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1 Affine varieties
1.1 Introduction
Algebraic geometry studies the duality between systems of polynomial equations and the geometry
or topology of their solution sets. If we have a system of polynomials

𝑓1,… , 𝑓𝑟 ∈ 𝕜[𝑋1,… , 𝑋𝑛] = 𝕜[X]

we can form its solution set

𝑉 = {𝑃 ∈ 𝕜𝑛 ∣ 𝑓1(𝑃) = ⋯ = 𝑓𝑟(𝑃) = 0} ⊆ 𝕜𝑛

On the algebraic side, we have the ideal

𝐼 = (𝑓1,… , 𝑓𝑟) ⊲ 𝕜[X]

The duality we are interested in is between 𝑅 = 𝕜[X]⟋𝐼 and the geometry of 𝑉 .
We may impose some assumptions on the field 𝕜.

• We might assume that 𝕜 is algebraically closed, which is a natural assumption since we wish
to consider roots to polynomials with coefficients in 𝕜.

• We could also take the stronger assumption that 𝕜 is algebraically closed and has characteristic
0. Occasionally, we may want to differentiate a polynomial, and so it becomes inconvenient to
do algebra without this assumption.

• Throughout the course, we will in fact assume 𝕜 = ℂ, as we are not particularly interested in
the subtleties of such fields other than ℂ, and it is useful for intuition.

Questions we may ask about this duality are:

• To what extent do 𝑅 and 𝑉 determine each other?

• What is the right notion of dimension of 𝑉 , in terms of algebra?
• Can we detect whether 𝑉 ⊆ ℂ𝑛 is a manifold based on the information contained within 𝑅?
• Is 𝑉 compact? If not, is there a natural way to compactify the space into some space 𝑉 that is
in some sense algebraic?

1.2 Affine space

Definition. The affine space of dimension 𝑛, implicitly over ℂ, is the set 𝔸𝑛 = ℂ𝑛. The
elements of 𝔸𝑛 are called points, denoted 𝑃 = (a) = (𝑎1,… , 𝑎𝑛).

Definition. An affine subspace of 𝔸𝑛 is any subset of the form 𝑣 + 𝑈 ⊆ ℂ𝑛 where 𝑈 ⊆ ℂ𝑛 is
any linear subspace, and 𝑣 ∈ ℂ𝑛.

𝔸𝑛 is the natural set on which ℂ[𝑋1,… , 𝑋𝑛] is a ring of functions. Given 𝑓 ∈ ℂ[X], we obtain a
function 𝑓∶ 𝔸𝑛 → ℂ. The subset ℂ ⊆ ℂ[X] is the set of constant functions.
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Proposition. The polynomial ring ℂ[X] satisfies the following properties.
(i) ℂ[X] is a unique factorisation domain.
(ii) Every ideal in ℂ[X] is finitely generated (equivalently, ℂ[X] is Noetherian), due to the

Hilbert basis theorem.

1.3 Affine varieties

Definition. Let 𝑆 ⊆ ℂ[X] be any subset of ℂ[X]. The vanishing locus of 𝑆 is defined to be
𝕍(𝑆) = {𝑃 ∈ 𝔸𝑛 ∣ ∀𝑓 ∈ 𝑆, 𝑓(𝑃) = 0}.

Definition. An affine (algebraic) variety in 𝔸𝑛 is a set of the form 𝕍(𝑆) for some 𝑆.

Note that there is some inconsistency between definitions in different textbooks; some authors also
impose an irreducibility condition.

Example. (i) Let 𝑛 = 1. The polynomial 𝑓 ∈ ℂ[𝑋] gives the vanishing locus 𝕍(𝑓) ⊆ 𝔸1, the set
of zeroes of 𝑓. Conversely, if 𝑉 ⊆ 𝔸1 is finite, then 𝑉 = 𝕍(𝑓) where 𝑓 = ∏𝑎∈𝑉 (𝑥 − 𝑎).

(ii) A hypersurface in 𝔸𝑛 is a variety of the form 𝕍(𝑓) where 𝑓 ∈ ℂ[𝑋].
(iii) It is often convenient to represent varieties not by equations but parametrically. The affine

twisted cubic is 𝐶 = {(𝑡, 𝑡2, 𝑡3) ∣ 𝑡 ∈ ℂ} ⊂ 𝔸3. This is a variety, as it is the vanishing locus of the
two polynomials 𝑋2

1 − 𝑋2 and 𝑋3
1 − 𝑋3.

Theorem. Let 𝑆 ⊆ ℂ[X]. Then,
(i) Let 𝐼 ⊆ ℂ[X] be the ideal generated by 𝑆. Then, 𝕍(𝑆) = 𝕍(𝐼).
(ii) There exists a finite subset {𝑓𝑗} of 𝑆 such that 𝕍(𝑆) = 𝕍({𝑓𝑗}).

Proof. Part (i). Suppose 𝑃 ∈ 𝔸𝑛. Then, 𝑓(𝑃) = 0 for all 𝑓 ∈ 𝑆 if and only if 𝑓(𝑃) = 0 for all 𝑓 ∈ 𝐼, by
the basic properties of ideals.

Part (ii). By (i), 𝕍(𝑆) = 𝕍(𝐼). 𝐼 is finitely generated, so there exist functions ℎ1,… , ℎ𝑟 ∈ 𝐼 that
generate 𝐼. Reversing (i), 𝕍(𝐼) = 𝕍({ℎ𝑖}). But since 𝐼 is generated by 𝑆, each ℎ𝑖 can be written as a
linear combination of finitely many elements of 𝑆. So ℎ𝑖 = ∑𝑗 𝑔𝑖𝑗𝑓𝑗 where 𝑓𝑗 ∈ 𝑆. Then 𝕍(𝑆) =
𝕍({𝑓𝑗}).

Proposition. Let 𝑆, 𝑇 ⊆ ℂ[X]. Then,
(i) 𝑆 ⊆ 𝑇 implies 𝕍(𝑇) ⊆ 𝕍(𝑆).
(ii) 𝕍(0) = 𝔸𝑛, and 𝕍(ℂ[X]) = 𝕍(𝜆) = ∅ where 𝜆 ∈ ℂ ∖ {0}.
(iii) ⋂𝑗 𝕍(𝐼𝑗) = 𝕍(∑𝑗 𝐼𝑗) for any family of ideals 𝐼𝑗 .
(iv) 𝕍(𝐼) ∪ 𝕍(𝐽) = 𝕍(𝐼 ∩ 𝐽).

Proof. Part (i) and (ii) are trivial.

Part (iii). We have⋂𝑗 𝕍(𝐼𝑗) = 𝕍(⋃𝑗 𝐼𝑗). To conclude, note that the ideal generated by⋃𝑗 𝐼𝑗 is∑𝑗 𝐼𝑗 .
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Part (iv). We have already seen that 𝕍(𝐼) ∪ 𝕍(𝐽) ⊆ 𝕍(𝐼 ∩ 𝐽). For the reverse containment, suppose
𝑃 ∈ 𝕍(𝐼 ∩ 𝐽), and suppose 𝑃 ∉ 𝕍(𝐼). Then, there exists some 𝑔 ∈ 𝐼 such that 𝑔(𝑃) = 0. Moreover, for
all elements 𝑓 ∈ 𝐽, 𝑓𝑔 ∈ 𝐼 ∩ 𝐽, so (𝑓𝑔)(𝑃) = 0. Hence 𝑓(𝑃) = 0 for all 𝑓 ∈ 𝐽, so 𝑃 ∈ 𝕍(𝐽).

1.4 Irreducible varieties

Definition. A variety 𝑉 is called irreducible if whenever 𝑉 = 𝑉1 ∪ 𝑉2, where 𝑉1, 𝑉2 are vari-
eties, we have 𝑉 = 𝑉1 or 𝑉 = 𝑉2. A variety that is not irreducible is called reducible.

Example. The variety 𝑉 = 𝕍(𝑋𝑌) is reducible, as it is the union of 𝕍(𝑋) and 𝕍(𝑌).

Proposition. Every affine variety 𝑉 is a finite union of irreducible varieties.

This proof uses a ‘bisection’ argument.

Proof. If 𝑉 is irreducible, there is nothing to prove. Otherwise, 𝑉 = 𝑉1 ∪ 𝑉 ′
1 , where 𝑉1, 𝑉 ′

1 ≠ 𝑉 . If
𝑉1, 𝑉 ′

1 are finite unions of irreducible varieties, the proof is already complete. Suppose 𝑉1 is not a
finite union of irreducibles. Then, it follows that 𝑉1 = 𝑉2 ∪ 𝑉 ′

2 nontrivially. Inductively, we obtain

𝑉 = 𝑉0 ⊋ 𝑉1 ⊋ 𝑉2 ⊋ 𝑉3 ⊋ …

This infinite descending chain never stabilises. Define

𝑊 =
∞

⋂
𝑗=0

𝑉 𝑗 = 𝕍(
∞
∑
𝑗=0

𝐼𝑗)

But ∑∞
𝑗=0 𝐼𝑗 is finitely generated. So ∑

∞
𝑗=0 𝐼𝑗 = ∑𝑗≤𝑁 𝐼𝑗 for some 𝑁 ∈ ℕ. Hence, 𝑊 = ⋂𝑗≤𝑁 𝑉 𝑗

contradicting that the descending chain never stabilises.

Definition. Let 𝑉 be an affine variety. A minimal decomposition of 𝑉 is a representation of
𝑉 as a finite union of distinct irreducibles 𝑉 𝑖 such that no 𝑉 𝑖 is contained within 𝑉 𝑗 .

Proposition. Minimal decompositions of affine varieties are unique up to ordering.

Proof sketch. This proof is left as an exercise. One can compare two decompositions by intersecting
the irreducible components of one decomposition with the other.

Given uniqueness of minimal decompositions, we can refer to the irreducibles appearing in such a
decomposition as the irreducible components of a variety.
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1.5 Zariski and Euclidean topologies

Definition. The Zariski topology on𝔸𝑛 is the topology where the closed sets are precisely the
affine varieties. If 𝑉 ⊆ 𝔸𝑛 is a (sub)variety, the Zariski topology on 𝑉 is the subspace topology
for the Zariski topology on 𝔸𝑛.

Remark. This is in fact a topology, as all of the relevant axioms have been proven.

Definition. The Euclidean topology or analytic topology on 𝔸𝑛 is the topology induced by
the metric space structure on ℂ𝑛. If 𝑉 ⊆ 𝔸𝑛, the Euclidean topology on 𝑉 is the subspace
topology of the Euclidean topology on 𝔸𝑛.

Proposition. The Zariski topology on𝔸1 coincides with the cofinite topology; the closed sets
are exactly the finite sets. This topology is not Hausdorff but it is compact. The Euclidean
topology on 𝔸1 is Hausdorff but not compact.

Remark. 𝔸2 with the Zariski topology is not homeomorphic to𝔸1×𝔸1 with the product of the Zariski
topologies.

1.6 Ideals from zero sets

Theorem (weak formofHilbert’s Nullstellensatz). Everymaximal ideal inℂ[X]has the form
(𝑋1 − 𝑎1,… , 𝑋𝑛 − 𝑎𝑛) for 𝑎𝑖 ∈ ℂ. Moreover, if 𝐼 is any non-unit ideal, 𝕍(𝐼) ≠ ∅ ⊆ 𝔸𝑛.

We prove this over the complex numbers; the given proof only works for this case, but the statement
holds for all algebraically closed fields.

Proof. Every ideal of this form has quotient ℂ, so they are all maximal. Let𝔪 ⊲ ℂ[X] be a maximal
ideal, and let 𝐾 = ℂ[X]⟋𝔪. 𝐾 is a field as𝔪 is maximal, and it is a field extension of ℂ. Define 𝑎𝑖 to
be the coset 𝑋𝑖 +𝔪. If 𝑎𝑖 ∈ ℂ for all 𝑖, this gives the result as required because the ideal is generated
by (𝑋1 − 𝑎1,… , 𝑋𝑛 − 𝑎𝑛).
Otherwise,𝐾 ⊋ ℂ. Butℂ is algebraically closed, so there exists 𝑡 ∈ 𝐾∖ℂwhich is transcendental over
ℂ. Let𝑈𝑚 be theℂ-span inside𝐾 of products of the form 𝑎𝑟11 …𝑎𝑟𝑛𝑛 where the 𝑟𝑖 are nonnegative, and
∑𝑛

𝑖=1 𝑟𝑖 ≤ 𝑚. Observe that 𝑈𝑚 is finite-dimensional, and 𝐾 = ⋃𝑚≥0𝑈𝑚 is countable-dimensional.
One can show that the elements { 1

𝑡−𝑐
∣ 𝑐 ∈ ℂ} are linearly independent over ℂ. There are uncount-

ably many such elements, giving a contradiction.

For the last part, let 𝐼 be a nonzero ideal. There exists a maximal ideal𝔪 ⊇ 𝐼, so 𝕍(𝐼) ⊇ 𝕍(𝔪), but
𝕍(𝔪) is nonempty as it contains the point (𝑎1,… , 𝑎𝑚).

Definition. Let 𝑉 ⊆ 𝔸𝑛 be an affine variety. The ideal of functions vanishing on 𝑉 is 𝐼(𝑉) =
{𝑓 ∈ ℂ[X] ∣ ∀𝑃 ∈ 𝑉, 𝑓(𝑃) = 0}.
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Proposition. Let 𝑉 ⊆ 𝔸𝑛 be an affine variety. Then,
(i) If 𝑉 = 𝕍(𝑆) where 𝑆 ⊆ ℂ[X], then 𝑆 ⊆ 𝐼(𝑉). In particular, 𝐼(𝑉) is the largest ideal

vanishing on 𝑉 .
(ii) 𝑉 = 𝕍(𝐼(𝑉)).
(iii) Varieties 𝑉,𝑊 ⊆ 𝔸𝑛 are equal if and only if 𝐼(𝑉) = 𝐼(𝑊).

Proof. Follows from the definitions.

Therefore, we have an injective map 𝐼 from the space of affine varieties in 𝔸𝑛 to the space of ideals in
ℂ[X], and 𝕍 gives a left inverse.

Proposition. If 𝑉,𝑊 are affine varieties, 𝑉 ⊆ 𝑊 if and only if 𝐼(𝑊) ⊆ 𝐼(𝑉).

Proof. The forward implication follows from set theory. For the reverse, if 𝑉 ⊈ 𝑊 , we can choose
𝑃 ∈ 𝑉 ∖𝑊 . Since 𝑃 ∉ 𝕍(𝐼(𝑊)), there exists a function 𝑓 ∈ 𝐼(𝑊) such that 𝑓(𝑃) ≠ 0, so 𝑓 ∉ 𝐼(𝑉).

Proposition. Let 𝑉 be a variety. Then 𝑉 is irreducible if and only if 𝐼(𝑉) is a prime ideal.

Recall that 𝐼(𝑉) is prime when 𝑓1𝑓2 ∈ 𝐼(𝑉) implies 𝑓1 ∈ 𝐼(𝑉) or 𝑓2 ∈ 𝐼(𝑉). Geometrically, the ideal
is not prime when we can find two functions where the product is zero on 𝑉 but are individually not
zero on all of 𝑉 .

Proof. Recall that 𝐼(𝑉1 ∪ 𝑉2) = 𝐼(𝑉1) ∩ 𝐼(𝑉2). Suppose 𝑉 were reducible, so 𝑉 = 𝑉1 ∪ 𝑉2 where
𝑉1, 𝑉2 ≠ 𝑉 . In particular, 𝑉1 ⊈ 𝑉2 ⊈ 𝑉1. Now, let 𝐼𝑗 = 𝐼(𝑉 𝑗), giving 𝐼1 ⊉ 𝐼2 ⊉ 𝐼1, and 𝐼(𝑉) = 𝐼1 ∩ 𝐼2.
Therefore, there exists 𝑓1 ∈ 𝐼1 ∖ 𝐼2 and 𝑓2 ∈ 𝐼2 ∖ 𝐼1. Each 𝑓𝑖 is not an element of 𝐼(𝑉), but 𝑓1𝑓2 ∈ 𝐼(𝑉).
So 𝐼(𝑉) cannot be prime.
Conversely, suppose 𝐼(𝑉) is not prime, so 𝑓1𝑓2 ∈ 𝐼(𝑉) but 𝑓1, 𝑓2 ∉ 𝐼(𝑉). Define 𝑉1 = 𝑉 ∩ 𝕍(𝑓1) and
𝑉2 = 𝑉 ∩𝕍(𝑓2). Since neither 𝑓𝑖 is contained in 𝐼(𝑉), 𝑉 𝑖 ≠ 𝑉 . Also, if 𝑃 ∈ 𝑉 , we have 𝑓1(𝑃)𝑓2(𝑃) = 0,
so 𝑃 ∈ 𝑉1 ∪ 𝑉2. So 𝑉 is reducible.

Example. Let 𝑉 = 𝕍(𝑋𝑌) ⊂ 𝔸2. Then 𝑉 = 𝕍(𝑋) ∪ 𝕍(𝑌) is a decomposition of 𝑉 into irreducible
components. Indeed, 𝕍(𝑋) is irreducible, as 𝐼(𝕍(𝑋)) = (𝑋) is a prime ideal in ℂ[𝑋, 𝑌], and similarly
for 𝑌 .

2 Structures on varieties
2.1 Coordinate rings
Consider a polynomial 𝑓 ∈ ℂ[X]. We obtain a function 𝑓∶ 𝔸𝑛 → 𝔸1, If 𝑉 ⊆ 𝔸𝑛 and 𝑓, 𝑔 ∈ ℂ[X], we
are interested in when 𝑓, 𝑔 induce the same set-theoretic function on 𝑉 . We intend to show that 𝑓, 𝑔
induce the same function if and only if 𝑓 − 𝑔 ∈ 𝐼(𝑉). Therefore, we can study polynomials modulo
this relation by taking the quotient with respect to this ideal.
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Definition. Let 𝑉 ⊆ 𝔸𝑛 be a variety. The coordinate ring of 𝑉 , or the ring of regular functions
of 𝑉 , is defined as ℂ[X]⟋𝐼(𝑉), denoted ℂ[𝑉] or 𝒪(𝑉).

Corollary. Let 𝑉 be a variety. Then 𝑉 is irreducible if and only if ℂ[𝑉] is an integral domain.

Remark. ℂ[𝑉] does not precisely determine 𝑉 or 𝐼(𝑉). For instance, consider a surjective homo-
morphism 𝜃∶ ℂ[X] → ℂ[𝑉], then ker 𝜃 = 𝐼 is an ideal, and𝕍(𝐼) is a varietywith coordinate ringℂ[𝑉].
However, there is not a unique such homomorphism in general. For instance, ℂ[𝑋] ≃ ℂ[𝑋, 𝑌]⟋(𝑌).

Definition. Let 𝐼 ⊲ ℂ[X]. We define the radical ideal of 𝐼 to be

√𝐼 = {𝑓 ∈ ℂ[X] ∣ ∃𝑚 > 0, 𝑓𝑚 ∈ 𝐼}

This is an ideal. √√𝐼 = √𝐼. Note that 𝕍(𝐼) = 𝕍(√𝐼).

Theorem (strong form of Hilbert’s Nullstellensatz). Let 𝐼 ⊲ ℂ[X] be an ideal, and 𝑉 = 𝕍(𝐼).
Then 𝐼(𝑉) = √𝐼.

Therefore, the map 𝑉 ↦ 𝐼(𝑉)maps precisely onto the space of radical ideals, ideals which are equal
to their radicals.

Example. Let 𝑉 = {0} ∈ 𝔸1. We can write 𝑉 = 𝕍(𝑋2), so its coordinate ring is

ℂ[𝑋]⟋𝐼(𝕍(𝑋2)) =
ℂ[𝑋]⟋√(𝑋2) =

ℂ[𝑋]⟋(𝑋) ≃ ℂ

In building the coordinate ring, we forget the structure of𝑋2. If we had instead consideredℂ[𝑋]⟋(𝑋2),
we would have certain nonzero elements whose squares are zero.

