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1 Introduction and convex functions
1.1 Outline and definitions
An optimisation problem is a problem in which we want to minimise some function 𝑓(x) such that
x ∈ 𝒳 ⊆ ℝ𝑛. We may have a set of constraints ℎ(x) = b where ℎ(x)∶ ℝ𝑛 → ℝ𝑚. Note that we will
only ever consider minimisation of functions since we can maximise a function by minimising its
negative. Such a problem is often written with notation such as

minimise
x∈𝒳

𝑓(x)

subject to ℎ(x) = b

Definition. The following definitions will be used.
(i) The function 𝑓 that we want to minimise is called the objective function.
(ii) The components of the vector x are called the decision variables.
(iii) A constraint of the form ℎ(x) = b is called a functional constraint.
(iv) A constraint of the form x ∈ 𝒳 is called a regional constraint.
(v) The set 𝒳(b) = {x∶ x ∈ 𝒳, ℎ(x) = b} is called the feasible set.
(vi) If the feasible set is non-empty, the optimisation problem is called feasible. If the feas-

ible set is empty, the problem is infeasible.
(vii) The problem is called bounded if the minimum on 𝒳(b) is bounded.
(viii) A point x⋆ ∈ 𝒳(b) is optimal if it minimises 𝑓 over 𝒳(b). The value 𝑓(x⋆) is called the

optimal cost.

We can convert an inequality constraint into an equality constraint with a regional constraint, for
instance

ℎ(x) ≤ 𝑏⟶ ℎ(x) + 𝑠 = 𝑏; 𝑠 ≥ 0

1.2 Convexity

Definition. A set 𝑆 ⊆ ℝ𝑛 is convex if for all x, y ∈ 𝑆, the line segment from x to y lies entirely
inside 𝑆. In other words, for all 𝜆 ∈ [0, 1], x(1 − 𝜆) + y(𝜆) ∈ 𝑆.

Definition. A function 𝑓∶ 𝑆 → ℝ is convex if
• 𝑆 is convex, and
• for all x, y ∈ 𝑆,

𝑓((1 − 𝜆)x + 𝜆y) ≤ (1 − 𝜆)𝑓(x) + 𝜆𝑓(y)

So informally, for a convex function, if we take two inputs, the chord connecting their outputs lies
above the function’s curve. If the given inequality above is strict, the function is called strictly convex.
𝑓 is (strictly) concave if −𝑓 is (strictly) convex. Note that if 𝑓 is linear, 𝑓 is convex and concave, since
𝑓 is linear in its input. Hence linear optimisation is a special case of convex optimisation.
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1.3 Unconstrained optimisation
The unconstrained optimisation problem is simply to minimise 𝑓(x), where 𝑓∶ ℝ𝑛 → ℝ is a convex
function. Convex functions allow you to generalise the behaviour of a function in a small neighbour-
hood to global behaviour, so it becomes easier to solve optimisation problems expressed in terms of
convex functions.

1.4 First-order conditions for convexity
Suppose we have a tangent to a curve 𝑓∶ ℝ → ℝ at a given point 𝑥. If 𝑓 is convex, then 𝑓 must only
touch the curve once, since if it touched twice we would contradict the definition of convexity. In
particular, we have the following necessary and sufficient condition for convexity:

𝑓(𝑦) ≥ 𝑓(𝑥) + (𝑦 − 𝑥)𝑓′(𝑥)

In higher dimensions, we might guess that

𝑓(y) ≥ 𝑓(x) + (y − x) ⋅ ∇𝑓(x)

Theorem. A differentiable function 𝑓∶ ℝ𝑛 → ℝ is convex if and only if

∀x, y ∈ ℝ𝑛, 𝑓(y) ≥ 𝑓(x) + (y − x) ⋅ ∇𝑓(x) = 𝑓(x) + ∇𝑓(x)⊺(y − x)

Remark. If ∇𝑓(x) = 0 for some vector x, then the first-order condition implies that 𝑓(y) ≥ 𝑓(x), so
x is the global minimum of 𝑓. This is an example of how we can use local properties (the gradient of
the function at x) to deduce global properties (the minimum value of the function).

Proof. First, we will prove that convexity implies the first-order condition. By convexity, we have

𝑓((1 − 𝜆)x + 𝜆y) ≤ (1 − 𝜆)𝑓(x) + 𝜆𝑓(y)

Initially, let 𝑛 = 1 so that we have the one-dimensional case. We have

𝑓(𝑦) ≥ 𝑓(𝑥) + 𝑓(𝑥 + 𝜆(𝑦 − 𝑥)) − 𝑓(𝑥)
𝜆 = 𝑓(𝑥) + 𝑓(𝑥 + 𝜆(𝑦 − 𝑥)) − 𝑓(𝑥)

𝜆(𝑦 − 𝑥) (𝑦 − 𝑥)

Hence, taking the limit as 𝜆 → 0, we have

𝑓(𝑦) ≥ 𝑓(𝑥) + 𝑓′(𝑥)(𝑦 − 𝑥)

For the general case, we define a function 𝑔 such that 𝑔(𝜆) = 𝑓((1 − 𝜆)x + 𝜆y). Since 𝑓 is convex, so
is 𝑔. We can calculate

𝑔′(𝜆) = ∇𝑓((1 − 𝜆)x + 𝜆y) ⋅ (y − x)
Since 𝑔∶ [0, 1] → ℝ is convex, by the above argument for 𝑛 = 1 we have

𝑔(1) ≥ 𝑔(0) + 𝑔′(0)(1 − 0)
𝑓(y) ≥ 𝑓(x) + ∇𝑓(x) ⋅ (y − x)

Now we must prove the converse; if the first-order condition holds, then 𝑓 is convex. Let

x𝜆 = (1 − 𝜆)x + 𝜆y
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The first-order condition shows that

𝑓(x) ≥ 𝑓(x𝜆) + ∇𝑓(x𝜆) ⋅ (x − x𝜆)
𝑓(y) ≥ 𝑓(x𝜆) + ∇𝑓(x𝜆) ⋅ (y − x𝜆)

Multiplying the first equation by 1 − 𝜆 and multiplying the second equation by 𝜆, we get

(1 − 𝜆)𝑓(x) + 𝜆𝑓(y) ≥ 𝑓(x𝜆) + ∇𝑓(x𝜆) ⋅ [(x − x𝜆)(1 − 𝜆) + (y − x𝜆)𝜆]
= 𝑓(x𝜆) + ∇𝑓(x𝜆) ⋅ [(x − (1 − 𝜆)x − 𝜆y)(1 − 𝜆) + (y − (1 − 𝜆)x − 𝜆y)𝜆]
= 𝑓(x𝜆) + ∇𝑓(x𝜆) ⋅ [(𝜆x − 𝜆y)(1 − 𝜆) + ((1 − 𝜆)y − (1 − 𝜆)x)𝜆]
= 𝑓(x𝜆) + ∇𝑓(x𝜆) ⋅ 0
= 𝑓(x𝜆)

Hence 𝑓 really is convex.

1.5 Second-order conditions for convexity
When 𝑛 = 1, we suspect that 𝑓″(𝑥) ≥ 0 is the condition for convexity. In higher dimensions, the
analogous operator to the double derivative is the Hessian matrix.

∇2𝑓(x) = H𝑓 =

⎛
⎜
⎜
⎜
⎜
⎝

𝜕2𝑓(x)
𝜕𝑥21

𝜕2𝑓(x)
𝜕𝑥1𝜕𝑥2

⋯ 𝜕2𝑓(x)
𝜕𝑥1𝜕𝑥𝑛

𝜕2𝑓(x)
𝜕𝑥2𝜕𝑥1

𝜕2𝑓(x)
𝜕𝑥22

⋯ 𝜕2𝑓(x)
𝜕𝑥2𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕2𝑓(x)
𝜕𝑥𝑛𝜕𝑥1

𝜕2𝑓(x)
𝜕𝑥𝑛𝜕𝑥2

⋯ 𝜕2𝑓(x)
𝜕𝑥2𝑛

⎞
⎟
⎟
⎟
⎟
⎠

Definition. An 𝑛 × 𝑛 matrix 𝐴 is positive semidefinite if for all x ∈ ℝ𝑛, we have x⊺𝐴x ≥ 0.
Equivalently, all eigenvalues of 𝐴 are non-negative. If 𝐴 is positive semidefinite, we write
𝐴 ⪰ 0.

Note that the higher-dimensional analogue of the Taylor expansion of 𝑓(y) is

𝑓(y) = 𝑓(x) + ∇𝑓(x)⊺(y − x) + 1
2(y − x)⊺∇2𝑓(x)(y − x) +⋯

Theorem. A twice-differentiable function 𝑓∶ ℝ𝑛 → ℝ is convex if ∇2𝑓(x) ⪰ 0 at all x. The
converse also holds, but it is not important for this course, so it will not be proven.

Proof. Using the Taylor expansion of 𝑓, we have

𝑓(y) = 𝑓(x) + ∇𝑓(x)⊺(y − x) + 1
2(y − x)⊺∇2𝑓(z)(y − x)

where z = (1 − 𝜆)x + 𝜆y for some 𝜆 ∈ [0, 1]. The rightmost term is positive, hence

𝑓(y) ≥ 𝑓(x) + ∇𝑓(x)⊺(y − x)

So the first-order conditions are satisfied, which imply convexity.
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2 Optimisation algorithms
2.1 Gradient descent
Consider minimising 𝑓(𝑥) such that 𝑓∶ ℝ𝑛 → ℝ is a convex function. Recall that a local minimum
of 𝑓 is also the global minimum. Consider the following ‘greedy’ method:

• Start at a point x0.
• Search for close points around x0 whose values of 𝑓 are smaller than 𝑓(x0).

– If such a point exists, let this be x1. Repeat the algorithm.
– If such a point does not exist, we have found a local minimum, which is the global min-
imum.

We can find such x1 points by considering the Taylor series expansion of 𝑓 around a point.

𝑓(x − 𝜀∇𝑓(x)) ≈ 𝑓(x) − 𝜀∇𝑓(x)⊺ ⋅ ∇𝑓(x) = 𝑓(x) − 𝜀‖∇𝑓(x)‖2 ≤ 𝑓(x)

Hence −∇𝑓(x) is called a descending direction. Although the gradient of the function is the most
natural way of decreasing a function, any v with 𝑓(x) ⋅ v < 0 is a descending direction. This gives us
the gradient descent algorithm.

Algorithm 1: Gradient Descent Algorithm
Result: Global minimum of 𝑓(x)
start at a point x0;
𝑡 ← 0;
repeat

find a descending direction v𝑡, e.g. −∇𝑓(x);
choose a step size 𝜂𝑡;
x𝑡+1 ← x𝑡 + 𝜂𝑡v𝑡;

until ∇𝑓(x) = 0 or 𝑡 is large enough;

Different choices of v𝑡 and 𝜂𝑡 give rise to many different qualities of algorithm.

2.2 Smoothness assumption
Some restrictions must be applied to a function to let us prove that gradient descent works.

Definition. A continuously differentiable function 𝑓∶ ℝ𝑛 → ℝ is 𝛽-smooth if ∇𝑓 is a 𝛽-
Lipschitz function:

‖∇𝑓(x) − ∇𝑓(y)‖ ≤ 𝛽‖x − y‖

In the following sections, we assume all functions 𝑓 are 𝛽-smooth. Further, if 𝑓 is twice differentiable
(i.e. the Hessian exists everywhere), then the 𝛽-smoothness assumption is equivalent to

∇2𝑓(x) ⪯ 𝛽𝐼

so all eigenvalues of ∇2𝑓(x) have 𝜆 ≤ 𝛽. Also,

u⊺∇2𝑓(x)u ≤ u⊺(𝛽𝐼)u = 𝛽‖u‖2
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Definition. The linear approximation to 𝑓 at x is

𝑓(x) + ∇𝑓(x)⊺(y − x)

We might assume that the linear approximation is close to the actual function in a small neighbour-
hood around 𝑥.

Claim. If 𝑓 is 𝛽-smooth, then

𝑓(y) ≤ 𝑓(x) + ∇𝑓(x)⊺(y − x) + 𝛽
2 ‖y − x‖2

Note that
𝑓(x) + ∇𝑓(x)⊺(y − x) ≤ 𝑓(y)

since 𝑓 is convex, so this claim would show that 𝑓 really is close to the actual function, deviating by
an arbitrarily small amount as we let x approach y.

Proof. By Taylor’s theorem,

𝑓(y) = 𝑓(x) + ∇𝑓(x)⊺(y − x) + 1
2(y − x)⊺∇2𝑓(z)(y − x)

≤ 𝑓(x) + ∇𝑓(x)⊺(y − x) + 1
2(y − x)⊺(𝛽𝐼)(y − x)

= 𝑓(x) + ∇𝑓(x)⊺(y − x) + 𝛽
2 ‖y − x‖2

Corollary. If we move by a step size of 1
𝛽
, we will descend by at least 1

2𝛽
‖∇𝑓(𝑥)‖2.

𝑓(x − 1
𝛽∇𝑓(x)) ≤ 𝑓(x) − 1

2𝛽 ‖∇𝑓(𝑥)‖
2

Proof. Consider
𝑓(x) + ∇𝑓(x)⊺(y − x) + 𝛽

2 ‖y − x‖2

as a function of y, and try to minimise it for a fixed x.

