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1 Motivation

1.1 Invariants

Topological spaces are difficult to study on their own, and so we will assign algebraic invariants to
these spaces which allow us to reason more easily about these spaces. To a topological space X, a
‘numerical invariant’ is a number g(X) € R U {oo} such that X ~ Y (where ~ denotes homeomorph-
ism) implies g(X) = g(Y). An example of a numerical invariant is the number of path-connected
components of X. An algebraic invariant is a group G(X) assigned to a topological space X such that
X ~ Y implies G(X) ~ G(Y), where here ~ denotes isomorphism. We will construct two kinds of
such invariants: the fundamental group, and invariants related to homology. The invariants we con-
struct will behave nicely under maps: if f : X — Y is a continuous map, we induce a homomorphism
f. : G(X) = G(Y). We will prove the following model theorems.

o IfR" ~ R™, thenn = m.
« If f: D" — D" is continuous, then there exists x € D" with f(x) = x.

The above theorems are easy to prove in the case n = 1 by appealing to path-connectedness and
the intermediate value theorem. Our study allows us to prove similar things about these higher
dimensional cases, among other things.

1.2 Notation
+ A space is a topological space.
« A map is a continuous function, unless defined otherwise.
« If X and Y are spaces, X ~ Y means that X and Y are homeomorphic.
« If G and H are groups, G ~ H means that G and H are isomorphic.

« Some common spaces include:

The one-point space {«};

I=[0,1] C R;

- I" =] x --- x I, the n-dimensional closed unit cube;
—_

n times

D" ={v € R" | ||v] £ 1}, the n-dimensional closed unit disk (note that I" ~ D");

- S" 1 ={v € R"| ||jv|| = 1}, the (n — 1)-dimensional unit sphere.
« Common maps include:
- If X is a space, the identity map idy : X — X is defined by x — x;

- If X and Y are spaces with p € Y, the constant map cx , : X — Y is defined by x — p.



2 Homotopy

2.1 Definition

Definition. Let f, f; : X — Y be continuous. We say f; is homotopic to f;, written f, ~ fi,
if there exists a continuous H : X X I — Y with H(x,0) = fy(x) and H(x, 1) = f;(x).

We can think of H as a path from f to f; in the set Hom(X, Y) of functions X — Y, which is continu-
ous under a topology that will not be defined here.

Lemma (Gluing lemma). Let X = C; U C,, where C;, C, are closed in X. Let f: X — Y be
a function (that may be not continuous), such that f |C1 and f c, are continuous. Then f is
continuous.

Proof. It suffices to show that the preimage of a closed set is closed. Let K C Y be closed. Then

-1
Ki=f"Y(K)nC; = ( fl Ci) (K) is a closed set in C; and so is closed in X because C; is closed. Since
K = K; UK,;, K is also closed in X. O

Lemma. Homotopy is an equivalence relation.

Proof. Reflexivity is trivial, because H(x, t) = f(x) is continuous, as H = f o 7r; is the composition of
continuous maps. Symmetry holds because if H(x, t) is continuous, H(x, 1 — t) is continuous as the
composition of continuous maps. For transitivity, if f, ~ f; via H and f; ~ f, via H', we define

H(x,2t) t<
H"(x,t) =
H(x,2t—1) t>

N |-

and this is continuous by the gluing lemma. O

Note that we sometimes write f;(x) for a homotopy between f; and f;.
Example. Let f;: X — R" be a map. Then fy: X — R”" defined by cx o has f; ~ f, via the
homotopy H(x,t) = tfi(x).

Example. Let f; : S! — S? be defined by f;(x,y) = (x,y,0): the inclusion map from the circle to
the equator in the unit 2-sphere. Let f; : S' — S? be the constant map fy(x,y) = (0,0,1). Then

o ~ f1 via the homotopy f;(x,y) = (xsin ”—t,y sin Z, cos ”—t).
Y 2 2 2

Lemma. If f, f; : X — Y are homotopic via f;, and gy,g; : Y — Z are homotopic via g;,
then the map H : X XI — Z defined by H(x, t) = g;(f;(x)), also denoted g; o f;, is a homotopy

for go o fo ~ g1 0 fi-

Proof. This is a composition of continuous maps and hence continuous. O



2.2 Contractible spaces
Definition. A space Y is contractible if idy ~ cy , for some p € Y.

Example. IfY C R" is convex and nonempty, Y is contractible via the homotopy H(y,t) = (1—t)y+
tpforsomep €Y.

Proposition. Let Y be contractible. Then f, ~ f; for any maps fy, f; : X = Y.
Proof. We have f, = idy o fy ~ ¢y p o fo = ¢x p, and similarly f; ~ cx ,. By transitivity, fo ~ f;. O
Corollary. Let Y be contractible. Then Y is path-connected.

Proof. If Y is contractible, and p,q € Y, then Clyp ~ Cyg ViaH ! {e} X I — Y. Then we can define
the path y(t) = H(e,t) from ptoqin Y. O

Example. R \ {0} is not contractible.

We will later prove that R” \ {0} is not contractible for any n > 1, but we require some more theory
before this can be proven.

Definition. Spaces X,Y are homotopy equivalent, denoted X ~ Y, if there exist maps
f:X—>Yandg: Y — Xsuchthat fog~idyandgo f ~ idy.

Example. If X ~ Y, X and Y are homotopy equivalent. Note that the definition of homotopy equi-
valence is simply the definition of homeomorphism, except that the requirement that f ogand go f
be equal to the identity is relaxed into simply being homotopic to the identity.

Lemma. Homotopy equivalence is an equivalence relation.

Proposition. X is contractible if and only if X ~ {}.

Proof. If X is contractible, id ~ cx . Let f: X — {«} be defined by f(x) = ». Letg: {¢} - X be
defined by g(x) = p. Then f o g =id;yand go f = cx,, ~ idx. The converse is similar. O

v

Example. We have R"**! \ {0} ~ S™. Consider p: R"**! \ {0} — S" defined by p(v) = L
q: S" - R"*1\ {0} defined by q(v) = v. Then p o q = id, and (q o p)(v) = —. This is homotopic to

vl
the identity by
v
A =6)+tof

This is a special case of a retract, a continuous map onto a subspace.

H(v,t) =



3 Groups from loops

3.1 Homotopy relative to a set

Definition. Let A C X. We say f,, fi : X — Y are homotopic relative to A, written f, ~
firel A, if fy ~ f; via some homotopy H : X X I — Y that fixes A, so H(a,t) = fy(a) = fi(a)
foralla € A.

Lemma. Homotopy relative to A is an equivalence relation.

Lemma. If fy,fi: X > Yand fy ~ firel A,and gy, g, : Y —» Z and g, ~ g; rel f(A), then
8o o fo~ g1 o firel A.

If yy,71 : I = X are two homotopic paths relative to their endpoints, so y, ~ y; rel {0, 1}, we write
Yo ~e 71

Lemma. Let f;, f; : I — I, where f,(0) = f1(0) and f,(1) = f1(1). Then f, ~. fi-

Proof. 1 is convex, hence H(x,t) = (1 — t)fy(x) + tfi(x) is a homotopy that preserves endpoints as
required. O

Corollary. Suppose f: I - I,y: I - X. Thenif f(0) =0and f(1) =1,y o f ~, y. Further,
if f(0) = 0and f(1) = 0, we have y o f ~, ¢1 (0)-

Proof. We have f(0) = id;(0) and f(1) = id;(1). Hence f ~, id;. Therefore, y o f ~, yoid; = 7.

For the second claim, f(0) = c;(0) and f(1) = ¢y (1), hence f ~, cro givingy o f ~, yocpo =
CI’J/(O)' O

Definition. Let X be a space, and p,q € X. Let

QX, p,q) ={y: I » X | y continuous, y(0) = p,y(1) = q}

be the set of paths from p to q. Let Q(X, p) = Q(X, p, p) be the set of loops based at p.

Definition. Lety € Q(X, p,q),y’ € Q(X,q,r). Then their composition yy’ € Q(X, p,r) is
given by
y(2t) t

(7)) = {y, i)

yy' is continuous by the gluing lemma.



Lemma. Lety,, 7 € QX, p,q) and ¢, 71 € Q(X,q,r)such thatyy ~, yy viaH: I XI - X
and yy ~, y1 viaH' : I X I — X. Then yy75 ~e V171

Proof. The homotopy required is

H(2x,t) b

Hx.0) = {H’(Zx -1,t) x€

0,1
12
=1
2

Definition. Lety € Q(X, p,q). Then y~! € Q(X, q, p) is the reverse of y, given by
i =y1-1
Proposition. (i) Lety € Q(X, p,q). Thencrpy ~e ¥ ~ ¥Cr1q-
(ii) }’7/_1 ~e CI,p and y_ly ~e cI,q-

(iii) Ify(1) = y’(0) and y’(1) = y"(0), we have

Y'y") ~e Y "

Proof. (i) The composition ¢,y has ¢ ,y(¢) = y(f(¢)) where f : I — I defined by

o e
f(t)_{Zt—l te[%,l]

Since f(0) = 0and f(1) = 1,y o f ~, y. Similarly, yc; 4(¢) = y(g(t)) where

2 te 0,%
&t = 1 telln
2
(i) yy~(t) = y(f (1)) where o
. 2 te _0,%_
J0= 1—2t te_§,1

Further, y~1y(t) = y(g(t)) where

" 1—2t te-O,g—
t) = 2]
& 2A-1 te %1



noting that f(0) = 0 and f(1) = 1. Hence y(¥'y") ~.= (yY')y".

O
Definition. Let X be a space and x, € X. We define the fundamental group or first homotopy
group of X based at x by
77:1(X7 xO) = O, xo)/Ne
We say x is the basepoint. If y € Q(X, x,), we write [y] for its image in 7, (X, x,), its equival-
ence class.
Theorem. We define multiplication in 7; by [y] * [¥'] = [yy’]. The identity is 1 = [cy ]
The inverse is given by [y]~! = [y~!]. These operations form a group.
Proof. Using the above lemma we explicitly check the group axioms. Identity:
Uyl = lerxrl =) [yl =lyerx,] = 7]
Inverses:
1™ =Tyt = lery] =1
Associativity:
' D" 1=y ly"1 = [y "1 = 'yl = lly'y"1 = 1Ay 1y D
O

3.2 Induced maps

Definition. Let f: X — Y be a continuous map, and f(x,) = yo,. Then we have a map
QX, x9) - Q(Y,y,) defined by y = f oy. Note that if y, ~, y;, we have f o yy ~, f o 7.
Thus, this map descends to the induced homomorphism f, : m(X,xy) — 7;(Y,yo) defined
by [yl = [fevl

Definition. A pointed space (X, x,) is a pair where X is a space and x, € X. We write
i1 X,xy) = (Y,y,) to denote a map f: X — Y where f(xy) = y,. In particular, for
[ (X, x9) = (Y, ) there is an induced map f, : 71(X, xg) = 71(Y, yo)-

Proposition. Let f: (X,xy) — (Y, o). Then,
(i) The induced map f, : 7;(X, xy) = m,(Y, o) is a group homomorphism.
(i) (idex,xy)), = idm, (x,x0)-
(iii) Ifg: (Y,y0) = (Z,20), we have (go f). = g. o f..
(iv) If fo, f1i: X,x9) = (Y,yo) with f, ~ f; rel x,, then (fy), = (f1). (homotopy invari-
ance).