2.2 Morphisms
Let 𝑉 ⊆ 𝔸𝑛 and𝑊 ⊆ 𝔸𝑚 be affine varieties.

Definition. A regular map or morphism from 𝑉 to 𝑊 is a function 𝜑∶ 𝑉 → 𝑊 such that
there exist elements 𝑓1,… , 𝑓𝑚 ∈ ℂ[𝑉] such that

𝜑(𝑃) = (𝑓1(𝑃),… , 𝑓𝑚(𝑃))

for all 𝑃 ∈ 𝑉 .

The set of all morphisms from 𝑉 to𝑊 is denoted Mor(𝑉,𝑊).
Example. The morphisms 𝑉 to 𝔸1 are precisely the functions in the coordinate ring ℂ[𝑉].
Example. Linear projections 𝔸𝑛 → 𝔸𝑚 are morphisms. More generally, linear transformations and
affine translations are also morphisms.
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Example. If 𝑉 ⊆ 𝑊 ⊆ 𝔸𝑛 where 𝑉,𝑊 are varieties, then the inclusion map 𝑉 ↪ 𝑊 is a morphism.

Proposition. Let 𝜑∶ 𝑉 → 𝑊,𝜓∶ 𝑊 → 𝑍 be morphisms. Then the composite map 𝜓 ∘ 𝜑 is
a morphism 𝑉 → 𝑍.

Proof. The composition of polynomials is a polynomial.

2.3 Pullbacks

Definition. Let 𝜑∶ 𝑉 → 𝑊 be amorphism, and let 𝑔 ∈ ℂ[𝑊]. Then, the pullback is 𝜑⋆(𝑔) =
𝑔 ∘ 𝜑∶ 𝑉 → ℂ. Note that 𝜑⋆(𝑔) ∈ ℂ[𝑉], so 𝜑⋆ gives a map ℂ[𝑊] → ℂ[𝑉].

Remark. This map 𝜑⋆ is a ring homomorphism, and restricts to the identity on ℂ.

Definition. A ring homomorphism ℂ[𝑋] → ℂ[𝑌] that restricts to the identity on ℂ is called
a ℂ-algebra homomorphism.

Theorem. Let 𝑉 ⊆ 𝔸𝑛,𝑊 ⊆ 𝔸𝑚 be affine varieties. The map 𝛼∶ 𝜑 ↦ 𝜑⋆ defines a bijection
from Mor(𝑉,𝑊) to the space of ℂ-algebra homomorphisms ℂ[𝑊] → ℂ[𝑉].

Proof. Let 𝑦1,… , 𝑦𝑛 ∈ ℂ[𝑊] be the coordinate functions on 𝑊 , which are the restrictions of the
standard linear coordinate functions on 𝔸𝑛.
First, we show injectivity of 𝛼. Let 𝜑∶ 𝑉 → 𝑊 be a morphism. For any point 𝑃 ∈ 𝑉 ,

𝜑(𝑃) = (𝑦1(𝜑(𝑃)),… , 𝑦𝑚(𝜑(𝑃))) = (𝜑⋆(𝑦1)(𝑃),… , 𝜑⋆(𝑦𝑛)(𝑃))

So 𝜑 is determined by the values of 𝜑⋆(𝑦1),… , 𝜑⋆(𝑦𝑛).
Now we show its surjectivity. Let 𝜆∶ ℂ[𝑊] → ℂ[𝑉] be a ℂ-algebra homomorphism, and let 𝑓𝑖 =
𝜆(𝑦𝑖) ∈ ℂ[𝑉]. We can now define the map 𝜑 = (𝑓1,… , 𝑓𝑚)∶ 𝑉 → 𝔸𝑚. We will show that 𝜑 has
image contained in𝑊 , so that we have 𝜑∶ 𝑉 → 𝑊 , which then shows that 𝜑 is a morphism 𝑉 → 𝑊 .
For 𝑃 ∈ 𝑉 , we must show 𝑔(𝜑(𝑃)) = 0 for all 𝑔 ∈ 𝐼(𝑊). We obtain 𝑔(𝑓1(𝑃),… , 𝑓𝑚(𝑃)) = 𝜆(𝑔)(𝑃).
But 𝑔 = 0 in ℂ[𝑊], so 𝑔(𝜑(𝑃)) = 0 as required. Hence 𝜑∶ 𝑉 → 𝑊 is a morphism, and 𝜆 = 𝜑⋆ since
𝜑⋆(𝑦𝑖) = 𝑓𝑖 = 𝜆(𝑦𝑖).

Definition. Two affine varieties 𝑉,𝑊 are isomorphic if we have 𝜑∶ 𝑉 → 𝑊,𝜓∶ 𝑊 → 𝑉
where 𝜑 ∘ 𝜓 = id𝑊 and 𝜓 ∘ 𝜑 = id𝑉 .

Theorem. 𝑉 is isomorphic to𝑊 if and only if ℂ[𝑉] is isomorphic to ℂ[𝑊] as ℂ-algebras.

Proof. Use the previous theorem.

Example. The affine line 𝔸1 is isomorphic to the twisted cubic {(𝑡, 𝑡2, 𝑡3) ∣ 𝑡 ∈ ℂ}. This can be easily
shown by calculating the coordinate rings explicitly.
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Example. Let 𝑉 ⊆ 𝔸2 be given by 𝑋1𝑋2(𝑋1 − 𝑋2) = 0. This is the union of three lines, intersecting
at the origin. Let 𝑊 ⊆ 𝔸3 be given by 𝑋1𝑋2 = 𝑋2𝑋3 = 𝑋3𝑋1 = 0, which is also a union of three
lines, which in this case are the coordinate axes. These are not isomorphic as varieties, because their
coordinate rings are not isomorphic, which can be easily shown using tangent spaces, defined in later
sections. Note, however, that 𝑉 and𝑊 are homeomorphic in the Euclidean topology.

2.4 Rational functions

Definition. Let 𝑉 ⊆ 𝔸𝑛 be an irreducible variety. Its function field, field of rational functions,
or field of meromorphic functions is the field of fractions ℂ(𝑉) = 𝐹𝐹(ℂ[𝑉]) of ℂ[𝑉].

Remark. Since 𝑉 is irreducible, 𝐼(𝑉) is prime, so ℂ[𝑉] is an integral domain. This allows us to con-
struct the field of fractions.

Definition. Let 𝜑 be a rational function. A point 𝑃 ∈ 𝑉 is called regular if 𝜑 can be expressed
as a ratio 𝑓

𝑔
with 𝑔(𝑃) ≠ 0.

Remark. If 𝜑 = 𝑓
𝑔
, we obtain a well-defined function 𝜑∶ 𝑉 ∖ 𝕍(𝑔) → ℂ. The domain is an open set

in 𝑉 , since 𝕍(𝑔) is Zariski closed.
Example. Consider the rational function 𝑋2

1 /𝑋2 ∈ ℂ(𝔸2). This defines a map on the complement
of the 𝑋2-axis. Note that 𝑋3/𝑋1𝑋2 defines the same function, but only on points other than 𝕍(𝑋1𝑋2).
Note that 𝑋3/𝑋1𝑋2 = 𝑋2

1 /𝑋2 ∈ ℂ(𝔸2), so we cannot quite think of elements of ℂ(𝔸2) as functions.
Remark. A rational function on 𝑉 can be thought of as a pair (𝑈, 𝑓) with 𝑈 ⊆ 𝑉 Zariski open, such
that 𝑓 is a function 𝑈 → ℂ. We define the equivalence relation (𝑈, 𝑓) ∼ (𝑈 ′, 𝑓′) if 𝑓, 𝑓′ agree on
some nonempty Zariski open set contained in𝑈 and𝑈 ′. Note that if𝑉 is irreducible, every nonempty
open subset is dense in the Zariski topology.

Definition. A local ring is a ring 𝑅 that contains a unique maximal ideal.

Definition. Let 𝑉 be an irreducible variety, and let 𝑃. The local ring of 𝑉 at 𝑃 is 𝒪𝑉,𝑃 =
{𝑓 ∈ ℂ(𝑉) ∣ 𝑓 is regular at 𝑃}.

Proposition. The local ring of an irreducible variety 𝑉 at a point 𝑃 is a local ring. Its unique
maximal ideal is

𝔪𝑉,𝑃 = {𝑓 ∈ 𝒪𝑉,𝑃 ∣ 𝑓(𝑃) = 0} = ker(𝑓 ↦ 𝑓(𝑃))
Further, the invertible elements of 𝒪𝑉,𝑃 are precisely those 𝑓 such that 𝑓(𝑃) ≠ 0.

The proof follows from the following more general lemma.

Lemma. A ring 𝑅 is a local ring if and only if 𝑅 ∖ 𝑅⋆ is an ideal. If so, the unique maximal
ideal is 𝑅 ∖ 𝑅⋆.
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Proof. If 𝐴 ⊴ 𝑅 is an ideal, then 𝐴 ≠ 𝑅 if and only if 𝐴 ⊆ 𝑅 ∖ 𝑅⋆, because if any unit lies in 𝐴, it must
be all of 𝑅. Hence, if 𝑅 ∖ 𝑅⋆ is an ideal, it is automatically the unique maximal ideal.

Conversely, let 𝑅 be a local ring with unique maximal ideal𝔪. Then𝔪 ⊆ 𝑅 ∖ 𝑅⋆, and if 𝑥 ∈ 𝑅 ∖ 𝑅⋆

we must have (𝑥) ≠ 𝑅, so (𝑥) ⊆ 𝔪 by maximality. Hence𝔪 = 𝑅 ∖ 𝑅⋆.

Note that this proves the previous proposition, as 𝑓
𝑔
∈ 𝒪𝑉,𝑃 is invertible if and only if (

𝑓
𝑔
)(𝑃) ≠

0.
Example. Let

𝑅 = {𝑓𝑔 ∈ ℂ(𝑡) ||| ignoring factors, 𝑔(0) ≠ 0} = 𝒪𝔸1,0

Here, the maximal ideal is (𝑡), and 𝑅⟋(𝑡) = ℂ.

Let 𝑆 = ℂ⟦𝑡⟧ be the ring of formal power series in 𝑡. This is a local ring by the lemma; its maximal
ideal is (𝑡). Note that in fact 𝑅 ⊆ 𝑆.

3 Projective varieties
We will construct the projective space ℙ𝑛, which will be an upgrade to 𝔸𝑛; it is not immediately ob-
vious why ℙ𝑛 is considered ‘better’. Projective space has some interesting properties, such as:

• every pair of lines in ℙ2 that are distinct meet at a unique point;
• if 𝑉 is a projective variety (defined shortly) in ℙ2 defined by a degree 𝑑 polynomial, if 𝑉 is a
manifold then 𝑉 is homeomorphic in the Euclidean topology to a closed orientable topological
surface of genus (𝑑−1

2
).

• ℙ𝑛 is compact in the Euclidean topology, but 𝔸𝑛 is not.

3.1 Definition

Definition. Let 𝑈 be a finite-dimensional complex vector space. The projectivisation of 𝑈 ,
written ℙ(𝑈), is the set of lines in 𝑈 through the origin 0 ∈ 𝑈 . Define ℙ𝑛 = ℙ(ℂ𝑛+1).

We usually index the coordinates on ℂ𝑛+1 with indices 0,… , 𝑛. A line in ℂ𝑛+1 is therefore given by
{(𝑎0𝑡,… , 𝑎𝑛𝑡) ∣ 𝑡 ∈ ℂ}, and is written 𝐿(𝑎0,…,𝑎𝑛), where not all 𝑎𝑖 are zero. We write (𝑎0 ∶ 𝑎1 ∶ ⋯ ∶
𝑎𝑛) for the corresponding element of ℙ𝑛. Therefore,

ℙ𝑛 = {(𝑎0,… , 𝑎𝑛) ∣ 𝑎𝑖 ∈ ℂ,not all 𝑎𝑖 = 0}⟋scaling by ℂ⋆

For example, (2 ∶ 1 ∶ −2) = (4 ∶ 2 ∶ −4) ∈ ℙ2.
We can decompose ℙ1 as

{(𝑎0 ∶ 𝑎1) ∣ 𝑎0 ≠ 0} ∪ {(𝑎0 ∶ 𝑎1) ∣ 𝑎0 = 0} = {(1 ∶ 𝑧) ∣ 𝑧 ∈ ℂ} ∪ {(0 ∶ 1)}
= 𝔸1 ∪ a point at infinity

More generally,

ℙ𝑛 = {(𝑎0 ∶ ⋯ ∶ 𝑎𝑛) ∣ 𝑎0 ≠ 0} ∪ {(0 ∶ 𝑎1 ∶ ⋯ ∶ 𝑎𝑛)} = 𝔸𝑛 ⨿ ℙ𝑛−1
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By induction, ℙ𝑛 = 𝔸𝑛 ∪ 𝔸𝑛−1 ∪⋯ ∪ 𝔸1∪ a point, where the terms other than 𝔸𝑛 are considered ‘at
infinity’.

Definition. The Zariski (respectively Euclidean) topology on projective space is the quotient
topology for the subspace topology for the Zariski (respectively Euclidean) topology onℂ𝑛+1∖
{0}, where ℙ𝑛 = ℂ𝑛+1 ∖ {0}⟋∼ and ℂ𝑛+1 ∖ {0} ⊆ ℂ𝑛+1.

There is a copy of 𝑆2𝑛+1 inside ℂ𝑛+1 ∖ {0}, which therefore surjects onto ℙ𝑛.

Corollary. ℙ𝑛 is compact.

Proof. It is the continuous image of the compact set 𝑆2𝑛+1.

Definition. For 0 ≤ 𝑗 ≤ 𝑛, we define the 𝑗th coordinate hyperplane is the set 𝐻𝑗 =
{(a𝑖) ∣ 𝑎𝑗 = 0} ⊆ ℙ𝑛.

We can naturally identify 𝐻𝑗 with ℙ𝑛−1.

Definition. The 𝑗th standard affine patch 𝑈𝑗 is the complement of 𝐻𝑗 .

There is a natural bijection 𝑈𝑗 → 𝔸𝑛 by mapping (𝑎0 ∶ ⋯ ∶ 𝑎𝑛) to (
𝑎0
𝑎𝑗
,… , 𝑎̂𝑗

𝑎𝑗
,… , 𝑎𝑛

𝑎𝑗
) where the

hat denotes ‘forgetting’ that element of the tuple. The inverse function maps (𝑏1,… , 𝑏𝑛) to (𝑏1 ∶
⋯ ∶ 𝑏𝑗−1 ∶ 1 ∶ 𝑏𝑗 ∶ ⋯ ∶ 𝑏𝑛). We observe that {𝑈𝑗}

𝑛
𝑗=0 is an open cover of ℙ𝑛 in the Zariski

topology.

3.2 Projective varieties
Example. Consider the polynomial 𝑋0 +1 ∈ ℂ[𝑋0, 𝑋1]. Note that 𝑋0 +1 does not define a function
on ℙ1. For example, (−1 ∶ 0) = (1 ∶ 0), but 𝑋0 + 1 vanishes on the first representative and not the
second. The vanishing locus of 𝑋0 + 1 on ℙ1 is therefore undefined. Therefore, we need a slightly
more subtle definition of a variety in projective space.

Definition. A monomial in ℂ[X] = ℂ[𝑋0,… , 𝑋𝑛] is an element of the form 𝑋𝑑0
0 𝑋𝑑1

1 …𝑋𝑑𝑛𝑛
where 𝑑𝑖 ≥ 0. A term is a nonzero multiple of a monomial. The degree of a term 𝑐𝑋𝑑0

0 …𝑋𝑑𝑛𝑛
is∑𝑛

𝑖=0 𝑑𝑖. A homogeneous polynomial of degree 𝑑 is a finite sum of terms of degree 𝑑.

Any polynomial can be uniquely decomposed as a sum of homogeneous polynomials of different
degree; we write 𝑓 = ∑∞

𝑖=0 𝑓[𝑖] where the 𝑓[𝑖] are homogeneous of degree 𝑖. Note that this sum is
always finite.

Lemma. Let 𝑓 ∈ ℂ[X] be homogeneous, and let (𝑎0,… , 𝑎𝑛) ∈ ℂ𝑛+1 ∖ {0}. Then, if 𝑓(a) = 0,
we have 𝑓(𝜆a) = 0 for all 𝜆 ∈ ℂ⋆.
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Proof. Trivial by checking the definitions.

Corollary. Let 𝑓 ∈ ℂ[X] be homogeneous. Then

𝕍(𝑓) = {𝑃 ∈ ℙ𝑛 ∣ 𝑓(a) = 0 for any (or every) representative of 𝑃}

is well-defined.

Definition. An ideal 𝐼 ⊴ ℂ[X] is called homogeneous if it can be generated by homogeneous
polynomials (of potentially different degrees).

Lemma. Let 𝐼 ⊴ ℂ[X] be an ideal. Then 𝐼 is homogeneous if and only if whenever 𝑓 ∈ 𝐼, all
of the homogeneous parts 𝑓[𝑟] are also contained in 𝐼.

Proof. Suppose 𝐼 is homogeneous. Then let 𝑔𝑗 be homogeneous generators of 𝐼 of degree 𝑑𝑗 . Writing
𝑓 = ∑ℎ𝑗𝑔𝑗 for arbitrary ℎ𝑗 ∈ ℂ[X], we can split each ℎ𝑗 into its pieces ℎ𝑗[𝑟]. Now, ℎ𝑗[𝑟]𝑔𝑗 ∈ 𝐼 is
homogeneous, and its degree is 𝑟𝑑𝑗 . Hence, 𝑓[𝑟] = ∑𝑗 ℎ𝑗[𝑟−𝑑𝑗]𝑔𝑗 ∈ 𝐼 as required. The converse is
trivial by decomposing the generators of the ideal.

Definition. Let 𝐼 ⊴ ℂ[X] be a homogeneous ideal. Then, the vanishing locus is 𝕍(𝐼) =
{𝑃 = (a𝑖) ∈ ℙ𝑛 ∣ ∀𝑓 ∈ 𝐼, 𝑓((a𝑖)) = 0}. A projective variety in ℙ𝑛 is any set of this form.

Note that we could have defined the vanishing locus using the quantifier ‘for all homogeneous 𝑓 ∈
𝐼’.
Example. Let 𝑈 ⊆ ℂ𝑛+1 be any vector subspace. Let the projectivisation of 𝑈 is a subset of ℙ𝑛,
and is a projective variety. More concretely, 𝑈 = {v ∈ ℂ𝑛+1 ∣ ∀𝑗, ∑𝑛

𝑖=0 𝑎
(𝑗)
𝑖 𝑣𝑖 = 0} for a subset a(𝑗) =

(𝑎(𝑗)0 ,… , 𝑎(𝑗)𝑛 ), as a vector subspace is the kernel of some linear map. Therefore, ℙ(𝑈) = 𝕍(𝐼) where
𝐼 is the ideal generated by 𝐹𝑗 = ∑𝑖 𝑎

(𝑗)
𝑖 𝑋𝑖 ∈ ℂ[X]. More generally, a projective linear space is the

projectivisation of a linear subspace. Hence, projective linear spaces inℙ𝑛 are in bijectionwith linear
subspaces in ℂ𝑛+1.

