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1 Surfaces
1.1 Basic definitions

Definition. A topological surface is a topological space Σ such that
(i) for all points 𝑝 ∈ Σ, there exists an open neighbourhood 𝑝 ∈ 𝑈 ⊂ Σ such that 𝑈 is

homeomorphic to ℝ2, or a disc 𝐷2 ⊂ ℝ2, with its usual Euclidean topology;
(ii) Σ is Hausdorff and second countable.

Remark. ℝ2 is homeomorphic to the open disc 𝐷(0, 1) = {𝑥 ∈ ℝ2 ∶ ‖𝑥‖ < 1}. Recall that a space 𝑋
is Hausdorff if two points 𝑝 ≠ 𝑞 ∈ 𝑋 have open neighbourhoods 𝑈,𝑉 such that 𝑈 ∩𝑉 = ∅. A space
𝑋 is second countable if it has a countable base; there exists a countable family of open sets 𝑈 𝑖, such
that every open set is a union of some of the 𝑈 𝑖.

Note that subspaces of Hausdorff and second countable spaces are also Hausdorff and second count-
able. In particular, Euclidean space ℝ𝑛 is Hausdorff (as ℝ𝑛 is a metric space) and second countable
(consider the set of balls 𝐷(𝑝, 𝑞) for points 𝑝 with rational coordinates, and rational radii 𝑞). Hence,
any subspace of ℝ𝑛 is implicitly Hausdorff and second countable. These topological requirements
are typically not the purpose of considering topological spaces, but they are occasionally technical
requirements to prove interesting theorems.

Example. ℝ2 is a topological surface. Any open subset of ℝ2 is also a topological surface. For ex-
ample, ℝ2 ∖ {0} and ℝ2 ∖ {(0, 0)} ∪ {(0, 1

𝑛
)∶ 𝑛 = 1, 2,… } are topological surfaces.

Example. Let 𝑓∶ ℝ2 → ℝ be a continuous function. The graph of 𝑓, denoted Γ𝑓, is defined by

Γ𝑓 = {(𝑥, 𝑦, 𝑓(𝑥, 𝑦))∶ (𝑥, 𝑦) ∈ ℝ2}

with the subspace topology when embedded in ℝ3. Recall that a product topology 𝑋 × 𝑌 has the
feature that 𝑓∶ 𝑍 → 𝑋 × 𝑌 is continuous if and only if 𝜋𝑥 ∘ 𝑓∶ 𝑍 → 𝑋 and 𝜋𝑦 ∘ 𝑓∶ 𝑍 → 𝑌 are
continuous. Hence, any graph Γ ⊆ 𝑋 × 𝑌 is homeomorphic to 𝑋 if 𝑓 is continuous. Indeed, the
projection 𝜋𝑥 projects each point in the graph onto the domain. The function 𝑠∶ 𝑥 ↦ (𝑥, 𝑓(𝑥)) is
continuous by the above. In particular, in our case, the graph Γ𝑓 is homeomorphic to ℝ2, which we
know is a surface.

Remark. As a topological surface, Γ𝑓 is independent of the function 𝑓. However, we will later intro-
ducemoreways to describe topological spaces that will ascribe new properties to Γ𝑓 which do depend
on 𝑓.
Example. The sphere:

𝑆2 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3 ∶ 𝑥2 + 𝑦2 + 𝑧2 = 1}
is a topological surface, when using the subspace topology in ℝ3. Consider the stereographic projec-
tion of 𝑆2 onto ℝ2 from the north pole (0, 0, 1). The projection satisfies 𝜋+ ∶ 𝑆2 ∖ {(0, 0, 1)} and

(𝑥, 𝑦, 𝑧) ↦ ( 𝑥
1 − 𝑧 ,

𝑦
1 − 𝑧)

Certainly, 𝜋+ is continuous, since we do not consider the point (0, 0, 1) to be in its domain. The
inverse map is given by

(𝑢, 𝑣) ↦ ( 2𝑢
𝑢2 + 𝑣2 + 1,

2𝑣
𝑢2 + 𝑣2 + 1,

𝑢2 + 𝑣2 − 1
𝑢2 + 𝑣2 + 1)
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This is also a continuous function. Hence 𝜋+ is a homeomorphism. Similarly, we can construct the
stereographic projection from the south pole, 𝜋−. This is a homeomorphism. Hence, every point in
𝑆2 lies either in the domain of 𝜋+ or 𝜋−, and hence sits in an open set 𝑆2 ∖ {(0, 0, 1)} or 𝑆2 ∖ {(0, 0, −1)}
which is homeomorphic to ℝ2.

Remark. 𝑆2 is compact by the Heine–Borel theorem; it is a closed bounded set in ℝ3.

Example. The real projective plane is a topological surface. The group ℤ/2 acts on 𝑆2 by homeo-
morphisms via the antipodal map 𝑎∶ 𝑆2 → 𝑆2, mapping 𝑥 ↦ −𝑥. There exists a homeomorphism
ℤ/2 to the group Homeo(𝕊2) of homeomorphisms of 𝑆2, by mapping 1 + ℤ ↦ 𝑎. We now define the
real projective plane to be the quotient of 𝑆2 given by identifying every point 𝑥 with its image −𝑥
under 𝑎.

ℝℙ2 = 𝑆2⟋ℤ/2 =
𝑆2⟋∼; 𝑥 ∼ 𝑎(𝑥)

Lemma. ℝℙ2 bijects with the set of straight lines in ℝ3 through the origin.

Proof. Any line through the origin intersects 𝑆2 exactly in a pair of antipodal points 𝑥,−𝑥. Similarly,
pairs of antipodal points uniquely define a line through the origin.

Lemma. ℝℙ2 is a topological surface.

Proof. We must check that ℝℙ2 is Hausdorff since it is constructed by a quotient, not a subspace.
If 𝑋 is a space and 𝑞∶ 𝑋 → 𝑌 is a quotient map, then by definition 𝑉 ⊂ 𝑌 is open if and only if
𝑞−1(𝑉) ⊂ 𝑋 is open. If [𝑝] ≠ [𝑞] ∈ ℝℙ2, then ±𝑝,±𝑞 ∈ 𝑆2 are distinct antipodal pairs. We can
therefore construct distinct open discs around 𝑝, 𝑞 in 𝑆2, and their antipodal images. These uniquely
define open neighbourhoods of [𝑝], [𝑞], which are disjoint.
Similarly, we can check that ℝℙ2 is second countable. We know that 𝑆2 is second countable, so let
𝒰 be a countable base for the topology on 𝑆2. Without loss of generality, we can assert that for all
sets 𝑈 ∈ 𝒰, we have −𝑈 ∈ 𝒰. Let 𝒰 be the family of open sets in ℝℙ2 of the form 𝑞(𝑈) ∪ 𝑞(−𝑈) for
𝑈 ∈ 𝒰, where 𝑞 is the quotient map. Now, if 𝑉 ⊆ ℝℙ2 is open, then by definition 𝑞−1(𝑉) is open in
𝑆2 hence 𝑞−1(𝑉) contains some 𝑈 ∈ 𝒰 and hence contains 𝑈 ∪ (−𝑈). Hence 𝒰 is a countable base
for the quotient topology on ℝℙ2.

Finally, let 𝑝 ∈ 𝑆2 and [𝑝] ∈ ℝℙ2 its image. Let 𝐷 be a small (contained in an open hemisphere)
closed disc, which is a neighbourhood of𝑝 ∈ 𝑆2. The quotientmap restricted to𝐷, written 𝑞|𝐷 ∶ 𝐷 →
𝑞(𝐷) ⊂ ℝℙ2, is a continuous function from a compact space to a Hausdorff space. Further, 𝑞 is in-
jective on 𝐷 since the disc was contained entirely in a single hemisphere. The topological inverse
function theorem states that a continuous bijection from a compact space to a Hausdorff space is
a homeomorphism. So 𝑞|𝐷 is a homeomorphism from 𝐷 to 𝑞(𝐷). This then induces the homeo-
morphism 𝑞|𝐷 from the open disc 𝐷 = 𝐷

∘
to 𝑞(𝐷). So by construction, [𝑝] ∈ 𝑞(𝐷); it has an open

neighbourhood in ℝℙ2 which is homeomorphic to an open disc, concluding the proof.

Example. Let 𝑆1 be the unit circle inℂ, and then we define the torus to be the product space 𝑆1×𝑆1,
with the subspace topology from ℂ2 (which is identical to the product topology).
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Lemma. The torus is a topological surface.

Proof. Consider the map 𝑒∶ ℝ2 → 𝑆1 × 𝑆1 defined by

(𝑠, 𝑡) ↦ (𝑒2𝜋𝑖𝑠, 𝑒2𝜋𝑖𝑡)

Note that this induces a map ̂𝑒 from ℝ2
⟋ℤ2, since 𝑒 is constant under translations by ℤ

2.

ℝ2 𝑆1 × 𝑆1

ℝ2
⟋ℤ2

𝑞

𝑒

̂𝑒

Under the quotient topology given by the quotient map 𝑞, ℝ
2
⟋ℤ2 is a topological space. The map

[0, 1]2 → ℝ2 → ℝ2
⟋ℤ2 is surjective, so

ℝ2
⟋ℤ2 is compact. So ̂𝑒 is a continuous map from a compact

space to a Hausdorff space, and ̂𝑒 is bijective, so ̂𝑒 is a homeomorphism. We already have that 𝑆1×𝑆1
is compact and Hausdorff (as a closed and bounded set in ℂ2), so it suffices to show it is locally
homeomorphic to ℝ2. Let [𝑝] = 𝑞(𝑝) ∈ 𝑆1 × 𝑆1, then we can choose a small disc 𝐷(𝑝) such that
𝐷(𝑝) ∩ (𝐷(𝑝) + (𝑛,𝑚)) = ∅ for nonzero (𝑛,𝑚) ∈ ℤ2. Hence 𝑒|𝐷(𝑝) is injective and 𝑞|𝐷(𝑝) is injective.
Now, restricting to the open disc as before, we can find an open disc neighbourhood of [𝑝]. Since [𝑝]
was chosen arbitrarily, 𝑆1 × 𝑆1 is a topological surface.

Example. Let 𝑃 be a planar Euclidean polygon, with oriented edges. We will pair the edges, and
without loss of generality we will assume that paired edges have the same Euclidean length.

𝑏−1

𝑎

𝑏

𝑎−1

𝑏

𝑎

𝑏

𝑎−1

We can assign letter names to each edge pair, and denote a polygon by the sequence of edges found
when traversing in a clockwise orientation. The edge pair name is inverted if the edge is traversed
in the reverse direction. Note the difference between the annotations on the first two shapes above,
due to the reversed direction of the edge. If two edges 𝑒, ̂𝑒 are paired, this defines a unique Euclidean
isometry from 𝑒 to ̂𝑒 respecting the orientation, which will be written 𝑓𝑒 ̂𝑒 ∶ 𝑒 → ̂𝑒. The set of all such
functions generate an equivalence relation on the polygon, identifying paired edges with each other.

Lemma. 𝑃⟋∼, with the quotient topology, is a topological surface.

Example. Consider the torus, defined here as 𝑇2 = [0, 1]2⟋∼. Let 𝑃 be the polygon [0, 1]2. If 𝑝 is
in the interior of 𝑃, then construct a sufficiently small disc that lies entirely within the interior. The
quotient map is injective on the closure of the disc and is a homeomorphism on its interior.
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Let 𝑝 be on an edge, but not a vertex. Let us say without loss of generality that 𝑝 = (0, 𝑦0) ∼ (1, 𝑦0).
Let 𝛿 be sufficiently small that the closed half-discs 𝑈,𝑉 centred on 𝑝 with radius 𝛿 do not intersect
any vertices. Then we define a map from the union of the two half-discs to the disc 𝐵(0, 𝛿) ⊆ ℝ2

via (𝑥, 𝑦) ↦ (𝑥, 𝑦 − 𝑦0) or (𝑥, 𝑦) ↦ (𝑥 − 1, 𝑦 − 𝑦0), which will be a bijective map. Recall the gluing
lemma from Analysis and Topology: that if 𝑋 = 𝐴∪𝐵 is a union of closed subspaces, and 𝑓∶ 𝐴 → 𝑌 ,
𝑔∶ 𝐵 → 𝑌 are continuous and 𝑓|𝐴∩𝐵 = 𝑔|𝐴∩𝐵, they define a continuous map on 𝑋 . Let 𝑓𝑈 , 𝑓𝑉 be
the maps on the half-discs 𝑈,𝑉 . By the definition of the quotient topology, 𝑞 ∘ 𝑓𝑈 and 𝑞 ∘ 𝑓𝑉 are also
continuous. On the overlapping area, the functions 𝑞 ∘ 𝑓𝑈 and 𝑞 ∘ 𝑓𝑉 agree. Hence, by the gluing
lemma, we can construct a function 𝑓∶ 𝑈∪𝑉 → 𝐵(0, 𝛿). We can show that this is a homeomorphism
using the usual process: pass to the closed disc, apply the topological inverse function theorem, then
apply the result to the interior. If [𝑝] ∈ 𝑇2 lies on the image of an edge in [0, 1]2, it has indeed a
neighbourhood homeomorphic to a disc.

Now it suffices to consider points 𝑝 on a vertex. All four vertices of the square are identified to the
same point in the torus. A neighbourhood of each vertex can be identified with a quarter-disc in ℝ2.
We can repeatedly apply the gluing lemma to construct the whole disc 𝐵(0, 𝛿) ⊆ ℝ2 and complete
the argument as before.

Thus, [0, 1]
2
⟋∼ is a topological surface.

We can generalise this proof to an arbitrary planar Euclidean polygon 𝑃, such as the hexagon above.
The equivalence relation 𝑥 ∼ 𝑓𝑒 ̂𝑒(𝑥) induces an equivalence relation on the vertices of 𝑃, by consider-
ing the images of the vertices under all 𝑓𝑒 ̂𝑒. However, it is not necessarily the case that an equivalence
class of vertices contains exactly four vertices, so quarter-discs are not necessarily applicable. Again,
there are three types of point:

• interior points, for which a neighbourhood not intersecting the boundary is chosen;

• points on edges, for which a corresponding point exists and two half-discs can be glued to form
the neighbourhood; and

• points on vertices. For this case, all vertices of the polygon have a neighbourhood which is a
sector of a circle. Let there be 𝑟 vertices in a given equivalence class. Let 𝛼 be the sum of the
angles of the sectors in a given class. Any sector can be identified with a given sector in the disc
𝐵(0, 𝛿) ⊆ ℝ2, which we will choose to have angle 𝛼/𝑟. Then, we can glue each sector together
in ℝ2, compatibly with the orientations of the edges and arrows, inducing a neighbourhood
which is locally homeomorphic to a disc. If 𝑟 = 1, we have an equivalence class comprising a
single vertex, which gives a single sector. For 𝑟 to be one, the two edges attached to this vertex
must be paired and have the same direction (either both inwards or outwards from the vertex).
This quotient space is simply a cone, which is homeomorphic to a disc as required.

We can also show that the quotient space is Hausdorff and second countable. By construction, two
distinct points in the quotient space can be separated by open neighbourhoods by selecting a suffi-
ciently small radius such that the discs considered in the derivation above are disjoint. For second
countability, consider

• discs in the interior of 𝑃 with rational centres and radii;
• for each edge of 𝑃, consider an isometry 𝑒 → [0, ℓ] where ℓ is the length of 𝑒, taking discs on 𝑒
which are centred at rational values in [0, ℓ]; and

• for each vertex, consider discs centred at these vertices with rational radii.
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Example. Given topological surfaces Σ1, Σ2 we can remove an open disc from each and glue the
resulting circles. Explicitly, we form a quotient relation on the disjoint union of the surfaces with the
discs removed. This process is known as forming the connect sum of the surfaces, written Σ1 # Σ2.
Typically, the information about where the discs were removed from is discarded when considering
the connect sum. The connect sum of two topological surfaces is a topological surface.

Example. Consider the following octagon.

The associated quotient space 𝑃⟋∼ can be seen to be homeomorphic to a surface with two holes,
known as a double torus. All vertices are identified as the same vertex in the quotient space. We
can cut the octagon along a diagonal, leaving two topological surfaces which are homeomorphic to
a torus.

↦

Thus, the connect sum of the two half-octagons are the connect sum of two toruses.

Example. Consider the following square.

This is homeomorphic to the real projective plane ℝℙ2. This is because we identify points on the
boundary with their antipodes, when interpreting the square as the closed disc 𝐵(0, 1). The real pro-
jective plane was constructed by identifying points on the unit sphere with their antipodes. Thus,
we can construct a homeomorphism by considering only points in the upper hemisphere (taking
antipodes as required), and then orthographically projecting onto the 𝑥𝑦 plane. Under this trans-
formation, points on the boundary are identified with their antipodes as required.

1.2 Subdivisions

Definition. A subdivision of a compact topological surface Σ comprises
(i) a finite subset 𝑉 ⊆ Σ of vertices;
(ii) a finite subset 𝐸 = {𝑒𝑖 ∶ [0, 1] → Σ} which are continuous injections and pairwise dis-

joint except perhaps at the endpoints;
(iii) such that each connected component of the complement of𝑉∪𝐸 inΣ is homeomorphic

to an open disc, and each such component will be called a face. In particular, the bound-
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ary of each face has boundary inside the union of the edges and the vertices.
We say that a subdivision is a triangulation if each closed face (closure of a face) contains
exactly three edges, and two closed faces meet either at exactly one edge or not at any edges.

Example. A cube displays a subdivision of 𝑆2. A tetrahedron displays a triangulation of 𝑆2.
Example. We can display subdivisions of surfaces constructed from polygons.

𝑏−1

𝑎

𝑏

𝑎−1

This is a subdivision of a torus with one edge, two edges, and one face. We can construct additional
subdivisions of a torus, for example:

The first of these examples is not a triangulation, since the two faces meet in more than one edge.
The second is a triangulation.

Remark. The following is a very degenerate subdivision of 𝑆2.
•

This has one vertex, no edges, and one face.

1.3 Euler classification

Definition. The Euler characteristic of a subdivision is

#𝑉 − #𝐸 + #𝐹

Theorem. (i) Every compact topological surface has a subdivision (and indeed triangula-
tions).

(ii) The Euler characteristic is invariant under choice of subdivision, and is topologically
invariant.

Hence, we might say that a surface has a particular Euler characteristic, without referring to
subdivisions. We write this 𝜒(Σ).

8



No proof will be given.

Example. The Euler characteristic of 𝑆2 is𝜒(𝑆2) = 2. For the torus, 𝜒(𝑇2) = 0. If Σ1, Σ2 are compact
surfaces, then the connect sum Σ1 # Σ2 can be constructed by removing a face of a triangulation,
then gluing together the boundary circles (three edges) in a way that matches the edges. Then the
connect sum inherits a subdivision, and we can find that it has Euler characteristic 𝜒(Σ1 # Σ2) =
𝜒(Σ1) + 𝜒(Σ2) − 2, where the remaining term corresponds to the two faces that were removed; the
changes of three vertices and three edges cancel each other. In particular, a surface Σ𝑔 with 𝑔 holes
can be written#𝑔

𝑖=1𝑇2, so 𝜒(Σ𝑔) = 2 − 2𝑔. We call 𝑔 the genus of Σ.
Remark. It is not trivial to prove part (i). For part (ii), note that subdivisions can be converted into
triangulations by constructing triangle fans.

Triangulations can be related by local moves, such as

It is easy to check that both of these moves do not change the Euler characteristic. However, it is
hard to make this argument rigorous, and it does not give much explanation for why the result is
true. In Part II Algebraic Topology, a more advanced definition of the Euler characteristic is given,
which admits a more elegant proof.

2 Smooth surfaces
2.1 Charts and atlases
Recall that if Σ is a topological surface, any point lies in an open neighbourhood homeomorphic to a
disc.

Definition. A pair (𝑈, 𝜑), where 𝑈 is an open set in Σ and 𝜑∶ 𝑈 → 𝑉 is a homeomorphism
to an open set 𝑉 ⊆ ℝ2, is called a chart for Σ. If 𝑝 ∈ 𝑈 , we might say that (𝑈, 𝜑) is a chart for
Σ at 𝑝. A collection of charts whose domains cover Σ is known as an atlas for Σ. The inverse
𝜎 = 𝜑−1 ∶ 𝑉 → 𝑈 is known as a local parametrisation for the surface.

Example. If 𝑍 ⊆ ℝ2 is closed, ℝ2 ∖ 𝑍 is a topological surface with an atlas containing one chart,
(ℝ2 ∖ 𝑍, 𝜙 = id).
For 𝑆2, there is an atlas with two charts, which are the two stereographic projections from the poles.
We could consider alternative charts, for instance the projection to the 𝑦𝑧 plane, but this would be
insufficient for describing the poles.

Definition. Let (𝑈 𝑖, 𝜑𝑖) be charts containing the point 𝑝 ∈ Σ, for 𝑖 = 1, 2. Then the map

∗∶ 𝜑1(𝑈1 ∩ 𝑈2) → 𝜑2(𝑈1 ∩ 𝑈2); ∗ = 𝜑2 ∘ 𝜑−11
|||𝜑1(𝑈1∩𝑈2)
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converts between the corresponding charts, and is called a transition map. This is a homeo-
morphism of open sets in ℝ2.

Recall from Analysis and Topology that if 𝑉 ⊆ ℝ𝑛 and 𝑉 ′ ⊆ ℝ𝑚 are open, then a continuous map
𝑓∶ 𝑉 → 𝑉 ′ is called smooth if it is infinitely differentiable. Equivalently, it is smooth if partial deriv-
atives of all orders in all variables exist at all points. If 𝑛 = 𝑚, then in particular the homeomorphism
𝑓∶ 𝑉 → 𝑉 ′ is called a diffeomorphism if it is smooth and has smooth inverse.

Definition. An abstract smooth surface is a topological space Σ together with an atlas of
charts (𝑈 𝑖, 𝜑𝑖) such that all transition maps 𝜑𝑖 ∘ 𝜑−1𝑗 ∶ 𝜑𝑗(𝑈 𝑖 ∩𝑈𝑗) → 𝜑𝑖(𝑈 𝑖 ∩𝑈𝑗) are diffeo-
morphisms.

Remark. We could not simply consider a smoothness condition for Σ itself without appealing to
atlases, since Σ is an arbitrary topological space and could have almost any topology.
Example. The atlas of two charts with stereographic projections gives 𝑆2 the structure of an abstract
smooth surface.

Example. For the torus 𝑇2 = ℝ2
⟋ℤ2, we can find charts of all points by choosing sufficiently small

discs in ℝ2 such that they do not intersect any of their non-trivial integer translates. The transition
maps for this atlas are all translations of ℝ2. Hence 𝑇2 inherits the structure of an abstract smooth
surface. Explicitly, let us define 𝑒∶ ℝ2 → 𝑇2 by (𝑡, 𝑠) ↦ (𝑒2𝜋𝑖𝑡, 𝑒2𝜋𝑖𝑠), then consider the atlas

{(𝑒(𝐷𝜀(𝑥, 𝑦)), 𝑒−1 on this image)}

for 𝜀 < 1
3
. These are charts on 𝑇2, and the transition maps are (restricted to appropriate domains)

translations in ℝ2. Hence 𝑇2, via this atlas, has the structure of an abstract smooth surface.

Remark. The definition of a topological surface is a notion of structure. One can observe a topological
space and determine whether it is a topological surface. Conversely, to be an abstract smooth surface
is to have a specific set of data; that is, we must provide charts for the surface in order to see that it is
indeed an abstract smooth surface.