∇y(𝑓(x) + ∇𝑓(x)⊺(y − x) + 𝛽
2 ‖y − x‖2) = ∇𝑓(x) + 𝛽(y − x) = 0

Hence,

∇𝑓(x)
𝛽 = x − y

y = x − 1
𝛽∇𝑓(x)
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Substituting into the claim above, we have

𝑓(𝑥 − 1
𝛽∇𝑓(x)) ≤ 𝑓(x) + ∇𝑓(x)⊺(−1𝛽 ∇𝑓(x)) + 𝛽

2
‖
‖‖
1
𝛽∇𝑓(x)

‖
‖‖
2

= 𝑓(x) − 1
𝛽 ‖∇𝑓(x)‖

2 + 1
2𝛽 ‖∇𝑓(x)‖

2

= 𝑓(x) − 1
2𝛽 ‖∇𝑓(x)‖

2

Claim (Improved first order condition).

𝑓(y) ≥ 𝑓(x) + ∇𝑓(x)⊺(y − x) + 1
2𝛽 ‖∇𝑓(x) − ∇𝑓(y)‖2

Proof. For any z, by the standard first order condition and the corollary above we have

𝑓(x) + ∇𝑓(x)⊺(z − x) ≤ 𝑓(z) ≤ 𝑓(y) + ∇𝑓(y)⊺(z − y) + 𝛽
2 ‖z − y‖2

This then implies

𝑓(x) − 𝑓(y) ≤ ∇𝑓(x)⊺(x − z) + ∇𝑓(y)⊺(z − y) + 𝛽
2 ‖z − y‖2

The left hand side is not dependent on z, so by minimising z we get the best bound for the left hand
side. We set the gradient of z to zero.

−∇𝑓(x) + ∇𝑓(𝑦) + 𝛽(z − y) = 0

⟹ z = ∇𝑓(x) − ∇𝑓(y)
𝛽 + y

Substituting back, we have

𝑓(x) − 𝑓(y) ≤ ∇𝑓(x)⊺(x − y) − 1
2𝛽 ‖∇𝑓(x) − ∇𝑓(y)‖2

2.3 Strong convexity assumption
In general, a small gradient does not imply that we are close to the optimum value of the function.
We must therefore add an additional assumption in order to justify gradient descent.

Definition. A function 𝑓∶ ℝ𝑛 → ℝ is called 𝛼-strongly convex if

𝑓(y) ≥ 𝑓(x) + ∇𝑓(x)⊺(y − x) + 𝛼
2 ‖y − x‖2

8



If 𝑓 is twice differentiable, then its Hessian satisfies

∇2𝑓(x) ⪰ 𝛼𝐼

for all x.

Claim. Let 𝑓 be 𝛼-strongly convex. Let 𝑝⋆ be the optimal cost; i.e. the minimum value of 𝑓.
Then for any x we have

𝑝⋆ ≥ 𝑓(x) − 1
2𝛼‖∇𝑓(x)‖

2

Remark. If ‖∇𝑓(x)‖ ≤ √2𝛼𝜀, then
𝑝⋆ ≤ 𝑓(x) ≤ 𝑝⋆ + 𝜀

So a small gradient means we are close to the optimum.

Proof. The 𝛼-strong convexity assumption gives

𝑓(y) ≥ 𝑓(x) + ∇𝑓(x)⊺(y − x) + 𝛼
2 ‖y − x‖2

Taking the minimum over y of both sides, the left hand side becomes 𝑝⋆. Setting the gradient of the
right hand side to zero,

∇𝑓(x) − 𝛼(x − y) = 0
∇𝑓(x)
𝛼 = (x − y)

This gives

𝑝⋆ ≥ 𝑓(x) + ∇𝑓(x)⊺(−∇𝑓(x)𝛼 ) + 𝛼
2
‖
‖‖
∇𝑓(x)
𝛼

‖
‖‖
2

= 𝑓(x) − ‖∇𝑓(x)‖2
𝛼 + ‖∇𝑓(x)‖2

2𝛼

= 𝑓(x) − ‖∇𝑓(x)‖2
2𝛼

Claim. Let x⋆ be the minimising value, i.e. 𝑓(x⋆) = 𝑝⋆. Then

‖x − x⋆‖ ≤ 2
𝛼‖∇(x)‖

So if a function is strongly convex, we can find a region in which we know the global max-
imum lies.
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Proof. By the Cauchy–Schwarz inequality,

𝑓(x⋆) ≥ 𝑓(x) + ∇𝑓(x)⊺(x⋆ − x) + 𝛼
2 ‖x

⋆ − x‖2

≥ 𝑓(x) − ‖∇𝑓(x)‖‖x⋆ − x‖ + 𝛼
2 ‖x

⋆ − x‖2

Since 𝑓(x⋆) ≤ 𝑓(x), we have

0 ≥ 𝑓(x⋆) − 𝑓(x) ≥ −‖∇𝑓(x)‖‖x⋆ − x‖ + 𝛼
2 ‖x

⋆ − x‖2

Hence,

‖∇𝑓(x)‖‖x⋆ − x‖ ≥ 𝛼
2 ‖x

⋆ − x‖2

‖∇𝑓(x)‖ ≥ 𝛼
2 ‖x

⋆ − x‖

2.4 Proving gradient descent
Let 𝑓 be a 𝛽-smooth and 𝛼-strongly convex, where 0 < 𝛼 < 𝛽. Then

𝛼𝐼 ⪯ ∇2𝑓(x) ⪯ 𝛽𝐼

Theorem. Gradient descent with step size 1
𝛽
satisfies

𝑓(x𝑇) − 𝑓(x⋆) ≤ (1 − 𝛼
𝛽)

𝑇
(𝑓(x0) − 𝑓(x⋆))

≤ 𝑒−
𝛼𝑇
𝛽 (𝑓(x0) − 𝑓(x⋆))

≤ 𝑒−
𝛼𝑇
𝛽 𝛽
2 ‖x

⋆ − x0‖
2

Proof.

𝑓(x𝑡+1) − 𝑓(x⋆) ≤ 𝑓(x𝑡) − 𝑓(x⋆) − 1
2𝛽 ‖∇𝑓(x𝑡)‖

2

≤ 𝑓(x𝑡) − 𝑓(x⋆) − 𝛼
𝛽 (𝑓(x𝑡) − 𝑓(x⋆))

≤ (1 − 𝛼
𝛽)(𝑓(x𝑡) − 𝑓(x⋆))

Hence by induction,

𝑓(x𝑇) − 𝑓(x⋆) ≤ (1 − 𝛼
𝛽)

𝑇
(𝑓(x0) − 𝑓(x⋆))
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The second line of the theorem is a consequence of the properties of the exponential function. The
last inequality in the theorem can be shown by 𝛽-smoothness.

𝑓(x0) ≤ 𝑓(x⋆) + ∇𝑓(x⋆)⊺(x0 − x⋆) + 𝛽
2 ‖x0 − x⋆‖2

𝑓(x0) − 𝑓(x⋆) ≤ 𝛽
2 ‖x0 − x⋆‖2

2.5 Rate of convergence
For example, suppose that we would like 𝑓(x𝑇) − 𝑓(x⋆) ≤ 0.1, and it takes 𝑘 steps to reach this

tolerance. Then, it would take around 2𝑘 steps to reach a tolerance of 0.01, since the (1 − 𝛼
𝛽
)
𝑇
power

might increase by a factor of 2. In general, the number of steps needed to ensure that the error is less
than 𝜀 is

𝑇 = 𝛽
𝛼 log(

𝑓(x0) − 𝑓(x⋆)
𝜀 )

This log(1/𝜀) term is called ‘linear convergence’, since for each extra order of magnitude of accuracy,
we need a linear amount of computation steps. Linear convergence is very fast, and such algorithms
are very useful.

2.6 Condition numbers and oscillation
Note that

1 − 𝛼
𝛽

is the term which controls the convergence of gradient descent. We call 𝛽/𝛼 the condition number of
𝑓. Such a number is always greater than 1. If the condition number is very close to 1, the convergence
is fast. Consider the function

𝑓(𝑥1, 𝑥2) =
1
2(𝑥

2
1 + 100𝑥22)

The Hessian of 𝑓 at any point is
∇2𝑓(𝑥1, 𝑥2) = (1 0

0 100)

Hence, 𝛼 = 1, 𝛽 = 100 giving a condition number of 100. This function would optimise very slowly,
and we may continually overshoot in the 𝑥2 direction since the gradient points so strongly in this
direction. We may like to prevent this oscillation between over-guessing and under-guessing certain
coordinate components.

2.7 Newton’s method
In gradient descent, we have

x𝑡+1 = x𝑡 − 𝜂𝑡∇𝑓(x𝑡)
In Newton’s method, we replace this formula with

x𝑡+1 = x𝑡 − (∇2𝑓(x))−1∇𝑓(x𝑡)

11



Note that the second order approximation for 𝑓 is

𝑓(x) ≈ 𝑓(x𝑡) + ∇𝑓(x𝑡)⊺ +
1
2(x − x𝑡)⊺∇2𝑓(x𝑡)(x − x𝑡)

So if we instead try to minimise the right hand side of the second-order approximation with respect
to x, we have

x𝑡+1 = x𝑡 − (∇2𝑓(x))−1∇𝑓(x𝑡)
as given by Newton’s method. This ideally allows us to deal with ‘badly-proportioned’ coordinates
independently, by scaling each coordinate using the Hessian rather than by a constant. Essentially,
Newton’s method iteratively approximates the function with a parabola, and then moves to the min-
imum point of this parabola. We can show that Newton’s method converges according to

‖x𝑡+1 − x⋆‖ ≤ 𝑐‖x𝑡 − x⋆‖2

when x𝑡 − x⋆ is small enough. We can see here that the squared term provides very fast convergence
once we are in the neighbourhood of the optimum. Newton’s method can also be used to find a root
of a function. Suppose 𝑓∶ ℝ → ℝ, and define 𝑓′ = 𝑔.

𝑥𝑡+1 = 𝑥𝑡 −
𝑓′(𝑥𝑡)
𝑓″(𝑥𝑡)

= 𝑥𝑡 −
𝑔(𝑥𝑡)
𝑔′(𝑥𝑡)

So we can find the root of 𝑔 by computing the stationary point of 𝑓. We are essentially taking a linear
approximation at a point, and setting this linear approximation to zero.

2.8 Barrier methods
Suppose we impose a constraint on an optimisation problem, for instance minimising 𝑓(x) such that
𝑓𝑖(x) ≤ 0 for 1 ≤ 𝑖 ≤ 𝑚. We can transform such a constrained problem into an unconstrained
problem. Let us minimise

𝑓(x) +
𝑚
∑
𝑖=1

𝜙(𝑓𝑖(x))

where 𝜙(𝑦𝑖) = +∞ outside the feasible set, and 𝜙(𝑦𝑖) = 0 inside the feasible set. However, this 𝜙 func-
tion is not differentiable, so this introduces even more problems. We instead consider a logarithmic
barrier function. Let us minimise the unconstrained problem

𝑡𝑓(x) −
𝑚
∑
𝑖=1

log(−𝑓𝑖(x)) ⟹ 𝜙(𝑥) = − log(−𝑥)

This barrier function is infinite for negative 𝑥, and gradually rises as 𝑥 → 0. When 𝑡 is chosen to be
very large, the optimum of this problem is very close to the optimum of the original problem.

Algorithm 2: Barrier Method
Result: Global minimum of 𝑓(x)
start at a point x inside the feasible set;
set 𝑡 to be a positive real number;
repeat

solve the minimiser of 𝑡𝑓(x) − ∑𝑚
𝑖=1 log(−𝑓𝑖(x)) with x as the initial point using

Newton’s method giving x⋆;
x← x⋆;
𝑡 ← 𝛼𝑡 for some fixed 𝛼 > 1;

until 𝑡 is large enough;
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3 Lagrange multipliers
3.1 Introduction and Lagrange sufficiency
Consider minimising 𝑓(x) subject to x ∈ 𝒳, ℎ(x) = b where ℎ∶ ℝ𝑛 → ℝ𝑚. The Lagrangian associ-
ated with this problem is

𝐿(x, 𝛌) = 𝑓(x) − 𝛌⊺(ℎ(x) − b)
where 𝛌 ∈ ℝ𝑚 is the vector of Lagrange multipliers. We want to instead minimise 𝐿(x, 𝛌), 𝑥 ∈
𝒳.