Remark. The action of taking the fundamental group of a pointed space thusyields a functor z; : Top. —
Grp. The following diagram, representing part (iii) of the proposition above, commutes.



(gof).
(X, Xo) £ S 711(Z, 20)

i \f/k V T
I
w1 (Y, y0)
AL

(Y7 yO)

Proof. (i) This follows from the fact that

foy(2t) t

fo(w’)(t)={foy,(2t_1) t

1
i] =(fen)(fey)t)

Hence,

LWy D =1f e ¥ =[(fer)(ferd] =[ferllf o¥'] = LAyDLAY'D

(i) id,([yD = [idx o ¥] = [7].
(i) (feg(yD)=[fogoyl=flgeovD = f.(g.(¥]D)
(iv) fo ~ firel xo and y(0) = y(1) = x, implies f o ¥ ~ fi o ¥, 50 (fo).([¥]) = (f).([¥D-
O

Example. Let f: X — Y be a homeomorphism, and let y, = f(xy). Then f: (X,x,) = (Y,yq)
and f~!: (Y,y,) = (X,x,) are inverses. Thus, f, : m;(X,x,) = m,(Y,yo) and f71: m,(Y,yo) =
m1(X, xo) are inverses. Since f, o f7! = (fo f™), = ids, (v ) and £ o f, = id; (x x,)» We have that
f. is a group isomorphism, and 7, is a topological invariant.

3.3 Retractions

Definition. Let A C X, where:: A — X isthe inclusion map. Then p: X — Aisaretraction
if pot =1idy. p: X — A is a strong deformation retraction, or s.d.r., if p ot = id, and
top ~idy rel A.

Remark. In either case, ifag € A, t: (4,a0) = (X,a0)and p: (X, ay) = (A, ay). If p is a retraction,
p.ot, = (po), = (ida), = idz (a,q), SO L. * T1(A, ag) = m1(X, ap) is injective, and p, @ 7;(X, ap) —
71(A, ap) is surjective. If p is a strong deformation retraction, ¢, o p, = (to p), = (idx). = idz,(x,q0)»
so p, and ¢, are isomorphisms.

Remark. If p: X — Ais a strong deformation retraction, then A ~ X.

Example. p: R"!\ {0} — S" given by v ﬁ is a strong deformation retraction.
v

Example. R?\ {0,1} has A, B as strong deformation retractions, where A is a figure-eight with one
loop surrounding each hole, and B is a rectangle surrounding each hole with a vertical line connect-
ing the top and bottom edges through (é 0). This can be a useful trick to show A ~ B.



3.4 Null-homotopy and extensions
Definition. We say f : X — Y is null-homotopicif f ~ cx ,forp € Y.

Example. IfX is contractible, then idy ~ cx g,80 f = foidy ~ focx = f(q). Soany f: X - Y
is null-homotopic. If fy ~ f;, then f; is null-homotopic if and only if f; is null-homotopic.

Definition. Let A C X and f: A — Y. We say a continuous map F : X — Y is an extension
of fif F|, = f. If such a map exists, we say f extends to X.

X

|
t \F
¥

A—>Y

Lemma. f: S' — Y extends to D? if and only if f is null-homotopic.

Proof. If F is an extension of f to D?, we define H(v,t) = F(tv). Then H is a homotopy from f to
Cs1,F(0)- S0 f is null-homotopic.

Conversely, if f is null-homotopic, let H : S! x I — Y be a homotopy for ¢cs1p ~ f. Then we define
H(l, ) 0
Fy = 1o 1) v #
p v=0

One can check that this is indeed a continuous extension. O

Definition. Let y € Q(X, x,). We define ¥ : S' — X by ¥(e*™*) = y(t). This is well-defined
since y(0) = y(1), and it is continuous because I/{O, 1} = St

Lemma. (i) If y, ~, y; via H(x,t), we have y, ~ 7, via H: S' x I — Y given by
H(e?™~, 1) = H(x,1).
(D) yy' ~v'y.

Proof (i) Note that H is well-defined since H(0,t) = H(1,t) = x,.

(i) We have yy'(v) = y'y(—v), hence yy’ = ¥’y o a where a: S! — S is the antipodal map. Since
a ~ idg1, we have yy’ ~ y'y.

O

Consider the radial projection homeomorphism ® : D?> — I x I. Note that ®(S') = (I x I) =
I'x{0,1}U{0,1} X I. Since ® is a homeomorphism, h: (I X I) — X extends to I X I if and only if

10



h o ® extends to D?, which is true if and only if & o ® is null-homotopic. Define «;(t) = h(t,i) and
Bi(t) = h(i,t) fori = 0,1. Then, h o ® ~ a7 G5

Proposition. Let y,,y; € Q(X, p, q). Then the following are equivalent.
@ 0 ~e s

(ii) yoyi! is null-homotopic;
(iii) [roy7'] =1inm (X, p).

Proof. Consider h: d(I x I) — X given by yocr 41 'c1p- Note that h is continuous by the gluing
lemma. y, ~, 7; if and only if h extends to I x I, which is true if and only if & o ® extends to D?, if
and only if yocr 77 Le 1,p is null-homotopic. But this is homotopic to m, so this proves that (i) and
(ii) are equivalent.

Now, consider h': (I x I) — X given by ¥,y on one side, and on all other sides, ¢rp- Then
[yor1'] = 1ifand only if yoy; " ~, ¢ p, if and only if &’ extends to I X I, if and only if h o ® extends

to D%, if and only if yoy1 ‘¢ p¢7pCT ) ~ Yori " is null-homotopic. O

Corollary. The following are equivalent.
(1) yo ~e 71 forall 5,7, € QX, p,q) and all p,q € X.
(ii) any f: S' - X is null-homotopic;
(iii) 7;(X, x) is the trivial group for all x, € X.

Definition. X is simply connected if X is path-connected and 7,(X, x,) = 1 for all x, € X.

3.5 Change of basepoint

Lemma. Let X, be the path-connected component of X containing a point x, € X. If Z is
path-connected, f : Z — X is continuous, and x, € Im f, we have Im f C X,,.

Proof. Suppose f(zy) = xo. Given z € Z, choose y € Q(Z, zy, z) by path-connectedness. Then
fey € QX, xo, f(2)), s0 f(Z) C X,. 0

Lett: (Xo,Xo) = (X, x0) be thf: inclusign map. Thenif f: (Z,z,) = (X, x,) and Z is path-connected,
f factors through tas f = 1o f where f : (Z,zy) = (Xo, Xo).

Lemma. The map ¢, : 7;(Xy, Xg) = 71(X, Xg) is an isomorphism.

Proof. Let[y] € m(X, xp),s0y : (I,0) — (X, xy) giving y = top where 7 € Q(Xy, xp); [¥] = t.([7]), so
t, is surjective. Now suppose yy = to ¥y, 1 = tey. o, ([7o]) = t.([71]), 80 Y9 ~e 1 ViaH : IXI - X,
we have H(0,0) = X,, so H = to H since I X I is path-connected. Then we can check H is a homotopy
for 9, ~. 1. Hence [7] = [71], so , is injective. O

11



Letu € Q(X, xg, x;). Then we can define uy : Q(X, xo) = Q(X, x;) by y = u~'yu. Hence if yy ~, 71,
we have u™lyou ~, u='y u, so uy descends to a map uy : 7,(X,xo) — m1(X, x;) defined by [y]

[u=tyu).

Proposition. uy is a group isomorphism with inverse (u™!)y.
Uu,
#

(X, Xo) ﬁ (X, x1)

Proof. First, it is a homomorphism.

wy([Y1ly'D) = [ulyy'ul = [u" yer i, v'ul
= [utyuuty'u] = [utyullu='y'ul = wy([yDus([y'])

Consider the function uy 1 We have

ug (ug([yD) = [uu™yuu™"] = lepxyvery, ] = [7]

and
ug(uz ' ([y]) = [u wyu™u] = [epx, very 1 = [7]

So ug, uy ! are inverses, and therefore isomorphisms. O

Corollary. A space X is simply connected if it is path-connected and 7,(X, x,) = 1 for any
Xo € X, since then it follows that 7; (X, x) = 1 for all x € X.

Theorem. Let x, € X, and fy, f;: X —» Ysuchthat fy ~ ffbyH: X XI > Y. Letu(t) =
H(xy,t) and yo = fo(x0),y1 = fi(Xo). Thenu € Q(Y, yp,y1). We have f; 1 (X, %) = (Y,y;)
which induce f;, : 7(X, xo) = 71(Y, ;). Then fi, = uy o f,.

(Y, y0) (Y, o)
y fox
(X, x0) (X, Xo) Uy
f1.
(Y,y1) (Y, y1)

Proof. We must show that f,([y]) = uy(fo.([y]). Lety; = f; oy. We therefore need to show
71 ~e U Yyouforally € Q(X, x,). Suppose we can show that H : d(IxI) — Y given by yo, u, 7, u™?!

on each side of the square extends to I x I. Equivalently, youy; 'u~—1 = u~lyuyy! is null-homotopic.
This is equivalent to the statement u~'you ~, y;. We know h extends to H: I X I — Y, because
H(x,t) = H(y(x), 1). O

12



Corollary. LetX ~Yviaf : X > Yandg: Y — X,s0fog ~ idy and go f ~ idy.
Let x, € X and f(x,) = yo- Let g(yo) = x; and f(x;) = y;. Then we have induced maps
f*(o) D (X, X0) = (Y, o), 8 ¢ (Y, o) =& (X, x1), f*(l) : m(X,x;) = (Y, y1). Then
g, is an isomorphism.

(X,XO) 7T1(X5x0)
: \f‘ \fgo)
I
gof~idyx : (Y, yo) Uy ﬂl(Y’ yO)
| |
ot .
(X,x;) | fog~idy (X, x1) b
f I %
(Y, y1) T (Y, 1)

The left-hand commutative diagram, in the category of pointed topological spaces, commutes
up to homotopy. The right-hand induced diagram commutes.

Proof. We have idy ~ go fviaH: X XI — X. Then g, o f*(o) = (go f). = uyo (idx), where
u(t) = H(xy,t) is a path from x, to x;. Since uy is an isomorphism, g, is surjective. Similarly,
fWog, =(fog), is an isomorphism, so g, is injective. O

Corollary. Let X be contractible. Then 77;,(X, x,) = 1 is the trivial group.