Definition. Let Σ be an abstract smooth surface, and 𝑓∶ Σ → ℝ𝑛 be a continuous map. We
say that 𝑓 is smooth at 𝑝 ∈ Σ if, for all charts (𝑈, 𝜑) of 𝑝 belonging to the smooth atlas for Σ,
the map

𝑓 ∘ 𝜑−1 ∶ 𝜑(𝑈) → ℝ𝑛

is smooth at 𝜑(𝑝) ∈ ℝ2.

Remark. Note that the choice of chart and atlaswas arbitrary, but smoothness of𝑓 at𝑝 is independent
of the choice of chart, since the transition maps between two such charts are diffeomorphisms.

Definition. Let Σ1, Σ2 be abstract smooth surfaces. Then a map 𝑓∶ Σ1 → Σ2 is smooth if
it is ‘smooth in the local charts’. Given a chart (𝑈, 𝜑) at 𝑝 and a chart (𝑈 ′, 𝜓) at 𝑓(𝑝), both
mapping to open subsets of ℝ2, the map 𝜓 ∘ 𝑓 ∘ 𝜑−1 is smooth at 𝜑(𝑝). Smoothness of 𝑓 does
not depend on the choice of chart, provided that the charts all belong to the same atlas.
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Definition. Two surfacesΣ1, Σ2 are diffeomorphic if there exists a homeomorphism𝑓∶ Σ1 →
Σ2 which is smooth and has smooth inverse.

Remark. Often, we convert froma given smooth atlas for an abstract smooth surfaceΣ to themaximal
compatible smooth atlas. That is, we consider the atlas with the maximal possible set of charts, all of
which have transition maps that are diffeomorphisms. This can be accomplished formally by use of
Zorn’s lemma.

3 Smooth surfaces in ℝ3

3.1 Definitions and equivalent characterisations
Recall that if 𝑉 ⊆ ℝ𝑛 and 𝑉 ′ ⊆ ℝ𝑚, then 𝑓∶ 𝑉 → 𝑉 ′ is smooth if it is infinitely differentiable.

Definition. If 𝑍 is an arbitrary subset of ℝ𝑛, we say that a continuous function 𝑓∶ 𝑍 → ℝ𝑚

is smooth at 𝑝 ∈ 𝑍 if there exists an open ball 𝑝 ∈ 𝐵 ⊆ ℝ𝑛 and a smooth map 𝐹 ∶ 𝐵 → ℝ𝑚

which extends 𝑓 such that they agree on 𝐵 ∩ 𝑍. In other words, 𝑓 is locally the restriction of
a smooth map defined on an open set.

Definition. Let 𝑋 ⊆ ℝ𝑛 and 𝑌 ⊆ ℝ𝑚. We say that 𝑋 and 𝑌 are diffeomorphic if there exists
a continuous function 𝑓∶ 𝑋 → 𝑌 such that 𝑓 is a smooth homeomorphism with smooth
inverse.

Definition. A smooth surface in ℝ3 is a subspace of ℝ3 such that for all points 𝑝 ∈ Σ, there
exists an open subset 𝑝 ∈ 𝑈 ⊆ Σ that is diffeomorphic to an open set in ℝ2. In other words,
for all 𝑝 ∈ Σ, there exists an open ball 𝑝 ∈ 𝐵 ⊆ ℝ3 such that if 𝑈 = 𝐵 ∩ Σ and there exists
a map 𝑓∶ 𝐵 → 𝑉 ⊆ ℝ2 such that 𝑓|𝑈 ∶ 𝑈 → 𝑉 is a homeomorphism, and the inverse map
𝑉 → 𝑈 ⊆ Σ ⊆ ℝ3 is smooth.

Definition. Let 𝜎∶ 𝑉 → 𝑈 where 𝑉 ⊆ ℝ2 is open and 𝑈 ⊆ Σ ⊆ ℝ3 is open in Σ, such
that 𝜎 is a smooth homeomorphism and 𝐷 𝜎|𝑥 has rank 2 for all 𝑥 ∈ 𝑉 . Then 𝜎 is called an
allowable parametrisation. If 𝜎(0) = 𝑝, we say that 𝜎 is an allowable parametrisation near 𝑝.

Theorem. For a subset Σ ⊆ ℝ3, the following are equivalent.
(a) Σ is a smooth surface in ℝ3;
(b) Σ is locally the graph of a smooth function, over one of the three coordinate planes: for

all 𝑝 ∈ Σ there exists an open ball 𝑝 ∈ 𝐵 ⊆ ℝ3 and an open set 𝑉 ⊆ ℝ2 such that

Σ ∩ 𝐵 = {(𝑥, 𝑦, 𝑔(𝑥, 𝑦))∶ 𝑔∶ 𝑉 → ℝ smooth}

or one of the other coordinate planes;
(c) Σ is locally cut out by a smooth function: for all 𝑝 ∈ Σ there exists an open ball 𝑝 ∈
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𝐵 ⊆ ℝ3 and a smooth function 𝑓∶ 𝐵 → ℝ such that

Σ ∩ 𝐵 = 𝑓−1(0); 𝐷 𝑓|||𝑥
≠ 0

for all 𝑥 ∈ 𝐵;
(d) Σ is locally the image of an allowable parametrisation near all points.

Remark. Part (b) implies that if Σ is a smooth surface in ℝ3, each 𝑝 ∈ Σ belongs to a chart (𝑈, 𝜑)
where 𝜑 is (the restriction of) one of the three coordinate plane projections 𝜋𝑥𝑦, 𝜋𝑦𝑧, 𝜋𝑥𝑧 from ℝ3

to ℝ2. Consider the transition map between two such charts. If the two charts are based on the
same projection such as 𝜋𝑥𝑦, then the transition map is the identity. If they are based on different
projections 𝜋𝑥𝑦 and 𝜋𝑦𝑧, then the transition map is

(𝑥, 𝑦) ↦ (𝑥, 𝑦, 𝑔(𝑥, 𝑦)) ↦ (𝑦, 𝑔(𝑥, 𝑦))
which has inverse

(𝑦, 𝑧) ↦ (ℎ(𝑦, 𝑧), 𝑦, 𝑧) ↦ (ℎ(𝑦, 𝑧), 𝑦)
Hence all of the transition maps between such charts involve projection maps and the smooth maps
involved in defining Σ as a graph. This gives Σ the structure of an abstract smooth surface.
Some of the relations given in the above theorem are easy to prove, but others come as a result of the
inverse function theorem.

3.2 Inverse and implicit function theorems

Theorem (inverse function theorem). Let𝑈 ⊆ ℝ𝑛 be open, and𝑓∶ 𝑈 → ℝ𝑛 be continuously
differentiable. Let 𝑝 ∈ 𝑈 and 𝑓(𝑝) = 𝑞. Suppose 𝐷 𝑓|𝑝 is invertible. Then there is an open
neighbourhood 𝑉 of 𝑞 and a differentiable map 𝑔∶ 𝑉 → ℝ𝑛 and 𝑔(𝑞) = 𝑝with image an open
neighbourhood 𝑈 ′ ⊆ 𝑈 of 𝑝 such that 𝑓 ∘ 𝑔 = id𝑉 . If 𝑓 is smooth, then 𝑔 is also.

Remark. The chain rule then implies that𝐷 𝑔|𝑞 = (𝐷 𝑓|𝑝)
−1
. The inverse function theorem concerns

functions ℝ𝑛 → ℝ𝑛, where 𝐷 𝑓|𝑝 is an isomorphism. If we have a map ℝ𝑛 → ℝ𝑚 for 𝑛 > 𝑚, then
we can discuss the behaviour when 𝐷 𝑓|𝑝 is surjective. The derivative 𝐷 𝑓|𝑝 is an 𝑛 × 𝑚 matrix, so
if it has full rank, up to the permutation of coordinates we have that the last𝑚 columns are linearly
independent.

Theorem (implicit function theorem). Let𝑝 = (𝑥0, 𝑦0) be a point in an open set𝑈 ⊂ ℝ𝑘×ℝℓ.
Let 𝑓∶ 𝑈 → ℝℓ such that 𝑝 ↦ 0 and ( 𝜕𝑓𝑖

𝜕𝑦𝑗
)
ℓ×ℓ

is an isomorphism. Then there is an open

neighbourhood𝑉 of𝑥0 inℝ𝑘 and a continuously differentiablemap 𝑔∶ 𝑉 → ℝℓwith𝑥0 ↦ 𝑦0
such that if (𝑥, 𝑦) ∈ 𝑈 ∩ (𝑉 × ℝℓ), then 𝑓(𝑥, 𝑦) = 0 ⟺ 𝑦 = 𝑔(𝑥). If 𝑓 is smooth, so is 𝑔.

Proof. Let 𝐹 ∶ 𝑈 → ℝ𝑘 × ℝℓ be defined by (𝑥, 𝑦) ↦ (𝑥, 𝑓(𝑥, 𝑦)). Then note that

𝐷𝐹 = (
𝐼 ∗
0 𝜕𝑓𝑖

𝜕𝑦𝑗
)
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hence 𝐷𝐹 is an isomorphism at (𝑥0, 𝑦0). By the inverse function theorem, 𝐹 is locally invertible
near 𝐹(𝑥0, 𝑦0) = (𝑥0, 𝑓(𝑥0, 𝑦0)) = (𝑥0, 0). Consider an open neighbourhood 𝑉 × 𝑉 ′ ⊆ ℝ𝑘 × ℝℓ on
which this continuously differentiable inverse 𝐺∶ 𝑉 × 𝑉 ′ → 𝑈 ′ ⊆ 𝑈 ⊆ ℝ𝑘 × ℝℓ exists, such that
𝐹 ∘ 𝐺 = id𝑉×𝑉 ′ . Then,

𝐺(𝑥, 𝑦) = (𝜑(𝑥, 𝑦), 𝜓(𝑥, 𝑦)) ⟹ 𝐹 ∘ 𝐺(𝑥, 𝑦) = (𝜑(𝑥, 𝑦), 𝑓(𝜑(𝑥, 𝑦), 𝜓(𝑥, 𝑦))) = (𝑥, 𝑦)

Hence 𝜑(𝑥, 𝑦) = 𝑥. We have 𝑓(𝑥, 𝜓(𝑥, 𝑦)) = 𝑦 when (𝑥, 𝑦) ∈ 𝑉 ×𝑉 ′. This gives 𝑓(𝑥, 𝑦) = 0 ⟺ 𝑦 =
𝜓(𝑥, 0). We then define 𝑔∶ 𝑉 → ℝℓ by 𝑥 ↦ 𝜓(𝑥, 0).

Example. Let 𝑓∶ ℝ2 → ℝ be smooth and 𝑓(𝑥0, 𝑦0) = 0, and suppose 𝜕𝑓
𝜕𝑦

≠ 0 at (𝑥0, 𝑦0). Then there
exists a smooth map 𝑔∶ (𝑥0 − 𝜀, 𝑥0 + 𝜀) → ℝ with 𝑔(𝑥0) = 𝑦0 and 𝑓(𝑥, 𝑦) = 0 ⟺ 𝑦 = 𝑔(𝑥) for
(𝑥, 𝑦) in some open neighbourhood of (𝑥0, 𝑦0). Since 𝑓(𝑥, 𝑔(𝑥)) = 0 in this open neighbourhood, we
can differentiate that expression to find

𝑔′(𝑥) = −𝑓𝑥
𝑓𝑦

noting that 𝑓𝑦 ≠ 0 in some neighbourhood near (𝑥0, 𝑦0). Note that the level set 𝑓(𝑥, 𝑦) = 0 is impli-
citly defined by 𝑔, which is a function for which we have an integral expression.
Example. Let 𝑓∶ ℝ3 → ℝ be a smooth map with 𝑓(𝑥0, 𝑦0, 𝑧0) = 0. Consider the level set Σ =
𝑓−1(0), assuming that 𝐷𝑓 ≠ 0 at (𝑥0, 𝑦0, 𝑧0). Permuting coordinates if necessary, we can assume
𝜕𝑓
𝜕𝑧

≠ 0 at this point. Then there exists an open neighbourhood 𝑉 of (𝑥0, 𝑦0) and a smooth function
𝑔∶ 𝑉 → ℝ such that (𝑥0, 𝑦0) ↦ 𝑧0 with the property that for an open set (𝑥0, 𝑦0, 𝑧0) ∈ 𝑈 , the set
𝑓−1(0) ∩ 𝑈 = Σ ∩ 𝑈 is the graph of the function 𝑔, which is {(𝑥, 𝑦, 𝑔(𝑥, 𝑦))∶ (𝑥, 𝑦) ∈ 𝑉}.

3.3 Conditions for smoothness
We now prove the theorem stated above, relating equivalent conditions for smoothness of a surface
Σ.

Proof. First, we show that (b) implies all of the other conditions. If Σ is locally a graph {(𝑥, 𝑦, 𝑔(𝑥, 𝑦))},
we find a chart from the coordinate plane projection𝜋𝑥𝑦 of that graph. Since this projection is smooth
and defined on an open neighbourhood of points of Σ in its domains, this shows that Σ is a smooth
surface in ℝ3 (a). Further, since Σ is locally the given graph, it is cut out by the function 𝑓(𝑥, 𝑦, 𝑧) =
𝑧 − 𝑔(𝑥, 𝑦) and 𝜕𝑓

𝜕𝑧
≠ 0 (c). Finally, the local parametrisation 𝜎(𝑥, 𝑦) = (𝑥, 𝑦, 𝑔(𝑥, 𝑦)) is allowable; 𝑔 is

smooth, the partial derivatives of 𝜎 are linearly independent by considering the 𝑥 and 𝑦 components,
and 𝜎 is injective where required (d).
Now, we show (a) implies (d). This is simply part of the definition of being a smooth surface in ℝ3,
being locally diffeomorphic to ℝ2. In particular, at 𝑝 ∈ Σ, Σ is locally diffeomorphic to ℝ2 and the
inverse of such a local diffeomorphism is an allowable parametrisation.

Wehave already shown (c) implies (b); thiswas the example of the implicit function theoremprovided
above.

Finally, we must prove (d) implies (a) and (b), and then the result will hold. Let 𝑝 ∈ Σ and 𝑉 be an
open set inℝ2with an allowable parametrisation toΣ such that𝜎(0) = 𝑝. If𝜎 = (𝜎1(𝑢, 𝑣), 𝜎2(𝑢, 𝑣), 𝜎3(𝑢, 𝑣)),
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we have

𝐷𝜎 =
⎛
⎜
⎜
⎝

𝜕𝜎1
𝜕𝑢

𝜕𝜎1
𝜕𝑣𝜕𝜎2

𝜕𝑢
𝜕𝜎2
𝜕𝑣𝜕𝜎3

𝜕𝑢
𝜕𝜎3
𝜕𝑣

⎞
⎟
⎟
⎠

This has rank 2, hence there exist two rows defining an invertible matrix. Suppose those are the first
two rows, and let pr = 𝜋𝑥𝑦 be the projection map. Consider pr ∘ 𝜎∶ 𝑉 → ℝ2. This has isomorphic
derivative at zero, so we can apply the inverse function theorem. Hence Σ is locally a graph over the
𝑥𝑦 coordinate plane, so (b) holds. Moreover, let 𝜑 = pr ∘ 𝜎, and consider the open ball 𝐵(𝑝, 𝛿) ⊆ ℝ3

and a map such that (𝑥, 𝑦, 𝑧) ↦ 𝜑−1(𝑥, 𝑦) in this ball. Here, 𝜑∶ 𝑊 → Σ where𝑊 is an open set in
pr(𝐵(𝑝, 𝛿)). This is a locally defined map, which is smooth on an open set in ℝ3, which is a smooth
inverse to 𝜎. Hence Σ is a smooth surface in ℝ3, so (a) holds.

Example. The unit sphere 𝑆2 in ℝ3 is 𝑓−1(0) for 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2 − 1. For any point on 𝑆2,
𝐷𝑓 ≠ 0, so 𝑆2 is a smooth surface.
Example. Let 𝛾∶ [𝑎, 𝑏] → ℝ3 be a smooth map with image in the 𝑥𝑧 plane, so

𝛾(𝑡) = (𝑓(𝑡), 0, 𝑔(𝑡))

such that 𝛾 is injective, 𝛾′ ≠ 0, and 𝑓 > 0. The surface of revolution of 𝛾 has allowable parametrisation

𝜎(𝑢, 𝑣) = (𝑓(𝑢) cos 𝑣, 𝑓(𝑢) sin 𝑣, 𝑔(𝑢))

where (𝑢, 𝑣) ∈ (𝑎, 𝑏) × (𝜃, 𝜃 + 2𝜋) for a fixed 𝜃. Note that 𝜎𝑢 = (𝑓𝑢 cos 𝑣, 𝑓𝑢 sin 𝑣, 𝑔𝑢) and 𝜎𝑣 =
(−𝑓 sin 𝑣, 𝑓 cos 𝑣, 0), and we can check ‖𝜎𝑢 × 𝜎𝑣‖ = 𝑓2((𝑓′)2 + (𝑔′)2) which is nonzero on 𝛾, so this
really is an allowable parametrisation.

Example. The orthogonal group𝑂(3) acts on 𝑆2 by diffeomorphisms. Indeed, any𝐴 ∈ 𝑂(3) defines
a linear (hence smooth) map ℝ3 → ℝ3 preserving 𝑆2. Hence, the induced map on 𝑆2 is by a homeo-
morphism which is smooth according to the above definition. This is analogous to the action of the
Möbius group on 𝑆2 = ℂ ∪ {∞}.

3.4 Orientability

Definition. Let𝑉, 𝑉 ′ be open sets inℝ2. Let 𝑓∶ 𝑉 → 𝑉 ′ be a diffeomorphism. Then at every
point 𝑥 ∈ 𝑉 , 𝐷 𝑓|𝑥 ∈ 𝐺𝐿(2, ℝ); it is invertible since 𝑓 is a diffeomorphism. Let 𝐺𝐿+(2, ℝ) be
the subgroup of matrices with positive determinant. We say that 𝑓 is orientation-preserving if
its derivative belongs to this subgroup for all points 𝑥 ∈ 𝑉 .

Definition. An abstract smooth surface Σ is orientable if it admits an atlas {(𝑈 𝑖, 𝜑𝑖)} where
the transition maps are all orientation-preserving. A choice of such an atlas is an orientation
of Σ; Σ can be called oriented when such an orientation is given.

Remark. An orientable atlas belongs to a maximal compatible oriented smooth atlas.

Lemma. If Σ1 and Σ2 are diffeomorphic abstract smooth surfaces, then Σ1 is orientable if
and only if Σ2 is orientable.
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Proof. Let 𝑓∶ Σ1 → Σ2 be a diffeomorphism. SupposeΣ2 is orientable and equippedwith an oriented
smooth atlas. Consider the atlas on Σ1 of charts of the form (𝑓−1(𝑈), 𝜙 ∘ 𝑓|𝑓−1(𝑈)), where (𝑈, 𝜓) is a
chart at 𝑓(𝑝) in the oriented atlas for Σ2. Then, the transitionmap between two such charts is exactly
a transition map between charts in the Σ2 atlas.
In otherwords, in themaximal smooth atlas that exists a priori forΣ1, wewill allow charts of the form
(𝑈, 𝜓)when for all charts (𝑈, 𝜓) at 𝑓(𝑝) in the Σ2 atlas, themap 𝜓∘𝑓∘(𝜓)−1 is orientation-preserving.
Informally, if the atlas on Σ2 was maximal as an oriented atlas, we can recover the previous set of
charts.

Remark. There is no sensible classification of the set of all smooth surfaces. For instance, ℝ2 ∖ 𝑍
for a closed set 𝑍 can be shown to yield uncountably many types of homeomorphisms. However,
compact smooth surfaces may be classified by their Euler characteristic and their orientability, up to
diffeomorphism. This theorem will not be proven in this course.

There is a definition of orientation-preserving homeomorphism that does not rely on the determinant,
but that instead relies on some algebraic topology which is not covered in this course. The Möbius
band is the surface

where the dashed lines represent the absence of edges. It is provable that an abstract smooth surface
is orientable if and only if it contains no subsurface homeomorphic to the Möbius band. We can
therefore say that a topological surface is orientable if and only if it contains no subsurface (an open
set) homeomorphic to a Möbius band.

We can define other structures on an abstract smooth surface by considering smooth atlases such that
if 𝜑1𝜑−12 is a transition map, then 𝐷(𝜑1𝜑−12 ) at 𝑥 belongs to a specific subgroup 𝐺 ≤ 𝐺𝐿(2, ℝ). For
example, defining 𝐺 = {𝑒} leads to Euclidean surfaces. The group 𝐺𝐿(1, ℂ) identified as a subgroup
of 𝐺𝐿(2, ℝ) yields the Riemann surfaces.
Example. For 𝑆2 with the atlas of two stereographic projections, we can find the transition map to
be

(𝑢, 𝑣) ↦ ( 𝑢
𝑢2 + 𝑣2 ,

𝑣
𝑢2 + 𝑣2 )

on ℝ2 ∖ {0}. This has positive determinant, so 𝑆2 is orientable.
For the torus 𝑇2, we previously found an atlas such that the transition maps are translations of ℝ2.
Hence the torus is an oriented surface, and also a Euclidean surface.

3.5 Tangent planes
Recall that an affine subspace of a vector space is a translate of a linear subspace.

Definition. Let Σ be a smooth surface inℝ3, and 𝑝 ∈ Σ. Let 𝜎∶ 𝑉 → 𝑈 ⊆ Σ be an allowable
parametrisation ofΣnear𝑝, so𝑉 is an open subset ofℝ2 and𝑈 is open inΣ, such that𝜎(0) = 𝑝.
The tangent plane 𝑇𝑝Σ to 𝑝 at Σ is the image of (𝐷 𝜎|0) ⊆ ℝ3, which is a two-dimensional
vector subspace of ℝ3. The affine tangent plane is 𝑝 + 𝑇𝑝Σ, which is an affine subspace of ℝ3.

Remark. The affine tangent plane is the ‘best’ linear approximation to a surface Σ at a given point.
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Lemma. 𝑇𝑝Σ is independent of the choice of allowable parametrisation.

Proof (i). Suppose 𝜎∶ 𝑉 → 𝑈 and �̃�∶ 𝑉 → 𝑈 are allowable parametrisations with 𝜎(0) = �̃�(0) = 𝑝.
There exists a transition map 𝜎−1 ∘ �̃�, which is a diffeomorphism of open sets in ℝ2. Therefore,

�̃� = 𝜎 ∘ (𝜎−1 ∘ �̃�)⏟⎵⏟⎵⏟
diffeomorphism

Hence 𝐷 (𝜎−1 ∘ �̃�)||0 is an isomorphism. Thus, the images of 𝐷 �̃�|0 and 𝐷 𝜎|0 agree.

Proof (ii). Let 𝛾∶ (−𝜀, 𝜀) → ℝ3 be a smooth map such that 𝛾 has image inside Σ, and 𝛾(0) = 𝑝.
We will show that 𝛾′(0) ∈ 𝑇𝑝Σ. If 𝜎∶ 𝑉 → 𝑈 is an allowable parametrisation with 𝜎(0) = 𝑝 as
above, and 𝜀 is sufficiently small such that Im 𝛾 ⊆ 𝑈 , then 𝛾(𝑡) = 𝜎(𝑢(𝑡), 𝑣(𝑡)) for some smooth
functions 𝑢, 𝑣∶ (−𝜀, 𝜀) → 𝑉 . Then 𝛾′(𝑡) = 𝜎𝑢𝑢′(𝑡) + 𝜎𝑣𝑣′(𝑡) is in the image of 𝐷 𝜎|𝑡. Thus, 𝑇𝑝Σ =
span {𝛾′(0)∶ 𝛾 as above}.