𝐺𝐿𝑛+1(ℂ) acts on ℙ𝑛 coordinatewise. The normal subgroup of scalar matrices ℂ⋆ ⊆ 𝐺𝐿𝑛+1(ℂ) acts
trivially on ℙ𝑛. The quotient is written 𝑃𝐺𝐿𝑛(ℂ) = 𝐺𝐿𝑛+1(ℂ)⟋ℂ⋆, and acts transitively on ℙ𝑛.
Example. The Segre surface is the hypersurface 𝑆11 = 𝕍(𝑋0𝑋3 − 𝑋1𝑋2) ⊆ ℙ3. Consider the map
𝜎11 ∶ ℙ1 × ℙ1 → ℙ3 given by 𝜎11((𝑎0 ∶ 𝑎1), (𝑏0 ∶ 𝑏1)) = (𝑎0𝑏0 ∶ 𝑎0𝑏1 ∶ 𝑎1𝑏0 ∶ 𝑎1𝑏1). One can show
that this map is well-defined, and in fact, Im𝜎11 = 𝑆11.
First, consider the map ℂ2 × ℂ2 → ℂ4 where we identify ℂ4 with the space of 2 × 2 matrices on ℂ,
given by the outer product. More precisely, (𝑣, 𝑤) ↦ 𝑣𝑤⊺. The image of thismap is precisely the set of
matrices of rank at most 1. Hence, the image is the vanishing locus of 𝑋0𝑋3 −𝑋1𝑋2, the determinant
of such a matrix.
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3.3 Homogenisation and projective closure
Recall that ℙ𝑛 = 𝑈0 ∪ ⋯ ∪ 𝑈𝑛, where 𝑈 𝑖 = ℙ𝑛 ∖ 𝕍(𝑋𝑖). We therefore have the following different
descriptions of a Zariski topology on ℙ𝑛:
(i) the quotient of the subspace of the Zariski topology on ℂ𝑛+1;

(ii) define that 𝑉 is Zariski-closed if and only if 𝑉 = 𝕍(𝐼) where 𝐼 ⊲ ℂ[X] is homogeneous;
(iii) the gluing topology: define that a subset 𝑍 ⊆ ℙ𝑛 is closed if 𝑍 ∩ 𝑈 𝑖 is closed for all 𝑖, as the 𝑈 𝑖

are isomorphic to 𝔸𝑛.
These three constructions coincide.

If 𝑉 ⊆ ℙ𝑛 is a projective variety, consider 𝑈0 ∩ 𝑉 ⊆ 𝑈0. If 𝑉 = 𝕍(𝐼), then 𝑈0 ∩ 𝑉 = 𝕍(𝐼0) where 𝐼0 =
{𝑓 = 𝐹(1, 𝑌1,… , 𝑌𝑛) ∣ 𝐹 ∈ 𝐼 homogeneous} ⊆ ℂ[𝑌1,… , 𝑌𝑛]. Identifying 𝑈0 with 𝔸𝑛 with coordinates
𝑌1,… , 𝑌𝑛 (so 𝑌 𝑗 =

𝑋𝑗

𝑋0
), 𝑉 ∩ 𝑈0 is naturally an affine variety.

Conversely, let 𝑊 ⊆ 𝔸𝑛 be an affine variety, and identify 𝔸𝑛 with 𝑈0. Then, the Zariski closure 𝑊
of 𝑊 inside ℙ𝑛 is a projective variety. We are interested in studying the precise projective varieties
obtained in this way.

Definition. Let 𝑓 ∈ ℂ[𝑌1,… , 𝑌𝑛] be an arbitrary polynomial of total degree 𝑑. The homo-
genisation of 𝑓, written 𝐹 or 𝑓ℎ, is

𝑓ℎ(𝑋0,… , 𝑋𝑛) = 𝑋𝑑
0𝑓(

𝑋1
𝑋0

,… , 𝑋𝑛𝑋0
) ∈ ℂ[𝑋0,… , 𝑋𝑛]

This is homogeneous of degree 𝑑. Similarly, if 𝐼 is an ideal in ℂ[𝑌1,… , 𝑌𝑛], its homogenisa-
tion 𝐼⋆ = 𝐼ℎ is the ideal generated by the homogenisation of the elements 𝑓 ∈ 𝐼; this is a
homogeneous ideal in ℂ[𝑋0,… , 𝑋𝑛]. Given an affine variety 𝑉 ⊆ 𝔸𝑛, the projective closure of
𝑉 is 𝕍(𝐼(𝑉)ℎ) ⊆ ℙ𝑛.

Example. Let 𝑓(𝑌1, 𝑌2) = 1 + 𝑌 2
1 +𝑌1𝑌 2

2 . Its homogenisation is 𝑓ℎ(𝑋0, 𝑋1, 𝑋2) = 𝑋3
0 +𝑋0𝑋2

1 +𝑋1𝑋2
2 .

Remark. Let 𝐼 = (𝑓1,… , 𝑓𝑟) ⊆ ℂ[𝑌1,… , 𝑌𝑛], and let 𝐽 = (𝑓ℎ1 ,… , 𝑓ℎ𝑟 ). Typically, 𝐽 ≠ 𝐼ℎ. If 𝐼 is principal,
this holds: 𝐼 = (𝑓) implies 𝐼ℎ = (𝑓ℎ).

Proposition. Let 𝑉 ⊆ 𝔸𝑛 be an affine variety. Then, the Zariski closure 𝑉 ⊆ ℙ𝑛 given by
identifying 𝑈0 = 𝔸𝑛 coincides with the projective closure 𝕍(𝐼(𝑉)ℎ) ⊆ ℙ𝑛.

Proof. Let 𝐼 be an ideal in ℂ[𝑌1,… , 𝑌𝑛], and let 𝑉 = 𝕍(𝐼). Let 𝑉 be the Zariski closure. Let 𝐼ℎ be the
homogenisation of the ideal. Then 𝕍(𝐼ℎ) is Zariski closed, and contains 𝑉 . We will show that this is
the smallest such set.

Suppose 𝑌 ⊇ 𝑉 is closed, so 𝑌 = 𝕍(𝐼′) where 𝐼′ is homogeneous. Any homogeneous element in 𝐼′
can be written as 𝑋𝑑

0𝑓ℎ for some 𝑓 ∈ ℂ[𝑌1,… , 𝑌𝑛]. Now, 𝑋𝑑
0𝑓ℎ = 0 on 𝑉 ⊆ ℙ𝑛, so 𝑓 = 0 on 𝑉 ⊆ 𝔸𝑛.

Hence 𝑓 ∈ 𝐼(𝑉) = √𝐼 by the Nullstellensatz. So 𝑓𝑚 ∈ 𝐼 for some 𝑚 > 0, so (𝑓𝑚)ℎ = (𝑓ℎ)𝑚 ∈ 𝐼ℎ.
Hence 𝑓ℎ ∈ √𝐼ℎ, so 𝑋𝑑

0𝑓ℎ ∈ √𝐼ℎ. Therefore, 𝐼′ ⊆ √𝐼ℎ.
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Remark. Let 𝑉 ⊆ ℙ𝑛, and let 𝑊 = 𝑉 ∩ 𝑈0 ⊆ 𝔸𝑛. Then 𝑊 ⊆ ℙ𝑛 is not in general equal to 𝑉 . For
example, let 𝑉 = 𝕍(𝑋0), so𝑊 = ∅ and𝑊 = ∅. This ambiguity arises due to the 𝑋𝑑

0 term required
in the above proof when dehomogenising a polynomial.

This shows that the topological notion of the Zariski closure and the algebraic notion of the projective
closure agree.

Example. Let𝑉 ⊆ ℙ2 be given by𝕍(𝑋0𝑋1−𝑋2
2 ). We obtain𝑉0 ⊆ 𝑈0 given by setting𝑋0 = 1, 𝑉1 ⊆ 𝑈1

given by setting 𝑋1 = 1, and 𝑉2 ⊆ 𝑈2 given by setting 𝑋2 = 1. We find 𝑉0 = 𝕍(𝑌1 − 𝑌 2
2 ) which is a

parabola, and 𝑉1 is similar. 𝑉2 = 𝕍(𝑋0𝑋1 − 1), which is a rectangular hyperbola.

Theorem. Let 𝑄 ⊆ ℙ𝑛 be given by 𝕍(𝑓) where 𝑓 is a homogeneous quadratic polynomial.
Then, after a change of coordinates 𝐴 ∈ 𝑃𝐺𝐿𝑛(ℂ), 𝑄 has the form 𝕍(𝑋2

0 +⋯+𝑋2
𝑟 )where 𝑟 is

the rank of the quadratic form 𝑓.

Proof. Use the results from IB Linear Algebra.

Theorem (projective Nullstellensatz). If 𝕍(𝐼) = ∅ ⊆ ℙ𝑛 where 𝐼 is a homogeneous ideal,
then 𝐼 ⊇ (𝑋𝑚

0 ,… , 𝑋𝑚
𝑛 ) for some 𝑚 ∈ ℕ. Further, if 𝑉 = 𝕍(𝐼) ≠ ∅, then 𝐼ℎ(𝑉) = √𝐼, where

𝐼ℎ(𝑉) is the ideal generated by homogeneous polynomials vanishing on 𝑉 .

Proof. We reduce to the affine case. Let 𝐼 be a homogeneous ideal, and let 𝑉𝑎 = 𝕍(𝐼) ⊆ 𝔸𝑛+1. Note
that 0 ∈ 𝑉𝑎, assuming 𝑉 ≠ ∅. Then there is a continuous map 𝑉𝑎 ∖ {0} → 𝑉 obtained by the
restriction of 𝔸𝑛+1 ∖ {0} → ℙ𝑛. Moreover, this map is surjective, so is a quotient map. Note that 𝑉
is empty if and only if 𝑉𝑎 = {0}. So the result holds by the affine Nullstellensatz. The second part is
similar.

Let 𝑉 be a projective variety in ℙ𝑛. If𝑊 ⊆ 𝑉 is a variety closed in 𝑉 , we say𝑊 is a closed subvariety
of 𝑉 . The complement 𝑉 ∖ 𝑊 is an open subvariety. The closed (respectively open) subvarieties of
𝑉 satisfy the axioms of the closed (open) sets of a topology. We say 𝑉 is irreducible if 𝑉 cannot be
written as 𝑉1 ∪ 𝑉2 for proper closed subvarieties 𝑉1, 𝑉2.

Proposition. (i) Every projective variety is a finite union of irreducible varieties.
(ii) 𝑉 is irreducible if and only if 𝐼ℎ(𝑉) is prime.

Proof. Part (i) is identical to the affine case. For part (ii), first observe that if 𝐼 is a homogeneous
ideal which is not prime, we can find homogeneous 𝐹, 𝐺 ∉ 𝐼 such that 𝐹𝐺 ∈ 𝐼, as 𝐼 is generated by
homogeneous elements. Then the proof for the affine case works as before.

Let 𝑆 ⊆ 𝑉 be a subset. 𝑆 is Zariski dense in 𝑉 if and only if every homogeneous polynomial that
vanishes on 𝑆 vanishes on 𝑉 .

Proposition. Let 𝑉 ⊆ ℙ𝑛 be an irreducible projective variety. Let𝑊 ⊊ 𝑉 be a proper closed
subvariety. Then, 𝑉 ∖𝑊 is dense in 𝑉 .

Intuitively,𝑊 is lower-dimensional than𝑉 , and𝑉 with a lower-dimensional set removed is dense.
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Proof. Let 𝑓 ∈ ℂ[X] be a homogeneous polynomial that vanishes on 𝑉 ∖𝑊 . As𝑊 ≠ 𝑉 , there exists
a polynomial 𝑔 ∈ 𝐼ℎ(𝑊) ∖ 𝐼ℎ(𝑉) by the projective Nullstellensatz. Then, 𝑓𝑔 vanishes on all of 𝑉 . But
𝐼ℎ(𝑉) is prime as 𝑉 is irreducible, so 𝑓 ∈ 𝐼ℎ(𝑉).

3.4 Rational functions
Homogeneous polynomials havewell-defined zero sets inℙ𝑛, but not awell-defined value. Therefore,
we cannot define a coordinate ring ℂ[𝑉] in an analogous way. However, a ratio of homogeneous
polynomials of the same degree does have a well-defined value on ℙ𝑛 away from the vanishing locus
of the denominator.

Definition. Let 𝑉 ⊆ ℙ𝑛 be an irreducible projective variety. The function field or field of
rational functions is

ℂ(𝑉) = {𝐹𝐺
||| 𝐹, 𝐺 ∈ ℂ[X] homogeneous and have the same degree, 𝐺 ∉ 𝐼ℎ(𝑉)}⟋∼

where 𝐹1
𝐺1

∼ 𝐹2
𝐺2

if 𝐹1𝐺2 − 𝐹2𝐺1 ∈ 𝐼ℎ(𝑉).

Lemma. The relation ∼ is an equivalence relation.

Proof. Reflexivity and symmetry are clear. Now suppose that 𝐹1
𝐺1

∼ 𝐹2
𝐺2

∼ 𝐹3
𝐺3
, so 𝐹2𝐺1−𝐹1𝐺2 ∈ 𝐼ℎ(𝑉)

and 𝐹3𝐺2 − 𝐹2𝐺3 ∈ 𝐼ℎ(𝑉). Consider 𝐹1𝐺3 − 𝐹3𝐺1. Multiplying by 𝐺2, 𝐹1𝐺2𝐺3 − 𝐹3𝐺1𝐺2. Since
𝐺2 ∉ 𝐼ℎ(𝑉), primality of 𝐼ℎ(𝑉) implies that it suffices to show 𝐹1𝐺2𝐺3 − 𝐹3𝐺1𝐺2 ∈ 𝐼ℎ(𝑉). In the
ring ℂ[X]⟋𝐼ℎ(𝑉), we have relations 𝐹1𝐺2 = 𝐹2𝐺1 and 𝐹3𝐺2 = 𝐹2𝐺3. Hence 𝐹1𝐺2𝐺3 − 𝐹3𝐺1𝐺2 = 0 in
ℂ[X]⟋𝐼ℎ(𝑉).

Note that ℂ(𝑉) is a field.

Proposition. The field ℂ(𝑉) is a finitely generated field extension of ℂ.

Note thatℂ(𝑡) is finitely generated as a field, but not finitely generated as aℂ-module or aℂ-algebra.

Proof. Suppose𝑉 ≠ ∅. Then, there is some coordinate function𝑋𝑖 that is nonzero on𝑉 ; without loss
of generality let 𝑖 = 0. We claim that 𝑋1

𝑋0
,… , 𝑋𝑛

𝑋0
generate ℂ(𝑉) over ℂ. Explicitly, if 𝐹

𝐺
is a degree 0

ratio, it can be written in terms of the 𝑋𝑗

𝑋0
and the field operations. It suffices to show the result holds

when 𝐹
𝐺
is of the form 𝑀

𝐺
where 𝑀 is a monomial. Then, it suffices to show the result for 𝐺

𝑀
where

𝑀 is a monomial by taking reciprocals. Hence, it suffices to show the result for 𝑀
𝑀′ where𝑀,𝑀′ are

monomials, and this is trivial.
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Corollary. Let 𝑉 ⊆ ℙ𝑛 be an irreducible projective variety, not contained in the hyperplane
{𝑋0 = 0}. Let 𝑉0 = 𝑉 ∩ 𝑈0, where 𝑈0 ≃ 𝔸𝑛 is the first affine patch. Then, ℂ(𝑉0) = ℂ(𝑉),
where ℂ(𝑉0) = 𝐹𝐹(ℂ[𝑉0]).

Proof. 𝑉0 has coordinate ring
ℂ[𝑋1𝑋0

,… , 𝑋𝑛𝑋0
]⟋𝐼(𝑉0)

Hence, ℂ(𝑉0) = 𝐹𝐹(ℂ[𝑉0]) is generated by the
𝑋𝑗

𝑋0
.

Definition. Let 𝜑 ∈ ℂ(𝑉) and let 𝑃 ∈ 𝑉 . We say that 𝜑 is regular or defined at 𝑃 if 𝜑 can be
expressed as 𝐹

𝐺
where 𝐹, 𝐺 are homogeneous of the same degree with 𝐺(𝑃) ≠ 0. There is a

partial function from the set of regular points of 𝑉 to ℂ.

Definition. The local ring of𝑉 at 𝑃, written𝒪𝑉,𝑃 , is the set of𝜑 ∈ ℂ(𝑉) such that𝜑 is regular
at 𝑃. This is a subring of ℂ(𝑉), which is a local ring in the sense of commutative algebra.

Proposition. Let 𝑉 ⊆ ℙ𝑛 be an irreducible projective variety not contained in {𝑋0 = 0}. Let
𝑉0 = 𝑉∩𝑈0where𝑈0 = {𝑋0 = 0}. Let 𝑃 be a point in𝑉0. Then, there is a natural isomorphism
𝒪𝑉,𝑃 → 𝒪𝑉0,𝑃 respecting the isomorphism ℂ(𝑉) ≃ ℂ(𝑉0).

Proof. Follows by unfolding the definitions.

3.5 Rational maps
Let𝐹0,… , 𝐹𝑚 ∈ ℂ[X] = ℂ[𝑋0,… , 𝑋𝑛] behomogeneous of the samedegree𝑑. DefineF = (𝐹0,… , 𝐹𝑚)∶ ℂ𝑛+1 →
ℂ𝑚+1.

Proposition. The map F descends to a well-defined map of sets 𝜑∶ ℙ𝑛 ∖⋂𝑗 𝕍(𝐹𝑗) → ℙ𝑚. If
𝑃 is represented by a = (𝑎0,… , 𝑎𝑛), then 𝜑(𝑃) is represented by (𝐹0(a),… , 𝐹𝑚(a)).

Proof. Since all 𝐹𝑗 are homogeneous of the same degree 𝑑, 𝜆a = (𝜆𝑎0,… , 𝜆𝑎𝑛) gives

(𝐹0(𝜆a),… , 𝐹𝑚(𝜆a)) = 𝜆𝑑(𝐹0(a),… , 𝐹𝑚(a))

which is equivalent to 𝜑(𝑃).

We will denote such maps F = (𝐹0,… , 𝐹𝑚) by 𝜑∶ ℙ𝑛 ⇢ ℙ𝑚.
Let𝐺 be a nonzero homogeneous polynomial in𝑋0,… , 𝑋𝑛. GivenF∶ ℙ𝑛 ⇢ ℙ𝑚, we can also consider
𝐺F = (𝐺𝐹0,… , 𝐺𝐹𝑛)∶ ℙ𝑛 ⇢ ℙ𝑚. Observe that the maps F and 𝐺F have different domains, but
coincide at points where they are both defined. Note that there is a ‘best’ representative F, as ℂ[X]
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is a unique factorisation domain, but we will not use this notion here, because not all rings that we
will use are unique factorisation domains.

Definition. Let 𝑉 ⊆ ℙ𝑛 be an irreducible projective variety. Let 𝐹0,… , 𝐹𝑚 be homogeneous
polynomials inℂ[𝑋0,… , 𝑋𝑛] of fixed degree𝑑, and not all contained in 𝐼ℎ(𝑉). They determine
a map of sets 𝑉 ∖ ⋂𝑗 𝕍(𝐹𝑗) → ℙ𝑛 by the previous construction. Two such tuples (𝐹0,… , 𝐹𝑚)
and (𝐺0,… , 𝐺𝑚) are said to determine the same map if 𝐹𝑖𝐺𝑗 − 𝐹𝑗𝐺𝑖 ∈ 𝐼ℎ(𝑉). A rational map
from 𝑉 to ℙ𝑚 is an equivalence class of tuples (𝐹0,… , 𝐹𝑚) as above, where two tuples are
equivalent if they determine the same map.

Definition. A point 𝑃 ∈ 𝑉 is a regular point of a rational map 𝜑∶ 𝑉 ⇢ ℙ𝑛 if there is a
representative (𝐹0,… , 𝐹𝑚) of 𝜑 such that 𝐹𝑗(𝑃) ≠ 0 for some 𝑗. The domain of 𝜑 is the set of
regular points of 𝜑. A rational map 𝜑 is called amorphism if the domain of 𝜑 is 𝑉 ; in this case,
we write 𝑉 → ℙ𝑚.

Example. A linear map 𝜑∶ ℙ𝑛 ⇢ ℙ𝑚 is given by an (𝑚+ 1) × (𝑛 + 1)matrix 𝐴 = (𝑎𝑖𝑗). Concretely,
we can define𝜑 = (𝐹0,… , 𝐹𝑚)where 𝐹𝑗 = ∑𝑖 𝑎𝑖𝑗𝑋𝑖. If𝐴 has rank 𝑛+1 ≤ 𝑚+1, then𝜑 is amorphism.
Example (projection from a point). Let 𝑃 = (0 ∶ 0 ∶ 1) ∈ ℙ2. The projection from 𝑃 is the rational
map𝜋∶ ℙ2 ⇢ ℙ1 defined by (𝑎0 ∶ 𝑎1 ∶ 𝑎2) ↦ (𝑎0 ∶ 𝑎1). 𝜋 is not regular at𝑃, and regular everywhere
else.