Proof. The space Q({«}, +) has one element, so 7r;({+}, ) = 1. Since X ~ {}, the result follows. O

4 Covering spaces

4.1 Definitions

Definition. Let p : X — X be a continuous function. We say U C X is evenly covered by p
if p7l(U) ~ ][ wea Uz @nd ply; : Uy — U is a homeomorphism for all a.

The topology on the coproduct ] | «ea Ux is such that V' is open if and only if each projection V' N Uy
is open. The topology on p~!(U) is the subspace topology. In particular, the inclusions t, : U, —

11 «ea Uz — X are continuous, as is the composition La( plua) : U — X since pqu is a homeo-

morphism.

Definition. p: X — X is a covering map if every x € X has an open neighbourhood Uy
which is evenly covered by p. If so, we say X is a covering space of X.

Example. If A is a space with the discrete topology, then p: A X X — X is a covering map, because
p_l(X) = HoceA {a} x X.
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Example. p: R — S! given by p(t) = ™ is a covering map. Indeed, if V C R is an open interval
of at most unit length, let U = p(V) and then p~}(U) = I,z VaforV,={n+v|vevh

Example. Consider p,: S! — S! defined by z ~ z". If V C S! is an open interval of length < 2=,
n
27i

let U = p, (V). Then p;'(V) = HieZ/nZ @'V for w = en . Hence U is evenly covered.

Definition. We define the n-dimensional real projective space as RP" = S n/N where ~ is
the equivalence relation generated by x ~ —x for all x € S™.

Example. The quotient map p: S" — RP”" is a covering map. Indeed, for x € S", let 1} be the open
hemisphere centred at x. Then letting U, = p(;), we have p~1(U(x)) = U, U — Uy, giving that U, is
evenly covered.

4.2 Lifting paths and homotopies

Definition. Let p: X — X be a covering map, and f : Z — X be continuous. A continuous
function f : Z — X isaliftif po f = f. Hence, the following commutative diagram holds.

x
L7
Ve

Z—X

Theorem (Path lifting). Let p: (X, %) — (X, Xo) be a covering map, and y : [a,b] — X be
a path. Let y(a) = X, and p(X,) = %,. Then there exists a unique lift 7 : [a,b] — X with
7(a) = X,.

The proof will be given after some lemmas. We say f: Z — X has the (unique) lifting property
at z € Z if for any £ € X such that p(%) = f(z), there exists a (unique) lift f : Z — X such that

f@) =z

Lemma (Lebesgue covering lemma). Let X be a compact metric space, and {U, | « € A} is
an open cover of X. Then there exists § > 0 such that for every x € X, the open ball Bs(x) is
contained in U, for some a € A.

Proof. We have an open cover {U, | « € A} of X, so given x € X, we can find a,, € A such that
x € Uy, and Uy, is open. Hence there exists 5, > 0 such that B,5 (x) C Uy, . Then {Bs (%) | x € X}

is an open cover of X. By compactness there is a finite subcover {B5x' (x)iefl,.., k}}. Let§ =
1
min;eq . k3 Sx, > 0. Then for y € X, we have y € Bs,_(x;) for some i, and B5(y) C Bs_45(x;) C
1 1
BZBXI. (xi) - Uax- O

14



Lemma. Let p: (X,%,) — (X,x,) be a covering map, and y : [a,b] — X be a path such
that y(a) = xy. Let Imy C U where U C X is evenly covered. Then y has the unique lifting
property.

Note that this is simply the above path lifting theorem with an additional hypothesis.

Proof. Since U is evenly covered, p~'(U) = || U,, and p|Ua : U, — U is a homeomorphism

aeA

-1 R
onto its image. So Xy € Uy, for some a, € A. Then the map (p,)™" = 10 (pIUa) U > Xis
-1 1
continuous. Then <p|U ) (X0) = %0,50 7 = (py,) oy isalift of y with p(a) = %,.
%o

Now we will prove uniqueness of the lift. Observe that p~}(U) = Uy U TT, 2o, U, disconnects

p~1(U). Note that [a, b] is connected. We have that if 7 : [a,b] — X with (a) = %o and poj =7,

then Im7 C p~!(U) implies Im7 C Uy,- But p|y; is a homeomorphism, so we must have y =
@0

-1
(pOfo) °y. O

Lemma. Lety: [a,b] » X and @’ € [a,b]. If y|[a’a,] has the unique lifting property at a
and yl[ a’ b has the unique lifting property at a’, then y has the unique lifting property at a.

Proof. 1f p(%) = y(a), since yl, , has the unique lifting property at a, there exists a unique lift
71 ¢ [a,a’] = X such that ;(a) = %. Then y|[a,’b] has the unique lifting property at a’, so there
exists a unique lift 7, : [a’,b] = X with y,(a’) = 7,(a’). Then the composition 7 = 7,7, is a lift of y,
with 9(a) = %.

For uniqueness, suppose 7 is a lift of y with y(a) = %. Then )7|[a,a,] is a lift of yl[a,a,], so by the
unique lifting property, ;7|[a,a,] is uniquely determined such that (a) = %. Then by the unique
lifting property again, )7|[a/,b] is also uniquely determined such that ?l[a/,b] (a) = )7|[a, o] (a"). O

We can now prove the path lifting theorem: any y : I — X has the unique lifting property.

Proof. Let p: X — X be a covering map. Hence, for all x € X, there exists an open neighbourhood
U, which is evenly covered. {U, | x € X} is therefore an open cover of X, and so {y‘l(Ux) |xeX } is
an open cover of I. Since I is compact, by the Lebesgue covering lemma, there exists § > 0 such that
forall ¢, Bs(t) C y‘l(Ux(t)) for some x(t). In other words, y(B;s(t)) C Uy(y).

Let n € N such that ~ < d,and q; = L €1 Then [aj, a;41] C Bs(a;) for all i. Hence y[a;, a;4.1] C
n

n
Uc(ap)- Then [a;, a;41] is connected, hence y[a;, a;4,] is connected. Since Uy, is evenly covered,
yl[ai . has the unique lifting property. Then by induction on i, we can see that yl[o ail has the
unique lifting property, and hence so does y in its entirety.

Theorem (Homotopy lifting). Let p: (X, %,) — (X, Xx,) be acoveringmap,and H : IXI - X
be a homotopy. Then H has the lifting property at (0, 0).

It also has the unique lifting property, but this will be more easily proven later.
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Proof. Iis compact and connected, so by Tychonoff’s theorem, I X I is compact and connected. Sup-
pose {U, | x € X} is an open cover of X consisting of evenly covered neighbourhoods of points as
before. Then, since I X I is compact, by the Lebesgue covering lemma there exists § > 0 such that
forallv e I X I, Bs(v) C H_l(Ux(v)). In particular, H(Bs(v)) C Uy(y).

Let n € N such that 2 < 8, dividing I x I into squares of size L, ordered from left-to-right and
n

n
then bottom-to-top. Label each square with an index i € {1, ,nz}. Let each square A; have lower
left-hand corner v;, for i € {1, ,nz}. Note that H(A;) € H(Bs(v;)) € Uy, = U; is evenly covered.

Let B, = Ui.czlAi. Then A; ~ I X I is connected, so H| A has the lifting property at v;.
We show by induction that H|p has the lifting property at (0,0). For k = 1, B; = A; and (0,0) = vy,

so the result follows.
For other k, suppose that H]| By has the lifting property at (0,0), so Hy : B; — X with H;(0,0) = X.
Then H| Aot has the lifting property at v;, so choose a lift 7 : Ag,; — X such that A(viy;) =

Hy(vgy1). Note that p(Hy(viy1)) = H(vgyq), so this exists by the lifting property. Observe that
Ag41 N By = I U I is the union of (at most) two intervals with intersection at their endpoints, so is
homeomorphic to I. Hence by uniqueness of path lifting, Hy| L= ﬁk| I since both are lifts of H| I

with vy = H(Vjeyr). Similarly, Hy|,, = Ay, . In other words, FlklAk . By the
k k

er1NBic - hk|Ak+1ﬂBk R
gluing lemma, we can construct the well-defined and continuous map Hy : Bk, — X given by H
and h; on their domains. Then Hy ., is a lift of H| Brar” O

Proposition. Let p: (X,%,) — (X, X,) be a covering map. Let 75,71 € Q(X, X, X;), and
Yo ~e 71 Let 7; be the lift of y; to X with 7;(0) = X,, which exists by the path lifting property.
Then }70 ~e }71.

Proof. Let H: I X I — X be a homotopy between y, and y;. By the homotopy lifting property, there
exists a lifted homotopy H : I x I — X such that H(0,0) = X,. Let a;(t) = H(t,i) fori = 0,1, and
Bi(t) = H(i,t) for i = 0,1. Applying the uniqueness of path lifting to the «; and the 3;,

(i) «ay is a lift of ¥, with oy (0) = X, 80 ¢ty = 7p;
(ii) By is a lift of cf ., with By(0) = %o, s0 o = C1x, = Cr,¢, by uniqueness, and in particular,
a1(0) = Bo(1) = o;
(iii) oy is alift of y; with a,(0) = %y, so @; = 715
(iv) let X; = 75(1), and then B, is a lift of ¢ »,, 50 81(0) = Xy, 80 1 = cp ¢, -

Hence 7, ~, 7, via H. O

Corollary. Let p: (X, %,) — (X, xo) be a covering map. Let 75,71 € Q(X, Xq,X;), and ¥o ~,
71- Then 75(1) = 7,(1).
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4.3 Simply connected lifting

Let p: (X, %) = (X,xo) be a covering map. If y : I — X has y(0) = x,, let 7 : I — X be its unique
lift such that (0) = %,.

Consider yy’ = 77, where 7' is a lift of ¥’ such that 7'(0) = 7(1). Note that we needed to change the
start point of 7’ in the covering space.

Definition. A space X is locally path-connected if for every open set U C X and x € U, there
exists an open V C U with x € V and V path-connected.

Example. Consider
1
X={x0)e€ Rﬂu{(;,y) eER%ne Z} u{(0,y) € R?}

Then, an open set containing a point (0, y) but not (0,0) admits no smaller path-connected open
neighbourhood.

Proposition (simply connected lifting property). Let Z be a simply connected (and hence
path-connectgd) space that is also locally path-connected. If f : (Z, z5) — (X, X), then f has
a unique lift f : (Z,zy) — (X, %)

Remark. This proposition then implies the path lifting and homotopy lifting properties.

Proof. Suppose f: (Z,z,) — (X, %) is a lift Pf f. Given z € Z, consider a path y € Q(Z, zy, 2),
which exists since Z is path-connected. Then f oy is alift of f oy, since p(foy) = (po f)oy = foy.
Then, (f o )(0) = f(zo) = %o, 50 f oy = f o is the unique lift of f o y given by the unique path
lifting property. Then f(z) = f(y(1)) = (f o ¥)(1) = f o (1) is uniquely determined by the unique
path lifting property. So any such lift is unique.