Definition. If Σ is a smooth surface inℝ3 and 𝑝 ∈ Σ, the normal direction to Σ at 𝑝 is (𝑇𝑝Σ)⟂,
the Euclidean orthogonal complement to the tangent plane at 𝑝.

Remark. For all 𝑝 ∈ Σ, there exist exactly two normalised normal vectors.

Definition. A smooth surface in ℝ3 is two-sided if it admits a continuous global choice of
unit normal vector.

Lemma. A smooth surface in ℝ3 is orientable (as an abstract smooth surface) if and only if
it is two-sided (as a smooth surface in ℝ3).

Proof. Let 𝜎∶ 𝑉 → 𝑈 ⊆ Σ be an allowable parametrisation. Let 𝜎(0) = 𝑝. We will define the positive
unit normal with respect to 𝜎 at 𝑝 to be the normal vector 𝑛𝜎(𝑝)with the property that {𝜎𝑢, 𝜎𝑣, 𝑛𝜎(𝑝)}
and {𝑒1, 𝑒2, 𝑒3} are related by a positive determinant change of basis matrix, where {𝑒1, 𝑒2, 𝑒3} are the
standard basis vectors. In other words,

𝑛𝜎(𝑝) =
𝜎𝑢 × 𝜎𝑣
‖𝜎𝑢 × 𝜎𝑣‖

Consider an alternative parametrisation �̃�∶ 𝑉 → 𝑈 , where �̃�(0) = 𝑝, such that �̃� belongs to the same
oriented and smooth atlas as 𝜎. Hence, 𝜎 = �̃� ∘ 𝜑 for some transition map 𝜑. Let

𝐷 𝜑|||0
= (𝛼 𝛽

𝛾 𝛿)

Hence,
𝜎𝑢 = 𝛼�̃�𝑢 + 𝛾�̃�𝑣; 𝜎𝑣 = 𝛽�̃�𝑢 + 𝛿�̃�𝑣

This gives

𝜎𝑢 × 𝜎𝑣 = det (𝐷 𝜑|||0
)�̃�𝑢 × �̃�𝑣 (†)
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The determinant here is positive since the charts in question belong to an oriented atlas. Thus, the
positive normal depends on the orientation of Σ, but does not depend on the choice of paramet-
risation. The expression for 𝑛𝜎(𝑝) is continuous since the cross product is continuous, hence Σ is
two-sided.

Conversely, if Σ is two-sided and there exists a global continuous choice of normal vector, we can
consider the subatlas of the natural smooth atlas with the property that we allow (𝑈, 𝜑) if the associ-
ated parametrisation 𝜎 = 𝜑−1 satisfies {𝜎𝑢, 𝜎𝑣, 𝑛} is a positive basis forℝ3, where 𝑛 is the given choice
of normal. By (†), the transition maps between such charts are orientation-preserving. Hence Σ is
orientable.

Lemma. If Σ is a smooth surface in ℝ3 and 𝐴∶ ℝ3 → ℝ3 is a smooth map which preserves
Σ setwise, then 𝐷 𝐴|𝑝 ∈ 𝐿(ℝ3, ℝ3)maps 𝑇𝑝Σ to 𝑇𝐴(𝑝)Σ for 𝑝 ∈ Σ.

Proof. Let 𝛾∶ (−𝜀, 𝜀) → ℝ3 be a smooth map such that its image lies on Σ, and 𝛾(0) = 𝑝. Recall that
𝑇𝑝Σ is spanned by 𝛾′(0) for such curves 𝛾. Now, consider 𝐴 ∘ 𝛾∶ (−𝜀, 𝜀) → ℝ3, which also has image
Σ, and

𝐷 𝐴|||𝛾(0)
∘ 𝐷 𝛾|||0

= 𝐷 𝐴|||𝑝
(𝛾′(0)) = 𝐷 (𝐴 ∘ 𝛾)|||0

∈ 𝑇𝐴(𝑝)Σ

Example. Let 𝑆2 be the unit sphere. The normal vector at 𝑝 is the line through the origin and 𝑝;
indeed, since 𝑆𝑂3 acts transitively on 𝑆2, it suffices to check at one point, such as the north pole. We
can choose the outward-facing normal vector to be the positive normal, denoted 𝑛(𝑝). 𝑆2 is two-sided
by the construction of this normal vector, hence 𝑆2 is orientable.
Example. One embedding of the Möbius band in ℝ3 is

𝜎(𝑡, 𝜃) = ((1 − 𝑡 sin 𝜃2) cos 𝜃, (1 − 𝑡 sin 𝜃2) sin 𝜃, 𝑡 cos
𝜃
2)

where (𝑡, 𝜃) ∈ 𝑉1 = {𝑡 ∈ (− 1
2
, 1
2
), 𝜃 ∈ (0, 2𝜋)} or (𝑡, 𝜃) ∈ 𝑉2 = {𝑡 ∈ (− 1

2
, 1
2
), 𝜃 ∈ (−𝜋, 𝜋)}. We begin

with the unit circle 𝑥2 + 𝑦2 = 1, for 𝑡 = 0. Then, at each point on the circle, we consider an open
interval of unit length, which will rotate as we move around the circle, such that at the point 𝜃 on
the circle it has rotated by 𝜃

2
. We can check that if 𝜎𝑖 is 𝜎 on 𝑉 𝑖, then 𝜎𝑖 is allowable. Further,

𝜎𝑡 × 𝜎𝜃 = (− cos 𝜃 cos 𝜃2 , − sin 𝜃 cos
𝜃
2 , − sin

𝜃
2) ≡ 𝑛𝜃

which is already normalised. As 𝜃 → 0 from above, 𝑛𝜃 → (−1, 0, 0). As 𝜃 → 2𝜋 from below, 𝑛𝜃 →
(1, 0, 0). Hence, the surface is not two-sided.

4 Geometry of surfaces in ℝ3

4.1 First fundamental form
Let 𝛾∶ (𝑎, 𝑏) → ℝ3 be smooth. The length of 𝛾 is

𝐿(𝛾) = ∫
𝑏

𝑎
‖𝛾′(𝑡)‖ d𝑡
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This result is independent of the choice of parametrisation. Let 𝑠∶ (𝐴, 𝐵) → (𝑎, 𝑏) be amonotonically
increasing function, and let 𝜏(𝑡) = 𝛾(𝑠(𝑡)). Then

𝐿(𝜏) = ∫
𝐵

𝐴
‖𝜏′(𝑡)‖ d𝑡 = ∫

𝐵

𝐴
‖𝛾′(𝑠(𝑡))‖|𝑠′(𝑡)| d𝑡 = ∫

𝑏

𝑎
‖𝛾′(𝑡′)‖ d𝑡′ = 𝐿(𝛾)

Lemma. If 𝛾∶ (𝑎, 𝑏) → ℝ3 is continuously differentiable and 𝛾′(𝑡) ≠ 0, then 𝛾 can be para-
metrised by arc length.

The proof is left as an exercise. LetΣ be a smooth surface inℝ3, and let𝜎∶ 𝑉 → 𝑈 ⊆ Σ be an allowable
parametrisation. If 𝛾∶ (𝑎, 𝑏) → ℝ3 is smooth and its image is contained within 𝑈 , then there exist
functions (𝑢(𝑡), 𝑣(𝑡))∶ (𝑎, 𝑏) → 𝑉 such that 𝛾(𝑡) = 𝜎(𝑢(𝑡), 𝑣(𝑡)). Hence 𝛾′(𝑡) = 𝜎𝑢𝑢′(𝑡) + 𝜎𝑣𝑣′(𝑡),
giving

‖𝛾′(𝑡)‖2 = 𝐸𝑢′(𝑡)2 + 2𝐹𝑢′(𝑡)𝑣′(𝑡) + 𝐺𝑣′(𝑡)2

for functions
𝐸 = ⟨𝜎𝑢, 𝜎𝑢⟩ ; 𝐹 = ⟨𝜎𝑢, 𝜎𝑣⟩ = ⟨𝜎𝑣, 𝜎𝑢⟩ ; 𝐺 = ⟨𝜎𝑣, 𝜎𝑣⟩

where ⟨ ⋅ , ⋅ ⟩ represents the usual Euclidean inner product. Note that 𝐸, 𝐹, 𝐺 depend only on 𝜎 and
not on 𝛾.

Definition. The first fundamental form of Σ in the parametrisation 𝜎 is the expression

𝐸 d𝑢2 + 2𝐹 d𝑢 d𝑣 + 𝐺 d𝑣2

This notation is illustrative of the fact that if 𝛾 has image in the image of 𝜎(𝑣), we find

𝐿(𝛾) = ∫
𝑏

𝑎
√𝐸(𝑢′)2 + 2𝐹𝑢′𝑣′ + 𝐺(𝑣′)2 d𝑡

where 𝛾(𝑡) = 𝜎(𝑢(𝑡), 𝑣(𝑡)).

Remark. The Euclidean inner product onℝ3 provides an inner product on the subspace 𝑇𝑝Σ. Choos-
ing a parametrisation 𝜎, we can say 𝑇𝑝Σ = Im𝐷 𝜎|0 = span {𝜎𝑢, 𝜎𝑣} where 𝜎(0) = 𝑝. The first
fundamental form is a symmetric bilinear form on the tangent spaces 𝑇𝑝Σ, varying smoothly in 𝑝.
However, we choose to express this in a basis coming from the parametrisation 𝜎. In particular, we
can think about the matrix expression

(𝐸 𝐹
𝐹 𝐺)

Example. The plane ℝ2
𝑥𝑦 ⊂ ℝ3 has the parametrisation (𝑢, 𝑣) ↦ (𝑢, 𝑣, 0). Hence, 𝜎𝑢 = 𝑒1 and 𝜎𝑣 =

𝑒2, hence the first fundamental form is d𝑢2+d𝑣2. We could also use polar coordinates, using 𝜎(𝑟, 𝜃) =
(𝑟 cos 𝜃, 𝑟 sin 𝜃, 0). This parametrises the planewithout the origin. This gives 𝜎𝑟 = (cos 𝜃, sin 𝜃, 0) and
𝜎𝜃 = (−𝑟 sin 𝜃, 𝑟 cos 𝜃, 0). The first fundamental form is d𝑟2 + 𝑟2 d𝜃2.

Definition. Let Σ, Σ′ be smooth surfaces inℝ3. We say that they are isometric if there exists a
diffeomorphism 𝑓∶ Σ → Σ′ that preserves the lengths of all curves. More formally, for every
smooth curve 𝛾∶ (𝑎, 𝑏) → Σ, the length of 𝛾 is the same as the length of 𝑓 ∘ 𝛾.
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Example. Let Σ′ = 𝑓(Σ) where 𝑓∶ ℝ3 → ℝ3 is a global isometry, or rigid motion, of ℝ3; that is,
𝑣 ↦ 𝐴𝑣 + 𝑏 for an orthogonal matrix 𝐴. These isometries preserve the Euclidean inner product on
ℝ3, hence 𝑓 preserves length. However, in the definition, we need not map all of ℝ3 to itself, just
Σ → Σ′.

Definition. We say that Σ and Σ′ are locally isometric near points 𝑝 ∈ Σ and 𝑞 ∈ Σ′ if there
exist open neighbourhoods 𝑈 of 𝑝 and 𝑉 of 𝑞 such that 𝑈 and 𝑉 are isometric. We can also
say that Σ and Σ′ are locally isometric if they are locally isometric at all points; that is, each
point of Σ is locally isometric to some point on Σ′.

Lemma. Smooth surfaces Σ, Σ′ inℝ3 are locally isometric near 𝑝 ∈ Σ and 𝑞 ∈ Σ′ if and only
if there exist allowable parametrisations 𝜎∶ 𝑉 → 𝑈 ⊆ Σ and 𝜎′ ∶ 𝑉 → 𝑈 ′ ⊆ Σ′ such that the
first fundamental forms are equivalent.

Proof. By definition, the first fundamental form of Σ determines the lengths of all curves on Σ that
lie in𝑈 . We will now show that lengths of curves determine the first fundamental form of a paramet-
risation. Given 𝜎∶ 𝑉 → 𝑈 , without loss of generality let 𝑉 = 𝐵(0, 𝛿) for some 𝛿 > 0, where 𝜎(0) = 𝑝.
Consider, for all 𝜀 < 𝛿, the curve

𝛾𝜀 ∶ [0, 𝜀] → 𝑈; 𝑡 ↦ 𝜎(𝑡, 0)

Then,
d
d𝜀𝐿(𝛾𝜀) =

d
d𝜀 ∫

𝜀

0
√𝐸(𝑡, 0) d𝑡 = √𝐸(𝜀, 0)

Hence,
d
d𝜀
|||𝜀=0

𝐿(𝛾𝜀) = √𝐸(0, 0)

So we can determine 𝐸 at 𝑝 by looking at lengths of curves. We can similarly consider

𝜒𝜀 ∶ [0, 𝜀] → 𝑈; 𝑡 ↦ 𝜎(0, 𝑡)

which determines 𝐺. Finally, consider

𝜆𝜀 ∶ [0, 𝜀] → 𝑈; 𝑡 ↦ 𝜎(𝑡, 𝑡)

which determines√(𝐸 + 2𝐹 + 𝐺)(0, 0) which gives 𝐹 implicitly.

Example. The sphere of radius 𝑎, given by {𝑥2 + 𝑦2 + 𝑧2 = 𝑎2}, has an open set with allowable para-
metrisation

𝜎(𝑢, 𝑣) = (𝑎 cos𝑢 cos 𝑣, 𝑎 cos𝑢 sin 𝑣, 𝑎 sin𝑢)
where 𝑢 ∈ (−𝜋

2
, 𝜋
2
) and 𝑣 ∈ (0, 2𝜋). This parametrises the complement of a half great circle. Here,

𝜎𝑢 = (−𝑎 sin𝑢 cos 𝑣, −𝑎 sin𝑢 sin 𝑣, 𝑎 cos𝑢); 𝜎𝑣 = (−𝑎 cos𝑢 sin 𝑣, 𝑎 cos𝑢 cos 𝑣, 0)

Hence,
𝐸 = 𝑎2; 𝐹 = 0; 𝐺 = 𝑎2 cos2 𝑢

which gives the first fundamental form as

𝑎2 d𝑢2 + 𝑎2 cos2 𝑢 d𝑣2
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Example. Consider the surface of revolution given by a curve

𝜂(𝑡) = (𝑓(𝑡), 0, 𝑔(𝑡))

rotated about the 𝑧 axis. The resulting surface has parametrisation

𝜎(𝑢, 𝑣) = (𝑓(𝑢) cos 𝑣, 𝑓(𝑢) sin 𝑣, 𝑔(𝑢))

Hence,
𝜎𝑢 = (𝑓𝑢 cos 𝑣, 𝑓𝑢 sin 𝑣, 𝑔𝑢); 𝜎𝑣 = (−𝑓 sin 𝑣, 𝑓 cos 𝑣, 0)

which gives
(𝑓2𝑢 + 𝑔2𝑢) d𝑢2 + 𝑓2 d𝑣2

Example. Consider the conewith angle arctan 𝑎 to the vertical. For 𝑢 > 0 and 𝑣 ∈ (0, 2𝜋), we define

𝜎(𝑢, 𝑣) = (𝑎𝑢 cos 𝑣, 𝑎𝑢 sin 𝑣, 𝑢)

The first fundamental form is
(1 + 𝑎2) d𝑢2 + 𝑎2𝑢2 d𝑣2

Consider cutting the cone along the line 𝑣 = 0 and flattening it into a plane sector. The circumference
of the sector is 2𝜋𝑎 and the radius is√1 + 𝑎2, hence the angle traced out by the sector is 𝜃0 =

2𝜋𝑎
√1+𝑎2

.
We can parametrise this subset of the plane by

𝜎(𝑟, 𝜃) = (√1 + 𝑎2𝑟 cos ( 𝑎𝜃
√1 + 𝑎2

),√1 + 𝑎2𝑟 sin ( 𝑎𝜃
√1 + 𝑎2

), 0)

for 𝑟 > 0 and 𝜃 ∈ (0, 2𝜋). We can then check that the first fundamental form here is

(1 + 𝑎2) d𝑟2 + 𝑟2𝑎2 d𝜃2

which matches the first fundamental form for the cone itself. Hence the cone and the plane are
locally isometric. However, the cone and plane are not globally isometric, since the two topological
spaces are not homeomorphic, so no diffeomorphism that preserves lengths can be constructed.

Lemma. Let Σ be a smooth surface in ℝ3, and let 𝑝 ∈ Σ. Suppose we have two allowable
parametrisations 𝜎∶ 𝑉 → 𝑈 and 𝜎′ ∶ 𝑉 ′ → 𝑈 for the same open neighbourhood of 𝑝. The
two parametrisations differ by a transition map 𝐹 = 𝜎′−1 ∘ 𝜎 which is a diffeomorphism of
open subsets of ℝ2. There exist first fundamental forms for both parametrisations. Then,

(𝐸 𝐹
𝐹 𝐺) = (𝐷𝐹)⊺ (𝐸

′ 𝐹′
𝐹′ 𝐺′) (𝐷𝐹)

Proof. By definition,

(𝐸 𝐹
𝐹 𝐺) = (𝜎𝑢 ⋅ 𝜎𝑢 𝜎𝑢 ⋅ 𝜎𝑣

𝜎𝑣 ⋅ 𝜎𝑢 𝜎𝑣 ⋅ 𝜎𝑣
) = (𝐷𝜎)⊺(𝐷𝜎)

Now, 𝜎 = 𝜎′ ∘ 𝐹 hence the result follows.
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4.2 Conformality
If 𝑣, 𝑤 ∈ ℝ3, we have 𝑣 ⋅ 𝑤 = |𝑣| ⋅ |𝑤| ⋅ cos 𝜃. This allows us to deduce the angle 𝜃 between two
vectors given their dot product and lengths. This can also be done when 𝑣, 𝑤 are in the tangent plane
𝑇𝑝Σ, and then we can express the angle in terms of the first fundamental form. Let 𝜎 be an allowable
parametrisation for Σ near 𝑝, such that 𝐷 𝜎|0 evaluates to 𝑣 at 𝑣0 and 𝑤 at 𝑤0.

cos 𝜃 = 𝑣 ⋅ 𝑤
|𝑣| ⋅ |𝑤| =

𝐼(𝑣0, 𝑤0)
√𝐼(𝑣0, 𝑣0)√𝐼(𝑤0, 𝑤0)

where 𝐼 denotes the first fundamental form of 𝜎 at zero.

Lemma. LetΣ be a smooth surface inℝ3, and let 𝜎∶ 𝑉 → 𝑈 be an allowable parametrisation
of Σ near 𝑝. Then 𝜎 is conformal if 𝐸 = 𝐺 and 𝐹 = 0 in the first fundamental form.

Proof. Consider curves 𝛾∶ 𝑡 ↦ (𝑢(𝑡), 𝑣(𝑡)) and ̃𝛾∶ 𝑡 ↦ (�̃�(𝑡), ̃𝑣(𝑡)) in 𝑉 , where 𝛾(0) = ̃𝛾(0) = 0 ∈ 𝑉 .
Let 𝜎 be a parametrisation 𝑉 → 𝑈 ⊆ Σ such that 𝜎(0) = 𝑝 ∈ Σ. Then the curves 𝜎 ∘ 𝛾 and 𝜎 ∘ ̃𝛾meet
at angle 𝜃 on Σ, where

cos 𝜃 =
𝐸�̇� ̇̃𝑢 + 𝐹(�̇� ̇̃𝑣 + ̇𝑣 ̇̃𝑢) + 𝐺 ̇𝑣 ̇̃𝑣

√𝐸�̇�2 + 2𝐹�̇� ̇𝑣 + 𝐺 ̇𝑣2√𝐸 ̇�̃�2 + 2𝐹 ̇�̃� ̇̃𝑣 + 𝐺 ̇̃𝑣2

In particular, if 𝜎 is conformal, suppose 𝛾(𝑡) = (𝑡, 0) and ̃𝛾(𝑡) = (0, 𝑡). Then, we have that the curves
meet at 𝜋

2
in 𝑉 , so they meet at 𝜋

2
in Σ, so we find that cos 𝜃 = 0 ⟹ 𝐹 = 0. Similarly, if 𝛾(𝑡) = (𝑡, 𝑡)

and ̃𝛾(𝑡) = (𝑡, −𝑡), we find cos 𝜃 = 0 ⟹ 𝐸 = 𝐺.
Conversely, suppose there exists a parametrisation 𝜎 such that 𝐸 = 𝐺 and 𝐹 = 0. Then, in this
parametrisation, the first fundamental form is of the form 𝜌(d𝑢2 + d𝑣2) for 𝜌 = 𝐸∶ 𝑉 → ℝ. Hence,
the first fundamental form is a pointwise rescaling of the Euclidean fundamental form d𝑢2 + d𝑣2.
Rescaling the plane does not change angles, so 𝜎 is conformal as required.

Remark. Conformality in charts is historically important for cartography. The existence of conformal
charts is closely connected to Riemann surfaces, which are topological surfaces locally modelled on
ℂ instead of ℝ2.

4.3 Area
Recall that a parallelogram spanned by vectors 𝑣, 𝑤 has area |𝑣 × 𝑤| = ⟨𝑣, 𝑣⟩ ⟨𝑤,𝑤⟩ − ⟨𝑣, 𝑤⟩2, where
× denotes the cross product. Let 𝜎∶ 𝑉 → 𝑈 ⊆ Σ be an allowable parametrisation with 𝜎(0) = 𝑝, and
consider 𝜎𝑢, 𝜎𝑣 ∈ 𝑇𝑝Σ. The square of the area of the infinitesimal parallelogram spanned by 𝜎𝑢, 𝜎𝑣 is
given by

⟨𝜎𝑢, 𝜎𝑢⟩ ⟨𝜎𝑣, 𝜎𝑣⟩ − ⟨𝜎𝑢, 𝜎𝑣⟩
2 = 𝐸𝐺 − 𝐹2

Definition. Let Σ be a smooth surface in ℝ3, and 𝜎∶ 𝑉 → 𝑈 ⊆ Σ an allowable parametrisa-
tion. Then,

area(𝑈) = ∫
𝑉
√𝐸𝐺 − 𝐹2 d𝑢 d𝑣
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Remark. This is independent of parametrisation. Indeed, suppose 𝜎∶ 𝑉 → 𝑈 and �̃�∶ 𝑉 → 𝑈 are
allowable. Then �̃� = 𝜎 ∘ 𝜑 for some transition map 𝜑∶ 𝑉 → 𝑉 . We know then that

(𝐸 𝐹
𝐹 𝐺) = (𝐷�̃�)⊺(𝐷�̃�) = (𝐷𝜑)⊺ (𝐸 𝐹

𝐹 𝐺) (𝐷𝜑)

Hence,
√𝐸𝐺 − 𝐹2 = |det(𝐷𝜑)|√𝐸𝐺 − 𝐹2

The usual change of variables formula for integration, combinedwith the fact that𝜑 is a diffeomorph-
ism, gives

∫
𝑉
√𝐸𝐺 − 𝐹2 d𝑢 d𝑣 = ∫

𝑉
√𝐸𝐺 − 𝐹2 d𝑢 d𝑣

Note, we can compute the area of an open set𝑈 ⊆ Σ, not necessarily lying in a single parametrisation,
by covering the set by a finite amount of open subsets which lie in single charts. For instance, if Σ is
compact, we can compute the area of Σ itself.
Example. Consider the graph Σ = {(𝑢, 𝑣, 𝑓(𝑢, 𝑣))∶ (𝑢, 𝑣) ∈ ℝ2}, where 𝑓∶ ℝ2 → ℝ is a smooth
function. This has a global parametrisation 𝜎(𝑢, 𝑣) = (𝑢, 𝑣, 𝑓(𝑢, 𝑣)). Here, 𝜎𝑢 = (1, 0, 𝑓𝑢) and 𝜎𝑣 =
(0, 1, 𝑓𝑣), hence

√𝐸𝐺 − 𝐹2 = √1 + 𝑓2𝑢 + 𝑓2𝑣
Let 𝑈𝑅 ⊆ Σ be the part of the graph lying inside the disc 𝐵(0, 𝑅) ⊆ ℝ2. Then

area(𝑈𝑅) = ∫
𝐵(0,𝑅)

√1+ 𝑓2𝑢 + 𝑓2𝑣 d𝑢 d𝑣 ≥ 𝜋𝑅2

with equality exactly when 𝑓𝑢 = 𝑓𝑣 = 0, so 𝑓 is constant and 𝑈𝑅 is contained inside a plane perpen-
dicular to the 𝑧 axis. Hence, the projection from Σ to ℝ2

𝑥𝑦 is not area-preserving, unless Σ is a plane
perpendicular to the 𝑧 axis.
Example. Consider the sphere enclosed exactly by a cylinder. The cylindrically radial projection
from the sphere to the cylinder is area-preserving. This is explored further in the example sheets.