Let 𝐶 = 𝕍(𝑓𝑑) where 𝑓𝑑 is a homogeneous polynomial of degree 𝑑. Suppose that 𝑃 ∉ 𝐶. The
composition is therefore a morphism 𝜛∶ 𝐶 → ℙ1. One can show that for almost all choices of
𝑄 ∈ ℙ1, the fibre𝜛−1(𝑄) is a set of size 𝑑.
Example. Let 𝐶 = 𝕍(𝑋0𝑋2 − 𝑋2

1 ) ⊆ ℙ2. Consider the projection from (0 ∶ 0 ∶ 1), and restrict this
projection to 𝐶 to obtain a map 𝜋∶ 𝐶 ⇢ ℙ1 defined by 𝜋(𝑎0 ∶ 𝑎1 ∶ 𝑎2) = (𝑎0 ∶ 𝑎1). By changing
representatives, we can show 𝜋 is a morphism, even though (0 ∶ 0 ∶ 1) ∈ 𝐶.
The map 𝜋 is determined by (𝑋0, 𝑋1); we must look for other pairs (𝐹0, 𝐹1) that determine the same
rational map as 𝜋, so 𝐹0𝑋1 − 𝐹1𝑋0 ∈ 𝐼ℎ(𝐶) = (𝑋0𝑋2 − 𝑋2

1 ). Notice that this relation is satisfied
by (𝑋1, 𝑋2), so 𝜋 agrees with the function 𝜋′(𝑎0 ∶ 𝑎1 ∶ 𝑎2) = (𝑎1 ∶ 𝑎2) on 𝐶. So 𝜋 is regular at
(0 ∶ 0 ∶ 1) ∈ 𝐶, so 𝜋 is a morphism.
Observe that for 𝜋∶ 𝐶 → ℙ1, 𝜋−1(𝑞) is a single point for 𝑞 ∈ ℙ1. One can show also that 𝜋 is
surjective.

If𝑊 is a projective variety, a rational map (or morphism) 𝑉 → 𝑊 is a rational map (or morphism)
𝑉 → ℙ𝑚with image contained in𝑊 . Amorphism𝜑∶ 𝑉 → 𝑊 is an isomorphism if it has a two-sided
inverse morphism.

Proposition. Let 𝐶 be the vanishing locus of a homogeneous polynomial 𝑓 ∈ ℂ[𝑋0, 𝑋1, 𝑋2]
of degree 2 in ℙ2. Then, if 𝑓 is irreducible then 𝐶 ≃ ℙ1.

Proof. By changing coordinates, we can assume 𝑓 = 𝑋0𝑋2 − 𝑋2
1 ; the rank of the quadratic form is

2 as 𝑓 is irreducible. By the example above, we have a morphism 𝜋∶ 𝐶 → ℙ1 by projection from
(0 ∶ 0 ∶ 1). We define an inverse map 𝜇∶ ℙ1 → ℙ2 by 𝜇(𝑌0 ∶ 𝑌1) = (𝑌 2

0 ∶ 𝑌0𝑌1 ∶ 𝑌 2
1 ). The image of

𝜇 lies in 𝐶, and the compositions are inverse.
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There is only one conic in two-dimensional projective space, up to changing coordinates.

Example (Cremona transformation). Consider the rational map ℙ2 ⇢ ℙ2 given by

𝜅(𝑋0 ∶ 𝑋1 ∶ 𝑋2) = (𝑋1𝑋2 ∶ 𝑋0𝑋2 ∶ 𝑋0𝑋1)

This can be thought of as a coordinatewise reciprocal map. The Cremona transformation maps lines
into conics. Suppose ℓ is a line not given by the vanishing locus of any of the coordinate functions 𝑋𝑖.
Then, consider the subset 𝜅(dom 𝜅 ∩ ℓ) ⊆ ℙ2; this is the analogue of the image in the case of rational
maps. One can show that the closure of this set is a conic.

Example (Veronese embedding). Let 𝐹0,… , 𝐹𝑚 be the list of monomials of degree 𝑑 in 𝑋0,… , 𝑋𝑛, so
𝑚 = (𝑛+𝑑

𝑑
) − 1. We define the 𝜈𝑑 ∶ ℙ𝑛 → ℙ𝑚 mapping (a) to (𝐹0(a),… , 𝐹𝑚(a)). One can show this is

a morphism. Note that the map 𝜇(𝑌0 ∶ 𝑌1) = (𝑌 2
0 ∶ 𝑌0𝑌1 ∶ 𝑌 2

1 ) used in the previous proposition is
an instance of this embedding. In general, 𝜈𝑑 is injective, and the image of 𝜈𝑑 is a projective variety
isomorphic to ℙ𝑛. This fact has a straightforward but tedious proof.
Note that ℙ𝑛 × ℙ𝑚 ≄ ℙ𝑛+𝑚.
Example (Segre embedding). Let 𝑛,𝑚 > 0 be integers. The Segre embedding is the map 𝜎𝑚𝑛 ∶ ℙ𝑚×
ℙ𝑛 → ℙ𝑚𝑛+𝑚+𝑛 defined by 𝜎𝑚𝑛((𝑥𝑖), (𝑦𝑗)) = (𝑥𝑖𝑦𝑗). We label the coordinates of ℙ𝑚𝑛+𝑚+𝑛 using 𝑍𝑖𝑗
for 0 ≤ 𝑖 ≤ 𝑚 and 0 ≤ 𝑗 ≤ 𝑛. Note that (𝑚+ 1)(𝑛 + 1) − 1; we have a map 𝑈 ×𝑉 → 𝑈 ⊗𝑉 and then
take the projectivisation, giving the correct dimension.

Theorem. Themap 𝜎𝑚𝑛 is a bijection betweenℙ𝑚×ℙ𝑛 and the projective variety𝕍(𝐼)where
𝐼 is the ideal generated by the 𝑍𝑖𝑗𝑍𝑝𝑞 − 𝑍𝑖𝑞𝑍𝑝𝑗 .

Proof. Clearly, 𝜎𝑚𝑛(ℙ𝑚 × ℙ𝑛) ⊆ 𝑉 = 𝕍(𝐼). Now, consider the affine piece 𝑉00 = 𝑉 ∩ {𝑍00 ≠ 0} ⊆
𝔸𝑚𝑛+𝑚+𝑛. The inhomogeneous ideal defining 𝑉00 is generated by 𝑌 𝑖𝑗 − 𝑌 𝑖0𝑌0𝑗 where 1 ≤ 𝑖 ≤ 𝑚
and 1 ≤ 𝑗 ≤ 𝑛, and 𝑌 𝑖𝑗 =

𝑍𝑖𝑗
𝑍00

. Note that elements 𝑌 𝑖𝑗𝑌𝑝𝑞 − 𝑌 𝑖𝑞𝑌𝑝𝑗 for other indices automatically
lie in this ideal. On this patch, 𝜎𝑚𝑛 defines a morphism 𝔸𝑚 × 𝔸𝑛 → 𝕍(𝐼00). There is an inverse
𝔸𝑚𝑛+𝑚+𝑛 → 𝔸𝑚 × 𝔸𝑛, given by

(𝑌 𝑖𝑗) ↦ ((𝑌10,… , 𝑌𝑚0), (𝑌01,… , 𝑌0𝑛))

One can check that this is indeed an inverse; this process can be repeated for all other patches
{𝑍𝑖𝑗 ≠ 0}, so 𝜎𝑚𝑛 is as claimed.

Hence, if 𝑉,𝑊 are projective varieties, 𝑉 ×𝑊 is naturally also a projective variety.

3.6 Composition of rational maps
Let 𝜑∶ 𝑉 ⇢ 𝑊 and 𝜓∶ 𝑊 ⇢ 𝑍 be rational maps between irreducible varieties. The composition
𝜓 ∘ 𝜑 of rational maps may not be well-defined, as the image of the domain of 𝜑 could lie entirely
inside the locus of indeterminacy of 𝜓.

Definition. A rational map 𝜑∶ 𝑉 ⇢ 𝑊 is dominant if 𝜑(dom𝜑) is Zariski dense in𝑊 .
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Proposition. If 𝜑 is dominant, then 𝜓 ∘ 𝜑 is well-defined for any rational map 𝜓∶ 𝑊 ⇢ 𝑍.

Proof. Let 𝑈 denote a dense open set in dom𝜑, and let 𝑈 ′ be a dense open set in dom𝜓. Then, let
𝑈″ = 𝑈∩𝜑−1(𝑈 ′), which is open in𝑉 . The composition𝜓∘𝜑 is well-defined on𝑈″. This is a rational
map as the composition of polynomials is a polynomial.

Definition. If 𝜑∶ 𝑉 ⇢ 𝑊 and 𝜓∶ 𝑊 ⇢ 𝑉 are such that 𝜑 ∘ 𝜓 and 𝜓 ∘ 𝜑 are equivalent to
the identity map on𝑊 and 𝑉 respectively, we say that 𝑉 and𝑊 are birational and that 𝜑 and
𝜓 are birational maps.

Example. Any isomorphism is birational.

Example. Consider the Cremona map 𝜅∶ ℙ2 ⇢ ℙ2 defined as above by (𝑥0 ∶ 𝑥1 ∶ 𝑥2) ↦ (𝑥1𝑥2 ∶
𝑥0𝑥2 ∶ 𝑥0𝑥1). Intuitively, (𝑥0 ∶ 𝑥1 ∶ 𝑥2) ↦ ( 1

𝑥0
∶ 1

𝑥1
∶ 1

𝑥2
). Then 𝜅 is self-inverse as a rational map,

hence birational. It is not an isomorphism as it is not defined everywhere.

Remark. One can construct the group Bir(ℙ2) of birational automorphisms of ℙ2. This group con-
tains a copy of 𝑃𝐺𝐿2(ℂ) and the subgroup generated by 𝜅 above.

Theorem. Let 𝑉,𝑊 be irreducible projective varieties. Then 𝑉 is birational to𝑊 if and only
if ℂ(𝑉) and ℂ(𝑊) are isomorphic as fields.

Recall the similar result that if 𝑉,𝑊 are affine varieties, 𝑉 is isomorphic to𝑊 if and only ifℂ[𝑉] and
ℂ[𝑊] are isomorphic as ℂ-algebras.

Proof. Suppose first that 𝑉 is birational to 𝑊 , so 𝜑∶ 𝑉 ⇢ 𝑊 is a birational map. Let 𝑓 ∈ ℂ(𝑊).
Then, 𝑓 gives a function 𝑊 ⇢ 𝔸1 = ℂ, and composition gives a map of fields 𝜑⋆ ∶ ℂ(𝑊) → ℂ(𝑉)
defined by 𝑓 ↦ 𝑓 ∘ 𝜑. Similarly, 𝜑−1 gives a map ℂ(𝑉) → ℂ(𝑊), and the compositions are identical,
so we obtain an isomorphism of fields.

For the converse, suppose we have ℂ(𝑉) ≃ ℂ(𝑊) as fields. Suppose that 𝑉 ⊆ ℙ𝑛 is not contained in
{𝑋0 = 0}, and𝑊 ⊆ ℙ𝑚 is not contained in {𝑌0 = 0}. We have shown that ℂ(𝑉) = ℂ(𝑥1,… , 𝑥𝑛)where
𝑥𝑖 is the rational function determined by

𝑋𝑖
𝑋0
. Similarly,ℂ(𝑊) = ℂ(𝑦1,… , 𝑦𝑚)where 𝑦𝑗 is determined

by 𝑌𝑗
𝑌0
.

An isomorphism ℂ(𝑉) ≃ ℂ(𝑊) identifies each 𝑦𝑗 with 𝑓𝑗(x)where 𝑓𝑗 is a rational function in 𝑛 vari-
ables. Writing each 𝑓𝑗(x) as a rational function in the

𝑋𝑖
𝑋0
, we can clear denominators by multiplying

by some polynomial in the 𝑋𝑖
𝑋0

and homogenise with respect to 𝑋0. We then obtain homogeneous
polynomials 𝐹0,… , 𝐹𝑚 in 𝑋0,… , 𝑋𝑛 such that

𝑓𝑗(
𝑋1
𝑋0

,… , 𝑋𝑛𝑋0
) =

𝐹𝑗(𝑋0,… , 𝑋𝑛)
𝐹0(𝑋0,… , 𝑋𝑛)

Now, 𝐹0,… , 𝐹𝑚 determine a rational map 𝑉 ⇢ 𝑊 . This can be repeated with the 𝑥𝑖 and 𝑦𝑗 reversed
to obtain a rational map𝑊 ⇢ 𝑉 . One can show that these are inverses.
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4 Dimension
4.1 Tangent spaces
Let 𝑉 ⊆ 𝔸𝑛 be an affine hypersurface, so 𝑉 = 𝕍(𝑓). We assume that 𝑓 is irreducible, so 𝑉 is
also irreducible. Let 𝑃 = (𝑎1,… , 𝑎𝑛) = (a) ∈ 𝑉 . An affine line through 𝑃 has the form 𝐿 =
{(𝑎1 + 𝑏1𝑡,… , 𝑎𝑛 + 𝑏𝑛𝑡) ∣ 𝑡 ∈ ℂ} for (b) ∈ ℂ𝑛 ∖ {0} is fixed.
The intersection 𝑉 ∩ 𝐿 is the set of points on 𝐿 where 𝑓 vanishes. This gives 0 = 𝑓(𝑎1 + 𝑏1𝑡,… , 𝑎𝑛 +
𝑏𝑛𝑡) = 𝑔(𝑡) = ∑𝑟 𝑐𝑟𝑡𝑟, a polynomial in 𝑡. Since 𝑃 ∈ 𝑉 ∩ 𝐿, 𝑐0 = 0. The linear term 𝑐1 is given by
𝑐1 = ∑𝑖 𝑏𝑖

𝜕𝑓
𝜕𝑋𝑖

. Geometric tangency of 𝐿 to 𝑉 is equivalent to the statement that 𝑐1 = 0.

Definition. The line 𝐿 through 𝑃 is tangent to 𝑉 = 𝕍(𝑓) at 𝑃 if it is contained in the tangent
space of 𝑉 at 𝑃, defined by 𝑇aff𝑉,𝑃 = 𝕍(𝑔) ⊆ 𝔸𝑛 where

𝑔 =
𝑛
∑
𝑖=1

( 𝜕𝑓𝜕𝑋𝑖
(𝑃))(𝑋𝑖 − 𝑎𝑖)

Note that 𝑔 is linear. 𝑇aff𝑉,𝑃 is 𝑛-dimensional if 𝑔 = 0 and (𝑛 − 1)-dimensional otherwise, taking the
dimensions as an affine space.

Definition. If dim𝑇aff𝑉,𝑃 = 𝑛, we say that 𝑃 is a singular point of 𝑉 . Otherwise, it is a smooth
point.

Example (nodal cubic). Consider the affine hypersurface 𝐶 = 𝕍(𝑌 2−𝑋2(𝑋 +1)). One can show by
direct calculation that the only singular point is (0, 0).
Example (cusp). Consider 𝐶 = 𝕍(𝑌 2 − 𝑋3). Again, the point (0, 0) is the only singular point.
Let 𝑉 ⊆ 𝕍(𝐹) ⊆ ℙ𝑛 for 𝐹 an irreducible homogeneous polynomial.

Definition. The projective tangent space to 𝑉 at 𝑃 is 𝑇proj𝑉,𝑃 = 𝕍(𝐺) where

𝐺 =
𝑛
∑
𝑖=0

( 𝜕𝐹𝜕𝑋𝑖
(𝑃))𝑋𝑖

To see that 𝑃 ∈ 𝕍(𝐺), note that 𝐹(𝑋0,… , 𝑋𝑛) =
1

deg𝐹
∑𝑛

𝑖=0 𝑋𝑖
𝜕𝐹
𝜕𝑋𝑖

; this is sometimes known as Euler’s
formula. Smooth points and singular points are defined as in the affine case. From the inverse func-
tion theorem, if all points are smooth, the tangent space is a manifold.

The affine and projective tangent spaces are compatible in a particular sense. Let 𝑉 = 𝕍(𝐹) ⊈
{𝑋0 = 0}, and consider 𝑉0 = 𝑉 ∩ 𝑈0. If 𝑃 ∈ 𝑉0 ⊆ 𝑉 , we can compute 𝑇proj𝑉,𝑃 ∩ 𝑈0 and 𝑇aff𝑉0,𝑃 , which are
both subsets of 𝔸𝑛. Let 𝑉0 = 𝕍(𝑓), then 𝐹(𝑋0,… , 𝑋𝑛) = 𝑋deg𝐹

0 𝑓(𝑋1
𝑋0
,… , 𝑋𝑛

𝑋0
). By computing 𝜕𝐹

𝜕𝑋𝑖
, we

find that if 𝑃 ∈ 𝑉0, 𝑇proj𝑉,𝑃 ∩ 𝑈0 = 𝑇aff𝑉0,𝑃 .
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Proposition. The set of singular points on a nonempty irreducible projective hypersurface
is a proper Zariski closed subset. In particular, the set of smooth points is dense.

Proof. The set of singular points is the intersection of 𝑉 with⋂𝑖 𝕍(
𝜕𝐹
𝜕𝑋𝑖

), so is a closed subvariety of

𝑉 . If 𝑉 ∩⋂𝑖 𝕍(
𝜕𝐹
𝜕𝑋𝑖

) = 𝑉 , then by the Nullstellensatz, 𝜕𝐹
𝜕𝑋𝑖

∈ 𝐼ℎ(𝑉). However, 𝐼ℎ(𝑉) is principal and

generated by 𝐹. Since 𝜕𝐹
𝜕𝑋𝑖

is homogeneous and of smaller degree, 𝜕𝐹
𝜕𝑋𝑖

∣ 𝐹 gives that 𝜕𝐹
𝜕𝑋𝑖

= 0. So 𝐹 is
a constant polynomial, giving 𝑉 = ℙ𝑛 as it is nonempty, which has no singular points.

We can extend the definition of a tangent space to general varieties not generated by a single polyno-
mial.

Definition. Let 𝑉 ⊆ 𝔸𝑛 be an affine variety, and let 𝑃 ∈ 𝑉 . Then the tangent space to 𝑉 at 𝑃
is

𝑇𝑉,𝑃 = {v ∈ ℂ𝑛 ||||

𝑛
∑
𝑖=1

𝑣𝑖
𝜕𝑓
𝜕𝑥𝑖

(𝑃) = 0 for all 𝑓 ∈ 𝐼(𝑉)} ⊆ ℂ𝑛

This is a vector subspace of ℂ𝑛.

Definition. Let 𝑉 ⊆ ℙ𝑛 be a projective variety, and let 𝑃 ∈ 𝑉 . Suppose 𝑉 𝑗 = 𝑉 ∩ {𝑋𝑗 ≠ 0} is
an affine piece containing 𝑃. Then the tangent space to 𝑉 at 𝑃 is 𝑇𝑉,𝑃 = 𝑇𝑉𝑗 ,𝑃 .

Note that this definition requires a choice of 𝑗; it is not clear that this is well-defined. This will be
addressed by the following propositions.

Recall that ℙ𝑛 is covered by 𝑈0,… ,𝑈𝑛, and 𝑈 𝑖 ≃ 𝔸𝑛. Each point 𝑃 ∈ ℙ𝑛 is contained in at least one
of these 𝑈 𝑖. If the index is unimportant, we will write 𝔸𝑛 ⊆ ℙ𝑛 rather than 𝑈 𝑖 ⊆ ℙ𝑛.
Let 𝑉 ⊆ ℙ𝑛,𝑊 ⊆ ℙ𝑚 be irreducible varieties and 𝜑∶ 𝑉 ⇢ 𝑊 be a rational map. Given 𝑃 ∈ dom𝜑 ⊆
𝑉 and 𝑄 = 𝜑(𝑃) ⊆ 𝑊 ∩ 𝔸𝑚, we will now define d𝜑𝑃 ∶ 𝑇𝑉,𝑃 ⇢ 𝑇𝑊,𝑃 . Suppose 𝜑 is determined
by (𝐹0,… , 𝐹𝑚), where the 𝐹𝑖 are homogeneous and of the same degree. By restricting to 𝔸𝑛, we can
write 𝐹𝑗

𝐹0
(1, 𝑋1,… , 𝑋𝑛) = 𝑓𝑗 ∈ ℂ(𝑋1,… , 𝑋𝑛). This gives rational functions 𝑓1,… , 𝑓𝑚 on 𝑉 ∩ 𝔸𝑛. The

derivative of 𝜑 at 𝑃 or linearisation of 𝜑 at 𝑃 is defined by

d𝜑𝑃 (𝑣) = (
𝑛
∑
𝑖=1

𝑣𝑖
𝜕𝑓𝑗
𝜕𝑋𝑖

(𝑃))
𝑗

which is initially a function 𝑇𝑉,𝑃 → ℂ𝑚. This can be thought of as an application of the matrix of
derivatives of 𝑓 at 𝑃 to the vector 𝑣.