Theorem (Lagrange Sufficiency). Suppose we can find a 𝛌⋆ such that
(i) minx∈𝒳 𝐿(x, 𝛌⋆) = 𝐿(x⋆, 𝛌⋆)
(ii) x⋆ ∈ 𝒳(b) = {x∶ x ∈ 𝒳, ℎ(x) = b}

Then x⋆ is optimal for the original constrained problem, i.e.

min
x∈𝒳(b)

𝑓(x) = 𝑓(x⋆)

Proof. First, note that condition (ii) states that 𝑓(x⋆) ≥ minx∈𝒳(b) 𝑓(x), because x⋆ is feasible. Then,

min
x∈𝒳(b)

𝑓(x) = min
x∈𝒳(b)

𝑓(x) − (𝛌⋆)⊺(ℎ(x) − b)⏟⎵⎵⎵⏟⎵⎵⎵⏟
0 when x∈𝒳(b)

≥ min
x∈𝒳

𝑓(x) − (𝛌⋆)⊺(ℎ(x) − b)

= min
x∈𝒳

𝐿(x, 𝛌⋆)

= 𝐿(x⋆, 𝛌⋆)
= 𝑓(x⋆) − (𝛌⋆)⊺(ℎ(x⋆) − b)
= 𝑓(x⋆)

Example.

minimise
𝑥∈ℝ3

− 𝑥1 − 𝑥2 + 𝑥3

subject to 𝑥21 + 𝑥22 = 4
𝑥1 + 𝑥2 + 𝑥3 = 1

In this problem, we have

ℎ(x) = ( 𝑥21 + 𝑥22
𝑥1 + 𝑥2 + 𝑥3

) ; b = (41)

Taking Lagrange multipliers, we have

𝐿(x, 𝛌) = (−𝑥1 − 𝑥2 + 𝑥3) − 𝜆1(𝑥21 + 𝑥22 − 4) − 𝜆2(𝑥1 + 𝑥2 + 𝑥3 − 1)
= (−(1 + 𝜆2)𝑥1 − 𝜆1𝑥21) + (−(1 + 𝜆2)𝑥2 − 𝜆1𝑥22) + (1 − 𝜆2)𝑥3 + 4𝜆1 + 𝜆2

We want to fix a value of 𝛌 and minimise 𝐿, only considering solutions such that x⋆ is finite. Note
that if 𝜆1 > 0, then the first bracket can bemade as small as we like by picking very small values of 𝑥1;
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this bracket would diverge to negative infinity so we cannot choose such a 𝜆1. If 𝜆2 ≠ 1, the infimum
is also negative infinity by considering the 𝑥3 term. So let us consider 𝜆1 ≤ 0, 𝜆2 = 1. Setting the
derivative of the first term to zero, we have

d
d𝑥1

(−(1 + 𝜆2)𝑥1 − 𝜆1𝑥21) = −(1 + 𝜆2) − 2𝜆1𝑥1 = 0

⟹ 𝑥1 =
−1 − 𝜆2
2𝜆1

= −2
2𝜆1

= −1
𝜆1

Setting the derivative of the second term to zero,

d
d𝑥1

(−(1 + 𝜆2)𝑥2 − 𝜆1𝑥22) = −(1 + 𝜆2) − 2𝜆1𝑥2 = 0

⟹ 𝑥2 =
−1
𝜆1

We now want to choose 𝜆1 such that 𝑥1, 𝑥2, 𝑥3 satisfy the constraints.

𝑥21 + 𝑥22 = 4 ⟹ 𝑥21 = 𝑥22 = 2 ⟹ 𝑥1 = 𝑥2 = √2

Note that 𝑥1, 𝑥2 > 0 since 𝜆1 ≤ 0, and correspondingly 𝜆1 =
−1
√2
. Further, we can now find 𝑥3 =

1 − 2√2. This solution optimises the original problem.

3.2 Using Lagrange multipliers in general
Consider the problem

minimise
x∈𝒳

𝑓(x)

subject to ℎ(x) ≤ b

We can solve this problem using the following steps.

(1) Add a slack variable s to transform the problem to

minimise
x∈𝒳

𝑓(x)

subject to ℎ(x) + s = b
s ≥ 0

(2) Calculate the Lagrangian,

𝐿(x, 𝛌, s) = 𝑓(x) − 𝛌⊺(ℎ(x) + s − b)

(3) Let
𝚲 = {𝛌∶ inf

x∈𝒳; s≥0
𝐿(x, s, 𝛌) > −∞}
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(4) For each 𝛌 ∈ 𝚲, find x⋆(𝛌), s⋆(𝛌) such that
min

x∈𝒳; s≥0
𝐿(x, s, 𝛌) = 𝐿(x⋆(𝛌), s⋆(𝛌), 𝛌)

(5) Find 𝛌⋆ ∈ 𝚲 such that (x⋆(𝛌), s⋆(𝛌)) is feasible, i.e.
ℎ(x⋆(𝛌⋆)) = b; s⋆(𝛌⋆) ≥ 0

3.3 Complementary slackness
In step (4) above, we want to minimise the Lagrangian, i.e.

minimise
x∈𝒳

𝑓(x) − 𝛌⊺(ℎ(x) − b) − 𝛌⊺s

subject to s ≥ 0
Suppose, for a particular value of 𝛌, that we solve this problem and arrive at x⋆(𝛌), s⋆(𝛌). Let

𝛌 = (
𝜆1
⋮
𝜆𝑚

)

If 𝜆𝑖 > 0, then for some large s we can make 𝑓 → −∞, hence 𝛌 ∉ 𝚲. Hence, given 𝛌 ∈ 𝚲, we must
have 𝜆𝑖 ≤ 0. Now, if 𝜆𝑖 < 0 for some 𝑖, we would want to choose 𝑠𝑖 = 0 to minimise the increase to
the function caused by the slack variable. If 𝜆𝑖 = 0, then 𝑠𝑖 can be chosen arbitrarily since it will have
no increase on the value of 𝑓. With these choices of 𝑠𝑖, we can make 𝛌⊺s = 0, thus making the slack
variable not impact the value of 𝑓. So either

• ℎ(x)𝑖 = 𝑏𝑖 and 𝜆𝑖 ≤ 0, or
• ℎ(x)𝑖 ≥ 𝑏𝑖 and 𝜆𝑖 = 0.

Alternatively (less precisely),
𝜆𝑖𝑠𝑖 = 0

In other words, either the constraint inequality is tight (defined by an equality) and the Lagrange
multipliers are slack (defined by an inequality), or the constraint inequality is slack and the Lagrange
multipliers are tight.

Example.
minimise

x∈ℝ2
𝑥1 − 3𝑥2

subject to 𝑥21 + 𝑥22 ≤ 4
𝑥1 + 𝑥2 ≤ 2

Adding slack variables, we have

minimise
x∈ℝ2

𝑥1 − 3𝑥2

subject to 𝑥21 + 𝑥22 + 𝑠1 = 4
𝑥1 + 𝑥2 + 𝑠2 = 2
𝑠1 ≥ 0
𝑠2 ≥ 0
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Taking the Lagrangian,

𝐿(x, s, 𝛌) = (𝑥1 − 3𝑥2) − 𝑥1(𝑥21 + 𝑥22 + 𝑠1 − 4) − 𝜆2(𝑥1 + 𝑥2 + 𝑠2 − 2)
= ((1 − 𝜆2)𝑥1 − 𝜆1𝑥21) + ((−3 − 𝜆2)𝑥2 − 𝜆1𝑥22) − 𝜆1𝑠1 − 𝜆2𝑠2 + (4𝜆1 + 2𝜆2)

We must have 𝜆1, 𝜆2 ≤ 0 by considering the slack variable. By complementary slackness,

𝜆1𝑠1 = 𝜆2𝑠2 = 0 at the optimum

Minimising each term independently, we have

1 − 𝜆2 − 2𝜆1𝑥1 = 0
−3 − 𝜆2 − 2𝜆1𝑥2 = 0

If 𝜆1 = 0, the above two equations are contradictory. Hence 𝜆1 < 0, giving 𝑠1 = 0. If 𝜆2 < 0, then
𝑠2 = 0 by complementary slackness, so

1 − 𝜆2 − 2𝜆1𝑥1 = 0
−3 − 𝜆2 − 2𝜆1𝑥2 = 0

𝑥21 + 𝑥22 = 4
𝑥1 + 𝑥2 = 2

Solving the lower two equations give

(𝑥1, 𝑥2) = (0, 2), (2, 0)

If (𝑥1, 𝑥2) = (0, 2), solving the first two equations gives (𝜆1, 𝜆2) = (1, −3)which is impossible since 𝜆1
must be negative. Similarly, if (𝑥1, 𝑥2) = (2, 0), solving the first two equations gives (𝜆1, 𝜆2) = (−1, 1)
which is impossible again. We have ruled out every case apart from 𝜆1 < 0, 𝜆2 = 0. In this case,

1 − 2𝜆1𝑥1 = 0
−3 − 2𝜆1𝑥2 = 0

𝑥21 + 𝑥22 = 4
𝑥1 + 𝑥2 + 𝑠2 = 2

The first two equations give
𝑥1 =

1
2𝜆1

; 𝑥2 =
−3
2𝜆1

Substituting into the third equation,

𝜆21 =
5
8 ⟹ 𝜆1 = −√

5
8

Hence,

(𝑥1, 𝑥2) = (−√
2
5,−3√

2
5)

which is feasible using the fourth equation. By Lagrange sufficiency, this is the optimum for the
original problem.
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3.4 Weak duality
We would like to solve a problem

minimise
x∈𝒳

𝑓(x)

subject to ℎ(x) = b

by constructing the Lagrangian

𝐿(x, 𝛌) = 𝑓(x) − 𝛌⊺(ℎ(x) − b)

We now define the quantity
𝑔(𝛌) = inf

x∈𝒳
𝐿(x, 𝛌)

Theorem (Weak duality theorem). If x ∈ 𝒳(b) and 𝛌 ∈ 𝚲, then 𝑓(x) ≥ 𝑔(𝛌). In particular,

inf
x∈𝒳(b)

𝑓(x) ≥ sup
𝛌∈𝚲

𝑔(𝛌)

Proof.

inf
x∈𝒳(b)

𝑓(x) = inf
x∈𝒳(b)

𝑓(x) − 𝛌⊺(ℎ(x) − b)

≥ inf
x∈𝒳

𝑓(x) − 𝛌⊺(ℎ(x) − b)

= inf
x∈𝒳

𝐿(x, 𝛌)

= 𝑔(𝛌)

Using this weak duality property, if infx∈𝒳(b) 𝑓(x) is difficult to solve, we can first attempt sup𝛌∈𝚲 𝑔(𝛌).
The problem

maximise 𝑔(𝛌)
subject to 𝛌 ∈ 𝚲

is called the dual problem. The original is called the primal problem. The optimal cost of the primal
problem is always greater than or equal to the optimal cost of the dual problem. The duality gap is
the difference:

inf
x∈𝒳(b)

𝑓(x) − sup
𝛌∈𝚲

𝑔(𝛌)

If the duality gap is zero, then we say that strong duality holds. This strengthens the inequality into
an equality.

3.5 Strong duality and the Lagrange method
If the Lagrange method works, then we know that

inf
x∈𝒳

𝐿(x, 𝛌) = inf
x∈𝒳(b)

𝐿(x, 𝛌)
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So, taking such a 𝛌 in the proof above, we have equality instead of inequality. Hence the problem
has strong duality. Conversely, if the duality gap is zero, then there exists a 𝛌 such that the inequality
above is an equality. Hence, for this 𝛌,

inf
x∈𝒳

𝐿(x, 𝛌) = inf
x∈𝒳(b)

𝐿(x, 𝛌)

Hence this is the 𝛌 which will solve the Lagrange method. In summary, strong duality holds exactly
when the Lagrange method works.

3.6 Hyperplane condition for strong duality

Definition. A function 𝜙∶ ℝ𝑚 → ℝ is said to have a supporting hyperplane at a point b if
there exists 𝛌 ∈ ℝ𝑚 such that for all c ∈ ℝ𝑚,

𝜙(c) ≥ 𝜙(b) + 𝛌⊺(c − b)

Pictorially, 𝜙 has a supporting hyperplane if there is a plane passing through (b, 𝜙(b)), where 𝜙 is
always above the plane. This could be, for example, a tangent plane at b.

Definition. We define a function 𝜙∶ ℝ𝑚 → ℝ associated with the primal problem by

𝜙(c) = inf
x∈𝒳(c)

𝑓(x)

This𝜙 can be thought of as the optimal cost of a family of optimisation problemswith different
functional constraint values c. This is called the value function.

Theorem (Strong duality theorem). Strong duality holds if and only if the value function 𝜙
has a supporting hyperplane at b.

Proof. First, we show that a supporting hyperplane implies strong duality. We have 𝛌 such that

𝜙(c) ≥ 𝜙(b) + 𝛌⊺(c − b)

Then, we have

𝑔(𝛌) = inf
x∈𝒳

𝑓(x) − 𝛌⊺(ℎ(x) − b)

= inf
c

inf
x∈𝒳(c)

𝑓(x) − 𝛌⊺(ℎ(x) − c)⏟⎵⎵⏟⎵⎵⏟
zero since we are extremising

−𝛌⊺(c − b)

= inf
c
𝜙(c) − 𝛌⊺(c − b)

≥ 𝜙(b)

By weak duality, we also have the reverse direction: 𝑔(𝛌) ≤ 𝜙(b) Hence, 𝑔(𝛌) = 𝜙(b) and strong
duality holds. Conversely, if strong duality holds, wewant to show the existence of such a hyperplane.
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We have We have 𝛌 such that 𝑔(𝛌) = 𝜙(b). For such a 𝛌, we have

𝜙(b) = 𝑔(𝛌) = inf
x∈𝒳

𝑓(x) − 𝛌⊺(ℎ(x) − b)

= inf
x∈𝒳

𝑓(x) − 𝛌⊺(ℎ(x) − c) − 𝛌⊺(c − b)

≤ 𝜙(c) − 𝛌⊺(c − b)

The last inequality holds due to weak duality. So 𝛌 gives a supporting hyperplane.

3.7 Strong duality and convex functions
Wewould now like to consider for which problems 𝜙(b) has a supporting hyperplane. The following
theorem is stated without proof.

Theorem. A function 𝜙∶ ℝ𝑚 → ℝ is convex if and only if every point b ∈ ℝ𝑚 has a sup-
porting hyperplane.

Now, for which problems do we have a convex value function?

Theorem. Consider a minimisation problem

minimise
x∈𝒳

𝑓(x)

subject to ℎ(x) ≤ b

with value function 𝜙. Then 𝜙 is convex if:
(i) 𝒳 is convex;
(ii) 𝑓 is convex;
(iii) ℎ is convex.

This is proven in the example sheets.

3.8 Shadow prices interpretation of Lagrange multipliers
Suppose a factory owner produces 𝑛 types of products from 𝑚 types of raw materials. Suppose the
owner produces x = (𝑥1, 𝑥2,… , 𝑥𝑛) products, then the profit is some function 𝑓(x). We then create
ℎ𝑗(x) to be the amount of raw material 𝑗 consumed when making products x. The owner wants
to maximise 𝑓(x) subject to ℎ𝑖(x) ≤ 𝑏𝑖 where 𝑏𝑖 is the maximum amount of raw material 𝑖 that is
available.