4.4 Second fundamental form
Let 𝜎∶ 𝑉 → 𝑈 ⊆ Σ be allowable. By using Taylor’s theorem, we can write

𝜎(𝑢 + ℎ, 𝑣 + ℓ) = 𝜎(𝑢, 𝑣)
+ ℎ𝜎𝑢(𝑢, 𝑣) + ℓ𝜎𝑣(𝑢, 𝑣)

+ 1
2(ℎ

2𝜎𝑢𝑢(𝑢, 𝑣) + 2ℎℓ𝜎𝑢𝑣(𝑢, 𝑣) + ℓ2𝜎𝑣𝑣(𝑢, 𝑣))
+ 𝑂(ℎ3, ℓ3)

where ℎ, ℓ are small, and (𝑢 + ℎ, 𝑣 + ℓ) ∈ 𝑉 . Recall that if 𝑝 = 𝜎(𝑢, 𝑣), we have 𝑇𝑝Σ = ⟨{𝜎𝑢, 𝜎𝑣}⟩.
Hence, the orthogonal distance from 𝜎(𝑢 + ℎ, 𝑣 + ℓ) to the affine tangent plane 𝑇𝑝Σ + 𝑝 is given by
projection to the normal direction.

⟨𝑛, 𝜎(𝑢 + ℎ, 𝑣 + ℓ) − 𝜎(𝑢, 𝑣)⟩ = 1
2(⟨𝑛, 𝜎𝑢𝑢⟩ ℎ

2 + 2 ⟨𝑛, 𝜎𝑢𝑣⟩ ℎℓ + ⟨𝑛, 𝜎𝑣𝑣⟩ ℓ2) + 𝑂(ℎ3, ℓ3)
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Definition. The second fundamental form of Σ in the allowable parametrisation 𝜎 is the
quadratic form

𝐿 d𝑢2 + 2𝑀 d𝑢 d𝑣 + 𝑁 d𝑣2

where
𝐿 = ⟨𝑛, 𝜎𝑢𝑢⟩ ; 𝑀 = ⟨𝑛, 𝜎𝑢𝑣⟩ ; 𝑁 = ⟨𝑛, 𝜎𝑣𝑣⟩

and
𝑛 = 𝜎𝑢 × 𝜎𝑣

‖𝜎𝑢 × 𝜎𝑣‖
We can write this as the matrix

( 𝐿 𝑀
𝑀 𝑁)

which defined a quadratic form on 𝑇𝑝Σ which varies smoothly in 𝑝.

Lemma. Let 𝑉 be connected and 𝜎∶ 𝑉 → 𝑈 ⊆ Σ be an allowable parametrisation such that
the second fundamental form vanishes identically with respect to 𝜎. Then 𝑈 lies in an affine
plane.

Remark. The first fundamental form is a non-degenerate symmetric bilinear form on 𝑇𝑝Σ, whereas
the second fundamental form may be degenerate.

Proof. By definition,
⟨𝑛, 𝜎𝑢⟩ = 0 = ⟨𝑛, 𝜎𝑣⟩

Hence, by differentiating, we find

0 = ⟨𝑛𝑢, 𝜎𝑢⟩ + ⟨𝑛, 𝜎𝑢𝑢⟩ = ⟨𝑛𝑣, 𝜎𝑣⟩ + ⟨𝑛, 𝜎𝑣𝑣⟩ = ⟨𝑛𝑣, 𝜎𝑢⟩ + ⟨𝑛, 𝜎𝑢𝑣⟩

Some of these terms appear in the definition of the second fundamental form:

𝐿 = ⟨𝑛, 𝜎𝑢𝑢⟩ = − ⟨𝑛𝑢, 𝜎𝑢⟩
𝑀 = ⟨𝑛, 𝜎𝑢𝑣⟩ = − ⟨𝑛𝑣, 𝜎𝑢⟩ = − ⟨𝑛𝑢, 𝜎𝑣⟩
𝑁 = ⟨𝑛, 𝜎𝑣𝑣⟩ = − ⟨𝑛𝑣, 𝜎𝑣⟩

If the second fundamental form vanishes, then 𝑛𝑢 is orthogonal to 𝜎𝑢, 𝜎𝑣, and 𝑛 itself. Since 𝜎𝑢, 𝜎𝑣, 𝑛
form a basis for ℝ3, we have 𝑛𝑢 = 0. Similarly, 𝑛𝑣 = 0, hence 𝑛 is constant by the mean value
theorem.

Remark. The first fundamental form in parametrisation𝜎 can bewritten (𝐷𝜎)⊺(𝐷𝜎). We can similarly
write the second fundamental form as

−(𝐷𝑛)⊺(𝐷𝜎) = ( 𝐿 𝑀
𝑀 𝑁) = −(𝑛𝑢 ⋅ 𝜎𝑢 𝑛𝑢 ⋅ 𝜎𝑣

𝑛𝑣 ⋅ 𝜎𝑢 𝑛𝑣 ⋅ 𝜎𝑣
)

Hence, if 𝜎∶ 𝑉 → Σ and �̃�∶ 𝑉 → Σ are allowable parametrisations for an open set 𝑈 ⊆ Σ with
transition map 𝜑∶ 𝑉 → 𝑉 given by 𝜑 = 𝜎−1 ∘ �̃�, we can use the above expression to find

( �̃� �̃�
�̃� 𝑁) = ±(𝐷𝜑)⊺ ( 𝐿 𝑀

𝑀 𝑁) (𝐷𝜑)
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The change in sign depends on whether the transition map preserves or reverses orientation. If the
normal vectors agree, there is no negative sign.

𝑛𝜎∘𝜑
|||(𝑢,𝑣)

= ± 𝑛𝜎
|||𝜑(𝑢,𝑣)

for (�̃�, ̃𝑣) ∈ 𝑉 . In particular, if det(𝐷𝜑) < 0, we arrive at a negative sign. If we assume that 𝑉, 𝑉 are
connected, the determinant det(𝐷𝜑) does not change sign.
Example. Consider the cylinder with allowable parametrisation

𝜎(𝑢, 𝑣) = (𝑎 cos𝑢, 𝑎 sin𝑢, 𝑣)

where 𝑢 ∈ (0, 2𝜋), 𝑣 ∈ ℝ. Note that 𝜎𝑢𝑣 = 𝜎𝑣𝑣 = 0, hence𝑀 = 𝑁 = 0. We can show that the second
fundamental form is given by

(−𝑎 0
0 0) ; −𝑎 d𝑢2

4.5 Gauss maps

Definition. Let Σ be a smooth oriented surface inℝ3. TheGauss map 𝑛∶ Σ → 𝕊2 is the map
𝑝 ↦ 𝑛(𝑝), where the normal vector is normalised and hence lies in the unit sphere.

Lemma. The Gauss map is smooth.

Proof. Since smoothness is a local property, it suffices to check the smoothness of the map on an
arbitrary parametrised part of Σ. Let 𝜎∶ 𝑉 → 𝑈 ⊆ Σ be allowable and compatible with a chosen
orientation. Then

𝑛(𝑝) = 𝜎𝑢 × 𝜎𝑣
‖𝜎𝑢 × 𝜎𝑣‖

Since 𝜎 is allowable, the denominator is non-vanishing. Hence, 𝑛(𝑝) is smooth as required.

Remark. If Σ = 𝐹−1(0) for some function 𝐹 ∶ ℝ3 → ℝwith nonzero derivative𝐷𝐹 at all points 𝑥 ∈ Σ
(which was required for Σ to be a smooth surface in ℝ3), then we can explicitly calculate the Gauss
map to be

𝑛(𝑝) = ∇𝐹
‖∇𝐹‖

Note that,
𝑇𝑝Σ = 𝑇𝑛(𝑝)𝑆2 = (𝑛(𝑝))⟂

since the two planes are orthogonal to the same vector. More concretely, if 𝑣 ∈ 𝑇𝑝Σ is 𝛾′(0) where
𝛾∶ (−𝜀, 𝜀) → Σ, 𝛾(0) = 𝑝 for a smooth curve 𝛾, we can apply the Gauss map to 𝛾 and find

𝑛 ∘ 𝛾∶ (−𝜀, 𝜀) → 𝑆2; (𝑛 ∘ 𝛾)(0) = 𝑛(𝑝)

Then, by the chain rule,
𝐷 𝑛|||𝑝

(𝑣) = (𝑛 ∘ 𝛾)′(0) ∈ 𝑇𝑛(𝑝)𝑆2 = 𝑇𝑝Σ
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Thus, the derivative of theGaussmap is𝐷 𝑛|𝑝 ∶ 𝑇𝑝Σ → 𝑇𝑝Σ. This can be viewed as an endomorphism
of a fixed (with respect to parametrisation choice) two-dimensional subspace of ℝ3.

To summarise, let Σ be an oriented smooth surface in ℝ3. Then,

(i) The first fundamental form is a symmetric bilinear form ⟨ ⋅ , ⋅ ⟩ = I𝑝 ∶ 𝑇𝑝Σ × 𝑇𝑝Σ → ℝ, which
is the restriction of the Euclidean inner product to this space 𝑇𝑝Σ. We can write I𝑝(𝑣, 𝑤), where
𝑣, 𝑤 ∈ 𝑇𝑝Σ.

(ii) The second fundamental form is also a symmetric bilinear form II𝑝 ∶ 𝑇𝑝Σ × 𝑇𝑝Σ → ℝ, given by

II𝑝(𝑣, 𝑤) = I𝑝 (−𝐷 𝑛|||𝑝
(𝑣), 𝑤)

where 𝑛 is the Gauss map.
If we choose an allowable parametrisation (which for the second fundamental formmust be correctly
oriented) 𝜎∶ 𝑉 → 𝑈 ⊆ Σ near 𝑝 ∈ Σ, and if

𝐷 𝜎|||0
( ̂𝑣) = 𝑣; 𝐷 𝜎|||0

(�̂�) = 𝑤; 𝜎(0) = 𝑝

Then,
I𝑝(𝑣, 𝑤) = ̂𝑣⊺ (𝐸 𝐹

𝐹 𝐺) �̂�; II𝑝(𝑣, 𝑤) = ̂𝑣⊺ ( 𝐿 𝑀
𝑀 𝑁) �̂�

where 𝐸, 𝐹, 𝐺, 𝐿,𝑀,𝑁 depend on the choice of 𝜎. Note that the functions I𝑝 and II𝑝 are independent
of 𝜎.

Lemma. The derivative of the Gauss map is self-adjoint. More precisely, viewing the map
𝐷 𝑛|𝑝 ∶ 𝑇𝑝Σ → 𝑇𝑝Σ as an endomorphism over the inner product space with the first funda-
mental form, this linear map satisfies

I𝑝 (𝐷 𝑛|||𝑝
(𝑣), 𝑤) = I𝑝 (𝑣, 𝐷 𝑛|||𝑝

(𝑤))

for all 𝑣, 𝑤 ∈ 𝑇𝑝Σ.

Proof. Fromexpressions for local parametrisations, we can show that I𝑝 and II𝑝 are symmetric. Hence,

I𝑝(𝐷 𝑛|||𝑝
(𝑣), 𝑤) = − II𝑝(𝑣, 𝑤) = − II𝑝(𝑤, 𝑣) = I𝑝(𝐷 𝑛|||𝑝

(𝑤), 𝑣) = I𝑝(𝑣, 𝐷 𝑛|||𝑝
(𝑤))

Remark. The fundamental theorem of surfaces inℝ3 states that a smooth oriented connected surface
in ℝ3 is determined completely, up to rigid motion, by the two fundamental forms.
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4.6 Gauss curvature

Definition. Let Σ be a smooth surface in ℝ3. The Gauss curvature 𝜅∶ Σ → ℝ of Σ is the
function defined by

𝜅(𝑝) = det(𝐷 𝑛|||𝑝
)

Remark. This is always well-defined, even if Σ is not oriented. This is because Σ is always locally
orientable, and the two normals differ by sign. In two dimensions, det(−𝐴) = det(𝐴), so the determ-
inant is invariant.

We can compute 𝜅 directly. Let Σ be a smooth surface in ℝ3, and 𝜎 an allowable parametrisation for
an open neighbourhood of a point 𝑝. Recall that

I𝑝 ∶ 𝑇𝑝Σ → 𝑇𝑝Σ; (𝑣, 𝑤) ↦ ⟨𝑣, 𝑤⟩ ; II𝑝 ∶ 𝑇𝑝Σ → 𝑇𝑝Σ; (𝑣, 𝑤) ↦ I𝑝(− 𝐷𝑛|||𝑝
(𝑣), 𝑤)

and 𝐷𝑛|𝑝 ∶ 𝑇𝑝Σ → 𝑇𝑝Σ. The choice of parametrisation 𝜎 for an open neighbourhood𝑈 of 𝑝 provides
a preferred basis {𝜎𝑢, 𝜎𝑣} for 𝑇𝑝Σ. We can therefore write the fundamental forms as matrices with
respect to this basis. Let 𝐴 = I𝑝, 𝐵 = II𝑝, 𝕊 = 𝐷𝑛|𝑝 in this basis. In matrix form, we can write
II𝑝 = I𝑝(− 𝐷𝑛|𝑝 (𝑣), 𝑤) as

𝐵 = −𝕊⊺𝐴 ⟹ 𝜅(𝑝) = det(𝕊) = det(−𝐴−1𝐵) = 𝐿𝑁 −𝑀2

𝐸𝐺 − 𝐹2

If 𝜎, �̃� are allowable and 𝜑 = 𝜎−1 ∘ 𝜎 is a transition map, then

𝐴 = (𝐷𝜑)⊺𝐴(𝐷𝜑); 𝐵 = ±(𝐷𝜑)⊺𝐵(𝐷𝜑)

Since the sign vanishes under taking determinants, 𝜅 is intrinsic and does not depend on the choice
of parametrisation.

Example. For a cylinder {𝑥2 + 𝑦2 = 1} the Gauss map 𝑛∶ Σ → 𝑆2 has image which lies in the
equator. Its derivative 𝐷𝑛|𝑝 ∶ 𝑇𝑝Σ → 𝑇𝑝Σ has one-dimensional image, since any 𝛾∶ (−𝜀, 𝜀) → Σ
has 𝑛 ∘ 𝛾 ⊆ 𝑆1. Hence its Gauss curvature is zero.

Definition. A smooth surface in ℝ3 with vanishing Gauss curvature everywhere is flat.

Remark. If 𝜎∶ 𝑉 → 𝑈 is allowable, and 𝑛𝜎 is defined to be 𝑛 ∘ 𝜎∶ 𝑉 → 𝑆2, then

𝐷𝑛𝜎
|||0
∶ 𝜎𝑢 ↦ (𝑛𝜎)𝑢; 𝜎𝑣 ↦ (𝑛𝜎)𝑣

In particular, 𝜅(𝑝) = 𝜅(𝜎(0)) vanishes if and only if (𝑛𝜎)𝑢 × (𝑛𝜎)𝑣 = 0. Usually, we will write 𝑛 to
denote 𝑛𝜎. In this case, the condition for flatness is that 𝑛𝑢 × 𝑛𝑣 = 0.
Example. If Σ is the graph of a smooth function 𝑓, then on the example sheets we show that

𝜅 = 𝑓𝑢𝑢𝑓𝑣𝑣 − 𝑓2𝑢𝑣
(1 + 𝑓2𝑢 + 𝑓2𝑣 )2
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Hence, the curvature depends on the derivative and the Hessian of 𝑓. For instance, let 𝑓(𝑢, 𝑣) =
√𝑟2 − 𝑢2 − 𝑣2. Here, the graph is a piece of a sphere of radius 𝑟. We can find

𝑓𝑢𝑢
|||0
= 𝑓𝑣𝑣

|||0
= −1

𝑟 ; 𝑓𝑢𝑣
|||0
= 0 ⟹ 𝜅(0, 0, 𝑟) = 1

𝑟2

Since𝑂(3) acts transitively on 𝑆2, and the fundamental forms are preserved by such global isometries,
𝜅 = 1

𝑟2
everywhere on the sphere of radius 𝑟.

Example. Let Σ be the smooth surface given by {𝑧 = 𝑥2 + 𝑦2}. We claim that, for the inward facing
choice of orientation, the image of the Gauss map is the open northern hemisphere. Note that Σ is
invariant under rotations about the 𝑧 axis. Also, we can show that if 𝑅 is a rotation, 𝑛 ∘ 𝑅 = 𝑅 ∘ 𝑛.
Therefore, it suffices to consider an arbitrary point with 𝑦 = 0.
Here, Σ = 𝐹−1(0) for the function 𝐹(𝑥, 𝑦, 𝑧) = 𝑧 − 𝑥2 − 𝑦2, which has nonvanishing derivative at the
points 𝑝 ∈ Σ. Hence, at 𝑝 = (𝑥, 0, 𝑥2), we have

𝑛(𝑝) = ∇𝐹
‖∇𝐹‖ =

(−2𝑥, 0, 1)
√1 + 4𝑥2

We can check explicitly that this map has image which an arc lying in the open northern hemisphere.

4.7 Elliptic, hyperbolic, and parabolic points

Definition. Let Σ be a smooth surface in ℝ3 and 𝑝 ∈ Σ. We say that 𝑝 is
(i) elliptic if 𝜅(𝑝) > 0;
(ii) hyperbolic if 𝜅(𝑝) < 0;
(iii) parabolic if 𝜅(𝑝) = 0.

Lemma. In a sufficiently small neighbourhood of an elliptic point 𝑝, Σ lies entirely on one
side of 𝑝 + 𝑇𝑝Σ. If 𝑝 is hyperbolic, Σ lies on both sides of 𝑝 + 𝑇𝑝Σ.

Proof. Let 𝜎 be a local parametrisation near 𝑝. Here,

𝜅 = 𝐿𝑁 −𝑀2

𝐸𝐺 − 𝐹2
The denominator is always positive, since it is the determinant of a positive definite symmetric bilin-
ear form I𝑝. Hence, the sign of 𝜅 depends on the sign of 𝐿𝑁 − 𝑀2. If 𝑤 = ℎ𝜎𝑢 + ℓ𝜎𝑣 ∈ 𝑇𝑝Σ, then
1
2
II𝑝(𝑤,𝑤) measures the signed distance from 𝜎(ℎ, 𝑙) to 𝑝 + 𝑇𝑝Σ. If 𝑝 is elliptic, then II𝑝 has eigen-

values of the same sign, so it is either positive or negative definite at 𝑝. Since II𝑝 varies smoothly in
𝑝, it remains positive or negative definite in a small neighbourhood of 𝑝. Hence, in such a neigh-
bourhood, the signed distance has the same sign as required. Conversely, if 𝑝 is hyperbolic, II𝑝(𝑤,𝑤)
takes both signs in a neighbourhood of 𝑝.

Remark. We cannot conclude anything about parabolic points a priori. For instance, the cylinder
is flat (all points are parabolic), and the surface lies on one side of the tangent plane at every point.
Consider also themonkey saddle defined by

𝜎(𝑢, 𝑣) = (𝑢, 𝑣, 𝑢3 − 3𝑣2𝑢)
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which has a parabolic point at the origin, but Σ lies on both sides of the tangent plane in every open
neighbourhood of the origin. At 𝑝 = 𝜎(0, 0), the Gauss curvature vanishes, but the surface lies locally
on both sides of the tangent plane.

Proposition. Let Σ be a compact smooth surface in ℝ3. Then Σ has an elliptic point.

Proof. Since Σ is compact, it is closed and bounded as a subset ofℝ3. Hence, for 𝑅′ sufficiently large,
Σ lies entirely within 𝐵(0, 𝑅′). Let 𝑅 be the minimal such 𝑅′. Up to a global isometry of ℝ3, there
exists a point 𝑝 = (0, 0, 𝑅) ∈ Σ on the sphere 𝑆2(𝑅) of radius 𝑅. Here, 𝑇𝑝Σ = 𝑇𝑝𝑆2. Hence, locally
near 𝑝, we can view Σ as the graph of a smooth function 𝑓∶ 𝑉 → ℝ3 on the 𝑥, 𝑦 coordinates with
the property that 𝑓−√𝑅2 − 𝑢2 − 𝑣2 ≤ 0. This expresses the fact that Σ lies underneath the sphere of
radius 𝑅.
We can now consider the Taylor series of 𝑓. Note that (0, 0) is a maximum point of 𝑓, hence 𝑓𝑢 =
𝑓𝑣 = 0 at 0. Thus, for sufficiently small 𝑢, 𝑣,

1
2(𝑓𝑢𝑢𝑢

2 + 2𝑓𝑢𝑣𝑢𝑣 + 𝑓𝑣𝑣𝑣2) +
1
2𝑅(𝑢

2 + 𝑣2) ≤ 0

Hence, the second fundamental form is locally negative definite near (0, 0). Hence, 𝜅(𝑝) > 0, so 𝑝 is
elliptic as required. In particular, the curvature at this point is greater than that of the sphere.

Theorem. Let Σ be a smooth surface in ℝ3, and let 𝑝 ∈ Σ such that 𝜅(𝑝) ≠ 0. Let 𝑈 be an
open neighbourhood of 𝑝, and a decreasing sequence 𝐴𝑖 ⊆ 𝑈 of neighbourhoods that ‘shrink
to 𝑝’, in the sense that for all 𝜀 > 0, 𝐴𝑖 ⊆ 𝐵(𝑝, 𝜀) for sufficiently large 𝑖. Then,

|𝜅(𝑝)| = lim
𝑖→∞

area𝑆2(𝑛(𝐴𝑖))
areaΣ(𝐴𝑖)

In other words, the Gauss curvature is an infinitesimal measure of howmuch the Gauss map
𝑛 distorts area.