Proposition. (i) d𝜑𝑃 (𝑇𝑉,𝑃) ⊆ 𝑇𝑊,𝑄;
(ii) the linear map d𝜑𝑃 depends only on 𝜑 and not the representatives;
(iii) if 𝜓∶ 𝑊 ⇢ 𝑍 is rational with 𝜑(𝑃) ∈ dom𝜓, then d(𝜓 ∘ 𝜑)𝑃 = d𝜓𝜑(𝑃) ∘ d𝜓𝑃 ;
(iv) if 𝜑 is birational and 𝜑−1 is regular at 𝜑(𝑃), then d𝜑𝑃 is an isomorphism 𝑇𝑉,𝑃 ≃ 𝑇𝑊,𝑄.
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Proof. Part (i). We use 𝑌 𝑗 for coordinates in𝑊 . Replace 𝑉 with 𝑉0 and𝑊 with𝑊0. Let 𝑔 ∈ 𝐼(𝑊),
and consider its linearisation at 𝑄. Applying the map 𝜑⋆ on function fields, we obtain 𝜑⋆(𝑔) = ℎ =
𝑔(𝑓1,… , 𝑓𝑚) ∈ ℂ(𝑉). Choose a representative in ℂ(𝑋), representing a rational function on 𝑉 that is
regular at 𝑃. This map vanishes when it is regular as 𝜑(dom𝜑) ⊆ 𝑊 . By the chain rule,

𝜕ℎ
𝜕𝑋𝑖

(𝑃) = ∑
𝑗

𝜕𝑔
𝜕𝑌 𝑗

(𝑄)
𝜕𝑓𝑗
𝜕𝑋𝑖

(𝑃)

Hence, 𝑣 ∈ 𝑇𝑉,𝑃 gives d𝜑𝑃 (𝑣) ∈ 𝑇𝑊,𝑄.

Part (ii). If (𝐹′0,… , 𝐹′𝑚) is another representation of𝜑with corresponding rational functions𝑓′1 ,… , 𝑓′𝑚 ∈
ℂ(𝑉). Then𝑓𝑗−𝑓′𝑗 vanishes on𝑉 whenever it is defined, or equivalently, 𝑓𝑗−𝑓′𝑗 =

𝑝𝑗
𝑞𝑗
where𝑝𝑗 ∈ 𝐼(𝑉)

and 𝑞𝑗(𝑃) ≠ 0. Applying the quotient rule and the fact that 𝑝𝑗 ∈ 𝐼(𝑉),

𝜕(𝑓𝑗 − 𝑓′𝑗 )
𝜕𝑋𝑖

= −1
𝑞𝑗(𝑃)

=
𝜕𝑝𝑗
𝜕𝑋𝑖

(𝑃) = 0

Hence, 𝑣 ∈ 𝑇𝑉,𝑃 gives∑𝑖 𝑣𝑖
𝜕(𝑓𝑗−𝑓′𝑗)

𝜕𝑋𝑖
(𝑃) = 0 as required.

Part (iii). Follows from the chain rule from multivariate calculus.

Part (iv). Immediate from (iii).

Note that if 𝑃 ∈ 𝑈 𝑖 ∩ 𝑈𝑗 , we have two different definitions of the tangent space 𝑇𝑉,𝑃 . Suppose that
𝑉 = ℙ𝑛, then there is a birational map 𝑝𝑖𝑗 ∶ 𝑈 𝑖 ⇢ 𝑈𝑗 which is the identity on 𝑈 𝑖 ∩ 𝑈𝑗 . Part (iv) of
the above proposition gives an isomorphism from 𝑇𝑃,𝑈𝑖 to 𝑇𝑃,𝑈𝑗 given by d𝑝𝑖𝑗 .

4.2 Smooth and singular points

Definition. Let 𝑉 be an affine or projective variety. If 𝑉 is irreducible, the dimension of 𝑉 ,
written dim𝑉 , is the minimum dimension of a tangent space for a point in 𝑉 . If 𝑃 ∈ 𝑉 and 𝑉
is irreducible, we say 𝑃 is a smooth point of 𝑉 if dim𝑇𝑉,𝑃 = dim𝑉 . Otherwise, 𝑃 is a singular
point. If 𝑉 is reducible, we define dim𝑉 to be the maximum dimension of an irreducible
component of 𝑉 .

Theorem. Let 𝑉 be a nonempty irreducible affine or projective variety. Then the set of
smooth points of 𝑉 is a nonempty open subset of 𝑉 .

Proof. The fact that the set is nonempty is clear as the minimum dimension must be attained at a
point. We can assume 𝑉 ⊆ 𝔸𝑛 is affine. If 𝑃 ∈ 𝑉 ,

𝑇𝑉,𝑃 = {v ∈ ℂ𝑛 ||||

𝑛
∑
𝑖=1

𝑣𝑖
𝜕𝑓𝑗
𝜕𝑥𝑖

(𝑃) = 0}

where 𝑓𝑗 is some finite set of functions with 𝕍({𝑓𝑗}) = 𝑉 . Then

dim𝑇𝑉,𝑃 = 𝑛 − rank
𝜕𝑓𝑗
𝜕𝑋𝑖

(𝑃)
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For any 𝑟 ∈ ℕ,
{𝑃 ∈ 𝑉 ∣ dim𝑇𝑉,𝑃 ≥ 𝑟} = {𝑃 ∈ 𝑉 ||| rank

𝜕𝑓𝑗
𝜕𝑋𝑖

(𝑃) ≤ 𝑛 − 𝑟}

This is the subvariety given by the vanishing locus of the (𝑛−𝑟+1)×(𝑛−𝑟+1)minors of this matrix
𝜕𝑓𝑗
𝜕𝑋𝑖

(𝑃), which is closed.

Corollary. If 𝑉,𝑊 are irreducible and birational, then dim𝑉 = dim𝑊 .

4.3 Transcendental extensions
If𝐾 ⊆ 𝐿 are fields and𝛼 ∈ 𝐿, we say that𝛼 is transcendental over𝐾 if it is not a solution to a nontrivial
polynomial 𝑓 ∈ 𝐾[𝑡]. More generally, if 𝑆 ⊆ 𝐿 is any set of elements, we say they are algebraically
independent if they do not satisfy a nontrivial polynomial relation over 𝐾. A field extension 𝐾/ℂ is a
pure transcendental extension if𝐾 is generated by transcendental algebraically independent elements
𝑥1,… , 𝑥𝑛 ∈ 𝐾.

If𝑉 is an irreducible affine variety, recall thatℂ(𝑉) = 𝐹𝐹(ℂ[X]⟋𝐼(𝑉)). If𝑉 = ℙ1,ℂ(𝑉) ≃ ℂ(𝑋).

Proposition. Let 𝐾/ℂ be a finitely generated field extension. Then, there exists a pure tran-
scendental subfield 𝐾0 = ℂ(𝑥1,… , 𝑥𝑚) ⊆ 𝐾 such that 𝐾/𝐾0 is finite (and hence algebraic).
Moreover, 𝐾 = 𝐾0(𝑦) for some 𝑦 ∈ 𝐾.

Proof. The final statement follows from the primitive element theorem from Part II Galois Theory.
We now prove the first part. 𝐾 is finitely generated, so let 𝑥1,…𝑥𝑛 generate 𝐾. There is a maximal
algebraically independent subset which after relabelling is given by {𝑥1,… , 𝑥𝑚} for 𝑚 ≤ 𝑛. Then
𝑥𝑚+1,… , 𝑥𝑛 are algebraic over 𝐾0 = ℂ(𝑥1,… , 𝑥𝑚).

Proposition. Let𝐾 = ℂ(𝑥1,… , 𝑥𝑛), where 𝑥1,… , 𝑥𝑛 are algebraically independent. Let 𝑥𝑛+1
be algebraic over 𝐾. Define

𝐼 = {𝑔 ∈ ℂ[𝑋1,… , 𝑋𝑛+1] ∣ 𝑔(𝑥1,… , 𝑥𝑛, 𝑥𝑛+1) = 0}

Then 𝐼 is a principal ideal generated by an irreducible element 𝑓 ∈ ℂ[X]. Moreover, if 𝑓
contains the variable 𝑋𝑖, then {𝑥1,… , 𝑥𝑖−1, 𝑥𝑖+1,… , 𝑥𝑛, 𝑥𝑛+1} is algebraically independent.

Proof. As 𝑥1,… , 𝑥𝑛 are algebraically independent, the subring 𝑅 = ℂ[𝑥1,… , 𝑥𝑛] ⊆ 𝐾 is isomorphic
to the polynomial ring ℂ[𝑋1,… , 𝑋𝑛]. ℂ[𝑋1,… , 𝑋𝑛] is a unique factorisation domain. There exist
polynomials 𝑔 ∈ 𝐾[𝑇] where 𝑥𝑛+1 is a root, as it is algebraic. Since 𝐾[𝑇] is a principal ideal domain,
the ideal of such polynomials is principal, and generated by a unique monic polynomial ℎ(𝑡), called
the minimal polynomial of 𝑥𝑛+1. The minimal polynomial is irreducible.
Let 𝑏 be the least common multiple of the denominators in ℎ(𝑡), so 𝑏 ∈ 𝑅. By Gauss’ lemma, 𝑓 = 𝑏ℎ
is irreducible in 𝑅[𝑇]. By the isomorphism 𝑅 ≃ ℂ[𝑋1,… , 𝑋𝑛], we can think of 𝑓 as an element of
ℂ[𝑋1,… , 𝑋𝑛+1].
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We show that 𝑓 generates 𝐼. Suppose 𝑔 ∈ ℂ[X] such that 𝑔(𝑥1,… , 𝑥𝑛+1) = 0. In 𝐾[𝑇], 𝑔(𝑥1,… , 𝑥𝑛, 𝑇)
is divisible by 𝑓(𝑥1,… , 𝑥𝑛). By Gauss’ lemma, 𝑓 ∣ 𝑔 in ℂ[X]. Hence 𝑓 generates 𝐼 as required. The
last part is left as an exercise.

Corollary. Let 𝑉 be any irreducible variety. Then 𝑉 is birational to a hypersurface.

Proof. Let 𝐾 be the function field of 𝑉 . By the above discussion, we can find elements that generate
𝐾 that are given by 𝑥1,… , 𝑥𝑛+1 where 𝑥1,… , 𝑥𝑛 are algebraically independent and 𝑥𝑛+1 is algebraic
over ℂ(𝑥1,… , 𝑥𝑛). By the previous proposition, 𝐾 ⊇ ℂ[𝑥1,… , 𝑥𝑛+1] = ℂ[𝑋1,… , 𝑋𝑛+1]⟋(𝑓). We take
the hypersurface 𝕍(𝑓) ⊆ 𝔸𝑛+1.

We have shown above that birational varieties have the same dimension. We therefore have the
following corollary.

Corollary. Let𝑊 be an irreducible variety, and let 𝑉 = 𝕍(𝑓) ⊆ 𝔸𝑛 be an affine hypersurface
birational to𝑊 , where 𝑓 is non-constant. Then the dimension of𝑊 is equal to 𝑛 − 1.

In the language of field theory, the dimension of𝑊 is the transcendence degree of the fieldℂ(𝑊).

5 Algebraic curves
5.1 Curves

Definition. A curve is a variety of dimension 1.

For our purposes, a curve is taken to mean a smooth irreducible projective variety of dimension 1.
By convention, a curve 𝐶 implicitly has an expression as 𝕍(𝐼) ⊆ ℙ𝑛, but this ambient space will not
play an important role.

Example. Let 𝑓𝑑 ∈ ℂ[𝑋, 𝑌, 𝑍] be homogeneous of degree 𝑑. For almost all choices of coefficients,
𝕍(𝑓𝑑) is a (smooth irreducible projective) curve. We will show that for 𝑑, 𝑑′ ≥ 2, 𝕍(𝑓𝑑) and 𝕍(𝑓𝑑′)
are never isomorphic.

Proposition. Let 𝐶 be a curve, and let 𝐷 ⊊ 𝐶 be a proper Zariski closed subset. Then 𝐷 is a
finite union of points.

Proof. It suffices to prove this for irreducible affine curves𝑉 ⊆ 𝔸𝑛. Let𝑊 ⊊ 𝑉 be a proper irreducible
closed subset; we will show this is a single point. By the Nullstellensatz, there is a strict containment
𝐼(𝑉) ⊊ 𝐼(𝑊).
If 𝑡 ∈ ℂ[𝑊] ∖ ℂ, we can use this to produce an element 𝑦 ∈ ℂ[𝑉] as follows. 𝜑∶ 𝑊 ↪ 𝑉 gives the
pullback map 𝜑⋆ ∶ ℂ[𝑉] → ℂ[𝑊] which is a surjection. Take any 𝑦 such that 𝜑⋆(𝑦) = 𝑡.
We can also take 𝑥 ∈ ℂ[𝑉] such that 𝜑⋆(𝑥) = 0, so 𝑥 ∉ ℂ. One can show that 𝑥, 𝑦 are algebraically
independent in ℂ(𝑉), as 𝑡 is transcendental. This gives two algebraically independent elements of
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𝐶(𝑉), which has transcendence degree 1. So no such 𝑡 can exist, so ℂ[𝑊] = ℂ. Therefore 𝑊 is a
point.

Recall that if 𝑉 is an irreducible variety, it has a coordinate ring (if it is affine), a function field, a local
ring at each point, and the maximal ideal of functions vanishing at the given point in the local ring.
These can be specialised in the case of curves. Note that if 𝐶 is a smooth irreducible projective curve,
there exists 𝑡 ∈ ℂ(𝑉) such that ℂ(𝑉)⟋ℂ(𝑡) is finite.

Theorem. Let 𝑃 be a smooth point of an irreducible curve 𝑉 . Then, the ideal𝔪𝑃 ⊴ 𝒪𝑉,𝑃 is
principal.

A generator 𝜋𝑃 of𝔪𝑃 is called a local parameter, a local coordinate, or a uniformiser.

Proof. We assume 𝑃 lies in the affine patch 𝑉0 of 𝑉 . By changing coordinates, we can set 𝑃 = 0 ∈ 𝔸𝑛.

ℂ[𝑉0] = ℂ[𝑋1,… , 𝑋𝑛]⟋𝐼(𝑉0) = ℂ[𝑥1,… , 𝑥𝑛];

𝒪𝑃 = 𝒪𝑉0,𝑃 = {𝑓𝑔
||| 𝑓, 𝑔 ∈ ℂ[𝑉0], 𝑔 ∉ (𝑥1,… , 𝑥𝑛)}

𝔪𝑃 = {𝑓𝑔
||| 𝑓 ∈ (𝑥1,… , 𝑥𝑛), 𝑔 ∉ (𝑥1,… , 𝑥𝑛)} = 𝑥1𝒪𝑃 +⋯+ 𝑥𝑛𝒪𝑃 ⊆ 𝒪𝑃

where 𝑥𝑖 is the image of 𝑋𝑖 under the quotient map. More generally, if 𝐽 ⊴ 𝒪𝑃 is any ideal,
𝑓
𝑔
∈ 𝐽 if

and only if 𝑓 ∈ 𝐽. Therefore,

𝐽 = {𝑓𝑔
||| 𝑓 ∈ 𝐽 ∩ ℂ[𝑉0], 𝑔 ∈ ℂ[𝑉0], 𝑔(𝑃) ≠ 0}

In particular, 𝐽 is finitely generated.
Since 𝑃 is smooth, 𝑇aff𝑉0,𝑃 is a line, and by changing coordinates,

𝑇𝑉,𝑃 = {𝑋2 = 𝑋3 = ⋯ = 𝑋𝑛 = 0}
We claim that 𝑥1 generates𝔪𝑃 . Since 𝑇𝑉,𝑃 is cut out by linearisations at 𝑃 = 0 of elements in 𝐼(𝑉0),
there exist functions 𝑓2,… , 𝑓𝑛 ∈ 𝐼(𝑉0) such that 𝑓𝑗 = 𝑋𝑗 − ℎ𝑗 where ℎ𝑗 has no terms of degree less
than 2. In 𝒪𝑃 ,

𝑥𝑗 = ℎ𝑗(𝑥1,… , 𝑥𝑛) ∈ (𝑥21, 𝑥1𝑥2,… , 𝑥2𝑛) = 𝔪2
𝑃

Thus,𝔪𝑃 = ∑𝑛
𝑗=1 𝑥𝑖𝒪𝑃 = 𝑥1𝒪𝑃+𝔪2

𝑃 . The result that𝔪𝑃 is generated by 𝑥1 follows fromNakayama’s
lemma.

Lemma (Nakayama). Let 𝑅 be a ring, let𝑀 be a finitely generated 𝑅-module, and let 𝐽 ⊴ 𝑅
be an ideal. Then,
(i) if 𝐽𝑀 = 𝑀, there exists 𝑟 ∈ 𝐽 such that (1 + 𝑟)𝑀 = 0; and
(ii) if 𝑁 ≤ 𝑀 is a submodule such that 𝐽𝑀 + 𝑁 = 𝑀, then there exists 𝑟 ∈ 𝐽 such that

(1 + 𝑟)𝑀 ⊆ 𝑁.

Let
𝑅 = 𝒪𝐿 ⊇ 𝐽 = 𝔪𝑃 = 𝑀 ⊇ 𝑁 = (𝑥1)

and apply part (ii) of Nakayama’s lemma to conclude.
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Corollary. Let 𝑉 = 𝕍(𝑓) ⊆ 𝔸2 be an irreducible affine curve. Then, if 𝑃 ∈ 𝑉 is a smooth
point, the function 𝑉 → ℂ defined by 𝑄 ↦ 𝑋(𝑄) − 𝑋(𝑃) is a local parameter if and only if
𝜕𝑓
𝜕𝑌
(𝑃) ≠ 0.

Proof. Use the proof of the above theorem.

Corollary. Let 𝑃 be a smooth point of a curve 𝑉 . Then there exists a surjective group homo-
morphism 𝜈𝑃 ∶ ℂ(𝑉)⋆ → ℤ called the valuation at 𝑃 or order of vanishing at 𝑃, such that
(i) 𝒪𝑉,𝑃 = {0} ∪ {𝑓 ∈ ℂ(𝑉)⋆ ∣ 𝜈𝑃(𝑓) ≥ 0};
(ii) 𝔪𝑝 = {0} ∪ {𝑓 ∈ ℂ(𝑉)⋆ ∣ 𝜈𝑃(𝑓) > 0};
(iii) if 𝑓 ∈ ℂ(𝑉)⋆, then for any local parameter 𝜋𝑃 , we can write 𝑓 = 𝜋𝜈𝑃(𝑓)𝑃 𝑢 where 𝑢 ∈

𝒪⋆
𝑉,𝑃 = 𝒪𝑉,𝑃 ∖ 𝔪𝑃 .

We will ‘filter’ the ring 𝒪𝑉,𝑃 by ideals generated generated by powers 𝜋𝑘𝑃 for 𝑘 ≥ 0.

Proof. We know that 𝔪𝑃 = (𝜋𝑃), so 𝔪𝑛
𝑃 = (𝜋𝑛𝑃). Define 𝐽 = ⋂𝑛≥0𝔪

𝑛
𝑃 . Note that 𝐽 ⊴ 𝒪𝑉,𝑃 is a

finitely generated ideal as we have seen in the previous proof, and moreover, 𝔪𝑃𝐽 = 𝜋𝑃𝐽 = 𝐽. By
part (i) of Nakayama’s lemma, it follows that 𝐽 = 0. So only the zero function vanishes to infinite
order.

