⎜
⎝

𝜕𝜎1
𝜕𝑢

𝜕𝜎1
𝜕𝑣𝜕𝜎2

𝜕𝑢
𝜕𝜎2
𝜕𝑣𝜕𝜎3

𝜕𝑢
𝜕𝜎3
𝜕𝑣

⎞
⎟
⎟
⎠

This has rank 2, hence there exist two rows defining an invertible matrix. Suppose those are
the first two rows, and let pr = 𝜋𝑥𝑦 be the projection map. Consider pr ∘ 𝜎∶ 𝑉 → ℝ2. This
has isomorphic derivative at zero, so we can apply the inverse function theorem. Hence Σ
is locally a graph over the 𝑥𝑦 coordinate plane, so (b) holds. Moreover, let 𝜑 = pr ∘ 𝜎, and
consider the open ball 𝐵(𝑝, 𝛿) ⊆ ℝ3 and a map such that (𝑥, 𝑦, 𝑧) ↦ 𝜑−1(𝑥, 𝑦) in this ball.
Here, 𝜑∶ 𝑊 → Σwhere𝑊 is an open set in pr(𝐵(𝑝, 𝛿)). This is a locally definedmap, which
is smooth on an open set inℝ3, which is a smooth inverse to 𝜎. Hence Σ is a smooth surface
in ℝ3, so (a) holds.

Example. The unit sphere 𝑆2 inℝ3 is 𝑓−1(0) for 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2+𝑦2+𝑧2−1. For any point
on 𝑆2, 𝐷𝑓 ≠ 0, so 𝑆2 is a smooth surface.
Example. Let 𝛾∶ [𝑎, 𝑏] → ℝ3 be a smooth map with image in the 𝑥𝑧 plane, so

𝛾(𝑡) = (𝑓(𝑡), 0, 𝑔(𝑡))

such that 𝛾 is injective, 𝛾′ ≠ 0, and 𝑓 > 0. The surface of revolution of 𝛾 has allowable
parametrisation

𝜎(𝑢, 𝑣) = (𝑓(𝑢) cos 𝑣, 𝑓(𝑢) sin 𝑣, 𝑔(𝑢))
where (𝑢, 𝑣) ∈ (𝑎, 𝑏) × (𝜃, 𝜃 + 2𝜋) for a fixed 𝜃. Note that 𝜎𝑢 = (𝑓𝑢 cos 𝑣, 𝑓𝑢 sin 𝑣, 𝑔𝑢) and
𝜎𝑣 = (−𝑓 sin 𝑣, 𝑓 cos 𝑣, 0), and we can check ‖𝜎𝑢 × 𝜎𝑣‖ = 𝑓2((𝑓′)2 + (𝑔′)2) which is nonzero
on 𝛾, so this really is an allowable parametrisation.
Example. The orthogonal group𝑂(3) acts on 𝑆2 by diffeomorphisms. Indeed, any𝐴 ∈ 𝑂(3)
defines a linear (hence smooth) map ℝ3 → ℝ3 preserving 𝑆2. Hence, the induced map
on 𝑆2 is by a homeomorphism which is smooth according to the above definition. This is
analogous to the action of the Möbius group on 𝑆2 = ℂ ∪ {∞}.

3.4. Orientability
Definition. Let 𝑉, 𝑉 ′ be open sets in ℝ2. Let 𝑓∶ 𝑉 → 𝑉 ′ be a diffeomorphism. Then
at every point 𝑥 ∈ 𝑉 , 𝐷 𝑓|𝑥 ∈ 𝐺𝐿(2, ℝ); it is invertible since 𝑓 is a diffeomorphism. Let
𝐺𝐿+(2, ℝ) be the subgroupofmatriceswith positive determinant. We say that𝑓 is orientation-
preserving if its derivative belongs to this subgroup for all points 𝑥 ∈ 𝑉 .
Definition. An abstract smooth surface Σ is orientable if it admits an atlas {(𝑈 𝑖, 𝜑𝑖)}where
the transitionmaps are all orientation-preserving. A choice of such an atlas is an orientation
of Σ; Σ can be called oriented when such an orientation is given.
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Remark. An orientable atlas belongs to a maximal compatible oriented smooth atlas.

Lemma. If Σ1 and Σ2 are diffeomorphic abstract smooth surfaces, then Σ1 is orientable if
and only if Σ2 is orientable.

Proof. Let 𝑓∶ Σ1 → Σ2 be a diffeomorphism. Suppose Σ2 is orientable and equippedwith an
oriented smooth atlas. Consider the atlas on Σ1 of charts of the form (𝑓−1(𝑈), 𝜙 ∘ 𝑓|𝑓−1(𝑈)),
where (𝑈, 𝜓) is a chart at 𝑓(𝑝) in the oriented atlas for Σ2. Then, the transitionmap between
two such charts is exactly a transition map between charts in the Σ2 atlas.

In other words, in the maximal smooth atlas that exists a priori for Σ1, we will allow charts
of the form (𝑈, 𝜓) when for all charts (𝑈, 𝜓) at 𝑓(𝑝) in the Σ2 atlas, the map 𝜓 ∘ 𝑓 ∘ (𝜓)−1 is
orientation-preserving. Informally, if the atlas on Σ2 was maximal as an oriented atlas, we
can recover the previous set of charts.

Remark. There is no sensible classification of the set of all smooth surfaces. For instance,
ℝ2∖𝑍 for a closed set 𝑍 can be shown to yield uncountablymany types of homeomorphisms.
However, compact smooth surfaces may be classified by their Euler characteristic and their
orientability, up to diffeomorphism. This theorem will not be proven in this course.

There is a definition of orientation-preserving homeomorphism that does not rely on the
determinant, but that instead relies on some algebraic topology which is not covered in this
course. The Möbius band is the surface

where the dashed lines represent the absence of edges. It is provable that an abstract smooth
surface is orientable if and only if it contains no subsurface homeomorphic to the Möbius
band. We can therefore say that a topological surface is orientable if and only if it contains
no subsurface (an open set) homeomorphic to a Möbius band.

We can define other structures on an abstract smooth surface by considering smooth atlases
such that if 𝜑1𝜑−12 is a transitionmap, then𝐷(𝜑1𝜑−12 ) at 𝑥 belongs to a specific subgroup𝐺 ≤
𝐺𝐿(2, ℝ). For example, defining 𝐺 = {𝑒} leads to Euclidean surfaces. The group 𝐺𝐿(1, ℂ)
identified as a subgroup of 𝐺𝐿(2, ℝ) yields the Riemann surfaces.

Example. For 𝑆2 with the atlas of two stereographic projections, we can find the transition
map to be

(𝑢, 𝑣) ↦ ( 𝑢
𝑢2 + 𝑣2 ,

𝑣
𝑢2 + 𝑣2 )

on ℝ2 ∖ {0}. This has positive determinant, so 𝑆2 is orientable.

For the torus 𝑇2, we previously found an atlas such that the transition maps are translations
of ℝ2. Hence the torus is an oriented surface, and also a Euclidean surface.
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3.5. Tangent planes
Recall that an affine subspace of a vector space is a translate of a linear subspace.

Definition. Let Σ be a smooth surface in ℝ3, and 𝑝 ∈ Σ. Let 𝜎∶ 𝑉 → 𝑈 ⊆ Σ be an
allowable parametrisation of Σ near 𝑝, so 𝑉 is an open subset ofℝ2 and𝑈 is open in Σ, such
that 𝜎(0) = 𝑝. The tangent plane 𝑇𝑝Σ to 𝑝 at Σ is the image of (𝐷 𝜎|0) ⊆ ℝ3, which is a two-
dimensional vector subspace of ℝ3. The affine tangent plane is 𝑝 + 𝑇𝑝Σ, which is an affine
subspace of ℝ3.

Remark. The affine tangent plane is the ‘best’ linear approximation to a surface Σ at a given
point.

Lemma. 𝑇𝑝Σ is independent of the choice of allowable parametrisation.

Proof (i). Suppose 𝜎∶ 𝑉 → 𝑈 and �̃�∶ 𝑉 → 𝑈 are allowable parametrisations with 𝜎(0) =
�̃�(0) = 𝑝. There exists a transition map 𝜎−1 ∘ �̃�, which is a diffeomorphism of open sets in
ℝ2. Therefore,

�̃� = 𝜎 ∘ (𝜎−1 ∘ �̃�)⏟⎵⏟⎵⏟
diffeomorphism

Hence 𝐷 (𝜎−1 ∘ �̃�)||0 is an isomorphism. Thus, the images of 𝐷 �̃�|0 and 𝐷 𝜎|0 agree.

Proof (ii). Let 𝛾∶ (−𝜀, 𝜀) → ℝ3 be a smoothmap such that 𝛾has image insideΣ, and 𝛾(0) = 𝑝.
We will show that 𝛾′(0) ∈ 𝑇𝑝Σ. If 𝜎∶ 𝑉 → 𝑈 is an allowable parametrisation with 𝜎(0) = 𝑝
as above, and 𝜀 is sufficiently small such that Im 𝛾 ⊆ 𝑈 , then 𝛾(𝑡) = 𝜎(𝑢(𝑡), 𝑣(𝑡)) for some
smooth functions 𝑢, 𝑣∶ (−𝜀, 𝜀) → 𝑉 . Then 𝛾′(𝑡) = 𝜎𝑢𝑢′(𝑡) + 𝜎𝑣𝑣′(𝑡) is in the image of 𝐷 𝜎|𝑡.
Thus, 𝑇𝑝Σ = span {𝛾′(0)∶ 𝛾 as above}.

Definition. IfΣ is a smooth surface inℝ3 and 𝑝 ∈ Σ, the normal direction toΣ at 𝑝 is (𝑇𝑝Σ)⟂,
the Euclidean orthogonal complement to the tangent plane at 𝑝.

Remark. For all 𝑝 ∈ Σ, there exist exactly two normalised normal vectors.

Definition. A smooth surface in ℝ3 is two-sided if it admits a continuous global choice of
unit normal vector.

Lemma. A smooth surface inℝ3 is orientable (as an abstract smooth surface) if and only if
it is two-sided (as a smooth surface in ℝ3).

Proof. Let 𝜎∶ 𝑉 → 𝑈 ⊆ Σ be an allowable parametrisation. Let 𝜎(0) = 𝑝. We will define
the positive unit normal with respect to 𝜎 at 𝑝 to be the normal vector 𝑛𝜎(𝑝) with the prop-
erty that {𝜎𝑢, 𝜎𝑣, 𝑛𝜎(𝑝)} and {𝑒1, 𝑒2, 𝑒3} are related by a positive determinant change of basis
matrix, where {𝑒1, 𝑒2, 𝑒3} are the standard basis vectors. In other words,

𝑛𝜎(𝑝) =
𝜎𝑢 × 𝜎𝑣
‖𝜎𝑢 × 𝜎𝑣‖
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Consider an alternative parametrisation �̃�∶ 𝑉 → 𝑈 , where �̃�(0) = 𝑝, such that �̃� belongs to
the same oriented and smooth atlas as 𝜎. Hence, 𝜎 = �̃� ∘ 𝜑 for some transition map 𝜑. Let

𝐷 𝜑|||0
= (𝛼 𝛽

𝛾 𝛿)

Hence,
𝜎𝑢 = 𝛼�̃�𝑢 + 𝛾�̃�𝑣; 𝜎𝑣 = 𝛽�̃�𝑢 + 𝛿�̃�𝑣

This gives

𝜎𝑢 × 𝜎𝑣 = det (𝐷 𝜑|||0
)�̃�𝑢 × �̃�𝑣 (†)

The determinant here is positive since the charts in question belong to an oriented atlas.
Thus, the positive normal depends on the orientation ofΣ, but does not depend on the choice
of parametrisation. The expression for 𝑛𝜎(𝑝) is continuous since the cross product is con-
tinuous, hence Σ is two-sided.
Conversely, if Σ is two-sided and there exists a global continuous choice of normal vector,
we can consider the subatlas of the natural smooth atlas with the property that we allow
(𝑈, 𝜑) if the associated parametrisation 𝜎 = 𝜑−1 satisfies {𝜎𝑢, 𝜎𝑣, 𝑛} is a positive basis for ℝ3,
where 𝑛 is the given choice of normal. By (†), the transition maps between such charts are
orientation-preserving. Hence Σ is orientable.

Lemma. If Σ is a smooth surface in ℝ3 and 𝐴∶ ℝ3 → ℝ3 is a smooth map which preserves
Σ setwise, then 𝐷 𝐴|𝑝 ∈ 𝐿(ℝ3, ℝ3)maps 𝑇𝑝Σ to 𝑇𝐴(𝑝)Σ for 𝑝 ∈ Σ.

Proof. Let 𝛾∶ (−𝜀, 𝜀) → ℝ3 be a smooth map such that its image lies on Σ, and 𝛾(0) = 𝑝.
Recall that 𝑇𝑝Σ is spanned by 𝛾′(0) for such curves 𝛾. Now, consider 𝐴 ∘ 𝛾∶ (−𝜀, 𝜀) → ℝ3,
which also has image Σ, and

𝐷 𝐴|||𝛾(0)
∘ 𝐷 𝛾|||0

= 𝐷 𝐴|||𝑝
(𝛾′(0)) = 𝐷 (𝐴 ∘ 𝛾)|||0

∈ 𝑇𝐴(𝑝)Σ

Example. Let 𝑆2 be the unit sphere. The normal vector at 𝑝 is the line through the origin
and 𝑝; indeed, since 𝑆𝑂3 acts transitively on 𝑆2, it suffices to check at one point, such as the
north pole. We can choose the outward-facing normal vector to be the positive normal, de-
noted 𝑛(𝑝). 𝑆2 is two-sided by the construction of this normal vector, hence 𝑆2 is orientable.
Example. One embedding of the Möbius band in ℝ3 is

𝜎(𝑡, 𝜃) = ((1 − 𝑡 sin 𝜃2) cos 𝜃, (1 − 𝑡 sin 𝜃2) sin 𝜃, 𝑡 cos
𝜃
2)

where (𝑡, 𝜃) ∈ 𝑉1 = {𝑡 ∈ (− 1
2
, 1
2
), 𝜃 ∈ (0, 2𝜋)} or (𝑡, 𝜃) ∈ 𝑉2 = {𝑡 ∈ (− 1

2
, 1
2
), 𝜃 ∈ (−𝜋, 𝜋)}.

We begin with the unit circle 𝑥2 + 𝑦2 = 1, for 𝑡 = 0. Then, at each point on the circle, we
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consider an open interval of unit length, which will rotate as we move around the circle,
such that at the point 𝜃 on the circle it has rotated by 𝜃

2
. We can check that if 𝜎𝑖 is 𝜎 on 𝑉 𝑖,

then 𝜎𝑖 is allowable. Further,

𝜎𝑡 × 𝜎𝜃 = (− cos 𝜃 cos 𝜃2 , − sin 𝜃 cos
𝜃
2 , − sin

𝜃
2) ≡ 𝑛𝜃

which is already normalised. As 𝜃 → 0 from above, 𝑛𝜃 → (−1, 0, 0). As 𝜃 → 2𝜋 from below,
𝑛𝜃 → (1, 0, 0). Hence, the surface is not two-sided.
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4. Geometry of surfaces in ℝ3

4.1. First fundamental form
Let 𝛾∶ (𝑎, 𝑏) → ℝ3 be smooth. The length of 𝛾 is

𝐿(𝛾) = ∫
𝑏

𝑎
‖𝛾′(𝑡)‖ d𝑡

This result is independent of the choice of parametrisation. Let 𝑠∶ (𝐴, 𝐵) → (𝑎, 𝑏) be a
monotonically increasing function, and let 𝜏(𝑡) = 𝛾(𝑠(𝑡)). Then

𝐿(𝜏) = ∫
𝐵

𝐴
‖𝜏′(𝑡)‖ d𝑡 = ∫

𝐵

𝐴
‖𝛾′(𝑠(𝑡))‖|𝑠′(𝑡)| d𝑡 = ∫

𝑏

𝑎
‖𝛾′(𝑡′)‖ d𝑡′ = 𝐿(𝛾)

Lemma. If 𝛾∶ (𝑎, 𝑏) → ℝ3 is continuously differentiable and 𝛾′(𝑡) ≠ 0, then 𝛾 can be
parametrised by arc length.

The proof is left as an exercise. Let Σ be a smooth surface in ℝ3, and let 𝜎∶ 𝑉 → 𝑈 ⊆ Σ be
an allowable parametrisation. If 𝛾∶ (𝑎, 𝑏) → ℝ3 is smooth and its image is contained within
𝑈 , then there exist functions (𝑢(𝑡), 𝑣(𝑡))∶ (𝑎, 𝑏) → 𝑉 such that 𝛾(𝑡) = 𝜎(𝑢(𝑡), 𝑣(𝑡)). Hence
𝛾′(𝑡) = 𝜎𝑢𝑢′(𝑡) + 𝜎𝑣𝑣′(𝑡), giving

‖𝛾′(𝑡)‖2 = 𝐸𝑢′(𝑡)2 + 2𝐹𝑢′(𝑡)𝑣′(𝑡) + 𝐺𝑣′(𝑡)2

for functions
𝐸 = ⟨𝜎𝑢, 𝜎𝑢⟩ ; 𝐹 = ⟨𝜎𝑢, 𝜎𝑣⟩ = ⟨𝜎𝑣, 𝜎𝑢⟩ ; 𝐺 = ⟨𝜎𝑣, 𝜎𝑣⟩

where ⟨ ⋅ , ⋅ ⟩ represents the usual Euclidean inner product. Note that 𝐸, 𝐹, 𝐺 depend only
on 𝜎 and not on 𝛾.
Definition. The first fundamental form of Σ in the parametrisation 𝜎 is the expression

𝐸 d𝑢2 + 2𝐹 d𝑢 d𝑣 + 𝐺 d𝑣2

This notation is illustrative of the fact that if 𝛾 has image in the image of 𝜎(𝑣), we find

𝐿(𝛾) = ∫
𝑏

𝑎
√𝐸(𝑢′)2 + 2𝐹𝑢′𝑣′ + 𝐺(𝑣′)2 d𝑡

where 𝛾(𝑡) = 𝜎(𝑢(𝑡), 𝑣(𝑡)).
Remark. The Euclidean inner product onℝ3 provides an inner product on the subspace 𝑇𝑝Σ.
Choosing a parametrisation 𝜎, we can say 𝑇𝑝Σ = Im𝐷 𝜎|0 = span {𝜎𝑢, 𝜎𝑣} where 𝜎(0) = 𝑝.
The first fundamental form is a symmetric bilinear form on the tangent spaces 𝑇𝑝Σ, varying
smoothly in 𝑝. However, we choose to express this in a basis coming from the parametrisa-
tion 𝜎. In particular, we can think about the matrix expression

(𝐸 𝐹
𝐹 𝐺)
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Example. The plane ℝ2
𝑥𝑦 ⊂ ℝ3 has the parametrisation (𝑢, 𝑣) ↦ (𝑢, 𝑣, 0). Hence, 𝜎𝑢 =

𝑒1 and 𝜎𝑣 = 𝑒2, hence the first fundamental form is d𝑢2 + d𝑣2. We could also use polar
coordinates, using 𝜎(𝑟, 𝜃) = (𝑟 cos 𝜃, 𝑟 sin 𝜃, 0). This parametrises the plane without the
origin. This gives 𝜎𝑟 = (cos 𝜃, sin 𝜃, 0) and 𝜎𝜃 = (−𝑟 sin 𝜃, 𝑟 cos 𝜃, 0). The first fundamental
form is d𝑟2 + 𝑟2 d𝜃2.
Definition. Let Σ, Σ′ be smooth surfaces inℝ3. We say that they are isometric if there exists
a diffeomorphism 𝑓∶ Σ → Σ′ that preserves the lengths of all curves. More formally, for
every smooth curve 𝛾∶ (𝑎, 𝑏) → Σ, the length of 𝛾 is the same as the length of 𝑓 ∘ 𝛾.
Example. Let Σ′ = 𝑓(Σ) where 𝑓∶ ℝ3 → ℝ3 is a global isometry, or rigid motion, of ℝ3;
that is, 𝑣 ↦ 𝐴𝑣 + 𝑏 for an orthogonal matrix 𝐴. These isometries preserve the Euclidean
inner product onℝ3, hence 𝑓 preserves length. However, in the definition, we need notmap
all of ℝ3 to itself, just Σ → Σ′.
Definition. We say that Σ and Σ′ are locally isometric near points 𝑝 ∈ Σ and 𝑞 ∈ Σ′ if there
exist open neighbourhoods 𝑈 of 𝑝 and 𝑉 of 𝑞 such that 𝑈 and 𝑉 are isometric. We can also
say that Σ and Σ′ are locally isometric if they are locally isometric at all points; that is, each
point of Σ is locally isometric to some point on Σ′.
Lemma. Smooth surfaces Σ, Σ′ in ℝ3 are locally isometric near 𝑝 ∈ Σ and 𝑞 ∈ Σ′ if and
only if there exist allowable parametrisations 𝜎∶ 𝑉 → 𝑈 ⊆ Σ and 𝜎′∶ 𝑉 → 𝑈 ′ ⊆ Σ′ such
that the first fundamental forms are equivalent.

Proof. By definition, the first fundamental form of Σ determines the lengths of all curves on
Σ that lie in 𝑈 . We will now show that lengths of curves determine the first fundamental
form of a parametrisation. Given 𝜎∶ 𝑉 → 𝑈 , without loss of generality let 𝑉 = 𝐵(0, 𝛿) for
some 𝛿 > 0, where 𝜎(0) = 𝑝. Consider, for all 𝜀 < 𝛿, the curve

𝛾𝜀∶ [0, 𝜀] → 𝑈; 𝑡 ↦ 𝜎(𝑡, 0)

Then,
d
d𝜀𝐿(𝛾𝜀) =

d
d𝜀 ∫

𝜀

0
√𝐸(𝑡, 0) d𝑡 = √𝐸(𝜀, 0)

Hence,
d
d𝜀
|||𝜀=0

𝐿(𝛾𝜀) = √𝐸(0, 0)

So we can determine 𝐸 at 𝑝 by looking at lengths of curves. We can similarly consider

𝜒𝜀∶ [0, 𝜀] → 𝑈; 𝑡 ↦ 𝜎(0, 𝑡)

which determines 𝐺. Finally, consider

𝜆𝜀∶ [0, 𝜀] → 𝑈; 𝑡 ↦ 𝜎(𝑡, 𝑡)

which determines√(𝐸 + 2𝐹 + 𝐺)(0, 0) which gives 𝐹 implicitly.
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Example. The sphere of radius 𝑎, given by {𝑥2 + 𝑦2 + 𝑧2 = 𝑎2}, has an open set with allow-
able parametrisation

𝜎(𝑢, 𝑣) = (𝑎 cos𝑢 cos 𝑣, 𝑎 cos𝑢 sin 𝑣, 𝑎 sin𝑢)

where 𝑢 ∈ (−𝜋
2
, 𝜋
2
) and 𝑣 ∈ (0, 2𝜋). This parametrises the complement of a half great circle.

Here,

𝜎𝑢 = (−𝑎 sin𝑢 cos 𝑣, −𝑎 sin𝑢 sin 𝑣, 𝑎 cos𝑢); 𝜎𝑣 = (−𝑎 cos𝑢 sin 𝑣, 𝑎 cos𝑢 cos 𝑣, 0)

Hence,
𝐸 = 𝑎2; 𝐹 = 0; 𝐺 = 𝑎2 cos2 𝑢

which gives the first fundamental form as

𝑎2 d𝑢2 + 𝑎2 cos2 𝑢 d𝑣2

Example. Consider the surface of revolution given by a curve

𝜂(𝑡) = (𝑓(𝑡), 0, 𝑔(𝑡))

rotated about the 𝑧 axis. The resulting surface has parametrisation

𝜎(𝑢, 𝑣) = (𝑓(𝑢) cos 𝑣, 𝑓(𝑢) sin 𝑣, 𝑔(𝑢))

Hence,
𝜎𝑢 = (𝑓𝑢 cos 𝑣, 𝑓𝑢 sin 𝑣, 𝑔𝑢); 𝜎𝑣 = (−𝑓 sin 𝑣, 𝑓 cos 𝑣, 0)

which gives
(𝑓2𝑢 + 𝑔2𝑢) d𝑢2 + 𝑓2 d𝑣2

Example. Consider the cone with angle arctan 𝑎 to the vertical. For 𝑢 > 0 and 𝑣 ∈ (0, 2𝜋),
we define

𝜎(𝑢, 𝑣) = (𝑎𝑢 cos 𝑣, 𝑎𝑢 sin 𝑣, 𝑢)
The first fundamental form is

(1 + 𝑎2) d𝑢2 + 𝑎2𝑢2 d𝑣2

Consider cutting the cone along the line 𝑣 = 0 and flattening it into a plane sector. The
circumference of the sector is 2𝜋𝑎 and the radius is √1 + 𝑎2, hence the angle traced out by
the sector is 𝜃0 =

2𝜋𝑎
√1+𝑎2

. We can parametrise this subset of the plane by

𝜎(𝑟, 𝜃) = (√1 + 𝑎2𝑟 cos ( 𝑎𝜃
√1 + 𝑎2

),√1 + 𝑎2𝑟 sin ( 𝑎𝜃
√1 + 𝑎2

), 0)

for 𝑟 > 0 and 𝜃 ∈ (0, 2𝜋). We can then check that the first fundamental form here is

(1 + 𝑎2) d𝑟2 + 𝑟2𝑎2 d𝜃2
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4. Geometry of surfaces in ℝ3

which matches the first fundamental form for the cone itself. Hence the cone and the plane
are locally isometric. However, the cone and plane are not globally isometric, since the two
topological spaces are not homeomorphic, so no diffeomorphism that preserves lengths can
be constructed.

Lemma. Let Σ be a smooth surface in ℝ3, and let 𝑝 ∈ Σ. Suppose we have two allowable
parametrisations 𝜎∶ 𝑉 → 𝑈 and 𝜎′∶ 𝑉 ′ → 𝑈 for the same open neighbourhood of 𝑝. The
two parametrisations differ by a transition map 𝐹 = 𝜎′−1 ∘ 𝜎 which is a diffeomorphism of
open subsets of ℝ2. There exist first fundamental forms for both parametrisations. Then,

(𝐸 𝐹
𝐹 𝐺) = (𝐷𝐹)⊺ (𝐸

′ 𝐹′
𝐹′ 𝐺′) (𝐷𝐹)

Proof. By definition,

(𝐸 𝐹
𝐹 𝐺) = (𝜎𝑢 ⋅ 𝜎𝑢 𝜎𝑢 ⋅ 𝜎𝑣

𝜎𝑣 ⋅ 𝜎𝑢 𝜎𝑣 ⋅ 𝜎𝑣
) = (𝐷𝜎)⊺(𝐷𝜎)

Now, 𝜎 = 𝜎′ ∘ 𝐹 hence the result follows.

4.2. Conformality
If 𝑣, 𝑤 ∈ ℝ3, we have 𝑣 ⋅ 𝑤 = |𝑣| ⋅ |𝑤| ⋅ cos 𝜃. This allows us to deduce the angle 𝜃 between
two vectors given their dot product and lengths. This can also be done when 𝑣, 𝑤 are in the
tangent plane 𝑇𝑝Σ, and then we can express the angle in terms of the first fundamental form.
Let 𝜎 be an allowable parametrisation for Σ near 𝑝, such that 𝐷 𝜎|0 evaluates to 𝑣 at 𝑣0 and
𝑤 at 𝑤0.

cos 𝜃 = 𝑣 ⋅ 𝑤
|𝑣| ⋅ |𝑤| =

𝐼(𝑣0, 𝑤0)
√𝐼(𝑣0, 𝑣0)√𝐼(𝑤0, 𝑤0)

where 𝐼 denotes the first fundamental form of 𝜎 at zero.
Lemma. Let Σ be a smooth surface in ℝ3, and let 𝜎∶ 𝑉 → 𝑈 be an allowable parametrisa-
tion of Σ near 𝑝. Then 𝜎 is conformal if 𝐸 = 𝐺 and 𝐹 = 0 in the first fundamental form.

Proof. Consider curves 𝛾∶ 𝑡 ↦ (𝑢(𝑡), 𝑣(𝑡)) and ̃𝛾∶ 𝑡 ↦ (�̃�(𝑡), ̃𝑣(𝑡)) in 𝑉 , where 𝛾(0) = ̃𝛾(0) =
0 ∈ 𝑉 . Let 𝜎 be a parametrisation 𝑉 → 𝑈 ⊆ Σ such that 𝜎(0) = 𝑝 ∈ Σ. Then the curves
𝜎 ∘ 𝛾 and 𝜎 ∘ ̃𝛾meet at angle 𝜃 on Σ, where

cos 𝜃 =
𝐸�̇� ̇̃𝑢 + 𝐹(�̇� ̇̃𝑣 + ̇𝑣 ̇�̃�) + 𝐺 ̇𝑣 ̇̃𝑣

√𝐸�̇�2 + 2𝐹�̇� ̇𝑣 + 𝐺 ̇𝑣2√𝐸 ̇�̃�2 + 2𝐹 ̇̃𝑢 ̇̃𝑣 + 𝐺 ̇̃𝑣2

In particular, if 𝜎 is conformal, suppose 𝛾(𝑡) = (𝑡, 0) and ̃𝛾(𝑡) = (0, 𝑡). Then, we have that
the curves meet at 𝜋

2
in 𝑉 , so they meet at 𝜋

2
in Σ, so we find that cos 𝜃 = 0 ⟹ 𝐹 = 0.

Similarly, if 𝛾(𝑡) = (𝑡, 𝑡) and ̃𝛾(𝑡) = (𝑡, −𝑡), we find cos 𝜃 = 0 ⟹ 𝐸 = 𝐺.
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Conversely, suppose there exists a parametrisation 𝜎 such that 𝐸 = 𝐺 and 𝐹 = 0. Then, in
this parametrisation, the first fundamental form is of the form 𝜌(d𝑢2 + d𝑣2) for 𝜌 = 𝐸∶ 𝑉 →
ℝ. Hence, the first fundamental form is a pointwise rescaling of the Euclidean fundamental
form d𝑢2 + d𝑣2. Rescaling the plane does not change angles, so 𝜎 is conformal as required.

Remark. Conformality in charts is historically important for cartography. The existence of
conformal charts is closely connected to Riemann surfaces, which are topological surfaces
locally modelled on ℂ instead of ℝ2.

4.3. Area
Recall that a parallelogram spanned by vectors 𝑣, 𝑤 has area |𝑣 × 𝑤| = ⟨𝑣, 𝑣⟩ ⟨𝑤,𝑤⟩− ⟨𝑣, 𝑤⟩2,
where × denotes the cross product. Let 𝜎∶ 𝑉 → 𝑈 ⊆ Σ be an allowable parametrisation
with 𝜎(0) = 𝑝, and consider 𝜎𝑢, 𝜎𝑣 ∈ 𝑇𝑝Σ. The square of the area of the infinitesimal paral-
lelogram spanned by 𝜎𝑢, 𝜎𝑣 is given by

⟨𝜎𝑢, 𝜎𝑢⟩ ⟨𝜎𝑣, 𝜎𝑣⟩ − ⟨𝜎𝑢, 𝜎𝑣⟩
2 = 𝐸𝐺 − 𝐹2

Definition. Let Σ be a smooth surface in ℝ3, and 𝜎∶ 𝑉 → 𝑈 ⊆ Σ an allowable paramet-
risation. Then,

area(𝑈) = ∫
𝑉
√𝐸𝐺 − 𝐹2 d𝑢 d𝑣

Remark. This is independent of parametrisation. Indeed, suppose 𝜎∶ 𝑉 → 𝑈 and �̃�∶ 𝑉 →
𝑈 are allowable. Then �̃� = 𝜎 ∘ 𝜑 for some transition map 𝜑∶ 𝑉 → 𝑉 . We know then that

(𝐸 𝐹
𝐹 𝐺) = (𝐷�̃�)⊺(𝐷�̃�) = (𝐷𝜑)⊺ (𝐸 𝐹

𝐹 𝐺) (𝐷𝜑)

Hence,
√𝐸𝐺 − 𝐹2 = |det(𝐷𝜑)|√𝐸𝐺 − 𝐹2

The usual change of variables formula for integration, combined with the fact that 𝜑 is a
diffeomorphism, gives

∫
𝑉
√𝐸𝐺 − 𝐹2 d𝑢 d𝑣 = ∫

𝑉
√𝐸𝐺 − 𝐹2 d𝑢 d𝑣

Note, we can compute the area of an open set 𝑈 ⊆ Σ, not necessarily lying in a single para-
metrisation, by covering the set by a finite amount of open subsets which lie in single charts.
For instance, if Σ is compact, we can compute the area of Σ itself.
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Example. Consider the graph Σ = {(𝑢, 𝑣, 𝑓(𝑢, 𝑣))∶ (𝑢, 𝑣) ∈ ℝ2}, where 𝑓∶ ℝ2 → ℝ is a
smooth function. This has a global parametrisation 𝜎(𝑢, 𝑣) = (𝑢, 𝑣, 𝑓(𝑢, 𝑣)). Here, 𝜎𝑢 =
(1, 0, 𝑓𝑢) and 𝜎𝑣 = (0, 1, 𝑓𝑣), hence

√𝐸𝐺 − 𝐹2 = √1 + 𝑓2𝑢 + 𝑓2𝑣

Let 𝑈𝑅 ⊆ Σ be the part of the graph lying inside the disc 𝐵(0, 𝑅) ⊆ ℝ2. Then

area(𝑈𝑅) = ∫
𝐵(0,𝑅)

√1+ 𝑓2𝑢 + 𝑓2𝑣 d𝑢 d𝑣 ≥ 𝜋𝑅2

with equality exactly when 𝑓𝑢 = 𝑓𝑣 = 0, so 𝑓 is constant and 𝑈𝑅 is contained inside a plane
perpendicular to the 𝑧 axis. Hence, the projection from Σ to ℝ2

𝑥𝑦 is not area-preserving,
unless Σ is a plane perpendicular to the 𝑧 axis.
Example. Consider the sphere enclosed exactly by a cylinder. The cylindrically radial pro-
jection from the sphere to the cylinder is area-preserving. This is explored further in the
example sheets.

4.4. Second fundamental form
Let 𝜎∶ 𝑉 → 𝑈 ⊆ Σ be allowable. By using Taylor’s theorem, we can write

𝜎(𝑢 + ℎ, 𝑣 + ℓ) = 𝜎(𝑢, 𝑣)
+ ℎ𝜎𝑢(𝑢, 𝑣) + ℓ𝜎𝑣(𝑢, 𝑣)

+ 1
2(ℎ

2𝜎𝑢𝑢(𝑢, 𝑣) + 2ℎℓ𝜎𝑢𝑣(𝑢, 𝑣) + ℓ2𝜎𝑣𝑣(𝑢, 𝑣))
+ 𝑂(ℎ3, ℓ3)

where ℎ, ℓ are small, and (𝑢 + ℎ, 𝑣 + ℓ) ∈ 𝑉 . Recall that if 𝑝 = 𝜎(𝑢, 𝑣), we have 𝑇𝑝Σ =
⟨{𝜎𝑢, 𝜎𝑣}⟩. Hence, the orthogonal distance from 𝜎(𝑢 + ℎ, 𝑣 + ℓ) to the affine tangent plane
𝑇𝑝Σ + 𝑝 is given by projection to the normal direction.

⟨𝑛, 𝜎(𝑢 + ℎ, 𝑣 + ℓ) − 𝜎(𝑢, 𝑣)⟩ = 1
2(⟨𝑛, 𝜎𝑢𝑢⟩ ℎ

2 + 2 ⟨𝑛, 𝜎𝑢𝑣⟩ ℎℓ + ⟨𝑛, 𝜎𝑣𝑣⟩ ℓ2) + 𝑂(ℎ3, ℓ3)

Definition. The second fundamental form of Σ in the allowable parametrisation 𝜎 is the
quadratic form

𝐿 d𝑢2 + 2𝑀 d𝑢 d𝑣 + 𝑁 d𝑣2

where
𝐿 = ⟨𝑛, 𝜎𝑢𝑢⟩ ; 𝑀 = ⟨𝑛, 𝜎𝑢𝑣⟩ ; 𝑁 = ⟨𝑛, 𝜎𝑣𝑣⟩

and
𝑛 = 𝜎𝑢 × 𝜎𝑣

‖𝜎𝑢 × 𝜎𝑣‖
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We can write this as the matrix
( 𝐿 𝑀
𝑀 𝑁)

which defined a quadratic form on 𝑇𝑝Σ which varies smoothly in 𝑝.
Lemma. Let 𝑉 be connected and 𝜎∶ 𝑉 → 𝑈 ⊆ Σ be an allowable parametrisation such
that the second fundamental form vanishes identically with respect to 𝜎. Then 𝑈 lies in an
affine plane.