Remark. Around hyperbolic points, the signed area of 𝑛(𝐴𝑖) is reversed, since curves 𝛾 reverse direc-
tion under 𝑛. We can alternatively define the signed area of 𝑛(𝐴𝑖) to be the area of 𝑛(𝐴𝑖) if 𝜅 > 0 and
the negation of this area if 𝜅 < 0. The above theorem holds when 𝜅 = 0, but this will not be proven.

Proof. Let 𝜎 be an allowable parametrisation near 𝑝 ∈ Σ. Using 𝜎, we can define the open sets
𝜎−1(𝐴𝑖) = 𝑉 𝑖 ⊂ 𝑉 . Since the 𝐴𝑖 shrink to 𝑝, we have that⋂𝑉 𝑖 = {(0, 0)}. We have

areaΣ(𝐴𝑖) = ∫
𝑉1
√𝐸𝐺 − 𝐹2 d𝑢 d𝑣 = ∫

𝑉𝑖
‖𝜎𝑢 × 𝜎𝑣‖ d𝑢 d𝑣

Recall from the chain rule applied to 𝑛 ∘ 𝛾 that

𝐷𝑛|||(𝑢,𝑣)
(𝜎𝑢) = 𝑛𝑢; 𝐷𝑛|||(𝑢,𝑣)

(𝜎𝑣) = 𝑛𝑣

Since 𝜅(𝑝) = 𝜅(𝜎(0, 0)) ≠ 0, 𝑛 ∘ 𝜎∶ 𝑉 → 𝑆2 has derivative of rank 2. This defines an allowable
parametrisation for an open neighbourhood of 𝑛((0, 0)) by the inverse function theorem. Therefore,

area𝑆2(𝑛(𝐴𝑖)) = ∫
𝑉𝑖
‖𝑛𝑢 × 𝑛𝑣‖ d𝑢 d𝑣
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for sufficiently large 𝑖 such that 𝜎−1𝐴𝑖 = 𝑉 𝑖 lies in the open neighbourhood of (0, 0) where 𝑛 ∘ 𝜎 is a
diffeomorphism.

∫
𝑉𝑖
‖𝑛𝑢 × 𝑛𝑣‖ d𝑢 d𝑣 = ∫

𝑉𝑖
‖𝐷𝑛(𝜎𝑢) × 𝐷𝑛(𝜎𝑣)‖ d𝑢 d𝑣

= ∫
𝑉𝑖
|det(𝐷𝑛)| ⋅ ‖𝜎𝑢 × 𝜎𝑣‖ d𝑢 d𝑣

= ∫
𝑉𝑖
|𝜅(𝑢, 𝑣)| ⋅ ‖𝜎𝑢 × 𝜎𝑣‖ d𝑢 d𝑣

As 𝜅 is continuous, given 𝜀 > 0 there exists 𝛿 > 0 such that |𝜅(𝑢, 𝑣) − 𝜅(0, 0)| < 𝜀 for all (𝑢, 𝑣) ∈
𝐵((0, 0), 𝛿). In particular, for sufficiently large 𝑖, we have

|𝜅(𝑢, 𝑣)| ∈ (|𝜅(𝑝)| − 𝜀, |𝜅(𝑝)| + 𝜀)

Hence,

(|𝜅(𝑝)| − 𝜀)∫
𝑉𝑖
‖𝜎𝑢 × 𝜎𝑣‖ d𝑢 d𝑣 ≤ ∫

𝑉𝑖
|𝜅(𝑢, 𝑣)| ⋅ ‖𝜎𝑢 × 𝜎𝑣‖ d𝑢 d𝑣

≤ (|𝜅(𝑝)| + 𝜀)∫
𝑉𝑖
‖𝜎𝑢 × 𝜎𝑣‖ d𝑢 d𝑣

In other words,
|𝜅(𝑝)| − 𝜀 ≤ area𝑆2(𝑛(𝐴𝑖))

areaΣ(𝐴𝑖)
≤ |𝜅(𝑝)| + 𝜀

Letting 𝑖 → ∞ gives the result as required.

Theorem (theorema egregium). The Gauss curvature of a smooth surface in ℝ3 is isometry
invariant. In other words, if 𝑓∶ Σ1 → Σ2 is a diffeomorphism of surfaces in ℝ3 which is an
isometry, then 𝜅(𝑝) = 𝜅(𝑓(𝑝)) for all 𝑝.

Remark. Isometries rely on only the first fundamental form, but Gauss curvature is defined using
both fundamental forms. We can do a direct proof by simply differentiating the formula and rearran-
ging until the result follows. This proof is given in Part II.

Alternatively, we can consider a different question: are some allowable parametrisations of a smooth
surface in ℝ3 ‘better’ than others in some way? If we have a parametrisation 𝜎∶ 𝑉 → 𝑈 ⊆ Σ, this
defines certain distinguished curves, which are the images of 𝜎(𝑡, 0) and 𝜎(0, 𝑡). In this sense, looking
for a ‘best’ parametrisation is equivalent to looking for ‘best’ distinguished curves near a point. This
leads to the study of geodesics. We will later show that every smooth surface in ℝ3 admits local
parametrisations such that the first fundamental form has form d𝑢2+𝐺 d𝑣2, so 𝐸 = 1 and 𝐹 = 0. We
will also see (on an example sheet) that if such a local parametrisation exists, then 𝜅 can be expressed
as a function just of 𝐺. This allows us to approach the proof of the theorema egregium from a more
conceptual way, since we have expressed 𝜅 in terms of the first fundamental form alone.
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Theorem (Gauss–Bonnet theorem). If Σ is a compact smooth surface in ℝ3, then

∫
Σ
𝜅 d𝐴Σ = 2𝜋𝜒(Σ)

5 Geodesics
5.1 Definitions
Recall that we defined, for a smooth curve 𝛾∶ [𝑎, 𝑏] → ℝ3,

length(𝛾) = ∫
𝑏

𝑎
‖𝛾′(𝑡)‖ d𝑡

Definition. The energy of 𝛾 is given by

𝐸(𝛾) = ∫
𝑏

𝑎
‖𝛾′(𝑡)‖2 d𝑡

Definition. Let 𝛾∶ [𝑎, 𝑏] → Σ, where Σ is a smooth surface inℝ3. A one-parameter variation
(with fixed endpoints) of 𝛾 is a smooth map Γ∶ (−𝜀, 𝜀) × [𝑎, 𝑏] → Σ, such that if 𝛾𝑠 = Γ(𝑠, ⋅ ),
then 𝛾0(𝑡) = 𝛾(𝑡), and 𝛾𝑠(𝑎) and 𝛾𝑠(𝑏) are independent of 𝑠.

Definition. A smooth curve 𝛾∶ [𝑎, 𝑏] → Σ is a geodesic if, for every variation (𝛾𝑠) of 𝛾 with
fixed endpoints as above, we have d

d𝑠
||𝑠=0 𝐸(𝛾𝑠) = 0. Alternatively, 𝛾 is a critical point of the

energy functional on curves from 𝛾(𝑎) to 𝛾(𝑏).

5.2 The geodesic equations
Let 𝛾 have image contained within the image of an allowable parametrisation 𝜎∶ 𝑉 → 𝑈 . Then, for
sufficiently small 𝑠, we can write 𝛾𝑠(𝑡) = 𝜎(𝑢(𝑠, 𝑡), 𝑣(𝑠, 𝑡)). Suppose that the first fundamental form,
with respect to 𝜎, is

𝐸 d𝑢2 + 2𝐹 d𝑢 d𝑣 + 𝐺 d𝑣2

Let
𝑅 = 𝐸�̇�2 + 2𝐹�̇� ̇𝑣 + 𝐺 ̇𝑣2

By definition,

𝐸(𝛾𝑠) = ∫
𝑏

𝑎
𝑅 d𝑡
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where 𝑅 depends on 𝑠. Hence,

𝜕𝑅
𝜕𝑠 = (𝐸𝑢�̇�2 + 2𝐹𝑢 ̇𝑢 ̇𝑣 + 𝐺𝑢 ̇𝑣2)𝜕𝑢𝜕𝑠 + (𝐸𝑣 ̇𝑣2 + 2𝐹𝑣�̇� ̇𝑣 + 𝐺𝑣 ̇𝑣2)𝜕𝑣𝜕𝑠

+ 2(𝐸�̇� + 𝐹 ̇𝑣)𝜕�̇�𝜕𝑠 + 2(𝐹�̇� + 𝐺 ̇𝑣)𝜕 ̇𝑣
𝜕𝑠

This gives
d
d𝑠𝐸(𝛾𝑠) = ∫

𝑏

𝑎

𝜕𝑅
𝜕𝑠 d𝑡

We can integrate by parts. Note that 𝜕𝑢
𝜕𝑠
and 𝜕𝑣

𝜕𝑠
vanish at 𝑎, 𝑏. Hence,

d
d𝑠
|||𝑠=0

𝐸(𝛾𝑠) = ∫
𝑏

𝑎
(𝐴𝜕𝑢𝜕𝑠 + 𝐵𝜕𝑣𝜕𝑠 ) d𝑡

where

𝐴 = 𝐸𝑢�̇�2 + 2𝐹𝑢 ̇𝑢 ̇𝑣 + 𝐺𝑢 ̇𝑣2 − 2 𝜕𝜕𝑡 (𝐸�̇� + 𝐹 ̇𝑣)

𝐵 = 𝐸𝑣�̇�2 + 2𝐹𝑣�̇� ̇𝑣 + 𝐺𝑣 ̇𝑣2 − 2 𝜕𝜕𝑡 (𝐹�̇� + 𝐺 ̇𝑣)

Corollary. A smooth curve 𝛾∶ [𝑎, 𝑏] → Σ with image in Im𝜎 is a geodesic if and only if it
satisfies the geodesic equations:

d
d𝑡 (𝐸�̇� + 𝐹 ̇𝑣) = 1

2(𝐸𝑢 ̇𝑢2 + 2𝐹𝑢�̇� ̇𝑣 + 𝐺𝑢 ̇𝑣2)
d
d𝑡 (𝐹�̇� + 𝐺 ̇𝑣) = 1

2(𝐸𝑣 ̇𝑢2 + 2𝐹𝑣 ̇𝑢 ̇𝑣 + 𝐺𝑣 ̇𝑣2)

Note that these equations are evaluated at 𝑠 = 0, so no choice of variation is required.

Remark. Solving a differential equation is a local procedure. The original definition of the geodesic
seems to be a global property. However, we can always consider a sub-curve of 𝛾 to also be a geodesic,
since its variations are variations of 𝛾. So the definition can be thought of as local.
Energy is sensitive to reparametrisation. If 𝑓, 𝑔∶ [𝑎, 𝑏] → ℝ are smooth, the Cauchy–Schwarz in-
equality gives that

(∫
𝑏

𝑎
𝑓𝑔 d𝑡)

2

≤ ∫
𝑏

𝑎
𝑓2 d𝑡 ⋅ ∫

𝑏

𝑎
𝑔2 d𝑡

Let us apply this to 𝑓 = √𝑅, 𝑔 = 1 to find

length(𝛾)2 ≤ 𝐸(𝛾)(𝑏 − 𝑎)

Since equality holds only when the two functions are proportional, we must have that ‖𝛾′(𝑡)‖ is con-
stant for the equality to hold. In other words, 𝛾must be parametrised proportional to arc length.
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Corollary. If 𝛾has constant speed and locallyminimises length, then it is a geodesic. Further,
if 𝛾 globally minimises energy, then it must globally minimise length, and is parametrised
with constant speed.

Remark. Wewould like geodesics to be a local property, but not necessarily global lengthminimisers.
For example, all arcs of great circles will be shown to be geodesics, even if large arcs are not global
length minimisers between fixed endpoints.

5.3 Geodesics on the plane
The plane ℝ2 has parametrisation 𝜎(𝑢, 𝑣) = (𝑢, 𝑣, 0) and first fundamental form d𝑢2 + d𝑣2. The
geodesic equations here are

�̈� = 0; ̈𝑣 = 0
In particular, the geodesics on the plane are given by

𝑢(𝑡) = 𝛼𝑡 + 𝛽; 𝑣(𝑡) = 𝛾𝑡 + 𝛿

This is a straight line, parametrised at constant speed.

5.4 Geodesics on the sphere
Consider the unit sphere with parametrisation

𝜎(𝑢, 𝑣) = (cos𝑢 cos 𝑣, cos𝑢 sin 𝑣, sin𝑢); 𝑢 ∈ (−𝜋2 ); 𝑣 ∈ (0, 2𝜋)

This has first fundamental form

d𝑢2 + cos2 𝑢 d𝑣2 ⟹ 𝐸 = 1; 𝐹 = 0; 𝐺 = cos2 𝑢

The geodesic equations give

d
d𝑡 ( ̇𝑢) = 1

22 cos𝑢 sin𝑢 ̇𝑣2; d
d𝑡 (cos

2 𝑢 ̇𝑣) = 0

This gives
�̈� + sin𝑢 cos𝑢 ̇𝑣2 = 0; ̈𝑣 − 2 tan𝑢�̇� ̇𝑣 = 0

Since geodesics are parametrised at constant speed, we can assume that it is parametrised at unit
speed without loss of generality.

‖𝛾′(𝑡)‖ = 1 ⟹ �̇� + cos2 𝑢 ̇𝑣2 = 1

Hence,
̈𝑣
̇𝑣 = 2 tan𝑢�̇� ⟹ ln ̇𝑣 = −2 ln cos𝑢 + constant ⟹ ̇𝑣 = 𝐶

cos2 𝑢
Substituting into the unit speed equation,

̇𝑢2 = 1 − 𝐶2

cos2 𝑢 ⟹ �̇� =√
cos2 𝑢 − 𝐶2

cos2 𝑢
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Then,
̇𝑣
̇𝑢 = d𝑣

d𝑢 = 𝐶
cos𝑢√cos2 𝑢 − 𝐶2

Hence,
𝑣 = ∫ d𝑣

d𝑢 d𝑢 = ∫ 𝐶 sec2 𝑢
√1 − 𝐶2𝑠𝑒𝑐2𝑢

d𝑢

Using the substitution 𝑤 = 𝐶 tan𝑢
√1−𝐶2

, we find

𝑣 = ∫ 𝑤
1 − 𝑤2 d𝑤 = arcsin𝑤 + constant = arcsin(𝜆 tan𝑢) + 𝛿

for some constants 𝜆, 𝛿. Hence,
sin(𝑣 − 𝛿) = 𝜆 tan𝑢

Rewriting using the angle addition formula,

(sin 𝑣 cos𝑢)⏟⎵⎵⏟⎵⎵⏟
𝑥

cos 𝛿 − (cos 𝑣 cos𝑢)⏟⎵⎵⏟⎵⎵⏟
𝑦

sin 𝛿 − 𝜆 sin𝑢⏟
𝑧

= 0

Hence, the geodesic 𝛾 lies on a plane through the origin, since this is a linear equation in 𝑥, 𝑦, 𝑧. Such
planes intersect the sphere in great circles.

5.5 Geodesics on the torus
Consider the surface of revolution of a circle in the 𝑥𝑧-plane centred at (𝑎, 0, 0) about the 𝑧 axis, giving
a torus. An allowable parametrisation for this surface is

𝜎(𝑢, 𝑣) = ((𝑎 + cos𝑢) cos 𝑣, (𝑎 + cos𝑢) sin 𝑣, sin𝑢)

The first fundamental form is

d𝑢2 + (𝑎 + cos𝑢)2 d𝑣2 ⟹ 𝐸 = 1; 𝐹 = 0; 𝐺 = (𝑎 + cos𝑢)2

Note that if we were to take 𝑎 = 0, we would arrive at the unit sphere and its first fundamental form.
We can follow the same procedure as above with the sphere, or formally replace cos𝑢 with 𝑎 + cos𝑢
in the result.

d𝑣
d𝑢 = 𝐶

(𝑎 + cos𝑢)√(𝑎 + cos𝑢)2 − 𝐶2

which cannot be integratedusing classical functions. This leads to the study of elliptic functions.

5.6 Equivalent characterisation of geodesics
We have so far restricted our analysis to the first fundamental form, without considering its embed-
ding in ℝ3. Intuitively, we know that straight lines in ℝ2 are not just locally shortest but also locally
straightest. We would expect this to hold for other surfaces as well. We can characterise this notion
via stating that the change in the tangent vector to a curve is as small as it could be, subject to the
constraint that it lies on the surface.
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Proposition. Let Σ be a smooth surface in ℝ3. A smooth curve 𝛾∶ [𝑎, 𝑏] → Σ is a geodesic
if and only if ̈𝛾(𝑡) is everywhere normal to the surface Σ.

Remark. This proposition makes use of the tangent plane, a notion that exists only because we have
an embedding in ℝ3. Note that

d
d𝑡 ⟨ ̇𝛾, ̇𝛾⟩ = 2⟨ ̇𝛾⏟

tangent to Σ
, ̈𝛾⏟
normal to Σ

⟩ = 0

Hence, ⟨ ̇𝛾, ̇𝛾⟩ is constant, giving that geodesics are parametrised proportional to arc length.

Proof. The property of being a geodesic as we previously defined is a local property, and so is the
condition in the proposition. Hence, we may work entirely within an allowable parametrisation
𝜎∶ 𝑉 → 𝑈 . Suppose 𝛾(𝑡) = 𝜎(𝑢(𝑡), 𝑣(𝑡)). Hence,

̇𝛾 = 𝜎𝑢�̇� + 𝜎𝑣 ̇𝑣

̈𝛾 is normal to Σ when it is orthogonal to the tangent plane, which is spanned by 𝜎𝑢, 𝜎𝑣. This is true
if and only if

⟨ dd𝑡 (𝜎𝑢 ̇𝑢 + 𝜎𝑣 ̇𝑣), 𝜎𝑢⟩ = 0 = ⟨ dd𝑡 (𝜎𝑢 ̇𝑢 + 𝜎𝑣 ̇𝑣), 𝜎𝑣⟩

We will prove the first equality. This can be rewritten

d
d𝑡 ⟨𝜎𝑢�̇� + 𝜎𝑣 ̇𝑣, 𝜎𝑢⟩ − ⟨𝜎𝑢�̇� + 𝜎𝑣 ̇𝑣, dd𝑡𝜎𝑢⟩ = 0

Note that ⟨𝜎𝑢, 𝜎𝑢⟩ = 𝐸 and ⟨𝜎𝑢, 𝜎𝑣⟩ = 𝐹.

d
d𝑡 (𝐸�̇� + 𝐹 ̇𝑣) − ⟨𝜎𝑢 ̇𝑢 + 𝜎𝑣 ̇𝑣, 𝜎𝑢𝑢�̇� + 𝜎𝑢𝑣 ̇𝑣⟩ = 0

Hence,
d
d𝑡 (𝐸�̇� + 𝐹 ̇𝑣) − [�̇�2 ⟨𝜎𝑢, 𝜎𝑢𝑢⟩ + �̇� ̇𝑣(⟨𝜎𝑢, 𝜎𝑢𝑣⟩ + ⟨𝜎𝑣, 𝜎𝑢𝑢⟩) + ̇𝑣2 ⟨𝜎𝑣𝜎𝑢𝑣⟩] = 0

Note that 𝐸𝑢 = 2 ⟨𝜎𝑢, 𝜎𝑢𝑢⟩, 𝐹𝑢 = ⟨𝜎𝑢, 𝜎𝑢𝑣⟩ + ⟨𝜎𝑣, 𝜎𝑢𝑢⟩, and 𝐺𝑢 = 2 ⟨𝜎𝑣, 𝜎𝑢𝑣⟩. This gives

d
d𝑡 (𝐸�̇� + 𝐹 ̇𝑣) = 1

2(𝐸𝑢 ̇𝑢2 + 2𝐹𝑢�̇� ̇𝑣 + 𝐺𝑢 ̇𝑣2)

which is the first of the geodesic equations. By symmetry, we find the second geodesic equation
similarly.

5.7 Planes of symmetry
Let Σ be a smooth surface in ℝ3 such that there exists a plane Π ⊆ ℝ3 such that Π ∩ Σ is a smooth
embedded curve 𝐶 ⊆ Σ, and Σ is setwise preserved by reflection in the planeΠ. We will show that 𝐶
is a geodesic when parametrised at constant speed. Consider a point 𝑝 on 𝐶. We can think of ℝ3 =
Π⊕Π⟂, where we change coordinates such that 𝑝 is the origin. We can also write ℝ3 = 𝑇𝑝Σ⊕ℝ𝑛𝑝,
where ℝ𝑛𝑝 is the vector subspace of ℝ3 generated by 𝑛𝑝. Clearly, reflection in Π acts on Π by the
identity, and on Π⟂ by −1. Since reflection in Π fixes Σ setwise and fixes 𝑝, it must also preserve the
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subspace 𝑇𝑝Σ. Hence it also preserves ℝ𝑛𝑝, so ℝ𝑛𝑝 ⊆ Π, since Π is not the identity on 𝑇𝑝Σ. Now,
let us parametrise 𝐶 locally near 𝑝 using 𝑡 ↦ 𝛾(𝑡) ∈ 𝐶 at constant speed. Since 𝛾(𝑡) ⊆ Π, we have
̇𝛾(𝑡), ̈𝛾(𝑡) ∈ Π. 𝛾 has constant speed, so ⟨ ̇𝛾, ̈𝛾⟩ = 0. Hence ̇𝛾 lies in Π ∩ 𝑇𝑝Σ and ̈𝛾 is orthogonal to this
and lies in Π, so lies in ℝ𝑛𝑝 ⊆ Π. Hence 𝛾 is indeed a geodesic.
In particular, arcs of great circles are geodesics, since they lie in planes of symmetry.

5.8 Surfaces of revolution
Consider the surface of revolution given by 𝜂(𝑢) = (𝑓(𝑢), 0, 𝑔(𝑢)) where 𝜂 is smooth and injective,
and 𝑓(𝑢) > 0, rotated about the 𝑧 axis.

Definition. A circle obtained by rotating a point of 𝜂 is called a parallel. A curve obtained
by rotating 𝜂 itself by a fixed angle about the 𝑧 axis is called ameridian.

A plane in ℝ3 containing the 𝑧 axis is a plane of symmetry, hence meridians are geodesics by the
previous discussion. Not all parallels are geodesics.

Lemma. A parallel given by 𝑢 = 𝑢0 is a geodesic when parametrised at constant speed if
and only if 𝑓′(𝑢0) = 0.

Proof. Consider the allowable parametrisation

𝜎(𝑢, 𝑣) = (𝑓(𝑢) cos 𝑣, 𝑓(𝑢) sin 𝑣, 𝑔(𝑢))

where 𝑢 ∈ (𝑎, 𝑏) and 𝑣 ∈ (0, 2𝜋). The first fundamental form is

[(𝑓′)2 + (𝑔′)2] d𝑢2 + 𝑓2 d𝑣2

If without loss of generality we choose to parametrise 𝜂 by arc length, this becomes

d𝑢2 + 𝑓2 d𝑣2 ⟹ 𝐸 = 1; 𝐹 = 0; 𝐺 = 𝑓2

The geodesic equations are
d
d𝑡 �̇� = �̈� = 𝑓𝑓𝑢 ̇𝑣2; d

d𝑡 (𝑓
2 ̇𝑣) = 0

and �̇�2 + 𝑓2 ̇𝑣2 is a nonzero constant. Given that we want to only consider parallels of the surface
of revolution, we can impose the constraint that 𝑢 = 𝑢0 is constant. Hence, the constant speed
condition gives that

̇𝑣 = constant
𝑓(𝑢0)

= constant

The second equation holds automatically. The first equation is

0 = 𝑓(𝑢0)𝑓𝑢(𝑢0) ⋅ constant

So this holds exactly when 𝑓𝑢(𝑢0) = 0.