For every 𝑓 ∈ 𝒪𝑉,𝑃 ∖ {0}, there exists a unique 𝑛 such that 𝑓 ∈ 𝔪𝑛
𝑃 ∖𝔪𝑛+1

𝑃 . Define 𝜈𝑃(𝑓) = 𝑛 for this
𝑛. If 𝑓 ∈ ℂ(𝑉) ∖ 𝒪𝑉,𝑃 ∖ {0}, we claim 𝑓−1 ∈ 𝒪𝑉,𝑃 . Indeed, 𝑓 = 𝑔

ℎ
for 𝑔, ℎ ∈ 𝒪𝑉,𝑃 , so we can write

𝑔 = 𝜋𝑘𝑃𝑢 and ℎ = 𝜋ℓ𝑃𝑢′ where 𝑘, 𝑙 ≥ 0 and 𝑢, 𝑢′ ∈ 𝒪⋆
𝑉,𝑃 . Since 𝑓 ∉ 𝒪𝑉,𝑃 , it follows that 𝑘 < ℓ, so

𝑓−1 ∈ 𝒪𝑉,𝑃 as required. Given this, we can define 𝜈𝑃(𝑓) = −𝜈𝑃(𝑓−1) for such 𝑓.

As 𝔪𝑃 is a local ring, 𝒪𝑉,𝑃 ∖ 𝔪𝑃 = 𝒪⋆
𝑉,𝑃 , so every nonzero 𝑓 ∈ ℂ(𝑉) is 𝜋𝜈𝑃(𝑓)𝑃 𝑢 where 𝑢 ∈ 𝒪⋆

𝑉,𝑃 ,
giving 𝜈𝑃 as desired.

Example. Let 𝑉 = 𝔸1 and 𝑃 = 0 ∈ 𝔸1. Then

𝒪𝔸1,0 = {𝑓(𝑡)𝑔(𝑡)
||| 𝑔(0) ≠ 0}; 𝔪0 = {𝑓(𝑡)𝑔(𝑡)

||| 𝑓(0) = 0, 𝑔(0) ≠ 0}

So𝔪0 is the set of
𝑓(𝑡)
𝑔(𝑡)

where 𝑡 ∣ 𝑓. Then𝔪𝑘
0 is the set of

𝑓(𝑡)
𝑔(𝑡)

where 𝑡𝑘 ∣ 𝑓.

We can think of 𝑓(𝑡)
𝑔(𝑡)

where 𝑔(𝑡) = 𝑎0+𝑎1𝑡+⋯+𝑎𝑘𝑡𝑘 as 𝑓(𝑡)multiplied by the power series expansion
of 𝑔(𝑡)−1 which has nonzero constant term. This product can be written as 𝑡𝑀 multiplied by another
power series with nonzero constant term. The valuation of 𝑓 is 𝜈0(

𝑓
𝑔
) = 𝑀.

Corollary. Let 𝑉 be an irreducible curve and 𝑓 ∈ ℂ(𝑉). If 𝑃 is a smooth point, 𝑓 or 𝑓−1 is
regular at 𝑃.

Proof. 𝑓 is regular at 𝑃 if and only if 𝑓 ∈ 𝒪𝑉,𝑃 . The statement then follows by checking the sign of
𝜈𝑃(𝑓).
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Corollary. Let 𝑉 be a smooth curve. Then any rational map 𝑉 ⇢ ℙ𝑚 is a morphism.

Proof. Reordering coordinates, we can assume the image of 𝜑∶ 𝑉 ⇢ ℙ𝑚 is not contained in {𝑋0 = 0}.
We write 𝜑 = (𝐺0,… , 𝐺𝑚) = (1 ∶ 𝑔1 ∶ ⋯ ∶ 𝑔𝑚) where 𝑔𝑗 =

𝐺𝐽
𝐺0

∈ ℂ(𝑉). If all 𝑔𝑗 ∈ 𝒪𝑉,𝑃 , the
result holds. Otherwise, let 𝑡 = min𝑗 {𝜈𝑃(𝑔𝑗)}, so 𝑡 < 0. Note that min𝑗 {𝜈𝑃(𝜋−𝑡𝑃 𝑔𝑗)} = 0. Then
𝜑 ∼ (𝜋−𝑡𝑃 ∶ 𝜋−𝑡𝑃 𝑔1 ∶ ⋯ ∶ 𝜋−𝑡𝑃 𝑔𝑚) which is regular at 𝑃.

Since every projective variety is contained inℙ𝑚, any rationalmap from a curve to a projective variety
is a morphism.

5.2 Maps between curves
Example. Let 𝐶𝑑 ⊆ ℙ2 be a smooth plane curve of degree 𝑑, so 𝐶𝑑 = 𝕍(𝑓)where 𝑓 is homogeneous
of degree 𝑑. Let 𝑃 ∈ ℙ2. Then, the projection from 𝑃, which is a rationalmapℙ2 ⇢ ℙ1, automatically
restricts to a morphism 𝐶𝑑 → ℙ1. This morphism is surjective, and most points in ℙ1 have a fibre of
size 𝑑.

Proposition. Let 𝜑∶ 𝑉 → 𝑊 be a non-constant morphism of irreducible (possibly singular)
projective curves. Then, for all 𝑄 ∈ 𝑊 , the fibre 𝜑−1(𝑄) is finite. The map 𝜑 induces an
inclusion 𝜑⋆ ∶ ℂ(𝑊) ↪ ℂ(𝑉) which makes ℂ(𝑉) a finite extension of ℂ(𝑊).

Proof. For the first statement, 𝜑−1(𝑄) is Zariski closed in 𝑉 , so is either 𝑉 or a finite set of points. As
𝜑 is not constant, the fibre is a finite set of points. 𝑉 is infinite, so by the first part, 𝜑(𝑉) is infinite
and therefore dense in 𝑊 . Since 𝜑 is dominant, 𝜑⋆ is defined. The map is automatically injective.
Let 𝑡 ∈ ℂ(𝑊) ∖ ℂ with 𝜑⋆(𝑡) = 𝑥. Since ℂ(𝑉) has transcendence degree 1 over ℂ, ℂ(𝑉) is finite over
ℂ(𝑥), so also over ℂ(𝑊).

Definition. Let 𝜑∶ 𝑉 → 𝑊 be a non-constant morphism of curves. The degree of 𝜑 is the
degree of the field extension ℂ(𝑉)/𝜑⋆ℂ(𝑊).

Definition. Let 𝜑∶ 𝑉 → 𝑊 be a non-constant morphism of curves, let 𝑃 ∈ 𝑉 be a smooth
point, and define 𝑄 = 𝜑(𝑃). We define the ramification degree of 𝜑 at 𝑃 by 𝑒𝑃 = 𝑒(𝜑, 𝑃) =
𝜈𝑃(𝜑⋆𝜋𝑄), where 𝜋𝑄 is a local coordinate at 𝑄.

Example. Consider the morphism 𝜑∶ 𝔸1 → 𝔸1 defined by 𝑧 ↦ 𝑧𝑑 for some 𝑑 ≥ 1. On rings, this is
given by 𝜑⋆ ∶ ℂ[𝑌] → ℂ[𝑋]with 𝜑⋆(𝑌) = 𝑋𝑑. On function fields, this map satisfies 𝜑⋆ℂ(𝑌) = ℂ(𝑋𝑑),
a subfield of ℂ(𝑋). The degree of 𝜑 is 𝑑. Let 𝑃 = 0 ∈ 𝔸1, so 𝑄 = 0 ∈ 𝔸1. A local parameter near 𝑄 is
𝑌 , and 𝜑⋆(𝑌) = 𝑋𝑑. 𝜈0(𝑋𝑑) = 𝑑, so the ramification degree of 𝜑 at 0 is 𝑑.
Now suppose 𝑃 = 1, 𝜑(𝑃) = 𝑄 = 1. The local coordinate at𝑄 is 𝑌 −1. We can find 𝜈𝑃(𝜑⋆(𝑌 −1)) = 1,
so the ramification degree of 𝜑 at 1 is 1. Note that 𝜑−1(1) is the set of 𝑑th roots of unity, which is a set
of 𝑑 points 𝑅1,… , 𝑅𝑑. 𝜈𝑅𝑖 (𝜑⋆(𝑌 − 1)) = 1 for each 𝑖.
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Theorem. Let 𝜑∶ 𝑉 → 𝑊 be a non-constant morphism of irreducible projective curves.
(i) 𝜑 is surjective.
(ii) Suppose 𝑉,𝑊 are smooth. Then, for any 𝑄 ∈ 𝑊 , deg𝜑 = ∑𝑃∈𝜑−1(𝑄) 𝑒𝑃 .
(iii) At all but finitely many points 𝑃 ∈ 𝑉 , 𝑒𝑃 = 1.

Definition. A quasi-projective variety 𝑈 is a Zariski-open subset of a projective variety 𝑉 ⊆
ℙ𝑛.

Example. All projective varieties are quasi-projective. All affine varieties are also quasi-projective.
Products of affine and projective varieties are quasi-projective, such as ℙ𝑛 × 𝔸𝑚. Note that rational
functions, rational maps, morphisms, irreducibility, function fields, local rings, and other algebraic
geometric concepts are defined for quasi-projective varieties in the same way.

Proposition (fundamental theorem of elimination theory). The projection map ℙ𝑛 ×𝔸𝑚 →
𝔸𝑚 is a Zariski closed map.

Preimages and images of closed sets are closed under this map.

Remark. Consider the map 𝜋∶ 𝔸2 → 𝔸1 given by projection onto the 𝑥-axis. Observe that 𝜋 is not a
closed map, as 𝕍(𝑋𝑌 − 1) has image 𝔸1 ∖ {0}, which is not closed.
Given this proposition, we prove the following result.

Proposition. Let 𝜑∶ 𝑉 → 𝑊 be a morphism of quasi-projective varieties. Suppose that 𝑉 is
projective. Then 𝜑 is closed.

Proof. Factorise 𝜑 as 𝑉 → Γ𝜑 ⊆ 𝑉 × 𝑊 → 𝑊 , where Γ𝜑 = {(𝑥, 𝜑(𝑥)) ∣ 𝑥 ∈ 𝑉} is the graph of 𝜑.
Note that Γ𝜑 is closed as it is the preimage of the diagonal 𝜑 × id∶ 𝑉 ×𝑊 → 𝑊 ×𝑊 . The diagonal
𝑊 ⊆ 𝑊×𝑊 is closed, even though𝑊×𝑊 is not given the product topology. Now, 𝑉 ⊆ ℙ𝑛 is a closed
subset as it is a projective variety. Hence, it suffices to show that the projection map ℙ𝑛 ×𝑊 → 𝑊 is
closed. Moreover, if𝑊 is covered by affine varieties {𝑈 𝑖}, it further suffices to show thatℙ𝑛×𝑈 𝑖 → 𝑈 𝑖
is closed for all 𝑖. Any quasi-projective variety is covered by affine varieties as required. Finally, each
𝑈 𝑖 is a closed subset of 𝔸𝑚 for some 𝑚 with its subspace topology. It therefore suffices to show
ℙ𝑛 × 𝔸𝑚 → 𝔸𝑚 is closed, which is the fundamental theorem of elimination theory.

We can now prove part (i) of the above theorem. Part (ii) is nonexaminable, and part (iii) will be
shown later.

Corollary. Let 𝜑∶ 𝑉 → 𝑊 be a non-constant map between irreducible projective curves.
Then 𝜑 is surjective.

Proof. The image of 𝜑 is closed, so either a finite set of points or𝑊 itself. Since it is non-constant, 𝜑
is surjective.
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Corollary. Let 𝑉 be a smooth projective irreducible curve, and let 𝑓 ∈ ℂ(𝑉)⋆. Then,
(i) if 𝑓 is regular at all points 𝑃 ∈ 𝑉 , then 𝑓 ∈ ℂ⋆ is a constant;
(ii) the set of 𝑃 ∈ 𝑉 such that 𝜈𝑃(𝑓) ≠ 0 is finite, and∑𝑃∈𝑉 𝜈𝑃(𝑓) = 0.

Proof. Part (i). Given 𝑓, consider the morphism 𝜑 = (1 ∶ 𝑓)∶ 𝑉 → ℙ1. 𝜑 is a morphism because
𝐶 is smooth. We want to find zeroes and poles of 𝑓. 𝜑(𝑃) = (1 ∶ 0) if and only if 𝑓(𝑃) = 0, and
𝜑(𝑃) = (0 ∶ 1) if and only if 𝑓 is not regular at 𝑃. This means that if 𝑓 is everywhere regular, 𝜑 is not
surjective, so it is constant.

Part (ii). We can assume 𝑓 is non-constant. Let 𝑡 denote the rational function 𝑋1
𝑋0

on ℙ1. By the

pullback, we obtain 𝜑⋆𝑡 ∈ ℂ(𝑉) is exactly 𝑓
1
= 𝑓. For convenience, (1 ∶ 0) ∈ ℙ1 will be denoted 0,

and (0 ∶ 1) ∈ ℙ1 will be denoted∞.

Observe that 𝑡 is a local parameter at 0 ∈ ℙ1, so if 𝑓(𝑃) = 0, 𝑒𝑃 = 𝜈𝑃(𝜑⋆𝑡) = 𝜈𝑃(𝑓). Similarly,
1
𝑡
= 𝑋0

𝑋1
is a local parameter at∞ ∈ ℙ1, so if 𝑓(𝑃) = ∞, we have 𝑒𝑃 = 𝜈𝑃(𝜑⋆ 1

𝑡
) = −𝜈𝑃(𝑓). Finally, if

𝑓(𝑃) ≠ 0,∞, then 𝜈𝑃(𝑓) = 0. By the previous theorem, deg𝜑 = ∑𝜑(𝑃)=0 𝜈𝑃(𝑓) = ∑𝜑(𝑃)=∞ −𝜈𝑃(𝑓),
giving the desired result.

Hence, there are no non-constant holomorphic functions.

5.3 Divisors
We will only consider smooth projective irreducible curves from now on. Let 𝑉 be a curve. There
is a natural inclusion from the space of functions defined everywhere on 𝑉 (isomorphic to ℂ) to the
field of rational functions on 𝑉 . However, this field ℂ(𝑉) is very large and difficult to study directly.
The goal of divisor theory is to organise ℂ(𝑉) into manageable (finite-dimensional) pieces.
Note that a rational function 𝑓 ∈ ℂ(𝑉) determines an open subset𝑈 ⊆ 𝑉 on which 𝑓 is well-defined
as a function 𝑈 → ℂ. For instance, we could define 𝑈 = 𝑉 ∖ {𝑥 ∣ 𝜈𝑃(𝑓) < 0}, which is 𝑉 with a finite
set of points removed. One idea is to study functions 𝑓 ∈ ℂ(𝑉) that are well-defined away from a
fixed set {𝑃1,… , 𝑃𝑛}.

Definition. A divisor 𝐷 on a curve 𝑉 is a finite formal linear combination∑𝑃∈𝑉 𝑛𝑃[𝑃], or
equivalently, an element of the free abelian group⨁𝑃∈𝑉 ℤ[𝑃]. If 𝐷 = ∑𝑃∈𝑉 𝑛𝑃[𝑃], its degree
is deg𝐷 = ∑𝑃∈𝑉 𝑛𝑃 ∈ ℤ.

Note that deg∶ Div(𝑉) → ℤ is a group homomorphism. The kernel of deg is denoted Div0(𝑉). If
𝐷 = ∑𝑛𝑃[𝑃], we write 𝜈𝑃(𝐷) = 𝑛𝑃 .

Definition. Let 𝐷 ∈ Div(𝑉). The space of rational functions on 𝑉 with poles bounded by 𝐷
is

𝐿(𝐷) = {𝑓 ∈ ℂ(𝑉) ∣ 𝑓 = 0 or ∀𝑃 ∈ 𝑉, 𝜈𝑃(𝑓) + 𝜈𝑃(𝐷) ≥ 0}

For instance, if 𝜈𝑃(𝐷) > 0, 𝑓 is allowed to have a pole at 𝑃 of order at most 𝜈𝑃(𝐷). If 𝜈𝑃(𝐷) < 0, 𝑓 is
forced to have a zero at 𝑃 of order at least −𝜈𝑃(𝐷).
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Definition. Let 𝑓 ∈ ℂ(𝑉)⋆. The divisor of 𝑓 is div(𝑓) = ∑𝑃∈𝑉 𝜈𝑃(𝑓)[𝑃].

Divisors of rational functions must have degree 0. Divisors of the form div(𝑓) are called principal
divisors. The set Prin(𝑉) is the set of divisors 𝐷 ∈ Div(𝑉) such that 𝐷 = div(𝑓) for some 𝑓 ∈ ℂ(𝑉)⋆,
and this is a subgroup of Div0(𝑉), as div(𝑓 ⋅ 𝑔) = div𝑓 + div 𝑔.

The quotient Div(𝑉)⟋Prin(𝑉) is noted Pic(𝑉) = Cl(𝑉), and this is called the Picard group or class
group of 𝑉 . The Picard group and class group coincide for smooth varieties, but are different in the
study of general varieties and schemes.

Divisors 𝐷,𝐷′ are called linearly equivalent if 𝐷−𝐷′ is div(𝑓) for some 𝑓 ∈ ℂ(𝑉)⋆, so 𝐷 is equivalent
to 𝐷′ in Pic(𝑉). We write 𝐷 ∼ 𝐷′.

Proposition. Every degree 0 divisor on ℙ1 is principal.

Note that every principal divisor is degree 0 in general.

Proof. Identifyℙ1 withℂ∪{∞}, whereℂ ↪ {(1 ∶ 𝑧) ∣ 𝑧 ∈ ℂ}. Then,𝐷 = ∑𝑎∈ℂ 𝑛𝑎[𝑎]+𝑛∞[∞]. Note
that 𝑛∞ = −∑𝑎∈ℂ 𝑛𝑎. Let 𝑓 = ∏𝑎∈ℂ(𝑡 − 𝑎)𝑛𝑎 . This has a zero of order 𝑛𝑎 at 𝑎. Hence, div𝑓 = 𝐷;
clearly, 𝜈𝑎(div𝑓) = 𝑛𝑎 for 𝑎 ∈ ℂ, and 1

𝑡−𝑎
is a local coordinate at∞ for all 𝑎 ∈ ℂ where 𝑡 = 𝑋1

𝑋0
, then

we can calculate explicitly 𝜈∞(div𝑓) = 𝑛∞.

It is not always the case that every degree 0 divisor on a curve 𝑉 is principal and Pic(𝑉) is nontrivial;
this gives rise to the notion of genus.

Definition. Let 𝑉 ⊆ ℙ𝑛 be a curve. Consider the hyperplane 𝕍(𝐿) ⊆ ℙ𝑛 where 𝐿 is a ho-
mogeneous linear polynomial. Assume 𝑉 ⊈ 𝕍(𝐿). The hyperplane section of 𝑉 by 𝕍(𝐿) is
div𝐿 = ∑𝑃∈𝑉 𝑛𝑃[𝑃], where if 𝑋𝑖(𝑃) ≠ 0, 𝑛𝑃 = 𝜈𝑃(

𝐿
𝑋𝑖
).

This is well-defined as 𝜈𝑃(
𝐿
𝑋𝑖
) = 𝜈𝑃(

𝐿
𝑋𝑗
) for 𝑋𝑖(𝑝) ≠ 0, 𝑋𝑗(𝑃) ≠ 0, as 𝑋𝑖

𝑋𝑗
∈ 𝒪⋆

𝑉,𝑃 so 𝜈𝑃(
𝑋𝑖
𝑋𝑗
) = 0. Note

that all 𝑛𝑃 are nonnegative in this case.

Proposition. Let 𝑉 ⊆ ℙ𝑛 be as above, and let 𝐿, 𝐿′ be linear homogeneous polynomials,
neither vanishing on 𝑉 . Then there is an equality

div𝐿 − div𝐿′ = div ( 𝐿𝐿′ )

In particular, div𝐿 − div𝐿′ is principal, and deg div𝐿 = deg div𝐿′.

Definition. Let 𝑉 ⊆ ℙ𝑛 be a curve. Then the degree of 𝑉 is deg div𝐿 where 𝑉 ⊈ 𝕍(𝐿).