If y9,71 € Q(Z, 29, 2), Yo ~e 71 by simply-connectedness. In particular, f o ¥y, ~, f o ¥;, and by the
homotopy lifting property, f o 7o(1) = f o 7;(1). So the choice of path y used above is not relevant.
Now, let us define f : (Z,z,) = (X, %,) by f(z) = f/o\y(l) where y € Q(Z, zy, z) is any path from
Zo to z. Then p(f(z)) = po m(l) = foy(l) = f(z) since m is a lift of f o y. Hence f as
defined is a lift. If z = z,, we can take y = ¢y, 80 f oy = ¢, . In particular, fo\y = Cr %, SO
fz) = m(l) = X, as required.

Now, it suffices to check that f is a continuous function. Let U C XA be an open neighbourhood of
f(2). We need to find an open neighbourhood V C Z of z such that f(V) C U.

First, we find a subset U’ c U with f(z) € U’ such that p(U’) is open and evenly covered. Since p

is a covering map, there exists an open W C X with f(z) € W and which is evenly covered. Hence

p~ (W) = HaGA W, and p(f(2)) = f(2), so f(z) € W, for some oy, € A. Then, W, C Xisan

open set. Let U" = U n W,,. Then f(z) € U, and p|Wa : Wy, — W is a homeomorphism, so
0

p(U’) = pg,(U’) is open and evenly covered.

Next, f : Z — X is continuous, so we need to find an open set V' C Zwithz € V' and f(V") C p(U").

Since Z is locally path-connected, there exists V' C V' which is an open path-connected set with
zeV.
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Now we need to show V satisfies the continuity requirement, that f(V) C U. Given z’ € V, let
y' € Q(V,z,z"), which exists because V is path-connected. Then Im f oy’ C f(V) C p(U’). Note
that Im f oy’ is evenly covered. Hence 7' = p;; o foyisalift of foy’ with 7#'(0) = p;;(f(z)) = f(2).
Then yy' € Q(Z,zy,2"), and fo/(ﬁ’) = mf’ by the discussion at the beginning of the subsection.
Hence f(z') = fT(W’)(l) =7'(1) = p;(} ofoy'(1) € U'. So f(V) C U as required. O

4.4 TUniversal covers

Letp: (X, %y) — (X, x,) be a covering map. If y € Q(X, x,), let7 : I — X be its unique lift such that
7(0) = %o, which exists by the path lifting property. Then there is a map g, : Q(X,X,) = p~'(x,)
by y — 7(1), since p(#(1)) = y(1) = x,. By the corollary above, if [yy] = [y;] in 71, we have
€(Yo) = & (y1)- In particular, ¢, descends to a well-defined map from 7, (X, x,) to p~1(xp).

Definition. A covering map p: X — X is a universal cover if X is simply connected.

Example. p: R — S! defined by x — e** is a universal cover of S!, since R is contractible.
p,: R? —» S x S! = T2 defined by p,(x,y) = (p(x), p(y)) is a universal cover.

Proposition. If p: (X, %,) = (X, x,) is a universal cover, then & m(X, xo) — p~(xy)isa
bijection of sets.

Proof. Suppose g,[yo] = %; = g[1]. Then 7, and ; are paths in Q(X, %o, %;). Since X is simply
connected, 7y ~, 7;. In particular, yo = po 7y ~, po 7 = 7;. Hence [yo] = [11], s0 g, is injective.

Given £ € p~!(x,), X is path-connected as it is simply connected, so there exists a pathn € Q(X, £, £).
Since p(%) = xo, we find y = pon € Q(X,xy). Then n = 7 is the unique lift of y. In particular,
&) = (1) = %, so g, is surjective. O

Example. Letp: (R,0) — (S, 1) bedefined by x > €?"*. We have p~1(1) = Z. Then,¢: m,(S',1) —
Z is a bijection.

Theorem. ¢, : 71(S', 1) — Z is an isomorphism of groups.

Proof. Itis a bijection, so it suffices to check that it is a homomorphism. Given n € Z, we can define
®n: R > Rbyg,(x) = x+n. Then, pog, = p. Ify € Q(S!, 1), we can find a lift 7 of y with 7(0) = 0.
Then pog, oy =poy =y,50 ¢, oyisalift of y with ¢,, o 7(0) = n.

Suppose g,[y] = n, and gy[y’] = n’. Then (1) = n, 7'(1) = n’, so ¢, o 7" is a lift of ' that starts at n.
Hence, 7y’ = (¢, 07") is alift of the composition of paths. Thus, e[yy'] = 77'(1) = ¢,(7'(1)) = n+n'.
So &, is a homomorphism. O

Corollary. S!is not contractible.
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Example. Let f: S' — S! be the identity map. Let p: (R,0) — (S!,1) be a covering map. Then
there is no lift of f to R. Otherwise, the identity map on Z would factor through the trivial group.
This shows that the simply connected lifting property does not extend to all path-connected spaces.

4.5 Degree of maps on the circle

Lemma. Letz € S', and u,v € Q(S',z,1). Then, the isomorphisms uy, vy : 7;(S*,z) —>
71(St, 1) are equal.

Proof. Consider v;" ouy = (L") 0 uy. Note, (v ouy)[y] = [vu~'yuv™"]. Since vu~! € Q(S', 1), we
can write [vu~lyuv!] = [5][y][n~'] where n = vu~!. But this is exactly [y], since 7;(S!,1) ~ Z is
abelian. Hence vy o uy = id, and by symmetry, u; ' o vy = id. O

Definition. Let f: S' — S!, f(1) = z. Then choose u € Q(S', z,1), then f, : m;(S',1) —
7, (SY, z), giving uyof, : m,(S*,1) » 7;(S*, 1). Thisisahomomorphism Z — Z, so is uniquely
determined by its action on 1. We define the degree of f, written deg f, to be (uy o f,)(1).

By the above lemma, this definition does not depend on the choice of path u.

Example. Lety, € Q(S',1) be given by y,,(t) = e?™™ for n € Z. Then §,(t) = nt, s0 g,[y,] = n.
The integers n correspond to the classes [y,,] in 7;(S1, 1).

Let f, =¥, : S* = S', 50 f,(z) = z". Then f, o y; = ¥y, 50 f.[71] = [¥n]- Hence the degree of f,, is
n.

Proposition. The degree of f,, : S' — S!, defined by z — z", is n. If gy, g; : S — S!, then
go ~ g if and only if degg, = degg;. g: S' — S! extends to G: D* — S! if and only if
degg = 0.

Proof. Suppose g, ~ g via H: S* x I — S'. Letu(f) = H(1,t), s0 g, = uy o gy, Where u €
Q(S, 8o(1),g1(1)). Let v € Q(S, g1(1),1). Then uv € Q(S*, gy(1),1), and so degg; = vy 0 g;,(1) =
vy(uy 0 go(1)) = (uv)y © go.(1) = deg gy, since uy[y] = [u=tyu] so (uo L)y = Uy o uy.

Conversely, it suffices to show that g ~ f4e.¢ by transitivity. Suppose g(1) = 1. Then g = y where
y =goy:. Thendegg = g,(1) = [goy:] = [y] € m,(S%, 1). In particular, if deg g = n, we have y ~ y,,,
SOE=Y ~V, = fnr

In general, if g(1) = e2™*, then g ~ g, where go(z) = e~?"*g(z) via g,(z) = e~?"i*g(z). Then g ~ g,
so deg g = deg gy, so in particular g ~ gy ~ YV gegq-

g extends to D? if and only if g ~ cg1 ,, for some z, € S'. Equivalently, g ~ cg1; = f;,s0 degg = 0
by above. O

4.6 Fundamental theorem of algebra

Let p: C — C be a polynomial, so p(w) = w" + a,_w" ! + -+ + a5 = w" + q(w).
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Lemma. Let R, = max{1, DN |a,~|}. Then if |w| > Ry, [w"| > |q(w).

Proof. Consider

|
—-

n
w

|i—n+1
-1 —_
w1 — &

i—-n+

Hence, if |w| > 1, each term |w| ! is at most one.

n-1 . L n-1

1—-n+
. laillwl < Y lail <R,
i=0 i=0

Hence Iq(uil)l <X . O
[w w|

Consider gy, g, : S' — C \ {0} given by g,(z) = (Rz)" for some fixed R > R, and g,(z) = p(Rz).
Then g, ~ g, via g;(z) = p,(Rz) where p,(w) = w" + tq(w). This map has codomain C \ {0} by the
above lemma. Let 7 : C \ {0} — S! be the radial projection w I_ZI Thenwogy,mog,: St —» S!

are homotopic maps. Therefore, n = deg(x o gy) = deg(mw o g;).

Theorem. Ifn > 0, p has a root wy € C.

Proof. 1f p(w) # Oforallw, p: C — C\{0},s0g; extends to G, : D?* — C\{0}givenby G,(z) = p(Rz).
Then 7 o Gy is an extension of 7 o g;. So n = deg 7 o g; = 0, so we have a constant polynomial. [J

4.7 Wedge product

n
Definition. Let (X;, x;) be pointed spaces. The wedge product \/?zl(Xi, X;) = I, X5 xi)/N
for the equivalence relation ~ generated by x; ~ x;. For n = 2, we also write (X;, x;) V (X, X;)

2
for \/,_, (X, x;).

If each X; has the property that for any x;, x; € X;, there exists a homeomorphism ¢ : X; — X; such
that (x;) = ¢(x;), then the particular choice of base point used in the wedge product does not matter,
and the expression \/:;1 X; = \/:;1 X;, x;) is well-defined up to homeomorphism independent of the
choice of the x;.

Example. Consider the figure-eight S' v S!. There are inclusion maps ¢;, 1, : (S',1) = (S v S1, x4)
where x, is the point at which the two circles are joined. Let a = 1;,(1) € m;(S! v S', xy), and
similarly let b = 1,,(1) € 7;(S' VS, x,). The universal cover of S* v S! is the infinite regular 4-valent
tree, Ty, (4). If T,,(4) is the regular 4-valent tree of depth n, T, (4) = U:;l T,,(4),s0U C T, (4)is open
if and only if U N T;,(4) is open for all n. There is a covering map from T,,(4) to S' v S! by mapping
each edge to one of the circles. T,,(4) is simply connected, because the interval I is compact, so if
y: I - Ty(4), Imy C T,(4) for some n, and each of the finite trees is contractible and therefore
simply connected.
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In particular, there is a bijection 71(S* v S, x,) = p~'({xo}) given by [y] — €,(y). Here, g,(ab) =
ab(1), but gp(ba) = ba(1) # ab(1). In 7,(S* v S, x,), ab # ba, so ;(S* v S, x,) is not abelian.