Now, suppose a supplier offers some 𝛆 = (𝜀1, 𝜀2,… , 𝜀𝑚) extra raw materials to the factory owner. We
would like to calculate how much this 𝛆 is worth. The factory owner will try to maximise this new
problem, replacing b ↦ b + 𝛆. For a small enough 𝛆, this can be expressed easily using the value
function.

𝜙(b + 𝛆) − 𝜙(b) ≈
𝑚
∑
𝑗=1

𝜕𝜙
𝜕𝑏𝑗

𝜀𝑗
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The quantity 𝜕𝜙
𝜕𝑏𝑗

is the price of material 𝑗, and ∇𝜙(b) is the vector of prices. These are called the
‘shadow prices’; they are hidden to the outside world but depend on the internal state of the fact-
ory.

Theorem. If 𝜙 is differentiable at b and has a supporting hyperplane given by 𝛌, then

𝛌 = ∇𝜙(b)

Proof. Leta = (𝑎1, 𝑎2,… , 𝑎𝑚) be an arbitrary vector. Then from the supporting hyperplane condition,
for some small 𝛿 > 0 we have

𝜙(b + 𝛿a)
𝛿 ≥ 𝛌⊺a

Since 𝜙 is differentiable, the limit can be taken to give

∇𝜙(b) ⋅ a ≥ 𝛌⊺a

But a was arbitrary. This can only hold if 𝛌 = ∇𝜙(b) as required. So the Lagrange multiplier 𝛌 at b
is equal to the gradient vector of 𝜙 which is the gradient of partial derivatives and also the vector of
shadow prices.

Suppose that a particular raw material was not used up. Then there is a slack value in the inequal-
ity. The shadow price is zero in this instance, since we do not need more of this material. So the
corresponding Lagrange multiplier is equal to zero. Conversely, if we are paying something for this
material, thenwemust have used up all of thatmaterial. This is exactly the complementary slackness
property seen earlier.

There is also an economics interpretation of the dual problem. Such a problem can be seen from the
perspective of the rawmaterial seller. This seller charges a certain price 𝛌 for their rawmaterials, and
then buys the finished product from the factory. The profit of the raw material seller is

𝛌⊺(ℎ(x) − b)⏟⎵⎵⏟⎵⎵⏟
cost of materials

− 𝑓(x)⏟
buying products

For every choice of 𝛌, the factory owner will try to maximise their profit, that is, find an x⋆ such that
we maximise

𝑓(x)⏟
selling products

−𝛌⊺(ℎ(x) − b)⏟⎵⎵⏟⎵⎵⏟
cost of materials
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4 Linear programming
4.1 Linear programs
A linear program is a specific case of a constrained optimisation problem in which the objective
function and all constraints are linear functions. For instance, consider the problem

minimise
x∈ℝ4

2𝑥1 − 𝑥2 + 4𝑥3
subject to 𝑥1 + 𝑥2 + 𝑥4 ≤ 2

3𝑥2 − 𝑥3 = 5
𝑥3 + 𝑥4 ≥ 3
𝑥1 ≥ 0
𝑥3 ≤ 0

A general linear program is of the form

minimise
x∈ℝ𝑛

c⊺x

subject to a⊺𝑖 x ≥ 𝑏𝑖, 𝑖 ∈ 𝑀1

a⊺𝑖 x ≤ 𝑏𝑖, 𝑖 ∈ 𝑀2

a⊺𝑖 x = 𝑏𝑖, 𝑖 ∈ 𝑀3

𝑥𝑗 ≥ 0, 𝑗 ∈ 𝑁1
𝑥𝑗 ≤ 0, 𝑗 ∈ 𝑁2

Note that we can convert the first inequalities to the other direction by inverting the sign of a. We can
convert the ‘sign’ constraints (the last two constraints) by letting a be a one-hot vector, thus writing
them in terms of the first two inequality types. We call this process reduction to an equivalent form.
Two linear programs are equivalent if any feasible solution for one problem can be converted into
a feasible solution for the other, with the same cost. We can reduce any linear problem into the
form

minimise
x∈ℝ𝑛

c⊺x

subject to 𝐴x ≥ b

where

𝐴 =
⎛
⎜
⎜
⎝

⋯ a⊺1 ⋯
⋯ a⊺2 ⋯

⋮
⋯ a⊺𝑚 ⋯

⎞
⎟
⎟
⎠

; b =
⎛
⎜
⎜
⎝

𝑏1
𝑏2
⋮
𝑏𝑚

⎞
⎟
⎟
⎠

This is known as the general form of a linear programming problem. We could alternatively use a
‘less-than’ inequality, or simply an equality using a slack variable vector. A linear problem is said to
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be in standard form if it is written as

minimise
x∈ℝ𝑛

c⊺x

subject to 𝐴x = b
x ≥ 0

This is a special case of the general form. However, we can always reduce any general-form problem
into a standard-form problem. First, we add slack variables to convert the inequality into an equality.
Then we can convert each variable 𝑥𝑖 into the sum of 𝑥+𝑗 −𝑥−𝑗 , where 𝑥+𝑗 , 𝑥−𝑗 ≥ 0. Then, we have the
problem

minimise
x∈ℝ𝑛

c⊺(x+ − x−)

subject to 𝐴(x+ − x−) = b
x+, x− ≥ 0

Then by concatenating the vectors x+, x− into a larger vector z ∈ [0,∞)2𝑛, we have the standard
form as required.

4.2 Maximising convex functions
Solving linear programs can be seen as a special case of maximising a convex function, since we can
maximise c⊺x. Consider the problem

minimise 𝑓(x)
subject to 𝑥 ∈ 𝐶, 𝐶 convex

x ≥ 0

where 𝑓 is a convex function. Since 𝐶 is convex, if z = (1 − 𝜆)x + 𝜆y we have

𝑓(z) ≤ (1 − 𝜆)𝑓(x) + 𝜆𝑓(y) ≤ max {𝑓(x), 𝑓(y)}

Ifwewish tomaximise𝑓 over𝐶, wemight guess thatwe only need to consider points on the boundary.
After all, any point not on the boundary can be written as the weighted average of two points on the
boundary. Considering those points will give a greater (or equal) value for 𝑓.

Definition. A point x in a convex set 𝐶 is an extreme point if it cannot be written as a convex
combination of two distinct points in 𝐶; that is,

(1 − 𝛿)y + 𝛿z

for 𝛿 ∈ (0, 1) and y ≠ z.

So, more precisely, convex functions on convex sets are maximised at extreme points.
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4.3 Basic solutions and basic feasible solutions
Consider a linear problem in standard form.

minimise
x∈ℝ𝑛

c⊺x

subject to 𝐴x = b
x ≥ 0

where 𝐴 ∈ ℝ𝑚×𝑛, x ∈ ℝ𝑛,b ∈ ℝ𝑚.

Definition. Avector x is said to be a basic solution if it satisfies𝐴x = b (that is, it is a solution)
and x has atmost𝑚 nonzero entries. If also the nonzero entries are positive, then this is called
a basic feasible solution, since it lies in the feasible set x ≥ 0.

Wewill start the analysis of basic solutions bymaking three assumptions (one is defined later).

A: All 𝑚 rows of 𝐴 are linearly independent. That is, {a⊺1,… , a⊺𝑚} is a linearly independent set.
This assumption can be made without loss of generality since we can simply remove linearly
dependent constraints.

B: Every set of𝑚 columns of𝐴 is linearly independent. That is, any𝑚-subset of the set of columns
{𝐴1,… , 𝐴𝑛} is a linearly independent set. This can also be made without loss of generality by
removing the linearly dependent variables.

To find a basic solution, wewill start by choosing the coordinates𝐵(1), 𝐵(2),… , 𝐵(𝑚) to be the indices
of x that are allowed to be nonzero. Now, 𝐴x is

(
⋮ ⋮
𝐴1 ⋯ 𝐴𝑛
⋮ ⋮

)

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
⋮

𝑥𝐵(1)
⋮

𝑥𝐵(2)
⋮

𝑥𝐵(𝑚)
⋮
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= (
⋮ ⋮

𝐴𝐵(1) ⋯ 𝐴𝐵(𝑚)
⋮ ⋮

)
⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

𝐵

⎛
⎜
⎜
⎝

𝑥𝐵(1)
𝑥𝐵(2)
⋮

𝑥𝐵(𝑚)

⎞
⎟
⎟
⎠

By setting 𝐴x = b, using the above assumptions, we can invert the matrix on the left-hand side to
get

⎛
⎜
⎜
⎝

𝑥𝐵(1)
𝑥𝐵(2)
⋮

𝑥𝐵(𝑚)

⎞
⎟
⎟
⎠
= (

⋮ ⋮
𝐴𝐵(1) ⋯ 𝐴𝐵(𝑚)
⋮ ⋮

)

−1

b = 𝐵−1b

We call 𝐵 the basis matrix. The indices 𝑥𝐵(1),… , 𝑥𝐵(𝑚) are called the basic variables. The indices 𝐵(𝑖)
are called the basic indices. The columns 𝐴𝐵(𝑖) are called the basic columns. If 𝐵−1b ≥ 0, we have
found a basic feasible solution. We now need to specify one further assumption in order to continue
to analyse basic solutions.

C: Every basic solution has exactly 𝑚 nonzero entries. This assumption is known as the non-
degeneracy assumption. This assumption cannot be created without loss of generality, but it
is far simpler to discuss problems with this assumption met. Throughout this course, we will
keep this assumption to be true.
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4.4 Extreme points of the feasible set in standard form
Consider a linear program in standard form.

Theorem. x is an extreme point (of the set {x∶ 𝐴x = b, x ≥ 0}) if and only if x is a basic
feasible solution.

Remark. Since a linear program is optimised at extreme points, we only need to consider the basic
feasible solutions in order to solve the original problem. We will pick all possible 𝑚 columns of 𝐴
(there are (𝑛

𝑚
) such choices) to find all basic solutions. Filter to consider only basic feasible solutions,

then evaluate c⊺x to find the x which has the least cost. This algorithm will always work, but the
amount of choices to evaluate in higher dimensions becomes too inefficient for real-world use.

Proof. First, suppose we know x is a basic feasible solution, and there exist feasible y, z such that
x = (1 − 𝛿)y + 𝛿z and 𝛿 ∈ (0, 1). We know x ≥ 0 and x has at most 𝑚 nonzero entries. Since y, z
are positive, then y, z must be zero in every index that x must be zero. Specifically, 𝑦𝑗 = 𝑧𝑗 = 0 for
𝑗 ∉ {𝐵(1),… , 𝐵(𝑚)}. Now, we define

y𝐵 = (
𝑦𝐵(1)
⋮

𝑦𝐵(𝑚)

) ; z𝐵 = (
𝑧𝐵(1)
⋮

𝑧𝐵(𝑚)

)

We then have 𝐵y𝐵 = b; 𝐵z𝐵 = b because 𝐴y = 𝐴z = b. Hence, y𝐵 = z𝐵 = 𝐵−1b and so x = y = z.
Conversely, suppose x is not a basic feasible solution. We wish to show it is not an extreme point.
Then x has an amount of nonzero indices greater than𝑚. Let such indices be 𝑖1,… , 𝑖𝑟 where 𝑟 > 𝑚.
Consider the columns 𝐴𝑖1 ,… , 𝐴𝑖𝑟 . Since the rank of 𝐴 is only 𝑚, these columns form a linearly
dependent set. Hence, we can find some weights, not all of which are zero, which give zero when
multiplied by the columns.

𝑤𝑖1𝐴𝑖1 + 𝑤𝑖2𝐴𝑖2 +⋯+𝑤𝑖𝑟𝐴𝑖𝑟 = 0
We now define the vectorw by

𝑤𝑖 = {0 𝑖 ∉ {𝑖1,… , 𝑖𝑟}
𝑤𝑖𝑗 𝑖 = 𝑖𝑗

So we have a nonzero vectorw with 𝐴w = 0. We can consider the two points x ± 𝜀w, which satisfy
𝐴(x ± 𝜀w) = 0. Such perturbed points only change the nonzero indices of x. So we can find an 𝜀
small enough such that both of x ± 𝜀w are in the feasible set, that is, x ± 𝜀w ≥ 0. We therefore can
express x as the midpoint of these two points, hence x is not an extreme point.

5 Duality in linear programming
5.1 Strong duality of linear programs

Theorem. If a linear program is bounded and feasible, then strong duality holds.

Proof. This is true since the value function is convex.
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5.2 Duals of linear programs in standard form
Consider a linear program in standard form:

minimise c⊺x
subject to 𝐴x = b

x ≥ 0
The dual problem is therefore

maximise 𝑔(𝛌) = inf
x∈𝒳

𝐿(x, 𝛌)

subject to 𝛌 ∈ 𝚲

The function 𝑔 is given by
𝑔(𝛌) = inf

x≥0
c⊺x − 𝛌⊺(𝐴x − b)

= inf
x≥0

(c⊺ − 𝛌⊺𝐴)x + 𝛌⊺b

This is only bounded below where c⊺ − 𝛌⊺𝐴 ≥ 0. Hence
𝚲 = {𝛌∶ 𝛌⊺𝐴 ≤ c⊺}

Further, the minimum value of 𝑔 for 𝛌 ∈ 𝚲 is 𝛌⊺b. Therefore, the dual problem is

maximise 𝛌⊺b
subject to 𝛌⊺𝐴 ≤ c⊺

Thedual of a linear program in standard form is a linear problem, but no longer in standard form.

