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1 Historical introduction
1.1 Timeline

• (1801–3) Particles were shown to have wave-like properties using Young’s double slit experi-
ment.

• (1862–4) Electromagnetism was conceived by Maxwell. Light was discovered to be an electro-
magnetic wave.

• (1897) Discovery of the electron by Thomson.

• (1900) The Planck law was discovered, which explains black-body radiation.

• (1905) The photoelectric effect was discovered by Einstein.

• (1909) Wave-light interference patterns were shown to exist with only one photon recorded at
a time.

• (1911) Rutherford created his atomic model.

• (1913) Bohr created his atomic model.

• (1923) The Compton experiment showed x-ray scattering off electrons.

• (1923–4) De Broglie discovered the concept of wave-particle duality.

• (1925–30) The theory of quantum mechanics emerged at this time.

• (1927–8) The diffraction experiment was carried out with electrons.

1.2 Particles and waves in classical mechanics
In classical mechanics, a point-particle is an object with energy andmomentum in an infinitesimally
small point of space. Therefore, a particle is determined by the three-dimensional vectors x, v = ẋ.
The motion of a particle is governed by Newton’s second law,

𝑚ẍ = F(x, ẋ)

Solving this equation involves determination of x, ẋ for all 𝑡 > 𝑡0, once initial conditions x(𝑡0), ẋ(𝑡0)
are known.

Waves are classically defined as any real- or complex-valued function with periodicity in time and/or
space. For instance, consider a function 𝑓 such that 𝑓(𝑡 + 𝑇) = 𝑓(𝑡), which is a wave with period 𝑇.
The frequency 𝜈 is defined to be 1

𝑇
, and the angular frequency 𝜔 is defined as 2𝜋𝜈 = 2𝜋

𝑇
. Suppose we

have a function in one dimension obeying 𝑓(𝑥+𝜆) = 𝑓(𝑥). This has wavelength 𝜆 and wave number
𝑘 = 2𝜋

𝜆
.

Consider 𝑓(𝑥) = exp(±𝑖𝑘𝑥). In three dimensions, this becomes 𝑓(𝑥) = exp(±𝑖k ⋅ x). This is called
a ‘plane wave’; the one-dimensional wave number 𝑘 has been transformed into a three-dimensional
wave vector k. 𝜆 is now defined as 2𝜋

|𝑘|
.

The wave equation in one dimension is

𝜕2𝑓(𝑥, 𝑡)
𝜕𝑡2 − 𝑐2 𝜕

2𝑓(𝑥, 𝑡)
𝜕𝑥2 = 0; 𝑐 ∈ ℝ
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The solutions to this equation are

𝑓±(𝑥, 𝑡) = 𝐴± exp(±𝑖𝑘𝑥 − 𝑖𝜔𝑡)

where 𝜔 = 𝑐𝑘; 𝜆 = 𝑐
𝜈
. The two conditions are known as the dispersion relations. 𝐴± is the amplitude

of the waves.

In three dimensions,
𝜕2𝑓(x, 𝑡)
𝜕𝑡2 − 𝑐2∇2𝑓(x, 𝑡) = 0; 𝑐 ∈ ℝ

The solution is
𝑓(x, 𝑡) = 𝐴 exp(±𝑖k ⋅ x − 𝑖𝜔𝑡)

where 𝜔 = 𝑐|k|; 𝜆 = 𝑐
𝜈
.

Note. Other kinds of waves are solutions to other governing equations, provided that another disper-
sion relation 𝜔(k) is given. Also, for any governing equation linear in 𝑓, the superposition principle
holds: if 𝑓1, 𝑓2 are solutions then so is 𝑓1 + 𝑓2.

1.3 Black-body radiation
Several experiments have shown that light behaves with some particle-like characteristics. For ex-
ample, consider a body heated at some temperature 𝑇. Any such body will emit radiation. The
simplest body to study is called a ‘black-body’, which is a totally absorbing surface. The intensity of
light emitted by a black body was modelled as a function of the frequency. The classical prediction
for the spectrum of emitted radiation was that as the frequency increased, the intensity would also in-
crease. A curvewith a clearmaximumpoint was observed. Planck’s lawwas found to be the equation
of this curve, which can be derived from the equation 𝐸 = ℏ𝜔 involving the Planck constant, instead
of the classical energy equation 𝐸 = 𝑘𝐵𝑇 involving the Boltzmann constant. This then implies that
light was ‘quantised’ into particles.

1.4 Planck’s constant
The Planck constant is ℎ ≈ 6.61 × 10−34 J s. The reduced Planck constant is ℏ = ℎ

2𝜋
. Quantum

mechanics typically uses the reduced Planck constant over the normal Planck constant. The dimen-
sionality of ℎ is energy multiplied by time, or position multiplied by momentum.

1.5 Photoelectric effect
Consider a metal surface in a vacuum, which is hit by light with angular frequency𝜔. When the radi-
ation hits the surface of the metal, electrons were emitted. Classically, we would expect that:

(i) Since the incident light carries energy proportional to its intensity, increasing the intensity we
should have sufficient energy to break the bonds of the electrons with the atoms of the metal.

(ii) Since the intensity and frequency are independent, light of any 𝜔 would eventually cause elec-
trons to be emitted, given a high enough intensity.

(iii) The emission rate should be constant.

In fact, the experiment showed that

(i) The maximum energy 𝐸max of emitted electrons depended on 𝜔, and not on the intensity.
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(ii) Below a given threshold 𝜔min, there was no electron emission.
(iii) The emission rate increased with the intensity.

Einstein’s explanation for this phenomenonwas that the lightwas quantised into small quanta, called
photons. Photons each carry an energy 𝐸 = ℏ𝜔. Each photon could liberate only one electron.
Thus,

𝐸max = ℏ𝜔 − 𝜙
where 𝜙 is the binding energy of the electron with the metal. The higher the intensity, the more
photons hit the metal. This implies that more electrons will be scattered.

1.6 Compton scattering
X-rays were emitted towards a crystal, scattering free electrons. The X-ray should then be deflected
by some angle 𝜃. Classically, for a given 𝜃wewould expect that the intensity as a function of𝜔would
have a maximum at 𝜔0, the frequency of the incoming X-rays. This is because we would not expect
𝜔 to change much after scattering an electron. However, there was another peak at 𝜔′, which was
dependent on the angle 𝜃. In fact, considering the photon and electron as a relativistic system of
particles, we can derive (from IA Dynamics and Relativity),

2 sin2 𝜃2 = 𝑚𝑐
|q| −

𝑚𝑐
|p|

where p is the initial momentum and q is the final momentum. Assuming 𝐸 = ℏ𝜔 and p =
ℏk,

|p| = ℏ|k| = ℏ𝜔𝑐 ; |q| = ℏ|k′| = ℏ𝜔
′

𝑐
Hence,

1
𝜔 = 1

𝜔′ +
ℏ
𝑚𝑐(1 − cos 𝜃)

So the frequency of the outgoing X-ray should have an angular frequency which is shifted from
the original. The expected peak was actually caused by X-rays simply not interacting with the elec-
trons.

1.7 Atomic spectra
The Rutherford scattering experiment involved shooting 𝛼 particles at some thin gold foil. Most
particles travelled through the foil, somewere slightly deflected, and somewere deflected completely
back. This indicated that the gold foil was mostly comprised of vacuum and there was a high density
of positive charge within the atom. Electrons would orbit around the nucleus. However, there were
problems with this model:

(i) If the electrons in orbits moved, they would radiate and lose energy. However if the electrons
were static, they would simply collapse and fall into the nucleus.

(ii) This model did not explain the atomic spectra, the observed frequencies of light absorbed or
emitted by an atom when electrons change energy levels.

The spectra had frequency

𝜔𝑚𝑛 = 2𝜋𝑐𝑅0(
1
𝑛2 −

1
𝑚𝑐); 𝑚, 𝑛 ∈ ℕ,𝑚 > 𝑛
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where 𝑅0 is the Rydberg constant, approximately 1×107m−1. Bohr theorised that the electron orbits
themselves are quantised, so 𝐿 (the orbital angular momentum) is an integer multiple of ℏ; 𝐿𝑛 = 𝑛ℏ.
First, the quantisation of 𝐿 implies the quantisation of 𝑣 and 𝑟. Indeed, given that 𝐿 ≡ 𝑚𝑒𝑣𝑟, we have
that 𝑣 is quantised: 𝑣𝑛 =

𝑛ℏ
𝑚𝑒𝑟

. Further, by the Coulomb force, 𝐹 = 𝑒2

4𝜋𝜀2
1
𝑟2
e𝑟 = 𝑚𝑒𝑎𝑟e𝑟 where 𝑎𝑟 is

the radial acceleration. Then 𝑒2

4𝜋𝜀2
1
𝑟2
= 𝑚𝑒

𝑣2

𝑟
⟹ 𝑟 = 𝑟𝑛 =

4𝜋𝜀0ℏ2

𝑚𝑒𝑒2
𝑛2. The coefficient on 𝑛2 is known

as the Bohr radius. Immediately then the energy levels 𝐸 of the atom can be shown to be quantised,
since

𝐸 = 1
2𝑚𝑒𝑣2 −

𝑒2
4𝜋𝜀0

1
𝑟

giving

𝐸𝑛 = − 𝑒2
8𝜋𝜀0𝑎0

1
𝑛2 =

−𝑒4𝑚𝑒
32𝜋2𝜀20ℏ2

1
𝑛2

The ground energy level is at 𝑛 = 1, giving

𝐸1 = −13.6 eV

The excited states are 𝐸𝑛 for 𝑛 > 1. The energy emitted when descending from 𝐸𝑛 to 𝐸1 are the
spectral lines:

Δ𝐸 = ℏ𝜔
The Bohr model gives

𝜔𝑚𝑛 =
Δ𝐸𝑚𝑛
ℏ = 2𝜋𝑐( 𝑒2

4𝜋𝜀0ℏ𝑐
)
2
( 1𝑛2 −

1
𝑚2 )

which agrees with the Rydberg constant 𝑅0 defined earlier.

2 Wavefunctions
2.1 Wave-like behaviour of particles
De Broglie hypothesised that any particle of any mass is associated with a wave with

𝜔 = 𝐸
ℏ ; k = p

ℏ
This hypothesis made sense of the quantisation of electron angular momentum; if the electron lies
on a circular orbit then 2𝜋𝑟 = 𝑛𝜆 where 𝜆 is the wavelength of the electron. However,

𝑝 = ℏ𝑘 = ℏ2𝜋𝜆 ⟹ 𝐿 = 𝑚𝑒𝑣𝑟 = 𝑝𝑟 = ℏ2𝜋𝜆
𝑛𝜆
2𝜋 = 𝑛ℏ

Hence the angular momentummust be quantised. The electron diffraction experiment showed that
this hypothesis was true, by showing that electrons behaved sufficiently like waves. Interference
patterns were observed with 𝜆 = 2𝜋

|k|
= 2𝜋𝑘

|p|
compatible with the De Broglie hypothesis.

2.2 Probabilistic interpretation of wavefunctions
In classical mechanics, we can describe a particle with x, ẋ or p = 𝑚ẋ. In quantum mechanics, we
need the state 𝜓 described by 𝜓(x, 𝑡) called the wavefunction.
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Remark. Note that the state is an abstract entity, while 𝜓(x, 𝑡) is the representation of 𝜓 in the space
of x. In some sense, 𝜓(x, 𝑡) is the complex coefficient of𝜓 in the continuous basis of x. In other words,
𝜓(x, 𝑡) is 𝜓 in the x representation. In this course, we always work in the x representation.

Definition. A wavefunction is a function 𝜓(x, 𝑡)∶ ℝ3 → ℂ that satisfies certain mathemat-
ical properties (defined later) dictated by its physical interpretation. 𝑡 is considered a fixed
external parameter, so it is not included in the function’s type.

The physical interpretation of a wavefunction is called Born’s rule. The probability density for a
particle to be at some point x at 𝑡 is given by |𝜓(x, 𝑡)|2. We write the probability density as 𝜌, hence
𝜌(x, 𝑡) d𝑉 is the probability that the particle lies in some small volume 𝑉 centred at x. Now, since
the particle must be somewhere, the wave function must be normalisable, or square-integrable in
ℝ3:

∫
ℝ3
𝜓⋆(x, 𝑡)𝜓(x, 𝑡) d𝑉 = ∫

ℝ3
|𝜓(x, 𝑡)|2 d𝑉 = 𝑁 ∈ (0,∞)

Since we want the total probability to be 1, we must normalise the wavefunction by defining

𝜓(x, 𝑡) = 1
√𝑁

𝜓(x, 𝑡) ⟺ ∫
ℝ3

||𝜓(x, 𝑡)||
2
d𝑉 = 1

Hence, 𝜌(x, 𝑡) = ||𝜓(x, 𝑡)||
2
really is a probability density. From now, we will not use the bar for

denoting normalisation, since normalisation is evident from context.

2.3 Bases and equivalence classes
In linear algebra, we consider vectors in some vector space such as ℝ𝑛. In quantum mechanics, we
instead consider states in a space of wave functions. The analogous concept to vector components is
to represent a state 𝜓 in an infinite-dimensional 𝑥 axis basis 𝜓(𝑥, 𝑡). Note that if two wavefunctions
differ by a constant phase, that is, ∃𝛼 ∈ ℝ such that

𝜓(𝑥, 𝑡) = 𝑒𝑖𝛼𝜓(𝑥, 𝑡)

then the states are equivalent in terms of probability, since the probability density is given by the
norm of 𝜓, not its angle. We can think of states as arrays in the vector space of wavefunctions. We
can then describe the equivalence class [𝜓] as the set of all functions 𝜙 such that 𝜙 = 𝜆𝜓, for some
𝜆 ∈ ℂ ∖ {0}, since we must retain the condition that 𝜙 is normalisable.

2.4 Hilbert spaces
In quantum mechanics, we are interested in the functional space of square-integrable functions on
ℝ3, which is a type of Hilbert space and denotedℋ.