4.8 Covering transformations

Definition. Let p;: X; — X be covering maps for i = 1,2. A covering transformation
p 5 (pl’Xl) - (pz,Xz) isa map p: Xl - XZ such that DP2°opP=D;1.

Remark. We can think of p as a lift of p, to X,.
X,
=
l,)/ ’ J/Pz
. 7
X le X

Example. Let p; : S' — S! be defined by z — z%, and p,: S! — S! be defined by z — z2. Then
p: (p1,SY) = (p,,Sh) defined by z — z3 is a covering transformation.

Sl ____Zzz____> Sl
z»—»& Azz
Sl

Lemma. Let X be locally path-connected. If p: (p;,X;) = (p,,X;) is a covering transform-
ation, p: X; — X, is a covering map.

Proof. Given x, € X,, we find an open evenly covered neighbourhood Uy, Let x = p,y(x;) € X.
Then p;, p, are covering maps of X, so there exist open neighbourhoods U;, U, of x such that U; is
evenly covered by p;. Then U = U; n U, is open and evenly covered by p; and p,. Since X is locally
path-connected, let V' C U be an open neighbourhood of x that is path-connected. Then p;y(V) =
Ics Vo and p3'(V) = HﬁeB Vg, where V, ~ V ~ Vg are all path-connected. Let x, = py3(x),
and xg = pz‘,};(x). Then p,(p(x4)) = p1(xq) = X, 50 p(xy) = xg for some § € B. Now, V,, Vg are
path-connected, so p(V;) C V g since each V g is a (maximal) path-connected component of py L.
Therefore, prq : Vo — Vg satisfies p, g o pra = D1,q»> SO pra =p; }3 o P14 is a homeomorphism.
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In particular, p~!(Vg) = HOCEV,p(xa)=xB
evenly covered, so p is indeed a covering map. O

V,, and pra : Vo = Vg is a homeomorphism. So Vg is

4.9 Uniqueness of universal covers

Let X be alocally path-connected space,and q : (X, X,) — (X, x,) be auniversal cover. Letp : (X, %,) —
(X, xg).

Lemma. If p: Y — Y is a bijective covering map, then p is a homeomorphism.

Proof. p is continuous and bijective, therefore p~' : Y — Y exists as a map of sets. We must show
that this map is continuous. Since p is a covering map, Y has an open cover {Uy |y e Y} such that
U, is evenly covered. In particular, p‘1|Uy U, — p‘l(Uy) is a homeomorphism. Hence p~! is
continuous. O

Recall that if p; : X; — X are covering maps, a covering transformation from (p;,X;) to (p;,X5)
is a lift p, of p; to X,. pP; is a covering isomorphism if it is bijective. Then, by the lemma, it is a
homeomorphism.

Proposition. Let X be a locally path-connected space, and q: (X,%,) — (X, X,) be a uni-
versal cover. Let p: (X,%,) — (X,X,). Then there is a unique covering transformation

a: (p.X) - (@.%)
(X’XO)

q .7
// p
e

(X, %o) T> (X, xo)

Proof. Note that X is simply connected, and since X is locally path-connected, so is X. So existence
and uniqueness of § is exactly the simply connected lifting property. O

Corollary. If p is also a universal cover, ¢ is a covering isomorphism, and in particular, X ~
X.

Proof. X is simply connected, so 4 : X — X is a universal cover. Hence, there is a bijection between
points §~!(%) and elements 7r; (X, £). But this is the one-element set, since X is simply connected. So
G~!(®) has a single element, and so ¢ is a bijection. O

Equivalently, if q: (X,%,) — (X,x,) and q¢': (X',%,) — (X,x,) are universal covers, there is a
unique covering isomorphism §: (X, %) — (X', Xp).
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410 Deck groups

Definition. The deck group Gp(p) is the set of covering automorphisms g : (p,X) — (p,X),
which forms a group under composition gf = go f. This has a left action on X by g- £ = g(%).

Example. Let p: (R,0) — (S, 1). The deck group Gp(p) is exactly
{gn i Ro>R|g()=t+n}=Z

In this case, Gp(p) ~ m1(S%, 1).

Example. There is a bijection between Gp(q) and q~!(x,), by g = g(%,), by the above proposition
withX = X.

Theorem. Letq: (X,X,) — (X, X,) be a universal cover. Then Gp(q) =~ m;(X, x).

Proof. There is a bijection between 7,(X, x,) and g~(x,) since q is a universal cover. By the above
example, q~1(x,) is in bijection with Gp(q). In particular, we can map [y] € 7;(X,x,) to (1) €
q~'(x,), where 7 is the unique lift of y starting at %, and g(%;) € q~'(x,) is mapped to g € Gp(q).
We need to check that this composed map is a homomorphism: it is already a bijection of sets.

[yy'] is mapped to yy'(1) = 7(8y(1) © 7) where gy is the unﬁigue element of Gp(q) with gy1)(xo) =
7(1). Since gy © 7’E a lift of 7' starting at 7(1), we have yy’'(1) = (gy) ° 7)(1) = g)(7'(1) =
gy1)(&p(1)(Xo))- So yy’(1) is the image of X, under gy © gj/(1), SO this is indeed a homomorphism.

O
4.11 Correspondence of subgroups and covers
Proposition. Let G = Gp(q) ~ 7;(X,xy). If H < G is a subgroup, we have a tower of
covering maps
X 1
PR
N
Xy H
[
X G
where X;; = H\X is the quotient given by h-x ~ x forall h € H. In particular, 75 : X - H\X
is the quotient map, and py : Xy — X is given by py(H - x) = q(x). This is well-defined
because q o h = q as h is a deck transformation. In particular, if H = G, pg is a covering
isomorphism, so X ~ G \ X.
A universal covering map is a quotient by the action of Gp(q) ~ 7,(X, xo).
Proof. Let x € X. Then choose U, to be evenly covered by q. Then q~}(Uy) = Hoca U =
e,y q 8 Uno for %o € Uy, Then py(Ue) = T g_gprecosers ot r Up- Then 7 (Up) = [ gy prr 81
Uy, and p(U) =11 Ug. So each is evenly covered. O

23



Definition. p: X — X is a normal cover if Gp(p) acts transitively on p~1(x,).

Example. The universal cover q is always a normal cover.

Proposition. Let p: (X, %,) = (X, x,) be a covering map. Then p, : m;(X, %o) = m,(X, X,)
is injective. In particular, Im p, ~ 7,(X, %) is a subgroup of 7; (X, x).

Proof. If p,[yo] = p.[n]. wehave poyy ~, poy;,s0 pofy ~. po1,807 ~, 13- In particular,
[0l =[] O

Letq: (X,%,) — (X,xo)bea universal cover, so X and hence X are path-connected. Suppose further
that X is locally path-connected, so X is also locally path-connected. Consider

S(X, xo) = {H < m1(X, x0)}

C(X, xg) = {(p.X,%0) | p: (X, %) = (X, x,) is a covering map, X is path-connected}/N
where (p,X, %) ~ (p',X’, %) if there is a covering isomorphism q: (p,X) — (p',X’) mapping
Xy = X5 Leta: S(X,xy) = C(X,xq) be given by a(H) = (pg,Xg, Xo,5), where Xy = H \ X,
so X 22, Xy ox mapping X, to X . Let B: C(X,xy) = S(X,x,) be defined by (p,X, %,) —
P« (1 (X, %o))-

Theorem. o, are inverses, and hence bijections.

Remark. The entire group G = 7;(X, x,) is mapped to (id, X, x,). The trivial group 1 C G is mapped
to the universal cover (g, X, X,). The index [G : H] is exactly |pg'(xo)|- A conjugation g~'Hg cor-
responds to a change of base point (pg, Xg, 7(1)), where g = [y] and 7: I — Xp is a lift of y with
7(0) = xo, . If H < G is a normal subgroup, py is a normal covering. The quotient G/H corresponds
to the deck group Gp(pg)-

Proof. Consider S(a(H)) = pg.(m1(Xy, Xo,g)). There are isomorphisms

H — m(Xg, Xo,1) = Pr.(m1(X, X0))

mapping
[yl [mge?l = [paengeil =[rgeo7]=1[y]
where 7 is a lift of y such that 7(0) = X,. Hence S(a(H)) = H.
Conversely, consider a(B((p, X, %0))) = (P, Xa, Xo,1r) Where H = p,(7,(X, X,)). Consider

' P
X, xo5) —> (X, %)

Ty /q/( \Lp
()?7x0) ﬁ (X7x0)
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We claim that § = p’ o my, where p’ is a covering isomorphism. If we can show this, we have
(P> Xa Xo.1) ~ (P, X, %), so a o B is the identity on C(X, x,). If h € H = p,(m,(X, %)), h = [poy]
for some y € Q(X, %). Then §(%) = qo7z(1) where 7z € Q(X, %o, X). Then 7.5 = Npoz, (h © 1z),
50 q o Np.x = (q ° Nn.x,)(q © z) = (P °¥)(q ° 7z), so in particular, o7,z = (¥)(q°7%)- Hence
G(h - %) = (q o np.x)(1) = o nz(1) = §(%), so g factors as shown. X is connected, so p’ is surjective,
so it is bijective and hence a covering isomorphism. O

5 Seifert-Van Kampen theorem

5.1 Free groups and presentations

Consider 7, (S v S, x,) where x, is the wedge point. The universal cover is the infinite 4-valent tree
T, (4), so r;(S' v SY) is in bijection with g~!(x,), the vertices of T,,(4). Let %, be one such vertex. If
X is a vertex, there is a unique shortest path from %, to X. This gives an ‘address’ for X in T, (4) given
by recording the type and direction of each edge used in the path. The set of such ‘addresses’ is in
bijection with the set of reduced words w = ¢, ... €, where r € N, and each [; is one of q, a1, b,b71,
such that w does not contain any substring of the form aa~!,a 'a,bb='b~'b. Then each word w
corresponds to an element w € 7;(S' v S, x,), the image of the shortest path under q. Note that
the multiplication ww’ in 7,(S' v S', x,) corresponds to concatenation of words ww’ and then the

reduction of substrings such as aa™!.

Definition. A free group with generating set S is a group Fg and a subset S C F; such that if
Gisagroupand ¢: S — G is a map of sets, there is a unique homomorphism ®: F, — G
with @[ = ¢.
Fg
/ :cp
&
S T) G

Remark. The action of taking the free group of a set is a functor from Set to Grp, and it is left adjoint
to the forgetful functor from Grp to Set. This property is known as the universal property of the free

group.