5.3 Duals of linear programs in general form
Consider a linear program in general form:

minimise c⊺x
subject to 𝐴x ≥ b

We can introduce a slack variable s and write equivalently

minimise c⊺x
subject to 𝐴x − s = b

s ≥ 0
To calculate the dual, we need to calculate 𝑔(𝛌).

𝑔(𝛌) = inf
x,s≥0

c⊺x − 𝛌⊺(𝐴x − s − b)

= inf
x,s≥0

(c⊺ − 𝛌⊺𝐴)x + 𝛌⊺s + 𝛌⊺b
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In this case, since xmay be any value, we must have c⊺ − 𝛌⊺𝐴 = 0. Further, since the slack variable
can be any positive value, 𝛌⊺ ≥ 0. The infimum is 𝛌⊺b since s may be set to zero. Thus, the dual
is

maximise 𝛌⊺b
subject to 𝛌⊺𝐴 = c⊺

𝛌 ≥ 0

The dual of a general linear program is a linear program in standard form.

5.4 Dual of dual program
Thedual of a dual problem is the primal problem. Suppose the primal problem is in standard form:

minimise c⊺x
subject to 𝐴x = b

x ≥ 0

We know the dual is

maximise 𝛌⊺b
subject to 𝛌⊺𝐴 ≤ c⊺

Equivalently,

− minimise − 𝛌⊺b
subject to − 𝛌⊺𝐴 ≥ −c⊺

Defining �̃� = −𝛌⊺, we have

− minimise �̃�b
subject to �̃�𝐴 ≥ −c⊺

We can find the dual of this problem using the solution above.

− maximise − 𝛉⊺c
subject to 𝛉⊺𝐴⊺ = b⊺

𝛉 ≥ 0

This is equivalent to the primal problem.
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5.5 Dual of arbitrary linear program
Consider the problem

minimise c⊺x
subject to a⊺𝑖 x ≥ b𝑖 𝑖 ∈ 𝑀1

a⊺𝑖 x ≤ b𝑖 𝑖 ∈ 𝑀2

a⊺𝑖 x = b𝑖 𝑖 ∈ 𝑀3

𝑥𝑗 ≥ 0 𝑗 ∈ 𝑁1
𝑥𝑗 ≤ 0 𝑗 ∈ 𝑁2
𝑥𝑗 free 𝑗 ∈ 𝑁3

The dual of this problem is

maximise p⊺b
subject to 𝑝𝑖 ≥ 0 𝑖 ∈ 𝑀1

𝑝𝑖 ≤ 0 𝑖 ∈ 𝑀2
𝑝𝑖 free 𝑖 ∈ 𝑀3
p⊺A𝑗 ≤ c𝑗 𝑗 ∈ 𝑁1
p⊺A𝑗 ≥ c𝑗 𝑗 ∈ 𝑁2
p⊺A𝑗 = c𝑗 𝑗 ∈ 𝑁3

This will be shown in the example sheets.

5.6 Optimality conditions
If x is feasible for the primal, p is feasible for the dual, and complementary slackness holds, then x is
optimal for the primal and p is optimal for the dual.

Theorem (Fundamental Theorem of Linear Programming). Let x,p be feasible solutions to
the primal and dual problems respectively. Then x,p are optimal for these problems if and
only if

• 𝑝𝑖(a⊺𝑖 x − 𝑏𝑖) = 0 for all 𝑖, and
• (𝑐𝑗 − p⊺A𝑗)𝑥𝑗 = 0 for all 𝑗.

Proof. First, let us define 𝑢𝑖 = 𝑝𝑖(a⊺𝑖 x − 𝑏𝑖) and 𝑣𝑗 = (𝑐𝑗 − p⊺A𝑗)𝑥𝑗 . Observe that if x,p are feasible,
then 𝑢𝑖 ≥ 0 for all 𝑖, and 𝑣𝑗 ≥ 0 for all 𝑗. This can be seen by the signs of the constraints on the primal
and dual problems. Now,

∑𝑢𝑖 = ∑𝑝𝑖(a⊺𝑖 x − 𝑏𝑖) = p⊺𝐴x − p⊺b
Similarly,

∑𝑣𝑗 = ∑(𝑐𝑗 − p⊺A𝑗)𝑥𝑗 = c⊺x − p⊺𝐴x
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Then,
∑𝑢𝑖 +∑𝑣𝑗 = c⊺x − p⊺b

which is the difference between the two objective functions in the primal and the dual. Hence,

0 ≤ ∑𝑢𝑖 +∑𝑣𝑗 = c⊺x − p⊺b

So if complementary slackness holds, then 𝑢𝑖 = 0 and 𝑣𝑗 = 0 for all 𝑖, 𝑗. This then implies that
c⊺x = p⊺b. By weak duality, x and p must be optimal. Conversely, suppose x,p are optimal. By
strong duality, c⊺x = p⊺b.

0 ≤ ∑𝑢𝑖 +∑𝑣𝑗 = c⊺x − p⊺b = 0
Thus∑𝑢𝑖 +∑𝑣𝑗 = 0. Since all 𝑢𝑖, 𝑣𝑗 are non-negative, 𝑢𝑖 = 0 and 𝑣𝑗 = 0 for all 𝑖, 𝑗. Equivalently,
complementary slackness holds.

6 Simplex method
6.1 Introduction
Consider the problem

minimise c⊺x
subject to 𝐴x = b

x ≥ 0

The dual problem is

maximise 𝛌⊺b
subject to 𝛌⊺𝐴 ≤ c⊺

The optimality conditions are

• (primal feasibility) 𝐴x = b; x ≥ 0
• (dual feasibility) 𝐴⊺𝛌 ≤ c
• (complementary slackness) x⊺(c − 𝐴⊺𝛌) = 0

Suppose x is a basic feasible solution given by

x𝐵 = (𝑥𝐵(1),… , 𝑥𝐵(𝑚))

Substituting this x into the complementary slackness equation gives

x⊺𝐵c𝐵 − x⊺𝐵𝐵⊺𝛌 = 0 ⟹ x⊺𝐵(c𝐵 − 𝐵⊺𝛌) = 0

For a basic feasible solution, x𝐵 > 0. Hence,

c𝐵 − 𝐵⊺𝛌 = 0

Hence
𝛌 = (𝐵⊺)−1c𝐵
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So for this x and this calculated 𝛌, primal feasibility and complementary slackness both hold. What
remains now is to check if dual feasibility holds. Equivalently,

𝐴⊺𝛌 ≤ c ⟹ 𝐴⊺(𝐵⊺)−1c𝐵 ≤ c

If this holds, then the optimality conditions aremet. Thismeans thatwe do not evenneed to explicitly
find 𝛌 in order to check optimality; it suffices to check whether this single inequality holds. We
define

c = c − 𝐴⊺(𝐵⊺)−1c𝐵
This is called the vector of reduced costs. Then the inequality c ≥ 0 implies x is optimal.

6.2 Feasibility of basic directions

Definition. Let 𝑃 = {x∶ 𝐴x = b, x ≥ 0} be the feasible set of a problem in standard form.
Further, let x ∈ 𝑃. A vector d ∈ ℝ𝑛 is called a feasible direction if there exists 𝜃 > 0 such that
x + 𝜃d ∈ 𝑃.

Let x be a basic feasible solution. Let 𝐵(1),… , 𝐵(𝑚) be the indices of the basic variables, and let 𝐵
be the basis matrix [𝐴𝐵(1),… , 𝐴𝐵(𝑚)]. Let x𝐵 = (𝑥𝐵(1),… , 𝑥𝐵(𝑚))

⊺. Suppose we move in a direc-
tion d such that 𝑑𝑗 = 1, and 𝑑𝑖 = 0 for all non-basic 𝑖 ≠ 𝑗, or more explicitly 𝑖 ∈ {1, 2,… , 𝑛} ∖
{𝐵(1),… , 𝐵(𝑚), 𝑗}. This direction d is called the 𝑗th basic direction, since it moves in the direction of
the 𝑗th basic variable. Note that we can write

d = (𝑑𝐵(1),… , 𝑑𝐵(𝑚), 0, 0,… , 1⏟
𝑗th entry

,… , 0, 0)

Whenwemove in this direction, wewant tomove to a feasible point. Thismeans thatwe require

𝐴(x + 𝜃d) = b
𝐴d = 0

𝐵d𝐵 + 𝐴𝑗 = 0
d𝐵 = −𝐵−1𝐴𝑗

For the positivity condition, note that

x + 𝜃d = (𝑥𝐵(1) + 𝜃𝑑𝐵(1),… , 𝑥𝐵(𝑚) + 𝜃𝑑𝐵(𝑚), 0, 0,… , 𝜃⏟
𝑗th entry

,… , 0, 0)

For this x to be feasible, all 𝑥𝑖 must be non-negative. Since 𝑥𝐵(𝑖) > 0, there exists a small enough 𝜃
such that x + 𝜃d ≥ 0. Hence, the 𝑗th basic direction is feasible.

6.3 Cost of basic directions
How does the cost change when x ↦ x + 𝜃d where d is the (feasible) 𝑗th basic direction? The new
cost is

c⊺(x + 𝜃d) = c⊺(x + 𝜃(−𝐵−1𝐴𝑗))
= c⊺x + 𝜃(𝑐𝑗 − c⊺𝐵𝐵−1𝐴𝑗)
= c⊺x + 𝜃𝑐𝑗
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Theorem. Let x be a basic feasible solution associated with a basis matrix 𝐵, and let c be the
vector of reduced costs. Then x is optimal if and only if c ≥ 0.

Proof. This follows from the optimality conditions given previously.

Now, if 𝑐𝑗 ≥ 0 for all 𝑗, then this is an optimal solution. However, if any 𝑐𝑗 < 0, then we can move in
the 𝑗th direction and decrease the cost.

6.4 Moving to basic feasible solutions
Suppose x is a basic feasible solution. If c ≥ 0, then this is the optimum and we can stop. If 𝑐𝑗 < 0
for some 𝑗, then moving in the 𝑗th feasible direction will reduce the cost by 𝜃𝑐𝑗 . The amount by
which the cost decreases is proportional to 𝜃, so we should choose the largest possible value of 𝜃
while retaining feasibility. We denote this largest 𝜃 with 𝜃⋆. There are two cases:

• If d ≥ 0, then 𝜃 is unbounded since x+ 𝜃d ≥ 0 for all 𝜃 > 0. Therefore the optimal cost of this
problem is −∞.

• If 𝑑𝑖 < 0 for some 𝑖, then we need 𝑥𝑖 + 𝜃𝑑𝑖 ≥ 0, so 𝜃⋆ ≤ −𝑥𝑖
𝑑𝑖
. This then gives

𝜃⋆ = min
{𝑖 ∶ 𝑑𝑖<0}

−𝑥𝑖𝑑𝑖

or equivalently,
𝜃⋆ = min

{𝑖∈{1,…,𝑚}∶ 𝑑𝐵(𝑖)<0}
−
𝑥𝐵(𝑖)
𝑑𝐵(𝑖)

Suppose the optimal cost is bounded. Let ℓ be the index minimising 𝜃⋆, so

𝜃⋆ = −
𝑥𝐵(ℓ)
𝑑𝐵(ℓ)

Now, let us move in this direction by this amount.

Theorem. Let y = x + 𝜃⋆d. y is feasible, and c⊺y < c⊺x. Then, y is a basic feasible solution
with basis matrix

𝐵 = (
⋮ ⋮ ⋮ ⋮ ⋮

𝐴𝐵(1) ⋯ 𝐴𝐵(ℓ−1) 𝐴𝑗 𝐴𝐵(ℓ+1) ⋯ 𝐴𝐵(𝑚)
⋮ ⋮ ⋮ ⋮ ⋮

)

Proof. We know that y has exactly𝑚 nonzero entries, since 𝑦𝐵(ℓ) = 0. We know it is feasible, hence
y is a basic feasible solution. 𝑗 becomes a basic variable and 𝐵(ℓ) is no longer.
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6.5 Simplex method

Algorithm 3: Simplex Method
Result: Global minimum of c⊺x
start at a basic feasible solution x with basis matrix 𝐵 = [𝐴𝐵(1),… , 𝐴𝐵(𝑚)];
repeat

choose 𝑗 such that 𝑐𝑗 < 0;
u← −𝐵−1𝐴𝑗 ;
if u ≤ 0 then cost is −∞ so terminate algorithm;
𝜃⋆ ← min 𝑥𝐵(𝑖)

𝑢𝑖
where 𝑖 ∈ {1,… ,𝑚} and 𝑢𝑖 > 0;

ℓ ← an index 𝑖 from the step above that gives the minimal value of 𝜃⋆;
x← x − 𝜃⋆u;

until c ≥ 0;
since c ≥ 0, x is optimal

6.6 Tableau implementation
The full tableau implementation of the simplex method is a convenient way of executing the sim-
plex algorithm without excessive computation. A simplex tableau contains four values of informa-
tion:

−c⊺𝐵 c

𝐵−1b 𝐵−1𝐴

The information is essentially

−cost reduced costs

vector to generate current basic feasible solution matrix to generate basic directions

In a more detailed form,

−c⊺𝐵 𝑐1 𝑐2 ⋯ 𝑐𝑛

𝑥𝐵(1) ⋮ ⋮ ⋮

⋮ 𝐵−1𝐴1 𝐵−1𝐴2 ⋯ 𝐵−1𝐴𝑛

𝑥𝐵(𝑚) ⋮ ⋮ ⋮

To execute the simplex algorithm using this table, use the following algorithm.
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Algorithm 4: Simplex Method (Tableau Implementation)
Result: Global minimum of c⊺x
start at a basic feasible solution x with basis matrix 𝐵 = [𝐴𝐵(1),… , 𝐴𝐵(𝑚)];
repeat

choose 𝑗 such that 𝑐𝑗 < 0;
u← −𝐵−1𝐴𝑗 ;
if u ≤ 0 then cost is −∞ so terminate algorithm;
𝜃⋆ ← min 𝑥𝐵(𝑖)

𝑢𝑖
where 𝑖 ∈ {1,… ,𝑚} and 𝑢𝑖 > 0;

ℓ ← an index 𝑖 from the step above that gives the minimal value of 𝜃⋆;
(∗) add to each row of the tableau a constant multiple of the ℓth row so that 𝑢ℓ becomes
1 and all other entries of the pivot column are 0;

until c ≥ 0 (when all entries in the 0th row are non-negative);
since c ≥ 0, x is optimal

This is just the same as the simplex method discussed before, apart from step (∗). No proof will be
given for why this step achieves the same result as the full simplex algorithm.