Remark. Since the set of wavefunctions form a vector space, 𝜓1, 𝜓2 ∈ ℋ implies that 𝜓 = 𝜆1𝜓1 +
𝜆2𝜓2 ∈ ℋ for constants 𝜆1, 𝜆2 ∈ ℂ provided this 𝜓 is nonzero. For waves, this is the well-known su-
perposition principle. Note that this exact formulation of linearity is unique to quantummechanics;
for example, in classical mechanics, two solutions to Newton’s equations may not be combined into
a new solution by taking their sum.
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Proposition. If 𝜓1(𝑥, 𝑡), 𝜓2(𝑥, 𝑡) are normalisable, then 𝜓 = 𝜆1𝜓𝑖(𝑥, 𝑡) + 𝜆2𝜓2(𝑥, 𝑡) is also
normalisable.

Proof. Recall the inequality
2|𝑧1||𝑧2| ≤ |𝑧1|

2 + |𝑧2|
2

Then we can show

∫
ℝ3
|𝜆1𝜓1 + 𝜆2𝜓2|

2 d𝑉 = ∫
ℝ3
(|𝜆1𝜓1| + |𝜆2𝜓2|)

2 d𝑉

= ∫
ℝ3
(|𝜆1𝜓1|

2 + 2|𝜆1𝜓1||𝜆2𝜓2| + |𝜆2𝜓2|
2) d𝑉

= ∫
ℝ3
(2|𝜆1𝜓1|

2 + 2|𝜆2𝜓2|
2) d𝑉 < ∞

so the norm is non-infinite.

2.5 Inner product
We define the inner product between two wavefunctions to be

⟨𝜓, 𝜙⟩ = ∫
ℝ3
𝜓⋆𝜙 d𝑉

The following statements hold.

(i) ⟨𝜓, 𝜙⟩ exists for all wave functions 𝜓, 𝜙 ∈ ℋ;

(ii) ⟨𝜓, 𝜙⟩⋆ = ⟨𝜙, 𝜓⟩;
(iii) the inner product is antilinear in the first entry, and linear in the second entry; and

(iv) for continuous 𝜓, ⟨𝜓, 𝜓⟩ = 0 is true if and only if 𝜓 is identically zero.
We prove the first statement, since the others are obvious from the definition. By the Cauchy–
Schwarz inequality,

∫
ℝ3
|𝜓|2 d𝑉 ≤ 𝑁1;

∫
ℝ3
|𝜙|2 d𝑉 ≤ 𝑁2;

∴ ∫
ℝ3
|𝜓𝜙| d𝑉 ≤

√
∫
ℝ3
|𝜓|2 d𝑉 ⋅∫

ℝ3
|𝜙|2 d𝑉 < ∞
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2.6 Normalisation

Definition. We define the norm of a wavefunction to be ‖𝜓‖ ≡ ⟨𝜓, 𝜓⟩. A wavefunction 𝜓 is
normalised if ‖𝜓‖ = 1.

Definition. A set of wavefunctions {𝜓𝑛} is orthonormal if ⟨𝜓𝑚, 𝜓𝑛⟩ = 𝛿𝑚𝑛. A set of wavefunc-
tions {𝜓𝑛} is complete if for any 𝜓 ∈ ℋ, we can write

𝜓 = ∑
𝑛
𝜆𝑛𝜓𝑛

for 𝜆𝑛 ∈ ℂ.

Proposition. If {𝜓𝑛} is a complete and orthonormal basis ofℋ, then

𝜙 =
𝑛
∑
𝑘=0

𝑐𝑘𝜓𝑘

where
𝑐𝑘 = ⟨𝜓𝑘, 𝜙⟩

Proof. Suppose we can write 𝜙 in this form. Then,

⟨𝜓𝑛, 𝜙⟩ = ⟨𝜓𝑛,∑
𝑚
𝑐𝑚𝜓𝑚⟩

= ∑
𝑚
𝑐𝑚 ⟨𝜓𝑛, 𝜓𝑚⟩

= ∑
𝑚
𝑐𝑚𝛿𝑚𝑛

= 𝑐𝑛

Remark. If 𝜙 is the desired outcome of a measurement for a particle described by 𝜓, then the prob-
ability of observing 𝜙 given 𝜓 at some time 𝑡 is

|⟨𝜓, 𝜙⟩|2 = |||∫ℝ3
𝜓⋆𝜙 d𝑉|||

2

2.7 Time-dependent Schrödinger equation

Definition. The evolution of the wavefunction over time is given by the time-dependent
Schrödinger equation (TDSE),

𝑖ℏ𝜕𝜓𝜕𝑡 = − ℏ2
2𝑚∇2𝜓 + 𝑈𝜓

9



where 𝑈 = 𝑈(𝑥) is a real potential energy term.

Remark. This equation is a first-order differential equation in 𝑡. Contrast this to Newton’s second
law, which is a second-order differential equation in 𝑡. This implies that we only need a single initial
condition 𝜓(𝑥, 𝑡0) to determine all future behaviour.
Remark. Note the asymmetry between the spatial and temporal components: there is only a first
derivative in time but a second derivative in space. This implies that this equation is incompatible
with relativity, where time and space must be treated equitably.

One way to conceptualise the TDSE is by letting 𝜓 be some wave defined by
𝜓(𝑥, 𝑡) = exp[𝑖(𝑘 ⋅ 𝑥 − 𝜔𝑡)]

Then, the De Broglie hypothesis (𝑘 = 𝑝/ℏ, 𝜔 = 𝐸/𝑚) implies that

𝜓(𝑥, 𝑡) = exp [ 𝑖ℏ(𝑝 ⋅ 𝑥 −
𝑝2
2𝑚𝑡)]

which is a solution to the TDSE.

2.8 Normalisation and time evolution
Because of the TDSE, we can show that the norm 𝑁 of a wavefunction 𝜓 is independent of 𝑡.

d𝑁
d𝑡 = ∫

ℝ3

𝜕
𝜕𝑡 |𝜓(𝑥, 𝑡)|

2 d𝑉

Now, note that
𝜕
𝜕𝑡 |𝜓|

2 = 𝜕
𝜕𝑡 ⟨𝜓

⋆, 𝜓⟩ = 𝜓⋆ 𝜕𝜓
𝜕𝑡 + 𝜓𝜕𝜓

⋆

𝜕𝑡
The TDSE then gives

𝜕𝜓
𝜕𝑡 =

𝑖ℏ
2𝑚∇2𝜓2 + 𝑖

𝑘𝑈𝜓;
𝜕𝜓⋆

𝜕𝑡 = − 𝑖ℏ
2𝑚∇2𝜓2 − 𝑖

𝑘𝑈𝜓
⋆

∴ 𝜕|𝜓|2
𝜕𝑡 = ∇ ⋅ [ 𝑖ℏ2𝑚(𝜓⋆∇𝜓 − 𝜓∇𝜓⋆)]

Finally,

∫
ℝ3

𝜕|𝜓|2
𝜕𝑡 d𝑉 = ∫

ℝ3
∇ ⋅ [ 𝑖ℏ2𝑚(𝜓⋆∇𝜓 − 𝜓∇𝜓⋆)] = 0

since 𝜓, 𝜓⋆ are such that |𝜓| → 0 as |𝑥| → ∞.

2.9 Conserved probability current
We have proven that the normalisation of wavefunctions are constant in time. Hence, we can derive
the probability conservation law:

𝜕𝜌
𝜕𝑡 + ∇ ⋅ 𝐽 = 0; 𝐽(𝑥, 𝑡) = −𝑖ℏ

2𝑚 (𝜓⋆∇𝜓 − 𝜓∇𝜓⋆)

This is the conserved probability current.
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3 Observables and operators
3.1 Expectation and operators
Given the wavefunction, we would like to extract some information about the particle it repres-
ents.

Definition. An observable is a property of the particle that can be measured.

Definition. An operator is any linear mapℋ →ℋ such that

�̂�(𝑎1𝜓1 + 𝑎2𝜓2) = 𝑎1�̂�(𝜓1) + 𝑎2�̂�(𝜓2)

where 𝑎1, 𝑎2 ∈ ℂ, 𝜓1, 𝜓2 ∈ ℋ.

In quantum mechanics, each observable is represented by an operator acting on the state 𝜓. Each
measurement is represented by an expectation value of the operator. In comparison, in linear algebra
we would often use a linear transformation for a similar purpose. Once we have a basis for a linear
transformation, we have amatrix. In quantummechanics, we use the 𝑥 basis, so we can write

𝜓 = (�̂�)(𝑥, 𝑡)

Example. Consider the class of finite differential operators

𝑁
∑
𝑛=0

𝑝𝑛(𝑥)
𝜕𝑛
𝜕𝑥𝑛

This includes, for example, position, momentum, and energy.

Example. A translation is an operator:

𝑠𝑎 ∶ 𝜓(𝑥) ↦ 𝜓(𝑥 − 𝑎)

Example. The parity operator is
𝑃∶ 𝜓(𝑥) ↦ 𝜓(−𝑥)

3.2 Dynamical observables
In general, to calculate the expectation value of an observable, we place the operator between 𝜓⋆

and 𝜓 and integrate over the whole space. From the probabilistic interpretation of the Born rule, the
position of the particle can be interpreted as

⟨𝑥⟩ = ∫
+∞

−∞
𝑥|𝜓(𝑥, 𝑡)|2 d𝑥 = ∫

+∞

−∞
𝜓⋆𝑥𝜓 d𝑥

11



Hence, we can write the coefficient 𝑥 as the operator ̂𝑥. Now, consider the momentum. By consider-
ing the time-dependent Schrödinger equation with 𝑈 = 0, and then integrating by parts,

⟨𝑝⟩ = 𝑚 d
d𝑡 ⟨𝑥⟩

= 𝑚 d
d𝑡 ∫

+∞

−∞
𝑥𝜓⋆𝜓 d𝑥

= 𝑚∫
+∞

−∞
𝑥 𝜕𝜕𝑡 (𝜓

⋆𝜓) d𝑥

= 𝑚 ⋅ 𝑖ℏ2𝑚 ∫
+∞

−∞
𝑥 𝜕
𝜕𝑥(𝜓

⋆ 𝜕𝜓
𝜕𝑥 − 𝜓𝜕𝜓

⋆

𝜕𝑥 ) d𝑥

= −𝑖ℏ
2 ∫

+∞

−∞
𝑥 𝜕
𝜕𝑥(𝜓

⋆ 𝜕𝜓
𝜕𝑥 − 𝜓𝜕𝜓

⋆

𝜕𝑥 ) d𝑥

= −𝑖ℏ
2 ∫

+∞

−∞
(𝜓⋆ 𝜕𝜓

𝜕𝑥 − 𝜓𝜕𝜓
⋆

𝜕𝑥 ) d𝑥

= −𝑖ℏ∫
+∞

−∞
𝜓⋆ 𝜕𝜓

𝜕𝑥 d𝑥

= ∫
+∞

−∞
𝜓⋆(−𝑖ℏ 𝜕

𝜕𝑥)𝜓 d𝑥

So the operator ̂𝑝 is −𝑖ℏ 𝜕
𝜕𝑥
. Given 𝑥 and 𝑝, we can write many classical dynamical observables. The

classical notion is written in parentheses. The symbol ↦ is used instead of equality since we are
representing the observable in the 𝑥 basis.

̂𝑥 ↦ 𝑥

̂𝑝 ↦ −𝑖ℏ 𝜕
𝜕𝑥

(𝑇 = 𝑝2
2𝑚) ̂𝑇 ↦ ̂𝑝2

2𝑚 = −ℏ2
2𝑚

𝜕2
𝜕𝑥2

�̂� ↦ 𝑈( ̂𝑥) = 𝑈(𝑥)

3.3 Hamiltonian operator
The total energy is

𝐸 = 𝑇 + 𝑈
given by the Hamiltonian operator

�̂� = ̂𝑇 + �̂�
In one dimension,

�̂� ↦ −ℏ2
2𝑚

𝜕2𝜓
𝜕𝑥2 + 𝑈(𝑥)𝜓

In three dimensions,
�̂� ↦ −ℏ2

2𝑚 ∇2𝜓 + 𝑈(𝑥)𝜓
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We can now represent the time-dependent Schrödinger equation in a more compact form:

𝑖ℏ𝜕𝜓𝜕𝑡 = �̂�𝜓

We can now prove that for a particle in a potential 𝑈(𝑥) ≠ 0,

d
d𝑡 ⟨𝑝⟩ = −⟨𝜕𝑈𝜕𝑥 ⟩

3.4 Time-independent Schrödinger equation
From the time-dependent version of the equation,

𝑖ℏ𝜕𝜓𝜕𝑡 = �̂�𝜓

we can try a solution of the form
𝜓(𝑥, 𝑡) = 𝑇(𝑡)𝜒(𝑥)

Then, we can find
𝑖ℏ𝜕𝑇(𝑡)𝜕𝑡 𝜒(𝑥) = 𝑇(𝑡)�̂�𝜒(𝑥)

Then, dividing by 𝑇𝜒,
1

𝑇(𝑡)(𝑖ℏ
𝜕𝑇
𝜕𝑡 ) =

�̂�𝜒(𝑥)
𝜒

Since the left and right hand sides depend only on 𝑥 and 𝑡 respectively but are equal, they must be
equal to a separation constant 𝐸 ∈ ℝ. Solving for time,

1
𝑇 𝑖ℏ

𝜕𝑇
𝜕𝑡 = 𝐸 ⟹ 𝑇(𝑡) = 𝑒

−𝑖𝐸𝑡
ℏ

If 𝐸 were complex, 𝑇 would diverge. Solving for space, we have the time-independent Schrödinger
equation as follows.

�̂�𝜒(𝑥) = 𝐸𝜒(𝑥)
Explicitly,

− ℏ2
2𝑚∇2𝜒(𝑥) + 𝑈(𝑥)𝜒(𝑥) = 𝐸𝜒(𝑥)

This is an eigenvalue equation for �̂�; wewish to find the eigenvalues for �̂� in the𝑥 basis. Note that the
factorised solution 𝜓 = 𝑇𝜒 is just a particular class of solutions for the time-dependent Schrödinger
equation. However, it can be shown that any solution to the time-dependent equation can be written
as a linear combination of the time-independent equation solutions.