Remark. A line in ℙ2 is degree 1. A conic is degree 2.

We can generalise these notions.
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(i) If 𝜑∶ 𝑉 → ℙ𝑛 is any non-constant morphism, and 𝐿 is a linear form, we can similarly define
div𝐿 by using ∑𝑃∈𝑉 𝑛𝑃[𝑃] where 𝑛𝑃 = 𝜈𝑃(

𝜑⋆𝐿
𝑋𝑖
) where 𝑋𝑖(𝑃) ≠ 0. This generalises the case

where 𝜑 is an inclusion. As before, we assume 𝕍(𝐿) does not contain Im𝜑. Note that this map
need not be injective.

(ii) If 𝐺 is homogeneous of degree 𝑚 ≥ 1 and 𝜑∶ 𝑉 → ℙ𝑛, one can similarly define div𝐺 =
∑𝑃∈𝑉 𝑛𝑃[𝑃] where 𝑛𝑃 = 𝜈𝑃(

𝜑⋆𝐺
𝑋𝑚
𝑖
) for any 𝑖 such that 𝑋𝑖(𝑃) ≠ 0.

Theorem (weak form of Bézout’s theorem). Let 𝑉, 𝑉 ′ ⊆ ℙ2 be smooth projective irreducible
curves of degrees 𝑚, 𝑛. Then if 𝑉 ≠ 𝑉 ′, the number of intersection points of 𝑉 and 𝑉 ′ is at
most𝑚𝑛.

We have already shown that this is the case when 𝑉 ′ is a line on an example sheet.

Proof. Suppose 𝑉, 𝑉 ′ are cut out by 𝕍(𝐹), 𝕍(𝐺) of degrees𝑚, 𝑛. We claim that the degree of div𝐺 as
a divisor on 𝑉 is 𝑚𝑛. We can replace 𝐺 by any other homogeneous polynomial of degree 𝑚 by the
previous proposition as it gives a linearly equivalent divisor. Replace 𝐺 with 𝐿𝑚 for a homogeneous
linear polynomial 𝐿. Now, 𝕍(𝐿) ∩ 𝑉 has size at most 𝑛 = deg𝑉 , so deg div𝜑⋆𝐺 = 𝑛𝑚 as required,
since div(𝜑⋆𝐺) = ∑𝑃∈𝑉∩𝕍(𝐺) 𝑛𝑃[𝑃] where 𝑛𝑃 > 0 (note that if 𝑛𝑃 > 0 then 𝐺 vanishes at 𝑃).

5.4 Function spaces from divisors

Definition. A divisor 𝐷 is called effective if 𝐷 = ∑𝑛𝑃[𝑃] for 𝑛𝑃 ≥ 0.

Recall that
𝐿(𝐷) = {𝑓 ∈ ℂ(𝑉) ∣ 𝑓 = 0 or div𝑓 + 𝐷 ≥ 0 pointwise}

is equivalently the set of 𝑓 ∈ ℂ(𝑉) such that div𝑓 + 𝐷 is effective.

Proposition. The set 𝐿(𝐷) is a complex vector subspace of ℂ(𝑉).

Proof. 𝜈𝑃(𝑓+𝑔) ≥ min {𝜈𝑃(𝑓), 𝜈𝑃(𝑔)}, hence sums of the form 𝑓+𝑔 lie in 𝐿(𝐷) if 𝑓, 𝑔 ∈ 𝐿(𝐷). Clearly
𝐿(𝐷) is closed under scalar multiplication.

Definition. Denote ℓ(𝐷) = dimℂ 𝐿(𝐷).

Example. Let∞ denote the point (0 ∶ 1) ∈ ℙ1, and let 𝐷 = 𝑚[∞] where 𝑚 ≥ 0. Writing 𝑡 = 𝑋1
𝑋0
,

𝐿(𝐷) is spanned by 1, 𝑡, 𝑡2,… , 𝑡𝑚. Hence, ℓ(𝐷) = 𝑚 + 1.

Proposition. Let 𝐷 be a divisor on 𝑉 . Then,
(i) If deg𝐷 < 0, then 𝐿(𝐷) = 0.
(ii) If deg𝐷 ≥ 0, then ℓ(𝐷) ≤ deg𝐷 + 1.
(iii) For any 𝑃 ∈ 𝑉 , ℓ(𝐷) ≤ ℓ(𝐷 − 𝑃) + 1.
In particular, 𝐿(𝐷) is always finite-dimensional.
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Proof. Part (i). If 𝐿(𝐷) ≠ 0 then there exists 𝑓 ≠ 0with 𝑓 ∈ 𝐿(𝐷) such that div𝑓+𝐷 ≥ 0. But taking
degrees, deg div𝑓 = 0 hence deg𝐷 ≥ 0, a contradiction.
Part (iii). Let 𝑛 = 𝜈𝑃(𝐷). Define ev𝑃 ∶ 𝐿(𝐷) → ℂ by 𝑓 ↦ (𝜋𝑛𝑃𝑓)(𝑃), intuitively extracting the first
nonzero term of the power series defining 𝑓 at 𝑃. The kernel of this homomorphism is 𝐿(𝐷 − 𝑃).
Part (ii). This now follows from parts (i) and (iii). If 𝑑 = deg𝐷, then ℓ(𝐷) ≤ ℓ(𝐷−(𝑑+1)𝑃)+𝑑+1 =
𝑑 + 1 where the latter equality holds as deg(𝐷 − (𝑑 + 1)𝑃) < 0.

Proposition. Let 𝐷, 𝐸 be divisors on a curve 𝑉 such that 𝐷 ∼ 𝐸, or equivalently, 𝐷 − 𝐸
is principal. Then 𝐿(𝐷) and 𝐿(𝐸) are isomorphic as complex vector spaces. In particular,
ℓ(𝐷) = ℓ(𝐸).

Proof. If 𝐷 − 𝐸 is principal, it can be written as div(𝑔). Multiplication by 𝑔 (respectively 𝑔−1) gives a
linear map (respectively its inverse) 𝐿(𝐷) → 𝐿(𝐸).

6 Differentials
6.1 Differentials over fields
Differentials on curves will allow us to tackle some interesting questions.

(i) Given 𝐷 ∈ Div(𝑉), can we calculate (or bound) ℓ(𝐷)?
(ii) (Brill–Noether theory) For what integers 𝑟, 𝑑 does a curve 𝑉 admit a morphism 𝜑∶ 𝑉 → ℙ𝑟 of

degree 𝑑 such that Im𝑉 is not contained in a hyperplane?

(iii) (Hurwitz problem) When does there exist a morphism 𝑉 → 𝑊 of smooth projective curves?

Definition. Let 𝐾/ℂ be a field extension. The space of differentials, written Ω𝐾/ℂ, is the
quotient vector space 𝑀⟋𝑁 where 𝑀 is the 𝐾-vector space spanned by symbols 𝛿𝑥 where
𝑥 ∈ 𝐾, and 𝑁 is the subspace of𝑀 generated by

𝛿(𝑥 + 𝑦) − 𝛿(𝑥) − 𝛿(𝑦); 𝛿(𝑥𝑦) − 𝑥𝛿(𝑦) − 𝑦𝛿(𝑥); 𝛿(𝑎)

where 𝑥, 𝑦 ∈ 𝐾, 𝑎 ∈ ℂ. Given 𝑥 ∈ 𝐾, we define d𝑥 = 𝛿𝑥 + 𝑁 ∈ Ω𝐾/ℂ. The exterior derivative
is the ℂ-linear map d∶ 𝐾 → Ω𝐾/ℂ mapping 𝑥 to d𝑥.

Remark. More generally, if 𝜑∶ 𝐴 → 𝐵 is a ring homomorphism, we could have defined Ω𝜑 = Ω𝐵/𝐴
as a 𝐵-module as above.

Definition. Let 𝑈 be a 𝐾-vector space. A ℂ-linear transformation 𝐷∶ 𝐾 → 𝑈 is called a
derivation if 𝐷(𝑥𝑦) = 𝑥𝐷(𝑦) + 𝑦𝐷(𝑥).

Example. The map d∶ 𝐾 → Ω𝐾/ℂ is a derivation. The map
d
d𝑥
∶ ℂ(𝑋) → ℂ(𝑋) is a derivation.
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Lemma (universal property). Let 𝑈 be a 𝐾-vector space A map 𝐷∶ 𝐾 → 𝑈 is a derivation if
and only if there is a 𝐾-linear map 𝜆∶ Ω𝐾/ℂ → 𝑈 such that 𝜆(d𝑥) = 𝐷(𝑥) for all 𝑥 ∈ 𝐾.

𝐾

Ω𝐾/ℂ

𝑈

𝑑

𝜆

𝐷

Theproof is very simple and omitted. Intuitively, d∶ 𝐾 → Ω𝐾/ℂ is the ‘best possible’ derivation.

Remark. For any derivation 𝐷, if 𝑦 ∈ 𝐾 and 𝑦 ≠ 0, 𝐷(𝑥) = 𝐷(𝑦 ⋅ 𝑥
𝑦
) = 𝑦𝐷(𝑥

𝑦
) + 𝑥

𝑦
𝐷(𝑦), giving the

quotient rule.
𝐷(𝑥𝑦 ) =

𝑦𝐷𝑥 − 𝑥𝐷𝑦
𝑦2

Lemma. (i) Let 𝑓 = ℎ
𝑔
∈ ℂ(𝑋1,… , 𝑋𝑛) and write 𝑦 = 𝑓(𝑥1,… , 𝑥𝑛) for 𝑥1,… , 𝑥𝑛 ∈ 𝐾.

Then

d𝑦 =
𝑛
∑
𝑖=1

𝜕𝑓
𝜕𝑋𝑖

(𝑥1,… , 𝑥𝑛) d𝑥𝑖

(ii) If 𝐾 = ℂ(𝑥1,… , 𝑥𝑛) for 𝑥𝑖 ∈ 𝐾, then Ω𝐾/ℂ is spanned by d𝑥1 ,… , d𝑥𝑛 as a 𝐾-vector
space.

Proof. Part (i) follows from the rules of calculus for d(𝑥𝑦), d(𝑥
𝑦
) andℂ-linearity. Part (ii) is immediate

from part (i).

We have obtained divisors in two different ways: from rational functions, and from hyperplane sec-
tions of 𝑉 → ℙ𝑟. We will do the reverse, we will first construct divisors, and then use them to build
maps 𝑉 → ℙ𝑟. Differentials are another way to construct divisors.
From now, we will write Ω𝐾 for Ω𝐾/ℂ.

Theorem. Let 𝐾/ℂ(𝑡) be finite, with 𝑡 transcendental over ℂ. Then Ω𝐾 is one-dimensional
as a 𝐾-vector space, and is spanned by d𝑡.

Proof. First, suppose 𝐾 = ℂ(𝑡), the function field of ℙ1. By the lemma above, Ω𝐾 is spanned by d𝑡.
We need to show thatΩ𝐾 is nonzero, then it is clearly one-dimensional. By the universal property, it
suffices to exhibit a single nonzero derivation on 𝐾. The function d

d𝑡
is one such derivation.

Now suppose 𝐾 ≠ ℂ(𝑡). Write 𝐾0 = ℂ(𝑡), so 𝐾 = ℂ(𝑡, 𝛼) = 𝐾0(𝛼) for 𝛼 ∈ 𝐾 ∖ 𝐾0 algebraic over 𝐾0.
Let ℎ(𝑡) ∈ 𝐾0[𝑋] be the minimal polynomial of 𝛼. By minimality of ℎ, ℎ′(𝛼) ≠ 0 as it does not have
a double root. By the previous lemma, d𝑡 , d𝛼 span Ω𝐾 as a 𝐾-vector space.
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If 𝑓 ∈ 𝐾0[𝑋], write 𝐷𝑡𝑓 for
𝜕𝑓
𝜕𝑡
, by 𝑡-differentiating the coefficients. The lemma gives 0 = d(ℎ(𝛼)) =

𝐷𝑡ℎ(𝛼) d𝑡 +ℎ′(𝛼) d𝛼. HenceΩ𝐾 is spanned by d𝑡, so it suffices to showΩ𝐾 is nonzero. As in the first
part, it suffices to exhibit a single nonzero derivation on 𝐾.

First, define 𝐷∶ 𝐾0[𝑋] → 𝐾 by 𝐷(𝑓) = 𝐷𝑡𝑓 if 𝑓 ∈ 𝐾0, 𝐷(𝑋) =
−(𝐷𝑡ℎ)(𝛼)

ℎ′(𝛼)
, and 𝐷(𝑋𝑛) = 𝑛𝛼𝑛−1𝐷(𝑋).

One can check that the ideal ℎ𝐾0[𝑋] is mapped to zero under 𝐷. This exhibits a nonzero derivation
as required.

6.2 Rational differentials

Definition. Denote Ω𝑉 = Ωℂ(𝑉)/ℂ. Elements of Ω𝑉 are called rational differentials. A
differential 𝜔 ∈ Ω𝑉 is regular at a point 𝑃 ∈ 𝑉 if 𝜔 can be expressed as ∑𝑖 𝑓𝑖 d𝑔𝑖 where
𝑓𝑖, 𝑔𝑖 ∈ 𝒪𝑉,𝑃 . Write

Ω𝑉,𝑃 = {𝜔 ∈ Ω𝑉 ∣ 𝜔 regular at 𝑃} ⊆ Ω𝑉

Note that Ω𝑉,𝑃 is not a vector subspace over ℂ(𝑉), since we can multiply by functions that are not
regular. However, it is a module over 𝒪𝑉,𝑃 .

Recall that𝒪𝑉,𝑃 contains the maximal ideal𝔪𝑃 , which is principal, giving local coordinates. We can
make a similar construction in the context of differentials.

Theorem. Ω𝑉,𝑃 is a free 𝒪𝑉,𝑃-module generated by d𝜋𝑃 where 𝜋𝑃 is a local coordinate at 𝑃.
In other words, Ω𝑉,𝑃 = {𝑓 d𝜋𝑃 ∣ 𝑓 ∈ 𝒪𝑉,𝑃}.

Remark. If 𝜋, 𝜋′ are local coordinates at 𝑃, d𝜋 = 𝑢 d𝜋′ where 𝑢 ∈ 𝒪⋆
𝑉,𝑃 . More generally, if 𝜔 ∈ Ω𝑉 ,

then 𝜋𝑗𝜔 is regular, so lies in Ω𝑉,𝑃 , for sufficiently large 𝑘. Given this theorem, we can always write
𝜔 ∈ Ω𝑉 as 𝑓 d𝜋𝑃 where 𝜋𝑃 is a local coordinate at 𝑃 and 𝑓 ∈ ℂ(𝑉).

Definition. Let 𝜔 ∈ Ω𝑉 and 𝑃 ∈ 𝑉 . Define 𝜈𝑃(𝜔) = 𝜈𝑃(𝑓) where 𝜔 = 𝑓 d𝜋𝑃 and 𝜋𝑃 is a
local coordinate at 𝑃.

Lemma. Let 𝜔 ∈ Ω𝑉 be a nonzero differential. Then, 𝜈𝑃(𝜔) ≠ 0 for only finitely many
points 𝑃.

Proof. As 𝜈𝑃(𝑓 d𝑔) = 𝜈𝑃(𝑓)+𝜈𝑃(d𝑔) and 𝜈𝑃(𝑓) = 0 for all but finitely many points, it suffices to only
prove this lemma for the case𝜔 = d𝑔. Moreover, as 𝑔must be non-constant as d𝑔 ≠ 0, we can assume
that 𝑔 is transcendental. hence, ℂ(𝑉)⟋ℂ(𝑔) is a finite extension. Consider (1 ∶ 𝑔)∶ 𝑉 → ℙ1. By the
finiteness theorem for rational functions, there are only finitely many 𝑃 ∈ 𝑉 such that 𝑔(𝑃) = ∞ or
𝑒𝑃 > 1.
If 𝑃 is a point where 𝑒𝑃 = 1, so the function is unramified, 𝜑⋆(𝑡 − 𝑔(𝑃)) is a local coordinate at 𝑃. But
𝜑⋆(𝑡 − 𝑔(𝑃)) is 𝑔 − 𝑔(𝑃), so 𝜈𝑃(d𝑔) = 0.

Differentials provide another source of divisors.
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Definition. Let 𝜔 ∈ Ω𝑉 . Then div𝜔 = ∑𝑃∈𝑉 𝜈𝑃(𝜔)[𝑃].

Proposition. Let 𝜔,𝜔′ be nonzero rational differentials on 𝑉 . Then, div𝜔 − div𝜔′ is prin-
cipal.

Proof. Since Ω𝑉 is one-dimensional over ℂ(𝑉), we can write 𝜔 = 𝑓𝜔′ where 𝑓 ∈ ℂ(𝑉). It follows
from the definitions that div𝜔 − div𝜔′ = div𝑓.

If𝜔 is a nonzero differential, div𝜔 gives a well-defined element in Pic(𝑉) = Cl(𝑉) = Div(𝑉)⟋Prin(𝑉).
We say that div𝜔 is a canonical divisor, and its equivalence class is the canonical class, denoted 𝐾𝑉 .
Sometimes 𝐾𝑉 is also simply called the canonical divisor.

We now prove the above theorem.

Proof. We want to check that d𝜋𝑃 generates the module Ω𝑉,𝑃 over 𝒪𝑉,𝑃 . Clearly 𝒪𝑉,𝑃 d𝜋𝑃 ⊆ Ω𝑉,𝑃 ;
we want to check that the converse holds. Given 𝑓 ∈ 𝒪𝑉,𝑃 , 𝑓−𝑓(𝑃) ∈ 𝔪𝑃 . Hence, 𝑓 = 𝑓(𝑃)+𝜋𝑃𝑔 ∈
𝒪𝑉,𝑃 where 𝑔 ∈ 𝒪𝑉,𝑃 . By the Leibniz rule, d𝑓 = 𝑔 d𝜋𝑃 + 𝜋𝑃 d𝑔 ∈ 𝒪𝑉,𝑃 d𝜋𝑃 + 𝜋𝑃Ω𝑉,𝑃 . Assume that
Ω𝑉,𝑃 is finitely generated. Observe that

𝒪𝑃 d𝜋𝑃 ⊆ Ω𝑉,𝑃 ⊆ 𝒪𝑃 d𝜋𝑃 + 𝜋𝑃Ω𝑉,𝑃

Apply Nakayama’s lemma to 𝑅 = 𝒪𝑉,𝑃 , 𝐽 = 𝔪𝑃 ,𝑀 = Ω𝑉,𝑃 , 𝑁 = 𝒪𝑉,𝑃 d𝜋𝑃 .
To show Ω𝑉,𝑃 is finitely generated, choose an affine patch 𝑉0 ⊆ 𝑉 containing 𝑃. Then 𝐶[𝑉0] =
ℂ[𝑥1,… , 𝑥𝑛]where the𝑥𝑖 generateℂ[𝑉0]. If𝑓 ∈ 𝒪𝑉,𝑃 , we canwrite𝑓 =

𝑔
ℎ
where 𝑔, ℎ are polynomials

and ℎ(𝑃) ≠ 0. Thus

d𝑓 =
𝑛
∑
𝑖=1

(
ℎ 𝜕𝑔
𝜕𝑋𝑖

− 𝑔 𝜕ℎ
𝜕𝑋𝑖

ℎ2 )(𝑥1,… , 𝑥𝑛) d𝑥𝑖

But ℎ(𝑃) ≠ 0, so d𝑓 is in the 𝒪𝑉,𝑃-span of {d𝑥𝑖}.

Example. Let 𝑉 = ℙ1, and let 𝑡 be the coordinate on the standard 𝔸1 ⊆ ℙ1. For any 𝑎 ∈ ℂ, the
rational function (𝑡 − 𝑎) is a local coordinate. At infinity, 1

𝑡
is a local coordinate.

We now calculate div d𝑡. We have 𝜈𝑎(d𝑡) = 𝜈𝑎(d(𝑡 − 𝑎)) = 0 for all 𝑎 ∈ ℂ. Note that d𝑡 = −𝑡2 d( 1
𝑡
) so

𝜈∞(d𝑡) = 𝜈∞
⎛
⎜⎜
⎝

−1

( 1
𝑡
)
2 d(

1
𝑡 )
⎞
⎟⎟
⎠
= −2

Hence div d𝑡 = −2[∞], so the degree is nonzero, hence this divisor is not principal.