Example. Consider the problem

minimise
x∈ℝ3

− 𝑥1 − 𝑥2 − 𝑥3
subject to 𝑥1 + 2𝑥2 + 2𝑥3 ≤ 10

2𝑥1 + 𝑥2 + 2𝑥3 ≤ 10
2𝑥1 + 2𝑥2 + 𝑥3 ≤ 20
𝑥1, 𝑥2, 𝑥3 ≥ 0

By introducing slack variables, we can write this in standard form.

minimise
x∈ℝ6

− 𝑥1 − 𝑥2 − 𝑥3
subject to 𝑥1 + 2𝑥2 + 2𝑥3 + 𝑥4 = 10

2𝑥1 + 𝑥2 + 2𝑥3 + 𝑥5 = 10
2𝑥1 + 2𝑥2 + 𝑥3 + 𝑥6 = 20
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 ≥ 0

Observe that (0, 0, 0, 10, 10, 20) is a basic feasible solution. We will use this to initiate the simplex
algorithm. The corresponding basis matrix is the 3 × 3 identity matrix. We construct the simplex
tableau by first constructing the 0th row:

• c𝐵 = 0 hence c⊺𝐵x𝐵 = 0.

• c = c.
We construct the tableau as follows.
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0 −1 −1 −1 0 0 0

10 1 2 2 1 0 0

10 2 1 2 0 1 0

20 2 2 1 0 0 1

𝑐1 < 0, so we will descend in the 1st basic direction. Consider 10
1
, 10
2
, 20
2
. The smallest is 10

2
= 5,

so the favourite element is the number 2 in the 1st column and 2nd row. We want to change this
column to (0, 0, 1, 0)⊺ by using row operations. Denoting the rows as 𝑅0,… , 𝑅3, we want to perform
the operations

𝑅0 ↦ 𝑅0 +
1
2𝑅2

𝑅1 ↦ 𝑅1 −
1
2𝑅2

𝑅2 ↦
1
2𝑅2

𝑅3 ↦ 𝑅3 − 𝑅2

The tableau now looks like this.

5 0 −0.5 0 0 0.5 0

5 0 1.5 1 1 −0.5 0

5 1 0.5 1 0 0.5 0

10 0 1 −1 0 −1 1

Now, 𝑐2 < 0, so we will descend in the 2nd basic direction. Consider 5
1.5
, 5
0.5
, 10
1
. The smallest is 5

1.5
,

so the favourite element is the 1.5 in the 1st row and 2nd column. To make the column a one-hot
vector, we perform

𝑅0 ↦ 𝑅0 +
1
3𝑅1

𝑅1 ↦
2
3𝑅1

𝑅2 ↦ 𝑅2 −
1
3𝑅1

𝑅3 ↦ 𝑅3 −
2
3𝑅1
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This yields

20
3

0 0 1
3

1
3

1
3

0

10
3

0 1 2
3

2
3

− 3
4

0

10
3

1 0 2
3

− 1
3

2
3

0

20
3

0 0 − 5
3

− 2
3

− 2
3

1

Now, the 0th row has no negative values, so we are at the optimum. The optimal cost therefore is
− 20

3
. The solution is at ( 10

3
, 10
3
, 0, 0, 0, 20

3
).

7 Game theory
7.1 Zero-sum games

Definition. A zero-sum two-person game is a scenario in which two players (denoted P1 and
P2) have different actions they can take:

• P1 has𝑚 possible actions {1, 2,… ,𝑚}, and
• P2 has 𝑛 possible actions {1, 2,… , 𝑛}; such that

if P1 plays move 𝑖 and P2 plays move 𝑗, then we say P1 ‘wins’ an amount 𝑎𝑖𝑗 and P2 ‘loses’ the
same amount 𝑎𝑖𝑗 . The matrix of results 𝐴 is called the payoff matrix. P1 chooses a row of the
matrix, and P2 chooses a column, and the intersection is the outcome of the game.

Suppose P1 plays first, and chooses row 𝑖. P1 knows that P2 will choose the column 𝑗 such that 𝑎𝑖𝑗
is minimised, since that will maximise P2’s winnings. In particular, if P1 picks row 𝑖 then they can
expect to win min𝑗∈{1,…,𝑚} 𝑎𝑖𝑗 . So P1 will try to solve the problem

maximise min
𝑗∈{1,…,𝑚}

𝑎𝑖𝑗

subject to 𝑖 ∈ {1,… , 𝑛}
If P2 plays first, they will try to solve the problem

minimise max
𝑖∈{1,…,𝑛}

𝑎𝑖𝑗

subject to 𝑗 ∈ {1,… ,𝑚}

Example. Suppose the payoff matrix is

𝐴 = (1 2
3 4)

P1 chooses a row, and P2 chooses a column. If P1 plays first, they choose row 2, then P2 chooses row
1, and the payoff is 3. If P2 plays first, they choose column 1, then P1 chooses row 2, and the payoff
is again 3. Since the solution is the same for both problems, this point (2, 1) is called a saddle point.
The value 𝑎21 = 3 is called the value of the game.
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Example. Consider the payoff matrix
𝐴 = (4 2

1 3)

If P1 plays first, they choose row 1, then P2 chooses column 2, and the payoff is 2. If P2 plays first,
they choose column 2, then P1 chooses row 2, and the payoff is 3. Here, both players cannot play
optimally simultaneously since different outcomes will occur depending on what they think their
opponent will do.

7.2 Mixed strategies
In a mixed strategy, the players are allowed to choose their action randomly. Such mixed strategies
are employed when we do not know what our opponent will pick; for example, when both players
choose their option at the same time. P1 picks action 𝑖with probability 𝑝𝑖, and P2 picks action 𝑗with
probability 𝑞𝑗 , such that∑𝑝𝑖 = ∑𝑞𝑗 = 1. Now, a player’s strategy is encoded as a probability vector.
If P1 picks the mixed strategy (𝑝1,… , 𝑝𝑚), then the expected reward of P1 (if P2 picks a pure strategy
𝑗) is

∑
𝑖
𝑎𝑖𝑗𝑝𝑖

The optimisation problem for P1 is

maximise min
𝑗∈{1,…,𝑛}

∑
𝑖
𝑎𝑖𝑗𝑝𝑖

subject to ∑𝑝𝑖 = 1
p ≥ 0

Equivalently, where e = (1, 1,… , 1)⊺,

maximise 𝑣
subject to 𝐴⊺p ≥ 𝑣e

e⊺p = 1
p ≥ 0

This 𝑣 is the minimum value of 𝐴⊺p. P2’s optimisation problem is

minimise max
𝑖∈{1,…,𝑚}

∑
𝑖
𝑎𝑖𝑗𝑞𝑗

subject to ∑𝑞𝑗 = 1
q ≥ 0

or equivalently,

minimise 𝑤
subject to 𝐴q ≤ 𝑤e

e⊺q = 1
q ≥ 0
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7.3 Duality of mixed strategy problems
The two problems above are duals of each other. Adding slack variables, P2’s problem is

minimise 𝑤
subject to 𝐴q + s = 𝑤e

e⊺q = 1
q ≥ 0
s ≥ 0

The Lagrangian of this problem is

𝐿(𝑤,q, s, 𝛌1, 𝜆2) = 𝑤 + 𝛌⊺1(𝐴q + s − 𝑤e) − 𝜆2(e⊺q − 1)
= 𝑤(1 − 𝛌⊺1e) + (𝛌⊺1𝐴 − 𝜆2e⊺)q + 𝛌⊺1s + 𝜆2

Thus,
𝚲 = {𝛌∶ 𝛌⊺1e = 1, 𝛌⊺1𝐴 − 𝜆2e⊺ ≥ 0, 𝛌1 ≥ 0}

When 𝛌 ∈ 𝚲,
inf𝐿 = 𝜆2

Hence the dual is

maximise 𝜆2
subject to 𝛌⊺1e = 1

𝛌⊺1𝐴 ≥ 𝜆2e⊺
𝛌1 ≥ 0

Note that 𝛌1 = p and 𝜆2 = 𝑣 in the above formulation of P1’s problem.

Theorem. A strategy p is optimal for P1 if there exist q, 𝑣 such that
• (primal feasibility) 𝐴⊺p ≥ 𝑣e, e⊺p = 1,p ≥ 0;
• (dual feasibility) 𝐴q ≤ 𝑣e, e⊺q = 1,q ≥ 0; and
• (complementary slackness) 𝑣 = p⊺𝐴q

Proof. (p, 𝑣) and (q, 𝑤) are optimal if

(𝐴q − 𝑤e)⊺p = 0;q⊺(𝐴⊺p − 𝑣e) = 0

which gives
𝑣 = 𝑤 = p⊺𝐴q

7.4 Finding optimal strategies
There are a number of strategies for finding optimal strategies.

(i) We can search for saddle points in the payoff matrix. If such a saddle point is found, a pure
strategy aiming for this saddle point is optimal for both players.
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(ii) We can search for dominating actions. Suppose there exist 𝑖, 𝑖′ such that 𝑎𝑖𝑗 ≥ 𝑎𝑖′𝑗 for all 𝑗.
Then 𝑖 dominates 𝑖′, so P1 will never play 𝑖′ and we can simply drop this row in the matrix. A
similar technique can be used to drop columns.

(iii) If these simplification techniques are not sufficient, we can simply solve the linear program
using (for instance) the simplex method.

Example. Suppose we have a payoff matrix

𝐴 = (
2 3 4
3 1 1

2
1 3 2

)

First, observe that there is no saddle point. Note that the first row dominates the last row, so we can
simplify the payoff matrix to

𝐴 = (
2 3 4
3 1 1

2
)

P1’s strategy is p = (𝑝, 1 − 𝑝, 0), and the optimisation problem is

maximise 𝑣
subject to 𝐴⊺p ≥ 𝑣e

e⊺p = 1
p ≥ 0

which is

maximise 𝑣
subject to 2𝑝 + 3(1 − 𝑝) ≥ 𝑣

3𝑝 + (1 − 𝑝) ≥ 𝑣

4𝑝 + 1
2(1 − 𝑝) ≥ 𝑣

0 ≤ 𝑝 ≤ 1

and by simplifying,

maximise 𝑣
subject to 𝑣 ≤ 3 − 𝑝

𝑣 ≤ 1 + 2𝑝

𝑣 ≤ 1
2 +

7
2𝑝

0 ≤ 𝑝 ≤ 1

We can solve this graphically since it is a one-dimensional problem, or use the simplex method. We
arrive at the solution p = ( 2

3
, 1
3
, 0), i.e. 𝑝 = 2

3
. The payoff is 7

3
. Player 2 has the dual optimisation

problem, so we can use complementary slackness to compute P2’s strategy. The first two constraints
are tight, but the final constraint may not be (since it is zero in P1’s strategy). Therefore 𝑞3 = 0, and
P2’s strategy is q = (𝑞, 1 − 𝑞, 0). Since the value of the game is 7

3
, we have

7
3 = p⊺𝐴q

37



which lets us find 𝑞. Alternatively, we can use complementary slackness. Since 𝑝1, 𝑝2 > 0, the first
two constraints in the dual problem must be tight.

2𝑞 + 3(1 − 𝑞) = 7
3 ⟹ 𝑞 = 2

3

8 Network flows
8.1 Minimum cost flow

Definition. A directed graph (also known as a digraph) 𝐺 consists of a set of vertices and a
set of edges; 𝐺 = (𝑉, 𝐸). The edges are such that 𝐸 ⊆ 𝑉 × 𝑉 . Each edge (𝑖, 𝑗) can be thought
of as an edge pointing from vertex 𝑖 to vertex 𝑗. When 𝐸 is symmetric (that is, (𝑖, 𝑗) ∈ 𝐸 ⟺
(𝑗, 𝑖) ∈ 𝐸), we call 𝐺 an undirected graph.

Definition. Given a graph 𝐺 = (𝑉, 𝐸) on 𝑛 vertices, we associate to every (𝑖, 𝑗) ∈ 𝐸 the
number 𝑥𝑖𝑗 . This represents the flow of a quantity from vertex 𝑖 to vertex 𝑗. The collection 𝑥
of 𝑥𝑖𝑗 is called the flow. The flow 𝑥 is affected by
(i) A vector b ∈ ℝ𝑛, where 𝑏𝑖 is the amount of flow entering vertex 𝑖 from outside the

graph. If 𝑏𝑖 > 0, then vertex 𝑖 is called a source. If 𝑏𝑖 < 0, then vertex 𝑖 is called a sink.
(ii) The cost matrix 𝑐 ∈ ℝ𝑛×𝑛, which gives the cost 𝑐𝑖𝑗 per unit of flow on (𝑖, 𝑗) ∈ 𝐸. If the

flow along (𝑖, 𝑗) is 𝑥𝑖𝑗 , the cost for this flow is 𝑐𝑖𝑗𝑥𝑖𝑗 (without the summation conven-
tion).