Remark. The first fundamental form is a non-degenerate symmetric bilinear form on 𝑇𝑝Σ,
whereas the second fundamental form may be degenerate.

Proof. By definition,
⟨𝑛, 𝜎𝑢⟩ = 0 = ⟨𝑛, 𝜎𝑣⟩

Hence, by differentiating, we find

0 = ⟨𝑛𝑢, 𝜎𝑢⟩ + ⟨𝑛, 𝜎𝑢𝑢⟩ = ⟨𝑛𝑣, 𝜎𝑣⟩ + ⟨𝑛, 𝜎𝑣𝑣⟩ = ⟨𝑛𝑣, 𝜎𝑢⟩ + ⟨𝑛, 𝜎𝑢𝑣⟩

Some of these terms appear in the definition of the second fundamental form:

𝐿 = ⟨𝑛, 𝜎𝑢𝑢⟩ = − ⟨𝑛𝑢, 𝜎𝑢⟩
𝑀 = ⟨𝑛, 𝜎𝑢𝑣⟩ = − ⟨𝑛𝑣, 𝜎𝑢⟩ = − ⟨𝑛𝑢, 𝜎𝑣⟩
𝑁 = ⟨𝑛, 𝜎𝑣𝑣⟩ = − ⟨𝑛𝑣, 𝜎𝑣⟩

If the second fundamental form vanishes, then 𝑛𝑢 is orthogonal to 𝜎𝑢, 𝜎𝑣, and 𝑛 itself. Since
𝜎𝑢, 𝜎𝑣, 𝑛 form a basis for ℝ3, we have 𝑛𝑢 = 0. Similarly, 𝑛𝑣 = 0, hence 𝑛 is constant by the
mean value theorem.

Remark. The first fundamental form in parametrisation 𝜎 can be written (𝐷𝜎)⊺(𝐷𝜎). We
can similarly write the second fundamental form as

−(𝐷𝑛)⊺(𝐷𝜎) = ( 𝐿 𝑀
𝑀 𝑁) = −(𝑛𝑢 ⋅ 𝜎𝑢 𝑛𝑢 ⋅ 𝜎𝑣

𝑛𝑣 ⋅ 𝜎𝑢 𝑛𝑣 ⋅ 𝜎𝑣
)

Hence, if 𝜎∶ 𝑉 → Σ and �̃�∶ 𝑉 → Σ are allowable parametrisations for an open set 𝑈 ⊆ Σ
with transition map 𝜑∶ 𝑉 → 𝑉 given by 𝜑 = 𝜎−1 ∘ �̃�, we can use the above expression to
find

( �̃� �̃�
�̃� 𝑁) = ±(𝐷𝜑)⊺ ( 𝐿 𝑀

𝑀 𝑁) (𝐷𝜑)

The change in sign depends onwhether the transitionmap preserves or reverses orientation.
If the normal vectors agree, there is no negative sign.

𝑛𝜎∘𝜑
|||(𝑢,𝑣)

= ± 𝑛𝜎
|||𝜑(𝑢,𝑣)

for (�̃�, ̃𝑣) ∈ 𝑉 . In particular, if det(𝐷𝜑) < 0, we arrive at a negative sign. If we assume that
𝑉, 𝑉 are connected, the determinant det(𝐷𝜑) does not change sign.
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4. Geometry of surfaces in ℝ3

Example. Consider the cylinder with allowable parametrisation

𝜎(𝑢, 𝑣) = (𝑎 cos𝑢, 𝑎 sin𝑢, 𝑣)

where 𝑢 ∈ (0, 2𝜋), 𝑣 ∈ ℝ. Note that 𝜎𝑢𝑣 = 𝜎𝑣𝑣 = 0, hence 𝑀 = 𝑁 = 0. We can show that
the second fundamental form is given by

(−𝑎 0
0 0) ; −𝑎 d𝑢2

4.5. Gauss maps
Definition. Let Σ be a smooth oriented surface in ℝ3. The Gauss map 𝑛∶ Σ → 𝕊2 is the
map 𝑝 ↦ 𝑛(𝑝), where the normal vector is normalised and hence lies in the unit sphere.
Lemma. The Gauss map is smooth.

Proof. Since smoothness is a local property, it suffices to check the smoothness of the map
on an arbitrary parametrised part of Σ. Let 𝜎∶ 𝑉 → 𝑈 ⊆ Σ be allowable and compatible
with a chosen orientation. Then

𝑛(𝑝) = 𝜎𝑢 × 𝜎𝑣
‖𝜎𝑢 × 𝜎𝑣‖

Since 𝜎 is allowable, the denominator is non-vanishing. Hence, 𝑛(𝑝) is smooth as required.

Remark. If Σ = 𝐹−1(0) for some function 𝐹 ∶ ℝ3 → ℝ with nonzero derivative 𝐷𝐹 at all
points 𝑥 ∈ Σ (which was required for Σ to be a smooth surface inℝ3), then we can explicitly
calculate the Gauss map to be

𝑛(𝑝) = ∇𝐹
‖∇𝐹‖

Note that,
𝑇𝑝Σ = 𝑇𝑛(𝑝)𝑆2 = (𝑛(𝑝))⟂

since the two planes are orthogonal to the same vector. More concretely, if 𝑣 ∈ 𝑇𝑝Σ is 𝛾′(0)
where 𝛾∶ (−𝜀, 𝜀) → Σ, 𝛾(0) = 𝑝 for a smooth curve 𝛾, we can apply the Gauss map to 𝛾 and
find

𝑛 ∘ 𝛾∶ (−𝜀, 𝜀) → 𝑆2; (𝑛 ∘ 𝛾)(0) = 𝑛(𝑝)
Then, by the chain rule,

𝐷 𝑛|||𝑝
(𝑣) = (𝑛 ∘ 𝛾)′(0) ∈ 𝑇𝑛(𝑝)𝑆2 = 𝑇𝑝Σ

Thus, the derivative of the Gauss map is 𝐷 𝑛|𝑝 ∶ 𝑇𝑝Σ → 𝑇𝑝Σ. This can be viewed as an en-
domorphism of a fixed (with respect to parametrisation choice) two-dimensional subspace
of ℝ3.

To summarise, let Σ be an oriented smooth surface in ℝ3. Then,
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X. Geometry

(i) The first fundamental form is a symmetric bilinear form ⟨ ⋅ , ⋅ ⟩ = I𝑝∶ 𝑇𝑝Σ×𝑇𝑝Σ → ℝ,
which is the restriction of the Euclidean inner product to this space 𝑇𝑝Σ. We can write
I𝑝(𝑣, 𝑤), where 𝑣, 𝑤 ∈ 𝑇𝑝Σ.

(ii) The second fundamental form is also a symmetric bilinear form II𝑝∶ 𝑇𝑝Σ × 𝑇𝑝Σ → ℝ,
given by

II𝑝(𝑣, 𝑤) = I𝑝 (−𝐷 𝑛|||𝑝
(𝑣), 𝑤)

where 𝑛 is the Gauss map.

If we choose an allowable parametrisation (which for the second fundamental form must
be correctly oriented) 𝜎∶ 𝑉 → 𝑈 ⊆ Σ near 𝑝 ∈ Σ, and if

𝐷 𝜎|||0
( ̂𝑣) = 𝑣; 𝐷 𝜎|||0

(�̂�) = 𝑤; 𝜎(0) = 𝑝

Then,

I𝑝(𝑣, 𝑤) = ̂𝑣⊺ (𝐸 𝐹
𝐹 𝐺) �̂�; II𝑝(𝑣, 𝑤) = ̂𝑣⊺ ( 𝐿 𝑀

𝑀 𝑁) �̂�

where 𝐸, 𝐹, 𝐺, 𝐿,𝑀,𝑁 depend on the choice of 𝜎. Note that the functions I𝑝 and II𝑝 are
independent of 𝜎.

Lemma. The derivative of the Gauss map is self-adjoint. More precisely, viewing the map
𝐷 𝑛|𝑝 ∶ 𝑇𝑝Σ → 𝑇𝑝Σ as an endomorphism over the inner product space with the first funda-
mental form, this linear map satisfies

I𝑝 (𝐷 𝑛|||𝑝
(𝑣), 𝑤) = I𝑝 (𝑣, 𝐷 𝑛|||𝑝

(𝑤))

for all 𝑣, 𝑤 ∈ 𝑇𝑝Σ.

Proof. From expressions for local parametrisations, we can show that I𝑝 and II𝑝 are symmet-
ric. Hence,

I𝑝(𝐷 𝑛|||𝑝
(𝑣), 𝑤) = − II𝑝(𝑣, 𝑤) = − II𝑝(𝑤, 𝑣) = I𝑝(𝐷 𝑛|||𝑝

(𝑤), 𝑣) = I𝑝(𝑣, 𝐷 𝑛|||𝑝
(𝑤))

Remark. The fundamental theorem of surfaces inℝ3 states that a smooth oriented connected
surface in ℝ3 is determined completely, up to rigid motion, by the two fundamental forms.
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4. Geometry of surfaces in ℝ3

4.6. Gauss curvature
Definition. Let Σ be a smooth surface in ℝ3. The Gauss curvature 𝜅∶ Σ → ℝ of Σ is the
function defined by

𝜅(𝑝) = det(𝐷 𝑛|||𝑝
)

Remark. This is always well-defined, even if Σ is not oriented. This is because Σ is always
locally orientable, and the two normals differ by sign. In two dimensions, det(−𝐴) = det(𝐴),
so the determinant is invariant.

We can compute 𝜅 directly. Let Σ be a smooth surface in ℝ3, and 𝜎 an allowable paramet-
risation for an open neighbourhood of a point 𝑝. Recall that

I𝑝∶ 𝑇𝑝Σ → 𝑇𝑝Σ; (𝑣, 𝑤) ↦ ⟨𝑣, 𝑤⟩ ; II𝑝∶ 𝑇𝑝Σ → 𝑇𝑝Σ; (𝑣, 𝑤) ↦ I𝑝(− 𝐷𝑛|||𝑝
(𝑣), 𝑤)

and 𝐷𝑛|𝑝 ∶ 𝑇𝑝Σ → 𝑇𝑝Σ. The choice of parametrisation 𝜎 for an open neighbourhood 𝑈 of
𝑝 provides a preferred basis {𝜎𝑢, 𝜎𝑣} for 𝑇𝑝Σ. We can therefore write the fundamental forms
as matrices with respect to this basis. Let 𝐴 = I𝑝, 𝐵 = II𝑝, 𝕊 = 𝐷𝑛|𝑝 in this basis. In matrix
form, we can write II𝑝 = I𝑝(− 𝐷𝑛|𝑝 (𝑣), 𝑤) as

𝐵 = −𝕊⊺𝐴 ⟹ 𝜅(𝑝) = det(𝕊) = det(−𝐴−1𝐵) = 𝐿𝑁 −𝑀2

𝐸𝐺 − 𝐹2

If 𝜎, �̃� are allowable and 𝜑 = 𝜎−1 ∘ 𝜎 is a transition map, then

𝐴 = (𝐷𝜑)⊺𝐴(𝐷𝜑); 𝐵 = ±(𝐷𝜑)⊺𝐵(𝐷𝜑)

Since the sign vanishes under taking determinants, 𝜅 is intrinsic and does not depend on the
choice of parametrisation.

Example. For a cylinder {𝑥2 + 𝑦2 = 1} the Gauss map 𝑛∶ Σ → 𝑆2 has image which lies
in the equator. Its derivative 𝐷𝑛|𝑝 ∶ 𝑇𝑝Σ → 𝑇𝑝Σ has one-dimensional image, since any
𝛾∶ (−𝜀, 𝜀) → Σ has 𝑛 ∘ 𝛾 ⊆ 𝑆1. Hence its Gauss curvature is zero.
Definition. A smooth surface in ℝ3 with vanishing Gauss curvature everywhere is flat.

Remark. If 𝜎∶ 𝑉 → 𝑈 is allowable, and 𝑛𝜎 is defined to be 𝑛 ∘ 𝜎∶ 𝑉 → 𝑆2, then

𝐷𝑛𝜎
|||0
∶ 𝜎𝑢 ↦ (𝑛𝜎)𝑢; 𝜎𝑣 ↦ (𝑛𝜎)𝑣

In particular, 𝜅(𝑝) = 𝜅(𝜎(0)) vanishes if and only if (𝑛𝜎)𝑢×(𝑛𝜎)𝑣 = 0. Usually, we will write
𝑛 to denote 𝑛𝜎. In this case, the condition for flatness is that 𝑛𝑢 × 𝑛𝑣 = 0.
Example. If Σ is the graph of a smooth function 𝑓, then on the example sheets we show
that

𝜅 = 𝑓𝑢𝑢𝑓𝑣𝑣 − 𝑓2𝑢𝑣
(1 + 𝑓2𝑢 + 𝑓2𝑣 )2
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X. Geometry

Hence, the curvature depends on the derivative and the Hessian of 𝑓. For instance, let
𝑓(𝑢, 𝑣) = √𝑟2 − 𝑢2 − 𝑣2. Here, the graph is a piece of a sphere of radius 𝑟. We can find

𝑓𝑢𝑢
|||0
= 𝑓𝑣𝑣

|||0
= −1

𝑟 ; 𝑓𝑢𝑣
|||0
= 0 ⟹ 𝜅(0, 0, 𝑟) = 1

𝑟2

Since 𝑂(3) acts transitively on 𝑆2, and the fundamental forms are preserved by such global
isometries, 𝜅 = 1

𝑟2
everywhere on the sphere of radius 𝑟.

Example. Let Σ be the smooth surface given by {𝑧 = 𝑥2 + 𝑦2}. We claim that, for the inward
facing choice of orientation, the image of the Gauss map is the open northern hemisphere.
Note that Σ is invariant under rotations about the 𝑧 axis. Also, we can show that if 𝑅 is a
rotation, 𝑛 ∘ 𝑅 = 𝑅 ∘ 𝑛. Therefore, it suffices to consider an arbitrary point with 𝑦 = 0.
Here, Σ = 𝐹−1(0) for the function 𝐹(𝑥, 𝑦, 𝑧) = 𝑧−𝑥2−𝑦2, which has nonvanishing derivative
at the points 𝑝 ∈ Σ. Hence, at 𝑝 = (𝑥, 0, 𝑥2), we have

𝑛(𝑝) = ∇𝐹
‖∇𝐹‖ =

(−2𝑥, 0, 1)
√1 + 4𝑥2

We can check explicitly that this map has image which an arc lying in the open northern
hemisphere.

4.7. Elliptic, hyperbolic, and parabolic points
Definition. Let Σ be a smooth surface in ℝ3 and 𝑝 ∈ Σ. We say that 𝑝 is
(i) elliptic if 𝜅(𝑝) > 0;
(ii) hyperbolic if 𝜅(𝑝) < 0;
(iii) parabolic if 𝜅(𝑝) = 0.
Lemma. In a sufficiently small neighbourhood of an elliptic point 𝑝, Σ lies entirely on one
side of 𝑝 + 𝑇𝑝Σ. If 𝑝 is hyperbolic, Σ lies on both sides of 𝑝 + 𝑇𝑝Σ.

Proof. Let 𝜎 be a local parametrisation near 𝑝. Here,

𝜅 = 𝐿𝑁 −𝑀2

𝐸𝐺 − 𝐹2

The denominator is always positive, since it is the determinant of a positive definite symmet-
ric bilinear form I𝑝. Hence, the sign of 𝜅 depends on the sign of 𝐿𝑁−𝑀2. If𝑤 = ℎ𝜎𝑢+ℓ𝜎𝑣 ∈
𝑇𝑝Σ, then

1
2
II𝑝(𝑤,𝑤)measures the signed distance from 𝜎(ℎ, 𝑙) to𝑝+𝑇𝑝Σ. If 𝑝 is elliptic, then

II𝑝 has eigenvalues of the same sign, so it is either positive or negative definite at 𝑝. Since
II𝑝 varies smoothly in 𝑝, it remains positive or negative definite in a small neighbourhood
of 𝑝. Hence, in such a neighbourhood, the signed distance has the same sign as required.
Conversely, if 𝑝 is hyperbolic, II𝑝(𝑤,𝑤) takes both signs in a neighbourhood of 𝑝.
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4. Geometry of surfaces in ℝ3

Remark. We cannot conclude anything about parabolic points a priori. For instance, the
cylinder is flat (all points are parabolic), and the surface lies on one side of the tangent plane
at every point. Consider also themonkey saddle defined by

𝜎(𝑢, 𝑣) = (𝑢, 𝑣, 𝑢3 − 3𝑣2𝑢)

which has a parabolic point at the origin, but Σ lies on both sides of the tangent plane in
every open neighbourhood of the origin. At 𝑝 = 𝜎(0, 0), the Gauss curvature vanishes, but
the surface lies locally on both sides of the tangent plane.

Proposition. Let Σ be a compact smooth surface in ℝ3. Then Σ has an elliptic point.

Proof. Since Σ is compact, it is closed and bounded as a subset of ℝ3. Hence, for 𝑅′ suffi-
ciently large, Σ lies entirely within 𝐵(0, 𝑅′). Let 𝑅 be the minimal such 𝑅′. Up to a global
isometry of ℝ3, there exists a point 𝑝 = (0, 0, 𝑅) ∈ Σ on the sphere 𝑆2(𝑅) of radius 𝑅.
Here, 𝑇𝑝Σ = 𝑇𝑝𝑆2. Hence, locally near 𝑝, we can view Σ as the graph of a smooth func-
tion 𝑓∶ 𝑉 → ℝ3 on the 𝑥, 𝑦 coordinates with the property that 𝑓 −√𝑅2 − 𝑢2 − 𝑣2 ≤ 0. This
expresses the fact that Σ lies underneath the sphere of radius 𝑅.
We can now consider the Taylor series of 𝑓. Note that (0, 0) is a maximum point of 𝑓, hence
𝑓𝑢 = 𝑓𝑣 = 0 at 0. Thus, for sufficiently small 𝑢, 𝑣,

1
2(𝑓𝑢𝑢𝑢

2 + 2𝑓𝑢𝑣𝑢𝑣 + 𝑓𝑣𝑣𝑣2) +
1
2𝑅(𝑢

2 + 𝑣2) ≤ 0

Hence, the second fundamental form is locally negative definite near (0, 0). Hence, 𝜅(𝑝) > 0,
so 𝑝 is elliptic as required. In particular, the curvature at this point is greater than that of
the sphere.

Theorem. Let Σ be a smooth surface in ℝ3, and let 𝑝 ∈ Σ such that 𝜅(𝑝) ≠ 0. Let 𝑈 be
an open neighbourhood of 𝑝, and a decreasing sequence 𝐴𝑖 ⊆ 𝑈 of neighbourhoods that
‘shrink to 𝑝’, in the sense that for all 𝜀 > 0, 𝐴𝑖 ⊆ 𝐵(𝑝, 𝜀) for sufficiently large 𝑖. Then,

|𝜅(𝑝)| = lim
𝑖→∞

area𝑆2(𝑛(𝐴𝑖))
areaΣ(𝐴𝑖)

In other words, the Gauss curvature is an infinitesimal measure of how much the Gauss
map 𝑛 distorts area.
Remark. Around hyperbolic points, the signed area of 𝑛(𝐴𝑖) is reversed, since curves 𝛾 re-
verse direction under 𝑛. We can alternatively define the signed area of 𝑛(𝐴𝑖) to be the area
of 𝑛(𝐴𝑖) if 𝜅 > 0 and the negation of this area if 𝜅 < 0. The above theorem holds when 𝜅 = 0,
but this will not be proven.

Proof. Let 𝜎 be an allowable parametrisation near 𝑝 ∈ Σ. Using 𝜎, we can define the open
sets 𝜎−1(𝐴𝑖) = 𝑉 𝑖 ⊂ 𝑉 . Since the 𝐴𝑖 shrink to 𝑝, we have that⋂𝑉 𝑖 = {(0, 0)}. We have

areaΣ(𝐴𝑖) = ∫
𝑉1
√𝐸𝐺 − 𝐹2 d𝑢 d𝑣 = ∫

𝑉𝑖
‖𝜎𝑢 × 𝜎𝑣‖ d𝑢 d𝑣
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Recall from the chain rule applied to 𝑛 ∘ 𝛾 that

𝐷𝑛|||(𝑢,𝑣)
(𝜎𝑢) = 𝑛𝑢; 𝐷𝑛|||(𝑢,𝑣)

(𝜎𝑣) = 𝑛𝑣

Since 𝜅(𝑝) = 𝜅(𝜎(0, 0)) ≠ 0, 𝑛 ∘ 𝜎∶ 𝑉 → 𝑆2 has derivative of rank 2. This defines an
allowable parametrisation for an open neighbourhood of 𝑛((0, 0)) by the inverse function
theorem. Therefore,

area𝑆2(𝑛(𝐴𝑖)) = ∫
𝑉𝑖
‖𝑛𝑢 × 𝑛𝑣‖ d𝑢 d𝑣

for sufficiently large 𝑖 such that 𝜎−1𝐴𝑖 = 𝑉 𝑖 lies in the open neighbourhood of (0, 0) where
𝑛 ∘ 𝜎 is a diffeomorphism.

∫
𝑉𝑖
‖𝑛𝑢 × 𝑛𝑣‖ d𝑢 d𝑣 = ∫

𝑉𝑖
‖𝐷𝑛(𝜎𝑢) × 𝐷𝑛(𝜎𝑣)‖ d𝑢 d𝑣

= ∫
𝑉𝑖
|det(𝐷𝑛)| ⋅ ‖𝜎𝑢 × 𝜎𝑣‖ d𝑢 d𝑣

= ∫
𝑉𝑖
|𝜅(𝑢, 𝑣)| ⋅ ‖𝜎𝑢 × 𝜎𝑣‖ d𝑢 d𝑣

As 𝜅 is continuous, given 𝜀 > 0 there exists 𝛿 > 0 such that |𝜅(𝑢, 𝑣) − 𝜅(0, 0)| < 𝜀 for all
(𝑢, 𝑣) ∈ 𝐵((0, 0), 𝛿). In particular, for sufficiently large 𝑖, we have

|𝜅(𝑢, 𝑣)| ∈ (|𝜅(𝑝)| − 𝜀, |𝜅(𝑝)| + 𝜀)

Hence,

(|𝜅(𝑝)| − 𝜀)∫
𝑉𝑖
‖𝜎𝑢 × 𝜎𝑣‖ d𝑢 d𝑣 ≤ ∫

𝑉𝑖
|𝜅(𝑢, 𝑣)| ⋅ ‖𝜎𝑢 × 𝜎𝑣‖ d𝑢 d𝑣

≤ (|𝜅(𝑝)| + 𝜀)∫
𝑉𝑖
‖𝜎𝑢 × 𝜎𝑣‖ d𝑢 d𝑣

In other words,
|𝜅(𝑝)| − 𝜀 ≤ area𝑆2(𝑛(𝐴𝑖))

areaΣ(𝐴𝑖)
≤ |𝜅(𝑝)| + 𝜀

Letting 𝑖 → ∞ gives the result as required.

Theorem (theorema egregium). The Gauss curvature of a smooth surface in ℝ3 is isometry
invariant. In other words, if 𝑓∶ Σ1 → Σ2 is a diffeomorphism of surfaces in ℝ3 which is an
isometry, then 𝜅(𝑝) = 𝜅(𝑓(𝑝)) for all 𝑝.
Remark. Isometries rely on only the first fundamental form, but Gauss curvature is defined
using both fundamental forms. We can do a direct proof by simply differentiating the for-
mula and rearranging until the result follows. This proof is given in Part II.
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Alternatively, we can consider a different question: are some allowable parametrisations
of a smooth surface in ℝ3 ‘better’ than others in some way? If we have a parametrisation
𝜎∶ 𝑉 → 𝑈 ⊆ Σ, this defines certain distinguished curves, which are the images of 𝜎(𝑡, 0)
and 𝜎(0, 𝑡). In this sense, looking for a ‘best’ parametrisation is equivalent to looking for
‘best’ distinguished curves near a point. This leads to the study of geodesics. We will later
show that every smooth surface in ℝ3 admits local parametrisations such that the first fun-
damental form has form d𝑢2 + 𝐺 d𝑣2, so 𝐸 = 1 and 𝐹 = 0. We will also see (on an example
sheet) that if such a local parametrisation exists, then 𝜅 can be expressed as a function just
of𝐺. This allows us to approach the proof of the theorema egregium from amore conceptual
way, since we have expressed 𝜅 in terms of the first fundamental form alone.

Theorem (Gauss–Bonnet theorem). If Σ is a compact smooth surface in ℝ3, then

∫
Σ
𝜅 d𝐴Σ = 2𝜋𝜒(Σ)
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5. Geodesics
5.1. Definitions
Recall that we defined, for a smooth curve 𝛾∶ [𝑎, 𝑏] → ℝ3,

length(𝛾) = ∫
𝑏

𝑎
‖𝛾′(𝑡)‖ d𝑡

Definition. The energy of 𝛾 is given by

𝐸(𝛾) = ∫
𝑏

𝑎
‖𝛾′(𝑡)‖2 d𝑡

Definition. Let 𝛾∶ [𝑎, 𝑏] → Σ, where Σ is a smooth surface in ℝ3. A one-parameter vari-
ation (with fixed endpoints) of 𝛾 is a smooth map Γ∶ (−𝜀, 𝜀) × [𝑎, 𝑏] → Σ, such that if
𝛾𝑠 = Γ(𝑠, ⋅ ), then 𝛾0(𝑡) = 𝛾(𝑡), and 𝛾𝑠(𝑎) and 𝛾𝑠(𝑏) are independent of 𝑠.
Definition. A smooth curve 𝛾∶ [𝑎, 𝑏] → Σ is a geodesic if, for every variation (𝛾𝑠) of 𝛾 with
fixed endpoints as above, we have d

d𝑠
||𝑠=0 𝐸(𝛾𝑠) = 0. Alternatively, 𝛾 is a critical point of the

energy functional on curves from 𝛾(𝑎) to 𝛾(𝑏).

5.2. The geodesic equations
Let 𝛾 have image contained within the image of an allowable parametrisation 𝜎∶ 𝑉 → 𝑈 .
Then, for sufficiently small 𝑠, we can write 𝛾𝑠(𝑡) = 𝜎(𝑢(𝑠, 𝑡), 𝑣(𝑠, 𝑡)). Suppose that the first
fundamental form, with respect to 𝜎, is

𝐸 d𝑢2 + 2𝐹 d𝑢 d𝑣 + 𝐺 d𝑣2

Let
𝑅 = 𝐸�̇�2 + 2𝐹�̇� ̇𝑣 + 𝐺 ̇𝑣2

By definition,

𝐸(𝛾𝑠) = ∫
𝑏

𝑎
𝑅 d𝑡

where 𝑅 depends on 𝑠. Hence,
𝜕𝑅
𝜕𝑠 = (𝐸𝑢 ̇𝑢2 + 2𝐹𝑢 ̇𝑢 ̇𝑣 + 𝐺𝑢 ̇𝑣2)𝜕𝑢𝜕𝑠 + (𝐸𝑣 ̇𝑣2 + 2𝐹𝑣�̇� ̇𝑣 + 𝐺𝑣 ̇𝑣2)𝜕𝑣𝜕𝑠

+ 2(𝐸�̇� + 𝐹 ̇𝑣)𝜕�̇�𝜕𝑠 + 2(𝐹�̇� + 𝐺 ̇𝑣)𝜕 ̇𝑣
𝜕𝑠

This gives
d
d𝑠𝐸(𝛾𝑠) = ∫

𝑏

𝑎

𝜕𝑅
𝜕𝑠 d𝑡
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We can integrate by parts. Note that 𝜕𝑢
𝜕𝑠
and 𝜕𝑣

𝜕𝑠
vanish at 𝑎, 𝑏. Hence,

d
d𝑠
|||𝑠=0

𝐸(𝛾𝑠) = ∫
𝑏

𝑎
(𝐴𝜕𝑢𝜕𝑠 + 𝐵𝜕𝑣𝜕𝑠 ) d𝑡

where

𝐴 = 𝐸𝑢�̇�2 + 2𝐹𝑢 ̇𝑢 ̇𝑣 + 𝐺𝑢 ̇𝑣2 − 2 𝜕𝜕𝑡 (𝐸�̇� + 𝐹 ̇𝑣)

𝐵 = 𝐸𝑣 ̇𝑢2 + 2𝐹𝑣�̇� ̇𝑣 + 𝐺𝑣 ̇𝑣2 − 2 𝜕𝜕𝑡 (𝐹�̇� + 𝐺 ̇𝑣)

Corollary. A smooth curve 𝛾∶ [𝑎, 𝑏] → Σ with image in Im𝜎 is a geodesic if and only if it
satisfies the geodesic equations:

d
d𝑡 (𝐸�̇� + 𝐹 ̇𝑣) = 1

2(𝐸𝑢 ̇𝑢2 + 2𝐹𝑢�̇� ̇𝑣 + 𝐺𝑢 ̇𝑣2)
d
d𝑡 (𝐹�̇� + 𝐺 ̇𝑣) = 1

2(𝐸𝑣�̇�
2 + 2𝐹𝑣�̇� ̇𝑣 + 𝐺𝑣 ̇𝑣2)

Note that these equations are evaluated at 𝑠 = 0, so no choice of variation is required.
Remark. Solving a differential equation is a local procedure. The original definition of the
geodesic seems to be a global property. However, we can always consider a sub-curve of 𝛾 to
also be a geodesic, since its variations are variations of 𝛾. So the definition can be thought
of as local.

Energy is sensitive to reparametrisation. If 𝑓, 𝑔∶ [𝑎, 𝑏] → ℝ are smooth, the Cauchy–
Schwarz inequality gives that

(∫
𝑏

𝑎
𝑓𝑔 d𝑡)

2

≤ ∫
𝑏

𝑎
𝑓2 d𝑡 ⋅ ∫

𝑏

𝑎
𝑔2 d𝑡

Let us apply this to 𝑓 = √𝑅, 𝑔 = 1 to find

length(𝛾)2 ≤ 𝐸(𝛾)(𝑏 − 𝑎)

Since equality holds onlywhen the two functions are proportional, wemust have that ‖𝛾′(𝑡)‖
is constant for the equality to hold. In other words, 𝛾must be parametrised proportional to
arc length.

Corollary. If 𝛾 has constant speed and locally minimises length, then it is a geodesic. Fur-
ther, if 𝛾 globally minimises energy, then it must globally minimise length, and is paramet-
rised with constant speed.

Remark. We would like geodesics to be a local property, but not necessarily global length
minimisers. For example, all arcs of great circles will be shown to be geodesics, even if large
arcs are not global length minimisers between fixed endpoints.
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5.3. Geodesics on the plane

The plane ℝ2 has parametrisation 𝜎(𝑢, 𝑣) = (𝑢, 𝑣, 0) and first fundamental form d𝑢2 + d𝑣2.
The geodesic equations here are

̈𝑢 = 0; ̈𝑣 = 0
In particular, the geodesics on the plane are given by

𝑢(𝑡) = 𝛼𝑡 + 𝛽; 𝑣(𝑡) = 𝛾𝑡 + 𝛿

This is a straight line, parametrised at constant speed.

5.4. Geodesics on the sphere
Consider the unit sphere with parametrisation

𝜎(𝑢, 𝑣) = (cos𝑢 cos 𝑣, cos𝑢 sin 𝑣, sin𝑢); 𝑢 ∈ (−𝜋2 ); 𝑣 ∈ (0, 2𝜋)

This has first fundamental form

d𝑢2 + cos2 𝑢 d𝑣2 ⟹ 𝐸 = 1; 𝐹 = 0; 𝐺 = cos2 𝑢

The geodesic equations give

d
d𝑡 (�̇�) =

1
22 cos𝑢 sin𝑢 ̇𝑣2; d

d𝑡 (cos
2 𝑢 ̇𝑣) = 0

This gives
̈𝑢 + sin𝑢 cos𝑢 ̇𝑣2 = 0; ̈𝑣 − 2 tan𝑢�̇� ̇𝑣 = 0

Since geodesics are parametrised at constant speed, we can assume that it is parametrised
at unit speed without loss of generality.

‖𝛾′(𝑡)‖ = 1 ⟹ �̇� + cos2 𝑢 ̇𝑣2 = 1

Hence,
̈𝑣
̇𝑣 = 2 tan𝑢�̇� ⟹ ln ̇𝑣 = −2 ln cos𝑢 + constant ⟹ ̇𝑣 = 𝐶

cos2 𝑢
Substituting into the unit speed equation,

̇𝑢2 = 1 − 𝐶2

cos2 𝑢 ⟹ �̇� =√
cos2 𝑢 − 𝐶2

cos2 𝑢
Then,

̇𝑣
�̇� = d𝑣

d𝑢 = 𝐶
cos𝑢√cos2 𝑢 − 𝐶2

Hence,
𝑣 = ∫ d𝑣

d𝑢 d𝑢 = ∫ 𝐶 sec2 𝑢
√1 − 𝐶2𝑠𝑒𝑐2𝑢

d𝑢
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Using the substitution 𝑤 = 𝐶 tan𝑢
√1−𝐶2

, we find

𝑣 = ∫ 𝑤
1 − 𝑤2 d𝑤 = arcsin𝑤 + constant = arcsin(𝜆 tan𝑢) + 𝛿

for some constants 𝜆, 𝛿. Hence,

sin(𝑣 − 𝛿) = 𝜆 tan𝑢

Rewriting using the angle addition formula,

(sin 𝑣 cos𝑢)⏟⎵⎵⏟⎵⎵⏟
𝑥

cos 𝛿 − (cos 𝑣 cos𝑢)⏟⎵⎵⏟⎵⎵⏟
𝑦

sin 𝛿 − 𝜆 sin𝑢⏟
𝑧

= 0

Hence, the geodesic 𝛾 lies on a plane through the origin, since this is a linear equation in
𝑥, 𝑦, 𝑧. Such planes intersect the sphere in great circles.

5.5. Geodesics on the torus
Consider the surface of revolution of a circle in the 𝑥𝑧-plane centred at (𝑎, 0, 0) about the 𝑧
axis, giving a torus. An allowable parametrisation for this surface is

𝜎(𝑢, 𝑣) = ((𝑎 + cos𝑢) cos 𝑣, (𝑎 + cos𝑢) sin 𝑣, sin𝑢)

The first fundamental form is

d𝑢2 + (𝑎 + cos𝑢)2 d𝑣2 ⟹ 𝐸 = 1; 𝐹 = 0; 𝐺 = (𝑎 + cos𝑢)2

Note that if we were to take 𝑎 = 0, we would arrive at the unit sphere and its first fun-
damental form. We can follow the same procedure as above with the sphere, or formally
replace cos𝑢 with 𝑎 + cos𝑢 in the result.

d𝑣
d𝑢 = 𝐶

(𝑎 + cos𝑢)√(𝑎 + cos𝑢)2 − 𝐶2

which cannot be integrated using classical functions. This leads to the study of elliptic func-
tions.

5.6. Equivalent characterisation of geodesics
We have so far restricted our analysis to the first fundamental form, without considering its
embedding in ℝ3. Intuitively, we know that straight lines in ℝ2 are not just locally shortest
but also locally straightest. We would expect this to hold for other surfaces as well. We can
characterise this notion via stating that the change in the tangent vector to a curve is as small
as it could be, subject to the constraint that it lies on the surface.
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Proposition. Let Σ be a smooth surface in ℝ3. A smooth curve 𝛾∶ [𝑎, 𝑏] → Σ is a geodesic
if and only if ̈𝛾(𝑡) is everywhere normal to the surface Σ.

Remark. This proposition makes use of the tangent plane, a notion that exists only because
we have an embedding in ℝ3. Note that

d
d𝑡 ⟨ ̇𝛾, ̇𝛾⟩ = 2⟨ ̇𝛾⏟

tangent to Σ
, ̈𝛾⏟
normal to Σ

⟩ = 0

Hence, ⟨ ̇𝛾, ̇𝛾⟩ is constant, giving that geodesics are parametrised proportional to arc length.