Example. 7,(S'Vv S!) ~ Fiq p)- Indeed, given ¢ : {a, b} — G, we define (¢, ... £,) = ¢(¢1) ... (¢,),
where we extend ¢ to all of {a,a™?, b, b~} by defining p(a~!) = p(a)~! and p(b~!) = ¢(b)~'. This is
a homomorphism: indeed,

D(ww") = @(41) ... p(€K)P(£1) ... (£)) = P(w)P(w")

cancelling substrings of the form aa~! as required. The homomorphism is unique as required for the
universal property of the free group.

Lemma. Let Fg, Fr be free groups on sets S C Fg, T C Fr. Let ¢: S — T be a bijection.
Then @ : Fg — Fr is an isomorphism.

Proof. Lety) = ¢~L. Since Fry is free, there exists a homomorphism ¥ : F; — Fg such that Y|, =1
Then W o @ : Fg — Fg has the property that for all s € S, we have 1 o ¢(s) = s. F is free, so there is
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a unique homomorphism a : Fg — Fg mapping s € S to s. So a = idg,. Hence W o @ = idp, so by
symmetry, they are inverse functions. O

Corollary. If Fg, Fg are free groups generated by S, Fg ~ Fg. So the isomorphism type of Fg
depends only on |S|, the cardinality of S.

We therefore can write E, for the free group (up to isomorphism) generated by n elements a, ..., a,.
LetX = \/in:1 S! where x, is the wedge point, with inclusion maps j, : S! — X. Let q; = j;, (1) for
1 € m1(S%, 1) be a generator. Then X has universal cover X = T,,(2n), the infinite regular 2n-valent
tree. In particular, 7;(X, xy) is the set of reduced words in {afl, ,a%l}, which is isomorphic to
E,.

5.2 Presentations

Definition. Let G be a group and S C G be a subset. Let S¢ = {H < G | S C H}, then let
S)y= Hesg H be the smallest subgroup of G containing S, known as the subgroup generated

by S. Similarly, let Ng = {N < G| S C H}, and let {S) = ) HeN H be the smallest normal

subgroup of G containing S, called the subgroup normally generated by S.

Note that (S) is nonempty since 1 € H for all H € S;.

If (S) = G, we say that S generates G. If so, there is a unique homomorphism ®g : Fg — G that maps
stos. Im®dg < G, and it contains S, so @g is surjective.

Definition. Given a set S and R C Fg, we define (S | R) = F, S/«R))' If in addition {R) =
ker ®g, then G ~ FS/ker Dg = FS/((R))' We say (S | R) is a presentation for G.

Proposition. Any group G admits a presentation.

Proof. Clearly (G) = G, soletS = G. Let R = ker @, where ®; : F; — G. Then by construction,
F. — F ~
Y(RY = Ykerog = O- =

Remark. These presentations are very large. It is often more useful to consider finite presentations
of G, where both S and R are finite.

Example. (a,b|) = F,. (a|) = F, = ;;(S1,1) 2 Z {a| a®) ~ Z/35. {a,b | ab™3) = Z.

Proposition. Let (S | R) be a presentation, let a ¢ S, and let w € Fg. Then (S | R) =~
(Su{a} | RU{aw™1}).

Proof. We have homomorphisms ¢: (S|R) — (Suf{a}|RU{aw™'}) mapping s € S to s, and
P: (Su{a}| Ru{aw™'}) — (S| R) mapping s € S to s and a to w. These are inverses. O
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There are other operations we can apply to presentations. If w € R, we can replace w with a conjugate
sws~! for s € S, and it leaves the group unchanged. For example, (ab | abb) = (ab | bab). Also, if
w;, W, € R, we can replace w; with w,w,, so for example,

{ab | babb,abb) = (ab | b,abb) ~{a|a) ~ 1

Theorem. Given a finite set S and a finite set of relations R C Fg, there is no algorithm to
determine if (S | R) ~ 1.

5.3 Covering with a pair of open sets

Theorem. Let U;, U, C X be open, and U; N U, be path-connected with x, € U; N U, and
U, uU, = X. Then ¢, (71,(Uy, X)) U 1, (71, (U,, X)) generates 7;(X, x,), where ¢; : U; —» X is
the inclusion.

Proof. {Uy, U,}isan open cover of X, soify € Q(X, x,), we have {y‘l(Ul), y‘l(Uz)} is an open cover of
I. By the Lebesgue covering lemma, we can find n € N such that [i, Ji] lies entirely inside y~1(U;)
n n

or y~}(U,) for all j. Each interval [i, %] with the label 1 or 2 accordingly; if it lies in both, choose

an arbitrary label. Let 0 = ¢, < t; < --- < t; = 1 be the points of the form i where the labelling
changes. LetI; = [t;_,t;] foreachi € {0, ..., k}. Lety; = ylli, soy(t;) € UynU,, and y(I;) C U; moa 2
without loss of generality. Note that we can write y as the composition of paths y = y; ... ¥&.

Let 1y, ..., n,_; be paths with n; € Q(U, N U,, ¥(t;), X,), which exists since U; N U, is path-connected.
Then

Y ~e AT Va2 o el Ve = Qann) (07 7am2) 12 - ey (21 7k)
81 5, Sk

Then each §; € Q;(U;, x¢), 50 [8;] € IM (j mod 2)+- SO [¥] = [61][82] ... [6k] is a product of elements
in 1y, (1 (U;, xg)) U 1y, (1 (Us, X)), so [y] lies in the subgroup they generate. O

Corollary. Let U, U, C X be open and simply connected with U; U U, = X, and let U; N U,
be path-connected and contain x,. Then X is simply connected.

Proof. (X, x,) is generated by t;, (71 (U, xg)) U 15, (71 (U3, Xp)) = {1}. O

Example. S" = Ut U U, where Ut = §" = {(1,0,...,0)} and U~ = S" — {(—1,0,...,0)}. Then
Ut ~ U~ ~ R" by stereographic projection. Ut n U~ ~ R" — {0}. Hence 7;(U%, xy) = 1 since R"
is contractible. UT N U~ is path-connected if n > 1, so 77;,(S", x,) = 1 for n > 1.

Example (attaching a disk). If f: S' — X with f(1) = x,, let X Ur p? =XUD 2/N, where ~ is
the smallest equivalence relation such that z ~ f(z) for z € S'. Let 7 be the quotient map from
X I D?to X Uy D2 Then let U; = 7(X u D? \ {0}) and U, = 7(D?). Then U; U U, = X Uy D?, and
U, N U, = (D?)° \ {0} is path-connected. 7,(U,) = 1, so 7r;(X Up D?) is generated by 7;(X). Note that
fot m(S', 1) - m(X, xp), so f.(1) lies in the kernel of the inclusion 7;(X, Xo) — 71(X Uy D?, x,),

. . . . X
since f,(1) is null-homotopic in X Uy D2. So 7;(X Uy D?) surjects onto 7 1 )/« £.())
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This is in fact an isomorphism. Suppose [y] € 7;(X Uy D?, x,) is mapped to the trivial element of

T 1(X)/<< £.(1)y SO [7] can be viewed as an element of {f,(1))). Note that all such [y] are of the form
a, f,(n)art ... a f.(n)ai". Since f,(n) = 1in (X Uy D%, xo), [y] = 1.

5.4 Amalgamated free products

Definition. Lety, : H — Gy,1,: H — G, be group homomorphisms. A group G is an
amalgamated free product of G; and G, along H if:

(i) There are homomorphisms ¢; : G; — G, ¢, :

G, — G such that the following diagram
commutes.

N
y.

(ii) Itis universal with this property, so for any other group G with a commutative square
as above, there is a unique homomorphism ¥ : G — G such that the following diagram

N
\V

Remark. The amalgamated free product is the colimit of the following diagram.

Gy

i

H

N

G,

Hence, it is a categorical pushout.

Proposition. If G, G’ are amalgamated products of G;, G,, then G ~ G'.

Proof. There are homomorphisms «: G — G',3: G’ — G, and the uniqueness in the definition
implies ¢ o § = idgr and B o @ = idg. In other words, the following diagram commutes.
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[%) GZ

Proposition. An amalgamated product of any two groups exists.

The universal property of the presentation is that (S | R) ~ F, S/<< Ry Suppose S C G satisfies the

relations R in G, so all of the relations map to the identity. Then there is a unique homomorphism
(S| R) » G mapping s € S to s, since there is a unique homomorphism Fg — G mapping s € S to s,
and since S satisfies the relations, this factors through F, S/« RY

For example, consider a map <a | a4> - Z/ZZ that maps a to 1. We can check that the relation 14 = 0
in Z/ZZ holds.

Proof. Consider presentations G; = (S; | R;) of G1, G5, and H = (T | W). Then define

G =Gy %y Gy =(S;US;UT | Ry UR U{t7 (1), 7 5,(t) | 5 € T})
Then ¢; : G; — G are given by s € S; mapping to s. Given j,, j, : G;,G, — G,wedefiney: G -G
mapping s € S; to j;(s), s € S, to j,(s),and t € T to j, ot;(t) = j, o1,(t), and check that the relations

hold. O

This is isomorphic to (S; U S, | Ry UR, U{u (¢ (t;) | t; € T}).
5.5 Seifert-Van Kampen theorem

Theorem (Seifert-Van Kampen). Let X = U; U U, where U; are open sets with U; N U,
path-connected and containing x,. Let G; = m,(Uj, Xy), and H = 7;(U; N Uy, Xg), SO

Uy G,
N N
H

U, n U, X
U, G,

Then 7,(X, x) = G %y G,.

T (X)

Remark. The ‘easy’ part of the proof is that we have a commutative diagram
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so we obtain a map ¢ : G, g G, — m;(X, xy) by universality of the amalgamated free product.
Clearly 1 is surjective by the theorem in the previous subsection, and the difficult part of the proof is
showing that 1 is injective.

Proof sketch. We show that if H: I X I — X is a homotopy between y, and y;, then [y,] = [y1] using
the relations in G; %y G,. We can divide I X I into squares of size L such that the image of each
square under H lies in either U; or U, by the Lebesgue covering lemn;la. Each row represents a path
7 i , and by operating row-by-row we will show y ; is related to yi+1 in G; * G,. To move from one

n n n
row to the next, if there are different labels above and below, the boundary lies in U; N U,, so we use
the relations ¢;, (t;) = t,,(¢;)- O

Example. Consider X Uy D* = U; UU, where U; = XUy D?\ {0} and U, = (D?)°, with x, € U N U,.
Let p: U; — X be the inclusion. Since D? \ {0} has a strong deformation retraction to S!, we know
U, has a strong deformation retraction to X, so ; (U, Xg) ~ 7,(X, p(xy)). Note that 7z, (U, x,) is the
trivial group, since (D?)° is contractible. Note that U; n U, = (D?)° \ {0} is homotopy equivalent to
S, s0 1 (Uy N Uy, xo) = Z = (y).