4 One-dimensional solutions to theSchrödinger equation
4.1 Stationary states

Definition. With the ansatz 𝜓(𝑥, 𝑡) = 𝜒(𝑥)𝑇(𝑡), we have found a particular class of solutions
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of the time-independent Schrödinger equation:

𝜓(𝑥, 𝑡) = 𝜒(𝑥)𝑒−
𝑖𝐸𝑡
ℏ

where𝜒(𝑥) are the eigenfunctions of �̂�with eigenvalue𝐸. Such solutions are called stationary
states.

Note,
𝜌(𝑥, 𝑡) = |𝜓(𝑥, 𝑡)|2 = |𝜒(𝑥)|2

This explains the naming of the states as ‘stationary’, as their probability density is independent of
time. Now, suppose 𝐸 is quantised. Then, the general solution to the system is

𝜓(𝑥, 𝑡) =
𝑁
∑
𝑛=1

𝑎𝑛𝜒𝑛(𝑥)𝑒−
𝑖𝐸𝑛𝑡
ℏ

where 𝑁 can be finite or infinite. In principle, we can also have a continuous energy state 𝐸𝛼, 𝛼 ∈ ℝ.
We can still use the same idea:

𝜓(𝑥, 𝑡) = ∫
Δ𝛼

𝐴(𝛼)𝜒𝛼(𝑥)𝑒−
𝑖𝐸𝛼𝑡
ℏ d𝛼

Note that |𝑎𝑛|
2 and𝐴(𝛼) d𝛼 give the probability ofmeasuring the particle energy to be𝐸𝑛 or𝐸𝛼.

4.2 Infinite potential well
We define

𝑈(𝑥) = {0 for |𝑥| ≤ 𝑎
∞ for |𝑥| > 𝑎

For |𝑥| > 𝑎, we must have 𝜒(𝑎) = 0. Otherwise, 𝜒 ⋅ 𝑈 = ∞. This gives us a boundary condition,
𝜒(±𝑎) = 0. For |𝑥| ≤ 𝑎, we seek solutions of the form

− ℏ2
2𝑚𝜒″(𝑥) = 𝐸𝜒(𝑥); 𝜒(±𝑎) = 0

Equivalently,

𝜒″(𝑥) + 𝑘2𝜒(𝑥) = 0; 𝑘 = √
2𝑚𝐸
ℏ2

Since 𝐸 > 0,
𝜒(𝑥) = 𝐴 sin 𝑘𝑥 + 𝐵 cos 𝑘𝑥

Imposing boundary conditions,

𝐴 sin 𝑘𝑎 + 𝐵 cos 𝑘𝑎 = 0; 𝐴 sin 𝑘𝑎 − 𝐵 cos 𝑘𝑎 = 0

Suppose 𝐴 = 0, giving 𝜒(𝑥) = 𝐵 cos 𝑘𝑥. Then, imposing boundary conditions, 𝜒𝑛(𝑥) = 𝐵 cos 𝑘𝑛𝑥
where 𝑘𝑛 =

𝑛𝜋
2𝑎
, and 𝑛 are odd positive integers. These are even solutions.

Alternatively, suppose 𝐵 = 0. In this case, 𝜒(𝑥) = 𝐴 sin 𝑘𝑥. Thus, 𝜒𝑛(𝑥) = 𝐴 sin 𝑘𝑛𝑥 where 𝑘𝑛 =
𝑛𝜋
2𝑎
,

and 𝑛 are even nonzero positive integers. These provide odd solutions.
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Wecan also determine thenormalisation constants by defining that the eigenfunctions of theHamilto-
nian are normalised to unity. Thus,

∫
𝑎

−𝑎
|𝜒𝑛(𝑥)|

2 = 1 ⟹ 𝐴 = 𝐵 =√
1
𝑎

Hence, the general solution is given by the eigenvalues

𝐸𝑛 =
ℏ2
2𝑛𝑘

2
𝑛 =

ℏ2𝜋2𝑛2
2𝑚𝑎2

and eigenfunctions

𝜒𝑛(𝑥) = √
1
𝑎 {

cos(𝑛𝜋𝑥
2𝑎

) if 𝑛 odd
sin(𝑛𝜋𝑥

2𝑎
) if 𝑛 even

Remark. Note that unlike classical mechanics, the ground state energy is not zero. Note also that
𝜒𝑛 have (𝑛 + 1) nodes in which 𝜌(𝑥) = 0. When 𝑛 → ∞, 𝜌𝑛(𝑥) tends to a constant, which is like in
classical mechanics. Eigenfunctions of the Hamiltonian in this case were either odd or even; we can
in fact prove that this is the case in general.

Proposition. If we have a system of non-degenerate eigenstates (𝐸𝑖 ≠ 𝐸𝑗), then if 𝑈(𝑥) =
𝑈(−𝑥) the eigenfunctions of �̂� must be either odd or even.

Proof. The time-independent Schrödinger equation is invariant under 𝑥 ↦ −𝑥 if 𝑈 is even. Hence,
if 𝜒(𝑥) is a solution with eigenvalue 𝐸, then 𝜒(−𝑥) is also a solution. Since we have a non-degenerate
solution, 𝜒(−𝑥) = 𝜒(𝑥) hence the solutions must be the same up to a normalisation factor. For
consistency, 𝜒(𝑥) = 𝜒(−(−𝑥)) = 𝛼𝜒(−𝑥) = 𝛼2𝜒(𝑥). Hence 𝛼 = ±1, so 𝜒 is either odd or even.

4.3 Finite potential well
We define

𝑈(𝑥) = {0 for |𝑥| ≤ 𝑎
𝑈0 for |𝑥| > 𝑎

Classically, if 𝐸 < 𝑈0, the particle has insufficient energy to escape the well. We will only consider
eigenstates with 𝐸 < 𝑈0 here, but we will find that it is possible in quantummechanics to escape the
well with positive probability. We will search for even functions only, odd functions can be solved
independently. If |𝑥| ≤ 𝑎,

− ℏ2
2𝑚𝜒″(𝑥) = 𝐸𝜒(𝑥)

Equivalently,

𝜒″(𝑥) + 𝑘2𝜒(𝑥) = 0; 𝑘 = √
2𝑚𝐸
ℏ2

The solution becomes

𝜒(𝑥) = 𝐴 sin 𝑘𝑥 + 𝐵 cos 𝑘𝑥 ⟹ 𝜒(𝑥) = 𝐵 cos 𝑘𝑥
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since we are only looking for even solutions. In the region |𝑥| > 𝑎,

− ℏ2
2𝑚𝜒″(𝑥) + 𝑈0𝜒(𝑥) = 𝐸𝜒(𝑥)

giving

𝜒″(𝑥) − 𝑘
2
𝜒(𝑥) = 0; 𝑘 = √

2𝑚(𝑈0 − 𝐸)
ℏ2

This yields exponential solutions:
𝜒(𝑥) = 𝐶𝑒𝑘𝑥 + 𝐷𝑒−𝑘𝑥

Imposing the normalisability constraints, for 𝑥 > 𝑎 we have 𝐶 = 0, and for 𝑥 < −𝑎 we have 𝐷 = 0.
Imposing even parity, 𝐶 = 𝐷 when nonzero. Thus,

𝜒(𝑥) =
⎧
⎨
⎩

𝐶𝑒𝑘𝑥 𝑥 < −𝑎
𝐵 cos(𝑘𝑥) |𝑥| ≤ 𝑎
𝐶𝑒−𝑘𝑥 𝑥 > 𝑎

Now we must impose continuity of 𝜒(𝑥) and its derivative at 𝑥 = ±𝑎. First,

𝐶𝑒−𝑘𝑎 = 𝐵 cos(𝑘𝑎)

The other gives
−𝑘𝐶𝑒−𝑘𝑎 = −𝑘𝐵 sin(𝑘𝑎)

From the ratio of both constraints,
𝑘 tan(𝑘𝑎) = 𝑘

From the definition of 𝑘, 𝑘,
𝑘2 + 𝑘

2
= 2𝑚𝑈0

ℏ2

We will define some rescaled variables for convenience: 𝜉 = 𝑘𝑎, 𝜂 = 𝑘𝑎. Rewriting,

𝜉 tan 𝜉 = 𝜂; 𝜉2 + 𝜂2 = 𝑟20 ; 𝑟0 =
2𝑚𝑈
ℏ

Thismay be solved graphically. The eigenvalues of the system correspond to the points of intersection
between the two equations. There are always a finite number of possible intersections, regardless of
the value of 𝑟0. The eigenvalues are

𝐸𝑛 =
ℏ2
2𝑛𝑎2 𝜉

2
𝑛; 𝜉 ∈ {𝜉1,… , 𝜉𝑛}; 𝑛 = 1,… , 𝑝

When 𝑈0 → ∞, 𝑟0 → ∞. At this point, there are an infinite amount of intersections, so the eigen-
values of the Hamiltonian become that of the infinite well. Further 𝜒(𝑥) tends to the eigenfunctions
of the infinite well. Note that the 𝜒𝑛(𝑥) have some positive region outside the well. We can use the
unused condition above to write 𝐶 in terms of 𝐵, and then we can use the normalisation condition
to find 𝐵.
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4.4 Free particles
A free particle is under no potential. The time-independent Schrödinger equation is

− ℏ
2𝑚𝜒″(𝑥) = 𝐸𝜒(𝑥)

This has solutions

𝜒𝑘(𝑥) = 𝐴𝑒𝑖𝑘𝑥; 𝑘 = √
2𝑚𝐸
ℏ2

The complete solution, adding 𝑇(𝑡), is thus

𝜓𝑘(𝑥, 𝑡) = 𝜒𝑘(𝑥)𝑒−𝑖𝐸𝑘𝑡/ℏ = 𝐴𝑒𝑖(𝑘𝑥−
ℏ𝑘2
2𝑚 𝑡)

which are called De Broglie plane waves. This is not a solution since

∫
∞

−∞
|𝜙𝑘(𝑥, 𝑡)| d𝑥 = |𝐴|2∫

∞

−∞
1 d𝑥

whichdiverges. In general, anynon-bound solution is non-normalisable. This is true since∫∞
−∞ |𝜒(𝑥)|2 d𝑥 <

∞ requires lim𝑅→∞ ∫|𝑥|>𝑅 |𝜒(𝑥)| d𝑥 = 0. So, to solve the free particle system, we will build a linear
combination of plane waves 𝜒 to yield a normalisable solution. This is called the Gaussian wave-
packet. Alternatively, we can simply ignore the problem of normalisability, and change the inter-
pretation of 𝜒𝑛(𝑥).

4.5 Gaussian wavepacket
Due to the superposition principle, we can take a continuous linear combination of the 𝜓𝑘 func-
tions.

𝜓(𝑥, 𝑡) = ∫
∞

0
𝐴(𝑘)𝜓𝑘(𝑥, 𝑡) d𝑘

We can construct a suitable 𝐴(𝑘) such that 𝜓 is normalisable. Choosing

𝐴(𝑘) = 𝐴GP(𝑘) = exp[−𝜎2 (𝑘 − 𝑘0)2]; 𝑘0 ∈ ℝ, 𝜎 ∈ ℝ+

produces a solution called the Gaussian wavepacket. Substituting into the above,

𝜓GP(𝑥, 𝑡) = ∫
∞

0
exp[−𝜎2 (𝑘 − 𝑘0)2]𝜓𝑘(𝑥, 𝑡) d𝑘 = ∫

∞

0
exp[𝐹(𝑘)] d𝑘

𝐹(𝑘) = −𝜎2 (𝑘 − 𝑘0)2 + 𝑖𝑘𝑥 − 𝑖ℏ𝑘
2

2𝑚 𝑡

We can rewrite this as
𝐹(𝑘) = −12(𝜎 +

𝑖ℏ𝑡
𝑚 )𝑘2 + (𝑘0𝜎 + 𝑖𝑥)𝑘 − 𝜎

2𝑘
2
0

We define further
𝛼 ≡ 𝜎 + 𝑖ℏ𝑡

𝑚 ; 𝛽 = 𝑘0𝜎 + 𝑖𝑥; 𝛿 = −𝜎2𝑘
2
0

Completing the square,

𝐹(𝑘) = −𝛼2 (𝑘 −
𝛽
𝛼)

2
+ 𝛽2
2𝛼 + 𝛿
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We arrive at the solution

𝜓GP(𝑥, 𝑡) = exp[ 𝛽
2

2𝛼 + 𝛿]∫
∞

−∞
exp[−𝛼2 (𝑘 −

𝛽
𝛼)

2
] d𝑘

Under a change of variables ̃𝑘 = 𝑘 − 𝛽
𝛼
, 𝑢 = Im( 𝛽

𝛼
),

𝜓GP(𝑥, 𝑡) = exp[ 𝛽
2

2𝛼 + 𝛿]∫
∞−𝑖𝑢

∞−𝑖𝑢
exp[−𝛼2

̃𝑘] d ̃𝑘

We arrive at the usual Gaussian integral:

𝐼(𝑎) = ∫
∞

−∞
exp[−𝑎𝑥2] d𝑥 = √

𝜋
2

giving

𝜓GP(𝑥, 𝑡) = √
2𝜋
𝛼 exp[ 𝛽

2

2𝛼 + 𝛿] = √
2𝜋
𝛼 exp

⎡
⎢
⎢
⎣
−𝜎2

(𝑥 − ℏ𝑘0
𝑚
𝑡)
2

(𝜎2 + ℏ2𝑡2

𝑚2 )

⎤
⎥
⎥
⎦

We define 𝜓GP to be the normalised Gaussian wavefunction, so 𝜓GP = 𝐶𝜓GP. We can find that

𝜌GP(𝑥, 𝑡) = ||𝜓GP(𝑥, 𝑡)||
2
=√√
√

𝜎
𝜋(𝜎2 + ℏ2𝑡2

𝑚2 )
exp

⎡
⎢
⎢
⎣
−
𝜎(𝑥 − ℏ𝑘

𝑚
𝑡)
2

𝜎2 + ℏ2𝑡2

𝑚2

⎤
⎥
⎥
⎦

This is a wavefunction whose probability density distribution resembles a Gaussian 𝑒−𝑥2 term, with
a maximum point at

⟨𝑥⟩ = ∫
∞

−∞
𝜓⋆
GP𝑥𝜓GP d𝑥 = ∫

∞

−∞
𝑥𝜌GP d𝑥 =

ℏ𝑘0
𝑚 𝑡

and a width of

Δ𝑥 = √⟨𝑥2⟩ − ⟨𝑥⟩2 =
√

1
2(𝜎 +

ℏ2𝑡2
𝑚2𝜎)