Proof. The property of being a geodesic as we previously defined is a local property, and
so is the condition in the proposition. Hence, we may work entirely within an allowable
parametrisation 𝜎∶ 𝑉 → 𝑈 . Suppose 𝛾(𝑡) = 𝜎(𝑢(𝑡), 𝑣(𝑡)). Hence,

̇𝛾 = 𝜎𝑢�̇� + 𝜎𝑣 ̇𝑣

̈𝛾 is normal to Σwhen it is orthogonal to the tangent plane, which is spanned by 𝜎𝑢, 𝜎𝑣. This
is true if and only if

⟨ dd𝑡 (𝜎𝑢�̇� + 𝜎𝑣 ̇𝑣), 𝜎𝑢⟩ = 0 = ⟨ dd𝑡 (𝜎𝑢�̇� + 𝜎𝑣 ̇𝑣), 𝜎𝑣⟩

We will prove the first equality. This can be rewritten

d
d𝑡 ⟨𝜎𝑢 ̇𝑢 + 𝜎𝑣 ̇𝑣, 𝜎𝑢⟩ − ⟨𝜎𝑢 ̇𝑢 + 𝜎𝑣 ̇𝑣, dd𝑡𝜎𝑢⟩ = 0

Note that ⟨𝜎𝑢, 𝜎𝑢⟩ = 𝐸 and ⟨𝜎𝑢, 𝜎𝑣⟩ = 𝐹.

d
d𝑡 (𝐸�̇� + 𝐹 ̇𝑣) − ⟨𝜎𝑢 ̇𝑢 + 𝜎𝑣 ̇𝑣, 𝜎𝑢𝑢�̇� + 𝜎𝑢𝑣 ̇𝑣⟩ = 0

Hence,

d
d𝑡 (𝐸�̇� + 𝐹 ̇𝑣) − [ ̇𝑢2 ⟨𝜎𝑢, 𝜎𝑢𝑢⟩ + �̇� ̇𝑣(⟨𝜎𝑢, 𝜎𝑢𝑣⟩ + ⟨𝜎𝑣, 𝜎𝑢𝑢⟩) + ̇𝑣2 ⟨𝜎𝑣𝜎𝑢𝑣⟩] = 0

Note that 𝐸𝑢 = 2 ⟨𝜎𝑢, 𝜎𝑢𝑢⟩, 𝐹𝑢 = ⟨𝜎𝑢, 𝜎𝑢𝑣⟩ + ⟨𝜎𝑣, 𝜎𝑢𝑢⟩, and 𝐺𝑢 = 2 ⟨𝜎𝑣, 𝜎𝑢𝑣⟩. This gives

d
d𝑡 (𝐸�̇� + 𝐹 ̇𝑣) = 1

2(𝐸𝑢 ̇𝑢2 + 2𝐹𝑢�̇� ̇𝑣 + 𝐺𝑢 ̇𝑣2)

which is the first of the geodesic equations. By symmetry, we find the second geodesic equa-
tion similarly.
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5.7. Planes of symmetry
Let Σ be a smooth surface in ℝ3 such that there exists a plane Π ⊆ ℝ3 such that Π ∩ Σ is a
smooth embedded curve 𝐶 ⊆ Σ, and Σ is setwise preserved by reflection in the plane Π. We
will show that 𝐶 is a geodesic when parametrised at constant speed. Consider a point 𝑝 on
𝐶. We can think of ℝ3 = Π ⊕ Π⟂, where we change coordinates such that 𝑝 is the origin.
We can also write ℝ3 = 𝑇𝑝Σ ⊕ ℝ𝑛𝑝, where ℝ𝑛𝑝 is the vector subspace of ℝ3 generated by
𝑛𝑝. Clearly, reflection inΠ acts onΠ by the identity, and onΠ⟂ by −1. Since reflection inΠ
fixes Σ setwise and fixes 𝑝, it must also preserve the subspace 𝑇𝑝Σ. Hence it also preserves
ℝ𝑛𝑝, soℝ𝑛𝑝 ⊆ Π, sinceΠ is not the identity on 𝑇𝑝Σ. Now, let us parametrise𝐶 locally near 𝑝
using 𝑡 ↦ 𝛾(𝑡) ∈ 𝐶 at constant speed. Since 𝛾(𝑡) ⊆ Π, we have ̇𝛾(𝑡), ̈𝛾(𝑡) ∈ Π. 𝛾 has constant
speed, so ⟨ ̇𝛾, ̈𝛾⟩ = 0. Hence ̇𝛾 lies in Π ∩ 𝑇𝑝Σ and ̈𝛾 is orthogonal to this and lies in Π, so lies
in ℝ𝑛𝑝 ⊆ Π. Hence 𝛾 is indeed a geodesic.

In particular, arcs of great circles are geodesics, since they lie in planes of symmetry.

5.8. Surfaces of revolution
Consider the surface of revolution given by 𝜂(𝑢) = (𝑓(𝑢), 0, 𝑔(𝑢)) where 𝜂 is smooth and
injective, and 𝑓(𝑢) > 0, rotated about the 𝑧 axis.

Definition. A circle obtained by rotating a point of 𝜂 is called a parallel. A curve obtained
by rotating 𝜂 itself by a fixed angle about the 𝑧 axis is called ameridian.

A plane in ℝ3 containing the 𝑧 axis is a plane of symmetry, hence meridians are geodesics
by the previous discussion. Not all parallels are geodesics.

Lemma. A parallel given by 𝑢 = 𝑢0 is a geodesic when parametrised at constant speed if
and only if 𝑓′(𝑢0) = 0.

Proof. Consider the allowable parametrisation

𝜎(𝑢, 𝑣) = (𝑓(𝑢) cos 𝑣, 𝑓(𝑢) sin 𝑣, 𝑔(𝑢))

where 𝑢 ∈ (𝑎, 𝑏) and 𝑣 ∈ (0, 2𝜋). The first fundamental form is

[(𝑓′)2 + (𝑔′)2] d𝑢2 + 𝑓2 d𝑣2

If without loss of generality we choose to parametrise 𝜂 by arc length, this becomes

d𝑢2 + 𝑓2 d𝑣2 ⟹ 𝐸 = 1; 𝐹 = 0; 𝐺 = 𝑓2

The geodesic equations are

d
d𝑡 �̇� = �̈� = 𝑓𝑓𝑢 ̇𝑣2; d

d𝑡 (𝑓
2 ̇𝑣) = 0
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and �̇�2 + 𝑓2 ̇𝑣2 is a nonzero constant. Given that we want to only consider parallels of the
surface of revolution, we can impose the constraint that 𝑢 = 𝑢0 is constant. Hence, the
constant speed condition gives that

̇𝑣 = constant
𝑓(𝑢0)

= constant

The second equation holds automatically. The first equation is

0 = 𝑓(𝑢0)𝑓𝑢(𝑢0) ⋅ constant

So this holds exactly when 𝑓𝑢(𝑢0) = 0.

Consider a curve 𝛾(𝑡) on Σ, making angle 𝜃 with the parallel of radius 𝜌 = 𝑓.

Proposition (Clairaut’s relation). If 𝛾 is a geodesic, then 𝜌 cos 𝜃 is constant along 𝛾.

Proof. Let 𝛾(𝑡) = 𝜎(𝑢(𝑡), 𝑣(𝑡)), so ̇𝛾 = 𝜎𝑢 ̇𝑢 + 𝜎𝑣 ̇𝑣. The tangent vector to the parallel is 𝜎𝑣. By
the earlier discussion on angles in terms of the first fundamental form,

cos 𝜃 = ⟨𝜎𝑣, 𝜎𝑢�̇� + 𝜎𝑣 ̇𝑣⟩
‖𝜎𝑣‖ ⋅ ‖𝜎𝑢 ̇𝑢 + 𝜎𝑣 ̇𝑣‖

If 𝛾 is parametrised by arc length, ‖ ̇𝛾‖ = 1, so ‖𝜎𝑢�̇� + 𝜎𝑣 ̇𝑣‖ = 1. So, using our values for 𝐹, 𝐺
above,

cos 𝜃 = |𝑓(𝑢) ̇𝑣| = 𝜌 ̇𝑣

The second geodesic equation is exactly

𝜌 cos 𝜃 = constant

Example. Usually, for a surface of revolution, we take the assumption that 𝜂 never inter-
sects the 𝑧-axis, or that 𝑓 is positive. This ensures that all points on the surface are locally
smooth. However, we can allow 𝜂 to meet the 𝑧-axis orthogonally, as in the ellipsoid or
sphere.

Consider an ellipsoid of revolution. 𝜌 cos 𝜃 is constant along a geodesic 𝛾. Suppose that at
some point 𝛾 intersects a parallel of radius 𝜌0 at angle 𝜃0, and that 𝛾 is not a meridian (so
cos 𝜃 ≠ 0). Hence 𝜃0 ∈ [0, 𝜋

2
). In particular, for 𝜌 cos 𝜃 to be constant, wemust have that 𝜌 is

bounded below. A geodesic which is not a meridian is therefore ‘trapped’ between parallels
corresponding to the bound on the size of 𝜌. In particular, any geodesic through a pole is a
meridian.
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5.9. Local existence of geodesics
It is difficult to solve the geodesic equations globally. We can often intead prove local results
about any geodesics that may arise.

Recall Picard’s theorem from Analysis and Topology. Let 𝐼 = [𝑡0 − 𝑎, 𝑡0 + 𝑎] ⊆ ℝ, 𝐵 =
{𝑥∶ ‖𝑥 − 𝑥0‖ ≤ 𝑏} ⊆ ℝ𝑛, and 𝑓∶ 𝐼×𝐵 → ℝ𝑛 that is continuous, and Lipschitz in the second
variable.

‖𝑓(𝑡, 𝑥1) − 𝑓(𝑡, 𝑥2)‖ ≤ 𝑁‖𝑥1 − 𝑥2‖

Then the differential equation d𝑥
d𝑡

= 𝑓(𝑡, 𝑥) with 𝑥(𝑡0) = 𝑥0 has a unique solution for

some time interval |𝑡 − 𝑡0| < ℎ, where ℎ = min {𝑎, 𝑏
𝑠
} where 𝑠 = sup ‖𝑓‖. Further, if 𝑓

is smooth in all parameters, then the solution to the differential equation is smooth and
depends smoothly on the initial condition.

Recall the geodesic equations:

d
d𝑡 (𝐸�̇� + 𝐹 ̇𝑣) = 1

2(𝐸𝑢 ̇𝑢2 + 2𝐹𝑢�̇� ̇𝑣 + 𝐺𝑢 ̇𝑣2)
d
d𝑡 (𝐹�̇� + 𝐺 ̇𝑣) = 1

2(𝐸𝑣�̇�
2 + 2𝐹𝑣�̇� ̇𝑣 + 𝐺𝑣 ̇𝑣2)

We can write this as
(𝐸 𝐹
𝐹 𝐺) (

̈𝑢
̈𝑣) = 𝑅

where 𝑅 is composed of smooth functions of 𝑢, 𝑣. The matrix on the left hand side is invert-
ible, and the inverse map 𝐴 ↦ 𝐴−1 onmatrices is smooth. Hence, we can write the geodesic
equations in the form

�̈� = 𝐴(𝑢, 𝑣, �̇�, ̇𝑣); ̈𝑣 = 𝐵(𝑢, 𝑣, �̇�, ̇𝑣)
In the usual way we can turn second-order equations into first-order equations by introdu-
cing 𝑝 = �̇�, 𝑞 = ̇𝑣, and we find

̇𝑢 = 𝑝; ̇𝑣 = 𝑞; ̇𝑝 = 𝐴(𝑢, 𝑣, 𝑝, 𝑞); ̇𝑞 = 𝐵(𝑢, 𝑣, 𝑝, 𝑞)

This is a systemof first-order ordinary differential equations as governed by Picard’s theorem.
Since 𝐴, 𝐵 are smooth, a local bound on ‖𝐷𝐴‖ and ‖𝐷𝐵‖ will give the required Lipschitz
condition.

Corollary. Let Σ be a smooth surface in ℝ3. For 𝑝 ∈ Σ and 𝑣 ∈ 𝑇𝑝Σ nonzero, then there
exists 𝜀 > 0 and a geodesic 𝛾∶ [0, 𝜀) → Σ such that

𝛾(0) = 𝑝; ̇𝛾(0) = 𝑣

Moreover, this geodesic depends smoothly on 𝑝, 𝑣.
The local existence of geodesics gives rise to allowable parametrisations of Σwith ‘nice’ prop-
erties in terms of the first fundamental form. Let 𝑝 ∈ Σ, and consider a geodesic arc 𝛾 start-
ing at 𝑝 and parametrised by arc length. At each point 𝛾(𝑡) for small 𝑡 > 0, we can consider a

585



X. Geometry

geodesic arc 𝛾𝑡 starting at 𝛾(𝑡), and 𝛾′𝑡(0) is orthogonal to 𝛾′(𝑡), and also parametrised by arc
length. Now, we define 𝜎(𝑢, 𝑣) = 𝛾𝑣(𝑢), which is defined for 𝑢 ∈ [0, 𝜀) and 𝑣 ∈ [0, 𝛿).
Lemma. For 𝜀, 𝛿 sufficiently small, 𝜎∶ (𝑢, 𝑣) ↦ 𝛾𝑣(𝑢) defines an allowable parametrisation
of an open set in Σ, taking the interior of the domain.

Proof. Smoothness follows from the addendum to Picard’s theorem above. At the origin
(0, 0), by construction we have 𝜎𝑢, 𝜎𝑣 orthogonal. Hence, they stay linearly independent for
sufficiently small 𝜀, 𝛿. So 𝐷𝜎 has full rank, and (on a smaller set if necessary) 𝜎 is injective.
So 𝜎 is allowable.

Corollary. Any smooth surface Σ in ℝ3 admits local parametrisations for which the first
fundamental form has form d𝑢2 + 𝐺(𝑢, 𝑣) d𝑣2, so 𝐸 = 1 and 𝐹 = 0.

Proof. Consider the parametrisation 𝜎(𝑢, 𝑣) = 𝛾𝑣(𝑢). For 𝑣0 fixed, the curve 𝑢 ↦ 𝛾𝑣0(𝑢) is a
geodesic parametrised at unit speed, so 𝐸 = 1. One of the geodesic equations is

d
d𝑡 (𝐹�̇� + 𝐺 ̇𝑣) = 1

2(𝐸𝑣�̇�
2 + 2𝐹𝑣 ̇𝑢 ̇𝑣 + 𝐺𝑣 ̇𝑣2)

and consider 𝑣(𝑡) = 𝑣0, 𝑢(𝑡) = 𝑡. 𝐸𝑣 = ̇𝑣 = 0 and �̇� = 1, so
d
d𝑡𝐹 = 0 ⟹ 𝐹𝑢�̇� = 0 ⟹ 𝐹𝑢 = 0

So 𝐹 is independent of 𝑢. At 𝑢 = 0, then by construction of 𝛾𝑣 as being orthogonal to 𝛾 at
𝛾(𝑣), we see 𝐹 = 0.

These coordinates are called geodesic normal coordinates. Note that by fixing 𝑢 and letting
𝑣 vary, the curve obtained is typically not a geodesic, except for 𝑢 = 0 which is 𝛾 itself. In
these coordinates, we can also find

𝐺(0, 𝑣) = 1; 𝐺𝑢(0, 𝑣) = 0

The first result holds since 𝜎𝑣 has unit length at 𝑢 = 0. The second result holds because
𝑢 = 0 yields a geodesic with arc length parametrisation, and then we can use one of the
geodesic equations to find

d
d𝑡 (𝐸�̇� + 𝐹 ̇𝑣) = 1

2(𝐸𝑢 ̇𝑢2 + 2𝐹𝑢�̇� ̇𝑣 + 𝐺𝑢 ̇𝑣2) ⟹ 0 = 1
2𝐺𝑢(0, 𝑣)

5.10. Surfaces of constant curvature
In the example sheets, we show that for a smooth surfaceΣ inℝ3with allowable parametrisa-
tion for which 𝐸 = 1 and 𝐹 = 0, we have the following result for the Gauss curvature.

𝜅 =
−(√𝐺)

𝑢𝑢

√𝐺
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If 𝑎∶ ℝ3 → ℝ3 is a dilation 𝑎(𝑥, 𝑦, 𝑧) = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧), then

𝜅𝑎(Σ) =
1
𝑎2 𝜅Σ

since 𝐸, 𝐹, 𝐺 rescale by 𝑎2, and 𝐿,𝑁,𝑀 rescale by 𝑎. This matches the results previously
found for spheres of varying radii. By dilating, to understand surfaces of constant curvature
it suffices to consider surfaces with constant curvature ±1 or 0.
Proposition. Let Σ be a smooth surface in ℝ3. Then,

(i) if 𝜅 ≡ 0, then Σ is locally isometric to (ℝ2, d𝑢2 + d𝑣2);

(ii) if 𝜅 ≡ 1, then Σ is locally isometric to (𝑆2, d𝑢2 + cos2 𝑢 d𝑣2).

Proof. Σ admits an allowable parametrisation with 𝐸 = 1 and 𝐹 = 0 by using geodesic
normal coordinates, so

𝜅 = −√𝐺𝑢𝑢

√𝐺
; 𝐺(0, 𝑣) = 1; 𝐺𝑢(0, 𝑣) = 0

If 𝜅 ≡ 0, we have √𝐺𝑢𝑢 = 0, so √𝐺 = 𝐴(𝑣)𝑢 + 𝐵(𝑣), and the boundary conditions give
𝐴 ≡ 0, 𝐵 ≡ 1. In particular, 𝐺 ≡ 1. The fundamental form then is d𝑢2 + d𝑣2, which is that
of ℝ2.

If 𝜅 ≡ 1, we find (√𝐺)
𝑢𝑢
+√𝐺 = 0 so√𝐺 = 𝐴(𝑣) sin𝑢+𝐵(𝑣) cos𝑢. The boundary conditions

then imply that 𝐴 ≡ 0, 𝐵 ≡ 1 and hence the fundamental form is d𝑢2 + cos2 𝑢 d𝑣2. This
matches the first fundamental form of a sphere with parametrisation

𝜎(𝑢, 𝑣) = (cos𝑢 cos 𝑣, cos𝑢 sin 𝑣, sin𝑢)

Remark. If 𝜅 ≡ −1, wewill find the first fundamental formd𝑢2+cosh2 𝑢 d𝑣2. There exists an
object known as the tractoid, which is a smooth surface inℝ3, and has this first fundamental
form. We could alternatively choose not to embed this surface in ℝ3.

In fact, the change of variables 𝑣 = 𝑒𝑣 tanh𝑢,𝑤 = 𝑒𝑣 sech𝑢 turns the fundamental form
d𝑢2 + cosh2 𝑢 d𝑣2 into d𝑉2+d𝑊2

𝑊2 , which is a ‘standard’ presentation of the first fundamental
form, which we will see more of later.
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6. Riemannian metrics
6.1. Definitions
Definition. Let 𝑉 ⊆ ℝ2 be an open set. An (abstract) Riemannian metric is a smooth map
from 𝑉 to the set of positive definite symmetric bilinear forms, given by

𝑣 ↦ (𝐸(𝑣) 𝐹(𝑣)
𝐹(𝑣) 𝐺(𝑣))

such that 𝐸 > 0, 𝐺 > 0, 𝐸𝐺 − 𝐹2 > 0. The image of this map can be viewed as an open
subset of ℝ4.

If 𝑣 is a vector at 𝑝 ∈ 𝑉 , we can compute its infinitesimal length by

‖𝑣‖2 = 𝑣⊺ (𝐸(𝑣) 𝐹(𝑣)
𝐹(𝑣) 𝐺(𝑣)) 𝑣

Thus, if 𝛾∶ [𝑎, 𝑏] → 𝑉 is smooth,

length(𝛾) = ∫
𝑏

𝑎
(𝐸�̇�2 + 2𝐹�̇� ̇𝑣 + 𝐺 ̇𝑣2)

1
2 d𝑡

where 𝛾(𝑡) = (𝑢(𝑡), 𝑣(𝑡)).

Definition. Let Σ be an abstract smooth surface, so Σ = ⋃𝑖∈𝐼 𝑈 𝑖 for open sets 𝑈 𝑖, with
charts 𝜑𝑖 ∶ 𝑈 𝑖 → 𝑉 𝑖 ⊆ ℝ2 which are homeomorphisms, and with smooth transition maps
𝜑𝑖𝜑−1𝑗 ∶ 𝜑𝑗(𝑈 𝑖 ∩ 𝑈𝑗) → 𝜑𝑖(𝑈 𝑖 ∩ 𝑈𝑗). A Riemannian metric on Σ, usually called 𝑔 or d𝑠2, is
a choice of Riemannian metric in the above sense on each 𝑉 𝑖, which are compatible in the
following sense. Let 𝜎 = 𝜑−1𝑖 and �̃� = 𝜑−1𝑗 for some 𝑖, 𝑗, and define 𝑓 = �̃�−1 ∘ 𝜎. Then we
require

(𝐷𝑓)⊺ (𝐸 𝐹
𝐹 𝐺) (𝐷𝑓) = (𝐸 𝐹

𝐹 𝐺)

So 𝐷𝑓 defines an isometry from an open set in the chart (𝑈, 𝜑(𝑈) = 𝑉) to one in the chart
(𝑈, 𝜑(𝑈) = 𝑉).

This compatibility condition is the transition law for first fundamental forms for smooth
surfaces in ℝ3.

Example. Recall the torus 𝑇2 = ℝ2
⟋ℤ2.

𝑏−1

𝑎
𝑏
𝑎−1
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6. Riemannian metrics

Wehave an atlas of charts for which the transitionmaps are the restrictions of translations of
open subsets of ℝ2. For each 𝑉 𝑖 ⊆ ℝ2, we associate the natural Euclidean metric d𝑢2 + d𝑣2.
If 𝑓 is a translation, 𝐷𝑓 is the identity, and so

(𝐷𝑓)⊺𝐼(𝐷𝑓) = 𝐼

holds trivially. So this gives a global Riemannian metric on 𝑇2. This metric is flat, since it is
locally isometric to ℝ2 at all points.

Conversely, consider the torus of revolution embedded in ℝ3. As a compact smooth surface
in ℝ3, it must contain an elliptic point. Hence, the flat Riemannian metric described above
is not the same (up to isometry) as the metric obtained by any possible embedding of the
torus in ℝ3.

The real projective plane ℝℙ2 admits a Riemannian metric with constant curvature +1. We
have constructed a smooth atlas for ℝℙ2 where the charts were of the form (𝑈, 𝜑), with
𝑈 = 𝑞�̂� and 𝑞∶ 𝑆2 → ℝℙ2 the quotient map, �̂� ⊆ 𝑆2 open and contained within an open
hemisphere, and 𝜑∶ 𝑈 ∶ 𝑈 → 𝑉 ⊆ ℝ2 is given by ̂𝜑 ∘ 𝑞−1||𝑈 and ̂𝜑∶ �̂� → 𝑉 a chart on 𝑆2.
The transition maps for this atlas were found to be locally the identity, or induced from the
antipodal map. The antipodal map from 𝑆2 to 𝑆2 is an isometry, so both types of transition
maps preserve the usual round metric on 𝑆2.
In the first example sheet, we consider the Klein bottle. This has an atlas such that all trans-
itionmaps are either translations or translations composedwith a reflection. These preserve
the flat metric in ℝ2, so the Klein bottle inherits a flat Riemannian metric. The Klein bottle
and ℝℙ2 are not embedded in ℝ3, so we could not construct a ‘non-abstract’ Riemannian
metric.

Definition. Let (Σ1, 𝑔1), (Σ2, 𝑔2) be abstract smooth surfaces with abstract Riemannianmet-
rics. A diffeomorphism 𝑓∶ Σ1 → Σ2 is an isometry if it preserves the lengths of all curves,
where lengths are taken with respect to these abstract Riemannian metrics.

Example. If (Σ2, 𝑔2) is given, and 𝑓∶ Σ1 → Σ2 is a diffeomorphism, we can equip Σ1 with a
metric known as the pullbackmetric 𝑔1 = 𝑓⋆𝑔2 that gives that 𝑓 is an isometry.

6.2. The length metric
Definition. Let (Σ, 𝑔) be a connected abstract smooth surface with an abstract Riemannian
metric. The length metric is defined by

𝑑𝑔(𝑝, 𝑞) = inf
𝛾
𝐿(𝛾)

where 𝛾 varies over piecewise smooth paths in Σ from 𝑝 to 𝑞, and 𝐿 is length computed using
𝑔.
Proposition. Let (Σ, 𝑔) be a connected abstract smooth surface with an abstract Rieman-
nianmetric. Then 𝑑𝑔 is indeed ametric, and 𝑑𝑔 induces a topology on Σ that agrees with the
given topology.
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Proof. Let 𝑝, 𝑞 ∈ Σ. We will show that there exists some piecewise smooth path 𝛾 from 𝑝
to 𝑞, so 𝑑𝑔(𝑝, 𝑞) is well-defined and finite. Connected surfaces are path-connected. There
exists a continuous path 𝛾 and a finite set of charts (𝑈 𝑖, 𝜑𝑖)with associated parametrisations
𝜎𝑖 = 𝜑−1𝑖 ∶ 𝑉 𝑖 → 𝑈 𝑖 ⊂ Σ such that Im 𝛾 ⊆ ⋃𝑁

𝑖=1𝑈 𝑖. Consider points

𝑝 = 𝑥0 ∈ 𝑈1, 𝑥1 ∈ 𝑈1 ∩ 𝑈2, 𝑥2 ∈ 𝑈2 ∈ 𝑈3,… , 𝑞 = 𝑥𝑁 ∈ 𝑈𝑁

Smooth paths in 𝑉 𝑖 from 𝜑𝑖(𝑥𝑖) to 𝜑𝑖+1(𝑥𝑖+1) exist, since smooth paths between two points
in ℝ2 exist. Since the atlas is smooth, being a smooth path in some 𝑈 𝑖 is the same as being
smooth in 𝑈 𝑖+1 whenever 𝑈 𝑖 and 𝑈 𝑖+1 intersect, since the transition maps are smooth. So
𝑝, 𝑞 ∈ Σ are joined by some piecewise smooth path.

For any piecewise smooth path from 𝑝 to 𝑞 there exists the inverse path parametrised in the
opposite direction, which has the same length. We can also concatenate paths from 𝑝 to 𝑞
and from 𝑞 to 𝑟, with length equal to the sum of the lengths. In both cases, the new paths
are piecewise smooth. This then implies that 𝑑𝑔 is symmetric, and satisfies the triangle
inequality.

To show 𝑑𝑔 is a metric, it now suffices to show that 𝑑𝑔(𝑝, 𝑞) = 0 implies 𝑝 = 𝑞, since the
converse is trivial. Let 𝑝 ∈ Σ and fix a chart (𝑈, 𝜑) at 𝑝. Without loss of generality let
𝑉 = 𝐵(0, 1), and 𝜑(𝑝) = 0. If 𝑞 ≠ 𝑝 ∈ Σ, there exists 𝜀 > 0 such that 𝑞 ∉ 𝜑−1(𝐵(0, 𝜀)).
Suppose 𝛾∶ [0, 1] → Σ is a piecewise smooth path from 𝑝 to 𝑞. Certainly, 𝛾must escape the
disc 𝜑−1(𝐵(0, 𝜀)), since it must reach 𝑞. Length along paths is additive, so by the triangle
inequality, it suffices to show that there exists 𝛿 > 0 such that 𝑑𝑔(𝑝, 𝑟) > 𝛿 for all 𝑟 ∈
𝜕𝜑−1(𝐵(0, 𝜀)) = 𝜑−1{circle of radius 𝜀}. The data on the Riemannian metric 𝑔 includes the

non-degenerate symmetric bilinear form (𝐸𝑧 𝐹𝑧
𝐹𝑧 𝐺𝑧

) for all 𝑧 ∈ 𝐵(0, 𝜀) ⊆ 𝑉 . We also have

the usual Euclidean inner product on the disc, (1 0
0 1). For all 𝑧 ∈ 𝐵(0, 𝜀), these matrices

are positive definite. Since 𝐵(0, 𝜀) is compact, there exists 𝛿 > 0 such that (𝐸𝑧 − 𝛿 𝐹𝑧
𝐹𝑧 𝐺𝑧 − 𝛿)

is still positive definite for all 𝑧 ∈ 𝐵(0, 𝜀). In other words, the determinant 𝐸𝐺 − 𝐹2 >
0 for all 𝑧 ∈ 𝐵(0, 𝜀), which is compact, so it is bounded below by some positive number.
Hence, length𝑔( ̂𝛾) ≥ length𝛿⋅Euclidean( ̂𝛾) for any ̂𝛾 contained withing 𝐵(𝑜, 𝜀). Taking ̂𝛾 =
𝜑[𝛾 ∩ 𝜑−1(𝐵(𝑜, 𝜀))], which is the part of 𝛾 in 𝐵(0, 𝜀) with respect to the chart, we have that
length𝛿⋅Euclidean( ̂𝛾) ≥ 𝛿𝜀, so 𝑑𝑔(𝑝, 𝑞) ≥ 𝛿𝜀.

Remark. The last step of the argument for the proof above, comparing the inner products

(𝐸𝑧 𝐹𝑧
𝐹𝑧 𝐺𝑧

) and (1 0
0 1) can be modified to show that 𝑑𝑔 induces a topology on Σ that agrees

with the given topology, which is given by local homeomorphisms to ℝ2 everywhere.
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6.3. The hyperbolic metric
Definition. Let

𝐷 = 𝐵(0, 1) = {𝑧 ∈ ℂ∶ |𝑧| < 1}
The abstract Riemannian metric 𝑔hyp on 𝐷 is given by

4(d𝑢2 + d𝑣2)
(1 − 𝑢2 − 𝑣2)2 =

4|d𝑧|2

(1 − |𝑧|2)
2

Since there is only one chart, this holds for all of𝐷. In particular, if 𝛾∶ [0, 1] → 𝐷 is smooth,
then

𝐿𝑔hyp(𝛾) = 2∫
1

0

| ̇𝛾(𝑡)|
1 − |𝛾(𝑡)|2

d𝑡

If 𝛾(𝑡) = (𝑢(𝑡), 𝑣(𝑡)), we can write

𝐿(𝛾) = 2∫
1

0

( ̇𝑢2 + ̇𝑣2)
1
2

1 − 𝑢2 − 𝑣2 d𝑡

This is very similar to a first fundamental form with 𝐸 = 𝐺 = 4
(1−𝑢2−𝑣2)2

and 𝐹 = 0, but we
do not claim that this fundamental form arises from an embedding in ℝ3.

Note that the flat metric on ℝ2 and the usual round metric on 𝑆2 have large and transitive
isometry groups. We will show that this metric also induces a large symmetry group, which
is induced by the Möbius group. Recall that

Möb = {𝑧 ↦ 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 ∶ (𝑎 𝑏

𝑐 𝑑) ∈ 𝐺𝐿(2, ℂ)} ↷ ℂ ∪ {∞}

Lemma. The subgroup of the Möbius group that preserves 𝐷,

Möb(𝐷) = {𝑇 ∈ Möb∶ 𝑇(𝐷) = 𝐷}

is also given by

Möb(𝐷) = {𝑧 ↦ 𝑒𝑖𝜃 𝑧 − 𝑎
1 − 𝑎𝑧 ∶ |𝑎| < 1} = {(𝑎 𝑏

𝑏 𝑎) ∈ Möb∶ |𝑎|2 − |𝑏|2 = 1}

Proof. Note that

|||
𝑧 − 𝑎
1 − 𝑎𝑧

||| = 1 ⟺ (𝑧 − 𝑎)(𝑧 − 𝑎) = (1 − 𝑎𝑧)(1 − 𝑎𝑧)

⟺ 𝑧𝑧 − 𝑎𝑧 − 𝑎𝑧 + 𝑎𝑎 = 1 − 𝑎𝑧 − 𝑎𝑧 + 𝑎𝑎𝑧𝑧
⟺ |𝑧|2(1 − |𝑎|2) = 1 − |𝑎|2

⟺ |𝑧| = 1
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So these maps of the form
𝑧 ↦ 𝑒𝑖𝜃 𝑧 − 𝑎

1 − 𝑎𝑧
do indeed preserve the unit circle, and 𝑎 ∈ 𝐷 is mapped to 0 ∈ 𝐷. Hence, it preserves the
entire disc.

Lemma. The Riemannian metric 𝑔hyp is invariant under Möb(𝐷). In other words, the
Möbius group Möb(𝐷) acts by isometries on 𝐷.

Proof. Möb(𝐷) is generated by 𝑧 ↦ 𝑒𝑖𝜃 and 𝑧 ↦ 𝑧−𝑎
1−𝑎𝑧

. The rotations preserve 𝑔hyp, since it
depends only on |𝑧| and not 𝑧 itself. For the second type of transformation, let 𝑤 = 𝑧−𝑎

1−𝑎𝑧
.

Here,
d𝑤 = d𝑧

1 − 𝑎𝑧 +
𝑧 − 𝑎

(1 − 𝑎𝑧)2𝑎 d𝑧 =
d𝑧

(1 − 𝑎𝑧)2 (1 − |𝑎|2)

Then,
|d𝑤|

1 − |𝑤|2
= |d𝑧|
||1 − 𝑎𝑧||2

⋅ 1 − |𝑎|2

1 − ||
𝑧−𝑎
1−𝑎𝑧

||
2 =

|d𝑧|(1 − |𝑎|2)
||1 − 𝑎𝑧||2 − |𝑧 − 𝑎|2

= |d𝑧|
1 − |𝑧|2

Hence the hyperbolic metric, which is a function of this |d𝑧|
1−|𝑧|2

, is also invariant under this
change of variables.

Lemma. On (𝐷, 𝑔hyp),
(i) every pair of points in (𝐷, 𝑔hyp) is joined by a unique geodesic up to reparametrisation;
(ii) the geodesics are diameters of the disc and circular arcs orthogonal to the boundary

𝜕𝐷.
The whole geodesics (ones that are defined on ℝ) are called hyperbolic lines.

Proof. Let 𝑎 ∈ ℝ+ ∩ 𝐷 and 𝛾 a smooth path from the origin to 𝑎. Let 𝛾(𝑡) = (𝑢(𝑡), 𝑣(𝑡)).
Note that Re(𝛾)(𝑡) = (𝑢(𝑡), 0) is also a smooth path from the origin to 𝑎. By definition of the
hyperbolic metric,

length(𝛾) = ∫
1

0

2| ̇𝛾|
1 − |𝛾|2

d𝑡 = ∫
1

0

2√ ̇𝑢2 + ̇𝑣2
1 − 𝑢2 − 𝑣2 d𝑡 ≥ ∫

1

0

2| ̇𝑢|
1 − 𝑢2 d𝑡

where equality holds if and only if ̇𝑣 ≡ 0, and so 𝑣 ≡ 0.

length(𝛾) ≥ ∫
1

0

2�̇�
1 − 𝑢2 d𝑡

where equality holds in this expression if and only if 𝑢 is monotonic. Hence, the arc of the
diameter, parametrised monotonically, is a globally length-minimising path, and hence a
geodesic. We can compute this integral to be

length(𝛾) = 2 artanh 𝑎
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Now, 0 and 𝑎 inℝ+∩𝐷 are joined by a unique geodesic, andMöb(𝐷) acts transitively and by
isometries, and can be used to send any two points 𝑝, 𝑞 ∈ 𝐷 to 0, 𝑎 ∈ ℝ+ ∩ 𝐷. So every pair
of points must be joined by a unique geodesic. Since Möbius maps send circles to circles,
and they preserve angles and hence orthogonality to the boundary, we must have that all
geodesics are diameters or circular arcs orthogonal to 𝜕𝐷.

Corollary. If 𝑝, 𝑞 ∈ 𝐷, then the distance between them is

𝑑hyp(𝑝, 𝑞) = 2 artanh |||
𝑝 − 𝑞
1 − 𝑝𝑞

|||

6.4. The hyperbolic upper half-plane
Definition. The hyperbolic upper half-plane (𝔥, 𝑔hyp) is the set

𝔥 = {𝑧 ∈ ℂ∶ Im 𝑧 > 0}

with the abstract Riemannian metric

d𝑥2 + d𝑦2
𝑦2 = |d𝑧|2

(Im 𝑧)2

Lemma. The hyperbolic disc (𝐷2, 𝑔hyp) and the hyperbolic upper half-plane (𝔥, 𝑔hyp) are
isometric.