Then, by the Seifert-Van Kampen theorem, we have 7,(X Uy D?) ~ m(X) x5 1. If (X, x0) = (S | R),
we have in particular that

(X Up D) = (S, [RUL O = (S T RU £y = &KXl 0

Example. Consider the torus T2 = S' v S* Uy D. Let a, b be generators for 7;(S* v S*). Then the
commutator aba~'b~! represents the disk attached. So 7;(T?) = (a,b | aba~'b~') = 7.

Example. Let %, be a surface of genus g. Then £, = \/‘ig:l(S1 v S ur D%, s0

g
H aibiai_lbi_1>
i=1

ﬂl(zg) >~ <a1,b1, ,ag, bg

Example. A surface of genus two can be realised as a union of U, U, where U; N U, ~ S! and
m(U;) = (a;, by), then m1(Z,) = (ay, by) #7 (az, by)-

6 Simplicial complexes

6.1 Simplices

We have shown that 7;(S?, x,) =~ Z, and 7;(S", x) ~ 1 forn > 1,s0 S' »~ S". We would like to show
that S” ~ S™ only holds if n = m. One proof of this fact is that any f: S" — S™ with n < m is null-
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homotopic, but the identity on S is not. Both of these claims require proof: simplicial complexes
will allow us to prove the first, and homology will allow us to prove the second.

Definition. The n-simplex is the topological space

n
xiZO,in=1}

A" = {(xo, s Xpy) € R
i=0

with the subspace topology.

Remark. A is homeomorphic to I. A? is an equilateral triangle, and A3 is a regular tetrahedron. For
all n, A" is closed and bounded in R"*!, and hence compact and Hausdorff. The standard basis
vectors ey, ... , €, are the vertices of A”.

Definition. IfI C {0, ..., n}, the Ith face of A" is
er={xe A" | x;=0fori &I}

We define F(A") = {e; | I C {0, ..., n}} to be the set of faces of A”.

IfI = {iy,...,ix} With iy < --+ < iy, we write I = iyi; ... ii.

Remark. Note that e;;; = e;, and A" = e(g ;. e is a closed subset of A", and is homeomorphic to
A‘Il_l. er C ey ifand Only if I - J. ern er =€y

Definition. Amap |f|: A" — RY isaffinelinear ifitis the restriction of a linear map R"**! —
R". Equivalently, |f|(2?:0 xiei) = Z?:o X;|f|(e;). We say an affine linear map |f] : A" - A™
is simplicial if it maps vertices in A" to vertices in A™, so there is a map of sets f : {0, ...,n} —
{0, ..., m} where |f|(e;) = €fa)-

Remark. Affine linear maps are continuous, and are determined entirely by their action on e;. In
particular, simplicial maps |f| are determined by f. For I C {0, ..., n}, we have |f|(e;) = e (1)

Definition. Vectors vy, ..., v, € RN are affine linearly independent if whenever Y t;u; = 0
and ) t; = 0, we have t; = 0 for all i. Equivalently,
(i) If ) tjv; = Y tiv;and D) t; = ), ¢, then for each i, t; = ¢].
(ii) The vectors vy — vy, Uy — Uy, ... , U, — Ug are linearly independent.
(iii) The unique affine linear map |f| : A" — RN given by |f|(e;) = v; is injective.
If v, ..., v, are affine linearly independent, we write

[vgs ..., U,] = Im|f] ={invi | in =1,x; 20}

and we say [vy, ..., U, | is a Euclidean simplex.

Remark. A" is compact and [vy, ..., U, ] is Hausdorff, so by the topological inverse function theorem,
Ifl: A" > [vy, ..., U,] is a homeomorphism if the v; are affine linearly independent.
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Lemma. If X C RY, let Z(X) be the set of x € X such thatif x = > t;x; fort; > 0, t; = 1
and all x; € X, then x; = x for some i. Then Z([vy, ..., U,]) = {Ug, --- » U }-

Proof. We show that v, € Z([vy, ..., U,]); the converse is clear from the definition of the simplex.
Suppose vy, = Y t;x; fort; > 0and > t; = 1. Then x; = Z?:o 5ijVj» since x; € [vg, ..., U,]. So
v =2 (35, tisij)vj. Since the v; are affine linearly independent, and % (35, tisij) = 1, we must
have )’ t;s;; = 0 for j # k. Butt; > 0 and s;; > 0, so the only case is when all 5;; are exactly zero for
J # k, 80 xj = vy. =

Corollary. If [vg, ..., ,] = [V, ..., V)] as subsets of RY, then {vy, ..., v, } = {Uf, ..., V), } as
sets.

Therefore, a simplex determines its set of vertices.

Proof. {vg; ..., Up} = Z([Vg; ..., Ux]) = Z([Vg, ..., U ]) = {vgs -, U} O

Definition. S(R") is the set of Euclidean simplices ¢ C R". Hence, S(R") is in bijection
with the set {{vg, ..., vi} | v; € RN, k > —1,v; affine linearly independent}.

6.2 Abstract simplicial complexes

Definition. An abstract simplicial complex in A" is a subset K of the faces F(A") such that
e; € K whenever ey isin Kand I C J.

Remark. Abstract simplicial complexes are downward-closed sets of faces. They have no intrinsic
topology. The set of faces F(A") of the n-dimensional simplex A" is an abstract simplicial complex.

Definition. IfK is an abstract simplicial complex, its polyhedron is |K| = | 1 C A"

ereK ¢
Remark. Polyhedra are compact and Hausdorff.

Definition. We define K, = {e; € K | |I| < r + 1} to be the set of faces of dimension at most
r. This is called the r-skeleton of K.

The r-skeleton is an abstract simplicial complex. Note that
leg}=K_,cKycC--CK,=K

We write dim K = max{dime; | e; € K}.

Definition. The vertex set V(K) is the polyhedron |Kj|.
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Example. A" = F(A") = {e; | I C{0,...,n}}is a simplicial complex. Its polyhedron is A", which is
homeomorphic to D" by radial projection.

Example. S"! = A | = {e; | I £ {0,...,n}} is a simplicial complex. This has polyhedron dA" by
definition of the boundary. This is homeomorphic to S”~! by radial projection.

Definition. Let K, L be abstract simplicial complexes in A" and A™ respectively. A simplicial
map f : K — Lisamap such that there is asimplicial map |f| : A" — A™ with f(e;) = |f|(er)-
Equivalently, there is a map f : {0,...,n} — {0, ..., m} such that f(e;) = e ander € K
implies efpy € L.

Remark. The identity map is simplicial. The composition of two simplicial maps is simplicial.

Definition. We say a simplicial map f : K — L is a simplicial isomorphism if f is a bijection,
or equivalently, | f] is a bijection or |f| is a homeomorphism, treating | f| as a map |K| — |L|.

6.3 Euclidean simplicial complexes

Recall that S(R") is the set of Euclidean simplices [vy, ..., U, ] where the v; are affine linearly inde-
pendent.

Definition. K C S(R") is a Euclidean simplicial complex if
(i) K is finite;
(ii) ifc € K and 7 € F(0), then 7 € K;
(iii) if oy, 05 € K, then 0y N 0, € F(0;) N F(0y), so in particular, o; N o, € K.

If so, we write |K| = UgeK o C R" with the subspace topology. We write

K,={c €K |dimo <r}

for its r-skeleton, which is a Euclidean simplicial complex.

Proposition. Let |p|: A" — R" be affine linear, and K’ be an abstract simplicial complex
in A", such that |go||| x| is injective. Then ¢(K') = {|p|(er) | e; € K'}is a Euclidean simplicial
complex.

Proof. Property (i) is clear since F(A") is finite. For property (ii), note that if ¢ € @(K’), there is
e; € K' such that o = |¢|(ey). If T € F(0), we have 7 = |p|(e;) for e; C e;. Then e; € K’ since K’ is
an abstract simplicial complex. So 7 = |p|(e;) = p(K').

Suppose 07 = |¢|(er,) and o, = |p|(er,) where e ,e;, € K'. Then oy N o, = |p|(er,) N |pl(er,) =
lpl(er, N er,) by injectivity. This is equal to |¢|(er,nr,) € F(o1) N F(0y). O

Definition. We say that the Euclidean simplicial complex ¢(K") is a realisation of an abstract
simplicial complex K’ in A", if |p| : A" — R" is affine linear and injective on |K’|.

Remark. If p(K") is a realisation of K', |(p|||K,| isinjective, so || : |K'| = |@(K)|is a homeomorphism.
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Proposition. Let K C RN be a Euclidean simplicial complex. Then K = ¢(K') for some
abstract simplicial complex K’, and |¢| : |K'| — |K]|. Any two K’ are related by a simplicial
isomorphism.

Informally, every Euclidean simplicial complex is the realisation of some abstract simplicial com-
plex.

Proof. Let V(K) = |Ko| = {vg,...,0,} C RN be the vertex set of the Euclidean simplicial complex.
Define K’ = {eg iy | [Vig»--»0;, ] € K}. Let o] : A" — RN be given by |¢|(e;) = v;.

We show that |go|||K,| is injective. If 0 = [vy, ..., v, | € K, we have that v; , ..., v;, are affine linearly
independent since K is a Euclidean simplicial complex. Then |¢| ¢, is injective.

Suppose |¢|(p) = |¢|(q) = x € RN, where p € e; € K’ and q € e; € K'. Then x € |p|(e;) N |¢|(ey),
which is the intersection of simplices in K, so x € |p|(ep) for I' C I nJ. Since |p|| o and |op|| ¢, AT
injective, we must have p,q € ep. But ||| - is also injective, so p = q. O

Definition. A simplicial map of Euclidean simplicial complexes is a map f: K; — K, if
there are realisations ¢; : K — K; and a simplicial map of abstract simplicial complexes
f': Ki — Kj so that the following diagram commutes.

’ I ’
Ki — K,

T

K, T>Kz

Remark. The composition of simplicial maps of Euclidean simplicial complexes is also a simplicial
map.

6.4 Boundaries and cones

Definition. Let o be an n-dimensional Euclidean simplex. Let F(o) be the set of faces of g,
a Euclidean simplicial complex with |F(o)| = 0. Letdo = F(0),_; = F(0) \ {o}, a Euclidean
simplicial complex. Let o = |go| C RN be the boundary of o. It is homeomorphic to S"~1.
Let 0° = o \ do be the interior of o.

Definition. Let X C RY and p € RN. We say p is independent of X if for each x € X, the
ray px from p to x has px N X = {x}.

Definition. If p is independent of X, the cone is defined by

CX)={tp+(Q-t)x|t€[0,1],x € X}

Example. LetX = [vy, ..., U, | be an n-simplex. Then pisindependent of X ifand only if {vy, ... , v, p}
is an affine linearly independent set. If so, C,(X) = [vo, ..., Uy, P]-
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Definition. Let K be a Euclidean simplicial complex in RY and p be independent of |K]|.
Then we define the cone

Cp(K) = K U{[vg, ..., v}, p] | [Vgs ..., v;] € K}

Lemma. If p is independent of |K|, then C,(K) is a Euclidean simplicial complex and

6.5 Barycentric subdivision

Definition. If o = [v,, ..., v, ] is an n-simplex in RN, we define its barycentre

Lemma. b, is independent of do, and Cp_(00) = 0.