Definition. Let 𝑉 be a curve. The genus of 𝑉 is 𝑔(𝑉) = ℓ(𝐾𝑉 ).

𝐿(𝐾𝑉 ) is not well-defined, but ℓ(𝐾𝑉 ) is. Note that if 𝑉 = ℙ1, then div d𝑡 = −2[∞], so ℓ(𝐾ℙ1) =
0, as there are no rational functions on ℙ1 that vanish to order 2 at infinity, apart from the zero
function.
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6.3 Differentials on plane curves
We will study curves in ℙ2.

Example (smooth plane cubics). Consider 𝑉 = 𝕍(𝐹) ⊆ ℙ2 where 𝐹 = 𝑋0𝑋2
2 −∏3

𝑖=1(𝑋1 − 𝜆𝑖𝑋0)
with 𝜆1, 𝜆2, 𝜆3 distinct complex numbers. This curve is nonsingular. To calculate the genus, we take
the following steps.

(i) We first use the affine equation 𝑓(𝑥, 𝑦) = 𝑦2 −∏3
𝑖=1(𝑥 − 𝜆𝑖), and write 𝑓(𝑥, 𝑦) = 𝑦2 − 𝑔(𝑥, 𝑦).

Differentiating, 2𝑦 d𝑦 = 𝑔′(𝑥) d𝑥 is a nontrivial relation in Ω𝑉 .

(ii) Using this relation, we choose a convenient differential 𝜔 ∈ Ω𝑉 ; in this case, we will choose
𝜔 = d𝑥

𝑦
.

(iii) Calculate div𝜔 by using the fact that if 𝜕𝑓
𝜕𝑦
(𝑃) is nonzero, 𝑥 − 𝑥(𝑃) is a local parameter, and if

𝜕𝑓
𝜕𝑥
(𝑃) is nonzero, 𝑦 − 𝑦(𝑃) is a local parameter.

We find that 𝐾𝑉 = 0. Hence, 𝑔(𝑉) = 1 as ℓ(0) = 1.

Theorem. Let 𝑉 be a smooth plane cubic. Then 𝑔(𝑉) = 1, and in particular, 𝑉 ≄ ℙ1.

Proof. Change coordinates into the example above.

Theorem. Let 𝑉 = 𝕍(𝐹) ⊆ ℙ2 be a smooth projective plane curve of degree 𝑑. Then 𝐾𝑉 =
(𝑑 − 3)𝐻 where 𝐻 is the divisor class associated to a hyperplane section of 𝑉 .

Proof. First, we will select a differential 𝜔 ∈ Ω𝑉 . Change coordinates such that (0 ∶ 1 ∶ 0) ∉ 𝑉 . Let
𝑥 = 𝑋1

𝑋0
, 𝑦 = 𝑋2

𝑋0
be elements ofℂ(𝑉). Set 𝑓(𝑋, 𝑌) = 𝐹(1, 𝑋, 𝑌), so 𝑓(𝑥, 𝑦) = 0 inℂ(𝑉). Differentiating,

𝜕𝑓
𝜕𝑋
(𝑥, 𝑦) d𝑥 + 𝜕𝑓

𝜕𝑌
(𝑥, 𝑦) d𝑦 = 0 is a relation in Ω𝑉 . Choose

𝜔 = d𝑥
𝜕𝑓
𝜕𝑌
(𝑥, 𝑦)

= − d𝑦
𝜕𝑓
𝜕𝑋
(𝑥, 𝑦)

Then, we will calculate div d𝜔 in this affine patch. If 𝜕𝑓
𝜕𝑌
(𝑃) ≠ 0, then 𝑥 − 𝑥(𝑃) is a local coordinate

at 𝑃. Then, 𝜈𝑃(𝜔) = 𝜈𝑃(
1
𝜕𝑓
𝜕𝑌

(𝑥, 𝑦)) = 0. Otherwise, 𝜕𝑓
𝜕𝑋
(𝑃) ≠ 0 by smoothness, so 𝑦 − 𝑦(𝑃) is a local

coordinate and 𝜈𝑃(𝜔) = 0.
Since (0 ∶ 1 ∶ 0) ∉ 𝑉 , any point at infinity in 𝑉 is not contained in {𝑋2 = 0}. The equation for 𝑉 on
the patch {𝑋2 ≠ 0} is 𝑔(𝑧, 𝑤) = 0 where 𝑧 = 𝑋0

𝑋2
= 1

𝑦
and 𝑦 = 𝑋1

𝑋2
= 𝑥

𝑦
and 𝑔(𝑍,𝑊) = 𝐹(𝑍,𝑊, 1) in

ℂ[𝑍,𝑊]. Select a different differential

𝜂 = d𝑧
𝜕𝑔
𝜕𝑊

(𝑧, 𝑤)
= − d𝑤
{𝑔}𝑍(𝑧, 𝑤)
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By the same argument as before, 𝜈𝑃(𝜂) = 0 for all𝑃 in the patch {𝑋2 ≠ 0}. Using𝑓(𝑋, 𝑌) = 𝑌𝑑𝑔( 1
𝑋
, 𝑋
𝑌
)

and differentiating, we find 𝜔 = 𝑍𝑑−3𝜂. If 𝑋2(𝑃) ≠ 0, we calculate 𝜈𝑃(𝜔) = (𝑑 − 3)𝜈𝑃(𝑧) + 𝜈𝑃(𝜂) =
(𝑑 − 3)𝜈𝑃(𝑧). As 𝑍 = 𝑋0

𝑋2
, div𝜔 = (𝑑 − 3) div𝑋0 as claimed.

Proposition. If 𝑓(𝑥, 𝑦) = 0 is an affine patch equation for a smooth projective plane curve,
and deg𝑓 ≥ 3, then

{𝑥
𝑟𝑦𝑠 d𝑥
𝜕𝑓
𝜕𝑦

|||||
0 ≤ 𝑟, 𝑠; 𝑟 + 𝑠 ≤ 𝑑 − 3}

is a basis for 𝐿(𝐾𝑉 ) for the representative of 𝐾𝑉 given by (𝑑 − 3)𝐻 where𝐻 is the hyperplane
at infinity.

The d𝑥 term can be considered a dummy symbol, meant to indicate that we think of the term as a
differential.

Proof. The proof is non-examinable, and follows from the same argument as the proof of the previous
theorem.

Corollary. If 𝑑, 𝑑′ ≥ 2 are distinct integers, then smooth plane curves of degrees 𝑑, 𝑑′ are
never isomorphic.

Proof. deg𝐾𝑉 depends only on 𝑉 up to isomorphism.

In particular, there are infinitely many distinct curves up to isomorphism.

6.4 The Riemann–Roch theorem

Theorem. Let 𝑉 be a smooth irreducible projective curve of genus 𝑔, and let 𝐷 be a divisor
on 𝑉 . Let 𝐾𝑉 be the canonical divisor class. Then,

ℓ(𝐷) − ℓ(𝐾𝑉 − 𝐷) = deg(𝐷) − 𝑔 + 1

The proof is beyond the scope of this course. This theorem is related to Stokes’ theorem and the
Gauss–Bonnet theorem.

Corollary. Let 𝐾 be the canonical divisor on 𝑉 . Then, deg(𝐾) = 2𝑔 − 2.

Note that 2𝑔 − 2 = −𝜒(𝑉), the negative of the Euler characteristic of 𝑉 .

Proof. Let 𝐷 = 𝐾 in the Riemann–Roch theorem, and use ℓ(0) = 1.
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Corollary. Let 𝑉 be a smooth projective plane curve of degree 𝑑. Then the genus is 𝑔(𝑉) =
(𝑑−1)(𝑑−2)

2
.

Proof. We have seen that if 𝑑 = 1, 2 then 𝑉 ≃ ℙ1. If 𝑑 ≥ 3, we have seen that 𝐾 is linearly equivalent
to (𝑑 − 3)𝐻 where 𝐻 is a hyperplane section. But deg(𝐻) = 𝑑, hence the result follows from the
Riemann–Roch theorem.

Given a divisor 𝐷 on 𝑉 , calculating ℓ(𝐷) is hard with the techniques discussed so far. However, the
Riemann–Roch theorem can be used to compute this for most 𝐷.

Corollary. If deg(𝐷) > 2𝑔 − 2, then ℓ(𝐷) = deg(𝐷) − 𝑔 + 1.

Proof. The divisor 𝐾 − 𝐷 has negative degree, hence ℓ(𝐾 − 𝐷) = 0.

We can compare this to the case 𝑉 = ℙ1, where we saw by direct calculation that ℓ(𝐷) = deg(𝐷) +
1.

Corollary. Suppose 𝑔(𝑉) = 1. Then if 𝐷 is a divisor with deg(𝐷) > 0, then ℓ(𝐷) = deg(𝐷).

Proof. ℓ(𝐾 − 𝐷) = ℓ(−𝐷) = 0.

Let 𝑉 be a curve of genus 1, and fix 𝑃0 ∈ 𝑉 . Let 𝑃,𝑄 ∈ 𝑉 , then 𝑃 + 𝑄 − 𝑃0 is equivalent to a
unique effective divisor of degree 1. So 𝑃 + 𝑄 − 𝑃0 is equivalent to 𝑅 for a unique 𝑅 ∈ 𝑉 . Indeed,
deg(𝑃 + 𝑄 − 𝑃0) = 1 hence ℓ(𝑃 + 𝑄 − 𝑃0) = 1, so there exists a function 𝑓 ∈ ℂ(𝑉) such that
(𝑃 +𝑄−𝑃0) + div(𝑓) is effective, and hence equal to a point 𝑅. It is unique as ℓ(𝑃 +𝑄−𝑃0) = 1, and
scalar multiples of 𝑓 give the same divisor.
In other words, given 𝐸 = (𝑉, 𝑃0) as above, we can define 𝑃 +𝐸 𝑄 = 𝑅 using the preceding notation.
The pair (𝑉, 𝑃0) where 𝑔(𝑉) = 1, 𝑃0 ∈ 𝑉 is called an elliptic curve. Topologically, such 𝑉 in the
Euclidean topology are homeomorphic to 𝕊1 × 𝕊1; the group law defined by +𝐸 and that defined on
𝕊1 × 𝕊1 in fact coincide.

Theorem. The operation +𝐸 gives 𝐸 the structure of an abelian group with identity 𝑃0.
Moreover, the map 𝐸 → Cl0(𝐸) = Cl0(𝑉) defined by 𝑃 ↦ [𝑃 − 𝑃0] is an isomorphism of
groups.

Proof. Let 𝛽(𝑃) = [𝑃 − 𝑃0] ∈ Cl0(𝐸) = Div0(𝐸)⟋Prin(𝐸). First, we show injectivity. Suppose 𝛽(𝑃) =
𝛽(𝑄), so 𝑃 − 𝑃0 ∼ 𝑄 − 𝑃0, where ∼ denotes linear equivalence. Hence 𝑃 ∼ 𝑄. However, ℓ(𝑃) = 1 by
the Riemann–Roch theorem, so 𝑃 = 𝑄.
Now, we show surjectivity. Suppose 𝐷 has degree 0. We want to show 𝐷 is equivalent to [𝑃 − 𝑃0] for
some 𝑃. Since the degree of 𝐷 + 𝑃0 is 1, ℓ(𝐷 + 𝑃0) = 1 by Riemann–Roch. Hence there exists 𝑃 ∈ 𝑉
such that 𝐷 + 𝑃0 ∼ 𝑃. So 𝐷 = 𝛽(𝑃) as required.
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Hence 𝛽 is a bijection of sets, so it remains to check that 𝛽 is a homomorphism; this is straightforward.

Theorem. Let 𝐸 = (𝑉, 𝑃0) be the elliptic curve given by 𝕍(𝐹) where 𝐹 = 𝑋0𝑋2
2 −∏3

𝑖=1(𝑋1 −
𝜆𝑖𝑋0). Choose 𝑃0 = (0 ∶ 0 ∶ 1). Then, 𝑃 +𝐸 𝑄 +𝐸 𝑅 = 0𝐸 if and only if 𝑃,𝑄, 𝑅 are collinear in
ℙ2.

The proof is nonexaminable.

Given amorphism 𝜑∶ 𝑉 → 𝑊 of curves, we wish to understand the relation between 𝑔(𝑉) and 𝑔(𝑊).
Let 𝜔 = 𝑓 d𝑡 ∈ Ω𝑊 , where ℂ(𝑊)/ℂ(𝑡) is finite. Since ℂ(𝑉)/ℂ(𝑡) is finite, Ω𝑉 is generated by d𝜑⋆𝑡.
Define the pullback Ω𝑊 → Ω𝑉 by 𝜑⋆𝜔 = 𝜑⋆𝑓 d𝜑⋆𝑡. Let 𝑃 be a point on 𝑉 , and 𝑄 = 𝜑(𝑃). We
compare 𝜈𝑃(𝜑⋆𝜔) and 𝜈𝑄(𝜔).

Lemma. Let 𝜋𝑃 , 𝜋𝑄 be local parameters at 𝑃,𝑄. Let 𝑒𝑃 be the ramification degree at 𝑃, so
𝜑⋆(𝜋𝑄) = 𝑢𝜋𝑒𝑃𝑃 where 𝑢 is a unit in 𝒪𝑉,𝑃 . Then, 𝜈𝑃(𝜑⋆(d𝜋𝑄)) = 𝑒𝑃 − 1. More generally,
𝜈𝑃(𝜑⋆𝜔) = 𝑒𝑃𝜈𝑄(𝜔) + 𝑒𝑃 − 1.

This can be thought of as a generalisation of the rule d
d𝑥
{𝑥𝑛} = 𝑛𝑥𝑛−1.

Proof. For the first part, we have that 𝜑⋆(𝜋𝑄) = 𝑢𝜋𝑒𝑃𝑃 , so differentiating and taking valuation gives
the desired result. For a general 𝜔, we can write 𝜔 = 𝑢𝜋𝑚𝑄 d𝜋𝑄 where 𝑢 is a unit in 𝒪𝑉,𝑃 as Ω𝑊,𝑄 is
a free module generated by d𝜋𝑄. Then, we can apply 𝜑⋆ and proceed as in the first part.

Theorem (Riemann–Hurwitz). Let 𝜑∶ 𝑉 → 𝑊 be as above. Let 𝑛 = deg𝜑, 𝑛 ≠ 0. Then

2𝑔(𝑉) − 2 = 𝑛(2𝑔(𝑊) − 2) + ∑
𝑃∈𝑉

(𝑒𝑃 − 1)

where 𝑒𝑃 is the ramification of 𝜑 at 𝑃.

Note that the correction term∑𝑃∈𝑉 (𝑒𝑃 − 1) is nonnegative.
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Proof. Let 𝜔 ∈ Ω𝑊 be nonzero. Then, by the Riemann–Roch theorem, and the previous lemma,

2𝑔(𝑉) − 2 = deg(div(𝜑⋆𝜔))
= ∑

𝑃∈𝑉
𝜈𝑃(𝜑⋆𝜔)

= ∑
𝑄∈𝑊

∑
𝑃∈𝜑−1(𝑄)

𝜈𝑃(𝜑⋆𝜔)

= ∑
𝑄∈𝑊

∑
𝑃∈𝜑−1(𝑄)

(𝑒𝑃𝜈𝑄(𝜔) + 𝑒𝑃 − 1)

= ∑
𝑄∈𝑊

(𝑛𝜈𝑄(𝜔) + ∑
𝑃∈𝜑−1(𝑄)

(𝑒𝑃 − 1))

= 𝑛 deg(div(𝜔)) + ∑
𝑃∈𝑉

(𝑒𝑃 − 1)

= 𝑛(2𝑔(𝑊) − 2) + ∑
𝑃∈𝑉

(𝑒𝑃 − 1)

Corollary. Let𝑉,𝑊 be curves with 𝑔(𝑉) < 𝑔(𝑊). Then any rationalmap𝑉 ⇢ 𝑊 is constant.

Proof. Any rational map of this form is a morphism, then apply the Riemann–Hurwitz theorem.

For example, there is no map ℙ1 → 𝑉 for 𝑔(𝑉) ≥ 1.

6.5 Equations for curves using Riemann–Roch
Let𝑉 ⊆ ℙ𝑛 be a curve not contained in any hyperplane; this can be done without loss of generality by
iteratively reducing 𝑛. Let 𝐷 = div(𝑋0) be the hyperplane section. Let 𝐺 ∈ ℂ[X] be a homogeneous
linear polynomial. Then 𝑓 = 𝐺

𝑋0
∈ ℂ(𝑉)⋆. Observe that div𝑓 + 𝐷 = div𝐺 is effective. Hence

𝑓 ∈ 𝐿(𝐷).
We thus obtain an injective linear map from the space of linear homogeneous polynomials in ℂ[X]
into 𝐿(𝐷) defined by 𝐺 ↦ 𝐺

𝑋0
. This is injective because 𝑉 is not contained inside a hyperplane. We

make the following observations.

(i) For any point 𝑃 ∈ 𝑉 , there exist linear homogeneous polynomials 𝐹, 𝐺 such that 𝐹(𝑃) ≠ 0 and
𝐺(𝑃) = 0.

(ii) If 𝑃 is a smooth point and 𝐿 is the tangent line in ℙ𝑛, we can find a linear homogeneous poly-
nomial 𝐹 such that 𝐹(𝑃) = 0 but 𝐹 does not vanish on all of 𝐿.

Under this injection, we obtain the following condition. We say that a divisor 𝐷 on 𝑉 satisfies condi-
tion (⋆) if for every 𝑃,𝑄 ∈ 𝑉 not necessarily distinct, we have ℓ(𝐷 − 𝑃 − 𝑄) = ℓ(𝐷) − 2.

Definition. Let 𝑉 be a curve, and let 𝐷 a divisor with ℓ(𝐷) = 𝑛 + 1 ≥ 2. Let {𝑓0,… , 𝑓𝑛} be a
basis for 𝐿(𝐷). Themorphism associated to 𝐷 is 𝜑𝐷 ∶ 𝑉 → ℙ𝑛 given by (𝑓0 ∶ ⋯ ∶ 𝑓𝑛).
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We say that 𝜑𝐷 is an embedding if it is an isomorphism onto its image.

Theorem. The morphism 𝜑𝐷 associated to 𝐷 is an embedding if and only if 𝐷 satisfies con-
dition (⋆).

The proof is omitted.

Corollary. Suppose 𝐷 is a divisor with deg𝐷 > 2𝑔. Then 𝜑𝐷 is an embedding.

Proof. By Riemann–Roch, 𝐷 satisfies (⋆).

Corollary. Every curve of genus 𝑔 can be embedded in ℙ𝑚 for some𝑚 depending only on 𝑔.

Proof. If 𝑔 ≥ 3, take [𝐷] = 2𝐾𝑉 . If 𝑔 = 2, take [𝐷] = 3𝐾𝑉 . If 𝑔 = 1, take [𝐷] = 3[𝑃0] for some 𝑃0 ∈ 𝑉 .
In any case, deg𝐷 > 2𝑔.

Definition. A curve 𝑉 of genus 𝑔(𝑉) ≥ 2 is called hyperelliptic if there exists a degree 2
morphism 𝑉 → ℙ1.

The following theorem is on the last example sheet.

Theorem. A curve of genus 𝑔 is hyperelliptic if and only if there exists a divisor 𝐷 such that
deg𝐷 = 2 and ℓ(𝐷) = 2.

Theorem. Let 𝑉 be a curve of genus 𝑔(𝑉) ≥ 2 that is not hyperelliptic. Then, the morphism
𝜑𝐾𝑉 ∶ 𝑉 → ℙ𝑔−1 is an embedding.

Proof. Suppose that 𝜑𝐾 is not an embedding. Then𝐾 violates (⋆), so there exist points 𝑃,𝑄 ∈ 𝑉 such
that ℓ(𝐾 −𝑃−𝑄) ≥ 𝑔−1. Then by Riemann–Roch,𝐷 = 𝑃+𝑄 has ℓ(𝐷) ≥ 2. But this is the maximal
value by the above inequalities, so the result follows.
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