Proof. There exist maps 𝑇 ∶ 𝔥 → 𝐷 and 𝑇 ∶ 𝐷 → 𝔥 given by

𝑇(𝑤) = 𝑤 − 𝑖
𝑤 + 𝑖 ; 𝑇(𝑧) = 𝑖(1 − 𝑧

1 + 𝑧)

which are inverse diffeomorphisms. Here,

𝑇 ′(𝑤) = 1
𝑤 + 𝑖 −

𝑤 − 𝑖
(𝑤 + 𝑖)2 =

2𝑖
(𝑤 + 𝑖)2

Considering 𝑇(𝑤) = 𝑧 ∈ 𝐷,

|d𝑧|
1 − |𝑧|2

= |d(𝑇𝑤)|
1 − |𝑇𝑤|2

= |𝑇 ′(𝑤)||d𝑤|
1 − |𝑇𝑤|2

= 2|d𝑤|

|𝑤 + 𝑖|2(1 − ||
𝑤−𝑖
𝑤+𝑖

||
2
)
= |d𝑤|
2 Im𝑤

Hence, under this coordinate change,

4|d𝑧|2

(1 − |𝑧|2)
2

is the metric obtained under pullback by 𝑇 from d𝑤2

(Im𝑤)2
.
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Corollary. The hyperbolic upper half-plane is globally isometric to the hyperbolic disc, so
every pair of points is joined by a unique geodesic, up to reparametrisation. The geodesics
are arcs of circles orthogonal to the boundary, which are vertical straight lines and semi-
circles centred on a point in the real axis.

Proof. The isometry between 𝔥 → 𝐷 is given by aMöbius map. In particular,ℝ∪{∞} ↦ 𝜕𝐷,
and Möbius maps preserve circles and orthogonality.

Remark. When we discussed surfaces in ℝ3 with constant Gauss curvature, we saw that
if a surface had constant Gauss curvature, its first fundamental form in geodesic normal
coordinates was of the form d𝑢2 + cosh2 d𝑣2, with a change of variables taking this form to
d𝑣2+d𝑤2

𝑤2 . This is exactly the form of the Riemannian metric on the hyperbolic upper half-
plane. Gauss’ theorema egregium implies that Gauss curvature makes sense for an abstract
Riemannian metric, since it only depends on geodesics and hence the first fundamental
form. We can therefore define the Gauss curvature for an abstract Riemannian metric to
agree with this definition for surfaces in ℝ3. Under this definition, we can show that the
hyperbolic upper half-plane has constant curvature −1, and hence so does the disc.

Suppose we wanted to find a metric 𝑑∶ 𝐷 × 𝐷 → ℝ≥0 on 𝐷2 with the properties that it is
invariant under the Möbius group Möb(𝐷), and that the real diameter is length-minimising.
By Möbius invariance, the distance between any two points is completely determined by
knowing the distance from the origin to some point on the positive real axis 𝑎, which we
will denote 𝑝(𝑎) = 𝑑(0, 𝑎). Ifℝ+ ∩𝐷 is length-minimising, distance should be additive, so if
0 ≤ 𝑎 ≤ 𝑏 ≤ 1we should have 𝑑(0, 𝑎)+𝑑(𝑎, 𝑏) = 𝑑(0, 𝑏) so 𝑑(𝑎, 𝑏) = 𝑝( 𝑏−𝑎

1−𝑎𝑏
) = 𝑝(𝑏)−𝑝(𝑎).

If we furthermore constrain 𝑝 to be differentiable, and we differentiate the above expression
with respect to 𝑏 and set 𝑏 = 𝑎, we find the differential equation

𝑝′(𝑎) = 𝑝′(0)
1 − 𝑎2

Hence, 𝑝(𝑎) is some constant multiple of artanh 𝑎, since 𝑝′(0) can be chosen freely. So, up to
rescaling the lengthmetric associated to 𝑔hyp on𝐷 is the uniquemetric with these properties.
The scale is chosen for 𝑔hyp to enforce that the curvature is −1 precisely.

6.5. Isometries of hyperbolic space
Wenowwould like to understand the full isometry group of the disc (𝐷, 𝑔hyp) or (𝔥, 𝑔hyp). We
will show that this group is precisely Möb(𝐷) together with reflections in hyperbolic lines,
which are called inversions.

Definition. Let Γ ⊆ ℂ̂ be a circle or line. We say that points 𝑧, 𝑧′ ∈ ℂ̂ are inverse for Γ if
every circle through 𝑧 orthogonal to Γ also passes through 𝑧′.

Lemma. Such inverse points exist and are unique.
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Proof. Recall that Möbius maps preserve circles in ℂ̂ and preserve angles. In particular, if
𝑧, 𝑧′ are inverse for Γ and 𝑇 ∈ Möb, then 𝑇𝑧 and 𝑇𝑧′ are inverse for the circle 𝑇(𝛾). If
Γ = ℝ∪{∞}, then 𝐽(𝑧) = 𝑧 gives inverse points; this map satisfies the definition above. Now,
if Γ ⊆ ℂ̂ is any circle, there exists 𝑇 ∈ Möb such that 𝑇(ℝ ∪ {∞}) = Γ. We can therefore
define inversion in Γ to be 𝐽Γ = 𝑇 ∘ (𝑧 ↦ 𝑧) ∘ 𝑇−1.

Definition. The map 𝐽Γ in the proof above, sending 𝑧 to the unique inverse point 𝑧′ for 𝑧
with respect to Γ, is called inversion in Γ.
This map fixes all points of Γ, and swaps points on the interior with points on the exter-
ior.

Example. For Γ a straight line, this is simply reflection. For the unit circle, 𝑆1, the map 𝐽𝑆1
maps 𝑧 ↦ 1

𝑧
and 0 ↦ ∞.

Remark. The composition of two inversions is a Möbius map. Let 𝐶 be the conjugation
map 𝑧 ↦ 𝑧, which is 𝐽ℝ∪{∞}. If Γ ⊆ ℂ̂ is any circle, we have 𝐽Γ = 𝑇 ∘ 𝐶 ∘ 𝑇−1 where 𝑇 is
the Möbius transformation which maps ℝ ∪ {∞} to Γ. If Γ1, Γ2 are circles, and 𝑇1, 𝑇2 are the
transformations from ℝ ∪ {∞} to Γ1, Γ2 respectively, then

𝐽Γ1 ∘ 𝐽Γ2 = (𝐽Γ1 ∘ 𝐶) ∘ (𝐶 ∘ 𝐽Γ1)
= (𝐶 ∘ 𝐽Γ1)

−1 ∘ (𝐶 ∘ 𝐽Γ1)

We have 𝐶 ∘ 𝐽Γ = 𝐶 ∘ 𝑇 ∘ 𝐶 ∘ 𝑇−1, so it suffices to show 𝐶 ∘ 𝑇 ∘ 𝐶 ∈ Möb. If 𝑇(𝑧) = 𝑎𝑧+𝑏
𝑐𝑧+𝑑

, we
have

(𝐶 ∘ 𝑇 ∘ 𝐶)(𝑧) = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

∈ Möb

Lemma. An orientation-preserving isometry of (ℍ2, 𝑔hyp) is an element of Möb(ℍ), where
ℍ is 𝐷 or 𝔥. The full isometry group is generated by inversions in hyperbolic lines.

Proof. It suffices to prove this in either model, so we will use the disc model. Inversion in
the geodesic ℝ ∩ 𝐷 is conjugation, which preserves 𝑔hyp. Note that Möb(ℍ) acts transitively
by isometries on geodesics. Hence, if inversion in one geodesic preserves the metric, so does
inversion in any geodesic.

Now, suppose 𝛼 is some isometry of the hyperbolic disc 𝐷 under the metric 𝑔hyp. We have
𝛼(0) = 𝑎 ∈ 𝐷, and using 𝑧 ↦ 𝑧−𝑎

1−𝑎𝑧
, so there exists 𝑇 ∈ Möb(𝐷) such that 𝑇 ∘ 𝛼 fixes

the origin. There exists a rotation 𝑅 ∈ Möb(𝐷) such that 𝑅 ∘ 𝑇 ∘ 𝛼 maps 𝐷 ∩ ℝ+ to itself.
Composing with the conjugation map 𝐶 if necessary, there exists an isometry 𝐴which is an
inversion composedwith aMöbiusmap such that𝐴∘𝛼 fixes𝐷∩ℝ pointwise and fixes𝐷∩𝑖ℝ
pointwise. The only such isometry is the identity, since every point in𝐷 is determined by its
distance to these two lines. Hence, 𝐴 is the inverse of 𝛼.
If𝛼 preserves orientation and fixesℝ∩𝐷, then it necessarily fixes 𝑖ℝ∩𝐷 pointwise, so𝛼 = (𝑅∘
𝑇)−1 ∈ Möb. In general, 𝛼was constructed fromMöb(ℍ) and inversions in hyperbolic lines.
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So to show that the isometry group is generated by inversions, it suffices to show that all
Möbius maps are compositions of inversions. This is presented on the example sheets.

In the upper half-plane model of hyperbolic space,

Möb(𝔥) = ℙ𝑆𝐿(2, ℝ) = {𝑧 ↦ 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 ∶ (𝑎 𝑏

𝑐 𝑑) ∈ 𝑆𝐿(2, ℝ)}; 𝑑hyp = 2 artanh |||
𝑏 − 𝑎
𝑏 − 𝑎

|||

6.6. Hyperbolic triangles
Definition. Let 𝛼 be an orientation-preserving isometry of ℍ, which is equivalently an ele-
ment of Möb(ℍ). Suppose 𝛼 is not the identity map. We say that 𝛼 is

(i) elliptic, if 𝛼 fixes some point 𝑝 ∈ ℍ (if 𝑝 = 0 ∈ 𝐷, this behaves like a rotation);

(ii) parabolic, if 𝛼 fixes a unique point 𝑝 ∈ 𝜕ℍ (if 𝑝 = ∞ ∈ 𝔥, this behaves like a transla-
tion);

(iii) hyperbolic, if 𝛼 fixes two points on 𝜕ℍ, so it fixes the unique geodesic between these
two points setwise, and so 𝛼 must translate points across the geodesic; it is not an
inversion in the geodesic because it is not the identity map.

All elements of Möb(ℍ) are either elliptic, parabolic, or hyperbolic.

Definition. Let ℓ, ℓ′ be hyperbolic lines. Then, we say

(i) parallel, if they meet at the boundary 𝜕ℍ but never inside ℍ;

(ii) ultra-parallel, if they never meet in ℍ;

(iii) intersecting, if they meet in ℍ.

All pairs of hyperbolic lines are either parallel, ultra-parallel, or intersecting. A hyperbolic
triangle is a region bound by three geodesics, no two of which are ultra-parallel. Vertices
that lie ‘at infinity’ (on 𝜕ℍ) are called ideal vertices.

Note that the points in 𝜕ℍ are not contained within the hyperbolic plane, so in particular
the ideal vertices are not points inℍ. We typically denote side lengths by𝐴, 𝐵, 𝐶, and denote
the angles opposite these sides by 𝛼, 𝛽, 𝛾. The vertices at 𝛼, 𝛽, 𝛾 are denoted 𝑎, 𝑏, 𝑐. The
hyperbolic metric is conformal, since 𝐸 = 𝐺 and 𝐹 = 0. Hence, we can use Euclidean
angles in place of hyperbolic angles.

Proposition (hyperbolic cosine formula). For a hyperbolic triangle,

cosh𝐶 = cosh𝐴 cosh𝐵 − sinh𝐴 sinh𝐵 cos 𝛾

Proof. To simplify, by an isometry we can let the vertex 𝑐 at 𝛾 be placed at 0 ∈ 𝐷, and the
vertex 𝑏 at 𝛽 be placed atℝ+ ∩𝐷. Hence, the sides 𝐴, 𝐵 are straight Euclidean line segments
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in 𝐷, and the angle between them is 𝛾. We have

𝑑hyp(0, 𝑎) = 2 artanh 𝑎 ⟹ 𝑎 = tanh 𝐴2 ; 𝑏 = 𝑒𝑖𝛾 tanh 𝐵2 ;
|||
𝑏 − 𝑎
1 − 𝑎𝑏

||| = tanh 𝐶2

Recall that
𝑡 = tanh 𝜆2 ⟹ cosh 𝜆 = 1 + 𝑡2

1 − 𝑡2 ; sinh 𝜆 = 2𝑡
1 − 𝑡2

Hence,

cosh𝐴 = 1 + |𝑎|2

1 − |𝑎|2
; cosh𝐵 = 1 + |𝑏|2

1 − |𝑏|2
;

cosh𝐶 =
||1 − 𝑎𝑏||2 + |𝑏 − 𝑎|2

||1 − 𝑎𝑏||2 − |𝑏 − 𝑎|2
=
(1 + |𝑠|2)(1 + |𝑏|2) − 2(𝑎𝑏 + 𝑎𝑏)

(1 − |𝑎|2)(1 − |𝑏|2)

Note that 𝑎 ∈ ℝ and 𝑏 + 𝑏 = 2Re 𝑏 = 2𝑏 cos 𝛾, so

cosh𝐶 = cosh𝐴 cosh𝐵 − sinh𝐴 sinh𝐵 cos 𝛾

as required.

Remark. If 𝐴, 𝐵, 𝐶 are small, the standard approximations to the hyperbolic sine and cosine
functions give

𝐶2 ≈ 𝐴2 + 𝐵2 − 2𝐴𝐵 cos 𝛾

which is the Euclidean cosine formula. Since a dilation of a surface inℝ3 rescales curvature,
at small scales we can treat any abstract smooth surface with a Riemannian metric as flat.

Since cos 𝛾 ≥ −1, we have that

cosh𝐶 ≤ cosh𝐴 cosh𝐵 + sinh𝐴 sinh𝐵 = cosh(𝐴 + 𝐵)

The hyperbolic cosine is increasing, so 𝐶 ≤ 𝐴 + 𝐵. This is a more precise variant of the
hyperbolic triangle inequality.

6.7. Area of triangles
Theorem. Let 𝑇 ⊆ ℍ2 be a hyperbolic triangle with internal angles 𝛼, 𝛽, 𝛾 defined as before.
The area of 𝑇 is

areahyp(𝑇) = 𝜋 − 𝛼 − 𝛽 − 𝛾

Note that 𝛼, 𝛽, 𝛾may be zero, so 𝑇 may have ideal vertices, and the internal angle is zero for
such vertices.

This is a version of the Gauss–Bonnet theorem for hyperbolic triangles.
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Proof. TheMöbius groupMöb(ℍ2) acts transitively on triples of points in the boundary with
the correct cycle order. In particular, there exists a single ideal triangle (with all vertices at
infinity) up to isometry. Consider the ideal triangle in the hyperbolic upper half-plane with
vertices −1,+1,∞. Its area is

areahyp(𝑇) = ∫
1

−1
∫

∞

√1−𝑥2

1
𝑦2 d𝑦 d𝑥

since√𝐸𝐺 − 𝐹2 = 1
𝑦2
. We can compute this explicitly as

areahyp(𝑇) = ∫
1

−1

d𝑥
√1 − 𝑥2

= 𝜋

Now, let 𝐴(𝛼) be the area of a triangle with angles 0, 0, 𝛼. We can see that 𝐴(𝛼) is decreasing
in 𝛼 and continuous in 𝛼, by fixing two ideal vertices in the hyperbolic disc and translating
the third vertex.

𝛼
𝛼′ 𝛼

𝛽 𝛼 𝜋 − 𝛼

The first diagram shows that by moving the vertex 𝛼 on the real line, the area must increase,
since the triangle with angle 𝛼′ < 𝛼 contains the triangle with angle 𝛼. From the second
diagram, we see that 𝐴(𝛼) + 𝐴(𝛽) = 𝐴(𝛼 + 𝛽) + 𝜋 by comparing the different areas of
triangles formed from hyperbolic lines in the diagram. By letting 𝐹(𝛼) = 𝜋 − 𝐴(𝛼), we
have 𝐹(𝛼)+𝐹(𝛽) = 𝐹(𝛼+𝛽). Since 𝐹 is continuous and increasing, we have that 𝐹(𝛼) = 𝜆𝛼
for some fixed 𝜆 > 0. In particular, 𝐴(𝛼) = 𝜋 − 𝜆𝛼. Now, by considering the angles in the
third diagram, we see that 𝐴(𝛼) + 𝐴(𝜋 − 𝛼) = 𝜋. Hence, 𝜆 = 1, and so 𝐴(𝛼) = 𝜋 − 𝛼.

Finally, we consider the general case.

598



6. Riemannian metrics

𝐶′

𝐵′

𝐴

𝐶

𝐴′

𝛽
𝛾

𝛼
𝐵

By writing 𝐴𝐵𝐶 for areahyp(𝑇) where 𝑇 is the triangle with vertices 𝐴, 𝐵, 𝐶, we can see that

𝐴𝐵𝐶 + 𝐴′𝐶𝐵′ + 𝐴′𝐵′𝐶′ = area of interior of diagram = 𝐴𝐵′𝐶′ + 𝐴′𝐵𝐶′

Equivalently,

𝐴𝐵𝐶 + 𝜋 − (𝜋 − 𝛾) + 𝜋 = (𝜋 − 𝛼) + (𝜋 − 𝛽) ⟹ 𝐴𝐵𝐶 = 𝜋 − 𝛼 − 𝛾 − 𝛽

as required.

Note that if 𝐺 is a hyperbolic 𝑛-gon, so it is a region bound by 𝑛 hyperbolic geodesics, it may
be decomposed into a union of hyperbolic triangles. Since any two points in ℍ2 are joined
by a unique geodesic, the area of 𝐺 is given by

areahyp(𝐺) = (𝑛 − 2)𝜋 −
𝑛
∑
𝑖=1

𝛼𝑖

Lemma. If 𝑔 ≥ 2, then there exists a regular 4𝑔-gon in ℍ2 with internal angle 2𝜋
4𝑔

= 𝜋
2𝑔
.

Proof. Consider an ideal 4𝑔-gon, whose vertices all lie at infinity, in the disc model of hy-
perbolic space. The ideal vertices can be placed at the 4𝑔-th roots of unity, such that this
polygon is invariant under a rotational symmetry. By sliding each vertex radially inwards in
ℝ2, we obtain a continuous family of regular 4𝑔-gons, with areas which vary monotonically
from (4𝑔−2)𝜋 to zero. The internal angle of the polygon therefore varies continuously from
zero to 𝛽min such that (4𝑔 − 2)𝜋 = 4𝑔𝛽min. It therefore suffices to check that

𝜋
2𝑔
lies in this

interval (0, 𝛽min).
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6.8. Surfaces of constant negative curvature
Theorem. For each 𝑔 ≥ 2, there exists an abstract Riemannian metric on the compact
surface of genus 𝑔 with curvature 𝜅 ≡ −1 and locally isometric to ℍ2.

Recall the the Euler characteristic of a surface of genus 𝑔 is exactly 2 − 2𝑔. Note, if 𝑔 = 0 we
can construct a Riemannian metric with 𝜅 ≡ +1 since this is the sphere, and if 𝑔 = 1we can
have 𝜅 ≡ 0 since this is the torus as a quotient ℝ

2
⟋ℤ2. We will outline two proofs.

Proof. Recall that we can construct the torus and double torus by

𝑏−1

𝑎
𝑏
𝑎−1

Analogously, a 4𝑔-gon with side labels 𝑎1𝑏1𝑎−11 𝑏−11 𝑎2𝑏2𝑎−12 𝑏−12 … gives a surface of genus 𝑔.
We say that a flag comprises an oriented hyperbolic line, a point on that line, and a choice
of side to that line. Given two such flags, there exists a hyperbolic isometry between them.
So Möb(ℍ) acts transitively on flags. In particular, we can swap the side of a flag using an
inversion.

Consider a regular hyperbolic 4𝑔-gon with internal angle 𝜋
2𝑔
. We label this polygon with

side labels as above to give a genus 𝑔 surface. For each paired set of two edges, there exists
a hyperbolic isometry taking one to the other, respecting orientations and, and taking the
side corresponding to the inside of the polygon to the side corresponding to the outside of
the polygon. This is possible since Möb(ℍ) acts transitively on flags.
We can now define an atlas for Σ𝑔 as follows.

• If 𝑝 is in the interior of the polygon 𝑃, consider a small disc contained in the interior
of the polygon. Then, include this disc into the hyperbolic disc 𝐷.

• If 𝑝 is contained in an edge, let ̂𝑝 be the corresponding point on the paired edge. We
have an isometry 𝛾 from edge 𝑒1 to edge 𝑒2, exchanging sides, and mapping 𝑝 to ̂𝑝. We
can use this to define the chart. Using 𝛾, we can combine𝑈 , the intersection of 𝑃 with
an openneighbourhood of𝑝, and𝑈 , the intersection of𝑃with an openneighbourhood
of ̂𝑝, such that the chart is an inclusion on 𝑈 and is 𝛾 on 𝑈 . These agree on 𝑈 ∩ 𝑈 .

• All 4𝑔 vertices are identified to one point of Σ, and we need a chart at this point. Using
a hyperbolic isometry, let one vertex 𝑣 of 𝑃 be at the origin in 𝐷, such that an edge 𝑒
containing 𝑣 is mapped to a subset of the real line. Since the polygon 𝑃 has internal
angle 𝜋

2𝑔
, the angle between ℝ and the adjacent edge is 𝜋

2𝑔
. The fact that the internal

angles sum to 2𝜋 means that we can construct hyperbolic isometries for each vertex
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that join them exactly, giving an open neighbourhood of zero in 𝐷 in the shape of a
disc. The chart is defined at [𝑣] ∈ Σ𝑔 by this identification.

All charts are obtained from inclusion or an inclusion composed with a hyperbolic isometry,
therefore the transition maps are hyperbolic isometries. In particular, hyperbolic isometries
are smooth, and preserve the locally defined hyperbolic metric.

Remark. The torus can be given byℝ
2
⟋ℤ2. This characterisationwas useful when describing

the flat metric, precisely because its charts are easy to define. For Σ𝑔, we chose 2𝑔 hyperbolic
isometries which paired sides. Hence, there is a group Γ ≤ Möb(ℍ), generated by these
isometries. In Part II Algebraic Topology, the surface Σ𝑔 will be constructed by ℍ⟋Γ.

Lemma. For each ℓ𝛼, ℓ𝛽, ℓ𝛾 > 0, there exists a right-angled hyperbolic hexagon with side
lengths ℓ𝛼, 𝑎, ℓ𝛽, 𝑏, ℓ𝛾, 𝑐 for some 𝑎, 𝑏, 𝑐.

Proof. Given 𝑡 > 0, there exists a pair of ultra-parallel hyperbolic lines a distance 𝑡 apart.
We show on the fourth example sheet that each pair of ultra-parallel hyperbolic lines has
a unique common perpendicular geodesic. Given lengths ℓ𝛼, ℓ𝛽, construct new perpendic-
ular geodesics orthogonal to the originals, having moved lengths ℓ𝛼, ℓ𝛽 from the common
perpendicular (in the same direction). If 𝑡 is made large, the new geodesics 𝜎, �̃� can bemade
ultraparallel. Hence, by making 𝑡 smaller, there exists a threshold 𝑡0 by continuity such that
the new geodesics are parallel. Now, for 𝑡 ∈ (𝑡0,∞), the two new geodesics are ultra-parallel.
So 𝜎, �̃� have a unique common perpendicular geodesic. As 𝑡 increases above 𝑡0, the length
of this line increases monotonically from zero to infinity. So there exists a value of 𝑡 > 𝑡0
such that the new common perpendicular has length ℓ𝛾.

𝑡
ℓ𝛼 ℓ𝛽

ℓ𝛾

This is exactly the right-angled hyperbolic hexagon as required.

Definition. A pair of pants is a topological space homeomorphic to the complement of
three open discs in 𝑆2.

601



X. Geometry

Note that this space has a boundary. Consider two right-angled hyperbolic hexagons with
side lengths ℓ𝛼, ℓ𝛽, ℓ𝛾 arranged as above. The original configuration of two ultra-parallel
geodesics of a distance 𝑡 apart is unique up to isometry. So the side lengths have a corres-
pondence, and the hexagon with side lengths ℓ𝛼, ℓ𝛽, ℓ𝛾 is unique up to isometry. Suppose
that we glue together the corresponding unknown sides 𝑡𝛼𝛽, 𝑡𝛽𝛾, 𝑡𝛾𝛼 with the same side iden-
tifications. Locally near ℓ𝛼, for instance, we arrive at a closed circle of length 2ℓ𝛼, extended
into a cylindrical shape with two seams 𝑡𝛼𝛽, 𝑡𝛾𝛼. Since the hexagons were right-angled, we
have constructed a hyperbolic pair of pants. The boundary circles are geodesics in the sense
that, for any point on such a circle, the local neighbourhood is a point on a geodesic on a
polygon in ℍ.
We will now construct Σ𝑔 using a more flexible approach.

Proof. If 𝑃1, 𝑃2 are two hyperbolic ‘surfaces’ with geodesic boundaries, and if 𝛾1 ⊂ 𝑃1 and
𝛾2 ⊂ 𝑃2 are boundary circles of the same length (in the hyperbolic metric), we can glue 𝑃1
and 𝑃2 together along this common-length circle. 𝑃1 and 𝑃2 may be glued by any isometry
of 𝛾1, 𝛾2. The result 𝑃1 ∪𝛾1∼𝛾2 𝑃2 has a hyperbolic metric. For any point 𝑝 ∈ 𝑃𝑖 not on the
boundary 𝛾𝑖, it already has a suitable open neighbourhood since 𝑃𝑖 is hyperbolic. For any
point𝑝 ∈ 𝛾1 ∼ 𝛾2, we have a chart to a small disc inℍ using the fact that the boundary circles
are geodesics. These charts are constructed analogously to the charts for points on edges
of hyperbolic polygons under appropriate side identifications as seen above. Any compact
surface of genus 𝑔 ≥ 2 can be built from glued pairs of pants, not necessarily uniquely.

Under this construction, we have many choices. For example, the lengths of circles in the
original hyperbolic hexagons are now arbitrary. Also, the choice of ‘pants decomposition’ of
a given surface is not unique, and the different possibilities are topologically different.

6.9. Gauss–Bonnet theorem
Recall that in a spherical triangle with internal angles 𝛼, 𝛽, 𝛾, we have seen in the example
sheets that this has area 𝛼+𝛽 +𝛾−𝜋, and that a hyperbolic triangle with the same internal
angles has area 𝜋 − 𝛼 − 𝛽 − 𝛾. We have seen the convex Gauss–Bonnet theorem, which
states

∫
Σ
𝜅 d𝐴 = 4𝜋

where Σ bounds a convex region in ℝ3 and 𝜅Σ > 0. These are special cases of a pair of
theorems as shown below.

Theorem (local Gauss–Bonnet theorem). Let Σ be an abstract smooth surface with abstract
Riemannianmetric 𝑔. Let𝑅 be an 𝑛-sided geodesic polygon on Σ, which is a smooth disc with
boundary decomposed into 𝑛 geodesic arcs. Then

∫
𝑅⊆Σ

𝜅Σ d𝐴 =
𝑛
∑
𝑖=1

𝛼𝑖 − (𝑛 − 2)𝜋

where the 𝛼𝑖 are the internal angles of the polygon.
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It is important that 𝛾𝑖 be geodesics that cut out a disc; 𝑅must be homeomorphic to ℝ2, and
it cannot (for example) contain any holes.

Theorem (global Gauss–Bonnet theorem). LetΣ be a compact smooth surfacewith abstract
Riemannian metric 𝑔. Then

∫
Σ
𝜅Σ d𝐴 = 2𝜋𝜒(Σ)

Remark. Gauss curvature can be defined using only the first fundamental form, or equival-
ently an abstract Riemannian metric.

For hyperbolic surfaces, we can construct Σ𝑔 from a 4𝑔-gon with internal angles 𝜋
2𝑔
in such

a way that the total area of Σ is exactly the area of the polygon, so

∫
Σ
1 d𝐴 = area(polygon) = (4𝑔 − 2)𝜋 −

4𝑔
∑
1

𝜋
2𝑔 = (4𝑔 − 4)𝜋

Since 𝜅 ≡ −1 and 𝜒(Σ𝑔) = 2 − 2𝑔, this agrees with the Gauss–Bonnet theorem.

A right-angled hyperbolic hexagon has area

4𝜋 −
6
∑
1

𝜋
2 = 𝜋

Each pair of pants was constructed from two such polygons, and to construct a genus 𝑔
surface we required 2𝑔− 2 pairs of pants. So the total area is 4𝑔− 4𝜋, which agrees with the
theorem.

The Gauss–Bonnet theorem also shows that the Euler characteristic does not depend on the
choice of triangulation of Σ.

Suppose Σ is a flat surface and 𝛾 is a closed geodesic, so 𝛾∶ ℝ → Σ and is periodic with some
period 𝑇. Then 𝛾 cannot bound a smooth disc in Σ. Conversely, on 𝑆2, the great circle is a
closed geodesic, and bounds a hemisphere. For instance, for the flat torus ℝ

2
⟋ℤ2, if 𝛾 is a

closed curve on this torus bounding a closed disc𝑅 it is not a geodesic. Indeed, if we formally
add two vertices to such a geodesic, we find a geodesic 2-gon with two internal angles 𝜋, but
by the Gauss–Bonnet theorem we expect

0 = ∫
𝑅
𝜅Σ d𝐴 =

2
∑
1
𝛼𝑖 − (𝑛 − 2)𝜋 = 2𝜋

We can in fact deduce the global Gauss–Bonnet theorem from the local Gauss–Bonnet the-
orem, utilising the following lemma.

Lemma. A compact smooth surface admits subdivisions into geodesic polygons.
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The proof of this lemma considers the exponential map, discussed in Part II. Given such a
subdivision on Σ, we can find

∑
polygons 𝑃

∫
𝑃
𝜅Σ d𝐴 = ∫

Σ
𝜅Σ d𝐴

By the local Gauss–Bonnet theorem, the left hand side is equal to

∑
𝑛

∑
𝑛-gons 𝑃

(
𝑛
∑
𝑖=1

𝛼𝑖(𝑃) − (𝑛 − 2)𝜋)

Since the angles at each point add to 2𝜋, and each 𝑛-gon contains two edges which each
separate two polygons, this is equal to 2𝜋𝑉 + 2𝜋𝐹 − 2𝜋𝐸 = 2𝜋𝜒(Σ) as required.

6.10. Green’s theorem (non-examinable)
The local Gauss–Bonnet theorem is very closely related to Green’s theorem in ℝ2. This dis-
cussion is non-examinable.

Theorem. Let𝑅 ⊆ ℝ2 be a region bound by a piecewise smooth curve 𝛾, and 𝑃,𝑄 be smooth
real-valued functions defined on an open set 𝑉 ⊃ 𝑅. Then

∫
𝛾
𝑃 d𝑢 + 𝑄 d𝑣 = ∫

𝑅
(𝑄𝑢 − 𝑃𝑣) d𝑢 d𝑣

We will consider a geodesic polygon on Σ which lies in the domain of some local paramet-
risation defined on 𝑉 ⊆ ℝ2. Consider an orthonormal basis for ℝ2 which varies from point
to point, defined by 𝑒 = 𝜎𝑢, 𝑓 = 𝜎𝑣/√𝐺 where we use geodesic normal coordinates 𝑢, 𝑣 to
give 𝐸 = 1, 𝐹 = 0. Then 𝑇𝑝Σ = span(𝑒, 𝑓) if 𝑝 ∈ Im𝜎. We parametrise 𝛾 by arc length and
consider

𝐼 = ∫
𝛾
⟨𝑒, ̇𝑓⟩ d𝑡

We will compute this in two ways. Note that

̇𝑓 = 𝑓𝑢�̇� + 𝑓𝑣 ̇𝑣

Let 𝑃 = ⟨𝑒, 𝑓𝑢⟩ and 𝑄 = ⟨𝑒, 𝑓𝑣⟩. Then

𝑄𝑢 − 𝑃𝑣 = ⟨𝑒𝑢, 𝑓𝑣⟩ − ⟨𝑓𝑣, 𝑒𝑢⟩ + ⟨𝑒, 𝑓𝑢𝑣⟩ − ⟨𝑒, 𝑓𝑢𝑣⟩ = ⟨𝑒𝑢, 𝑓𝑣⟩ − ⟨𝑓𝑢, 𝑒𝑣⟩

which we can show to be equal to −(√𝐺)
𝑢𝑢

= 𝜅√𝐺. But√𝐺 is the area element√𝐸𝐺 − 𝐹2,
so

∫
𝑅
(𝑄𝑢 − 𝑃𝑣) d𝑢 d𝑣 = ∫

𝑅
𝜅Σ d𝐴
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Let 𝜃(𝑡) be the angle between ̇𝛾(𝑡) and 𝑒(𝑡), which is a function of 𝑡 in the domain of 𝛾. More
precisely,

̇𝛾 = 𝑒 cos 𝜃(𝑡) + 𝑓 sin 𝜃(𝑡)
Thus

̈𝛾 = ̇𝑒 cos 𝜃 + ̇𝑓 sin 𝜃 + 𝜂 ̇𝜃; 𝜂 = −𝑒 sin 𝜃 + 𝑓 cos 𝜃
𝛾 is a piecewise geodesic, so if Σ ⊆ ℝ3 was smooth, ̈𝛾 is orthogonal to 𝑇𝑝Σ = span 𝑒, 𝑓. But
𝜂 ∈ ⟨𝑒, 𝑓⟩, so ̈𝛾 is orthogonal to 𝜂. By expanding,

⟨ ̇𝑒 cos 𝜃 + ̇𝑓 sin 𝜃 + 𝜂 ̇𝜃, −𝑒 sin 𝜃 + 𝑓 cos 𝜃⟩ = 0

Since 𝑒, 𝑓 are orthogonal unit vectors, we have ⟨𝑒, ̇𝑒⟩ = 0 = ⟨𝑓, ̇𝑓⟩ and ⟨𝑒, ̇𝑓⟩ = 0 = ⟨ ̇𝑒, 𝑓⟩, so
we can expand to find

⟨ ̈𝛾, 𝜂⟩ = 0 ⟹ ̇𝜃 = ⟨𝑒, ̇𝑓⟩
Thus,

𝐼 = ∫
𝛾
⟨𝑒, ̇𝑓⟩ d𝑡 = ∫

𝛾
̇𝜃(𝑡) d𝑡 = 2𝜋 −∑(external angles of 𝑅)

since 𝛾 is composed of straight lines. Since external angles and internal angles sum to 𝜋,
this is exactly the local Gauss–Bonnet theorem. Green’s theorem suggests the study of non-
geodesic polygons.

6.11. Alternate flat toruses

We have constructed a flat metric on the torus, viewed asℝ
2
⟋ℤ2, or as

[0, 1]2⟋∼ for a suitably
defined equivalence relation. Importantly, opposite sides of the square [0, 1]2were identified
by translation, which allowed us to find a smooth atlas where transition maps preserve the
usual Euclidean metric on ℝ2. This construction is valid for any parallelogram; any such
shape 𝑄 ⊆ ℝ2 defines a flat metric 𝑔𝑄 on 𝑇2. If one vertex is set to zero in ℝ2 and the edges
of this vertex are labelled by their endpoints 𝑣1, 𝑣2, then (𝑇2, 𝑔𝑄) = ℝ2

⟋ℤ𝑣1 ⊕ℤ𝑣2 where
ℤ𝑣1 ⊕ℤ𝑣2 is a viewed as a subgroup of the group ℝ2 of translations.

The area with respect to 𝑔𝑄 of 𝑇2 is the Euclidean area of the parallelogram 𝑄. In particu-
lar, if two parallelograms have different areas, the two metrics cannot be globally isometric.
However, this is not the only restriction for global isometries.

Lemma. Consider the torus based on𝑄 = [0, 1]2 and the torus based on �̂� = [0, 10]×[0, 1
10
].

The metrics 𝑔𝑄, 𝑔�̂� are not isometric, but both have unit total area.