Consider a curve 𝛾(𝑡) on Σ, making angle 𝜃 with the parallel of radius 𝜌 = 𝑓.
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Proposition (Clairaut’s relation). If 𝛾 is a geodesic, then 𝜌 cos 𝜃 is constant along 𝛾.

Proof. Let 𝛾(𝑡) = 𝜎(𝑢(𝑡), 𝑣(𝑡)), so ̇𝛾 = 𝜎𝑢�̇� + 𝜎𝑣 ̇𝑣. The tangent vector to the parallel is 𝜎𝑣. By the
earlier discussion on angles in terms of the first fundamental form,

cos 𝜃 = ⟨𝜎𝑣, 𝜎𝑢�̇� + 𝜎𝑣 ̇𝑣⟩
‖𝜎𝑣‖ ⋅ ‖𝜎𝑢�̇� + 𝜎𝑣 ̇𝑣‖

If 𝛾 is parametrised by arc length, ‖ ̇𝛾‖ = 1, so ‖𝜎𝑢�̇� + 𝜎𝑣 ̇𝑣‖ = 1. So, using our values for 𝐹, 𝐺 above,

cos 𝜃 = |𝑓(𝑢) ̇𝑣| = 𝜌 ̇𝑣

The second geodesic equation is exactly

𝜌 cos 𝜃 = constant

Example. Usually, for a surface of revolution, we take the assumption that 𝜂 never intersects the
𝑧-axis, or that 𝑓 is positive. This ensures that all points on the surface are locally smooth. However,
we can allow 𝜂 to meet the 𝑧-axis orthogonally, as in the ellipsoid or sphere.
Consider an ellipsoid of revolution. 𝜌 cos 𝜃 is constant along a geodesic 𝛾. Suppose that at some
point 𝛾 intersects a parallel of radius 𝜌0 at angle 𝜃0, and that 𝛾 is not a meridian (so cos 𝜃 ≠ 0).
Hence 𝜃0 ∈ [0, 𝜋

2
). In particular, for 𝜌 cos 𝜃 to be constant, we must have that 𝜌 is bounded below. A

geodesic which is not a meridian is therefore ‘trapped’ between parallels corresponding to the bound
on the size of 𝜌. In particular, any geodesic through a pole is a meridian.

5.9 Local existence of geodesics
It is difficult to solve the geodesic equations globally. We can often intead prove local results about
any geodesics that may arise.

Recall Picard’s theorem fromAnalysis andTopology. Let 𝐼 = [𝑡0−𝑎, 𝑡0+𝑎] ⊆ ℝ,𝐵 = {𝑥∶ ‖𝑥 − 𝑥0‖ ≤ 𝑏} ⊆
ℝ𝑛, and 𝑓∶ 𝐼 × 𝐵 → ℝ𝑛 that is continuous, and Lipschitz in the second variable.

‖𝑓(𝑡, 𝑥1) − 𝑓(𝑡, 𝑥2)‖ ≤ 𝑁‖𝑥1 − 𝑥2‖

Then the differential equation d𝑥
d𝑡

= 𝑓(𝑡, 𝑥) with 𝑥(𝑡0) = 𝑥0 has a unique solution for some time
interval |𝑡 − 𝑡0| < ℎ, where ℎ = min {𝑎, 𝑏

𝑠
} where 𝑠 = sup ‖𝑓‖. Further, if 𝑓 is smooth in all para-

meters, then the solution to the differential equation is smooth and depends smoothly on the initial
condition.

Recall the geodesic equations:

d
d𝑡 (𝐸�̇� + 𝐹 ̇𝑣) = 1

2(𝐸𝑢�̇�
2 + 2𝐹𝑢 ̇𝑢 ̇𝑣 + 𝐺𝑢 ̇𝑣2)

d
d𝑡 (𝐹�̇� + 𝐺 ̇𝑣) = 1

2(𝐸𝑣�̇�
2 + 2𝐹𝑣�̇� ̇𝑣 + 𝐺𝑣 ̇𝑣2)
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We can write this as
(𝐸 𝐹
𝐹 𝐺) (

�̈�
̈𝑣) = 𝑅

where 𝑅 is composed of smooth functions of 𝑢, 𝑣. The matrix on the left hand side is invertible, and
the inverse map 𝐴 ↦ 𝐴−1 on matrices is smooth. Hence, we can write the geodesic equations in the
form

�̈� = 𝐴(𝑢, 𝑣, �̇�, ̇𝑣); ̈𝑣 = 𝐵(𝑢, 𝑣, �̇�, ̇𝑣)
In the usual way we can turn second-order equations into first-order equations by introducing 𝑝 =
�̇�, 𝑞 = ̇𝑣, and we find

̇𝑢 = 𝑝; ̇𝑣 = 𝑞; ̇𝑝 = 𝐴(𝑢, 𝑣, 𝑝, 𝑞); ̇𝑞 = 𝐵(𝑢, 𝑣, 𝑝, 𝑞)

This is a system of first-order ordinary differential equations as governed by Picard’s theorem. Since
𝐴, 𝐵 are smooth, a local bound on ‖𝐷𝐴‖ and ‖𝐷𝐵‖ will give the required Lipschitz condition.

Corollary. Let Σ be a smooth surface in ℝ3. For 𝑝 ∈ Σ and 𝑣 ∈ 𝑇𝑝Σ nonzero, then there
exists 𝜀 > 0 and a geodesic 𝛾∶ [0, 𝜀) → Σ such that

𝛾(0) = 𝑝; ̇𝛾(0) = 𝑣

Moreover, this geodesic depends smoothly on 𝑝, 𝑣.

The local existence of geodesics gives rise to allowable parametrisations of Σ with ‘nice’ properties
in terms of the first fundamental form. Let 𝑝 ∈ Σ, and consider a geodesic arc 𝛾 starting at 𝑝 and
parametrised by arc length. At each point 𝛾(𝑡) for small 𝑡 > 0, we can consider a geodesic arc 𝛾𝑡
starting at 𝛾(𝑡), and 𝛾′𝑡(0) is orthogonal to 𝛾′(𝑡), and also parametrised by arc length. Now, we define
𝜎(𝑢, 𝑣) = 𝛾𝑣(𝑢), which is defined for 𝑢 ∈ [0, 𝜀) and 𝑣 ∈ [0, 𝛿).

Lemma. For 𝜀, 𝛿 sufficiently small, 𝜎∶ (𝑢, 𝑣) ↦ 𝛾𝑣(𝑢) defines an allowable parametrisation
of an open set in Σ, taking the interior of the domain.

Proof. Smoothness follows from the addendum to Picard’s theorem above. At the origin (0, 0), by
construction we have 𝜎𝑢, 𝜎𝑣 orthogonal. Hence, they stay linearly independent for sufficiently small
𝜀, 𝛿. So 𝐷𝜎 has full rank, and (on a smaller set if necessary) 𝜎 is injective. So 𝜎 is allowable.

Corollary. Any smooth surface Σ in ℝ3 admits local parametrisations for which the first
fundamental form has form d𝑢2 + 𝐺(𝑢, 𝑣) d𝑣2, so 𝐸 = 1 and 𝐹 = 0.

Proof. Consider the parametrisation 𝜎(𝑢, 𝑣) = 𝛾𝑣(𝑢). For 𝑣0 fixed, the curve 𝑢 ↦ 𝛾𝑣0(𝑢) is a geodesic
parametrised at unit speed, so 𝐸 = 1. One of the geodesic equations is

d
d𝑡 (𝐹�̇� + 𝐺 ̇𝑣) = 1

2(𝐸𝑣�̇�
2 + 2𝐹𝑣 ̇𝑢 ̇𝑣 + 𝐺𝑣 ̇𝑣2)

and consider 𝑣(𝑡) = 𝑣0, 𝑢(𝑡) = 𝑡. 𝐸𝑣 = ̇𝑣 = 0 and �̇� = 1, so

d
d𝑡𝐹 = 0 ⟹ 𝐹𝑢�̇� = 0 ⟹ 𝐹𝑢 = 0
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So 𝐹 is independent of 𝑢. At 𝑢 = 0, then by construction of 𝛾𝑣 as being orthogonal to 𝛾 at 𝛾(𝑣), we
see 𝐹 = 0.

These coordinates are called geodesic normal coordinates. Note that by fixing 𝑢 and letting 𝑣 vary, the
curve obtained is typically not a geodesic, except for 𝑢 = 0 which is 𝛾 itself. In these coordinates, we
can also find

𝐺(0, 𝑣) = 1; 𝐺𝑢(0, 𝑣) = 0
The first result holds since 𝜎𝑣 has unit length at 𝑢 = 0. The second result holds because 𝑢 = 0 yields
a geodesic with arc length parametrisation, and then we can use one of the geodesic equations to
find

d
d𝑡 (𝐸�̇� + 𝐹 ̇𝑣) = 1

2(𝐸𝑢�̇�
2 + 2𝐹𝑢 ̇𝑢 ̇𝑣 + 𝐺𝑢 ̇𝑣2) ⟹ 0 = 1

2𝐺𝑢(0, 𝑣)

5.10 Surfaces of constant curvature
In the example sheets, we show that for a smooth surface Σ inℝ3 with allowable parametrisation for
which 𝐸 = 1 and 𝐹 = 0, we have the following result for the Gauss curvature.

𝜅 =
−(√𝐺)

𝑢𝑢

√𝐺

If 𝑎∶ ℝ3 → ℝ3 is a dilation 𝑎(𝑥, 𝑦, 𝑧) = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧), then

𝜅𝑎(Σ) =
1
𝑎2 𝜅Σ

since 𝐸, 𝐹, 𝐺 rescale by 𝑎2, and 𝐿,𝑁,𝑀 rescale by 𝑎. This matches the results previously found for
spheres of varying radii. By dilating, to understand surfaces of constant curvature it suffices to con-
sider surfaces with constant curvature ±1 or 0.

Proposition. Let Σ be a smooth surface in ℝ3. Then,
(i) if 𝜅 ≡ 0, then Σ is locally isometric to (ℝ2, d𝑢2 + d𝑣2);
(ii) if 𝜅 ≡ 1, then Σ is locally isometric to (𝑆2, d𝑢2 + cos2 𝑢 d𝑣2).

Proof. Σ admits an allowable parametrisation with 𝐸 = 1 and 𝐹 = 0 by using geodesic normal
coordinates, so

𝜅 = −√𝐺𝑢𝑢

√𝐺
; 𝐺(0, 𝑣) = 1; 𝐺𝑢(0, 𝑣) = 0

If 𝜅 ≡ 0, we have √𝐺𝑢𝑢 = 0, so √𝐺 = 𝐴(𝑣)𝑢 + 𝐵(𝑣), and the boundary conditions give 𝐴 ≡ 0, 𝐵 ≡ 1.
In particular, 𝐺 ≡ 1. The fundamental form then is d𝑢2 + d𝑣2, which is that of ℝ2.

If 𝜅 ≡ 1, we find (√𝐺)
𝑢𝑢
+√𝐺 = 0 so √𝐺 = 𝐴(𝑣) sin𝑢 + 𝐵(𝑣) cos𝑢. The boundary conditions then

imply that 𝐴 ≡ 0, 𝐵 ≡ 1 and hence the fundamental form is d𝑢2 + cos2 𝑢 d𝑣2. This matches the first
fundamental form of a sphere with parametrisation

𝜎(𝑢, 𝑣) = (cos𝑢 cos 𝑣, cos𝑢 sin 𝑣, sin𝑢)
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Remark. If 𝜅 ≡ −1, we will find the first fundamental form d𝑢2 + cosh2 𝑢 d𝑣2. There exists an object
known as the tractoid, which is a smooth surface in ℝ3, and has this first fundamental form. We
could alternatively choose not to embed this surface in ℝ3.

In fact, the change of variables 𝑣 = 𝑒𝑣 tanh𝑢,𝑤 = 𝑒𝑣 sech𝑢 turns the fundamental form d𝑢2 +
cosh2 𝑢 d𝑣2 into d𝑉2+d𝑊2

𝑊2 , which is a ‘standard’ presentation of the first fundamental form, which
we will see more of later.

6 Riemannian metrics
6.1 Definitions

Definition. Let 𝑉 ⊆ ℝ2 be an open set. An (abstract) Riemannian metric is a smooth map
from 𝑉 to the set of positive definite symmetric bilinear forms, given by

𝑣 ↦ (𝐸(𝑣) 𝐹(𝑣)
𝐹(𝑣) 𝐺(𝑣))

such that 𝐸 > 0, 𝐺 > 0, 𝐸𝐺−𝐹2 > 0. The image of this map can be viewed as an open subset
of ℝ4.

If 𝑣 is a vector at 𝑝 ∈ 𝑉 , we can compute its infinitesimal length by

‖𝑣‖2 = 𝑣⊺ (𝐸(𝑣) 𝐹(𝑣)
𝐹(𝑣) 𝐺(𝑣)) 𝑣

Thus, if 𝛾∶ [𝑎, 𝑏] → 𝑉 is smooth,

length(𝛾) = ∫
𝑏

𝑎
(𝐸�̇�2 + 2𝐹�̇� ̇𝑣 + 𝐺 ̇𝑣2)

1
2 d𝑡

where 𝛾(𝑡) = (𝑢(𝑡), 𝑣(𝑡)).

Definition. Let Σ be an abstract smooth surface, so Σ = ⋃𝑖∈𝐼 𝑈 𝑖 for open sets 𝑈 𝑖, with
charts 𝜑𝑖 ∶ 𝑈 𝑖 → 𝑉 𝑖 ⊆ ℝ2 which are homeomorphisms, and with smooth transition maps
𝜑𝑖𝜑−1𝑗 ∶ 𝜑𝑗(𝑈 𝑖 ∩ 𝑈𝑗) → 𝜑𝑖(𝑈 𝑖 ∩ 𝑈𝑗). A Riemannian metric on Σ, usually called 𝑔 or d𝑠2, is
a choice of Riemannian metric in the above sense on each 𝑉 𝑖, which are compatible in the
following sense. Let 𝜎 = 𝜑−1𝑖 and �̃� = 𝜑−1𝑗 for some 𝑖, 𝑗, and define 𝑓 = �̃�−1 ∘ 𝜎. Then we
require

(𝐷𝑓)⊺ (𝐸 𝐹
𝐹 𝐺) (𝐷𝑓) = (𝐸 𝐹

𝐹 𝐺)

So 𝐷𝑓 defines an isometry from an open set in the chart (𝑈, 𝜑(𝑈) = 𝑉) to one in the chart
(𝑈, 𝜑(𝑈) = 𝑉).

This compatibility condition is the transition law for first fundamental forms for smooth surfaces in
ℝ3.

Example. Recall the torus 𝑇2 = ℝ2
⟋ℤ2.
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𝑏−1

𝑎

𝑏

𝑎−1

We have an atlas of charts for which the transition maps are the restrictions of translations of open
subsets of ℝ2. For each 𝑉 𝑖 ⊆ ℝ2, we associate the natural Euclidean metric d𝑢2 + d𝑣2. If 𝑓 is a
translation, 𝐷𝑓 is the identity, and so

(𝐷𝑓)⊺𝐼(𝐷𝑓) = 𝐼
holds trivially. So this gives a global Riemannian metric on 𝑇2. This metric is flat, since it is locally
isometric to ℝ2 at all points.

Conversely, consider the torus of revolution embedded in ℝ3. As a compact smooth surface in ℝ3, it
must contain an elliptic point. Hence, the flat Riemannian metric described above is not the same
(up to isometry) as the metric obtained by any possible embedding of the torus in ℝ3.

The real projective plane ℝℙ2 admits a Riemannian metric with constant curvature +1. We have
constructed a smooth atlas for ℝℙ2 where the charts were of the form (𝑈, 𝜑), with 𝑈 = 𝑞�̂� and
𝑞∶ 𝑆2 → ℝℙ2 the quotient map, �̂� ⊆ 𝑆2 open and contained within an open hemisphere, and
𝜑∶ 𝑈 ∶ 𝑈 → 𝑉 ⊆ ℝ2 is given by ̂𝜑 ∘ 𝑞−1||𝑈 and ̂𝜑∶ �̂� → 𝑉 a chart on 𝑆2. The transition maps for this
atlas were found to be locally the identity, or induced from the antipodal map. The antipodal map
from 𝑆2 to 𝑆2 is an isometry, so both types of transition maps preserve the usual round metric on 𝑆2.
In the first example sheet, we consider the Klein bottle. This has an atlas such that all transitionmaps
are either translations or translations composed with a reflection. These preserve the flat metric in
ℝ2, so the Klein bottle inherits a flat Riemannianmetric. The Klein bottle andℝℙ2 are not embedded
in ℝ3, so we could not construct a ‘non-abstract’ Riemannian metric.

Definition. Let (Σ1, 𝑔1), (Σ2, 𝑔2) be abstract smooth surfaces with abstract Riemannian met-
rics. A diffeomorphism 𝑓∶ Σ1 → Σ2 is an isometry if it preserves the lengths of all curves,
where lengths are taken with respect to these abstract Riemannian metrics.

Example. If (Σ2, 𝑔2) is given, and 𝑓∶ Σ1 → Σ2 is a diffeomorphism, we can equip Σ1 with a metric
known as the pullbackmetric 𝑔1 = 𝑓⋆𝑔2 that gives that 𝑓 is an isometry.

6.2 The length metric

Definition. Let (Σ, 𝑔) be a connected abstract smooth surface with an abstract Riemannian
metric. The length metric is defined by

𝑑𝑔(𝑝, 𝑞) = inf
𝛾
𝐿(𝛾)

where 𝛾 varies over piecewise smooth paths in Σ from 𝑝 to 𝑞, and 𝐿 is length computed using
𝑔.
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Proposition. Let (Σ, 𝑔) be a connected abstract smooth surface with an abstract Riemannian
metric. Then 𝑑𝑔 is indeed a metric, and 𝑑𝑔 induces a topology on Σ that agrees with the given
topology.

Proof. Let 𝑝, 𝑞 ∈ Σ. We will show that there exists some piecewise smooth path 𝛾 from 𝑝 to 𝑞, so
𝑑𝑔(𝑝, 𝑞) is well-defined and finite. Connected surfaces are path-connected. There exists a continuous
path 𝛾 and a finite set of charts (𝑈 𝑖, 𝜑𝑖) with associated parametrisations 𝜎𝑖 = 𝜑−1𝑖 ∶ 𝑉 𝑖 → 𝑈 𝑖 ⊂ Σ
such that Im 𝛾 ⊆ ⋃𝑁

𝑖=1𝑈 𝑖. Consider points

𝑝 = 𝑥0 ∈ 𝑈1, 𝑥1 ∈ 𝑈1 ∩ 𝑈2, 𝑥2 ∈ 𝑈2 ∈ 𝑈3,… , 𝑞 = 𝑥𝑁 ∈ 𝑈𝑁

Smooth paths in 𝑉 𝑖 from 𝜑𝑖(𝑥𝑖) to 𝜑𝑖+1(𝑥𝑖+1) exist, since smooth paths between two points in ℝ2

exist. Since the atlas is smooth, being a smooth path in some𝑈 𝑖 is the same as being smooth in𝑈 𝑖+1
whenever 𝑈 𝑖 and 𝑈 𝑖+1 intersect, since the transition maps are smooth. So 𝑝, 𝑞 ∈ Σ are joined by
some piecewise smooth path.

For any piecewise smooth path from 𝑝 to 𝑞 there exists the inverse path parametrised in the opposite
direction, which has the same length. We can also concatenate paths from 𝑝 to 𝑞 and from 𝑞 to 𝑟,
with length equal to the sum of the lengths. In both cases, the new paths are piecewise smooth. This
then implies that 𝑑𝑔 is symmetric, and satisfies the triangle inequality.
To show 𝑑𝑔 is a metric, it now suffices to show that 𝑑𝑔(𝑝, 𝑞) = 0 implies 𝑝 = 𝑞, since the converse is
trivial. Let𝑝 ∈ Σ and fix a chart (𝑈, 𝜑) at𝑝. Without loss of generality let𝑉 = 𝐵(0, 1), and𝜑(𝑝) = 0. If
𝑞 ≠ 𝑝 ∈ Σ, there exists 𝜀 > 0 such that 𝑞 ∉ 𝜑−1(𝐵(0, 𝜀)). Suppose 𝛾∶ [0, 1] → Σ is a piecewise smooth
path from 𝑝 to 𝑞. Certainly, 𝛾must escape the disc 𝜑−1(𝐵(0, 𝜀)), since it must reach 𝑞. Length along
paths is additive, so by the triangle inequality, it suffices to show that there exists 𝛿 > 0 such that
𝑑𝑔(𝑝, 𝑟) > 𝛿 for all 𝑟 ∈ 𝜕𝜑−1(𝐵(0, 𝜀)) = 𝜑−1{circle of radius 𝜀}. The data on the Riemannian metric 𝑔

includes the non-degenerate symmetric bilinear form (𝐸𝑧 𝐹𝑧
𝐹𝑧 𝐺𝑧

) for all 𝑧 ∈ 𝐵(0, 𝜀) ⊆ 𝑉 . We also have

the usual Euclidean inner product on the disc, (1 0
0 1). For all 𝑧 ∈ 𝐵(0, 𝜀), these matrices are positive

definite. Since 𝐵(0, 𝜀) is compact, there exists 𝛿 > 0 such that (𝐸𝑧 − 𝛿 𝐹𝑧
𝐹𝑧 𝐺𝑧 − 𝛿) is still positive

definite for all 𝑧 ∈ 𝐵(0, 𝜀). In other words, the determinant 𝐸𝐺 − 𝐹2 > 0 for all 𝑧 ∈ 𝐵(0, 𝜀), which is
compact, so it is bounded below by some positive number. Hence, length𝑔( ̂𝛾) ≥ length𝛿⋅Euclidean( ̂𝛾)
for any ̂𝛾 contained withing 𝐵(𝑜, 𝜀). Taking ̂𝛾 = 𝜑[𝛾 ∩ 𝜑−1(𝐵(𝑜, 𝜀))], which is the part of 𝛾 in 𝐵(0, 𝜀)
with respect to the chart, we have that length𝛿⋅Euclidean( ̂𝛾) ≥ 𝛿𝜀, so 𝑑𝑔(𝑝, 𝑞) ≥ 𝛿𝜀.

Remark. The last step of the argument for the proof above, comparing the inner products (𝐸𝑧 𝐹𝑧
𝐹𝑧 𝐺𝑧

)

and (1 0
0 1) can be modified to show that 𝑑𝑔 induces a topology on Σ that agrees with the given

topology, which is given by local homeomorphisms to ℝ2 everywhere.
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6.3 The hyperbolic metric

Definition. Let
𝐷 = 𝐵(0, 1) = {𝑧 ∈ ℂ∶ |𝑧| < 1}

The abstract Riemannian metric 𝑔hyp on 𝐷 is given by

4(d𝑢2 + d𝑣2)
(1 − 𝑢2 − 𝑣2)2 =

4|d𝑧|2

(1 − |𝑧|2)
2

Since there is only one chart, this holds for all of 𝐷. In particular, if 𝛾∶ [0, 1] → 𝐷 is smooth,
then

𝐿𝑔hyp(𝛾) = 2∫
1

0

| ̇𝛾(𝑡)|
1 − |𝛾(𝑡)|2

d𝑡

If 𝛾(𝑡) = (𝑢(𝑡), 𝑣(𝑡)), we can write

𝐿(𝛾) = 2∫
1

0

(�̇�2 + ̇𝑣2)
1
2

1 − 𝑢2 − 𝑣2 d𝑡

This is very similar to a first fundamental form with 𝐸 = 𝐺 = 4
(1−𝑢2−𝑣2)2

and 𝐹 = 0, but we do not
claim that this fundamental form arises from an embedding in ℝ3.