(iii) The lower boundmatrix𝑀 and the upper boundmatrix𝑀, which give lower and upper
bounds on 𝑥𝑖𝑗 . In particular, for all (𝑖, 𝑗) ∈ 𝐸, we require𝑚𝑖𝑗 ≤ 𝑥𝑖𝑗 ≤ 𝑚𝑖𝑗 .

Definition. Theminimum cost flow is the linear program

minimise ∑
(𝑖,𝑗)∈𝐸

𝑐𝑖𝑗𝑥𝑖𝑗

subject to 𝑚𝑖𝑗 ≤ 𝑥𝑖𝑗 ≤ 𝑚𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐸

𝑏𝑖 + ∑
(𝑗,𝑖)∈𝐸

𝑥𝑗𝑖 = ∑
(𝑖,𝑗)∈𝐸

𝑥𝑖𝑗 ∀𝑖 ∈ 𝑉

The second constraint is a conservation of flow equation. The amount of flow entering and
leaving the vertex must be equal. Note that in order for the problem to be feasible,∑𝑏𝑖 = 0;
since the graph has no storage capacity at any vertex, the amount of flow that enters the graph
must be the amount of flow that exits. Alternatively, we could prove this by finding the sum
of the conservation of flow equations for all 𝑖.

Definition. We can define the incidence matrix 𝐴∶ ℝ|𝑉|×|𝐸|. Each column of 𝐴 is associated
with an edge (𝑖, 𝑗). We define that this column is filled with zeroes, except for +1 at position
𝑖 and −1 at position 𝑗. We can now rewrite the conservation of flow equation as

𝐴x = b
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8.2 Transport problem
The transport problem is a special case of the minimum cost flow problem. Consider 𝑛 suppliers,
and 𝑚 consumers. Each supplier 𝑖 has some capacity 𝑠𝑖 for how much of this good they can satisfy,
and each consumer 𝑗 has some demand 𝑑𝑗 that they want to be fulfilled. We will assume that there
is exactly as much supply as demand; that is,∑𝑠𝑖 = ∑𝑑𝑗 . The cost of transporting one unit of this
good from supplier 𝑖 to consumer 𝑗 is 𝑐𝑖𝑗 . For this problem, the graph 𝐺 is a bipartite graph; it can be
separated into a set of sources and a set of sinks, and the edges are only from the sources to the sinks.
The optimisation problem is

minimise
𝑛
∑
𝑖=1

𝑚
∑
𝑗=1

𝑐𝑖𝑗𝑥𝑖𝑗

subject to
𝑚
∑
𝑗=1

𝑥𝑖𝑗 = 𝑠𝑖 ∀𝑖 ∈ {1,… , 𝑛}

𝑚
∑
𝑖=1

𝑥𝑖𝑗 = 𝑑𝑗 ∀𝑗 ∈ {1,… ,𝑚}

which is a special case of the minimum flow problem.

8.3 Sufficiency of transport problem

Theorem. Every minimum cost flow problem with either finite capacities or non-negative
capacities can be translated into an equivalent transport problem.

Proof. Consider the minimum cost flow problem on a graph 𝐺 = (𝑉, 𝐸). We may assume without
loss of generality that𝑚𝑖𝑗 = 0 for all (𝑖, 𝑗) ∈ 𝐸, because we may write 𝑥𝑖𝑗 = 𝑚𝑖𝑗 + ̃𝑥𝑖𝑗 where ̃𝑥𝑖𝑗 > 0.
Then the conservation equation becomes

̃𝑏𝑖 + ∑
(𝑗,𝑖)∈𝐸

̃𝑥𝑗𝑖 = ∑
(𝑖,𝑗)∈𝐸

̃𝑥𝑖𝑗

where ̃𝑏𝑖 = ∑(𝑗,𝑖)∈𝐸𝑚𝑗𝑖 −∑(𝑖,𝑗)∈𝐸𝑚𝑖𝑗 . The regional constraints are now

0 ≤ ̃𝑥𝑖𝑗 ≤ 𝑚𝑖𝑗 −𝑚𝑖𝑗

We assume that 𝑚𝑖𝑗 ≡ 0 from now. If all the costs are non-negative and a particular capacity is
infinite, then we can replace that capacity by a large number e.g. ∑|𝑏𝑖|, which is the maximum
amount of flow that could possibly travel along this edge. This transformation does not change the
optimal solution. We have now reduced to the case where all capacities are finite.

Now, for each such minimum cost flow problem, we will construct an equivalent transport problem
that has the same feasible solutions and the same costs. For each vertex 𝑖, we create a consumer with
demand∑(𝑖,𝑗)∈𝐸𝑚𝑖𝑘−𝑏𝑖. For every edge (𝑖, 𝑗), we create a supplier with supply𝑚𝑖𝑗 . The total supply
and the total demand are equal, since∑𝑖 𝑏𝑖 = 0. We now define the cost of moving from (𝑖, 𝑗) → 𝑖 is
zero. We further define the cost of moving from (𝑖, 𝑗) → 𝑗 is 𝑐𝑖𝑗 .
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Now, suppose 𝑥𝑖𝑗 flows from (𝑖, 𝑗) → 𝑗. Then𝑚𝑖𝑗 −𝑥𝑖𝑗 flows from (𝑖, 𝑗) → 𝑖, since the total incoming
and outgoing flow from (𝑖, 𝑗)must balance. Then, since the demand at 𝑖 is∑(𝑖,𝑗)∈𝐸𝑚𝑖𝑘−𝑏𝑖, the total
flow into 𝑖 satisfies

∑
(𝑖,𝑘)∈𝐸

(𝑚𝑖𝑘 − 𝑥𝑖𝑘) + ∑
(𝑘,𝑖)∈𝐸

𝑥𝑘𝑖 = ∑
(𝑖,𝑗)∈𝐸

𝑚𝑖𝑘 − 𝑏𝑖

which simplifies to the conservation equation for the minimum cost flow problem. We can easily
check that 0 ≤ 𝑥𝑖𝑗 ≤ 𝑚𝑖𝑗 . So this mapping between the minimum cost flow problem and the trans-
port problem preserves feasibility of solutions.

It now suffices to show that the costs of the two feasible solutions for the two problems are the same;
since thenwewill have demonstrated amapping between the two problems. The cost in the transport
problem is∑(𝑖,𝑗)∈𝐸 𝑥𝑖𝑗𝑐𝑖𝑗 since the edge from (𝑖, 𝑗) to 𝑖 has zero cost. This is identical to the cost in
the minimum cost flow problem.

8.4 Optimality conditions for transport problem
Recall that for a linear program, there are three optimality conditions: primal feasibility, dual feasib-
ility, and complementary slackness. These have various interpretations in the context of a transport
problem.

Theorem. If for some feasible 𝑥 we have dual variables 𝛌 ∈ ℝ𝑛 (for suppliers) and 𝛍 ∈ ℝ𝑚

(for consumers), such that:
(i) 𝜆𝑖 + 𝜇𝑗 ≤ 𝑐𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐸; and
(ii) (𝑐𝑖𝑗 − (𝜆𝑖 + 𝜇𝑗))𝑥𝑖𝑗 = 0 ∀(𝑖, 𝑗) ∈ 𝐸

then 𝑥 is an optimal solution.

Proof. The Lagrangian of the transport problem is

𝐿(𝑥, 𝛌, 𝛍) =
𝑛
∑
𝑖=1

𝑚
∑
𝑗=1

𝑐𝑖𝑗𝑥𝑖𝑗 −
𝑛
∑
𝑖=1

𝜆𝑖(
𝑚
∑
𝑗=1

𝑥𝑖𝑗 − 𝑠𝑖) −
𝑚
∑
𝑗=1

𝜇𝑗(
𝑛
∑
𝑖=1

𝑥𝑖𝑗 − 𝑑𝑗)

=
𝑛
∑
𝑖=1

𝑚
∑
𝑗=1

(𝑐𝑖𝑗 − 𝜆𝑖 − 𝜇𝑗)𝑥𝑖𝑗 +
𝑛
∑
𝑖=1

𝜆𝑖𝑠𝑖 +
𝑚
∑
𝑗=1

𝜇𝑗𝑑𝑗

(𝛌, 𝛍) is dual feasible if 𝜆𝑖 + 𝜇𝑗 ≤ 𝑐𝑖𝑗 for all 𝑖, 𝑗. We have primal feasibility, dual feasibility, and
complementary slackness, so optimality holds.

Note that if 𝛌, 𝛍 are optimal, then 𝛌+𝑘, 𝛍−𝑘 are also optimal, since (𝜆𝑖+𝑘)+(𝜇𝑗−𝑘) = 𝜆𝑖+𝜇𝑗 . So for
simplicity, we can always choose 𝜆1 = 0. This gives𝑚+𝑛−1 remaining Lagrangemultipliers.

9 The transport algorithm
9.1 Transportation tableaux
Analogously to the simplex tableaux, for the transport problemwe can create transportation tableaux.
This is a convenient format for storing all relevant information for the transport problem while solv-
ing it. The transportation tableau is as follows:
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𝜇1 𝜇2 ⋯ 𝜇𝑚
𝜆1

𝜆1 + 𝜇1 𝜆1 + 𝜇2 ⋯ 𝜆1 + 𝜇𝑚 𝑠1𝑥11 𝑐11 𝑥12 𝑐12 𝑥1𝑚 𝑐1𝑚
𝜆2

𝜆2 + 𝜇1 𝜆2 + 𝜇2 ⋯ 𝜆2 + 𝜇𝑚 𝑠2𝑥21 𝑐21 𝑥22 𝑐22 𝑥2𝑚 𝑐2𝑚
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝜆𝑛
𝜆𝑛 + 𝜇1 𝜆𝑛 + 𝜇2 ⋯ 𝜆𝑛 + 𝜇𝑚 𝑠𝑛𝑥𝑛1 𝑐𝑛1 𝑥𝑛2 𝑐𝑛2 𝑥𝑛𝑚 𝑐𝑛𝑚
𝑑1 𝑑2 ⋯ 𝑑𝑚

Like with the simplex method, we must begin with a basic feasible solution to construct the initial
tableau. We can construct such a basic feasible solution by using the first supplier to satisfy the
first consumer, then gradually using the next suppliers and consumers as we run out of supply or
demand. 𝛌 and 𝛍 can be deduced by considering complementary slackness. That is, if 𝑥𝑖𝑗 > 0 then
𝜆𝑖 + 𝜇𝑗 = 𝑐𝑖𝑗 . For instance, consider this problem with three suppliers and four consumers. The
general transportation tableau would look like this:

𝜇1 𝜇2 𝜇3 𝜇4
𝜆1

𝜆1 + 𝜇1 𝜆1 + 𝜇2 𝜆1 + 𝜇3 𝜆1 + 𝜇4 𝑠1𝑥11 𝑐11 𝑥12 𝑐12 𝑥13 𝑐13 𝑥14 𝑐14
𝜆2

𝜆2 + 𝜇1 𝜆2 + 𝜇2 𝜆2 + 𝜇3 𝜆2 + 𝜇4 𝑠2𝑥21 𝑐21 𝑥22 𝑐22 𝑥23 𝑐23 𝑥24 𝑐24
𝜆3

𝜆3 + 𝜇1 𝜆3 + 𝜇2 𝜆3 + 𝜇3 𝜆3 + 𝜇4 𝑠3𝑥31 𝑐31 𝑥32 𝑐32 𝑥33 𝑐33 𝑥34 𝑐34
𝑑1 𝑑2 𝑑3 𝑑4

We will consider the problem given by

s = (
14
10
9
) ; d =

⎛
⎜
⎜
⎝

12
5
8
8

⎞
⎟
⎟
⎠
; 𝐶 = (

5 3 4 6
2 7 4 1
5 6 2 4

)

A basic feasible solution is given by

𝑋 = (
12 2 0 0
0 3 7 0
0 0 1 8

)

41



Complementary slackness gives

𝜆1 + 𝜇1 = 5
𝜆1 + 𝜇2 = 3
𝜆2 + 𝜇2 = 7
𝜆2 + 𝜇3 = 4
𝜆3 + 𝜇3 = 2
𝜆3 + 𝜇4 = 4

This is a system of seven equations for six unknowns. However, since we can always set 𝜆1 = 0, we
can reduce this to a system of six equations for six unknowns.

𝜇1 = 5
𝜇2 = 3

𝜆2 + 𝜇2 = 7
𝜆2 + 𝜇3 = 4
𝜆3 + 𝜇3 = 2
𝜆3 + 𝜇4 = 4

Hence,

𝛌 = (
0
4
2
) ; 𝛍 =

⎛
⎜
⎜
⎝

5
3
0
2

⎞
⎟
⎟
⎠

Theorem. When constructing a basic feasible solution in this way, the set of edges with
strictly positive flow form a connected graph with no cycles. In particular, this graph is a
spanning tree 𝑇 with exactly𝑚+ 𝑛 − 1 edges. This allows us to always construct a system of
equations as above.

No proof is given.
5 3 0 2

0 5 3 0 2 14
12 5 2 3 0 4 0 6

4 9 7 4 6 10
0 2 3 7 7 4 0 1

2 7 5 2 4 9
0 5 0 6 1 2 8 4
12 5 8 8

9.2 Updating the transportation tableau
First, we check if 𝑐𝑖𝑗 ≥ 𝜆𝑖 + 𝜇𝑗 for all 𝑖, 𝑗. If this is true, then our solution is optimal. In our example
𝑐21 ≥ 𝜆2 + 𝜇1, so we are not at an optimal solution. If (𝑖, 𝑗) ∉ 𝑇 (where 𝑇 is the spanning tree above,
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i.e. 𝑥𝑖𝑗 = 0) and 𝑐𝑖𝑗 < 𝜆𝑖 + 𝜇𝑗 , then (𝑖, 𝑗) and the edges of 𝑇 form a loop. We then increase 𝑥𝑖𝑗 as
much as possible until another flow 𝑥𝑖′𝑗′ is forced to be zero. Then we update the dual variables 𝛌, 𝛍
and repeat.