The physical interpretation is that the uncertainty of the particle’s position grows with time. In this
case, we can find

⟨𝑝⟩ = ∫
∞

−∞
𝜓⋆
GP𝑖ℏ

𝜕
𝜕𝑥𝜓GP d𝑥 = ℏ𝑘0

which is constant. The uncertainty in the momentum can be found to be

Δ𝑝 = √⟨𝑝2⟩ − ⟨𝑝⟩2 = ℏ

√
1
2
(𝜎 + ℏ2𝑡2

𝑚𝜎
)

Thus,
Δ𝑥Δ𝑝 = ℏ

2
We can find for a single plane wave that

Δ𝑥 = ∞; Δ𝑝 = 0

18



4.6 Beam interpretation
We can choose to ignore the normalisation problem and take the plane waves as the eigenfunctions
of the Hamiltonian:

𝜒𝑘(𝑥) = 𝐴𝑒𝑖𝑘𝑥; 𝜓𝑘(𝑥, 𝑡) = 𝐴𝑒𝑖𝑘𝑥𝑒−
𝑖ℏ2𝑘2
2𝑚 𝑡

Instead of𝜒𝑘(𝑥)describing a single particle, we can interpret it as a beamof particleswithmomentum
𝑝 = ℏ𝑘 and 𝐸 = ℏ2𝑘2

2𝑚
with probability density

𝜌𝑘(𝑥) =
|||𝜒𝑘(𝑥)𝑒

− 𝑖ℏ2𝑘2
2𝑚 𝑡|||

2

= |𝐴|2

which here is interpreted as a constant average density of particles. The probability current is given
by

𝐽𝑘(𝑥, 𝑡) = − 𝑖ℏ
2𝑚(𝜓⋆

𝑘
𝜕𝜓𝑘
𝜕𝑥 − 𝜓𝑘

𝜕𝜓⋆
𝑘

𝜕𝑥 ) = − 𝑖ℏ
2𝑚|𝐴|22𝑖𝑘 = |𝐴|2ℏ𝑘𝑚 = |𝐴|2 𝑝𝑚⏟

velocity

This is interpreted as the average flux of particles.

4.7 Scattering states
Wewish to investigate what happens when a particle, or beam of particles, is thrown onto a potential
𝑈(𝑥). In this case, suppose we have a step function

𝑈(𝑥) = {𝑈0 if 0 ≤ 𝑥 < 𝑎
0 otherwise

and a Gaussian wavepacket which is centred at 𝑥0 ≪ 0 moving in the +𝑥 direction, towards the
spike in potential. As 𝑡 ≫ 0, we end up with a probability density given by two wavepackets; one
will be moving left from the spike and one will have cleared the spike and continues moving to the
right.

Definition. The reflection coefficient 𝑅 is

𝑅 = lim
𝑡→∞

∫
0

−∞
|𝜓GP(𝑥, 𝑡)|

2 d𝑥

which is the probability for the particle to be reflected. The transmission coefficient is

𝑇 = lim
𝑡→∞

∫
∞

0
|𝜓GP(𝑥, 𝑡)|

2 d𝑥

By definition, 𝑅 + 𝑇 = 1.

In practice, working with Gaussian packets is mathematically challenging, although not impossible.
The beam interpretation, by allowing us to use non-normalisable stationary state wavefunctions,
greatly simplifies the computation.
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4.8 Scattering off potential step
Consider a potential

𝑈(𝑥) = {0 if 𝑥 ≤ 0
𝑈0 if 𝑥 > 0

We want to solve
− ℏ2
2𝑚𝜒″𝑘(𝑥) + 𝑈(𝑥)𝜒𝑘(𝑥) = 𝐸𝜒𝑘(𝑥)

We split the problem into two regions: 𝑥 ≤ 0, 𝑥 > 0. For 𝑥 ≤ 0, the TISE becomes

𝜒″𝑘(𝑥) + 𝑘2𝜒𝑘(𝑥) = 0; 𝑘 = √
2𝑚𝐸
ℏ2

The solution is
𝜒(𝑥) = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥

This is a superposition of two beams; the beam of incident particles 𝐴𝑒𝑖𝑘𝑥 and the beam of reflected
particles 𝐵𝑒−𝑖𝑘𝑥 which are travelling in the opposite direction. In the region 𝑥 > 0, we have

𝜒″𝑘(𝑥) + 𝑘
2
𝜒𝑘(𝑥) = 0; 𝑘 = √

2𝑚(𝐸 − 𝑈0)
ℏ2

where 𝑘 is real if 𝐸 > 𝑈0, and 𝑘 is pure-imaginary if 𝐸 < 𝑈0. Therefore, for 𝐸 > 𝑈0 we have

𝜒𝑘(𝑥) = 𝐶𝑒𝑖𝑘𝑥 + 𝐷𝑒−𝑖𝑘𝑥

which is a beam of particles moving towards the right and an incident beam of particles from the
right moving towards the left. Since no such incident beam exists, we can set 𝐷 = 0. If 𝐸 < 𝑈0, the
solution is

𝑘 ≡ 𝑖𝜂 ⟹ 𝜒𝑘(𝑥) = 𝐶𝑒−𝜂𝑥 + 𝐷𝑒𝜂𝑥

𝐷 ≠ 0 would give infinite values of 𝜒𝑘(𝑥) as 𝑥 → ∞. In either case, the eigenfunctions are

𝜒𝑘,𝑘(𝑥) = {𝐴𝑒
𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥 𝑥 ≤ 0

𝐶𝑒𝑖𝑘𝑥 𝑥 > 0

By imposing the boundary conditions, specifically the continuity of 𝜒, we can determine the con-
stants.

𝐴 + 𝐵 = 𝐶; 𝑖𝑘𝐴 − 𝑖𝑘𝐵 = 𝑖𝑘𝐶
which gives

𝐵 = 𝑘 − 𝑘
𝑘 + 𝑘

𝐴; 𝐶 = 2𝑘
𝑘 + 𝑘

𝐴

We can view these solutions in terms of particle flux.

𝐽𝑘(𝑥, 𝑡) = − 𝑖ℏ
2𝑚(𝜓⋆

𝑘
𝜕𝜓𝑘
𝜕𝑥 − 𝜓𝑘

𝜕𝜓⋆
𝑘

𝜕𝑥 )

If 𝐸 > 𝑈0, we find

𝐽(𝑥, 𝑡) = {
ℏ𝑘
𝑚
(|𝐴|2 − |𝐵|2) 𝑥 < 0

ℏ𝑘
𝑚
|𝐶|2 𝑥 ≥ 0
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The incident flux is ℏ𝑘
𝑚
|𝐴|2, the reflected flux is ℏ𝑘

𝑚
|𝐵|2, and the transmitted flux is ℏ𝑘

𝑚
|𝐶|2. We can

define

𝑅 = 𝐽ref
𝐽inc

= |𝐵|2

|𝐴|2
= (𝑘 − 𝑘

𝑘 + 𝑘
)
2

We can also define

𝑇 = 𝐽trans
𝐽inc

= 𝑘|𝐶|2

𝑘|𝐴|2
= 4𝑘𝑘
(𝑘 + 𝑘)2

Wecan check that our original interpretationmakes sense; for example,𝑅+𝑇 = 1, and𝐸 → 𝑈0, 𝑘 → 0
implies 𝑇 → 0, 𝑅 → 1. If 𝐸 → ∞, 𝑇 → 1 and 𝑅 → 0. If 𝐸 < 𝑈0,

𝐽(𝑥, 𝑡) = {
ℏ𝑘
𝑚
(|𝐴|2 + |𝐵|2) 𝑥 < 0

0 𝑥 ≥ 0

since 𝜒𝑘 = 𝜒⋆
𝑘. Here, 𝑇 = 0 but 𝜒𝑘(𝑥) ≠ 0.

4.9 Scattering off a potential barrier
Consider the potential

𝑈(𝑥) = {0 𝑥 ≤ 0, 𝑥 ≥ 𝑎
𝑈0 0 < 𝑥 < 𝑎

When 𝐸 < 𝑈0, we define

𝑘 = √
2𝑚𝐸
ℏ2 > 0; 𝜂 = √

2𝑚(𝑈0 − 𝐸)
ℏ2 > 0

The solution is then

𝜒(𝑥) =
⎧
⎨
⎩

𝑒𝑖𝑘𝑥 + 𝐴𝑒−𝑖𝑘𝑥 𝑥 ≤ 0
𝐵𝑒−𝜂𝑥 + 𝐶𝑒𝜂𝑥 0 < 𝑥 < 𝑎
𝐷𝑒𝑖𝑘𝑥 𝑥 ≥ 𝑎

since we can normalise the incoming flux to one. The boundary conditions are that 𝜒(𝑥) = 𝜒′(𝑥) are
both continuous at 𝑥 = 0, 𝑥 = 𝑎. This gives four conditions, which are enough to solve the problem.
𝜒(𝑥) and its derivative at zero give

1 + 𝐴 = 𝐵 + 𝐶; 𝑖𝑘 − 𝑖𝑘𝐴 = −𝜂𝐵 + 𝜂𝐶

and the continuity at 𝑎 gives

𝐵𝑒−𝜂𝑎 + 𝐶𝑒𝜂𝑎 = 𝐷𝑒𝑖𝑘𝑎; −𝜂𝐵𝑒−𝜂𝑎 + 𝜂𝐶𝑒𝜂𝑎 = 𝑖𝑘𝐷𝑒𝑖𝑘𝑎

Solving the system gives

𝐷 = −4𝑖𝜂𝑘
(𝜂 − 𝑖𝑘)2 exp[(𝜂 + 𝑖𝑘)𝑎] − (𝜂 + 𝑖𝑘)2 exp[−(𝜂 − 𝑖𝑘)𝑎]

The transmitted flux is 𝑗tr =
ℏ𝑘
𝑚
|𝐷|2 and the incident flux is 𝑗inc =

ℏ𝑘
𝑚
. Hence, the transmission

coefficient is 𝑇 = |𝐷|2. This is

𝑇 = 4𝑘2𝜂2

(𝑘2 + 𝜂2)2 sinh2(𝜂𝑎) + 4𝑘2𝜂2
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If we take the limit as 𝑈0 ≫ 𝐸, we have 𝜂𝑎 ≫ 1. Then

𝑇 → 16𝑘2𝜂2
(𝜂2 + 𝑘2)2 exp[−2𝜂𝑎] ∝ exp[−2𝑎𝑘 √2𝑚(𝑈0 − 𝐸)]

So the probability decreases exponentially with the width of the barrier.

4.10 Harmonic oscillator
Consider a parabolic potential

𝑈(𝑥) = 1
2𝑘𝑥

2 = 1
2𝑚𝜔

2𝑥2

where 𝑘 is an elastic constant and 𝜔 = √
𝑘
𝑚
is the angular frequency of the harmonic oscillator.

Classically, we find the solution 𝑥 = 𝐴 cos𝜔𝑡 + 𝐵 sin𝜔𝑡. This gives a continuous energy spectrum.
The TDSE gives

− ℏ2
2𝑚𝜒″(𝑥) + 1

2𝑚𝜔
2𝑥2𝜒(𝑥) = 𝐸𝜒(𝑋)

Since this is a bound system, we will have a discrete set of eigenvalues. The potential is symmetric
so the eigenfunctions are odd or even. We will make the change of variables

𝜉2 = 𝑚𝜔
ℏ 𝑥2; 𝜀 = 2𝐸

ℏ𝜔
which reformulates the TDSE as

−d
2𝜒
d𝜉2 + 𝜉2𝜒 = 𝜀𝜒

We will start by considering the solution for 𝜀 = 1. In this case, 𝐸 = ℏ𝜔
2
. The solution in this case

is
𝜒0(𝜉) = exp[−𝜉

2

2 ]

So the first eigenfunction, 𝜒0, is known in terms of 𝑥, given by

𝜒0(𝑥) = 𝐴 exp[−𝑚𝜔2ℏ 𝑥
2]; 𝐸0 =

ℏ𝜔
2

To find the other eigenfunctions, we will take the general form

𝜒(𝜉) = 𝑓(𝜉) exp[−𝜉
2

2 ]

This works because we know we have a bound solution and 𝜒 must tend to zero quickly as 𝜉 tends
to infinity, due to the differential equation in terms of 𝜉, 𝜀. Using the above ansatz for 𝜒 in the
Schrödinger equation,

−d
2𝑓
d𝜉2 + 2𝜉d𝑓d𝜉 + (1 − 𝜀)𝑓 = 0

Note that if 𝜀 = 1, a solution is 𝑓 = 1. We can find a power series solution to this differential equation,
with 𝜉 = 0 as a regular point.

𝑓(𝜉) =
∞
∑
𝑛=0

𝑎𝑛𝜉𝑛
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We find

𝜉d𝑓d𝜉 =
∞
∑
𝑛=0

𝑛𝑎𝑛𝜉𝑛;
d2𝑓
d𝜉2 =

∞
∑
𝑛=0

𝑛(𝑛 − 1)𝑎𝑛𝜉𝑛−2 =
∞
∑
𝑛=0

(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝜉𝑛

Comparing coefficients of 𝜉𝑛,

(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 − 2𝑛𝑎𝑛 + (𝜀 − 1)𝑎𝑛 = 0

Hence,
𝑎𝑛+2 =

2𝑛 − 𝜀 + 1
(𝑛 + 1)(𝑛 + 2)𝑎𝑛

Since the function must be either even or odd, exactly one of 𝑎0 and 𝑎1 must be zero.

Proposition. If the series for 𝑓 does not terminate, 𝜒 is not normalisable.

Proof. Suppose the series does not terminate. We will consider the asymptotic behaviour as 𝑛 → ∞.
𝑎𝑛+2
𝑎𝑛

→ 2
𝑛

But this is the same asymptotic behaviour as the function 𝑔(𝜉) given by

𝑔(𝜉) = exp[𝜉2] =
∞
∑
𝑚=0

𝜉2𝑚
𝑚! =

∞
∑
𝑛=0

𝑏𝑛𝜉𝑛

with

𝑏𝑛 = {
1
𝑚!