Note that the flat metric on ℝ2 and the usual round metric on 𝑆2 have large and transitive isometry
groups. We will show that this metric also induces a large symmetry group, which is induced by the
Möbius group. Recall that

Möb = {𝑧 ↦ 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 ∶ (𝑎 𝑏

𝑐 𝑑) ∈ 𝐺𝐿(2, ℂ)} ↷ ℂ ∪ {∞}

Lemma. The subgroup of the Möbius group that preserves 𝐷,

Möb(𝐷) = {𝑇 ∈ Möb∶ 𝑇(𝐷) = 𝐷}

is also given by

Möb(𝐷) = {𝑧 ↦ 𝑒𝑖𝜃 𝑧 − 𝑎
1 − 𝑎𝑧 ∶ |𝑎| < 1} = {(𝑎 𝑏

𝑏 𝑎) ∈ Möb∶ |𝑎|2 − |𝑏|2 = 1}

Proof. Note that

|||
𝑧 − 𝑎
1 − 𝑎𝑧

||| = 1 ⟺ (𝑧 − 𝑎)(𝑧 − 𝑎) = (1 − 𝑎𝑧)(1 − 𝑎𝑧)

⟺ 𝑧𝑧 − 𝑎𝑧 − 𝑎𝑧 + 𝑎𝑎 = 1 − 𝑎𝑧 − 𝑎𝑧 + 𝑎𝑎𝑧𝑧
⟺ |𝑧|2(1 − |𝑎|2) = 1 − |𝑎|2

⟺ |𝑧| = 1
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So these maps of the form
𝑧 ↦ 𝑒𝑖𝜃 𝑧 − 𝑎

1 − 𝑎𝑧
do indeed preserve the unit circle, and 𝑎 ∈ 𝐷 is mapped to 0 ∈ 𝐷. Hence, it preserves the entire
disc.

Lemma. The Riemannian metric 𝑔hyp is invariant under Möb(𝐷). In other words, the
Möbius group Möb(𝐷) acts by isometries on 𝐷.

Proof. Möb(𝐷) is generated by 𝑧 ↦ 𝑒𝑖𝜃 and 𝑧 ↦ 𝑧−𝑎
1−𝑎𝑧

. The rotations preserve 𝑔hyp, since it depends
only on |𝑧| and not 𝑧 itself. For the second type of transformation, let 𝑤 = 𝑧−𝑎

1−𝑎𝑧
. Here,

d𝑤 = d𝑧
1 − 𝑎𝑧 +

𝑧 − 𝑎
(1 − 𝑎𝑧)2 𝑎 d𝑧 =

d𝑧
(1 − 𝑎𝑧)2 (1 − |𝑎|2)

Then,
|d𝑤|

1 − |𝑤|2
= |d𝑧|
||1 − 𝑎𝑧||2

⋅ 1 − |𝑎|2

1 − ||
𝑧−𝑎
1−𝑎𝑧

||
2 =

|d𝑧|(1 − |𝑎|2)
||1 − 𝑎𝑧||2 − |𝑧 − 𝑎|2

= |d𝑧|
1 − |𝑧|2

Hence the hyperbolic metric, which is a function of this |d𝑧|
1−|𝑧|2

, is also invariant under this change of
variables.

Lemma. On (𝐷, 𝑔hyp),
(i) every pair of points in (𝐷, 𝑔hyp) is joined by a unique geodesic up to reparametrisation;
(ii) the geodesics are diameters of the disc and circular arcs orthogonal to the boundary 𝜕𝐷.

The whole geodesics (ones that are defined on ℝ) are called hyperbolic lines.

Proof. Let 𝑎 ∈ ℝ+ ∩ 𝐷 and 𝛾 a smooth path from the origin to 𝑎. Let 𝛾(𝑡) = (𝑢(𝑡), 𝑣(𝑡)). Note that
Re(𝛾)(𝑡) = (𝑢(𝑡), 0) is also a smooth path from the origin to 𝑎. By definition of the hyperbolic metric,

length(𝛾) = ∫
1

0

2| ̇𝛾|
1 − |𝛾|2

d𝑡 = ∫
1

0

2√�̇�2 + ̇𝑣2
1 − 𝑢2 − 𝑣2 d𝑡 ≥ ∫

1

0

2|�̇�|
1 − 𝑢2 d𝑡

where equality holds if and only if ̇𝑣 ≡ 0, and so 𝑣 ≡ 0.

length(𝛾) ≥ ∫
1

0

2�̇�
1 − 𝑢2 d𝑡

where equality holds in this expression if and only if 𝑢 is monotonic. Hence, the arc of the diameter,
parametrised monotonically, is a globally length-minimising path, and hence a geodesic. We can
compute this integral to be

length(𝛾) = 2 artanh 𝑎
Now, 0 and 𝑎 in ℝ+ ∩𝐷 are joined by a unique geodesic, and Möb(𝐷) acts transitively and by isomet-
ries, and can be used to send any two points 𝑝, 𝑞 ∈ 𝐷 to 0, 𝑎 ∈ ℝ+ ∩ 𝐷. So every pair of points must
be joined by a unique geodesic. Since Möbius maps send circles to circles, and they preserve angles
and hence orthogonality to the boundary, we must have that all geodesics are diameters or circular
arcs orthogonal to 𝜕𝐷.
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Corollary. If 𝑝, 𝑞 ∈ 𝐷, then the distance between them is

𝑑hyp(𝑝, 𝑞) = 2 artanh |||
𝑝 − 𝑞
1 − 𝑝𝑞

|||

6.4 The hyperbolic upper half-plane

Definition. The hyperbolic upper half-plane (𝔥, 𝑔hyp) is the set

𝔥 = {𝑧 ∈ ℂ∶ Im 𝑧 > 0}

with the abstract Riemannian metric

d𝑥2 + d𝑦2
𝑦2 = |d𝑧|2

(Im 𝑧)2

Lemma. The hyperbolic disc (𝐷2, 𝑔hyp) and the hyperbolic upper half-plane (𝔥, 𝑔hyp) are iso-
metric.

Proof. There exist maps 𝑇 ∶ 𝔥 → 𝐷 and 𝑇 ∶ 𝐷 → 𝔥 given by

𝑇(𝑤) = 𝑤 − 𝑖
𝑤 + 𝑖 ; 𝑇(𝑧) = 𝑖(1 − 𝑧

1 + 𝑧)

which are inverse diffeomorphisms. Here,

𝑇 ′(𝑤) = 1
𝑤 + 𝑖 −

𝑤 − 𝑖
(𝑤 + 𝑖)2 =

2𝑖
(𝑤 + 𝑖)2

Considering 𝑇(𝑤) = 𝑧 ∈ 𝐷,

|d𝑧|
1 − |𝑧|2

= |d(𝑇𝑤)|
1 − |𝑇𝑤|2

= |𝑇 ′(𝑤)||d𝑤|
1 − |𝑇𝑤|2

= 2|d𝑤|

|𝑤 + 𝑖|2(1 − ||
𝑤−𝑖
𝑤+𝑖

||
2
)
= |d𝑤|
2 Im𝑤

Hence, under this coordinate change,
4|d𝑧|2

(1 − |𝑧|2)
2

is the metric obtained under pullback by 𝑇 from d𝑤2

(Im𝑤)2
.

Corollary. The hyperbolic upper half-plane is globally isometric to the hyperbolic disc, so
every pair of points is joined by a unique geodesic, up to reparametrisation. The geodesics
are arcs of circles orthogonal to the boundary, which are vertical straight lines and semicircles
centred on a point in the real axis.
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Proof. The isometry between 𝔥 → 𝐷 is given by a Möbius map. In particular, ℝ ∪ {∞} ↦ 𝜕𝐷, and
Möbius maps preserve circles and orthogonality.

Remark. When we discussed surfaces in ℝ3 with constant Gauss curvature, we saw that if a surface
had constant Gauss curvature, its first fundamental form in geodesic normal coordinates was of the
form d𝑢2+ cosh2 d𝑣2, with a change of variables taking this form to d𝑣2+d𝑤2

𝑤2 . This is exactly the form
of the Riemannianmetric on the hyperbolic upper half-plane. Gauss’ theorema egregium implies that
Gauss curvature makes sense for an abstract Riemannian metric, since it only depends on geodesics
and hence the first fundamental form. We can therefore define the Gauss curvature for an abstract
Riemannian metric to agree with this definition for surfaces in ℝ3. Under this definition, we can
show that the hyperbolic upper half-plane has constant curvature −1, and hence so does the disc.
Suppose we wanted to find a metric 𝑑∶ 𝐷 × 𝐷 → ℝ≥0 on 𝐷2 with the properties that it is invari-
ant under the Möbius group Möb(𝐷), and that the real diameter is length-minimising. By Möbius
invariance, the distance between any two points is completely determined by knowing the distance
from the origin to some point on the positive real axis 𝑎, which we will denote 𝑝(𝑎) = 𝑑(0, 𝑎). If
ℝ+ ∩ 𝐷 is length-minimising, distance should be additive, so if 0 ≤ 𝑎 ≤ 𝑏 ≤ 1 we should have
𝑑(0, 𝑎) + 𝑑(𝑎, 𝑏) = 𝑑(0, 𝑏) so 𝑑(𝑎, 𝑏) = 𝑝( 𝑏−𝑎

1−𝑎𝑏
) = 𝑝(𝑏) − 𝑝(𝑎). If we furthermore constrain 𝑝 to be

differentiable, and we differentiate the above expression with respect to 𝑏 and set 𝑏 = 𝑎, we find the
differential equation

𝑝′(𝑎) = 𝑝′(0)
1 − 𝑎2

Hence, 𝑝(𝑎) is some constantmultiple of artanh 𝑎, since𝑝′(0) can be chosen freely. So, up to rescaling
the length metric associated to 𝑔hyp on 𝐷 is the unique metric with these properties. The scale is
chosen for 𝑔hyp to enforce that the curvature is −1 precisely.

6.5 Isometries of hyperbolic space
We now would like to understand the full isometry group of the disc (𝐷, 𝑔hyp) or (𝔥, 𝑔hyp). We will
show that this group is precisely Möb(𝐷) together with reflections in hyperbolic lines, which are
called inversions.

Definition. Let Γ ⊆ ℂ̂ be a circle or line. We say that points 𝑧, 𝑧′ ∈ ℂ̂ are inverse for Γ if
every circle through 𝑧 orthogonal to Γ also passes through 𝑧′.

Lemma. Such inverse points exist and are unique.

Proof. Recall that Möbius maps preserve circles in ℂ̂ and preserve angles. In particular, if 𝑧, 𝑧′ are
inverse for Γ and 𝑇 ∈ Möb, then 𝑇𝑧 and 𝑇𝑧′ are inverse for the circle 𝑇(𝛾). If Γ = ℝ ∪ {∞}, then
𝐽(𝑧) = 𝑧 gives inverse points; this map satisfies the definition above. Now, if Γ ⊆ ℂ̂ is any circle, there
exists 𝑇 ∈ Möb such that 𝑇(ℝ ∪ {∞}) = Γ. We can therefore define inversion in Γ to be 𝐽Γ = 𝑇 ∘(𝑧 ↦
𝑧) ∘ 𝑇−1.

Definition. The map 𝐽Γ in the proof above, sending 𝑧 to the unique inverse point 𝑧′ for 𝑧
with respect to Γ, is called inversion in Γ.
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This map fixes all points of Γ, and swaps points on the interior with points on the exterior.
Example. For Γ a straight line, this is simply reflection. For the unit circle, 𝑆1, the map 𝐽𝑆1 maps
𝑧 ↦ 1

𝑧
and 0 ↦ ∞.

Remark. The composition of two inversions is a Möbius map. Let 𝐶 be the conjugation map 𝑧 ↦ 𝑧,
which is 𝐽ℝ∪{∞}. If Γ ⊆ ℂ̂ is any circle, we have 𝐽Γ = 𝑇∘𝐶∘𝑇−1 where 𝑇 is theMöbius transformation
which mapsℝ∪{∞} to Γ. If Γ1, Γ2 are circles, and 𝑇1, 𝑇2 are the transformations fromℝ∪{∞} to Γ1, Γ2
respectively, then

𝐽Γ1 ∘ 𝐽Γ2 = (𝐽Γ1 ∘ 𝐶) ∘ (𝐶 ∘ 𝐽Γ1)
= (𝐶 ∘ 𝐽Γ1)

−1 ∘ (𝐶 ∘ 𝐽Γ1)

We have 𝐶 ∘ 𝐽Γ = 𝐶 ∘ 𝑇 ∘ 𝐶 ∘ 𝑇−1, so it suffices to show 𝐶 ∘ 𝑇 ∘ 𝐶 ∈ Möb. If 𝑇(𝑧) = 𝑎𝑧+𝑏
𝑐𝑧+𝑑

, we have

(𝐶 ∘ 𝑇 ∘ 𝐶)(𝑧) = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

∈ Möb

Lemma. An orientation-preserving isometry of (ℍ2, 𝑔hyp) is an element of Möb(ℍ), whereℍ
is 𝐷 or 𝔥. The full isometry group is generated by inversions in hyperbolic lines.

Proof. It suffices to prove this in eithermodel, sowewill use the discmodel. Inversion in the geodesic
ℝ ∩ 𝐷 is conjugation, which preserves 𝑔hyp. Note that Möb(ℍ) acts transitively by isometries on
geodesics. Hence, if inversion in one geodesic preserves themetric, so does inversion in any geodesic.

Now, suppose 𝛼 is some isometry of the hyperbolic disc𝐷 under the metric 𝑔hyp. We have 𝛼(0) = 𝑎 ∈
𝐷, and using 𝑧 ↦ 𝑧−𝑎

1−𝑎𝑧
, so there exists 𝑇 ∈ Möb(𝐷) such that 𝑇 ∘ 𝛼 fixes the origin. There exists a

rotation 𝑅 ∈ Möb(𝐷) such that 𝑅 ∘𝑇 ∘𝛼maps𝐷∩ℝ+ to itself. Composing with the conjugation map
𝐶 if necessary, there exists an isometry 𝐴 which is an inversion composed with a Möbius map such
that 𝐴 ∘ 𝛼 fixes 𝐷 ∩ ℝ pointwise and fixes 𝐷 ∩ 𝑖ℝ pointwise. The only such isometry is the identity,
since every point in 𝐷 is determined by its distance to these two lines. Hence, 𝐴 is the inverse of 𝛼.
If 𝛼 preserves orientation and fixes ℝ ∩ 𝐷, then it necessarily fixes 𝑖ℝ ∩ 𝐷 pointwise, so 𝛼 = (𝑅 ∘
𝑇)−1 ∈ Möb. In general, 𝛼 was constructed from Möb(ℍ) and inversions in hyperbolic lines. So to
show that the isometry group is generated by inversions, it suffices to show that all Möbius maps are
compositions of inversions. This is presented on the example sheets.

In the upper half-plane model of hyperbolic space,

Möb(𝔥) = ℙ𝑆𝐿(2, ℝ) = {𝑧 ↦ 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 ∶ (𝑎 𝑏

𝑐 𝑑) ∈ 𝑆𝐿(2, ℝ)}; 𝑑hyp = 2 artanh |||
𝑏 − 𝑎
𝑏 − 𝑎

|||
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6.6 Hyperbolic triangles

Definition. Let 𝛼 be an orientation-preserving isometry of ℍ, which is equivalently an ele-
ment of Möb(ℍ). Suppose 𝛼 is not the identity map. We say that 𝛼 is
(i) elliptic, if 𝛼 fixes some point 𝑝 ∈ ℍ (if 𝑝 = 0 ∈ 𝐷, this behaves like a rotation);
(ii) parabolic, if𝛼 fixes a unique point𝑝 ∈ 𝜕ℍ (if𝑝 = ∞ ∈ 𝔥, this behaves like a translation);
(iii) hyperbolic, if 𝛼 fixes two points on 𝜕ℍ, so it fixes the unique geodesic between these two

points setwise, and so 𝛼must translate points across the geodesic; it is not an inversion
in the geodesic because it is not the identity map.

All elements of Möb(ℍ) are either elliptic, parabolic, or hyperbolic.

Definition. Let ℓ, ℓ′ be hyperbolic lines. Then, we say
(i) parallel, if they meet at the boundary 𝜕ℍ but never inside ℍ;
(ii) ultra-parallel, if they never meet in ℍ;
(iii) intersecting, if they meet in ℍ.
All pairs of hyperbolic lines are either parallel, ultra-parallel, or intersecting. A hyperbolic
triangle is a region bound by three geodesics, no two of which are ultra-parallel. Vertices that
lie ‘at infinity’ (on 𝜕ℍ) are called ideal vertices.

Note that the points in 𝜕ℍ are not contained within the hyperbolic plane, so in particular the ideal
vertices are not points inℍ. We typically denote side lengths by 𝐴, 𝐵, 𝐶, and denote the angles oppos-
ite these sides by 𝛼, 𝛽, 𝛾. The vertices at 𝛼, 𝛽, 𝛾 are denoted 𝑎, 𝑏, 𝑐. The hyperbolic metric is conformal,
since 𝐸 = 𝐺 and 𝐹 = 0. Hence, we can use Euclidean angles in place of hyperbolic angles.

Proposition (hyperbolic cosine formula). For a hyperbolic triangle,

cosh𝐶 = cosh𝐴 cosh𝐵 − sinh𝐴 sinh𝐵 cos 𝛾

Proof. To simplify, by an isometry we can let the vertex 𝑐 at 𝛾 be placed at 0 ∈ 𝐷, and the vertex 𝑏 at
𝛽 be placed atℝ+ ∩𝐷. Hence, the sides 𝐴, 𝐵 are straight Euclidean line segments in 𝐷, and the angle
between them is 𝛾. We have

𝑑hyp(0, 𝑎) = 2 artanh 𝑎 ⟹ 𝑎 = tanh 𝐴2 ; 𝑏 = 𝑒𝑖𝛾 tanh 𝐵2 ;
|||
𝑏 − 𝑎
1 − 𝑎𝑏

||| = tanh 𝐶2
Recall that

𝑡 = tanh 𝜆2 ⟹ cosh 𝜆 = 1 + 𝑡2
1 − 𝑡2 ; sinh 𝜆 = 2𝑡

1 − 𝑡2
Hence,

cosh𝐴 = 1 + |𝑎|2

1 − |𝑎|2
; cosh𝐵 = 1 + |𝑏|2

1 − |𝑏|2
;

cosh𝐶 =
||1 − 𝑎𝑏||2 + |𝑏 − 𝑎|2

||1 − 𝑎𝑏||2 − |𝑏 − 𝑎|2
=
(1 + |𝑠|2)(1 + |𝑏|2) − 2(𝑎𝑏 + 𝑎𝑏)

(1 − |𝑎|2)(1 − |𝑏|2)

Note that 𝑎 ∈ ℝ and 𝑏 + 𝑏 = 2Re 𝑏 = 2𝑏 cos 𝛾, so

cosh𝐶 = cosh𝐴 cosh𝐵 − sinh𝐴 sinh𝐵 cos 𝛾
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as required.

Remark. If𝐴, 𝐵, 𝐶 are small, the standard approximations to the hyperbolic sine and cosine functions
give

𝐶2 ≈ 𝐴2 + 𝐵2 − 2𝐴𝐵 cos 𝛾
which is the Euclidean cosine formula. Since a dilation of a surface inℝ3 rescales curvature, at small
scales we can treat any abstract smooth surface with a Riemannian metric as flat.

Since cos 𝛾 ≥ −1, we have that
cosh𝐶 ≤ cosh𝐴 cosh𝐵 + sinh𝐴 sinh𝐵 = cosh(𝐴 + 𝐵)

The hyperbolic cosine is increasing, so 𝐶 ≤ 𝐴 + 𝐵. This is a more precise variant of the hyperbolic
triangle inequality.

6.7 Area of triangles

Theorem. Let 𝑇 ⊆ ℍ2 be a hyperbolic triangle with internal angles 𝛼, 𝛽, 𝛾 defined as before.
The area of 𝑇 is

areahyp(𝑇) = 𝜋 − 𝛼 − 𝛽 − 𝛾
Note that 𝛼, 𝛽, 𝛾may be zero, so 𝑇 may have ideal vertices, and the internal angle is zero for
such vertices.

This is a version of the Gauss–Bonnet theorem for hyperbolic triangles.

Proof. The Möbius group Möb(ℍ2) acts transitively on triples of points in the boundary with the
correct cycle order. In particular, there exists a single ideal triangle (with all vertices at infinity) up
to isometry. Consider the ideal triangle in the hyperbolic upper half-plane with vertices −1,+1,∞.
Its area is

areahyp(𝑇) = ∫
1

−1
∫

∞

√1−𝑥2

1
𝑦2 d𝑦 d𝑥

since√𝐸𝐺 − 𝐹2 = 1
𝑦2
. We can compute this explicitly as

areahyp(𝑇) = ∫
1

−1

d𝑥
√1 − 𝑥2

= 𝜋

Now, let 𝐴(𝛼) be the area of a triangle with angles 0, 0, 𝛼. We can see that 𝐴(𝛼) is decreasing in 𝛼 and
continuous in 𝛼, by fixing two ideal vertices in the hyperbolic disc and translating the third vertex.

𝛼
𝛼′ 𝛼

𝛽 𝛼 𝜋 − 𝛼

48



The first diagram shows that bymoving the vertex 𝛼 on the real line, the areamust increase, since the
triangle with angle 𝛼′ < 𝛼 contains the triangle with angle 𝛼. From the second diagram, we see that
𝐴(𝛼)+𝐴(𝛽) = 𝐴(𝛼+𝛽)+𝜋 by comparing the different areas of triangles formed fromhyperbolic lines
in the diagram. By letting 𝐹(𝛼) = 𝜋 − 𝐴(𝛼), we have 𝐹(𝛼) + 𝐹(𝛽) = 𝐹(𝛼 + 𝛽). Since 𝐹 is continuous
and increasing, we have that 𝐹(𝛼) = 𝜆𝛼 for some fixed 𝜆 > 0. In particular, 𝐴(𝛼) = 𝜋 − 𝜆𝛼. Now, by
considering the angles in the third diagram, we see that 𝐴(𝛼) + 𝐴(𝜋 − 𝛼) = 𝜋. Hence, 𝜆 = 1, and so
𝐴(𝛼) = 𝜋 − 𝛼.
Finally, we consider the general case.

𝐶′

𝐵′

𝐴

𝐶

𝐴′

𝛽
𝛾

𝛼
𝐵

By writing 𝐴𝐵𝐶 for areahyp(𝑇) where 𝑇 is the triangle with vertices 𝐴, 𝐵, 𝐶, we can see that
𝐴𝐵𝐶 + 𝐴′𝐶𝐵′ + 𝐴′𝐵′𝐶′ = area of interior of diagram = 𝐴𝐵′𝐶′ + 𝐴′𝐵𝐶′

Equivalently,
𝐴𝐵𝐶 + 𝜋 − (𝜋 − 𝛾) + 𝜋 = (𝜋 − 𝛼) + (𝜋 − 𝛽) ⟹ 𝐴𝐵𝐶 = 𝜋 − 𝛼 − 𝛾 − 𝛽

as required.