In our example, we will introduce a flow of 𝑥21 = 𝜃. This will change the amount of flow along
some nonzero edges. Doing this will force an update 𝑥11 ↦ 𝑥11 − 𝜃 due to constrained demand,
𝑥12 ↦ 𝑥12 + 𝜃 due to supply, and 𝑥22 ↦ 𝑥22 − 𝜃 due to demand. We can then increase 𝜃 to a
maximum value of 3. Now,

𝑥 = (
9 5 0 0
3 0 7 0
0 0 1 8

)

We now recalculate 𝛌, 𝛍 in the same way as above, which will give

𝛌 = (
0
−3
−5

) ; 𝛍 =
⎛
⎜
⎜
⎝

5
3
7
9

⎞
⎟
⎟
⎠

Reconstructing the tableau gives

5 3 7 9

0 5 3 7 9 14
9 5 3 3 0 4 0 6

−3 2 0 4 6 10
3 2 0 7 7 4 0 1

5 0 −2 2 4 9
0 5 0 6 1 2 8 4
12 5 8 8

Once again there is an edge where 𝑐𝑖𝑗 < 𝜆𝑖 + 𝜇𝑗 , notably (𝑖, 𝑗) = (2, 4), with zero flow. If 𝑥𝑖𝑗 = 𝜃,
then 𝑥23 ↦ 𝑥23−𝜃, 𝑥34 ↦ 𝑥34−𝜃, 𝑥33 ↦ 𝑥33+𝜃. We can increase 𝜃 only to 7. Once again, updating
the tableau gives

5 3 2 4

0 5 3 2 4 14
9 5 5 3 0 4 0 6

−3 2 0 −1 1 10
3 2 0 7 0 4 7 1

0 5 3 2 4 9
0 5 0 6 8 2 1 4
12 5 8 8

In this current table, all optimality conditions are satisfied. So the solution is

𝑥 = (
9 5 0 0
3 0 0 7
0 0 8 1

)
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10 Maximum flow, minimum cut
10.1 Introduction
Consider the problem

maximise 𝛿
subject to ∑

{𝑗 ∶ (𝑖,𝑗)∈𝐸}
𝑥𝑖𝑗 − ∑

{𝑗 ∶ (𝑗,𝑖)∈𝐸}
𝑥𝑗𝑖 = 0 for all 𝑖 ≠ 1, 𝑖 ≠ 𝑛

∑
{𝑗 ∶ (1,𝑗)∈𝐸}

𝑥1𝑗 − ∑
{𝑗 ∶ (𝑗,1)∈𝐸}

𝑥𝑗1 = 𝛿

∑
{𝑗 ∶ (𝑛,𝑗)∈𝐸}

𝑥𝑛𝑗 − ∑
{𝑗 ∶ (𝑗,𝑛)∈𝐸}

𝑥𝑗𝑛 = −𝛿

0 ≤ 𝑥𝑖𝑗 ≤ 𝑐𝑖𝑗 for all (𝑖, 𝑗) ∈ 𝐸

This is a graphwhere vertex 1 is a source and vertex 𝑛 is a sink, and 𝛿 is the flow from vertex 1 to vertex
𝑛. We want to maximise the total amount of flow on the graph, constrained by a certain maximum
flow 𝑐𝑖𝑗 on each edge.

10.2 Cuts and flows

Definition. A cut of a graph 𝐺 = (𝑉, 𝐸) is a partition of its vertices into two sets (𝑆, 𝑉 ∖ 𝑆).
The capacity of a cut is given by

𝐶(𝑆) = ∑
{(𝑖,𝑗)∈𝐸∶ 𝑖∈𝑆,𝑗∈𝑉∖𝑆}

𝑐𝑖𝑗

Theorem. For any feasible flow 𝑥 with value 𝛿, then for any cut (𝑆, 𝑉 ∖ 𝑆) such that 1 ∈
𝑆, 𝑛 ∈ 𝑉 ∖ 𝑆, we have

𝛿 ≤ 𝐶(𝑆)

Proof. For any sets 𝑋, 𝑌 ⊆ 𝑉 , we define the function

𝑓𝑥(𝑋, 𝑌) = ∑
{(𝑖,𝑗)∈𝐸∶ 𝑖∈𝑋,𝑗∈𝑌}

𝑥𝑖𝑗

Note that 𝑋, 𝑌 need not be disjoint. Let (𝑆, 𝑉 ∖ 𝑆) be a cut such that 1 ∈ 𝑆, 𝑛 ∈ 𝑉 ∖ 𝑆. We have

𝛿 = ∑
𝑖∈𝑆

( ∑
{𝑗 ∶ (𝑖,𝑗)∈𝐸}

𝑥𝑖𝑗 − ∑
{𝑗 ∶ (𝑗,𝑖)∈𝐸}

𝑥𝑗𝑖)
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since for 𝑖 = 1 the bracket is 𝛿 and for all others it is zero. Therefore,

𝛿 = 𝑓𝑥(𝑆, 𝑉) − 𝑓𝑥(𝑉, 𝑆)
= 𝑓𝑥(𝑆, 𝑆) + 𝑓𝑥(𝑆, 𝑉 ∖ 𝑆) − 𝑓𝑥(𝑆, 𝑆) − 𝑓𝑥(𝑉 ∖ 𝑆, 𝑆)
= 𝑓𝑥(𝑆, 𝑉 ∖ 𝑆) − 𝑓𝑥(𝑉 ∖ 𝑆, 𝑆)⏟⎵⎵⏟⎵⎵⏟

≥0

≤ 𝑓𝑥(𝑆, 𝑉 ∖ 𝑆)
≤ 𝐶(𝑆)

10.3 Max-flowmin-cut theorem

Theorem. Let 𝛿⋆ be the value of the maximum flow. Then we have

𝛿⋆ = min {𝐶(𝑆)∶ 1 ∈ 𝑆, 𝑛 ∈ 𝑉 ∖ 𝑆}

So the value of the maximum flow is equal to the cut of smallest capacity.

Proof. A path 𝑣0, 𝑣1,… , 𝑣𝑘 is a sequence of vertices such that every pair of adjacent vertices is con-
nected by an edge, either in the forward direction or in the reverse direction. A path is called an
augmenting path if

𝑥𝑣𝑖𝑣𝑖+1 < 𝑐𝑣𝑖𝑣𝑖+1 for all forward edges;
𝑥𝑣𝑖𝑣𝑖+1 > 0 for all backward edges

So each forward edge must have remaining capacity, and reverse edges must have some flow. This
definition allows us to state that augmenting paths are actually all paths such that altering the flow
on all edges in the path can increase the total flow from 1 to 𝑛, while keeping the amount of flow into
each vertex the same (excluding the first and last vertices in the path). Therefore, an optimal flow 𝑥
cannot have an augmenting path from vertex 1 to vertex 𝑛. Now, suppose 𝑥 is optimal. We define a
cut:

𝑆 = {1} ∪ {𝑖 ∶ ∃ an augmenting path 1 → 𝑖}
Therefore 𝑛 ∈ 𝑉 ∖ 𝑆, since there is no augmenting path from 1 to 𝑛. Then,

𝛿⋆ = 𝑓𝑥(𝑆, 𝑉 ∖ 𝑆) − 𝑓𝑥(𝑉 ∖ 𝑆, 𝑆)

But we can show that 𝑓𝑥(𝑉 ∖ 𝑆, 𝑆) = 0, so

𝛿⋆ = 𝑓𝑥(𝑆, 𝑉 ∖ 𝑆) = 𝐶(𝑆)

as required.

10.4 Ford–Fulkerson algorithm
The above proof provides a convenient method for finding an optimal flow.
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Algorithm 5: Ford–Fulkerson Algorithm
Result: Optimal flow 𝑥
start with a feasible flow, such as 𝑥 = 0;
repeat

choose an augmenting path from 1 to 𝑛, and increase the flow along this path as much as
possible;

until no augmenting paths from 1 to 𝑛;

Example. Note that typically such graphs are represented pictorially, but due to difficulty of typesetting
abstract diagrams, a matrix is substituted here. Consider a graph given by the capacity matrix

𝐶 =

𝑐𝑖𝑗 1 𝑎 𝑏 𝑐 𝑑 𝑛
1 5 5
𝑎 1 4
𝑏 5
𝑐 2
𝑑 5
𝑛

First consider the feasible flow of 𝑥 = 0. There exists an augmenting path 1, 𝑎, 𝑏, 𝑛. We increase the
flow by 1 in all edges, saturating edge (𝑎, 𝑏), giving the flow matrix

𝑥 =

𝑥𝑖𝑗 1 𝑎 𝑏 𝑐 𝑑 𝑛
1 1
𝑎 1
𝑏 1
𝑐
𝑑
𝑛

The path 1, 𝑎, 𝑑, 𝑛 is now augmenting. We can increase the flow by 4 to saturate the edge (𝑎, 𝑑):

𝑥 =

𝑥𝑖𝑗 1 𝑎 𝑏 𝑐 𝑑 𝑛
1 5
𝑎 1 4
𝑏 1
𝑐
𝑑 4
𝑛

The path 1, 𝑐, 𝑑, 𝑛 is augmenting. Increasing by 1,

𝑥 =

𝑥𝑖𝑗 1 𝑎 𝑏 𝑐 𝑑 𝑛
1 5 1
𝑎 1 4
𝑏 1
𝑐 1
𝑑 5
𝑛

There are no augmenting paths. We can also check that the cut ({1}, {𝑎, 𝑏, 𝑐, 𝑑, 𝑛}) gives the capacity
6, equivalent to the value at 𝑛 so this must be optimal. We now have 𝛿⋆ = 6.
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Example. Consider a graph given by the capacity matrix

𝐶 =

𝑐𝑖𝑗 1 𝑎 𝑏 𝑐 𝑑 𝑛
1 10 10
𝑎 4 2 8
𝑏 10
𝑐 9
𝑑 6 10
𝑛

The path 1, 𝑎, 𝑑, 𝑛 is augmenting. We can increase the (currently zero) flow by 8.

𝑥 =

𝑥𝑖𝑗 1 𝑎 𝑏 𝑐 𝑑 𝑛
1 8
𝑎 8
𝑏
𝑐
𝑑 8
𝑛

The path 1, 𝑐, 𝑑, 𝑛 is also augmenting. We increase the flow by 2.

𝑥 =

𝑥𝑖𝑗 1 𝑎 𝑏 𝑐 𝑑 𝑛
1 8 2
𝑎 8
𝑏
𝑐 2
𝑑 10
𝑛

Now, the path 1, 𝑐, 𝑑, 𝑎, 𝑏, 𝑛 is augmenting. (𝑏, 𝑎) here is a reverse edge. Here, we can increase the
flow by 4. This will decrease the (𝑎, 𝑏) by 4.

𝑥 =

𝑥𝑖𝑗 1 𝑎 𝑏 𝑐 𝑑 𝑛
1 8 6
𝑎 4 4
𝑏 4
𝑐 6
𝑑 10
𝑛

The path 1, 𝑎, 𝑑, 𝑏, 𝑛 is augmenting, with all forward edges. Increasing by 2,

𝑥 =

𝑥𝑖𝑗 1 𝑎 𝑏 𝑐 𝑑 𝑛
1 10 6
𝑎 4 6
𝑏 6
𝑐 6
𝑑 2 10
𝑛
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Finally, 1, 𝑐, 𝑑, 𝑏, 𝑛 is augmenting, with all forward edges. Increasing by 3,

𝑥 =

𝑥𝑖𝑗 1 𝑎 𝑏 𝑐 𝑑 𝑛
1 10 9
𝑎 4 6
𝑏 9
𝑐 9
𝑑 5 10
𝑛

The flow 𝛿 is now 19. The cut given by {1, 𝑐} has capacity 19, so we are at the optimum.

10.5 Termination of Ford–Fulkerson
If all capacities are integers, then the algorithmwill always find the optimal flow. The same argument
can be used for rational numbers. At each step, the flow increases by a positive integer value, so after
a finite amount of steps it will stop, as the maximum flow is bounded.

10.6 Bipartite matching problem
A 𝑘-regular bipartite graph is a graph with 𝑛

2
vertices on the left and 𝑛

2
vertices on the right, where

each vertex on both the left and right has exactly 𝑘 edges. Suppose we want to match up the ver-
tices on the left and right, such that each pair (𝑎, 𝑏) is joined with an edge that already exists in this
graph.

Theorem. Every 𝑘-regular bipartite graph has a perfect matching.

Proof. First, we construct a new graph with extra vertices 1, 𝑛. We construct edges from vertex 1 to
all vertices 𝑎 on the left, with capacity 1. We then construct edges from all vertices 𝑏 on the right to
vertex 𝑛, also with capacity 1. The original edges in the graphwill be given capacity∞. Then by using
the cut given by 1, 𝛿⋆ < 𝑛

2
. We can easily achieve the value 𝛿⋆ by attaching a flow 1

𝑘
to every edge

from the left to the right, and of course sending a flow of 1 along each new edge. So the maximum
flow for this new graph is 𝑛

2
.

Now, we know that the Ford–Fulkerson algorithm will terminate, when given the initial flow 𝑥 =
0. But with this algorithm, all edge weights are always integers, since all capacities are integral or
infinite. The only way for all edge weights to be integer values are when we have a perfect matching.
So this algorithm will generate a perfect matching.
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