𝑛 = 2𝑚
0 𝑛 = 2𝑚 + 1

So asymptotically,
𝑏𝑛+2
𝑏𝑛

=
(𝑛
2
)!

(𝑛
2
+ 1)!

= 2
𝑛 + 2 →

2
𝑛

Hence 𝜒 would have a form asymptotically equal to

𝜒(𝜉) ∼ exp[𝜉
2

2 ]

Hence 𝜒(𝜉) would be not normalisable.

Hence 𝑓 must be a polynomial. So there exists 𝑁 such that 𝑎𝑁+2 = 0 and 𝑎𝑁 ≠ 0. So for this
value,

2𝑁 − 𝜀 + 1 = 0 ⟹ 𝜀 = 2𝑁 + 1
By the definition of 𝜀,

𝐸𝑁 = (𝑁 + 1
2)ℏ𝜔

In particular, 𝐸𝑁+1 − 𝐸𝑁 = ℏ𝜔. The eigenfunctions are

𝜒𝑁(𝜉) = 𝑓𝑁(𝜉) exp[−
𝜉2
2 ]
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with the property that
𝜒𝑁(−𝜉) = (−1)𝑁𝜒𝑁(𝜉)

𝑓0(𝜉) = 1
𝑓1(𝜉) = 𝜉
𝑓2(𝜉) = 1 − 2𝜉2

𝑓3(𝜉) = 𝜉 − 2
3𝜉

3

⋮

5 Operators and measurements
5.1 Hermitian operators

Definition. TheHermitian conjugate of an operator ̂𝐴 is written ̂𝐴†, and is defined such that

⟨ ̂𝐴†𝜓1, 𝜓2⟩ = ⟨𝜓1, ̂𝐴𝜓2⟩

where 𝜓1, 𝜓2 ∈ ℋ.

We can verify that for 𝑎1, 𝑎2 ∈ ℂ,

(i) (𝑎1 ̂𝐴1 + 𝑎2 ̂𝐴2)† = 𝑎⋆
1 ̂𝐴†

1 + 𝑎⋆
2 ̂𝐴†

2 ;

(ii) ( ̂𝐴 ̂𝐵)† = ̂𝐵† ̂𝐴†

Definition. A Hermitian operator is a linear operator �̂�∶ ℋ → ℋ such that

̂𝐴† = ̂𝐴

Equivalently,
⟨ ̂𝐴𝜓1, 𝜓2⟩ = ⟨𝜓1, ̂𝐴𝜓2⟩

Example. The familiar operators ̂𝑥, ̂𝑝 are Hermitian.

⟨ ̂𝑥𝜓1, 𝜓2⟩ = ∫
ℝ3
(𝑥𝜓1)⋆𝜓2 d𝑉

= ∫
ℝ3
𝜓⋆
1𝑥𝜓2 d𝑉

= ⟨𝜓1, ̂𝑥𝜓2⟩
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For ̂𝑝, integrating by parts, we have

⟨ ̂𝑝𝜓1, 𝜓2⟩ = ∫
∞

−∞
(−𝑖ℏ 𝜕

𝜕𝑥𝜓1)
⋆
𝜓2 d𝑥

= 𝑖ℏ∫
∞

−∞

𝜕𝜓⋆
1

𝜕𝑥 𝜓2 d𝑥

= −𝑖ℏ∫
∞

−∞
𝜓⋆
1
𝜕𝜓2
𝜕𝑥 d𝑥

= ⟨𝜓1, ̂𝑝𝜓2⟩

Theorem. The eigenvalues of a Hermitian operator are real.

Proof. Let ̂𝐴 be a Hermitian operator, and 𝜓 a normalised eigenfunction with eigenvalue 𝑎.

⟨𝜓, ̂𝐴𝜓⟩ = ⟨𝜓, 𝑎𝜓⟩ = 𝑎 ⟨𝜓, 𝜓⟩ = 𝑎

Since ̂𝐴 is Hermitian,
⟨𝜓, ̂𝐴𝜓⟩ = ⟨ ̂𝐴𝜓, 𝜓⟩ = ⟨𝑎𝜓, 𝜓⟩ = 𝑎⋆ ⟨𝜓, 𝜓⟩ = 𝑎⋆

Hence 𝑎 = 𝑎⋆ so 𝑎 ∈ ℝ.

Theorem. Let ̂𝐴 be aHermitian operator, and𝜓1, 𝜓2 normalised eigenfunctionswith distinct
eigenvalues 𝑎1, 𝑎2. Then 𝜓1, 𝜓2 are orthogonal.

Proof. We have ̂𝐴𝜓1 = 𝑎1𝜓1 and ̂𝐴𝜓2 = 𝑎2𝜓2. Then,

⟨ ̂𝐴𝜓1, 𝜓2⟩ = 𝑎1 ⟨𝜓1, 𝜓2⟩

But also,
⟨𝜓1, ̂𝐴𝜓2⟩ = 𝑎2 ⟨𝜓1, 𝜓2⟩

These two values must be the same, so ⟨𝜓1, 𝜓2⟩ = 0.

Theorem. The discrete and continuous set of eigenfunctions of anyHermitian operator form
a complete orthogonal basis for the Hilbert space. This theorem is stated without proof.

Corollary. Every solution of the time-dependent Schrödinger can be written as a superposi-
tion of stationary states.

𝜓(𝑥, 𝑡) =
∞
∑
𝑛=1

𝑎𝑛𝜒𝑛(𝑥)𝑒−𝑖𝐸𝑛𝑡/ℏ; 𝑎𝑛 = ⟨𝜒𝑛, 𝜓⟩

In the continuous case,

𝜓(𝑥, 𝑡) = ∫
Δ𝛼
𝐴(𝛼)𝜒𝛼(𝑥)𝑒−𝑖𝐸𝑛𝑡/ℏ d𝛼 ; 𝐴(𝛼) = ⟨𝜒𝛼, 𝜓⟩
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5.2 Postulates of quantummechanics
The following postulates are used to interpret measurements in quantum systems.

(i) Any observable 𝑂 is represented by a Hermitian operator �̂�.
(ii) The possible outcomes of 𝑂 are the eigenvalues of �̂�. Since �̂� is Hermitian, we can only ever

observe real values.

(iii) Let �̂� have a discrete set of normalised eigenfunctions {𝜓𝑖} with distinct eigenvalues {𝜆𝑖}. Let
𝜓 be a state, written in terms of the eigenfunctions of �̂�.

𝜓 = ∑𝑎𝑖𝜓𝑖

Suppose we measure 𝑂 on a particle in the state 𝜓. Then, the probability that 𝑂 takes value 𝜆𝑖
is

ℙ (𝑂 = 𝜆𝑖) = |𝑎𝑖|
2 = 𝑎⋆

𝑖 𝑎𝑖

(iv) The above postulate can be generalised to the case where �̂� has degenerate eigenvalues. Let
{𝜓𝑖} be a discrete set of normalised eigenfunctions with not necessarily distinct eigenvalues {𝜆𝑖}.
If {𝜓𝑖}𝑖∈𝐼 is a complete set of orthonormal eigenfunctions with the same eigenvalue 𝜆, then

ℙ (𝑂 = 𝜆) = ∑
𝑖∈𝐼

|𝑎𝑖|
2 = ∑

𝑖∈𝐼
𝑎⋆𝑎

(v) We can verify from the postulates above that the sum of all probabilities is unity.

∑
𝑖
|𝑎𝑖|

2 = ∑
𝑖
⟨𝑎𝑖𝜓𝑖, 𝑎𝑖𝜓𝑖⟩ = ∑

𝑖
∑
𝑗
⟨𝑎𝑖𝜓𝑖, 𝑎𝑗𝜓𝑗⟩ = ⟨𝜓, 𝜓⟩ = 1

(vi) If 𝑂 is measured on a state 𝜓 at time 𝑡, and the outcome is 𝜆𝑖, then the wavefunction instantan-
eously ‘collapses’ into the measured state after the measurement.

𝜓 ↦ 𝜓𝑖

This is called the projection postulate.

(vii) If �̂� has degenerate eigenfunctions all with eigenvalue 𝜆, then instead we find

𝜓 ↦∑
𝑖∈𝐼

𝑎𝑖𝜓𝑖

So in this case, the wavefunction collapses to a linear combination of the eigenfunctions that
give this eigenvalue.

5.3 Expectation of operators

Definition.
𝜓 = ∑

𝑖
𝑎𝑖𝜓𝑖 = ∑

𝑖
⟨𝜓𝑖, 𝜓⟩ 𝜓𝑖
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The projector operator projects 𝜓 onto a specific eigenfunction.

̂𝑃 ∶ 𝜓 ↦ ⟨𝜓𝑖, 𝜓⟩ 𝜓𝑖

Definition. The expectation value of an observable �̂� on a state 𝜓 is

⟨𝑂⟩𝜓 = ∑
𝑖
𝜆𝑖ℙ (𝑂 = 𝜆𝑖)

= ∑
𝑖
𝜆𝑖|⟨𝜓𝑖, 𝜓⟩|

2

= ⟨∑
𝑖
⟨𝜓𝑖, 𝜓⟩ 𝜓𝑖,∑

𝑗
𝜆𝑗 ⟨𝜓𝑗 , 𝜓⟩ 𝜓𝑗⟩

= ⟨𝜓, �̂�𝜓⟩

5.4 Commutators

Definition. The commutator of two operators ̂𝐴 and ̂𝐵 is the operator given by

[ ̂𝐴, ̂𝐵] = ̂𝐴 ̂𝐵 − ̂𝐵 ̂𝐴

We observe the following properties of the commutator.

(i) [ ̂𝐴, ̂𝐵] = −[ ̂𝐵, ̂𝐴];
(ii) [ ̂𝐴, ̂𝐴] = 0;
(iii) [ ̂𝐴, ̂𝐵 ̂𝐶] = [ ̂𝐴, ̂𝐵] ̂𝐶 + ̂𝐵[ ̂𝐴, ̂𝐶];
(iv) [ ̂𝐴 ̂𝐵, ̂𝐶] = ̂𝐴[ ̂𝐵, ̂𝐶] + [ ̂𝐴, ̂𝐶] ̂𝐵;
Example. The commutator [ ̂𝑥, ̂𝑝] in one dimension is given by, for every 𝜓 ∈ ℋ,

̂𝑥 ̂𝑝𝜓 = 𝑥(−𝑖ℏ 𝜕
𝜕𝑥)𝜓(𝑥) = −𝑖ℏ𝑥𝜕𝜓𝜕𝑥

̂𝑝 ̂𝑥𝜓 = (−𝑖ℏ 𝜕
𝜕𝑥)𝑥𝜓(𝑥) = −𝑖ℏ𝜓 − 𝑖ℏ𝑥𝜕𝜓𝜕𝑥

∴ [ ̂𝑥, ̂𝑝]𝜓 = 𝑖ℏ𝜓

Hence,
[ ̂𝑥, ̂𝑝] = 𝑖ℏ ̂𝐼

where ̂𝐼 is the identity operator. This specific commutator is known as the canonical commutator
relation.
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5.5 Simultaneously diagonalisable operators

Definition. Hermitian operators ̂𝐴 and ̂𝐵 are said to be simultaneously diagonalisable if there
exists a complete basis of joint eigenfunctions {𝜓𝑖} such that ̂𝐴𝜓𝑖 = 𝜆𝑖𝜓𝑖 and ̂𝐵𝜓𝑖 = 𝜇𝑖𝜓𝑖 for
𝜆𝑖, 𝜇𝑖 ∈ ℝ.

Theorem. Hermitian operators ̂𝐴 and ̂𝐵 are simultaneously diagonalisable if and only if
[ ̂𝐴, ̂𝐵] = 0.

Proof. Suppose ̂𝐴 and ̂𝐵 are simultaneously diagonalisable. Then, by definition, there exists a com-
plete basis {𝜓𝑖}with eigenvalues 𝜆𝑖, 𝜇𝑖 for ̂𝐴, ̂𝐵. Now, for any element 𝜓𝑖 of this basis, the commutator
is

[ ̂𝐴, ̂𝐵]𝜓𝑖 = ̂𝐴 ̂𝐵𝜓𝑖 − ̂𝐵 ̂𝐴𝜓𝑖 = ̂𝐴𝜇𝑖𝜓𝑖 − ̂𝐵𝜆𝑖𝜓𝑖 = 𝜇𝑖 ̂𝐴𝜓𝑖 − 𝜆𝑖 ̂𝐵𝜓𝑖 = 𝜆𝑖𝜇𝑖𝜓𝑖 − 𝜇𝑖𝜆𝑖𝜓𝑖 = 0
Let 𝜓 be an arbitrary function in the Hilbert spaceℋ. Then by linearity,

[ ̂𝐴, ̂𝐵]𝜓 = ∑
𝑖
𝑐𝑖[ ̂𝐴, ̂𝐵]𝜓𝑖 = 0

Conversely, suppose that the commutator is zero. Let 𝜓𝑖 be an eigenfunction of ̂𝐴with eigenvalue 𝜆𝑖.
Then, since the commutator is zero, we have

0 = [ ̂𝐴, ̂𝐵]𝜓𝑖 = ̂𝐴 ̂𝐵𝜓𝑖 − ̂𝐵 ̂𝐴𝜓𝑖 ⟹ ̂𝐴( ̂𝐵𝜓𝑖) = 𝜆𝑖( ̂𝐵𝜓𝑖)
Hence, ̂𝐵 maps the eigenspace 𝐸𝑖 of ̂𝐴 with eigenvalue 𝜆𝑖 into itself. So ̂𝐵||𝐸𝑖 is a Hermitian oper-
ator on 𝐸𝑖. Since this holds for any eigenfunction and eigenvalue, we can find a complete basis of
simultaneous eigenfunctions of ̂𝐴 and ̂𝐵.