Proof. Recall that geodesics in a flat torus correspond to straight lines in ℝ2. By Picard’s
theorem, there exists a unique geodesic from a given point 𝑝 for each direction in 𝑇𝑝Σ. We
can therefore see that all geodesics through 𝑝 are the images of straight lines in ℝ2.

Recall that a closed geodesic is defined on ℝ and is periodic. We can see that geodesics in
ℝ2 through ̂𝑝 ∈ 𝑞−1(𝑝) define a closed geodesic if and only if they pass through another lift
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̂𝑝′ ∈ 𝑞−1(𝑝) of 𝑝; that is, the line has rational gradient. The shortest closed geodesic on the
surface in metric 𝑄 is of unit length, but the shortest closed geodesic with metric �̂� is 1

10
. So

the surfaces are not globally isometric.

We would like to understand all possible flat metrics on the torus 𝑇2, up to global dilation
and Euclidean isometries of 𝑄, which lead to essentially the same geometry on the quotient
torus. Given any parallelogram, we can set one vertex at zero and another at (1, 0) = 1 ∈ ℝ2

by performing dilation and a Euclidean isometry, and then the third lies at 𝜏 and the fourth
at 1+𝜏, where 𝜏 has positive 𝑦-coordinate. This provides a metric on the torus, and now the
only degree of freedom is 𝜏. Hence, this defines a map from the upper half-plane to the set
of flat metrics on 𝑇2 up to dilation.

We can pull backmetrics by diffeomorphisms. Metrics allow us tomeasure lengths of curves
by integrating lengths of tangent vectors, so a metric can be viewed as an inner product on
the tangent space at each point. If 𝑓∶ Σ → Σ′ and 𝑝 ∈ Σ, then for two small curves 𝛾1, 𝛾2
through 𝑝, the pullback metric 𝑓⋆𝑔 was defined such that

⟨ ̇𝛾1, ̇𝛾2⟩𝑝,𝑓⋆𝑔 = ⟨𝑓 ∘ ̇𝛾1, 𝑓 ∘ ̇𝛾2⟩𝑓(𝑝),𝑔

𝑆𝐿(2, ℤ) acts on ℝ2 preserving ℤ2, so it acts on ℝ
2
⟋ℤ2 = 𝑇2.

Lemma. 𝑆𝐿(2, ℤ) acts by diffeomorphisms on 𝑇2.

Proof. Clearly 𝐴 ∈ 𝑆𝐿(2, ℤ) acts smoothly (indeed, linearly) on ℝ2, and the charts for the
smooth atlas are such that 𝐴 then acts smoothly with respect to these.

Also, 𝑆𝐿(2, ℤ) ⊆ 𝑆𝐿(2, ℝ) acts on the upper half-plane by Möbius maps.
Theorem. The map from the upper half-plane 𝔥 to the set of flat metrics on 𝑇2 modulo
dilation induces a map from 𝔥⟋𝑆𝐿(2, ℤ) to the set of flat metrics on 𝑇2 modulo dilation and
diffeomorphism. This resultingmap is a bijection. We say that 𝔥⟋𝑆𝐿(2, ℤ) is themoduli space
of flat metrics on 𝑇2.

In the above theorem, ‘diffeomorphism’ is taken tomean ‘orientation-preserving diffeomorph-
ism’.

Remark. The left-hand side 𝔥⟋𝑆𝐿(2, ℤ) is an object of hyperbolic geometry, yet the right-hand
side is entirely concerned with flat metrics.

Similar results can be shown for surfaces of higher genus. The moduli space of hyperbolic
metrics on Σ𝑔 where 𝑔 ≥ 2 is perhaps the most studied space in all of geometry.

6.12. Further courses
There are four Part II courses that extend this course.
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(i) Algebraic Topology. Spaces are studied through algebraic invariants, such as the Euler
characteristic, and covering maps of surfaces like 𝑆2 → ℝℙ2 or ℝ2 → 𝑇2.

(ii) Differential Geometry. While in IB Geometry the Gauss curvature 𝜅 = det(𝐷𝑁) is
discussed, the trace tr(𝐷𝑁) is themean curvature, discussed heavily in this course.

(iii) Riemann Surfaces. This course studies the fact that if 𝑓∶ ℂ → ℂ is holomorphic
(or, indeed, entire) and 𝑤 ∈ ℂ, then 𝑓(𝑧 + 𝑤) is holomorphic, and if 𝑓∶ 𝐷 → 𝐷 is
holomorphic and 𝐴 ∈ Möb(𝐷), then 𝑓 ∘ 𝐴 is holomorphic.

(iv) General Relativity. This is the theory of light as geodesics.
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Lectured in Lent 2022 by Dr. S. Bacallado
An estimator is a random variable that approximates a parameter. For instance, the para-
meter could be the mean of a normal distribution, and the estimator could be a sample
mean. In this course, we study how estimators behave, what properties they have, and how
we can use them to make conclusions about the real parameters. This is called parametric
inference: the study of inferring parameters from statistics of sample data.

Towards the end of the course, we study the normal linear model, which is a useful way
to model data that is believed to depend linearly on a vector of inputs, together with some
normally distributed noise. Even nonlinear patterns can be analysed using this model, by
letting the inputs to the model be polynomials in the real-world data.
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XI. Statistics

1. Introdution and review of IA Probability
1.1. Introduction
Statistics can be defined as the science of making informed decisions. The field comprises,
for example:

• the design of experiments and studies;

• visualisation of data;

• formal statistical inference (which is the focus of this course);

• communication of uncertainty and risk; and

• formal decision theory.

This course concerns itself with parametric inference. Let 𝑋1,… , 𝑋𝑛 be i.i.d. (independent
and identically distributed) random variables, where we assume that the distribution of 𝑋1
belongs to some family with parameter 𝜃 ∈ Θ. For instance, let 𝑋1 ∼ Poi(𝜇), where 𝜃 = 𝜇
andΘ = (0,∞). Another example is 𝑋1 ∼ 𝑁(𝜇, 𝜎2), and 𝜃 = (𝜇, 𝜎2) andΘ = ℝ×(0,∞). We
use the observed 𝑋 = (𝑋1,… , 𝑋𝑛) to make inferences about the parameter 𝜃:

(i) we can estimate the value of 𝜃 using a point estimate written ̂𝜃(𝑋);

(ii) we can make an interval estimate of 𝜃, written ( ̂𝜃1(𝑋), ̂𝜃2(𝑋));

(iii) hypotheses about 𝜃 can be tested, for instance the hypothesis𝐻0∶ 𝜃 = 1, by checking
whether there is evidence in the data 𝑋 against the hypothesis 𝐻0.

Remark. In general, we will assume that the family of distributions of the observations 𝑋𝑖
is known a priori, and the parameter 𝜃 is the only unknown. There will, however, be some
remarks later in the course where we can make weaker assumptions about the family.

1.2. Review of IA Probability
This subsection reviews material covered in the IA Probability course. Some keywords are
measure-theoretic, and are not defined.

LetΩ be the sample space of outcomes in an experiment. Ameasurable subset ofΩ is called
an event, and we denote the set of events byℱ. A probability measureℙ∶ ℱ → [0, 1] satisfies
the following properties.

(i) ℙ (∅) = 0;

(ii) ℙ (ℱ) = 1;

(iii) ℙ (⋃∞
𝑖=1 𝐴𝑖) = ∑∞

𝑖=1 ℙ (𝐴𝑖) if (𝐴𝑖) is a sequence of disjoint events.

A random variable is a measurable function 𝑋 ∶ Ω → ℝ. The distribution function of a ran-
dom variable 𝑋 is the function 𝐹𝑋(𝑥) = ℙ (𝑋 ≤ 𝑥). We say that a random variable is discrete
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1. Introdution and review of IA Probability

when it takes values in a countable set 𝒳 ⊂ ℝ. The probability mass function of a discrete
random variable is the function 𝑝𝑋(𝑥) = ℙ (𝑋 = 𝑥). We say that 𝑋 has a continuous distribu-
tion if it has a probability density function 𝑓𝑋(𝑥) such that ℙ (𝑥 ∈ 𝐴) = ∫𝐴 𝑓𝑋(𝑥) d𝑥 for ‘nice’
sets 𝐴.
The expectation of a random variable 𝑋 is defined as

𝔼 [𝑋] = {∑𝑥∈𝑋 𝑥𝑝𝑋(𝑥) if 𝑋 discrete
∫∞
−∞ 𝑥𝑓𝑋(𝑥) d𝑥 if 𝑋 continuous

If 𝑔∶ ℝ → ℝ, we define 𝔼 [𝑔(𝑋)] by considering the fact that 𝑔(𝑋) is also a random variable.
For instance, in the continuous case,

𝔼 [𝑔(𝑋)] = ∫
∞

−∞
𝑔(𝑥)𝑓𝑋(𝑥) d𝑥

The variance of a random variable 𝑋 is defined as 𝔼 [(𝑋 − 𝔼 [𝑋])2].
We say that a set of random variables 𝑋1,… , 𝑋𝑛 are independent if, for all 𝑥1,… , 𝑥𝑛, we
have

ℙ (𝑋1 ≤ 𝑥1,… , 𝑋𝑛 ≤ 𝑥𝑛) = ℙ (𝑋1 ≤ 𝑥1)⋯ℙ (𝑋𝑛 ≤ 𝑥𝑛)
If and only if 𝑋1,… , 𝑋𝑛 have probability density (or mass) functions 𝑓1,… , 𝑓𝑛, then the joint
probability density (respectively mass) function is

𝑓𝑋(𝑥) =
𝑛
∏
𝑖=1

𝑓𝑋𝑖 (𝑥𝑖)

If 𝑌 = max {𝑋1,… , 𝑋𝑛} where the 𝑋𝑖 are independent, then the distribution function of 𝑌 is
given by

ℙ (𝑌 ≤ 𝑦) = ℙ (𝑋1 ≤ 𝑦)⋯ℙ (𝑋𝑛 ≤ 𝑦)
Theprobability density function of𝑌 (if it exists) is obtained by the differentiating the above.
Under a linear transformation, the expectation and variance have certain properties. Let
𝑎 = (𝑎1,… , 𝑎𝑛)⊺ ∈ ℝ𝑛 be a constant in ℝ𝑛.

𝔼 [𝑎1𝑋1 +⋯+ 𝑎𝑛𝑋𝑛] = 𝔼 [𝑎⊺𝑋] = 𝑎⊺𝔼 [𝑋]

where 𝔼 [𝑋] is defined componentwise. Note that independence of 𝑋𝑖 is not required for
linearity of the expectation to hold. Similarly,

Var (𝑎⊺𝑋) = ∑
𝑖,𝑗
𝑎𝑖𝑎𝑗 Cov (𝑋𝑖, 𝑋𝑗) = 𝑎⊺ Var (𝑋) 𝑎

wherewedefineCov (𝑋, 𝑌) ≡ 𝔼 [(𝑋 − 𝔼 [𝑋])(𝑌 − 𝔼 [𝑌])], andVar (𝑋) is the variance-covariance
matrixwith entries (Var (𝑋))𝑖𝑗 = Cov (𝑋𝑖, 𝑋𝑗). We can say that the variance is bilinear.
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XI. Statistics

1.3. Standardised statistics

Suppose that 𝑋1,… , 𝑋𝑛 are i.i.d. and 𝔼 [𝑋1] = 𝜇, Var (𝑋1) = 𝜎2. We define

𝑆𝑛 = ∑
𝑖
𝑋𝑖; 𝑋𝑛 =

𝑆𝑛
𝑛

where 𝑋𝑛 is called the sample mean. By linearity of expectation and bilinearity of vari-
ance,

𝔼 [𝑋𝑛] = 𝜇; Var (𝑋𝑛) =
𝜎2
𝑛

We further define

𝑍𝑛 =
𝑆𝑛 − 𝑛𝜇
𝜎√𝑛

= √𝑛𝑋𝑛 − 𝜇
𝜎

which has the properties that

𝔼 [𝑍𝑛] = 0; Var (𝑍𝑛) = 1

1.4. Moment generating functions

The moment generating function of a random variable 𝑋 is the function 𝑀𝑋(𝑡) = 𝔼 [𝑒𝑡𝑋],
provided that this function exists for 𝑡 in some neighbourhood of zero, This can be thought
of as the Laplace transform of the probability density function. Note that

𝔼 [𝑋𝑛] = d𝑛
d𝑡𝑛 𝑀𝑋(𝑡)

|||𝑡=0

Under broad conditions, moment generating functions uniquely define a distribution func-
tion of a random variable. In other words, the Laplace transform is invertible. They are also
useful for finding the distribution of sums of independent random variables. For instance,
let 𝑋1,… , 𝑋𝑛 be i.i.d. Poisson random variables with parameter 𝜇. Then, the moment gener-
ating function of 𝑋𝑖 is

𝑀𝑋1(𝑡) = 𝔼 [𝑒𝑡𝑋𝑖] =
∞
∑
𝑥=0

𝑒𝑡𝑥𝑒−𝜇𝜇
𝑥

𝑥! = 𝑒−𝜇
∞
∑
𝑥=0

(𝑒𝑡𝜇)𝑥
𝑥! = 𝑒−𝜇𝑒𝜇𝑒𝑡 = 𝑒−𝜇(1−𝑒𝑡)

Now,

𝑀𝑆𝑛(𝑡) = 𝔼 [𝑒𝑡𝑆𝑛] =
𝑛
∏
𝑖=1

𝔼 [𝑒𝑡𝑋𝑖] = 𝑒−𝑛𝜇(1−𝑒𝑡)

This defines a Poisson distribution with parameter 𝑛𝜇 by inspection.

614



1. Introdution and review of IA Probability

1.5. Limit theorems
Theweak law of large numbers states that for all 𝜀 > 0, ℙ (||𝑋𝑛 − 𝜇|| > 𝜀) → 0 as 𝑥 → ∞. Note
that the event ||𝑋𝑛 − 𝜇|| > 𝜀 depends only on 𝑋1,… , 𝑋𝑛.

The strong law of large numbers states that ℙ (𝑋𝑛 → 𝜇) = 1. In this formulation, the event
depends on the whole sequence of random variables 𝑋𝑖, since the limit is inside the probab-
ility calculation.

The central limit theorem states that 𝑍𝑛 =
𝑆𝑛−𝑛𝜇
𝜎√𝑛

is approximately a N(0, 1) random variable
when 𝑛 is large. More precisely, ℙ (𝑍𝑛 ≤ 𝑧) → Φ(𝑧) for all 𝑧 ∈ ℝ.

1.6. Conditional probability
If 𝑋, 𝑌 are discrete random variables, we can define the conditional probability mass func-
tion to be

𝑝𝑋∣𝑌 (𝑥 ∣ 𝑦) =
ℙ (𝑋 = 𝑥, 𝑌 = 𝑦)

ℙ (𝑌 = 𝑦)
when ℙ (𝑌 = 𝑦) ≠ 0. If 𝑋, 𝑌 are continuous, we define the joint probability density function
to be 𝑓𝑋,𝑌 (𝑥, 𝑦) such that

ℙ (𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) = ∫
𝑥

−∞
∫

𝑦

−∞
𝑓(𝑥′, 𝑦′) d𝑦′ d𝑥′

The conditional probability density function is

𝑓𝑋∣𝑌 (𝑥 ∣ 𝑦) =
𝑓𝑋,𝑌 (𝑥, 𝑦)

∫∞
−∞ 𝑓𝑋,𝑌 (𝑥, 𝑦) d𝑥

The denominator is sometimes referred to as themarginal probability density function of 𝑌 ,
written 𝑓𝑌 (𝑦). Now, we can define the conditional expectation by

𝔼 [𝑋 ∣ 𝑌] = {∑𝑥 𝑥𝑝𝑋∣𝑌 (𝑥 ∣ 𝑌) if 𝑋 discrete
∫𝑥 𝑥𝑓𝑋∣𝑌 (𝑥 ∣ 𝑌) d𝑥 if 𝑋 continuous

The conditional expectation is itself a random variable, as it is a function of the random
variable 𝑌 . The conditional variance is defined similarly, and is a random variable. The
tower property is that

𝔼 [𝔼 [𝑋 ∣ 𝑌]] = 𝔼 [𝑋]

The law of total variance is that

Var (𝑋) = 𝔼 [Var (𝑋 ∣ 𝑌)] + Var (𝔼 [𝑋 ∣ 𝑌])
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1.7. Change of variables in two dimensions
Suppose that (𝑥, 𝑦) ↦ (𝑢, 𝑣) is a differentiable bijection from ℝ2 to itself. Then, the joint
probability density function of 𝑈,𝑉 can be written as

𝑓𝑈,𝑉 (𝑢, 𝑣) = 𝑓𝑋,𝑌 (𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣))|det 𝐽|

where 𝐽 is the Jacobian matrix,

𝐽 = 𝜕(𝑥, 𝑦)
𝜕(𝑢, 𝑣) = (𝜕𝑥/𝜕𝑢 𝜕𝑥/𝜕𝑣

𝜕𝑦/𝜕𝑢 𝜕𝑦/𝜕𝑣
)

1.8. Common distributions
𝑋 has the binomial distributionwith parameters 𝑛, 𝑝 if𝑋 represents the number of successes
in 𝑛 independent Bernoulli trials with parameter 𝑝.
𝑋 has the multinomial distribution with parameters 𝑛; 𝑝1,… , 𝑝𝑘 if there are 𝑛 independ-
ent trials with 𝑘 types, where 𝑝𝑗 is the probability of type 𝑗 in a single trial. Here, 𝑋 takes
values in ℕ𝑘, and 𝑋𝑗 is the amount of trials with type 𝑗. Each 𝑋𝑗 is marginally binomially
distributed.

𝑋 has the negative binomial distribution with parameters 𝑘, 𝑝 if, in i.i.d. Bernoulli trials
with parameter 𝑝, the variable 𝑋 is the time at which the 𝑘th success occurs. The negative
binomial with parameter 𝑘 = 1 is the geometric distribution.
The Poisson distribution with parameter 𝜆 is the limit of the distribution Bin(𝑛, 𝜆/𝑛) as 𝑛 →
∞.

If 𝑋𝑖 ∼ Γ(𝛼𝑖, 𝜆) for 𝑖 = 1,… , 𝑛 with 𝑋1,… , 𝑋𝑛 independent, then the distribution of 𝑆𝑛 is
given by the product of the moment generating functions. By inspection,

𝑀𝑆𝑛(𝑡) = ( 𝜆
𝜆 − 𝑡)

∑𝑖 𝛼𝑖

or∞ if 𝑡 ≥ 𝜆. Hence the sum of these random variables is 𝑆𝑛 ∼ Γ(∑𝑖 𝛼𝑖, 𝜆), where the shape
parameter 𝛼 is constructed from the sum of the shape parameters of the original functions.
We call 𝜆 the rate parameter, and 𝜆−1 is called the scale parameter. If 𝑋 ∼ Γ(𝛼, 𝜆), then for
all 𝑏 > 0 we have 𝑏𝑋 ∼ Γ(𝑥, 𝜆/𝑏). Special cases of the Γ distribution include:

• Γ(1, 𝜆) = Exp(𝜆);
• Γ(𝑘/2, 1/2) = 𝜒2𝑘 with 𝑘 degrees of freedom, which is the distribution of a sum of 𝑘
i.i.d. squared standard normal random variables.
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2. Estimation
2.1. Estimators
Suppose 𝑋1,… , 𝑋𝑛 are i.i.d. observations with a p.d.f. (or p.m.f.) 𝑓𝑋(𝑥 ∣ 𝜃), where 𝜃 is an
unknown parameter in some parameter space Θ. Let 𝑋 = (𝑋1,… , 𝑋𝑛).
Definition. An estimator is a statistic, or a function of the data, written 𝑇(𝑋) = ̂𝜃, which
is used to approximate the true value of 𝜃. This does not depend (explicitly) on 𝜃. The
distribution of 𝑇(𝑋) is called its sampling distribution.
Example. Let 𝑋1,… , 𝑋𝑛 ∼ 𝑁(0, 1) be i.i.d. Let �̂� = 𝑇(𝑋) = 𝑋𝑛. The sampling distribution
is 𝑇(𝑋) ∼ 𝑁(𝜇, 1

𝑛
). Note that this sampling distribution in general depends on the true

parameter 𝜇.
Definition. The bias of ̂𝜃 is

bias( ̂𝜃) = 𝔼𝜃 [ ̂𝜃] − 𝜃

Note that ̂𝜃 is a function only of 𝑋1,… , 𝑋𝑛, and the expectation operator 𝔼𝜃 assumes that the
true value of the parameter is 𝜃.
Remark. In general, the bias is a function of the true parameter 𝜃, even though it is not
explicit in the notation.

Definition. An estimator with zero bias for all 𝜃 is called an unbiased estimator.
Example. The estimator �̂� in the above example is unbiased, since

𝔼𝜇 [�̂�] = 𝔼𝜇 [𝑋𝑛] = 𝜇

for all 𝜇 ∈ ℝ.
Definition. Themean squared error of 𝜃 is defined as

mse( ̂𝜃) = 𝔼𝜃 [( ̂𝜃 − 𝜃)2]

Remark. Like the bias, themean squared error is, in general, a function of the true parameter
𝜃.

2.2. Bias-variance decomposition
The mean squared error can be written as

mse( ̂𝜃) = 𝔼𝜃 [( ̂𝜃 − 𝔼𝜃 [ ̂𝜃] + 𝔼𝜃 [ ̂𝜃] − 𝜃)2] = Var𝜃 ( ̂𝜃) + bias2( ̂𝜃)

Note that both the variance and bias squared terms are positive. This implies a tradeoff
between bias and variance when minimising error.
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Example. Let 𝑋 ∼ Bin(𝑛, 𝜃) where 𝑛 is known and 𝜃 is an unknown probability. Let
𝑇𝑈 = 𝑋/𝑛. This is the proportion of successes observed. This is an unbiased estimator,
since 𝔼𝜃 [𝑇𝑈] = 𝔼𝜃 [𝑋] /𝑛 = 𝜃. The mean squared error for the estimator is then

Var𝜃 (𝑇𝑛) = Var𝜃 (
𝑋
𝑛 ) =

Var𝜃 (𝑋)
𝑛2 = 𝜃(1 − 𝜃)

𝑛

Now, consider an alternative estimator which has some bias:

𝑇𝐵 =
𝑋 + 1
𝑛 + 2 = 𝑤 𝑋

𝑛⏟
𝑇𝑈

+(1 − 𝑤)12; 𝑤 = 𝑛
𝑛 + 2

This interpolates between the estimator 𝑇𝑈 and the fixed estimator 1
2
. Here,

bias(𝑇𝐵) = 𝔼𝜃 [𝑇𝐵] − 𝜃 = 𝑛
𝑛 + 2𝜃 −

1
𝑛 + 2𝜃

The bias is nonzero for all but one value of 𝜃. Further,

Var𝜃 (𝑇𝐵) =
Var𝜃 (𝑋 + 1)
(𝑛 + 2)2 = 𝑛𝜃(1 − 𝜃)

(𝑛 + 2)2

We can calculate

mse(𝑇𝐵) = (1 − 𝑤)2(12 − 𝜃)
2
+ 𝑤2 𝜃(1 − 𝜃)

𝑛⏟⎵⏟⎵⏟
mse(𝑇𝑈 )

There exists a range of 𝜃 such that 𝑇𝐵 has a lower mean squared error, and similarly there
exists a range such that 𝑇𝑈 has a lower error. This indicates that prior judgement of the true
value of 𝜃 can be used to determine which estimator is better.

It is not necessarily desirable that an estimator is unbiased.

Example. Suppose 𝑋 ∼ Poi(𝜆) and we wish to estimate 𝜃 = ℙ (𝑋 = 0)2 = 𝑒−2𝜆. For some
estimator 𝑇(𝑋) of 𝜃 to be unbiased, we need that

𝔼𝜆 [𝑇(𝑋)] =
∞
∑
𝑥=0

𝑇(𝑥)𝜆
𝑥𝑒−𝜆
𝑥! = 𝑒−2𝜆

Hence,
∞
∑
𝑥=0

𝑇(𝑥)𝜆
𝑥

𝑥! = 𝑒−𝜆

But 𝑒−𝜆 has a known power series expansion, giving 𝑇(𝑋) ≡ (−1)𝑋 for all 𝑋 . This is not a
good estimator, for example because it often predicts negative numbers for a positive quant-
ity.
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2.3. Sufficiency
Definition. A statistic 𝑇(𝑋) is sufficient for 𝜃 if the conditional distribution of 𝑋 given 𝑇(𝑋)
does not depend on 𝜃. Note that 𝜃 and 𝑇(𝑋) may be vector-valued, and need not have the
same dimension.

Example. Let 𝑋1,… , 𝑋𝑛 be i.i.d. Bernoulli random variables with parameter 𝜃 where 𝜃 ∈
[0, 1]. The mass function is

𝑓𝑋(𝑥 ∣ 𝜃) =
𝑛
∏
𝑖=1

𝜃𝑥𝑖 (1 − 𝜃)1−𝑥𝑖 = 𝜃∑𝑥𝑖 (1 − 𝜃)𝑛−∑𝑥𝑖

Note that this dependent only on 𝑥 via the statistic 𝑇(𝑋) = ∑𝑛
𝑛=1 𝑥𝑖. Here,

𝑓𝑋∣𝑇=𝑡(𝑥 ∣ 𝜃) =
ℙ𝜃 (𝑋 = 𝑥, 𝑇(𝑋) = 𝑡)

ℙ𝜃 (𝑇(𝑥) = 𝑡)
If∑𝑥𝑖 = 𝑡, we have

𝑓𝑋∣𝑇=𝑡(𝑥 ∣ 𝜃) =
𝜃∑𝑥𝑖 (1 − 𝜃)𝑛−∑𝑥𝑖

(𝑛
𝑡
)𝜃𝑡(1 − 𝜃)𝑛−∑𝑥𝑖

= 1
(𝑛
𝑡
)

Hence 𝑇(𝑋) is sufficient for 𝜃.

2.4. Factorisation criterion
Theorem. 𝑇 is sufficient for 𝜃 if and only if

𝑓𝑋(𝑥 ∣ 𝜃) = 𝑔(𝑇(𝑥), 𝜃)ℎ(𝑥)
for suitable functions 𝑔, ℎ.

Proof. This will be proven in the discrete case; the continuous case can be handled analog-
ously. Suppose that the factorisation criterion holds. Then, if 𝑇(𝑥) = 𝑡,

𝑓𝑋∣𝑇=𝑡(𝑥 ∣ 𝑇 = 𝑡) = ℙ𝜃 (𝑋 = 𝑥, 𝑇(𝑥) = 𝑡)
ℙ𝜃 (𝑇(𝑥) = 𝑡)

= 𝑔(𝑇(𝑥), 𝜃)ℎ(𝑥)
∑𝑥′ ∶ 𝑇(𝑥′)=𝑡 𝑔(𝑇(𝑥′), 𝜃)ℎ(𝑥′)

= ℎ(𝑥)
∑𝑥′ ∶ 𝑇(𝑥′)=𝑡 ℎ(𝑥′)

which does not depend on 𝜃. By definition, 𝑇(𝑋) is sufficient.
Conversely, suppose that 𝑇(𝑋) is sufficient.

𝑓𝑋(𝑥 ∣ 𝜃) = ℙ𝜃 (𝑋 = 𝑥)
= ℙ𝜃 (𝑋 = 𝑥, 𝑇(𝑋) = 𝑇(𝑥))
= ℙ𝜃 (𝑋 = 𝑥 ∣ 𝑇(𝑋) = 𝑇(𝑥))⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟

ℎ(𝑥)

ℙ𝜃 (𝑇(𝑋) = 𝑇(𝑥))⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
𝑔(𝑇(𝑋),𝜃)
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Example. Consider the above example with 𝑛 Bernoulli random variables with mass func-
tion

𝑓𝑋(𝑥 ∣ 𝜃) = 𝜃∑𝑥𝑖 (1 − 𝜃)𝑛−∑𝑥𝑖

Let 𝑇(𝑋) = ∑𝑥𝑖, and then the above mass function is in the form of 𝑔(𝑇(𝑋), 𝜃) and we can
set ℎ(𝑥) ≡ 1. Hence 𝑇(𝑋) is sufficient.

Example. Let 𝑋1,… , 𝑋𝑛 be i.i.d. from a uniform distribution on the interval [0, 𝜃] for some
𝜃 > 0. The mass function is

𝑓𝑋(𝑥 ∣ 𝜃) =
𝑛
∏
𝑖=1

1
𝜃𝟙{𝑥𝑖 ∈ [0, 𝜃]} = (1𝜃)

𝑛
𝟙{min

𝑖
𝑥𝑖 ≥ 0}𝟙{max

𝑖
𝑥𝑖 ≤ 𝜃}

Let 𝑇(𝑋) = max𝑖 𝑋𝑖. Then

𝑔(𝑇(𝑋), 𝜃) = (1𝜃)
𝑛
𝟙{max

𝑖
𝑥𝑖 ≤ 𝜃}; ℎ(𝑥) ≡ 𝟙{min

𝑖
𝑥𝑖 ≥ 0}

We can then conclude that 𝑇(𝑋) is sufficient for 𝜃.

2.5. Minimal sufficiency
Sufficient statistics are not unique. For instance, any bijection applied to a sufficient stat-
istic is also sufficient. Further, 𝑇(𝑋) = 𝑋 is always sufficient. We instead seek statistics
that maximally compress and summarise the relevant data in 𝑋 and that discard extraneous
data.

Definition. A sufficient statistic 𝑇(𝑋) for 𝜃 is minimal if it is a function of every other
sufficient statistic for 𝜃. More precisely, if 𝑇 ′(𝑋) is sufficient, 𝑇 ′(𝑥) = 𝑇 ′(𝑦) ⟹ 𝑇(𝑥) =
𝑇(𝑦).

Remark. Any two minimal statistics 𝑆, 𝑇 for the same 𝜃 are bijections of each other. That is,
𝑇(𝑥) = 𝑇(𝑦) if and only if 𝑆(𝑥) = 𝑆(𝑦).

Theorem. Suppose that 𝑓𝑋(𝑥 ∣ 𝜃)/𝑓𝑋(𝑦 ∣ 𝜃) is constant in 𝜃 if and only if 𝑇(𝑥) = 𝑇(𝑦). Then
𝑇 is minimal sufficient.

Remark. This theorem essentially states the following. Let 𝑥 1∼ 𝑦 if the above ratio of prob-
ability density or mass functions is constant in 𝜃. This is an equivalence relation. Similarly,
we can define 𝑥 2∼ 𝑦 if 𝑇(𝑥) = 𝑇(𝑦). This is also an equivalence relation. The hypothesis in
the theorem is that the equivalence classes of 1∼ and 2∼ are equal. Further, we may always
construct a minimal sufficient statistic for any parameter since we can use the construction
1∼ to create equivalence classes, and set 𝑇 to be constant for all such equivalence classes.
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Proof. Let 𝑡 ∈ Im𝑇. Then let 𝑧𝑡 be a representative of the equivalence class {𝑥∶ 𝑇(𝑥) = 𝑡}.
Then

𝑓𝑋(𝑥 ∣ 𝜃) = 𝑓𝑋(𝑧𝑇(𝑥) ∣ 𝜃)
𝑓𝑋(𝑥 ∣ 𝜃)

𝑓𝑋(𝑧𝑇(𝑥) ∣ 𝜃)
By the hypothesis, the ratio on the right hand side does not depend on 𝜃, so let this ratio
be ℎ(𝑥). Further, the other term depends only on 𝑇(𝑥), so it may be 𝑔(𝑇(𝑥), 𝜃). Hence 𝑇 is
sufficient by the factorisation criterion.

To prove minimality, let 𝑆 be any other sufficient statistic, and then by the factorisation
criterion there exist 𝑔𝑆 and ℎ𝑆 such that 𝑓𝑋(𝑥 ∣ 𝜃) = 𝑔𝑆(𝑆(𝑥), 𝜃)ℎ𝑆(𝑥). Now, suppose 𝑆(𝑥) =
𝑆(𝑦) for some 𝑥, 𝑦. Then,

𝑓𝑋(𝑥 ∣ 𝜃)
𝑓𝑋(𝑦 ∣ 𝜃)

= 𝑔𝑆(𝑆(𝑥), 𝜃)ℎ𝑆(𝑥)
𝑔𝑆(𝑆(𝑦), 𝜃)ℎ𝑆(𝑦)

= ℎ𝑆(𝑥)
ℎ𝑆(𝑦)

which is constant in 𝜃. Hence, 𝑥 1∼ 𝑦. By the hypothesis, we have 𝑥 2∼ 𝑦, so 𝑇(𝑥) = 𝑇(𝑦),
which is the requirement for minimality.

Example. Let 𝑋1,… , 𝑋𝑛 be normal with unknown 𝜇, 𝜎2.

𝑓𝑋(𝑥 ∣ 𝜇, 𝜎2)
𝑓𝑋(𝑦 ∣ 𝜇, 𝜎2)

=
(2𝜋𝜎2)−𝑛/2 exp{− 1

2𝜎2
∑𝑖(𝑥𝑖 − 𝜇)2}

(2𝜋𝜎2)−𝑛/2 exp{− 1
2𝜎2∑𝑖(𝑦𝑖−𝜇)2

}

= exp{− 1
2𝜎2(∑𝑖

𝑥2𝑖 −∑
𝑖
𝑦2𝑖 ) +

𝜇
𝜎2(∑𝑖

𝑥𝑖 −∑
𝑖
𝑦𝑖)}

Hence, for minimality, this is constant in the parameters 𝜇, 𝜎2 if and only if∑𝑖 𝑥2𝑖 = ∑𝑖 𝑦2𝑖
and∑𝑖 𝑥𝑖 = ∑𝑖 𝑦𝑖. Thus, a minimal sufficient statistic is (∑𝑖 𝑥2𝑖 ,∑𝑖 𝑥𝑖) is a minimal suffi-
cient statistic. A more common way of expressing the minimal sufficient statistic is

𝑆(𝑥) = (𝑋𝑛, 𝑆𝑥𝑥); 𝑋𝑛 =
1
𝑛 ∑𝑖

𝑥𝑖; 𝑆𝑥𝑥 = ∑
𝑖
(𝑋𝑖 − 𝑋𝑛)

2

which is a bijection of the above.

Example. 𝜃 and aminimal statistic𝑇 neednot have the samedimension. Consider𝑋1,… , 𝑋𝑛 ∼
𝑁(𝜇, 𝜇2). Here, there is a single parameter 𝜇 but the minimal sufficient statistic is still 𝑆(𝑥)
as defined above.

2.6. Rao–Blackwell theorem
Previously, the notation 𝔼𝜃 and ℙ𝜃 have been used to denote expectations and probabilities
under themodel where the observations are i.i.d. with p.d.f. or p.m.f. 𝑓𝑋 . From now, we omit
this subscript, as it will be implied for much of the remainder of the course.
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Theorem. Let 𝑇 be a sufficient statistic for 𝜃, and define an estimator ̃𝜃 with 𝔼 [ ̃𝜃2] < ∞
for all 𝜃. Now we define another estimator

̂𝜃 = 𝔼 [ ̃𝜃 ∣ 𝑇(𝑥)]

Then, for all values of 𝜃, we have

𝔼 [( ̂𝜃 − 𝜃)2] ≤ 𝔼 [( ̃𝜃 − 𝜃)2]

In other words, the mean squared error of ̂𝜃 is not greater than the mean squared error of ̃𝜃.
Further, the inequality is strict unless ̃𝜃 is a function of 𝑇.

Remark. Starting from any estimator ̃𝜃, if we condition on the sufficient statistic 𝑇 we obtain
a ‘better’ statistic ̂𝜃. Note that 𝑇 must be sufficient, otherwise ̂𝜃 may be a function of 𝜃 and
thus not an estimator:

̂𝜃(𝑋) = ̂𝜃(𝑇) = ∫ ̂𝜃(𝑥) 𝑓𝑋∣𝑇(𝑥 ∣ 𝑇)⏟⎵⎵⏟⎵⎵⏟
does not depend on 𝜃 as 𝑇 is sufficient

d𝑥

Proof. By the tower property of the expectation, we can find

𝔼 [ ̂𝜃] = 𝔼 [𝔼 [ ̃𝜃 ∣ 𝑇(𝑥)]] = 𝔼 [ ̃𝜃]

Hence, subtracting ̃𝜃 from both sides, we find bias( ̂𝜃) = bias( ̃𝜃). By the conditional variance
formula,

Var ( ̃𝜃) = 𝔼[Var ( ̃𝜃 ∣ 𝑇)⏟⎵⎵⏟⎵⎵⏟
≥0

] + Var (𝔼 [ ̃𝜃 ∣ 𝑇])⏟⎵⎵⎵⏟⎵⎵⎵⏟
Var( ̂𝜃)

≥ Var ( ̂𝜃)

By the bias-variance decomposition, we know thatmse( ̃𝜃) ≥ mse( ̂𝜃). The inequality is strict
unless Var ( ̃𝜃 ∣ 𝑇) = 0 almost surely. This requires that ̃𝜃 is a function of 𝑇.