Note that if 𝐺 is a hyperbolic 𝑛-gon, so it is a region bound by 𝑛 hyperbolic geodesics, it may be
decomposed into a union of hyperbolic triangles. Since any two points in ℍ2 are joined by a unique
geodesic, the area of 𝐺 is given by

areahyp(𝐺) = (𝑛 − 2)𝜋 −
𝑛
∑
𝑖=1

𝛼𝑖

Lemma. If 𝑔 ≥ 2, then there exists a regular 4𝑔-gon in ℍ2 with internal angle 2𝜋
4𝑔

= 𝜋
2𝑔
.

Proof. Consider an ideal 4𝑔-gon, whose vertices all lie at infinity, in the disc model of hyperbolic
space. The ideal vertices can be placed at the 4𝑔-th roots of unity, such that this polygon is invariant
under a rotational symmetry. By sliding each vertex radially inwards in ℝ2, we obtain a continuous
family of regular 4𝑔-gons, with areas which vary monotonically from (4𝑔 − 2)𝜋 to zero. The internal
angle of the polygon therefore varies continuously from zero to 𝛽min such that (4𝑔− 2)𝜋 = 4𝑔𝛽min. It
therefore suffices to check that 𝜋

2𝑔
lies in this interval (0, 𝛽min).

49



6.8 Surfaces of constant negative curvature

Theorem. For each 𝑔 ≥ 2, there exists an abstract Riemannian metric on the compact sur-
face of genus 𝑔 with curvature 𝜅 ≡ −1 and locally isometric to ℍ2.

Recall the the Euler characteristic of a surface of genus 𝑔 is exactly 2 − 2𝑔. Note, if 𝑔 = 0 we can
construct a Riemannian metric with 𝜅 ≡ +1 since this is the sphere, and if 𝑔 = 1 we can have 𝜅 ≡ 0
since this is the torus as a quotient ℝ

2
⟋ℤ2. We will outline two proofs.

Proof. Recall that we can construct the torus and double torus by

𝑏−1

𝑎

𝑏

𝑎−1

Analogously, a 4𝑔-gon with side labels 𝑎1𝑏1𝑎−11 𝑏−11 𝑎2𝑏2𝑎−12 𝑏−12 … gives a surface of genus 𝑔.
We say that a flag comprises an oriented hyperbolic line, a point on that line, and a choice of side
to that line. Given two such flags, there exists a hyperbolic isometry between them. So Möb(ℍ) acts
transitively on flags. In particular, we can swap the side of a flag using an inversion.

Consider a regular hyperbolic 4𝑔-gon with internal angle 𝜋
2𝑔
. We label this polygon with side labels

as above to give a genus 𝑔 surface. For each paired set of two edges, there exists a hyperbolic isometry
taking one to the other, respecting orientations and, and taking the side corresponding to the inside
of the polygon to the side corresponding to the outside of the polygon. This is possible since Möb(ℍ)
acts transitively on flags.

We can now define an atlas for Σ𝑔 as follows.
• If 𝑝 is in the interior of the polygon 𝑃, consider a small disc contained in the interior of the
polygon. Then, include this disc into the hyperbolic disc 𝐷.

• If 𝑝 is contained in an edge, let ̂𝑝 be the corresponding point on the paired edge. We have an
isometry 𝛾 from edge 𝑒1 to edge 𝑒2, exchanging sides, and mapping 𝑝 to ̂𝑝. We can use this to
define the chart. Using 𝛾, we can combine𝑈 , the intersection of𝑃with an open neighbourhood
of 𝑝, and 𝑈 , the intersection of 𝑃 with an open neighbourhood of ̂𝑝, such that the chart is an
inclusion on 𝑈 and is 𝛾 on 𝑈 . These agree on 𝑈 ∩ 𝑈 .

• All 4𝑔 vertices are identified to one point of Σ, and we need a chart at this point. Using a
hyperbolic isometry, let one vertex 𝑣 of 𝑃 be at the origin in 𝐷, such that an edge 𝑒 containing
𝑣 is mapped to a subset of the real line. Since the polygon 𝑃 has internal angle 𝜋

2𝑔
, the angle

between ℝ and the adjacent edge is 𝜋
2𝑔
. The fact that the internal angles sum to 2𝜋means that

we can construct hyperbolic isometries for each vertex that join them exactly, giving an open
neighbourhood of zero in 𝐷 in the shape of a disc. The chart is defined at [𝑣] ∈ Σ𝑔 by this
identification.

50



All charts are obtained from inclusion or an inclusion composedwith a hyperbolic isometry, therefore
the transition maps are hyperbolic isometries. In particular, hyperbolic isometries are smooth, and
preserve the locally defined hyperbolic metric.

Remark. The torus can be given by ℝ
2
⟋ℤ2. This characterisation was useful when describing the

flat metric, precisely because its charts are easy to define. For Σ𝑔, we chose 2𝑔 hyperbolic isometries
which paired sides. Hence, there is a group Γ ≤ Möb(ℍ), generated by these isometries. In Part II
Algebraic Topology, the surface Σ𝑔 will be constructed by ℍ⟋Γ.

Lemma. For each ℓ𝛼, ℓ𝛽, ℓ𝛾 > 0, there exists a right-angled hyperbolic hexagon with side
lengths ℓ𝛼, 𝑎, ℓ𝛽, 𝑏, ℓ𝛾, 𝑐 for some 𝑎, 𝑏, 𝑐.

Proof. Given 𝑡 > 0, there exists a pair of ultra-parallel hyperbolic lines a distance 𝑡 apart. We show
on the fourth example sheet that each pair of ultra-parallel hyperbolic lines has a unique common
perpendicular geodesic. Given lengths ℓ𝛼, ℓ𝛽, construct new perpendicular geodesics orthogonal to
the originals, having moved lengths ℓ𝛼, ℓ𝛽 from the common perpendicular (in the same direction).
If 𝑡 is made large, the new geodesics 𝜎, �̃� can bemade ultraparallel. Hence, bymaking 𝑡 smaller, there
exists a threshold 𝑡0 by continuity such that the new geodesics are parallel. Now, for 𝑡 ∈ (𝑡0,∞), the
two new geodesics are ultra-parallel. So 𝜎, �̃� have a unique common perpendicular geodesic. As 𝑡
increases above 𝑡0, the length of this line increasesmonotonically from zero to infinity. So there exists
a value of 𝑡 > 𝑡0 such that the new common perpendicular has length ℓ𝛾.

𝑡
ℓ𝛼 ℓ𝛽

ℓ𝛾

This is exactly the right-angled hyperbolic hexagon as required.

Definition. A pair of pants is a topological space homeomorphic to the complement of three
open discs in 𝑆2.

Note that this space has a boundary. Consider two right-angled hyperbolic hexagonswith side lengths
ℓ𝛼, ℓ𝛽, ℓ𝛾 arranged as above. The original configuration of two ultra-parallel geodesics of a distance
𝑡 apart is unique up to isometry. So the side lengths have a correspondence, and the hexagon with
side lengths ℓ𝛼, ℓ𝛽, ℓ𝛾 is unique up to isometry. Suppose that we glue together the corresponding
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unknown sides 𝑡𝛼𝛽, 𝑡𝛽𝛾, 𝑡𝛾𝛼with the same side identifications. Locally near ℓ𝛼, for instance, we arrive
at a closed circle of length 2ℓ𝛼, extended into a cylindrical shape with two seams 𝑡𝛼𝛽, 𝑡𝛾𝛼. Since the
hexagons were right-angled, we have constructed a hyperbolic pair of pants. The boundary circles
are geodesics in the sense that, for any point on such a circle, the local neighbourhood is a point on
a geodesic on a polygon in ℍ.
We will now construct Σ𝑔 using a more flexible approach.

Proof. If 𝑃1, 𝑃2 are two hyperbolic ‘surfaces’ with geodesic boundaries, and if 𝛾1 ⊂ 𝑃1 and 𝛾2 ⊂ 𝑃2 are
boundary circles of the same length (in the hyperbolic metric), we can glue 𝑃1 and 𝑃2 together along
this common-length circle. 𝑃1 and 𝑃2 may be glued by any isometry of 𝛾1, 𝛾2. The result 𝑃1 ∪𝛾1∼𝛾2 𝑃2
has a hyperbolic metric. For any point 𝑝 ∈ 𝑃𝑖 not on the boundary 𝛾𝑖, it already has a suitable open
neighbourhood since 𝑃𝑖 is hyperbolic. For any point 𝑝 ∈ 𝛾1 ∼ 𝛾2, we have a chart to a small disc in
ℍ using the fact that the boundary circles are geodesics. These charts are constructed analogously to
the charts for points on edges of hyperbolic polygons under appropriate side identifications as seen
above. Any compact surface of genus 𝑔 ≥ 2 can be built from glued pairs of pants, not necessarily
uniquely.

Under this construction, we have many choices. For example, the lengths of circles in the original
hyperbolic hexagons are now arbitrary. Also, the choice of ‘pants decomposition’ of a given surface
is not unique, and the different possibilities are topologically different.

6.9 Gauss–Bonnet theorem
Recall that in a spherical triangle with internal angles 𝛼, 𝛽, 𝛾, we have seen in the example sheets that
this has area 𝛼 + 𝛽 + 𝛾 − 𝜋, and that a hyperbolic triangle with the same internal angles has area
𝜋 − 𝛼 − 𝛽 − 𝛾. We have seen the convex Gauss–Bonnet theorem, which states

∫
Σ
𝜅 d𝐴 = 4𝜋

where Σ bounds a convex region in ℝ3 and 𝜅Σ > 0. These are special cases of a pair of theorems as
shown below.

Theorem (local Gauss–Bonnet theorem). Let Σ be an abstract smooth surface with abstract
Riemannian metric 𝑔. Let 𝑅 be an 𝑛-sided geodesic polygon on Σ, which is a smooth disc with
boundary decomposed into 𝑛 geodesic arcs. Then

∫
𝑅⊆Σ

𝜅Σ d𝐴 =
𝑛
∑
𝑖=1

𝛼𝑖 − (𝑛 − 2)𝜋

where the 𝛼𝑖 are the internal angles of the polygon.

It is important that 𝛾𝑖 be geodesics that cut out a disc; 𝑅must be homeomorphic toℝ2, and it cannot
(for example) contain any holes.

Theorem (global Gauss–Bonnet theorem). Let Σ be a compact smooth surface with abstract
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Riemannian metric 𝑔. Then
∫
Σ
𝜅Σ d𝐴 = 2𝜋𝜒(Σ)

Remark. Gauss curvature can be defined using only the first fundamental form, or equivalently an
abstract Riemannian metric.

For hyperbolic surfaces, we can construct Σ𝑔 from a 4𝑔-gon with internal angles 𝜋
2𝑔
in such a way

that the total area of Σ is exactly the area of the polygon, so

∫
Σ
1 d𝐴 = area(polygon) = (4𝑔 − 2)𝜋 −

4𝑔
∑
1

𝜋
2𝑔 = (4𝑔 − 4)𝜋

Since 𝜅 ≡ −1 and 𝜒(Σ𝑔) = 2 − 2𝑔, this agrees with the Gauss–Bonnet theorem.
A right-angled hyperbolic hexagon has area

4𝜋 −
6
∑
1

𝜋
2 = 𝜋

Each pair of pants was constructed from two such polygons, and to construct a genus 𝑔 surface we
required 2𝑔 − 2 pairs of pants. So the total area is 4𝑔 − 4𝜋, which agrees with the theorem.
The Gauss–Bonnet theorem also shows that the Euler characteristic does not depend on the choice
of triangulation of Σ.
Suppose Σ is a flat surface and 𝛾 is a closed geodesic, so 𝛾∶ ℝ → Σ and is periodic with some period
𝑇. Then 𝛾 cannot bound a smooth disc in Σ. Conversely, on 𝑆2, the great circle is a closed geodesic,
and bounds a hemisphere. For instance, for the flat torus ℝ

2
⟋ℤ2, if 𝛾 is a closed curve on this torus

bounding a closed disc𝑅 it is not a geodesic. Indeed, if we formally add two vertices to such a geodesic,
we find a geodesic 2-gon with two internal angles 𝜋, but by the Gauss–Bonnet theorem we expect

0 = ∫
𝑅
𝜅Σ d𝐴 =

2
∑
1
𝛼𝑖 − (𝑛 − 2)𝜋 = 2𝜋

We can in fact deduce the global Gauss–Bonnet theorem from the local Gauss–Bonnet theorem, util-
ising the following lemma.

Lemma. A compact smooth surface admits subdivisions into geodesic polygons.

The proof of this lemma considers the exponentialmap, discussed in Part II. Given such a subdivision
on Σ, we can find

∑
polygons 𝑃

∫
𝑃
𝜅Σ d𝐴 = ∫

Σ
𝜅Σ d𝐴

By the local Gauss–Bonnet theorem, the left hand side is equal to

∑
𝑛

∑
𝑛-gons 𝑃

(
𝑛
∑
𝑖=1

𝛼𝑖(𝑃) − (𝑛 − 2)𝜋)

Since the angles at each point add to 2𝜋, and each 𝑛-gon contains two edges which each separate two
polygons, this is equal to 2𝜋𝑉 + 2𝜋𝐹 − 2𝜋𝐸 = 2𝜋𝜒(Σ) as required.
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6.10 Green’s theorem (non-examinable)
The local Gauss–Bonnet theorem is very closely related to Green’s theorem in ℝ2. This discussion is
non-examinable.

Theorem. Let 𝑅 ⊆ ℝ2 be a region bound by a piecewise smooth curve 𝛾, and 𝑃,𝑄 be smooth
real-valued functions defined on an open set 𝑉 ⊃ 𝑅. Then

∫
𝛾
𝑃 d𝑢 + 𝑄 d𝑣 = ∫

𝑅
(𝑄𝑢 − 𝑃𝑣) d𝑢 d𝑣

We will consider a geodesic polygon on Σ which lies in the domain of some local parametrisation
defined on 𝑉 ⊆ ℝ2. Consider an orthonormal basis for ℝ2 which varies from point to point, defined
by 𝑒 = 𝜎𝑢, 𝑓 = 𝜎𝑣/√𝐺 where we use geodesic normal coordinates 𝑢, 𝑣 to give 𝐸 = 1, 𝐹 = 0. Then
𝑇𝑝Σ = span(𝑒, 𝑓) if 𝑝 ∈ Im𝜎. We parametrise 𝛾 by arc length and consider

𝐼 = ∫
𝛾
⟨𝑒, ̇𝑓⟩ d𝑡

We will compute this in two ways. Note that
̇𝑓 = 𝑓𝑢�̇� + 𝑓𝑣 ̇𝑣

Let 𝑃 = ⟨𝑒, 𝑓𝑢⟩ and 𝑄 = ⟨𝑒, 𝑓𝑣⟩. Then
𝑄𝑢 − 𝑃𝑣 = ⟨𝑒𝑢, 𝑓𝑣⟩ − ⟨𝑓𝑣, 𝑒𝑢⟩ + ⟨𝑒, 𝑓𝑢𝑣⟩ − ⟨𝑒, 𝑓𝑢𝑣⟩ = ⟨𝑒𝑢, 𝑓𝑣⟩ − ⟨𝑓𝑢, 𝑒𝑣⟩

whichwe can show to be equal to−(√𝐺)
𝑢𝑢

= 𝜅√𝐺. But√𝐺 is the area element√𝐸𝐺 − 𝐹2, so

∫
𝑅
(𝑄𝑢 − 𝑃𝑣) d𝑢 d𝑣 = ∫

𝑅
𝜅Σ d𝐴

Let 𝜃(𝑡) be the angle between ̇𝛾(𝑡) and 𝑒(𝑡), which is a function of 𝑡 in the domain of 𝛾. More pre-
cisely,

̇𝛾 = 𝑒 cos 𝜃(𝑡) + 𝑓 sin 𝜃(𝑡)
Thus

̈𝛾 = ̇𝑒 cos 𝜃 + ̇𝑓 sin 𝜃 + 𝜂 ̇𝜃; 𝜂 = −𝑒 sin 𝜃 + 𝑓 cos 𝜃
𝛾 is a piecewise geodesic, so if Σ ⊆ ℝ3 was smooth, ̈𝛾 is orthogonal to 𝑇𝑝Σ = span 𝑒, 𝑓. But 𝜂 ∈ ⟨𝑒, 𝑓⟩,
so ̈𝛾 is orthogonal to 𝜂. By expanding,

⟨ ̇𝑒 cos 𝜃 + ̇𝑓 sin 𝜃 + 𝜂 ̇𝜃, −𝑒 sin 𝜃 + 𝑓 cos 𝜃⟩ = 0

Since 𝑒, 𝑓 are orthogonal unit vectors, we have ⟨𝑒, ̇𝑒⟩ = 0 = ⟨𝑓, ̇𝑓⟩ and ⟨𝑒, ̇𝑓⟩ = 0 = ⟨ ̇𝑒, 𝑓⟩, so we can
expand to find

⟨ ̈𝛾, 𝜂⟩ = 0 ⟹ ̇𝜃 = ⟨𝑒, ̇𝑓⟩
Thus,

𝐼 = ∫
𝛾
⟨𝑒, ̇𝑓⟩ d𝑡 = ∫

𝛾
̇𝜃(𝑡) d𝑡 = 2𝜋 −∑(external angles of 𝑅)

since 𝛾 is composed of straight lines. Since external angles and internal angles sum to 𝜋, this is
exactly the local Gauss–Bonnet theorem. Green’s theorem suggests the study of non-geodesic poly-
gons.
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6.11 Alternate flat toruses
We have constructed a flat metric on the torus, viewed asℝ

2
⟋ℤ2, or as

[0, 1]2⟋∼ for a suitably defined
equivalence relation. Importantly, opposite sides of the square [0, 1]2 were identified by translation,
which allowed us to find a smooth atlas where transition maps preserve the usual Euclidean metric
on ℝ2. This construction is valid for any parallelogram; any such shape 𝑄 ⊆ ℝ2 defines a flat metric
𝑔𝑄 on 𝑇2. If one vertex is set to zero inℝ2 and the edges of this vertex are labelled by their endpoints
𝑣1, 𝑣2, then (𝑇2, 𝑔𝑄) = ℝ2

⟋ℤ𝑣1 ⊕ℤ𝑣2 where ℤ𝑣1 ⊕ℤ𝑣2 is a viewed as a subgroup of the group ℝ2 of
translations.

The area with respect to 𝑔𝑄 of 𝑇2 is the Euclidean area of the parallelogram 𝑄. In particular, if two
parallelograms have different areas, the two metrics cannot be globally isometric. However, this is
not the only restriction for global isometries.

Lemma. Consider the torus based on𝑄 = [0, 1]2 and the torus based on �̂� = [0, 10]×[0, 1
10
].

The metrics 𝑔𝑄, 𝑔�̂� are not isometric, but both have unit total area.

Proof. Recall that geodesics in a flat torus correspond to straight lines in ℝ2. By Picard’s theorem,
there exists a unique geodesic from a given point 𝑝 for each direction in 𝑇𝑝Σ. We can therefore see
that all geodesics through 𝑝 are the images of straight lines in ℝ2.

Recall that a closed geodesic is defined on ℝ and is periodic. We can see that geodesics in ℝ2 through
̂𝑝 ∈ 𝑞−1(𝑝) define a closed geodesic if and only if they pass through another lift ̂𝑝′ ∈ 𝑞−1(𝑝) of 𝑝;

that is, the line has rational gradient. The shortest closed geodesic on the surface in metric 𝑄 is of
unit length, but the shortest closed geodesic with metric �̂� is 1

10
. So the surfaces are not globally

isometric.

We would like to understand all possible flat metrics on the torus 𝑇2, up to global dilation and Euc-
lidean isometries of𝑄, which lead to essentially the same geometry on the quotient torus. Given any
parallelogram, we can set one vertex at zero and another at (1, 0) = 1 ∈ ℝ2 by performing dilation
and a Euclidean isometry, and then the third lies at 𝜏 and the fourth at 1 + 𝜏, where 𝜏 has positive
𝑦-coordinate. This provides a metric on the torus, and now the only degree of freedom is 𝜏. Hence,
this defines a map from the upper half-plane to the set of flat metrics on 𝑇2 up to dilation.

We can pull back metrics by diffeomorphisms. Metrics allow us to measure lengths of curves by
integrating lengths of tangent vectors, so a metric can be viewed as an inner product on the tangent
space at each point. If 𝑓∶ Σ → Σ′ and 𝑝 ∈ Σ, then for two small curves 𝛾1, 𝛾2 through 𝑝, the pullback
metric 𝑓⋆𝑔 was defined such that

⟨ ̇𝛾1, ̇𝛾2⟩𝑝,𝑓⋆𝑔 = ⟨𝑓 ∘ ̇𝛾1, 𝑓 ∘ ̇𝛾2⟩𝑓(𝑝),𝑔

𝑆𝐿(2, ℤ) acts on ℝ2 preserving ℤ2, so it acts on ℝ
2
⟋ℤ2 = 𝑇2.

Lemma. 𝑆𝐿(2, ℤ) acts by diffeomorphisms on 𝑇2.

Proof. Clearly 𝐴 ∈ 𝑆𝐿(2, ℤ) acts smoothly (indeed, linearly) on ℝ2, and the charts for the smooth
atlas are such that 𝐴 then acts smoothly with respect to these.
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Also, 𝑆𝐿(2, ℤ) ⊆ 𝑆𝐿(2, ℝ) acts on the upper half-plane by Möbius maps.

Theorem. The map from the upper half-plane 𝔥 to the set of flat metrics on 𝑇2 modulo
dilation induces a map from 𝔥⟋𝑆𝐿(2, ℤ) to the set of flat metrics on 𝑇2 modulo dilation and
diffeomorphism. This resulting map is a bijection. We say that 𝔥⟋𝑆𝐿(2, ℤ) is themoduli space
of flat metrics on 𝑇2.

In the above theorem, ‘diffeomorphism’ is taken tomean ‘orientation-preserving diffeomorphism’.

Remark. The left-hand side 𝔥⟋𝑆𝐿(2, ℤ) is an object of hyperbolic geometry, yet the right-hand side is
entirely concerned with flat metrics.

Similar results can be shown for surfaces of higher genus. The moduli space of hyperbolic metrics
on Σ𝑔 where 𝑔 ≥ 2 is perhaps the most studied space in all of geometry.

6.12 Further courses
There are four Part II courses that extend this course.

(i) Algebraic Topology. Spaces are studied through algebraic invariants, such as the Euler charac-
teristic, and covering maps of surfaces like 𝑆2 → ℝℙ2 or ℝ2 → 𝑇2.

(ii) Differential Geometry. While in IB Geometry the Gauss curvature 𝜅 = det(𝐷𝑁) is discussed,
the trace tr(𝐷𝑁) is themean curvature, discussed heavily in this course.

(iii) Riemann Surfaces. This course studies the fact that if 𝑓∶ ℂ → ℂ is holomorphic (or, indeed,
entire) and 𝑤 ∈ ℂ, then 𝑓(𝑧 + 𝑤) is holomorphic, and if 𝑓∶ 𝐷 → 𝐷 is holomorphic and
𝐴 ∈ Möb(𝐷), then 𝑓 ∘ 𝐴 is holomorphic.

(iv) General Relativity. This is the theory of light as geodesics.
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