5.6 Uncertainty

Definition. The uncertainty in a measurement of an observable 𝐴 on a state 𝜓 is defined as

Δ𝜓𝐴 = √(Δ𝜓𝐴)
2

where
(Δ𝜓𝐴)

2 = ⟨( ̂𝐴 − ⟨ ̂𝐴⟩𝜓 ̂𝐼)
2
⟩
𝜓
= ⟨ ̂𝐴2⟩𝜓 − (⟨ ̂𝐴⟩𝜓)

2

The two definitions are equivalent:

⟨( ̂𝐴 − ⟨ ̂𝐴⟩𝜓 ̂𝐼)
2
⟩
𝜓
= ∫

ℝ3
𝜓⋆( ̂𝐴 − ⟨ ̂𝐴⟩𝜓 ̂𝐼)

2
𝜓 d𝑉

= ∫
ℝ3
𝜓⋆ ̂𝐴2𝜓 d𝑉 + (⟨ ̂𝐴⟩𝜓)

2
∫
ℝ3
𝜓⋆𝜓 d𝑉 − 2 ⟨ ̂𝐴⟩𝜓∫

ℝ3
𝜓⋆𝐴𝜓 d𝑉

= ⟨ ̂𝐴2⟩𝜓 + (⟨ ̂𝐴⟩𝜓)
2
− 2(⟨ ̂𝐴⟩𝜓)

2

= ⟨ ̂𝐴2⟩𝜓 − (⟨ ̂𝐴⟩𝜓)
2

28



Lemma. (Δ𝜓𝐴)2 ≥ 0, and Δ𝜓𝐴 = 0 if and only if 𝜓 is an eigenfunction of ̂𝐴.

Proof. Since ̂𝐴 is Hermitian,

(Δ𝜓𝐴)2 = ⟨( ̂𝐴 − ⟨ ̂𝐴⟩𝜓 ̂𝐼)
2
⟩
𝜓

= ⟨𝜓, ( ̂𝐴 − ⟨ ̂𝐴⟩𝜓 ̂𝐼)
2
𝜓⟩

= ⟨( ̂𝐴 − ⟨ ̂𝐴⟩𝜓 ̂𝐼)𝜓, ( ̂𝐴 − ⟨ ̂𝐴⟩𝜓 ̂𝐼)𝜓⟩

= ‖
‖( ̂𝐴 − ⟨ ̂𝐴⟩𝜓 ̂𝐼)𝜓‖‖

Let 𝜙 = ( ̂𝐴 − ⟨ ̂𝐴⟩𝜓 ̂𝐼)𝜓. The norm of any function is non-negative, so the square uncertainty is non-
negative. Now, suppose this norm ‖𝜙‖ is zero. Then, 𝜙 = 0. Hence,

̂𝐴𝜓 = ⟨ ̂𝐴⟩𝜓 𝜓

so it is an eigenfunction of ̂𝐴. If 𝜓 is conversely an eigenfunction of ̂𝐴 with eigenvalue 𝑎, then

⟨ ̂𝐴⟩𝜓 = ⟨𝜓, ̂𝐴𝜓⟩ = 𝑎‖𝜓‖ = 𝑎

Further,
⟨ ̂𝐴2⟩𝜓 = ⟨𝜓, ̂𝐴2𝜓⟩ = 𝑎2

Hence,
(Δ𝜓𝐴)

2 = 𝑎2 − 𝑎2 = 0

5.7 Schwarz inequality

Theorem. Let 𝜓, 𝜙 ∈ ℋ. Then,

|⟨𝜓, 𝜙⟩|2 ≤ ⟨𝜙, 𝜙⟩ ⟨𝜓, 𝜓⟩

and
|⟨𝜓, 𝜙⟩|2 = ⟨𝜙, 𝜙⟩ ⟨𝜓, 𝜓⟩ ⟺ ∃𝑎 ∈ ℂ, 𝜙 = 𝑎𝜓

Proof. For all 𝑎 ∈ ℂ, we have
0 ≤ ⟨𝜙 − 𝑎𝜓, 𝜙 − 𝑎𝜓⟩

In particular, let
𝑎 = ⟨𝜓, 𝜙⟩

⟨𝜓, 𝜓⟩
Then,

0 ≤ ⟨𝜙, 𝜙⟩ − 2|⟨𝜓, 𝜙⟩|2
⟨𝜓, 𝜓⟩ + |⟨𝜓, 𝜙⟩|2

⟨𝜓, 𝜓⟩ = ⟨𝜙, 𝜙⟩ − |⟨𝜓, 𝜙⟩|2
⟨𝜓, 𝜓⟩

29



Hence,
|⟨𝜓, 𝜙⟩|2 ≤ ⟨𝜓, 𝜓⟩ ⟨𝜙, 𝜙⟩

Equality holds if and only if 𝜙 − 𝑎𝜓 = 0.

5.8 Generalised uncertainty theorem

Theorem. Let 𝐴 and 𝐵 be observables, and 𝜓 ∈ ℋ. Then

(Δ𝜓𝐴)(Δ𝜓𝐵) ≥
1
2 ||⟨𝜓, [

̂𝐴, ̂𝐵]𝜓⟩||

Proof.
(Δ𝜓𝐴)

2 = ⟨( ̂𝐴 − ⟨ ̂𝐴⟩𝜓 ̂𝐼)𝜓, ( ̂𝐴 − ⟨ ̂𝐴⟩𝜓 ̂𝐼)𝜓⟩

Defining ̂𝐴′ = ̂𝐴 − ⟨ ̂𝐴⟩𝜓 ̂𝐼 and ̂𝐵′ = ̂𝐵 − ⟨ ̂𝐵⟩𝜓 ̂𝐼,

(Δ𝜓 ̂𝐴′)2 = ⟨ ̂𝐴′𝜓, ̂𝐴′𝜓⟩

and analogously for ̂𝐵′. Now,

(Δ𝜓 ̂𝐴′)2(Δ𝜓 ̂𝐵′)2 = ⟨ ̂𝐴′𝜓, ̂𝐴′𝜓⟩ ⟨ ̂𝐵′𝜓, ̂𝐵′𝜓⟩ ≥ ||⟨ ̂𝐴′𝜓, ̂𝐵′𝜓⟩||2

Since ̂𝐴′ is Hermitian,
(Δ𝜓 ̂𝐴′)(Δ𝜓 ̂𝐵′) ≥ ||⟨𝜓, ̂𝐴′ ̂𝐵′𝜓⟩||

By definition, [ ̂𝐴, ̂𝐵] = ̂𝐴 ̂𝐵 − ̂𝐵 ̂𝐴 and let the anticommutator be { ̂𝐴, ̂𝐵} = ̂𝐴 ̂𝐵 + ̂𝐵 ̂𝐴. If ̂𝐴′ and ̂𝐵′ are
Hermitian,

[ ̂𝐴′, ̂𝐵′]† = −[ ̂𝐴′, ̂𝐵′]
and

{ ̂𝐴′, ̂𝐵′}† = { ̂𝐴′, ̂𝐵′}
So the anticommutator is Hermitian. Now, we can write

̂𝐴′ ̂𝐵′ = 1
2[

̂𝐴′, ̂𝐵′] + 1
2{

̂𝐴′, ̂𝐵′}

Hence,

(Δ𝜓 ̂𝐴′)(Δ𝜓 ̂𝐵′) ≥ |||⟨𝜓, (
1
2[

̂𝐴′, ̂𝐵′] + 1
2{

̂𝐴′, ̂𝐵′})𝜓⟩|||

= |||⟨𝜓,
1
2[

̂𝐴′, ̂𝐵′]𝜓⟩ + ⟨𝜓, 12{
̂𝐴′, ̂𝐵′}𝜓⟩|||

We can prove that ⟨𝜓, { ̂𝐴′, ̂𝐵′}𝜓⟩ ∈ ℝ. Since the anticommutator is Hermitian,

⟨𝜓, { ̂𝐴′, ̂𝐵′}𝜓⟩ = ⟨{ ̂𝐴′, ̂𝐵′}𝜓, 𝜓⟩ = ⟨𝜓, { ̂𝐴′, ̂𝐵′}𝜓⟩⋆

Analogously we can prove that ⟨𝜓, [ ̂𝐴′, ̂𝐵′]𝜓⟩ ∈ 𝑖ℝ.

⟨𝜓, [ ̂𝐴′, ̂𝐵′]𝜓⟩ = ⟨[ ̂𝐴′, ̂𝐵′]⋆𝜓, 𝜓⟩ = − ⟨𝜓, [ ̂𝐴′, ̂𝐵′]𝜓⟩⋆
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Hence,

(Δ𝜓 ̂𝐴′)2(Δ𝜓 ̂𝐵′)2 ≥ |||⟨𝜓,
1
2[

̂𝐴′, ̂𝐵′]𝜓⟩ + ⟨𝜓, 12{
̂𝐴′, ̂𝐵′}𝜓⟩|||

2

= 1
4||⟨𝜓, [

̂𝐴′, ̂𝐵′]𝜓⟩||2 + 1
4||⟨𝜓, {

̂𝐴′, ̂𝐵′}𝜓⟩||2

≥ 1
4||⟨𝜓, {

̂𝐴′, ̂𝐵′}𝜓⟩||2

∴ (Δ𝜓 ̂𝐴′)2(Δ𝜓 ̂𝐵′)2 ≥ 1
4||⟨𝜓, {

̂𝐴, ̂𝐵}𝜓⟩||2

5.9 Consequences of uncertainty relation
(i) [ ̂𝐴, ̂𝐵] = 0 implies that there exists a joint set of eigenfunctions which is a complete basis ofℋ.

In particular, ̂𝐴 and ̂𝐵 can be measured simulaneously with arbitrary precision. For instance,
we can measure 𝐸, ||𝐿|| and 𝐿𝑧 simultaneously for an electron on a hydrogen atom.

(ii) We cannot simultaneously measure position and momentum of a particle with arbitrary preci-
sion. In particular,

Δ𝜓𝑥Δ𝜓𝑝 ≥
ℏ
2

This is Heisenberg’s uncertainty principle.

5.10 States of minimal uncertainty
The Gaussian wavepacket was a state of minimal uncertainty:

Δ𝜓𝑥Δ𝜓𝑝 =
ℏ
2

We would like to analyse the conditions for a state 𝜓 to have minimal uncertainty.

Lemma. 𝜓 is a state of minimal uncertainty if and only if

̂𝑥𝜓 = 𝑖𝑎 ̂𝑝𝜓

for some 𝑎 ∈ ℝ. A non-example is the De Broglie plane waves.

Lemma. The condition for the above lemma to hold is that

𝜓(𝑥) = 𝑐𝑒−𝑏𝑥2 ; 𝑏, 𝑐 ∈ ℝ, 𝑏 > 0, 𝑐 ≠ 0

The Gaussian wavepacket is an example of this form.
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5.11 Ehrenfest theorem

Theorem. The time evolution of a Hermitian operator ̂𝐴 is governed by

d
d𝑡 ⟨

̂𝐴⟩𝜓 =
𝑖
ℏ ⟨[�̂�,

̂𝐴]⟩𝜓 + ⟨𝜕
̂𝐴

𝜕𝑡 ⟩𝜓

In this course, we will not see any operators with time dependence, so the last term will not
be needed.

Proof.

d
d𝑡 ⟨

̂𝐴⟩𝜓 =
d
d𝑡 ∫

∞

−∞
𝜓⋆ ̂𝐴𝜓 d𝑥

= ∫
∞

−∞

𝜕
𝜕𝑡 (𝜓

⋆ ̂𝐴𝜓) d𝑥

= ∫
∞

−∞
[𝜕𝜓

⋆

𝜕𝑡
̂𝐴𝜓 + 𝜓⋆ 𝜕 ̂𝐴

𝜕𝑡 𝜓 + 𝜓⋆ ̂𝐴𝜕𝜓𝜕𝑡 ] d𝑥

The time-dependent Schrödinger equation gives

(𝑖ℏ𝜕𝜓𝜕𝑡 )
⋆
= (�̂�𝜓)⋆ ⟹ −𝑖ℏ𝜕𝜓

⋆

𝜕𝑡 = 𝜓⋆�̂�⋆ = 𝜓⋆�̂�

Hence,

d
d𝑡 ⟨

̂𝐴⟩𝜓 =
𝑖
ℏ ∫

∞

−∞
[𝜓⋆�̂� ̂𝐴𝜓 − 𝜓⋆ ̂𝐴�̂�𝜓] d𝑥 +∫

∞

−∞
𝜓⋆ 𝜕 ̂𝐴

𝜕𝑡 𝜓 d𝑥

= 𝑖
ℏ ⟨[�̂�,

̂𝐴]⟩𝜓 + ⟨𝜕
̂𝐴

𝜕𝑡 ⟩𝜓

Example. Let ̂𝐴 = �̂�. Then,
d
d𝑡 ⟨�̂�⟩𝜓 = 0

This corresponds to the classical notion of conservation of energy.

Example. Let ̂𝐴 = ̂𝑝. First, note

[�̂�, ̂𝑝]𝜓 = [ ̂𝑝2
2𝑚 + 𝑈( ̂𝑥), ̂𝑝]𝜓

= [𝑈( ̂𝑥), ̂𝑝]𝜓

= 𝑈(𝑥)(−𝑖ℏ 𝜕
𝜕𝑥)𝜓 − (−𝑖ℏ 𝜕

𝜕𝑥)𝑈(𝑥)𝜓

= 𝑖ℏ𝜕𝑈(𝑥)𝜕𝑥 𝜓
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Hence,
d
d𝑡 ⟨ ̂𝑝⟩𝜓 =

𝑖
ℏ ⟨[�̂�, ̂𝑝]⟩𝜓 = −⟨𝜕𝑈𝜕𝑥 ⟩𝜓

This corresponds exactly to Newton’s second law,

̇𝑝 = −d𝑈d𝑥

Example. Let ̂𝐴 = ̂𝑥. We have

[�̂�, ̂𝑥]𝜓 = [ ̂𝑝2
2𝑚 + 𝑈( ̂𝑥), ̂𝑥]𝜓

= 1
2𝑚[ ̂𝑝2, ̂𝑥]𝜓

= 1
2𝑚( ̂𝑝[ ̂𝑝, ̂𝑥] + [ ̂𝑝, ̂𝑥] ̂𝑝)𝜓

= −𝑖ℏ
𝑚

Hence,
d
d𝑡 ⟨ ̂𝑥⟩𝜓 =

𝑖
ℏ ⟨[�̂�, ̂𝑥]⟩𝜓 =

⟨ ̂𝑝⟩𝜓
𝑚

which aligns with the classical equation
̇𝑥 = 𝑝

𝑚

6 Three-dimensional solutions to theSchrödinger equation
6.1 Time-independent Schrödinger equation in spherical polar coordinates
For a spherically symmetric potential in ℝ3, the time-independent Schrödinger equation is

− ℏ2
2𝑚∇2𝜒(𝑥) + 𝑈(𝑥)𝜒(𝑥) = 𝐸𝜒(𝑥)

Recall that the Laplacian operator can be expanded in spherical polar coordinates as

− ℏ2
2𝑚(1𝑟

𝜕2
𝜕𝑟2 𝑟 +

1
𝑟2 sin2 𝜃

[sin 𝜃 𝜕
𝜕𝜃(sin 𝜃

𝜕
𝜕𝜃) +

𝜕2
𝜕𝜙2 ])𝜒(𝑥) + 𝑈(𝑥)𝜒(𝑥) = 𝐸𝜒(𝑥)

where
𝑥 = 𝑟 cos𝜙 sin 𝜃; 𝑦 = 𝑟 sin𝜙 sin 𝜃; 𝑧 = 𝑟 cos 𝜃

Definition. A spherically symmetric potential is a potential 𝑈 which depends only on 𝑟.