Example. Let 𝑋1,… , 𝑋𝑛 be i.i.d. Poisson random variables with parameter 𝜆. Then let 𝜃 =
ℙ (𝑋1 = 0) = 𝑒−𝜆. Here,

𝑓𝑋(𝑥 ∣ 𝜆) =
𝑒−𝑛𝜆𝜆∑𝑥𝑖

∏𝑥𝑖!
⟹ 𝑓𝑋(𝑥 ∣ 𝜃) =

𝜃𝑛(− log 𝜃)∑𝑥𝑖

∏𝑥𝑖!

Using the factorisation criterion, we find

𝑔(𝑇(𝑥), 𝜃) = 𝑔(∑𝑥𝑖, 𝜃) = 𝜃𝑛(− log 𝜃)∑𝑥𝑖 ; ℎ(𝑥) = 1
∏𝑥𝑖!

so 𝑇(𝑥) = ∑𝑥𝑖 is sufficient. Note that∑𝑋𝑖 has a Poisson distribution with parameter 𝑛𝜆.
Consider the estimator ̃𝜃 = 𝟙{𝑋1 = 0}. This depends only on 𝑋1, hence it is a weak estimator.
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However, it is unbiased, so when we apply the Rao–Blackwell theorem we will construct an
unbiased ̂𝜃, which is precisely

̂𝜃 = 𝔼 [ ̃𝜃 ∣ ∑𝑋𝑖 = 𝑡] = ℙ (𝑋1 = 0 ∣ ∑𝑋𝑖 = 𝑡)

= ℙ (𝑋1 = 0,∑𝑋𝑖 = 𝑡)
ℙ (∑𝑋𝑖 = 𝑡)

=
ℙ (𝑋1 = 0)ℙ (∑𝑛

𝑖=2 𝑋𝑖 = 𝑡)
ℙ (∑𝑛

𝑖=1 𝑋𝑖 = 𝑡)

= (𝑛 − 1
𝑛 )

𝑡

This may also be written

̂𝜃 = (1 − 1
𝑛)

∑𝑥𝑖

which is an estimatorwith lowermean squared error than 1̃ for all 𝜃. Note that ̂𝜃 = (1 = 1
𝑛
)
𝑛𝑋𝑛

converges in the limit to 𝑒−𝑋𝑛 . By the strong law of large numbers, 𝑋𝑛 → 𝔼[𝑋1] = 𝜆, so we
arrive at ̂𝜃 → 𝑒−𝜆 = 𝜃 almost surely.
Example. Let 𝑋1,… , 𝑋𝑛 be i.i.d. uniform random variables in an interval [0, 𝜃]. We wish
to estimate 𝜃 > 0. We observed that 𝑇 = max𝑋𝑖 is sufficient for 𝜃. Let ̃𝜃 = 2𝑋1. This is an
unbiased estimator of 𝜃. Then the Rao–Blackwellised estimator ̂𝜃 is

̂𝜃 = 𝔼 [ ̃𝜃 ∣ 𝑇 = 𝑡]
= 2𝔼 [𝑋1 ∣ max𝑋𝑖 = 𝑡]
= 2𝔼 [𝑋1 ∣ max𝑋𝑖 = 𝑡, 𝑋1 = max𝑋𝑖] ℙ (𝑋1 = max𝑋𝑖 ∣ max𝑋𝑖 = 𝑡)
+ 2𝔼 [𝑋1 ∣ max𝑋𝑖 = 𝑡, 𝑋1 ≠ max𝑋𝑖] ℙ (𝑋1 ≠ max𝑋𝑖 ∣ max𝑋𝑖 = 𝑡)

Since 𝑋1,… , 𝑋𝑛 are i.i.d., the conditional probability ℙ (𝑋1 = max𝑋𝑖 ∣ max𝑋𝑖 = 𝑡) can be
reduced toℙ (𝑋1 = max𝑋𝑖) =

1
𝑛
. The complementary eventmay be reduced in an analogous

way. The expectation 𝔼 [𝑋1 ∣ max𝑋𝑖 = 𝑡, 𝑋1 = max𝑋𝑖] can be reduced to 𝑡.

̂𝜃 = 2𝑡
𝑛 + 2(𝑛 − 1)

𝑛 𝔼 [𝑋1 ∣ 𝑋1 < 𝑡,
𝑛

max
𝑖=2

𝑋𝑖 = 𝑡]

= 2𝑡
𝑛 + 2(𝑛 − 1)

𝑛 𝔼 [𝑋1 ∣ 𝑋1 < 𝑡]

= 2𝑡
𝑛 + 2(𝑛 − 1)

𝑛
𝑡
2

= 2𝑡
𝑛 + 𝑡(𝑛 − 1)

𝑛 = 𝑛 + 1
𝑛 max

𝑖
𝑋𝑖

By the Rao–Blackwell theorem, the mean squared error of ̂𝜃 is not greater than the mean
squared error of ̃𝜃. This is also an unbiased estimator.
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2.7. Maximum likelihood estimation
Let 𝑋1,… , 𝑋𝑛 be i.i.d. random variables with mass or density function 𝑓𝑋(𝑥 ∣ 𝜃).
Definition. For fixed observations 𝑥, the likelihood function 𝐿∶ Θ → ℝ is given by

𝐿(𝜃) = 𝑓𝑋(𝑥 ∣ 𝜃) =
𝑛
∏
𝑖=1

𝑓𝑋𝑖 (𝑥𝑖 ∣ 𝜃)

We will denote the log-likelihood by

ℓ(𝜃) = log𝐿(𝜃) =
𝑛
∑
𝑖=1

log𝑓𝑋𝑖 (𝑥𝑖 ∣ 𝜃)

Definition. Amaximum likelihood estimator is an estimator that maximises the likelihood
function 𝐿 over Θ. Equivalently, the estimator maximises ℓ.
Example. Let 𝑋1,… , 𝑋𝑛 be i.i.d. Bernoulli random variables with parameter 𝑝. The log-
likelihood function is

ℓ(𝑝) =
𝑛
∑
𝑖=1
[𝑋𝑖 log𝑝 + (1 − 𝑋𝑖) log(1 − 𝑝)] = log𝑝 +∑𝑋𝑖 + log(1 − 𝑝)(𝑛 −∑𝑋𝑖)

The derivative is
ℓ′(𝑝) = ∑𝑋𝑖

𝑝 + 𝑛 −∑𝑋𝑖
1 − 𝑝

which has a single stationary point at𝑝 = 1
𝑛
∑𝑋𝑖 = 𝑋𝑛. We have𝔼 [ ̂𝑝] = 𝑝, so themaximum

likelihood estimator in this case is unbiased.

Example. Let 𝑋1,… , 𝑋𝑛 be i.i.d. normal random variables with unknownmean 𝜇 and vari-
ance 𝜎2.

ℓ(𝜇, 𝜎2) = −𝑛2 log(2𝜋) −
𝑛
2 log𝜎

2 − 1
2𝜎2 ∑(𝑋𝑖 − 𝜇)2

This function is concave in 𝜇 and 𝜎2, so there exists a unique maximiser. In particular, ℓ is
maximised when 𝜕ℓ

𝜕𝜇
= 𝜕ℓ

𝜕𝜎2
= 0.

𝜕ℓ
𝜕𝜇 = − 1

𝜎2 ∑(𝑋𝑖 − 𝜇)

This is zero if 𝜇 = 𝑋𝑛. Further,

𝜕ℓ
𝜕𝜎2 = − 𝑛

2𝜎2 +
1
2𝜎4 ∑(𝑋𝑖 − 𝜇)2 = − 𝑛

2𝜎2 +
1
2𝜎4 ∑(𝑋𝑖 − 𝑋𝑛)2

This is zero if and only if
𝜎2 = 1

𝑛 ∑(𝑋𝑖 − 𝑋𝑛)2 =
𝑆𝑥𝑥
𝑛
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Hence, the maximum likelihood estimator is (�̂�, �̂�2) = (𝑋𝑛,
1
𝑛
𝑆𝑥𝑥). We can show that �̂� is

unbiased. We will later prove that

𝑆𝑥𝑥
𝜎2 = 𝑛�̂�2

𝜎2 ∼ 𝜒2𝑛−1

Hence
𝔼 [�̂�2] = 𝜎2

𝑛 𝔼 [𝜒
2
𝑛−1] = 𝜎2𝑛 − 1

𝑛
This is therefore a biased estimator, but the bias converges to zero as 𝑛 → ∞: �̂�2 is asymp-
totically unbiased.

Example. Let 𝑋1,… , 𝑋𝑛 be i.i.d. uniform random variables on [0, 𝜃]. Here, we derived the
unbiased estimator ̂𝜃 = 𝑛+1

𝑛
max𝑋𝑖. The likelihood is given by

𝐿(𝜃) = 1
𝜃𝑛 𝟙{max𝑋𝑖 ≤ 𝜃}

This function is maximised at ̂𝜃mle = max𝑋𝑖. By comparison to the ̂𝜃 derived from the
Rao–Blackwell process, ̂𝜃mle is biased. In particular,

𝔼 [ ̂𝜃mle] =
𝑛

𝑛 + 1𝔼 [
̂𝜃] = 𝑛

𝑛 + 1𝜃

Remark. If 𝑇 is a sufficient statistic for 𝜃, then the maximum likelihood estimator is a func-
tion of 𝑇. Indeed, since 𝑋 and 𝑇 are fixed, the maximiser of 𝐿(𝜃) = 𝑔(𝑇, 𝜃)ℎ(𝑋) depends
on 𝑋 only through 𝑇. If 𝜑 = 𝐻(𝜃) for a bijection 𝐻, then if ̂𝜃 is the maximum likelihood
estimator for 𝜃, we have that 𝐻( ̂𝜃) is the maximum likelihood estimator for 𝜑.
Under some regularity conditions, as 𝑛 → ∞ the statistic√𝑛( ̂𝜃−𝜃) is approximately normal
with mean zero and covariance matrix Σ. More precisely, for ‘nice’ sets 𝐴, we have

ℙ (√𝑛( ̂𝜃 − 𝜃) ∈ 𝐴) → ℙ (𝑍 ∈ 𝐴) ; 𝑍 ∼ 𝑁(0, Σ)

We say that the maximum likelihood estimator is asymptotically normal. The limiting cov-
ariance matrix Σ is a known function of ℓ, which will not be defined in this course. In some
sense, Σ is the smallest variance that any estimator can achieve asymptotically.
For practical purposes, this estimator can often be found numerically by maximising ℓ or 𝐿.
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3. Inference
3.1. Confidence intervals
Definition. A 100𝛾% confidence interval for a parameter 𝜃 is a random interval (𝐴(𝑋), 𝐵(𝑋))
such that ℙ (𝐴(𝑋) ≤ 𝜃 ≤ 𝐵(𝑋)) = 𝛾 for all 𝜃 ∈ Θ. Note that the parameter 𝜃 is assumed to
be fixed for the event {𝐴(𝑋) ≤ 𝜃 ≤ 𝐵(𝑋)}, and the confidence interval holds uniformly over
𝜃.
Remark. Suppose that an experiment is repeatedmany times. On average, 100𝛾%of the time,
the random interval (𝐴(𝑋), 𝐵(𝑋)) will contain the true parameter 𝜃. This is the frequentist
interpretation of the confidence interval.

A misleading interpretation is as follows. Given that a single value of 𝑋 is observed, there is
a probability 𝛾 that 𝜃 ∈ (𝐴(𝑥), 𝐵(𝑥)). This is wrong, as will be demonstrated later.
Example. Let 𝑋1,… , 𝑋𝑛 be i.i.d. normal random variables with unit variance. We will find
the 95% confidence interval for 𝜇 = 𝜃. We have

𝑋 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖 ∼ 𝑁(𝜃, 1𝑛); 𝑍 = √𝑛(𝑋 − 𝜃) ∼ 𝑁(0, 1)

Let 𝑎, 𝑏 be numbers such that Φ(𝑏) − Φ(𝑎) = 0.95. Then

ℙ (𝑎 ≤ √𝑛(𝑋 − 𝜃) ≤ 𝑏) = 0.95 ⟹ ℙ(𝑋 − 𝑏
√𝑛

≤ 𝜃 ≤ 𝑋 − 𝑎
√𝑛

) = 0.95

Hence, (𝑋 − 𝑏
√𝑛
, 𝑋 − 𝑎

√𝑛
) is a 95% confidence interval for 𝜃. Typically, we wish to centre the

interval around some estimator ̂𝜃 such that its range is minimised for a given 𝛾. In this case,
we want to set −𝑎 = 𝑏 = 𝑧0.025 ≈ 1.96, where 𝑧𝛼 = Φ−1(1 − 𝛼). Hence, the confidence
interval is (𝑋 ± 1.96

√𝑛
).

Remark. In general, to find a confidence interval:

(i) Find a quantity𝑅(𝑋, 𝜃)where the distributionℙ𝜃 does not depend on 𝜃. This is known
as a pivot. In the example above, 𝑅(𝑋, 𝜃) = √𝑛(𝑋 − 𝜃).

(ii) Consider ℙ (𝑐1 ≤ 𝑅(𝑋, 𝜃) ≤ 𝑐2) = 𝛾. Given some desired level of confidence 𝛾, find 𝑐1
and 𝑐2 using the distribution function of the pivot.

(iii) Rearrange such that ℙ (𝐴(𝑋) ≤ 𝜃 ≤ 𝐵(𝑋)) = 𝛾, then (𝐴(𝑋), 𝐵(𝑋)) is the confidence
interval as required.

Proposition. Let 𝑇 be amonotonically increasing function, and let (𝐴(𝑋), 𝐵(𝑋)) be a 100𝛾%
confidence interval for 𝜃. Then (𝑇(𝐴(𝑋)), 𝑇(𝐵(𝑋))) is a 100𝛾% confidence interval for 𝑇(𝜃).
Remark. If 𝜃 is a vector, we can consider confidence sets instead of confidence intervals. A
confidence set is a set 𝐴(𝑋) such that ℙ (𝜃 ∈ 𝐴(𝑋)) = 𝛾.
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Example. Let 𝑋1,… , 𝑋𝑛 be i.i.d. normal random variables with zero mean and unknown
variance 𝜎2. We will find a 95% confidence interval for 𝜎2. Note that 𝑋1

𝜎
∼ 𝑁(0, 1) is a valid

pivot, but it considers only one data point. We will instead consider

𝑅(𝑋, 𝜎2) = ∑
𝑖

𝑋2
𝑖
𝜎2 ∼ 𝜒2𝑛

Now, we can define 𝑐1 = 𝐹−1𝜒2𝑛
(0.025) and 𝑐2 = 𝐹−1𝜒2𝑛

(0.975), giving

ℙ(𝑐1 ≤
𝑛
∑
𝑖=1

𝑋2
𝑖
𝜎2 ≤ 𝑐2) = 0.95

Rearranging, we have

ℙ(∑𝑋2
𝑖

𝑐2
≤ 𝜎2 ≤ ∑𝑋2

𝑖
𝑐1

) = 0.95

Hence, the interval∑𝑛
𝑖=1 𝑋2

𝑖 (
1
𝑐2
, 1
𝑐1
) is a 95% confidence interval for 𝜎2.

Example. Let𝑋1,… , 𝑋𝑛 be i.i.d. Bernoulli random variables with parameter𝑝. Suppose 𝑛 is
large. We will find an approximate 95% confidence interval for 𝑝. The maximum likelihood
estimator is

̂𝑝 = 𝑋 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

By the central limit theorem, ̂𝑝 is asymptotically distributed according to𝑁(𝑝, 𝑝(1−𝑝)
𝑛

). Hence,

√𝑛 ̂𝑝 − 𝑝
√𝑝(1 − 𝑝)

has approximately a standard normal distribution. We have

ℙ(−𝑧0.025 ≤ √𝑛 ̂𝑝 − 𝑝
√𝑝(1 − 𝑝)

≤ 𝑧0.025) ≈ 0.95

Instead of directly rearranging the inequalities, we will make an approximation for the de-
nominator of the central term, letting √𝑝(1 − 𝑝) ↦ √ ̂𝑝(1 − ̂𝑝). When 𝑛 is large, this ap-
proximation becomes more accurate.

ℙ(−𝑧0.025 ≤ √𝑛 ̂𝑝 − 𝑝
√ ̂𝑝(1 − ̂𝑝)

≤ 𝑧0.025) ≈ 0.95

This is much easier to rearrange, leading to

ℙ( ̂𝑝 − 𝑧0.025
√ ̂𝑝(1 − ̂𝑝)

√𝑛
≤ 𝑝 ≤ ̂𝑝 + 𝑧0.025

√ ̂𝑝(1 − ̂𝑝)
√𝑛

) ≈ 0.95

This gives the approximate 95% confidence interval as required.
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Remark. Note that the size of the confidence interval is maximised at 𝑝 = 1
2
, with a length

of 2𝑧0.025
1

2√𝑛
≈ 1

√𝑛
. This is a conservative 95% confidence interval; it may be wider than

necessary but holds for all values of 𝜃.

3.2. Interpreting the confidence interval

Example. Let 𝑋1, 𝑋2 be i.i.d. uniform random variables in (𝜃 − 1
2
, 𝜃 + 1

2
). We wish to estim-

ate the value of 𝜃 with a 50% confidence interval. Observe that

ℙ (𝜃 ∈ (min𝑋𝑖,max𝑋𝑖)) = ℙ (𝑋1 ≤ 𝜃 ≤ 𝑋2) + ℙ (𝑋2 ≤ 𝜃 ≤ 𝑋1) =
1
2

Hence, (min𝑋1,max𝑋𝑖) is a 50% confidence interval for 𝜃. The frequentist interpretation
is exactly correct; 50% of the time, 𝜃 will lie between 𝑋1 and 𝑋2. However, suppose that
|𝑋1 − 𝑋2| >

1
2
. Then we know that 𝜃 ∈ (min𝑋𝑖,max𝑋𝑖). Suppose 𝑋1 = 0.1, 𝑋2 = 0.9, then

it is not sensible to say that there is a 50% chance that 𝜃 ∈ [0.1, 0.9].
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4. Bayesian analysis

4. Bayesian analysis
4.1. Introduction
Frequentist analysis considers the value 𝜃 to be fixed, and then we can make inferential
statements about 𝜃 in the context of repeated experiments on a random variable𝑋 . Bayesian
analysis is an alternative to frequentist analysis, where 𝜃 is itself treated as a random variable
taking values in the parameter space Θ. We say that the prior distribution 𝜋(𝜃) is a distribu-
tion representing the beliefs of the investigator about 𝜃 before observing data. The data 𝑋
has a p.d.f. or p.m.f. conditional on 𝜃 given by 𝑓𝑋( ⋅ ∣ 𝜃). Having observed 𝑋 , we can com-
bine this information with the prior distribution to form the posterior distribution 𝜋(𝜃 ∣ 𝑋),
which is the conditional distribution of 𝜃 given 𝑋 . This contains updated information about
the value of 𝜃. By Bayes’ rule,

𝜋(𝜃 ∣ 𝑥) = 𝜋(𝜃)𝑓𝑋(𝑥 ∣ 𝜃)
𝑓𝑋(𝑥)

where 𝑓𝑋(𝑥) is the marginal distribution of 𝑋 , defined by

𝑓𝑋(𝑥) = {∫Θ 𝑓𝑋(𝑥 ∣ 𝜃)𝜋(𝜃) d𝜃 𝜃 continuous
∑Θ 𝑓𝑋(𝑥 ∣ 𝜃)𝜋(𝜃) 𝜃 discrete

More simply,
𝜋(𝜃 ∣ 𝑋) ∝ 𝜋(𝜃) ⋅ 𝑓𝑋(𝑋 ∣ 𝜃)

The proportionality here is with respect to 𝜃. So the posterior is proportional to the prior
multiplied by the likelihood. It is often easy to recognise that the right hand side of this
expression is in some family of distributions, such as 𝑁 or Γ, up to some normalising con-
stant.

Remark. By the factorisation criterion, if 𝑇 is a sufficient statistic for 𝜃, the posterior 𝜋(𝜃 ∣ 𝑥)
depends on 𝑋 only through 𝑇. More precisely,

𝜋(𝜃 ∣ 𝑋) ∝ 𝜋(𝜃)𝑔(𝑇(𝑋), 𝜃)ℎ(𝑋) ∝ 𝜋(𝜃)𝑔(𝑇(𝐶), 𝜃)

Example. Consider a patient who we will test for the presence of a disease, where we have
no information about the health or lifestyle of the patient. Let 𝜃 take the value 1 if the patient
is infected and 0 otherwise. We have a random variable 𝑋 which takes the value 1 if a given
test returns a positive result and 0 if the test is negative. We know the sensitivity of the test
𝑓𝑋(𝑋 = 1 ∣ 𝜃 = 1), and the specificity of the test 𝑓𝑋(𝑋 = 0 ∣ 𝜃 = 0). This fully specifies the
likelihood function.

We nowmust choose a prior distribution. For example, let 𝜋(𝜃 = 1) be the estimated propor-
tion of the general population that have the given disease. The posterior is the probability
of an infection given the test result.

𝜋(𝜃 = 1 ∣ 𝑋 = 1) = 𝜋(𝜃 = 1)𝑓𝑋(𝑋 = 1 ∣ 𝜃 = 1)
𝜋(𝜃 = 1)𝑓𝑋(𝑋 = 1 ∣ 𝜃 = 1) + 𝜋(𝜃 = 0)𝑓𝑋(𝑋 = 1 ∣ 𝜃 = 0)
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Even with a positive test result, the posterior distributionmay still yield a low probability for
𝜃, which may happen if 𝜋(𝜃 = 1) ≪ 𝜋(𝜃 = 0).

Example. Let 𝜃 be the mortality rate of a particular surgery, which will take values in [0, 1].
In the first ten operations, we observed that none of the patients died. We will model 𝑋 ∼
𝐵(10, 𝜃) and observe 𝑋 = 0.

We must choose a prior. Suppose that we have data from other hospitals that suggests
that the mortality for the surgery ranges from 3% to 20%, with an average of 10%. We can
choose the prior to be the beta distribution, 𝜋(𝜃) ∼ Beta(𝑎, 𝑏), since the value of 𝜃 should
range between zero and one. Let 𝑎 = 3 and 𝑏 = 27, which will give 𝔼 [𝜃] = 0.1 and
ℙ (0.03 < 𝜃 < 0.2) ≈ 0.9. In this case, the posterior is

𝜋(𝜃 ∣ 𝑋) ∝ 𝜋(𝜃)𝑓𝑋(𝑥 = 0 ∣ 𝜃) ∝ 𝜃𝑎−1(1 − 𝜃)𝑏−1𝜃𝑥(1 − 𝜃)𝑛−𝑥 = 𝜃𝑥+𝑎−1(1 − 𝜃)𝑏−𝑛−𝑥−1

This is again a beta distribution with parameters 𝑥 + 𝑎 and 𝑛 − 𝑥 + 𝑏. The normalising
constant does not need to be explicitly calculated since the form of the distribution can be
recognised.

With the above data, we obtain 𝜋(𝜃 ∣ 𝑥 = 0) ∼ Beta(3, 37). This posterior has a smaller
variance than the prior, and a smaller expectation due to observing no deaths. In this case,
the prior and posterior have the same distribution. This is known as conjugacy.

4.2. Inference from the posterior
The posterior distribution 𝜋(𝜃 ∣ 𝑥) represents information about 𝜃 after having observed
some data 𝑋 . This can be used to make decisions under uncertainty.

(i) We first choose some decision 𝛿 ∈ Δ. For instance, in the first example, a decision
could be to ask the patient to isolate from others to reduce transmission.

(ii) We define a loss function 𝐿(𝜃, 𝛿), which defines what loss is incurred by making de-
cision 𝛿 given the true value of 𝜃. In the above example, 𝐿(𝜃 = 1, 𝛿 = 1) is the loss
incurred by asking the patient to isolate given that they have the disease.

(iii) We can now choose the decision 𝛿 that minimises

∫
Θ
𝐿(𝜃, 𝛿)𝜋(𝜃 ∣ 𝑥) d𝜃

which is the posterior expectation of the loss.

4.3. Point estimation
We can use Bayesian analysis to represent an estimate for the value of 𝜃 as a decision.
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Definition. The Bayes estimator ̂𝜃(𝐵) minimises

ℎ(𝛿) = ∫
Θ
𝐿(𝜃, 𝛿)𝜋(𝜃 ∣ 𝑥) d𝜃

Example. Suppose the loss function is quadratic, given by 𝐿(𝜃, 𝛿) = (𝜃 − 𝛿)2. Here,

ℎ(𝛿) = ∫
Θ
(𝜃 − 𝛿)2𝜋(𝜃 ∣ 𝑥) d𝜃

Thus, ℎ(𝛿) = 0 if

∫
Θ
(𝜃 − 𝛿)𝜋(𝜃 ∣ 𝑥) d𝜃 = 0 ⟺ 𝛿 = ∫

Θ
𝜃𝜋(𝜃 ∣ 𝑥) d𝑥

Under the quadratic loss function, ̂𝜃(𝐵) can be described as the expectation of 𝜃 under the
posterior distribution.

Example. Consider the absolute error loss, given by 𝐿(𝜃, 𝛿) = |𝜃 − 𝛿|. In this case we have

ℎ(𝛿) = ∫
Θ
|𝜃 − 𝛿|𝜋(𝜃 ∣ 𝑥) d𝜃 = ∫

𝛿

−∞
−(𝜃 − 𝛿)𝜋(𝜃 ∣ 𝑥) d𝜃 +∫

∞

𝛿
(𝜃 − 𝛿)𝜋(𝜃 ∣ 𝑥) d𝜃

We can differentiate, using the fundamental theorem of calculus, to find

ℎ′(𝛿) = ∫
𝛿

−∞
𝜋(𝜃 ∣ 𝑥) d𝜃 −∫

∞

𝛿
𝜋(𝜃 ∣ 𝑥) d𝜃

This is zero if and only if

∫
𝛿

−∞
𝜋(𝜃 ∣ 𝑥) d𝜃 = ∫

∞

𝛿
𝜋(𝜃 ∣ 𝑥) d𝜃

This yields the median of the posterior distribution.

4.4. Credible intervals
Definition. A 100𝛾% credible interval (𝐴(𝑥), 𝐵(𝑥)) satisfies

𝜋(𝐴(𝑥) ≤ 𝜃 ≤ 𝐵(𝑥) ∣ 𝑥) = 𝛾

Remark. Unlike confidence intervals, credible intervals can be interpreted conditionally on
the data. For example, we could say that given a specific observation 𝑥, we are 100𝛾% certain
that 𝜃 lies within (𝐴(𝑥), 𝐵(𝑥)). This credible interval is also dependent on the choice of prior
distribution.
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5. Hypothesis testing

5.1. Hypotheses

Definition. A hypothesis is an assumption about the distribution of the data 𝑋 . Scientific
questions are often phrased as a decision between two hypotheses. The null hypothesis𝐻0 is
usually a basic hypothesis, often representing the simplest possible distribution of the data.
The alternative hypothesis 𝐻1 is the alternative, if 𝐻0 were found to be false.

Example. Let 𝑋 = (𝑋1,… , 𝑋𝑛) be i.i.d. Bernoulli random variables with parameter 𝜃. We
could take, for example,𝐻0∶ 𝜃 =

1
2
and𝐻1∶ 𝜃 =

3
4
. Alternatively, we could take𝐻0∶ 𝜃 =

1
2

and 𝐻1∶ 𝜃 ≠
1
2
.

Example. Suppose 𝑋𝑖 takes values 0, 1,…. We can take 𝐻0∶ 𝑋𝑖
iid∼ Poi(𝜆) for some 𝜆, and

𝐻1∶ 𝑋𝑖
iid∼ 𝑓1 for some other distribution 𝑓1. This is known as a goodness of fit test, which

checks how well the model used for the data fits.

Definition. A simple hypothesis is a hypothesis which fully specifies the p.d.f. or p.m.f. of
the data. A hypothesis that is not simple is called composite.

Example. In the first example above,𝐻0∶ 𝜃 =
1
2
is simple, and𝐻1∶ 𝜃 ≠

1
2
is composite. In

the second example, 𝐻0∶ 𝑋𝑖
iid∼ Poi(𝜆) is composite since 𝜆 was not fixed.

5.2. Testing hypotheses

Definition. A test of the null hypothesis 𝐻0 is defined by a critical region 𝐶 ⊆ 𝒳. When
𝑋 ∈ 𝐶, we reject the null hypothesis. This is a positive result. When 𝑋 ∉ 𝐶 we fail to reject
the null hypothesis, or find no sufficient evidence against the null hypothesis. This is the
negative result.

A type I error, or a false positive, is the error made by rejecting the null hypothesis when
it is true. A type II error, or a false negative, is the error made by failing to reject the null
hypothesis when it is not true. When 𝐻0, 𝐻1 are simple, we define

𝛼 = ℙ𝐻0 (𝐻0 is rejected) = ℙ𝐻0 (𝑋 ∈ 𝐶) ; 𝛽 = ℙ𝐻1 (𝐻0 is not rejected) = ℙ𝐻1 (𝑋 ∉ 𝐶)

The size of a test is 𝛼, which is the probability of a type I error. The power of a test is 1 − 𝛽,
which is the probability of not finding a type II error.

There is typically a tradeoff between 𝛼 and 𝛽. Often, statisticians will choose an ‘acceptable’
value for the probability of type I errors 𝛼, and then maximise the power with respect to this
fixed 𝛼. Computing the size of a test is typically simpler since it does not depend on 𝐻1.
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5.3. Neyman–Pearson lemma

Let 𝐻0 and 𝐻1 be simple, and let 𝑋 have a p.d.f. or p.m.f. 𝑓𝑖 under 𝐻𝑖. The likelihood ratio
statistic is defined by

Λ𝑥(𝐻0; 𝐻1) =
𝑓1(𝑥)
𝑓0(𝑥)

The likelihood ratio test is a test that rejects 𝐻0 when Λ𝑥 exceeds a set value 𝑘, or more
formally, 𝐶 = {𝑥∶ Λ𝑥(𝐻0; 𝐻1) > 𝑘}.

Lemma. Suppose that 𝑓0, 𝑓1 are nonzero on the same set, and suppose that there exists
𝑘 > 0 such that the likelihood ratio test with critical region 𝐶 = {𝑥∶ Λ𝑥(𝐻0; 𝐻1) > 𝑘} has
size 𝛼. Then out of all tests of size upper bounded by 𝛼, this test has the largest power.

Remark. A likelihood ratio test with size 𝛼 does not always exist for any given 𝛼. However,
in general we can find a randomised test with arbitrary size 𝛼. This is a test where, for some
values of 𝑋 , we reject the null hypothesis; for some values, we fail to reject the null hypo-
thesis; and for some values we reject the null hypothesis with a random chance of rejecting
the null hypothesis.

Proof. Let 𝐶 be the complement of 𝐶 in 𝒳. Then, the likelihood ratio test has

𝛼 = ∫
𝐶
𝑓0(𝑥) d𝑥 ; 𝛽 = ∫

𝐶
𝑓1(𝑥) d𝑥

Let 𝐶⋆ be a critical region for a different test, with type I and II error probabilities 𝛼⋆, 𝛽⋆.
Here,

𝛼⋆ = ∫
𝐶⋆
𝑓0(𝑥) d𝑥 ; 𝛽⋆ = ∫

𝐶⋆
𝑓1(𝑥) d𝑥

Suppose 𝛼⋆ ≤ 𝛼. Then, we will show 𝛽 ≤ 𝛽⋆.

𝛽 − 𝛽⋆ = ∫
𝐶
𝑓1(𝑥) d𝑥 −∫

𝐶⋆
𝑓1(𝑥) d𝑥
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By cancelling the integrals on the intersection, and using the definition of 𝐶,

𝛽 − 𝛽⋆ = ∫
𝐶∩𝐶⋆

𝑓1(𝑥) d𝑥 −∫
𝐶⋆∩𝐶

𝑓1(𝑥) d𝑥

= ∫
𝐶∩𝐶⋆

𝑓1(𝑥)
𝑓0(𝑥)⏟
≤𝑘

𝑓0(𝑥) d𝑥 −∫
𝐶⋆∩𝐶

𝑓1(𝑥)
𝑓0(𝑥)⏟
≥𝑘

𝑓0(𝑥) d𝑥

≤ 𝑘[∫
𝐶∩𝐶⋆

𝑓0(𝑥) d𝑥 −∫
𝐶

⋆
∩𝐶

𝑓0(𝑥) d𝑥]

= 𝑘[∫
𝐶∩𝐶⋆

𝑓0(𝑥) d𝑥 +∫
𝐶∩𝐶⋆

𝑓0(𝑥) d𝑥 −∫
𝐶∩𝐶⋆

𝑓0(𝑥) d𝑥 −∫
𝐶

⋆
∩𝐶

𝑓0(𝑥) d𝑥]

= 𝑘[∫
∩𝐶⋆

𝑓0(𝑥) d𝑥 −∫
𝐶
𝑓0(𝑥) d𝑥]

= 𝑘[𝛼⋆ − 𝛼]
≤ 0

Example. Let 𝑋1,… , 𝑋𝑛 ∼ 𝑁(𝜇, 𝜎20) be i.i.d., where 𝜎20 is known and 𝜇 is an unknown.
We wish to find the most powerful test of fixed size 𝛼 for the hypotheses 𝐻0∶ 𝜇 = 𝜇0 and
𝐻1∶ 𝜇 = 𝜇1 > 𝜇0. The likelihood ratio is

Λ𝑥(𝐻0; 𝐻1) =
(2𝜋𝜎20)−𝑛/2 exp{

−1
2𝜎20

∑(𝑥𝑖 − 𝜇0)2}

(2𝜋𝜎20)−𝑛/2 exp{
−1
2𝜎20

∑(𝑥𝑖 − 𝜇1)2}

= exp
⎧⎪
⎨⎪
⎩

𝜇1 − 𝜇0
𝜎20⏟⎵⏟⎵⏟
≥0

𝑛𝑋 + 𝑛(𝜇0 − 𝜇1)2
2𝜎20

⎫⎪
⎬⎪
⎭

which depends only on 𝑋 , and is monotonically increasing with respect to the sample mean
𝑋 . Therefore, this is also monotonically increasing with respect to the statistic

𝑍 = √𝑛𝑋 − 𝜇0
𝜎0

Thus, Λ𝑥 > 𝑘 if and only if 𝑍 > 𝑘′ for some 𝑘′. Hence, the likelihood ratio test has critical
region {𝑥∶ 𝑍(𝑥) > 𝑘′} for some 𝑘′. It thus suffices to find a critical region of 𝑍 with size 𝛼
in order to construct the most powerful test of this size. Under 𝐻0, 𝑍 ∼ 𝑁(0, 1). Hence, the
critical region is given by 𝑘′ = Φ−1(1 − 𝛼). This is known as a 𝑍-test, since we are using the
𝑍 statistic.
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5.4. 𝑝-values
Definition. Let 𝐶 be a critical region of the form {𝑥 ∶ 𝑇(𝑥) > 𝑘} for some test statistic 𝑇.
Let 𝑥⋆ denote the observed data. Then, the 𝑝-value is

ℙ𝐻0 (𝑇(𝑋) > 𝑇(𝑥⋆))

Typically, when reporting the results of a test, we describe the conclusion of the test as
well as the 𝑝-value. In the example above, suppose 𝜇0 = 5, 𝜇1 = 6, 𝛼 = 0.05, and 𝑥⋆ =
(5.1, 5.5, 4.9, 5.3). Here, 𝑥⋆ = 5.2 and 𝑧⋆ = 0.4. The likelihood ratio test has critical re-
gion

{𝑥 ∶ 𝑍(𝑥) > Φ−1(0.95) ≈ 1.645}

The conclusion of the test here is to not reject 𝐻0. The 𝑝-value is 1 − Φ(𝑧⋆) ≈ 0.35.

Proposition. Under the null hypothesis 𝐻0, the 𝑝-value is a uniform random variable in
[0, 1].

Proof. Let 𝐹 be the distribution of the test statistic 𝑇, which we will assume for this proof is
continuous. Then,

ℙ𝐻0 (𝑝 < 𝑢) = ℙ𝐻0 (1 − 𝐹(𝑇) < 𝑢)
= ℙ𝐻0 (𝐹(𝑇) > 1 − 𝑢)
= ℙ𝐻0 (𝑇 > 𝐹−1(1 − 𝑢))
= 1 − 𝐹(𝐹−1(1 − 𝑢)) = 𝑢

5.5. Composite hypotheses
Let 𝑋 ∼ 𝑓𝑋( ⋅ ∣ 𝜃) where 𝜃 ∈ Θ. Let 𝐻0 = 𝜃 ∈ Θ0 ⊂ Θ and 𝐻1 = 𝜃 ∈ Θ1 ⊆ Θ. The
probabilities of type I and type II error are now dependent on the precise value of 𝜃, rather
than simply on which hypothesis is taken.

Definition. The power function for a test 𝐶 is

𝑊(𝜃) = ℙ𝜃 (𝑋 ∈ 𝐶)

The size of a test 𝐶 is
𝛼 = sup

𝜃∈Θ0
𝑊(𝜃)

A test is uniformly most powerful of size 𝛼 if, for any test 𝐶⋆ with power function 𝑊 ⋆ and
size upper bounded by 𝛼, for all 𝜃 ∈ Θ1 we have𝑊(𝜃) ≥ 𝑊 ⋆(𝜃). Such tests need not exist.
In simple models, many likelihood ratio tests are uniformly most powerful.
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Example (one-sided test for normal location). Let 𝑋1,… , 𝑋𝑛 ∼ 𝑁(𝜇, 𝜎20) be i.i.d. where 𝜎20
is known and 𝜇 is unknown. Let 𝐻0∶ 𝜇 ≤ 𝜇0 and 𝐻1∶ 𝜇 > 𝜇0 for some fixed 𝜇0. We claim
that the simple hypothesis test given by 𝐻′

0∶ 𝜇 = 𝜇0 and 𝐻′
1∶ 𝜇 = 𝜇1 > 𝜇0 is uniformly

most powerful for 𝐻0 and 𝐻1. The power function is

𝑊(𝜇) = ℙ𝜇 (
√𝑛(𝑋 − 𝜇0)

𝜎0
= 𝑍 < 𝑧𝛼 = Φ−1(1 − 𝛼))

= ℙ𝜇 (
√𝑛(𝑋 − 𝜇)

𝜎0
> 𝑧𝛼 +

√𝑛(𝜇0 − 𝜇)
𝜎0

)

= 1 − Φ(𝑥𝛼 +√𝑛𝜇0 − 𝜇
𝜎0

)

The test has size 𝛼 since sup𝑤∈Θ0
𝑊(𝜇) = 𝛼. It remains to show that this power function

dominates all other power functions𝑊 ⋆ of size 𝛼 in the alternative space Θ1. First, observe
that the critical region depends only on 𝜇0, and not on 𝜇1. In particular, for any 𝜇1 > 𝜇0,
we have that the critical region 𝐶 is the likelihood ratio test for the simple hypothesis test
𝐻′
0∶ 𝜇 = 𝜇0 and 𝐻′

1∶ 𝜇 = 𝜇1. We can also see 𝐶⋆ as a test of 𝐻′
0 versus 𝐻′

1, and for these
simple hypotheses, 𝐶⋆ has size

𝑊 ⋆(𝜇0) ≤ sup
𝜇<𝜇0

𝑊 ⋆(𝜇) ≤ 𝛼

By the Neyman–Pearson lemma, 𝐶 has power no smaller than 𝐶⋆ for 𝐻′
0 against 𝐻′

1:

𝑊(𝜇1) ≥ 𝑊 ⋆(𝜇1)

Since this is true for all 𝜇1 > 𝜇0, the result holds, and the test 𝐶 satisfies the property for
being uniformly most powerful.

5.6. Generalised likelihood ratio test

Definition. Suppose we have nested hypotheses, i.e. 𝐻0∶ 𝜃 ∈ Θ0 and 𝐻1∶ 𝜃 ∈ Θ1, where
Θ0 ⊂ Θ1. The generalised likelihood ratio is given by

Λ𝑥(𝐻0; 𝐻1) =
sup𝜃∈Θ1

𝑓𝑋(𝑥 ∣ 𝜃)
sup𝜃∈Θ0

𝑓𝑋(𝑥 ∣ 𝜃)

Large values indicate a better fit under the alternative hypothesis. The generalised likelihood
ratio test rejects the null hypothesis when Λ𝑥 is sufficiently large.

Example (two-sided test for normal location). Let 𝑋1,… , 𝑋𝑛 ∼ 𝑁(𝜇, 𝜎20) be i.i.d. where 𝜎20
is known and 𝜇 is unknown. Let 𝐻0∶ 𝜇 = 𝜇0 and 𝐻1∶ 𝜇 ∈ ℝ for some fixed 𝜇0. In this
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model, the generalised likelihood ratio is

Λ𝑥(𝐻0; 𝐻1) =
(2𝜋𝜎20)−𝑛/2 exp{

−1
2𝜎20

Σ𝑛𝑖=1(𝑥𝑖 − 𝑋)2}

(2𝜋𝜎20)−𝑛/2 exp{
−1
2𝜎20

Σ𝑛𝑖=1(𝑥𝑖 − 𝜇0)2}

2 logΛ𝑥 =
𝑛
𝜎20
(𝑋 − 𝜇0)2

Under 𝐻0, √𝑛
𝑋−𝜇0
𝜎0

∼ 𝑁(0, 1). Hence, 2 logΛ𝑥 ∼ 𝜒21 . Therefore, the critical region of this
generalised likelihood ratio test is

𝐶 = {𝑥∶ 𝑛
𝜎20
(𝑋 − 𝜇0)2 > 𝜒21(𝛼)}

where 𝜒21(𝛼) is the upper 𝛼 point of 𝜒21 . This is called a two-sided test since there are two tails
on the critical region, plotting with respect to√𝑛𝑋−𝜇0

𝜎0
.

5.7. Wilks’ theorem
Definition. The dimension of a hypothesis 𝐻0∶ 𝜃 ∈ Θ0 is the number of ‘free parameters’
in this space.

Example. If Θ0 = {𝜃 ∈ ℝ𝑘∶ 𝜃1 = ⋯ = 𝜃𝑝 = 0}, then the dimension of 𝐻0 is 𝑘 − 𝑝.

Let 𝐴 ∈ ℝ𝑝×𝑘 be a 𝑝 × 𝑘matrix with linearly independent rows. Let 𝑏 ∈ ℝ𝑝 for 𝑝 < 𝑘, then
we define Θ0 = {𝜃 ∈ ℝ𝑘∶ 𝐴𝜃 = 𝑏}. Then the dimension of 𝜃 is 𝑘 − 𝑝.
Let Θ0 be a Riemannian manifold. We use differential geometry to deduce the dimension-
ality of such a manifold.

Theorem. Suppose Θ0 ⊂ Θ1, and dimΘ1 − dimΘ0 = 𝑝. Let 𝑋 = (𝑋1,… , 𝑋𝑛) be i.i.d.
random variables under 𝑓𝑥( ⋅ ∣ 𝜃) where 𝜃 ∈ Θ∘

0. Then, under some regularity conditions,
as 𝑛 → ∞ we have

2 logΛ𝑥 ∼ 𝜒2𝑝
More precisely, for all ℓ ∈ ℝ+,

lim
𝑛→∞

ℙ𝜃 (2 logΛ𝑥 ≤ ℓ) = ℙ (Ξ ≤ ℓ) ; Ξ ∼ 𝜒2𝑝

Remark. If 𝑛 is large, this theorem allows us to implement a generalised likelihood ratio test
even if we cannot find the exact distribution of 2 logΛ𝑥. Frequentist guarantees obtained
from such a test will be approximate.

Example. In the two-sided test for normal location, dimΘ1 = 1 and dimΘ0 = 0 hence the
difference in dimensions is 1. Then, Wilks’ theorem implies that 2 logΛ𝑥 is approximately
distributed according to 𝜒21 , although the result is exact in this particular case.
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5.8. Goodness of fit
Let 𝑋1,… , 𝑋𝑛 be i.i.d. samples taking values in {1,… , 𝑘}. Let 𝑝𝑖 = ℙ (𝑋1 = 𝑖), and let 𝑁 𝑖 be
the number of samples equal to 𝑖, so ∑𝑖 𝑝𝑖 = 1 and ∑𝑖 𝑁 𝑖 = 𝑛. The parameters here are
𝑝 = (𝑝1,… , 𝑝𝑘), which has 𝑘 − 1 dimensions. A goodness of fit test has a null hypothesis of
the form 𝐻0∶ 𝑝𝑖 = 𝑝𝑖 for all 𝑖, for a fixed 𝑝 = (𝑝1,… , 𝑝𝑘). The alternative hypothesis 𝐻1
does not constrain 𝑝.
The model is (𝑁1,… ,𝑁𝑘) ∼ Multi(𝑛; 𝑝1,… , 𝑝𝑘). The likelihood function is

𝐿(𝑝) ∝ 𝑝𝑁1
1 ⋯𝑝𝑁𝑘

𝑘 ⟹ ℓ(𝑝) = constant +∑
𝑖
𝑁 𝑖 log𝑝𝑖

The generalised likelihood ratio is

2 logΛ𝑥 = 2( sup
𝑝∈Θ1

ℓ(𝑝) − sup
𝑝∈Θ0

ℓ(𝑝)) = 2(ℓ( ̂𝑝) − ℓ(𝑝))

where ̂𝑝 is the maximum likelihood estimator under 𝐻1. To find ̂𝑝, we typically use the
method of Lagrange multipliers.

ℒ(𝑝, 𝜆) = ∑
𝑖
𝑁 𝑖 log𝑝𝑖 − 𝜆(∑𝑝𝑖 − 1)

We can compute that
̂𝑝𝑖 =

𝑁 𝑖
𝑛

This is simply the fraction of observed samples of type 𝑖.

5.9. Pearson statistic
Let 𝑜𝑖 = 𝑁 𝑖 be the observed number of samples of type 𝑖, and 𝑒𝑖 = 𝑛𝑝𝑖 be the expected value
under the null hypothesis of the number of samples of type 𝑖. Here, we can write

2 logΛ = 2∑
𝑖
𝑁 𝑖 log(

𝑁 𝑖
𝑛𝑝𝑖

) = 2∑
𝑖
𝑜𝑖 log

𝑜𝑖
𝑒𝑖

Let 𝛿𝑖 = 𝑜𝑖 − 𝑒𝑖. Then

2 logΛ = 2∑
𝑖
(𝑒𝑖 + 𝛿𝑖) log

⎛
⎜
⎜
⎝

1 + 𝛿𝑖
𝑒𝑖⏟

small when 𝑛 large

⎞
⎟
⎟
⎠

By taking the Taylor expansion, we arrive at

2∑
𝑖
(𝛿𝑖 +

𝛿2𝑖
𝑒𝑖
− 𝛿2𝑖
2𝑒𝑖

)
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Note that∑𝑖 𝛿𝑖 = ∑𝑖(𝑜𝑖 − 𝑒𝑖) = 𝑛 − 𝑛 = 0, so we can simplify and find

∑
𝑖

𝛿2𝑖
𝑒𝑖

= ∑
𝑖

(𝑜𝑖 − 𝑒𝑖)2
𝑒𝑖

This is Pearson’s 𝜒2 statistic. This is also referred to a 𝜒2𝑘−1 when performing a hypothesis
test.

Example. Mendel performed an experiment in which 556 different pea plants were cre-
ated from a small set of ancestors. Each descendent was either yellow or green, and either
wrinkled or smooth, giving four possibilities in total. The observed result was

𝑁 = (315⏟
𝑆𝐺

, 108⏟
𝑆𝑌

, 102⏟
𝑊𝐺

, 31⏟
𝑊𝑌

)

Mendel’s theory gives a null hypothesis 𝐻0∶ 𝑝 = 𝑝 = ( 9
16
, 3
16
, 3
16
, 1
16
). Here,

2 logΛ = 0.618; ∑
𝑖

(𝑜𝑖 − 𝑒𝑖)2
𝑒𝑖

= 0.604

These are referred to a 𝜒23 distribution. We observe that 𝜒23(0.05) = 7.815, so we fail to reject
the null hypothesis with a test of size 5%. We can compute that the 𝑝-value isℙ (𝜒23 > 0.6) ≈
0.96, so there is a very high probability of observing a more extreme value than observed.

5.10. Goodness of fit for composite null
Suppose 𝐻0∶ 𝑝𝑖 = 𝑝𝑖(𝜃) for some 𝜃 ∈ Θ0, and 𝐻1∶ 𝑝 has any distribution on {1,… , 𝑘}. We
can compute

2 logΛ = 2(sup
𝑝
ℓ(𝑝) − sup

𝜃∈Θ
ℓ(𝑝(𝜃)))

We can sometimes compute these quantities explicitly, and hence find a test which refers
this test statistic to a 𝜒2𝑝 distribution where 𝑝 = dimΘ1 − dimΘ0 = (𝑘 − 1) − dimΘ0.

Example. Consider a population of individualswhomayhave one of three genotypes, which
occur with probabilities (𝑝1, 𝑝2, 𝑝3) = (𝜃2, 2𝜃(1 − 𝜃), (1 − 𝜃)2). In this case, we can find the
maximum likelihood estimator under the null hypothesis to be

̂𝜃 = 2𝑁1 + 𝑁2
2𝑛

Hence,
2 logΛ = 2(ℓ( ̂𝑝) − ℓ( ̂𝜃))

where ̂𝑝𝑖 =
𝑁1
𝑛
as found previously. This can be computed explicitly and referred to a 𝜒21

distribution. We can check that, in this model,

2 logΛ = ∑
𝑖
𝑜𝑖 log

𝑜𝑖
𝑒𝑖
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where 𝑜𝑖 = 𝑁 𝑖 and 𝑒𝑖 = 𝑛𝑝𝑖( ̂𝜃). We can approximate this using the Pearson statistic,
∑𝑖

(𝑜𝑖−𝑒𝑖)2

𝑒𝑖
.

5.11. Testing independence in contingency tables
Suppose we have observations (𝑋1, 𝑌1),… , (𝑋𝑛, 𝑌𝑛)which are i.i.d., where the 𝑋𝑖 take values
in 1,… , 𝑟 and the 𝑌 𝑖 take values in 1,… , 𝑐. We wish to test whether the 𝑋𝑖 and 𝑌 𝑖 are
independent. We will summarise this data into a sufficient statistic known as a contingency
table 𝑁, given by

𝑁 𝑖𝑗 = |{ℓ∶ 1 ≤ ℓ ≤ 𝑛, (𝑋ℓ, 𝑌 ℓ) = (𝑖, 𝑗)}|
So 𝑁 𝑖𝑗 is the number of samples of type (𝑖, 𝑗).
Example. Suppose we observe 𝑛 samples, and each sample has probability 𝑝𝑖𝑗 of being of
type (𝑖, 𝑗). Flattening (𝑁 𝑖𝑗) into a vector, this has amultinomial distributionwith parameters
(𝑝𝑖𝑗) (also flattened into a vector). The null hypothesis is 𝐻0∶ 𝑝𝑖𝑗 = 𝑝𝑖+𝑝+𝑗 where 𝑝𝑖+ =
∑𝑗 𝑝𝑖𝑗 and 𝑝+𝑗 = ∑𝑖 𝑝𝑖𝑗 . The alternative hypothesis places no restrictions on the 𝑝𝑖𝑗 apart
from that it sums to 1 and has nonnegative entries. We find

2 logΛ = 2
𝑟
∑
𝑖=1

𝑐
∑
𝑗=1

𝑁 𝑖𝑗 log
̂𝑝𝑖𝑗

̂𝑝𝑖+ ̂𝑝+𝑗

where ̂𝑝𝑖𝑗 is the maximum likelihood estimator under 𝐻1, and where ̂𝑝𝑖+ and ̂𝑝+𝑗 are the
maximum likelihood estimators under 𝐻0. These can be found using the method of Lag-
range multipliers. In particular,

̂𝑝𝑖𝑗 =
𝑁 𝑖𝑗
𝑛 ; ̂𝑝𝑖+ = 𝑁 𝑖+

𝑛 = 1
𝑛

𝑐
∑
𝑗=1

𝑁 𝑖𝑗 ; ̂𝑝+𝑗 =
𝑁+𝑗
𝑛 = 1

𝑛
𝑟
∑
𝑖=1

𝑁 𝑖𝑗

Writing 𝑜𝑖𝑗 = 𝑁 𝑖𝑗 and 𝑒𝑖𝑗 = 𝑛 ̂𝑝𝑖+ ̂𝑝+𝑗 ,

2 logΛ = ∑
𝑖,𝑗
𝑜𝑖𝑗 log

𝑜𝑖𝑗
𝑒𝑖𝑗

≈ ∑
𝑖,𝑗

(𝑜𝑖𝑗 − 𝑒𝑖𝑗)2
𝑒𝑖𝑗

By Wilks’ theorem, these test statistics have an approximate 𝜒2𝑝 distribution, where 𝑝 =
dimΘ1 − dimΘ0 = (𝑟𝑐 − 1) − (𝑟 − 1 + 𝑐 − 1) = (𝑟 − 1)(𝑐 − 1).
The 𝜒2 test for independence has a number of weaknesses.
(i) The 𝜒2 approximation requires 𝑛 to be large. A reasonable heuristic is to require

𝑁 𝑖𝑗 ≥ 5 for all 𝑖, 𝑗. If this is not possible, we can perform an exact test (which is
non-examinable).

(ii) The 𝜒2 test often has a low power. Heuristically, this is because the alternative space
Θ1 is too large, and there are many possible models that lie in this space.
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Note that this test also applies when 𝑛 is a random variable with a Poisson distribution. This
is often the case when we do not fix the number of samples. The proof is not provided in
this course.

5.12. Testing homogeneity in contingency tables
Example. Suppose we perform a clinical trial on 150 patients, who are randomly assigned
to one of three groups of equal size. The first two sets take a drug with different doses, and
the third set takes a placebo.

improved no difference worse
placebo 18 17 15 50
half dose 20 10 20 50
full dose 25 13 12 50

In the previous section, we fixed the total number of samples. Here, we fix the total number
of samples, and the total number of samples in each row. We suppose

𝑁 𝑖1,… ,𝑁 𝑖𝑐 ∼ Multinomial(𝑛𝑖+; 𝑝𝑖1,… , 𝑝𝑖𝑐)

which are independent for each row 𝑖 of the table. The null hypothesis for homogeneity is
that 𝑝1𝑗 = 𝑝2𝑗 = ⋯ = 𝑝𝑟𝑗 for all 𝑗. The alternative hypothesis assumes that 𝑝𝑖1,… , 𝑝𝑖𝑐 is
any arbitrary probability vector for each row 𝑖. Under the alternative hypothesis,

𝐿(𝑝) =
𝑟
∏
𝑖=1

𝑛𝑖+!
𝑁 𝑖1!⋯𝑁 𝑖𝑐!

𝑝𝑁𝑖1
𝑖1 ⋯𝑝𝑁𝑖𝑐

𝑖𝑐

Hence,
ℓ(𝑝) = constant +∑

𝑖,𝑗
𝑁 𝑖𝑗 log𝑝𝑖𝑗

This is the same likelihood as the independence test above. To define the maximum like-
lihood estimator we can again use the method of Lagrange multipliers with constraints
∑𝑗 𝑝𝑖𝑗 = 1 for each 𝑖. We find

̂𝑝𝑖𝑗 =
𝑁 𝑖𝑗
𝑛𝑖+

Under the null hypothesis, we let 𝑝𝑗 = 𝑝𝑖𝑗 for any 𝑖.

ℓ(𝑝) = constant +∑
𝑖,𝑗
𝑁 𝑖𝑗 log𝑝𝑗 = ∑

𝑗
𝑁+𝑗 log𝑝𝑗

We have the constraint∑𝑗 𝑝𝑗 = 1. Using the method of Lagrange multipliers,

̂𝑝𝑗 =
𝑁+𝑗
𝑛++
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Hence,
2 logΛ = 2∑

𝑖,𝑗
𝑁 𝑖𝑗 log

̂𝑝𝑖𝑗
̂𝑝𝑗
= 2∑

𝑖,𝑗
𝑁 𝑖𝑗 log

𝑁 𝑖𝑗
𝑛𝑖+𝑁+𝑗/𝑛++

This is precisely the same test statistic as the test for independence above. The only differ-
ence is that 𝑛𝑖+ is fixed in this model. Further, if 𝑜𝑖𝑗 = 𝑁 𝑖𝑗 and 𝑒𝑖𝑗 = 𝑛𝑖+ ̂𝑝𝑗 =

𝑛𝑖+𝑁+𝑗

𝑛++
, we

have
2 logΛ = 2∑

𝑖,𝑗
𝑜𝑖𝑗 log

𝑜𝑖𝑗
𝑒𝑖𝑗

≈ ∑
𝑖,𝑗

(𝑜𝑖𝑗 − 𝑒𝑖𝑗)2
𝑒𝑖𝑗

By Wilks’ theorem, this is asymptotically a 𝜒2𝑝 distribution. Here,

𝑝 = dimΘ1 − dimΘ0 = 𝑟(𝑐 − 1) − (𝑐 − 1) = (𝑟 − 1)(𝑐 − 1)

This is again exactly the same as in the 𝜒2 test for independence. Operationally, the tests
for homogeneity and independence are therefore completely identical; we reject the null
hypothesis for one test if and only if we reject the null for the other. In the example above,

2 logΛ = 5.129; ∑
𝑖,𝑗

(𝑜𝑖𝑗 − 𝑒𝑖𝑗)2
𝑒𝑖𝑗

= 5.173

Referring this to a 𝜒24 distribution, the upper 0.05-point is 9.488. Hence, we do not reject the
null hypothesis at the 5% significance level.

5.13. Tests and confidence sets
Definition. The acceptance region 𝐴 of a test is the complement of the critical region.

Theorem. Let 𝑋 ∼ 𝑓𝑋( ⋅ ∣ 𝜃) for some 𝜃 ∈ Θ. Suppose that for each 𝜃0 ∈ Θ, there exists a
test of size 𝛼 with acceptance region 𝐴(𝜃0) for the null hypothesis 𝜃 = 𝜃0. Then

𝐼(𝑋) = {𝜃∶ 𝑋 ∈ 𝐴(𝜃)}

is a 100(1 − 𝛼)% confidence set.

Now suppose there exists a set 𝐼(𝑋) which is a 100(1 − 𝛼)% confidence set for 𝜃. Then

𝐴(𝜃0) = {𝑥∶ 𝜃0 ∈ 𝐼(𝑥)}

is the acceptance region of a test of size 𝛼 for the hypothesis 𝜃 = 𝜃0.

Proof. Observe that for both parts of the theorem,

𝜃0 ∈ 𝐼(𝑋) ⟺ 𝑋 ∈ 𝐴(𝜃0) ⟺ fail to reject 𝐻0 with data 𝑋

For the first part, we assume that ℙ𝜃 (fail to reject 𝐻0 with data 𝑋) = 1 − 𝛼, and we want to
show ℙ𝜃 (𝜃0 ∈ 𝐼(𝑋)) = 1 − 𝛼. The second part is the converse.

642



5. Hypothesis testing

Example. Let 𝑋1,… , 𝑋𝑛 ∼ 𝑁(𝜇, 𝜎20) be i.i.d. with 𝜎20 known and 𝜇 unknown. We found that
a 100(1 − 𝛼)% confidence interval for 𝜇 is

𝐼(𝑋) = (𝑋 ± 𝑍𝛼/2𝜎0
√𝑛

)

Hence, by the second part of the theorem above, we can find a test for𝐻0∶ 𝜇 = 𝜇0 with size
𝛼 by

𝐴(𝜇0) = {𝑥∶ 𝜇0 ∈ 𝐼(𝑥)} = {𝑥∶ 𝜇0 ∈ [𝑥 ± 𝑍𝛼/2𝜎0
√𝑛

]}

This is equivalent to rejecting 𝐻0 when

|
|
|
√𝑛𝜇0 − 𝑋

𝜎0
|
|
|
> 𝑍𝛼/2

This is a two-sided test for normal location.
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XI. Statistics

6. The normal linear model

6.1. Multivariate normal distribution

Let 𝑋 = (𝑋1,… , 𝑋𝑛) be a vector of random variables. Then we define

𝔼 [𝑋] = (
𝔼 [𝑋1]
⋮

𝔼 [𝑋𝑛]
) ; Var (𝑋) = (𝔼 [(𝑋𝑖 − 𝔼 [𝑋𝑖])(𝑋𝑗 − 𝔼 [𝑋𝑗])])𝑖,𝑗

The familiar linearity results are

𝔼 [𝐴𝑋 + 𝑏] = 𝐴𝔼 [𝑋] + 𝑏; 𝐴Var (𝑋) 𝐴⊺

where 𝐴 ∈ ℝ𝑘×𝑛, 𝑏 ∈ ℝ𝑘 are constant.

Definition. We say that 𝑋 has a multivariate normal distribution if, for any fixed 𝑡 ∈ ℝ𝑛,
we have 𝑡⊺𝑋 ∼ 𝑁(𝜇, 𝜎2) for some parameters 𝜇, 𝜎2.

Proposition. Let 𝑋 be multivariate normal. Then 𝐴𝑋 + 𝑏 is multivariate normal, where
𝐴 ∈ ℝ𝑘×𝑛, 𝑏 ∈ ℝ𝑘 are constant.

Proof. Let 𝑡 ∈ ℝ𝑘. Then,
𝑡⊺(𝐴𝑥 + 𝑏) = (𝐴⊺𝑡)⊺𝑋⏟⎵⏟⎵⏟

∼𝑁(𝜇,𝜎2)
+𝑡⊺𝑏

which is the sum of a normal random variable and a constant. So this is 𝑁(𝜇 + 𝑡⊺𝑏, 𝜎2).

Proposition. A multivariate normal distribution is fully specified by its mean and covari-
ance matrix.

Proof. Let 𝑋1, 𝑋2 be multivariate normal vectors with the same mean 𝜇 and the same cov-
ariance matrix Σ. We will show that these two random variables have the same moment
generating function, and hence the same distribution.

𝑀𝑋1(𝑡) = 𝔼 [𝑒1⋅𝑡⊺𝑋1]

Note that 𝑡⊺𝑋1 is univariate normal. Hence, this is equal to

𝑀𝑋1(𝑡) = exp(1 ⋅ 𝔼 [𝑡⊺𝑋1] +
1
2 Var (𝑡

⊺𝑋1) ⋅ 12) = exp(𝑡⊺𝜇 + 1
2𝑡

⊺Σ𝑡)

This depends only on 𝜇 and Σ, and we obtain the same moment generating function for
𝑋2.
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6. The normal linear model

6.2. Orthogonal projections
Definition. A matrix 𝑃 ∈ ℝ𝑛×𝑛 is an orthogonal projection onto its column space col(𝑃) if,
for all 𝑣 ∈ col(𝑃), we have 𝑃𝑣 = 𝑣, and for all 𝑤 ∈ col(𝑃)⟂, we have 𝑃𝑤 = 0.

Proposition. 𝑃 is an orthogonal projection if and only if it is idempotent and symmetric.

Proof. If 𝑃 is idempotent and symmetric, let 𝑣 ∈ col(𝑃), so 𝑣 = 𝑃𝑎 for some 𝑎 ∈ ℝ𝑛. Then,
𝑃𝑣 = 𝑃𝑃𝑎 = 𝑃𝑎 = 𝑣. Now, let 𝑤 ∈ col(𝑃)⟂. By definition, 𝑃⊺𝑤 = 0. By symmetry, 𝑃𝑤 = 0.

Now, suppose 𝑃 is an orthogonal projection. Any vector 𝑎 ∈ ℝ𝑛 can be uniquely written
as 𝑎 = 𝑣 + 𝑤 where 𝑣 ∈ col(𝑃) and 𝑤 ∈ col(𝑃)⟂. Then 𝑃𝑃𝑎 = 𝑃𝑃𝑣 + 𝑃𝑃𝑤 = 𝑃𝑣 =
𝑃(𝑣 + 𝑤) = 𝑃𝑎. As this holds for all 𝑎, we have that 𝑃 is idempotent. Let 𝑢1, 𝑢2 ∈ ℝ𝑛,
and note (𝑃𝑢1) ⋅ ((𝐼 − 𝑃)𝑢2) = 0, as 𝑃𝑢1 ∈ col(𝑃) and (𝐼 − 𝑃)𝑢2 ∈ col(𝑃)⟂. We have
𝑢⊺1𝑃⊺(𝐼 − 𝑃)𝑢2 = 0. Since this holds for all 𝑢1, 𝑢2, 𝑃⊺(𝐼 − 𝑃) = 0 so 𝑃⊺ = 𝑃⊺𝑃. Note that 𝑃⊺𝑃
is symmetric, so 𝑃⊺ is symmetric, and hence 𝑃 is symmetric.

Corollary. Let 𝑃 be an orthogonal projection matrix. Then 𝐼 − 𝑃 is also an orthogonal
projection matrix.

Proof. Clearly, if 𝑃 is symmetric, so is 𝐼 − 𝑃, so it suffices to prove idempotence. We have
(𝐼 − 𝑃)(𝐼 − 𝑃) = 𝐼 − 2𝑃 + 𝑃2 = 𝐼 − 2𝑃 + 𝑃 = 𝐼 − 𝑃 as required.

Proposition. If 𝑃 is an orthogonal projection, then 𝑃 = 𝑈𝑈⊺ where the columns of 𝑈 are
an orthonormal basis for the column space of 𝑃.

Proof. First, we show that 𝑈𝑈⊺ is an orthogonal projection. This is clearly symmetric. It is
idempotent: 𝑈𝑈⊺𝑈𝑈⊺ = 𝑈𝑈⊺ since 𝑈⊺𝑈 = 𝐼, as the columns of 𝑈 form an orthonormal
basis for the column space of 𝑃. Further, the column space of 𝑃 is exactly the column space
of 𝑈𝑈⊺.

Proposition. The rank of an orthogonal projection matrix is equal to its trace.

Proof. The rank is the dimension of the column space, which is rank𝑃 = rank(𝑈⊺𝑈) =
tr(𝑈⊺𝑈) = tr(𝑈𝑈⊺) = tr𝑃.

Theorem. Let 𝑋 be multivariate normal, where 𝑋 ∼ 𝑁(0, 𝜎2𝐼), and let 𝑃 be an orthogonal
projection. Then

(i) 𝑃𝑋 ∼ 𝑁(0, 𝜎2𝑃), and (𝐼 − 𝑃)𝑋 ∼ 𝑁(0, 𝜎2(𝐼 − 𝑃)), and these two random variables are
independent;

(ii) ‖𝑃𝑋‖2

𝜎2
∼ 𝜒2rank𝑃.

645



XI. Statistics

Proof. The vector (𝑃, 𝐼 − 𝑃)⊺𝑋 is multivariate normal, since it is a linear function of 𝑋 . This
distribution is fully specified by its mean and variance.

𝔼 [( 𝑃𝑋
(𝐼 − 𝑃)𝑋)] = ( 𝑃

𝐼 − 𝑃)𝔼 [𝑋] = 0

Further,

Var (( 𝑃𝑋
(𝐼 − 𝑃)𝑋)) = ( 𝑃

𝐼 − 𝑃) 𝜎
2𝐼 ( 𝑃

𝐼 − 𝑃)
⊺

= 𝜎2 ( 𝑃2 𝑃(𝐼 − 𝑃)
𝑃(𝐼 − 𝑃) (𝐼 − 𝑃)2) = 𝜎2 (𝑃 0

0 𝐼 − 𝑃)

Nowwemust show that the variables 𝑃𝑋, (𝐼−𝑃)𝑋 are independent. Let 𝑍 ∼ 𝑁(0, 𝜎2𝑃), 𝑍′ ∼
𝑁(0, 𝜎2(𝐼 − 𝑃)) be independent. Then we can see that (𝑍, 𝑍′)⊺ is multivariate normal with

𝜇 = 0; Σ = (𝑃 0
0 𝐼 − 𝑃)

Hence (𝑃𝑋, (1 − 𝑃)𝑋)⊺ is equal in distribution to (𝑍, 𝑍′)⊺. So 𝑃𝑋 is independent of (𝐼 − 𝑃)𝑋 .

We must show that ‖𝑃𝑋‖
2

𝜎2
∼ 𝜒2rank𝑃. Note that

‖𝑃𝑋‖2
𝜎2 = 𝑋⊺𝑃⊺𝑃𝑋

𝜎2 = 𝑋⊺(𝑈𝑈⊺)⊺𝑈𝑈⊺𝑋
𝜎2 = ‖𝑈⊺𝑋‖2

𝜎2

Note, 𝑈⊺𝑋 ∼ 𝑁(0, 𝜎2𝑈⊺𝑈) = 𝑁(0, 𝜎2𝐼rank𝑃). So

(𝑈⊺𝑋)𝑖
𝜎

iid∼ 𝑁(0, 1)

for 𝑖 = 1,… , rank𝑃. Hence

‖𝑃𝑋‖2
𝜎2 =

rank𝑃
∑
𝑖=1

((𝑈
⊺𝑋)𝑖
𝜎 )

2
∼ 𝜒2rank𝑃

Theorem. Let 𝑋1,… , 𝑋𝑛
iid∼ 𝑁(𝜇, 𝜎2) for some unknown 𝜇 ∈ ℝ and 𝜎2 > 0. The maximum

likelihood estimators for 𝜇 and 𝜎 are

�̂� = 𝑋 = 1
𝑛 ∑𝑖

𝑋𝑖; �̂�2 = 𝑆𝑥𝑥
𝑛 =

∑𝑖 (𝑋𝑖 − 𝑋)
2

𝑛

Further,

(i) 𝑋 ∼ 𝑁(𝜇, 𝜎
2

𝑛
);

(ii) 𝑆𝑥𝑥
𝜎2

∼ 𝜒2𝑛−1;
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6. The normal linear model

(iii) 𝑋, 𝑆𝑥𝑥 are independent.

Proof. Let 𝑃 be the square 𝑛 × 𝑛matrix with all entries 1
𝑛
. This is an orthogonal projection

matrix, as it is symmetric and idempotent. Note that

𝑃𝑋 = (
𝑋
⋮
𝑋
)

We will write the observations 𝑋 as

𝑋 = (
𝜇
⋮
𝜇
)

⏟
𝑀

+𝜀; 𝜀 ∼ 𝑁(0, 𝜎2𝐼)

Note that 𝑋 is a function of 𝑃𝜀, since 𝑋 = (𝑃𝑋)1 = (𝑃𝑀 + 𝑃𝜀)1. Further,

𝑆𝑥𝑥 = ∑
𝑖
(𝑋𝑖 − 𝑋)

2
= ‖𝑋 − 𝑃𝑋‖2 = ‖(𝐼 − 𝑃)𝑋‖2 = ‖(𝐼 − 𝑃)𝜀‖2

Hence 𝑆𝑥𝑥 is a function of (𝐼 − 𝑃)𝜀. Since 𝑃𝜀 and (𝐼 − 𝑃)𝜀 are independent, 𝑋 and 𝑆𝑥𝑥 are
independent. Since 𝐼 − 𝑃 is a projection with rank equal to its trace 𝑛 − 1, we apply the
previous theorem to obtain

𝑆𝑥𝑥 = ‖(𝐼 − 𝑃)𝜀‖2𝜒2𝑛−1

6.3. Linear model
Suppose we have data in pairs (𝑥1, 𝑌1),… , (𝑥𝑛, 𝑌𝑛), where 𝑌 𝑖 ∈ ℝ, 𝑥𝑖 ∈ ℝ𝑝. The 𝑌 𝑖 are
known as the response variables, or the dependent variables. The 𝑥𝑖1, 𝑥𝑖𝑝 are the predictors, or
independent variables. Wewill model the expectation of the response 𝑌 𝑖 as a linear function
of the predictors (𝑥𝑖1,… , 𝑥𝑖𝑝).
Example. Let 𝑌 𝑖 be the number of insurance claims that driver 𝑖makes in a given year, and
𝑥𝑖1,… , 𝑥𝑖𝑝 is a set of variables about the specific driver. Predictors include age, the number
of years they have held their license, and the number of points on their license, for instance.