We search for the particular solutions of the time-dependent Schrödinger equation with spherically
symmetric potential that are radial eigenfunctions. If 𝜒(𝑟) is a function of 𝑟 alone,

∇2𝜒(𝑟) = 1
𝑟
𝜕2
𝜕𝑟2 (𝑟𝜒(𝑟))
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Hence,
− ℏ2
2𝑚𝑟

𝜕2
𝜕𝑟2 (𝑟𝜒(𝑟)) + 𝑈(𝑟)𝜒(𝑟) = 𝐸𝜒(𝑟)

This is equivalent to

− ℏ2
2𝑚(𝜒″(𝑟) + 2

𝑟𝜒
′(𝑟)) + 𝑈(𝑟)𝜒(𝑟) = 𝐸𝜒(𝑟)

The normalisation condition is
∫

∞

0
|𝜒(𝑟)|2𝑟2 d𝑟 < 𝑁

The eigenfunctions 𝜒(𝑟)must converge to zero sufficiently fast as 𝑟 → ∞ in order to be normalisable.
To solve the time-independent Schrödinger equation, we will define

𝜎(𝑟) = 𝑟𝜒(𝑟)

Then,
− ℏ2
2𝑚𝜎″(𝑟) + 𝑈(𝑟)𝜎(𝑟) = 𝐸𝜎(𝑟)

This is defined for 𝑟 ≥ 0. The normalisation condition here is

∫
∞

0
|𝜎(𝑟)|2 d𝑟 < 𝑁; 𝜎(0) = 0; 𝜎′(0) < ∞

The conditions at zero force 𝜒 to be defined and have finite derivative at zero. To solve the equation
for 𝜎, we solve on ℝ and search for odd solutions 𝜎(−), so

𝜎(−)(−𝑟) = −𝜎(−)(𝑟)

6.2 Spherically symmetric potential well
Consider the potential well given by

𝑈(𝑟) = {0 𝑟 ≤ 𝑎
𝑈0 𝑟 > 𝑎

where 𝑎,𝑈0 > 0. The time-independent Schrödinger equation is

− ℏ2
2𝑚𝜎″(𝑟) + 𝑈(𝑟)𝜎(𝑟) = 𝐸𝜎(𝑟)

We search for odd-parity bound states, so 0 < 𝐸 < 𝑈0. Let

𝑘 = √
2𝑚𝐸
ℏ2 ; 𝑘 = √

2𝑚(𝑈0 − 𝐸)
ℏ2

The solution for 𝜎 is
𝜎(𝑟) = {𝐴 sin(𝑘𝑟) 𝑟 ≤ 𝑎

𝐵𝑒−𝑘𝑟 𝑟 > 𝑎

The continuity condition at 𝑟 = 𝑎 can be imposed to find 𝐴 sin 𝑘𝑎 = 𝐵𝑒−𝑘𝑎. The continuity of the
derivative gives 𝑘𝐴 cos 𝑘𝑎 = −𝑘𝐵𝑒−𝑘𝑎. Therefore,

−𝑘 cot(𝑘𝑎) = 𝑘; 𝑘2 + 𝑘
2
= 2𝑚𝑈0

ℏ2
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Hence,
−𝜉 cot 𝜉 = 𝜂; 𝜉2 + 𝜂2 = 𝑟20

where 𝜉 = 𝑘𝑎 and 𝜂 = 𝑘𝑎, and 𝑟0 = 𝑎√2𝑚𝑈0/ℏ. If 𝑟0 < 𝜋
2
, we have no solutions because 𝜉 ≥ 0.

Equivalently, there are no solutions if

𝑈0 <
𝜋2ℏ2
8𝑚𝑎2

7 Solution to hydrogen atom
7.1 Radial wavefunction of hydrogen atom
The hydrogen atom is comprised of a nucleus and a single electron. The nucleus has a positive charge
and the electron has a negative charge. We will model the proton to be stationary at the origin. The
Coulomb force experienced by the electron is given by

𝐹 = − 𝑒2
4𝜋𝜀0

1
𝑟2 = −𝜕𝑈𝜕𝑟 ⟹ 𝑈 = − 𝑒2

4𝜋𝜀0
1
𝑟

Since zero potential is achieved only at infinity, we search for bound states with𝐸 < 0. Wewill search
for the radial symmetric eigenfunctions. We have

− ℏ2
2𝑚𝑒

(𝜒″(𝑟) + 2
𝑟𝜒

′(𝑟)) − 𝑒2
4𝜋𝜀0

1
𝑟𝜒(𝑟) = 𝐸𝜒(𝑟)

We define
𝜈2 = −2𝑚𝐸ℏ2 > 0; 𝛽 = 𝑒2𝑚𝑒

2𝜋𝜀0ℏ2
> 0

The Schrödinger equation becomes

𝜒″(𝑟) + 2
𝑟𝜒

′(𝑟) + (𝛽𝑟 − 𝜈2)𝜒(𝑟) = 0

Asymptotically as 𝑟 → ∞, we can see that 𝜒″ ∼ 𝜈2𝜒. Since 𝜈2 > 0, this yields solutions that asymp-
totically behave similarly to 𝑒−𝑟𝜈, where the positive exponential solution is not applicable due to the
normalisation condition. For 𝑟 = 0, the eigenfunction should be finite. We will consider an ansatz
educated by the asymptotical behaviour. Suppose

𝜒(𝑟) = 𝑓(𝑟)𝑒−𝜈𝑟

and we solve for 𝑓(𝑟). The Schrödinger equation is

𝑓″(𝑟) + 2
𝑟 (1 − 𝜈𝑟)𝑓′(𝑟) + 1

𝑟 (𝛽 − 2𝜈)𝑓(𝑟) = 0

This is a homogeneous linear ordinary differential equation with a regular point at 𝑟 = 0. Suppose
there exist series solutions.

𝑓(𝑟) = 𝑟𝑐
∞
∑
𝑛=0

𝑎𝑛𝑟𝑛

We can differentiate and find

𝑓′(𝑟) =
∞
∑
𝑛=0

𝑎𝑛(𝑐 + 𝑛)𝑟𝑐+𝑛−1; 𝑓″(𝑟) =
∞
∑
𝑛=0

𝑎𝑛(𝑐 + 𝑛)(𝑐 + 𝑛 − 1)𝑟𝑐+𝑛−2

35



Hence,
∞
∑
𝑛=0

[𝑎𝑛(𝑐 + 𝑛)(𝑐 + 𝑛 − 1)𝑟𝑐+𝑛−2 + 2
𝑟 (1 − 𝜈𝑟)𝑎𝑛(𝑐 + 𝑛)𝑟𝑐+𝑛−1 + (𝛽 − 2𝜈)𝑟𝑐+𝑛−1] = 0

By comparing coefficients of the lowest power of 𝑟,

𝑎0𝑐(𝑐 − 1) + 2𝑎0𝑐 = 0 ⟹ 𝑎0𝑐(𝑐 + 1) = 0 ⟹ 𝑐 = −1, 0

The solution 𝑐 = −1 implies 𝜒(𝑟) ∼ 1
𝑟
which is invalid at 𝑟 = 0. So we require 𝑐 = 0. Then the power

series becomes
∞
∑
𝑛=0

𝑎𝑛[𝑛(𝑛 − 1) + 2𝑛]𝑟𝑛−2 +
∞
∑
𝑛=0

𝑎𝑛(−2𝜈𝑛 + 𝛽 − 2𝜈)𝑟𝑛−1 = 0

Comparing coefficients of equal powers of 𝑟,

𝑎𝑛𝑛(𝑛 + 1) + 𝑎𝑛−1(−2𝜈𝑛 + 2𝜈 + 𝛽 − 2𝜈) = 0

Hence, we arrive at the recurrence relation

𝑎𝑛 =
2𝜈𝑛 − 𝛽
𝑛(𝑛 + 1)𝑎𝑛−1

Suppose this series were infinite. Asymptotically, the behaviour of 𝑓(𝑟) is determined by 𝑎𝑛
𝑎𝑛−1

∼ 2𝜈
𝑛
.

We can compare this behaviour to the asymptotic behaviour of 𝑔(𝑟) = 𝑒2𝜈𝑟. In this case, the series
expansion with coefficients 𝑏𝑛 satisfies

𝑏𝑛 =
(2𝜈)𝑛
𝑛! ⟹ 𝑏𝑛

𝑏𝑛−1
= 2𝜈

𝑛

Hence, asymptotically 𝑓(𝑟) ∼ 𝑒2𝜈𝑟 if the series does not terminate. Since 𝜒(𝑟) = 𝑓(𝑟)𝑒−𝜈𝑟, we have
𝜒(𝑟) ∼ 𝑒𝜈𝑟 which is not normalisable. Hence the series is finite. So there exists an integer 𝑁 > 0
such that 𝑎𝑁 = 0 and 𝑎𝑁−1 ≠ 0. This implies 2𝜈𝑁 − 𝛽 = 0 hence 𝜈 = 𝛽

2𝑁
. Substituting 𝜈2 and 𝛽, we

find
𝐸 = 𝐸𝑁 = − 𝑒4𝑚𝑒

32𝜋2𝜀20ℏ2𝑁2

So the eigenvalues are equivalent to those found in the Bohr model. We now wish to find the radial
eigenfunctions. Note, 𝛽

2𝜈
= 𝑁 hence we can substitute and find

𝑎𝑛
𝑎𝑛−1

= −2𝜈 𝑁 − 𝑛
𝑛(𝑛 + 1)

This recursion can be used to find the coefficients of the polynomial 𝑓𝑁(𝑟).

𝑓1(𝑟) = 1
𝑓2(𝑟) = 1 − 𝜈𝑟

𝑓3(𝑟) = 1 − 2𝜈𝑟 + 2
3𝜈

2𝑟2

36



These are called the Laguerre polynomials of order 𝑁 − 1 (for example, the first order Laguerre poly-
nomial is 𝑓2). We can then multiply the Laguerre polynomials by 𝑒−𝜈𝑟 and normalise over ℝ3 to find
the normalised eigenfunctions 𝜒𝑁(𝑟). For example,

𝜒1(𝑟) =
𝜈3/2

√𝜋
= 1
√𝜋

( 𝑒2𝑚𝑒
4𝜋𝜀0ℏ2

)
3/2
𝑒−𝜈𝑟

Recall that the Bohr model implied that the ground state has radius 𝑎0, known as the Bohr radius,
given in terms of 𝜈 by 𝑎0 =

1
𝜈
. Using quantum mechanics, we instead find

⟨𝑟⟩𝜒1
= ∫

ℝ3
𝜒⋆
1 (𝑟)𝑟𝜒1(𝑟) d𝑉

= ∫
2𝜋

0
d𝜙∫

1

−1
d cos 𝜃∫

∞

0

𝜈3
𝜋 𝑟

3𝑒−2𝜈𝑟 d𝑟

= 4𝜋𝜈
3

𝜋 ∫
∞

0
𝑟3𝑒−2𝜈𝑟 d𝑟

= 3
2𝑎0

Wehave verifiedwith physical experiments that this larger expected radius is physically accurate.

7.2 Angular momentum
Recall that classically the angular momentum 𝐿 is given by

𝐿 = 𝑥 × 𝑝

Spherically symmetric potentials conserve classical angular momentum:

d𝐿
d𝑡 = ̇𝑥 × 𝑝 + 𝑥 × ̇𝑝 = 0

Solving classical problems in this way allows us to reduce a three-dimensional problem into a two-
dimensional problem, by consideringmotion on the plane𝐿⋅𝑥 = 0. Thenwe reduce to one dimension
by considering ̂𝑒𝑟. In quantum mechanics, we can do an analogous simplification.

Definition. In quantum mechanics, the angular momentum is given by

�̂� = ̂𝑥 × ̂𝑝 = 𝑖ℏ𝑥 × ∇

In Cartesian coordinates, this reduces to

�̂�𝑖 = −𝑖ℏ𝜀𝑖𝑗𝑘𝑥𝑗
𝜕
𝜕𝑥𝑘
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Each component �̂�𝑖 is a Hermitian operator. Note,

[�̂�1, �̂�2]𝜓(𝑥1, 𝑥2, 𝑥3) = −ℏ2[(𝑥2
𝜕
𝜕𝑥3

− 𝑥3
𝜕
𝜕𝑥2

)(𝑥3
𝜕
𝜕𝑥1

− 𝑥1
𝜕
𝜕𝑥3

)

− (𝑥3
𝜕
𝜕𝑥1

− 𝑥1
𝜕
𝜕𝑥3

)(𝑥2
𝜕
𝜕𝑥3

− 𝑥3
𝜕
𝜕𝑥2

)]𝜓

= −ℏ2[𝑥2
𝜕
𝜕𝑥1

− 𝑥1
𝜕
𝜕𝑥2

]𝜓

= −𝑖ℏ�̂�3𝜓

Hence the commutator [�̂�𝑖, �̂�𝑗] = 𝑖ℏ𝜀𝑖𝑗𝑘�̂�𝑘 is nonzero for 𝑖 ≠ 𝑗. In particular, we cannot measure
each component of the angular momentum simultaneously.