We assume that
𝑌 𝑖 = 𝛼 + 𝛽1𝑥𝑖1 +⋯+ 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖

where 𝛼 ∈ ℝ is an intercept, 𝛽𝑖 are the coefficients, and 𝜀 is a noise vector, which is a random
variable. The intercept and coefficients are the parameters of interest. We will often elimin-
ate the intercept by making one of the predictors 𝑥𝑖1 = 1 for all 𝑖, so 𝛽1 plays the role of the
intercept.
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Note that we can use a linearmodel tomodel nonlinear relationships. For example, suppose
𝑌 𝑖 = 𝑎 + 𝑏𝑧𝑖 + 𝑐𝑧2𝑖 + 𝜀𝑖. We can rephrase this as a linear model with 𝑥𝑖 = (1, 𝑧𝑖, 𝑧2𝑖 ).
The coefficient 𝛽𝑗 can be interpreted as the effect on 𝑌 𝑖 of increasing 𝑥𝑖𝑗 by one, while keep-
ing all other predictors fixed. This cannot be interpreted as a causal relationship, unless this
is a randomised control experiment.

6.4. Matrix formulation
Let

𝑌 = (
𝑌1
⋮
𝑌𝑛
) ; 𝑋 = (

𝑥11 ⋯ 𝑥1𝑝
⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑝

) ; 𝛽 = (
𝛽1
⋮
𝛽𝑝
) ; 𝜀 = (

𝜀1
⋮
𝜀𝑛
)

We call 𝑋 the design matrix. The linear model is that

𝑌 = 𝑋𝛽 + 𝜀

𝑋𝛽 is considered fixed. Since 𝜀 is random, this makes 𝑌 into a random variable.

6.5. Assumptions
We make a number of moment assumptions on the noise vector 𝜀. This allows us to deduce
more results about the linear model.

(i) 𝔼 [𝜀] = 0 ⟹ 𝔼[𝑌 𝑖] = 𝑥⊺𝑖 𝛽;
(ii) Var (𝜀) = 𝜎2𝐼, which is equivalent to both Var (𝜀𝑖) = 𝜎2 and Cov (𝜀𝑖, 𝜀𝑗) = 0 for all

𝑖 ≠ 𝑗. This property is known as homoscedasticity.
We will always assume that the design matrix 𝑋 has full rank 𝑝, or equivalently, that it has
linearly independent columns. Since 𝑋 ∈ ℝ𝑛×𝑝, this requires that 𝑛 ≥ 𝑝, so we need at least
as many samples as we have predictors.

6.6. Least squares estimation
Definition. The least squares estimator ̂𝛽 minimises the residual sum of squares, which is

𝑆(𝛽) = ‖𝑌 − 𝑋𝛽‖2 = ∑
𝑖
(𝑌 𝑖 − 𝑥⊺𝑖 𝛽)

2

The term 𝑌 𝑖 − 𝑥⊺𝑖 𝛽 is called the 𝑖th residual.
Since 𝑆(𝛽) is a positive definite quadratic in 𝛽, it is minimised at the stationary point.

𝜕𝑆(𝛽)
𝜕𝛽𝑘

|||𝛽= ̂𝛽
= 0 ⟺ ∀𝑘, −2

𝑛
∑
𝑖=1

𝑥𝑖𝑘(𝑌 𝑖 −∑
𝑘
𝑥𝑖𝑗 ̂𝛽𝑗) = 0 ⟺ 𝑋⊺𝑋 ̂𝛽 = 𝑋⊺𝑌
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6. The normal linear model

As 𝑋 has full column rank, 𝑋⊺𝑋 is invertible.

̂𝛽 = (𝑋⊺𝑋)−1𝑋⊺𝑌

This is notably a linear function of 𝑌 , given fixed 𝑋 . Note that

𝔼 [ ̂𝛽] = (𝑋⊺𝑋)−1𝑋⊺𝔼 [𝑌] = (𝑋⊺𝑋)−1𝑋⊺𝑋𝛽 = 𝛽

So ̂𝛽 is an unbiased estimator. Further,

Var ( ̂𝛽) = (𝑋⊺𝑋)−1𝑋⊺ Var (𝑌) [(𝑋⊺𝑋)−1𝑋⊺]⊺

= (𝑋⊺𝑋)−1𝑋⊺𝜎2𝐼[(𝑋⊺𝑋)−1𝑋⊺]⊺

= 𝜎2(𝑋⊺𝑋)−1

Theorem (Gauss–Markov theorem). Let an estimator 𝛽⋆ of 𝛽 be unbiased and a linear func-
tion of 𝑌 , so 𝛽⋆ = 𝐶𝑌 . Then, for any fixed 𝑡 ∈ ℝ𝑝, we have

Var (𝑡⊺ ̂𝛽) ≤ Var (𝑡⊺𝛽⋆)

where ̂𝛽 is the least squares estimator. We say that ̂𝛽 is the best linear unbiased estimator
(BLUE).

Remark. We can think of 𝑡 ∈ ℝ𝑝 as a vector of predictors for a new sample. Then 𝑡⊺ ̂𝛽 is
the prediction for 𝔼 [𝑌 𝑖] for this new sample, using the least squares estimator. 𝑡⊺𝛽⋆ is the
prediction with 𝛽⋆. In both cases, the prediction is unbiased.

Proof. Note that
Var (𝑡⊺𝛽⋆) − Var (𝑡⊺ ̂𝛽) = 𝑡⊺[Var (𝛽⋆) − Var ( ̂𝛽)]𝑡

To prove that this quantity is always non-negative, we must show that Var (𝛽⋆) − Var ( ̂𝛽) is
positive semidefinite. Let 𝐴 = 𝐶 − (𝑋⊺𝑋)−1𝑋⊺. Note that 𝔼 [𝐴𝑌] = 𝔼 [𝛽⋆] − 𝔼 [ ̂𝛽] = 0. Also,
𝔼 [𝐴𝑌] = 𝐴𝔼 [𝑌] = 𝐴𝑋𝛽. This holds for all 𝛽, so 𝐴𝑋 = 0. Now, since 𝑋⊺𝑋 is symmetric,

Var (𝛽⋆) = Var (𝐶𝑌)
= Var ((𝐴 + (𝑋⊺𝑋)−1𝑋⊺)𝑌)
= [𝐴 + (𝑋⊺𝑋)−1𝑋⊺]Var (𝑌) [𝐴 + (𝑋⊺𝑋)−1𝑋⊺]⊺

= [𝐴 + (𝑋⊺𝑋)−1𝑋⊺]𝜎2𝐼[𝐴 + (𝑋⊺𝑋)−1𝑋⊺]⊺

= 𝜎2(𝐴𝐴⊺ + (𝑋⊺𝑋)−1 + 𝐴𝑋(𝑋⊺𝑋)−1 + (𝑋⊺𝑋)−1𝑋⊺𝐴⊺)
= 𝜎2𝐴𝐴⊺ + Var ( ̂𝛽)

Var (𝛽⋆) − Var ( ̂𝛽) = 𝜎2𝐴𝐴⊺

Note that the outer product 𝐴𝐴⊺ is always positive semidefinite.
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6.7. Fitted values and residuals
Definition. The fitted values are ̂𝑌 = 𝑋 ̂𝛽 = 𝑋(𝑋⊺𝑋)−1𝑋⊺𝑌 , where 𝑃 = 𝑋(𝑋⊺𝑋)−1𝑋⊺ is the
hat matrix. The residuals are 𝑌 − ̂𝑌 = (𝐼 − 𝑃)𝑌 .
Proposition. 𝑃 is the orthogonal projection onto the column space of the design matrix.

Proof. If 𝑣 is in the column space of 𝑋 , then 𝑣 = 𝑋𝑏 for some 𝑏. Hence

𝑃𝑣 = 𝑋(𝑋⊺𝑋)−1𝑋⊺𝑋𝑏 = 𝑋𝑏 = 𝑣

If 𝑤 is in the orthogonal complement, then

𝑃𝑤 = 𝑋(𝑋⊺𝑋)−1 𝑋⊺𝑤⏟
0

= 0

Corollary. The fitted values are an orthogonal projection of the response variables to the
column space of the design matrix. The residuals are orthogonal to the column space.

6.8. Normal linear model
The normal linear model is a linear model under the assumption that 𝜀 ∼ 𝑁(0, 𝜎2𝐼), where
𝜎2 is unknown. The parameters in the model are now (𝛽, 𝜎2). The likelihood function in
the normal linear model is

𝐿(𝛽, 𝜎2) = 𝑓𝑌 (𝑦 ∣ 𝛽, 𝜎2) = (2𝜋𝜎2)−
𝑛
2 exp{− 1

2𝜎2 ∑𝑖
(𝑌 𝑖 − 𝑥⊺𝑖 𝛽)2}

The log-likelihood is

ℓ(𝛽, 𝜎2) = constant − 𝑛
2 log𝜎

2 − 1
2𝜎2 ‖𝑌 − 𝑋𝛽‖2

To maximise this as a function of 𝛽 for any fixed 𝜎2, we must minimise the residual sum of
squares 𝑆(𝛽) = ‖𝑌 − 𝑋𝛽‖2. So ̂𝛽 = (𝑋⊺𝑋)−1𝑋⊺𝑌 is the maximum likelihood estimator of 𝛽.
Further, �̂�2 = 𝑛−1‖‖𝑌 − 𝑋 ̂𝛽‖‖

2
= 𝑛−1‖‖ ̂𝑌 − 𝑌‖‖

2
= 𝑛−1‖(𝐼 − 𝑃)𝑌‖2.

Theorem. In the normal linear model,

(i) ̂𝛽 ∼ 𝑁(𝛽, 𝜎2(𝑋⊺𝑋)−1);

(ii) 𝑛 �̂�
2

𝜎2
∼ 𝜒2𝑛−𝑝;

(iii) ̂𝛽, �̂�2 are independent.

Proof. We prove each part separately.
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(i) We already know that 𝔼 [ ̂𝛽] = 𝛽, and Var ( ̂𝛽) = 𝜎2(𝑋⊺𝑋)−1. So it suffices to show that
̂𝛽 is a normal vector. Since ̂𝛽 = (𝑋⊺𝑋)−1𝑋⊺𝑌 , it is a linear function of a normal vector,

so is a normal vector.

(ii) Observe that

𝑛�̂�
2

𝜎2 =
‖(𝐼 − 𝑃)𝑌‖2

𝜎2 = ‖(𝐼 − 𝑃)(𝑋𝛽 + 𝜀)‖2
𝜎2

Since (𝐼 − 𝑃)𝑋 = 0 as 𝑃 is the orthogonal projection onto the column space of 𝑋 ,

𝑛�̂�
2

𝜎2 =
‖(𝐼 − 𝑃)𝜀‖2

𝜎2 ∼ 𝜒2tr(𝐼−𝑃)

where tr(𝐼 − 𝑃) = tr 𝐼 − tr𝑃 = 𝑛 − 𝑝 since 𝑋 ∈ ℝ𝑛×𝑝 is assumed to have full rank.

(iii) Note that �̂�2 is a function of (𝐼 − 𝑃)𝜀, and

̂𝛽 = (𝑋⊺𝑋)−1𝑋⊺𝑌
= (𝑋⊺𝑋)−1𝑋⊺(𝑋𝛽 + 𝜀)
= 𝛽 + (𝑋⊺𝑋)−1𝑋⊺𝜀
= 𝛽 + (𝑋⊺𝑋)−1𝑋⊺𝑃𝜀

is a function of 𝑃𝜀. Since (𝐼 − 𝑃)𝜀 and 𝑃𝜀 are independent, so are ̂𝛽, �̂�2.

Note,
𝔼 [𝑛�̂�

2

𝜎2 ] = 𝔼 [𝜒2𝑛−𝑝] = 𝑛 − 𝑝 ⟹ 𝔼[�̂�2] = 𝜎2 ⋅ 𝑛 − 𝑝
𝑛 < 𝜎2

Hence this �̂�2 is a biased estimator, but asymptotically unbiased.

6.9. Inference
Definition. Let 𝑈 ∼ 𝑁(0, 1) and 𝑉 ∼ 𝜒2𝑛 be independent random variables. Then

𝑇 = 𝑈

√
𝑉
𝑛

has a 𝑡𝑛-distribution.
As 𝑛 → ∞, this approaches the standard normal distribution.

Definition. Let 𝑉 ∼ 𝜒2𝑛 and𝑊 ∼ 𝜒2𝑚 be independent random variables. Then

𝐹 = 𝑉/𝑛
𝑊/𝑚

has an 𝐹𝑛,𝑚-distribution.
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Example. We consider a 100(1−𝛼)% confidence interval for one of the coefficients 𝛽 in the
normal linear model 𝑌 = 𝑋𝛽 + 𝜀. Without loss of generality, we will consider 𝛽1.
We begin by finding a pivot, which is a distribution that does not depend on the parameters
of the model. By standardising the above form of ̂𝛽,

𝛽1 − ̂𝛽1

√𝜎2(𝑋⊺𝑋)−111
∼ 𝑁(0, 1)

where𝑀−1
11 is the top left entry in thematrix𝑀−1. This random variable is independent from

𝑛�̂�2

𝜎2
∼ 𝜒2𝑛−𝑝. Now, to construct a pivot, we find

𝛽1− ̂𝛽1

√𝜎2(𝑋⊺𝑋)−111

√
�̂�2

𝜎2
⋅ 𝑛
𝑛−𝑝

∼ 𝑈

√
𝑉
𝑛

∼ 𝑡𝑛−𝑝

The 𝜎2 terms cancel, so the statistic is a function only of 𝛽1 and functions of the data. Then,

ℙ𝛽,𝜎2 (−𝑡𝑛−𝑝(
𝛼
2 ) ≤

̂𝛽1 − 𝛽1

√(𝑋⊺𝑋)−111
√

𝑛− 𝑝
𝑛�̂�2 ≤ 𝑡𝑛−𝑝(

𝛼
2 )) = 1 − 𝛼

since the 𝑡 distribution is symmetric about zero. Rearranging to find an interval for 𝛽1,

ℙ𝛽,𝜎2 ( ̂𝛽1 − 𝑡𝑛−𝑝(
𝛼
2 )
√(𝑋⊺𝑋)−111 �̂�2

√(𝑛 − 𝑝)/𝑛
≤ 𝛽1 ≤ ̂𝛽1 + 𝑡𝑛−𝑝(

𝛼
2 )
√(𝑋⊺𝑋)−111 �̂�2

√(𝑛 − 𝑝)/𝑛
) = 1 − 𝛼

Hence,

𝐼 = [ ̂𝛽1 ± 𝑡𝑛−𝑝(
𝛼
2 )
√(𝑋⊺𝑋)−111 �̂�2

√(𝑛 − 𝑝)/𝑛
]

is a 100(1 − 𝛼)% confidence interval for 𝛽1.
Consider a test for 𝐻0∶ 𝛽1 = 0, 𝐻1∶ 𝛽1 ≠ 0. By connecting tests and confidence intervals,
we can test𝐻0with size 𝛼 by rejecting this null hypothesis when zero is not containedwithin
the confidence interval 𝐼.

Consider a special case where 𝑌1,… , 𝑌𝑛
iid∼ 𝑁(𝜇, 𝜎2) where 𝜇, 𝜎2 are unknown, and we want

to infer results about 𝜇. Note that this is a special case of the normal linear model where

𝑋 = (
1
⋮
1
) ; 𝛽 = (𝜇)

So we can infer a confidence interval for 𝜇 using the above statistic.
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Example. Consider a 100(1 − 𝛼)% confidence set for 𝛽 as a whole. Note that

̂𝛽 − 𝛽 ∼ 𝑁(0, 𝜎2(𝑋⊺𝑋)−1)

Then,
(𝑋⊺𝑋)1/2( ̂𝛽 − 𝛽) ∼ 𝑁(0, 𝜎2(𝑋⊺𝑋)1/2(𝑋⊺𝑋)−1(𝑋⊺𝑋)1/2) ∼ 𝑁(0, 𝜎2𝐼)

where (𝑋⊺𝑋)1/2 is obtained using the eigendecomposition of the positive definitematrix𝑋⊺𝑋 .
Hence,

‖
‖(𝑋⊺𝑋)1/2( ̂𝛽 − 𝛽)‖‖

2

𝜎2 ∼ 𝜒2𝑝

We can also write this as

‖
‖(𝑋⊺𝑋)1/2( ̂𝛽 − 𝛽)‖‖

2

𝜎2 =
‖
‖𝑋( ̂𝛽 − 𝛽)‖‖

2

𝜎2

Since this is a function of ̂𝛽, this is independent of any function of �̂�2. In particular, it is
independent of 𝑛�̂�

2

𝜎2
∼ 𝜒2𝑛−𝑝. Thus, we can form a pivot by

‖
‖𝑋( ̂𝛽 − 𝛽)‖‖

2
/(𝜎2𝑝)

�̂�2𝑛/(𝜎2(𝑛 − 𝑝)) ∼
𝜒2𝑝/𝑝

𝜒2𝑛−𝑝/(𝑛 − 𝑝)
∼ 𝐹𝑝,𝑛−𝑝

This does not depend on 𝜎2. For all 𝛽, 𝜎2,

ℙ𝛽,𝜎2
⎛
⎜⎜
⎝

‖
‖𝑋( ̂𝛽 − 𝛽)‖‖

2
/𝑝

�̂�2𝑛/(𝑛 − 𝑝) ≤ 𝐹𝑝,𝑛−𝑝(𝛼)
⎞
⎟⎟
⎠
= 1 − 𝛼

because the𝐹 distributionhas support only on the positive real line. It is nontrivial to express
this as a region for 𝛽 since it is vector-valued. We can say, however, that

⎧
⎨
⎩
𝛽′ ∈ ℝ𝑝∶

‖
‖𝑋( ̂𝛽 − 𝛽)‖‖

2
/𝑝

�̂�2𝑛/(𝑛 − 𝑝) ≤ 𝐹𝑝,𝑛−𝑝(𝛼)
⎫
⎬
⎭

is a 100(1 − 𝛼)% confidence set for 𝛽.

This set is an ellipsoid centred at ̂𝛽. The shape of the ellipsoid depends on the design matrix
𝑋 ; the principal axes are given by eigenvectors of 𝑋⊺𝑋 .

The above two results are exact; no approximations were made.
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6.10. 𝐹-tests
We wish to test whether a collection of predictors 𝛽𝑖 are equal to zero. Without loss of
generality, we will take the first 𝑝0 ≤ 𝑝 predictors. We have 𝐻0∶ 𝛽1 = ⋯ = 𝛽𝑝0 = 0,
and 𝐻1 = 𝛽 ∈ ℝ𝑝. We denote 𝑋 = (𝑋0, 𝑋1) as a block matrix with 𝑋0 ∈ ℝ𝑛×𝑝0 and
𝑋1 ∈ ℝ𝑛×(𝑝−𝑝0), and we denote 𝛽 = (𝛽0, 𝛽1)⊺ similarly. The null model has 𝛽0 = 0. This is a
linear model 𝑌 = 𝑋𝛽+𝜀 = 𝑋1𝛽1+𝜀. We will write 𝑃 = 𝑋(𝑋⊺𝑋)−1𝑋⊺ and 𝑃1 = 𝑋1(𝑋⊺

1𝑋1)−1𝑋
⊺
1 .

Note that as 𝑋 and 𝑃 have full rank, so must 𝑋1, 𝑃1.
Lemma. (𝐼 − 𝑃)(𝑃 − 𝑃1) = 0, and 𝑃 − 𝑃1 is an orthogonal projection with rank 𝑝0.

Proof. 𝑃 − 𝑃1 is symmetric since 𝑃 and 𝑃1 are symmetric. It is also idempotent, since

(𝑃 − 𝑃1)(𝑃 − 𝑃1) = 𝑃2 − 𝑃1𝑃 − 𝑃𝑃1 + 𝑃21 = 𝑃 − 𝑃1 − 𝑃1 + 𝑃1 = 𝑃 − 𝑃1
since𝑃1 projects onto the column space of𝑋1. Hence𝑃−𝑃1 is indeed an orthogonal projection
matrix. The rank is rank(𝑃 − 𝑃1) = tr(𝑃 − 𝑃1) = tr𝑃 − tr𝑃1 = 𝑝 − (𝑝 − 𝑝0) = 𝑝0. Also,

(𝐼 − 𝑃)(𝑃 − 𝑃1) = 𝑃 − 𝑃1 − 𝑃 + 𝑃𝑃1 = 𝑃 − 𝑃1 − 𝑃 + 𝑃1 = 0

Recall that the maximum log-likelihood in the normal linear model is given by

ℓ( ̂𝛽, �̂�2) = −𝑛
2 log �̂�2 − 𝑛

2 ⋅ constant =
−𝑛
2 log ‖(𝐼 − 𝑃)𝑌‖2

𝑛 + constant

The generalised likelihood ratio statistic is

2 logΛ = 2 sup
𝛽∈ℝ𝑝,𝜎2>0

ℓ(𝛽, 𝜎2) − 2 sup
𝛽0=0,𝛽1∈ℝ𝑝−𝑝0 ,𝜎2>0

ℓ(𝛽, 𝜎2)

= 𝑛[− log ‖(𝐼 − 𝑃)𝑌‖2
𝑛 + log ‖(𝐼 − 𝑃1)𝑌‖

2

𝑛 ]

Wilks’ theorem applies here, showing that 2 logΛ ∼ 𝜒2𝑝0 asymptotically as 𝑛 → ∞with 𝑝, 𝑝0
fixed. However, we can find an exact test, so using Wilks’ theorem will not be necessary.
2 logΛ is monotone in

‖(𝐼 − 𝑃1)𝑌‖
2

‖(𝐼 − 𝑃)𝑌‖2
= ‖(𝐼 − 𝑃 + 𝑃 − 𝑃1)𝑌‖

2

‖(𝐼 − 𝑃)𝑌‖2

= ‖(𝐼 − 𝑃)𝑌‖2 + ‖(𝑃 − 𝑃1)𝑌‖
2 + 2𝑌 ⊺(𝐼 − 𝑃)(𝑃 − 𝑃1)

‖(𝐼 − 𝑃)𝑌‖2

= ‖(𝐼 − 𝑃)𝑌‖2 + ‖(𝑃 − 𝑃1)𝑌‖
2

‖(𝐼 − 𝑃)𝑌‖2

= 1 + ‖(𝑃 − 𝑃1)𝑌‖
2

‖(𝐼 − 𝑃)𝑌‖2
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The generalised likelihood ratio test rejects when the 𝐹-statistic

𝐹 = ‖(𝑃 − 𝑃1)𝑌‖
2

‖(𝐼 − 𝑃)𝑌‖2
⋅ 1/𝑝0
1/(𝑛 − 𝑝)

is large.

Theorem. Under 𝐻0∶ 𝛽1 = ⋯ = 𝛽𝑝0 = 0, in the normal linear model,

𝐹 = ‖(𝑃 − 𝑃1)𝑌‖
2

‖(𝐼 − 𝑃)𝑌‖2
⋅ 1/𝑝0
1/(𝑛 − 𝑝) ∼ 𝐹𝑝0,𝑛−𝑝

Proof. Recall that
‖(𝐼 − 𝑃)𝑌‖2 = ‖(𝐼 − 𝑃)𝜀‖2 ∼ 𝜒2𝑛−𝑝 ⋅ 𝜎2

Therefore it suffices to show that ‖(𝑃 − 𝑃1)𝑌‖
2 is an independent 𝜒2𝑝0 ⋅ 𝜎2 random variable.

Under 𝐻0, we have that

(𝑃 − 𝑃1)𝑌 = (𝑃 − 𝑃1)(𝑋𝛽 + 𝜀) = (𝑃 − 𝑃1)(𝑋1𝛽1 + 𝜀) = (𝑃 − 𝑃1)𝜀

since 𝑃, 𝑃1 preserve 𝑋1. Hence, ‖(𝑃 − 𝑃1)𝑌‖
2 = ‖(𝑃 − 𝑃1)𝜀‖

2 ∼ 𝜒2rank(𝑃−𝑃1) ⋅ 𝜎
2 = 𝜒2𝑝0 ⋅ 𝜎2. We

must now show independence between (𝐼−𝑃)𝑌 and (𝑃−𝑃1)𝑌 . The vectors (𝐼−𝑃)𝜀, (𝑃−𝑃1)𝜀
are independent; indeed,

𝐸 = ( (𝐼 − 𝑃)𝜀
(𝑃 − 𝑃1)𝜀

)

is a multivariate normal vector, and

𝔼 [𝐸] = 0; Var (𝐸) = ( 𝐼 − 𝑃 (𝐼 − 𝑃)(𝑃 − 𝑃1)
(𝐼 − 𝑃)(𝑃 − 𝑃1) 𝑃 − 𝑃1

) = (𝐼 − 𝑃 0
0 𝑃 − 𝑃1

)

and since (𝐼 − 𝑃)𝜀 and (𝑃 − 𝑃1)𝜀 are elements of a multivariate normal vector and are uncor-
related, they are independent as required.

The generalised likelihood ratio test of size 𝛼 rejects 𝐻0 when 𝐹 > 𝐹−1𝑝0,𝑛−𝑝(𝛼). This is an
exact test for all 𝑛, 𝑝, 𝑝0. Previously, we found a test for 𝐻0∶ 𝛽1 = 0 against 𝐻1∶ 𝛽1 ≠ 0.
This is a special case of the 𝐹-test derived above, where 𝑝0 = 1. The previous test of size 𝛼
rejects 𝐻0 when

|| ̂𝛽|| > 𝑡𝑛−𝑝(
𝛼
2 )√

�̂�2𝑛(𝑋⊺𝑋)−111
𝑛 − 𝑝

We will show that these two tests are equivalent; they reject 𝐻0 in the same critical region.
The 𝑡-test rejects if and only if

̂𝛽21 > 𝑡𝑛−𝑝(
𝛼
2 )

2 �̂�2𝑛(𝑋⊺𝑋)−111
𝑛 − 𝑝
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Note that 𝑡𝑛−𝑝(
𝛼
2
)
2
= 𝐹1,𝑛−𝑝(𝛼), since

𝑈 ∼ 𝑁(0, 1); 𝑊 sin𝜒2𝑛 ⟹ 𝑇 = 𝑈
√𝑊/𝑛

⟹ 𝑇2 = 𝑈2

𝑊/𝑛 = 𝑉/1
𝑊/𝑛 ∼ 𝐹1,𝑛

where 𝑉 ∼ 𝜒21 . Hence,
̂𝛽1/(𝑋⊺𝑋)−111

�̂�2𝑛/(𝑛 − 𝑝) > 𝐹1,𝑛−𝑝(𝛼)

It suffices to show that
̂𝛽1

(𝑋⊺𝑋)−111
= ‖(𝑃 − 𝑃1)𝑌‖

2

𝑝0⏟
=1

; �̂�2𝑛
𝑛 − 𝑝 = ‖(𝐼 − 𝑃)𝑌‖2

𝑛 − 𝑝

We have already shown the latter part. For ̂𝛽1, note that in this case, 𝑃 − 𝑃1 is a projection of
rank 1 onto the one-dimensional subspace spanned by the vector 𝑣 = (𝐼 −𝑃)𝑋0 where 𝑋0 is
the first column in the matrix 𝑋 . First, note the following identity.

𝑋⊺
0(𝐼 − 𝑃1) = 𝑣⊺ = 𝑣⊺(𝑃 − 𝑃1) = 𝑋⊺

0(𝐼 − 𝑃1)(𝑃 − 𝑃1) = 𝑋⊺
0(𝐼 − 𝑃1)𝑃

Then,

‖(𝑃 − 𝑃1)𝑌‖
2 = ‖

‖‖
𝑣
‖𝑣‖(

𝑣
‖𝑣‖)

⊺
𝑌‖‖‖

2

= (𝑣⊺𝑌)2

‖𝑣‖2
= (𝑋⊺

0(𝐼 − 𝑃1)𝑌)2

‖(𝐼 − 𝑃1)𝑋0‖
2

= (𝑋⊺
0(𝐼 − 𝑃1)𝑃𝑌)2

‖(𝐼 − 𝑃1)𝑋0‖
2

= (𝑋⊺
0(𝐼 − 𝑃1)𝑋 ̂𝛽)2

‖(𝐼 − 𝑃1)𝑋0‖
2

Note that (𝐼 − 𝑃1)𝑋 = [(𝐼 − 𝑃1)𝑋0, 0,… , 0]. Hence,

‖(𝑃 − 𝑃1)𝑌‖
2 = ‖(𝐼 − 𝑃1)𝑋0‖

4 ̂𝛽1
‖(𝐼 − 𝑃1)𝑋0‖

2

= ‖(𝐼 − 𝑃1)𝑋0‖
2 ̂𝛽1

Finally, we show that
(𝑋⊺𝑋)−111 = 1

‖(𝐼 − 𝑃1)𝑋0‖
2

using the Woodbury identity for blockwise matrix inversion. Hence,
̂𝛽21

(𝑋⊺𝑋)−111
= ‖(𝑃 − 𝑃1)𝑌‖

2

as required.
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6.11. Analysis of variance
Suppose we investigate responses of patients after receiving one of three treatments, includ-
ing a control, which will be given index 1. We will consider only one predictor, denoting
which treatment a given patient received. Consider the linear model

𝑌 𝑖𝑗 = 𝛼 + 𝜇𝑗 + 𝜀𝑖𝑗
where 𝑗 = 1, 2, 3 is the treatment index, and 𝑖 = 1,… ,𝑁 is the index of a patient in a given
group. Let (𝜀𝑖𝑗) ∼ 𝑁(0, 𝜎2) be independent. Without loss of generality, we can set 𝜇1 = 0,
since we have an additional parameter 𝛼; this is known as a corner point constraint. Then,
𝜇𝑗 should be interpreted as the effect of treatment 𝑗 relative to treatment 1, which in this
case is the control.

Definition. The analysis of variance (ANOVA) test on the linear model

𝑌 𝑖𝑗 = 𝛼 + 𝜇𝑗 + 𝜀𝑖𝑗
where 𝜇1 = 0 is given by

𝐻0∶ 𝜇2 = 𝜇3 = ⋯ = 0; 𝐻1∶ 𝜇2, 𝜇3,⋯ ∈ ℝ

In particular, 𝐻0 gives 𝔼 [𝑌 𝑖𝑗] = 𝛼.
In our example, 𝐻0∶ 𝜇2 = 𝜇3 = 0 and 𝐻1∶ 𝜇2, 𝜇3 ∈ ℝ. This is a special case of the 𝐹-test,
since we are testing whether the coefficients 𝜇𝑖 are equal to zero.

𝑋 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0
1 0 0
⋮ ⋮ ⋮
1 1 0
1 1 0
⋮ ⋮ ⋮
1 0 1
1 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= (𝑋1 𝑋0)

The first column of 𝑋 , denoted 𝑋1, represents 𝛼, and the other columns, denoted 𝑋0, rep-
resent 𝜇2, 𝜇3. 𝑋0 is eliminated under the null hypothesis. The predictor can be called cat-
egorical; it is discrete, and entirely dependent on which treatment category a given patient
is placed in. Note that 𝑋 has 3𝑁 rows, where each block of 𝑁 consecutive rows is identical.
Recall that the 𝐹-test uses the test statistic

𝐹 = ‖(𝑃 − 𝑃1)𝑌‖
2

‖(𝐼 − 𝑃)𝑌‖2
⋅ 1/𝑝0
1/(𝑛 − 𝑝) ∼ 𝐹𝑝0,𝑛−𝑝

For this test, 𝑃 projects onto the space of vectors in ℝ3𝑁 which are constant over treatment
groups. In other words, let

𝑌 𝑗 =
1
𝑁

𝑁
∑
𝑖=1

𝑌 𝑖𝑗
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Then,

𝑃𝑌 = (𝑌 1,… , 𝑌 1⏟⎵⎵⏟⎵⎵⏟
𝑁 entries

, 𝑌2,… , 𝑌2⏟⎵⎵⏟⎵⎵⏟
𝑁 entries

, 𝑌3,… , 𝑌3⏟⎵⎵⏟⎵⎵⏟
𝑁 entries

)
⊺

𝑃1 projects onto the subspace of constant vectors in ℝ3𝑁 , so

𝑌 = 1
3𝑁

𝑁
∑
𝑖=1

3
∑
𝑗=1

𝑌 𝑖𝑗 ⟹ 𝑃1𝑌 = (𝑌,… , 𝑌⏟⎵⏟⎵⏟
3𝑁 entries

)
⊺

Hence, we can write the 𝐹 statistic as

𝐹 =
∑3

𝑗=1𝑁(𝑌 𝑗 − 𝑌)
2
/2

∑𝑁
𝑖=1∑

3
𝑗=1 (𝑌 𝑖𝑗 − 𝑌 𝑗)

2
/(3𝑁 − 3)

We can generatlise this to the case where there are 𝐽 > 3 treatment groups:

𝐹 =
∑𝐽

𝑗=1𝑁(𝑌 𝑗 − 𝑌)
2
/(𝐽 − 1)

∑𝑁
𝑖=1∑

𝐽
𝑗=1 (𝑌 𝑖𝑗 − 𝑌 𝑗)

2
/(𝐽𝑁 − 𝐽)

= variance between treatments
variance within treatments

Remark. This test is sometimes called one-way analysis of variance. Two-way analysis of
variance is a similar analysis in an experiment where groups are defined according to two
variables. For instance, the response could be a student’s performance in an exam, where
the treatments are

(i) completion of supervisions (zero representing not complete, one representing com-
plete); and

(ii) whether a monetary incentive was given (zero representing no incentive, one repres-
enting an incentive).

Here, we would have the result 𝑌 𝑖𝑗𝑘 as the number of marks of student 𝑖 in group (𝑗, 𝑘). The
model would be

𝑌 𝑖𝑗𝑘 = 𝛼 + 𝜇𝑗 + 𝜆𝑘 + 𝜀𝑖𝑗𝑘
with a constraint without loss of generality that 𝜇0 = 𝜆0 = 0. The two-way analysis of
variance test is then

𝐻0∶ 𝜇1 = 𝜆1 = 0; 𝐻1∶ 𝜇1, 𝜆1 ∈ ℝ

6.12. Simple linear regression
In a linear regressionmodel, we often centre predictors to simplify certain expressions.

𝑌 𝑖 = 𝛼 + 𝛽(𝑥 − 𝑥) + 𝜀𝑖
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where 𝑥 = 1
𝑛
∑𝑛

𝑖=1 𝑥𝑖, and the 𝜀𝑖 independently have the usual 𝑁(0, 𝜎2) distribution. In
this case, the maximum likelihood estimator (�̂�, ̂𝛽) takes a simple form. Recall that (�̂�, ̂𝛽)
minimises

𝑆(𝛼, 𝛽) =
𝑛
∑
𝑖=1

(𝑌 𝑖 − 𝛼 − 𝛽(𝑥𝑖 − 𝑥))2

Hence,
𝜕𝑆(𝛼, 𝛽)
𝜕𝛼 =

𝑛
∑
𝑖=1

−2(𝑌 𝑖 − 𝛼 − 𝛽(𝑥𝑖 − 𝑥)) =
𝑛
∑
𝑖=1

−2(𝑌 𝑖 − 𝛼)

This gives the simple expression

𝛼 =
∑𝑛

𝑖=1 𝑌 𝑖
𝑛 = 𝑌

Now,
𝜕𝑆(𝛼, 𝛽)
𝜕𝛽

|||𝛼=�̂�
=

𝑛
∑
𝑖=1

−2(𝑌 𝑖 − 𝑌 − 𝛽(𝑥𝑖 − 𝑥))(𝑥𝑖 − 𝑥)

This vanishes when
̂𝛽 =

∑𝑛
𝑖=1 (𝑌 𝑖 − 𝑌)(𝑥𝑖 − 𝑥)
∑𝑛

𝑖=1(𝑥𝑖 − 𝑥)2
=
𝑆𝑥𝑦
𝑆𝑥𝑥

Note that 𝑆𝑥𝑦
𝑛
is the sample covariance of𝑋 and𝑌 , and 𝑆𝑥𝑥

𝑛
is the sample variance of𝑋 .
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