Definition. The total angular momentum is

�̂�2 = �̂�21 + �̂�22 + �̂�23

We can find that [�̂�2, �̂�𝑖] = 0, so we can measure both the total angular momentum and a specific
component of angular momentum simultaneously. For a spherically symmetric potential, given by
�̂� = ̂𝑝2

2𝑚
+ 𝑈( ̂𝑟), we can find

[�̂�, �̂�2] = [�̂�, �̂�𝑖] = 0

7.3 Commutativity of angular momentum operators
The set {�̂�, �̂�2, �̂�𝑖} commutes pairwise. By convention, we choose 𝑖 = 3 to extract the 𝑧 component of
the angular momentum. Hence,

(i) We can find joint eigenstates of the three operators, and such eigenstates can be chosen to form
a basis for the Hilbert spaceℋ.

(ii) The corresponding eigenvalues |𝐿|, 𝐿𝑧, 𝐸 can be measured simultaneously to an arbitrary pre-
cision.

(iii) The set of operators is maximal; there exists no operator (other than a linear combination of
the above) that commutes with all three.

7.4 Joint eigenfunctions of angular momentum
We search for joint eigenfunctions of �̂�𝑧 and �̂�2. Wewill write �̂� in spherical coordinates. In Cartesian
coordinates,

�̂� = −𝑖ℏ𝑥 ⋅ ∇
Hence,

�̂�3 = −𝑖ℏ 𝜕
𝜕𝜙 ; �̂�2 = − ℏ2

sin2 𝜃
[sin 𝜃 𝜕

𝜕𝜃(sin 𝜃
𝜕
𝜕𝜃) +

𝜕2
𝜕𝜙2 ]

Now we search for eigenfunctions of these operators.

�̂�2𝑌(𝜃, 𝜙) = 𝜆𝑌(𝜃, 𝜙); �̂�3𝑌(𝜃, 𝜙) = ℏ𝑚𝑌(𝜃, 𝜙)
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Solving the equation in �̂�3,
−𝑖ℏ 𝜕

𝜕𝜙𝑌(𝜃, 𝜙) = ℏ𝑚𝑌(𝜃, 𝜙)

We can find solutions of the form 𝑌(𝜃, 𝜙) = 𝑦(𝜃)𝑥(𝜙). We find

−𝑖ℏ𝑦(𝜃)𝑥′(𝜙) = ℏ𝑚𝑦(𝜃)𝑥(𝜙)

Hence 𝑦(𝜃) is arbitrary, and further

−𝑖ℏ𝑥′(𝜙) = ℏ𝑚𝑥(𝜙) ⟹ 𝑥(𝜙) = 𝑒𝑖𝑚𝜙

Given that the wavefunctions must be single-valued on ℝ3, we must have 𝑥(𝜙) invariant under the
choice of 𝜙 = 𝜙 + 2𝜋𝑘. Hence𝑚must be an integer. Since this must also be an eigenfunction of �̂�2,
we have further

− ℏ2

sin2 𝜃
[sin 𝜃 𝜕

𝜕𝜃(sin 𝜃
𝜕
𝜕𝜃) +

𝜕2
𝜕𝜙2 ][𝑦(𝜃)𝑥(𝜙)] = 𝜆𝑦(𝜃)𝑥(𝜙)

Hence, substituting 𝑥(𝜙) = 𝑒𝑖𝑚𝜙, we find

1
sin 𝜃

𝜕
𝜕𝜃 (sin 𝜃𝑦

′(𝜃)) − 𝑚2

sin2 𝜃
𝑦(𝜃) = − 𝜆

ℏ2 𝑦(𝜃)

This is the associate Legendre equation. The solutions of 𝑦(𝜃) are the associate Legendre func-
tions.

𝑦(𝜃) = 𝑃ℓ,𝑚(cos 𝜃) = (sin 𝜃)|𝑚| d|𝑚|

d(cos 𝜃)|𝑚|𝑃ℓ(cos 𝜃)

where the 𝑃ℓ are the Legendre polynomials. Since the ordinary Legendre polynomials are of degree
ℓ, we must have |𝑚| ≤ ℓ to obtain a nonzero solution. This corresponds to the classical notion that
|𝐿𝑧| ≤ |𝐿| for a physical solution. The eigenvalues of �̂�2 are

𝜆 = ℓ(ℓ + 1)ℏ2

with ℓ ∈ {0, 1, 2,… }. Thus,
𝑌 ℓ,𝑚(𝜃, 𝜙) = 𝑃ℓ,𝑚(cos 𝜃)𝑒𝑖𝑚𝜙

The 𝑌 functions are called the spherical harmonics. The parameters ℓ,𝑚 are known as the quantum
numbers of the eigenfunction; ℓ is the total angular momentum quantum number and 𝑚 is the
azimuthal quantum number. Examples of normalised eigenfunctions are

𝑌0,0 =
1

√4𝜋

𝑌1,0 =√
3
4𝜋 cos 𝜃

𝑌1,±1 = ∓√
3
8𝜋 sin 𝜃𝑒−𝑖𝜙

All spherical harmonics can be shown to be orthogonal.
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7.5 Full solution to hydrogen atom
The time-independent Schrödinger equation for the hydrogen atom is

− ℏ2
2𝑚𝑒

∇2𝜒(𝑟, 𝜃, 𝜙) − 𝑒2
4𝜋𝜀0

1
𝑟𝜒(𝑟, 𝜃, 𝜙) = 𝐸𝜒(𝑟, 𝜃, 𝜙)

Writing the Laplacian in spherical polar coordinates,

∇2 = 1
𝑟
𝜕2
𝜕𝑟2 +

1
𝑟2 sin2 𝜃

(sin 𝜃 𝜕
𝜕𝜃 sin 𝜃

𝜕
𝜕𝜃 +

𝜕2
𝜕𝜙2 )

Hence,
�̂�2 = ℏ2

sin2 𝜃
[sin 𝜃 𝜕

𝜕𝜃 sin 𝜃
𝜕
𝜕𝜃 +

𝜕2
𝜕𝜙2 ] ⟹ −ℏ2∇2 = −ℏ

2

𝑟
𝜕2
𝜕𝑟2 𝑟 +

�̂�2
𝑟2

Thus we can rewrite the TISE as

− ℏ2
2𝑚𝑒

1
𝑟 (

𝜕2
𝜕𝑟2 (𝑟𝜒)) +

�̂�2
2𝑚𝑒𝑟2

𝜒 − 𝑒2
4𝜋𝜀0𝑟

𝜒 = 𝐸𝜒

Since �̂�2, �̂�3, �̂� are a maximal set of pairwise commuting operators, we know that the eigenfunctions
of the Hamiltonian 𝜒must also be eigenfunctions of �̂�2, �̂�3. Hence,

𝜒(𝑟, 𝜃, 𝜙) = 𝑅(𝑟)𝑌 ℓ,𝑚(𝜃, 𝜙)

Since 𝜒 is an eigenfunction of �̂�2,

�̂�2(𝑅(𝑟)𝑌 ℓ,𝑚(𝜃, 𝜙)) = 𝑅(𝑟)ℏ2ℓ(ℓ + 1)𝑌 ℓ,𝑚(𝜃, 𝜙)

Substituting into the TISE, we find

− ℏ2
2𝑚𝑒

(𝜕
2𝑅
𝜕𝑟2 + 2

𝑟
𝜕𝑅
𝜕𝑟 )𝑌 ℓ,𝑚(𝜃, 𝜙) +

ℏ2
2𝑚𝑒𝑟2

ℓ(ℓ + 1)𝑅(𝑟)𝑌 ℓ,𝑚(𝜃, 𝜙) −
𝑒2

4𝜋𝜀0𝑟
𝑅(𝑟)𝑌 ℓ,𝑚(𝜃, 𝜙)

= 𝐸𝑅(𝑟)𝑌 ℓ,𝑚(𝜃, 𝜙)

Cancelling the spherical harmonic,

− ℏ2
2𝑚𝑒

(𝜕
2𝑅
𝜕𝑟2 + 2

𝑟
𝜕𝑅
𝜕𝑟 ) + ( ℏ2

2𝑚𝑒𝑟2
ℓ(ℓ + 1) − 𝑒2

4𝜋𝜀0𝑟
)

⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
𝑈eff= effective potential

𝑅(𝑟) = 𝐸𝑅(𝑟)

This is an equation for the radial part of the solution. We have already solved this equation for ℓ = 0
to find 𝜒(𝑟), the radial wavefunction. Note that the azimuthal quantum number does not appear in
the effective potential, giving a degeneracy of order at least 2ℓ + 1. We define

𝜈2 = −2𝑚𝑒𝐸
ℏ2 > 0; 𝛽 = 𝑒2𝑚𝑒

2𝜋𝜀0ℏ2

Hence,
𝑅″ + 2

𝑟𝑅
′ + (𝛽𝑟 − 𝜈2 − ℓ(ℓ + 1)

𝑟2 )𝑅 = 0
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The asymptotic limit is as before in the radial case, since the angular velocity dependence is sup-
pressed by 1

𝑟2
. We have 𝑅″ − 𝜈2𝑅 → 0 hence 𝑅 ∝ 𝑒−𝜈𝑟 in the limit. We let 𝑅(𝑟) = 𝑔(𝑟)𝑒−𝜈𝑟.

Then,
𝑔″ + 2

𝑟 (1 − 𝜈𝑟)𝑔′ + (𝛽𝑟 − 2𝜈 − ℓ(ℓ + 1)
𝑟2 )𝑔 = 0

Expanding in power series,

𝑔(𝑟) = 𝑟𝜎
∞
∑
𝑛=0

𝑎𝑛𝑟𝑛

Substituting and comparing the lowest power of 𝑟,

𝑎0[𝜎(𝜎 − 1) + 2𝜎 − ℓ(ℓ + 1)] = 0 ⟹ 𝜎(𝜎 + 1) = ℓ(ℓ + 1)

Hence, 𝜎 = ℓ or 𝜎 = −ℓ − 1. If 𝜎 = −ℓ − 1, we have 𝑅(𝑟) ∼ 1
𝑟ℓ+1

which cannot be the solution, so
𝜎 = ℓ. Thus,

𝑔(𝑟) = 𝑟ℓ
∞
∑
𝑛=0

𝑎𝑛𝑟𝑛

We can evaluate the recurrence relation between the coefficients as before to find
∞
∑
𝑛=0

[(𝑛 + ℓ)(𝑛 + ℓ − 1)𝑎𝑛 + 2(𝑛 + 1)𝑎𝑛 − ℓ(ℓ + 1)𝑎𝑛

− 2𝜈(𝑛 + ℓ − 1)𝑎𝑛−1 + (𝛽 − 2𝜈)𝑎𝑛−1]𝑟ℓ+𝑛−2 = 0

which gives
𝑎𝑛 =

2𝜈(𝑛 + ℓ) − 𝛽
𝑛(𝑛 + 2ℓ − 1)

If ℓ = 0 this yields the result for the radial solution. Unless the series terminates, it is possible to
show that 𝑅 diverges. Hence 𝑔must be a polynomial with first zero coefficient 𝑎𝑛max . Here,

2𝜈(𝑛max + ℓ) − 𝛽 = 0

We define 𝑁 = 𝑛max + ℓ, so 2𝜈𝑁 − 𝛽 = 0 giving 𝜈 = 𝛽
2𝑁
. Note that 𝑁 > ℓ since 𝑛max > 0. We can

then find the energy level to be

𝐸𝑁 = − 𝑒4𝑚𝑒
32𝜋2𝜀20ℏ2

1
𝑛2

which is an identical energy spectrum as we found before when not considering angular momentum
(using the Bohr model). For each 𝐸𝑁 , we have 𝑁 = 𝑛max + ℓ so there can be ℓ = 0,… ,𝑁 − 1 and
𝑚 = −ℓ,… , ℓ. Hence, the degeneracy of the solution for each 𝑁 is

𝐷(𝑁) =
𝑁−1
∑
ℓ=0

ℓ
∑

𝑚=−ℓ
1 = 𝑁2

So the degeneracy increases quadratically with the energy level. For example, for 𝑁 = 2 there are
four possible eigenfunctions with the same energy. The eigenfunctions are now dictated by three
quantum numbers.

𝜒𝑁,ℓ,𝑚(𝑟, 𝜃, 𝜙) = 𝑅𝑁,ℓ(𝑟)𝑌 ℓ,𝑚(𝜃, 𝜙) = 𝑟ℓ𝑔𝑁,ℓ(𝑟)𝑒−
𝛽𝑟
2𝑁 𝑌 ℓ,𝑚(𝜃, 𝜙)
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where 𝑔𝑁,ℓ is a polynomial of degree 𝑁 − ℓ − 1 defined by the recurrence relation

𝑎𝑘 =
2𝜈
𝑘
𝑘 + ℓ − 𝑁
𝑘 + 2ℓ + 1𝑎𝑛−1

These are the generalised Laguerre polynomials, often written

𝑔𝑁,ℓ(𝑟) = 𝐿2ℓ+1𝑁−ℓ−1(2𝑟)

The quantum number 𝑁 ∈ {0, 1,… } is known as the principal quantum number.

7.6 Comparison to Bohr model
In the Bohr model, the energy levels were predicted accurately. Further, the maximum of the radial
probability corresponds to the orbits found in the Bohr model:

d
d𝑟(||𝜒𝑁,0,0(𝑟)||

2𝑟2) = 0

The classical trajectory, and the assumption about the angularmomentum 𝐿2 = 𝑁2ℏ2, were incorrect.
The angular momentum found in quantummechanics is 𝐿2 = ℓ(ℓ+1)ℏ2, which corresponds closely
with the Bohr model for large ℓ.

7.7 Other elements of the periodic table
The above solution does not hold for other elements of the periodic table. Generalising to a nucleus
with charge +𝑧𝑒 and 𝑧 orbiting electrons, we could model this as

𝜒(𝑥1,… , 𝑥𝑧) = 𝜒(𝑥1)…𝜒(𝑥𝑁); 𝐸 =
𝑁
∑
𝑗=1

𝑒𝑗

This approximation can be acceptable for small 𝑧, but diverges very quickly from the true solution as
𝑧 increases, due to the electron-electron interactions and the Pauli exclusion principle.
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