We will define maps 8 from S(RY) to the set of Euclidean simplicial complexes in RN, and B from
the set of Euclidean simplicial complexes in RN to Euclidean simplicial complexes in RY, satisfying
|B(0)| = g and |B(K)| = |K|. The maps § and B are called barycentric subdivision. In order to do this,
we will inductively define § and B on simplices and Euclidean simplicial complexes of dimension at
most n, and prove the following theorems.

Theorem (first inductive hypothesis). Let ¢ € S(RN) be an n-simplex. Then (o) is a Euc-
lidean simplicial complex of dimension n, and |8(c)| = o. If 7 is a face of o and 0, € B(0)
then o, N7 € B(7).

Theorem (second inductive hypothesis). Let K be an n-dimensional Euclidean simplicial
complex. Then B(K) is an n-dimensional Euclidean simplicial complex with polyhedron
IB(K)| = IK].

For the base case, let n = —1. The only —1-dimensional simplex is @. We define 8(@) = {@}. The only
—1-dimensional simplicial complex is {@}, and we define B{@}) = {@}. Both inductive hypotheses
hold for this case.

In general, suppose 5 and B are defined on n—1-dimensional simplices and simplicial complexes and
thatboth inductive hypotheses hold. We now define 3(0) = C},_(B(@o)) and B(K) = Ua <x B).

Example. Let o be a zero-dimensional simplex. Then 8,(c) = o.

Example. Let o be the one-dimensional simplex. do is two points p;, p, and the empty set. Then
B(@o) = {@, p1, pa}- Therefore, C,(B(80)) = {@, p 1, P2> PP1> PP2}-
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Example. Let o be a two-dimensional simplex with vertices p;, p,, p3. Then C,(B(do)) has six 2-
simplices, twelve 1-simplices, seven 0-simplices and one empty simplex.

Proof of first inductive hypothesis. @o is a Euclidean simplicial complex of dimension n — 1, hence
B(do) is a Euclidean simplicial complex by the second inductive hypothesis, and |B(do)| = |do| = do.
By the lemmas above, b, is independent of do = |B(@0)|, so Cp_(B(@0)) is a Euclidean simplicial
complex with polyhedron |C,_(B(@0))| = Cp_(90) = 0. The next part follows from the lemma: if
o € G,(K), theno n [K| € K. O

Proof of second inductive hypothesis. We check the properties required for a Euclidean simplicial com-
plex for B(K) = UUGK B(0). B(o) is finite for each o and K is finite, so B(K) is finite. If ¢ € B(K)
then o € B(¢’) for some ¢’ € K, so if T € F(0), then T € (¢’) since 8(¢”") is a Euclidean simplicial
complex, so T € B(K), so the second property holds. Suppose 0,0, € B(K) where o; € §(o;) and
o; € K. Then oy Nno, C o] N oy = 7since |5(0})| = of, where 7 € K since K is a Euclidean simplicial
complex. Then o, N 7,0, N7 € B(7) by the second part of the first inductive hypothesis. In partic-
ular, () is a Euclidean simplicial complex, so o, N0, = (o;NT)N(0, N T) € B(r) C B(K), so the
N—_——— N—_———
€p(r) €pB(r)
third property holds. So K is a Euclidean simplicial complex. Now, by the first inductive hypothesis,
[B(K)| = UgeK B(o) = UgeK o= I[K|. O

Lemma. Let o € S(RV) and x,v € o. Then |v — x| < maxy, ey (o) IV — vyl

Proof. We can write x = ), x;v;, where ), x; = 1, x; > 0, and v; € V(o). Butalso, v = )] x;v. Hence,

o=l = [ X %0 = v < X xllo = vill < Y xi max o — vyl = max o - vy

Applying this twice, [|x — v]| < maxy,ep (o) [V — vill < maxy, vev(o) Vi — Uj H

Definition. The mesh of a simplex o € S(RV) is

u(o) = max

v; — Uj|| = max |[v — x|
vi,ujeV(a) X, VET

If K is a Euclidean simplicial complex, its mesh is u(K) = max g u(0).

Lemma. Let b, be the barycentre of o, so b, = ﬁ Z?—o v; for o = [vg,...,U,]. Then
" =

n
= < — .
max,eq [bg —vf| < n+1'u(o-)

Proof. |bg — v|| £ maxy, ey (o) [I1bs — v;]|- We have

1
by — v = ——
Ibs = vill = —

Z Uj — nou;
J#i
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Corollary. Let o be a Euclidean simplex of dimension n. Then u(8(o0)) < nlﬂ,u(a). Let K be

a Euclidean simplicial complex of dimension n. Then u(B(K)) < nLH#(K)'

Proof. Let T € B(o). Suppose T € B(@o). Then, u(r) < nT_lu(B(ao)) < niﬂ,u(o) by induction.

Otherwise, T = [vg, ... , Uk, by |, Where [vg, ..., Ux] € B(@o). Then

v; — vj” < HT_I,u(a) by induction,
and ||v; — by < niﬂ,u(o) by the lemma. O

6.6 Simplicial approximation

Lemma. (i) Let x € A". Then there exists a unique I C {0, ..., n} such that x € ej.
(ii) If x € e}, then x € ej if and only if I C J, or equivalently, e; C e;.
(iii) Let K be an abstract simplicial complex in A", and let x € e}. Suppose that x € |K|.
Then e; € K.

Proof. Part (i). LetI = {i € {0, ..., n} | x; # 0}. Part (ii). Follows from part (i).

Part (iii). x € |K|implies x € e; for some e; € K. By part (ii), we have e; C e;. Since K is an abstract
simplicial complex and e; € K, we have e; € K. O

Corollary. Let K be a Euclidean simplicial complex, and x € |K|. Then there exists a unique
o € Kwith x € o°.

Proof. Letp: K' —» K bearealisation of K, so K’ is an abstract simplicial complex and ¢ is a bijection
inducing a homeomorphism on the polyhedra. Let x’ = |¢~!|(x) € |K|. Then x’ lies in the interior
of a unique e; by part (i) of the lemma above. Note that e; € K’ by part (iii), so ¢(e;) is the unique
o € Kwith x € o°. O

Definition. Let K be a Euclidean simplicial complex, and let v € V(K). Then the star Stg(v)
LS U{aeK|vea} o°.

Lemma. (i) Letx € |K|and x € ¢°. Then x € Stg(v) if and only if v € V(o).
(ii) Stg(v) = K|\ U{o'eK|u¢V(a)} o° = [K|\ U{aeK|v¢V(G)} L
(iii) {Stx(v) | v € V(K)}is an open cover of |K]|.

Proof. Part (i). Follows from the fact that if x € |K|, x lies in a unique interior of o for o € K.

Part (ii). The first equality follows from part (i). The second follows from the fact that if 7 € F(o)
and v € V(o), thenv & V(7).
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Part (iii). Part (ii) exhibits Stx(v) as the complement of a finite union of closed sets in |K], so it is
open. If x € |K|, then x € ¢° for some o, and if v € V(0), then x € St (v), so it is a cover. O

Definition. Let K, L be Euclidean simplicial complexes. Let f : |K| — |L| be a continuous
map, and let g : V(K) — V(L). We say that g is a simplicial approximation of f if f(Stx(v)) C
Stz (g(v)) for all v € V(K).

Theorem. Let ¢ : K' — K be a realisation of a Euclidean simplicial complex K, and let L be
a Euclidean simplicial complex in RM. We define g’ : |K’| — RM to be the affine linear map
with |g'|(v) = g(e(v)) if v € V(K'). Let |g| = |g'| o |qo|_1. Then |g| defines a simplicial map
g: K- L,and |g| ~ f.

Proof. Let o € K. We must show that |g|(0) € L. Let x € ¢° be an arbitrary point in the interior.
Then f(x) € |L|, so f(x) € t° with7 € L. Then x € ﬂveV(cr) Stx(v), so f(x) € ﬂvev(a) f(Stg(v)) C
ﬂu V(o) Sty (g(v)) since g is a simplicial approximation of f. Now, if v € V(0), f(x) € 7° and
f(x) € St(g(v)), so g(v) € t by part (i) of the lemma above. Hence, every vertex of |g|(o) is a vertex
of 7,50 |g|(c) isa face of T € L, so |g|(c) € L as required. So g: K — L is simplicial.

For the second part, we define H: |K| x I — RM by H(x, t) = t|g|(x) + (1 — t)f(x). This is clearly
a homotopy in RM, but we need to show it is a homotopy in |L|. Suppose x € ¢° and f(x) € 7°
as before. Then x = ¥, ) Xt 50 [8106) = 3,y Xil8I(v) € 7 since [g|(v;) € . Since  is
convex, and |g|(x), f(x) € 7, we must have H(x,t) € tfort € [0,1]. So H: |K| X I — |L|, which is
the desired homotopy. O

Theorem (simplicial approximation theorem). Let K, L be Euclidean simplicial complexes.
Let f: |K| — |L| be a continuous map. Then there exists » > 0 and a simplicial map
g: B"(K) - L such that |g| ~ f.

Note that |B"(K)| = |K|, so |g| : |B"(K)| — |L| can be thought of as a map |K| — |L|.

Proof. We have the open cover {St;(v) | v € V(L)}of|L|. f: |K| - |L|iscontinuous, so {f‘l(StL(v)) |ve V(L)}
is an open cover of |[K|. Now, |K| is a compact metric space, so we can apply the Lebesgue cov-

ering lemma to find § > 0 and a function |[K| — V(L) mapping x to some vertex v, such that

Bs(x) € f~1(St;(vy)). Let r be a natural number such that u(B"(K)) < &, and let K’ = B"(K). If

g € K' and x € V(0), then o C Bs(x), since u(K') < &. If x € V(K’), then

Stgr(x) = U o° C U o C Bs(x)

{olxeV (o)} {olxeV (o)}

Hence, f(Stg:(x)) C f(Bs(x)) C Stz (v,), so the function g : V(K’) — V(L) given by g(x) = v, isa
simplicial approximation of f. So by the previous theorem, g determines a simplicial mapg: K’ —» L
with |g| ~ f. O

Corollary. Let K, L be Euclidean simplicial complexes, where dimK < dim L. Let f : |K| —
|L| be continuous. Then f ~ |g| where |g| is not surjective.
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Proof. Letg: B"(K) — L be a simplicial map such that f ~ |g|. Let k = dim B"(K) = dim K. Then
lgl: |K| = |Lg| € |L| since dim L > k. So |g| is not surjective. O

Remark. It is a general fact that simplicial functions map an i-skeleton into an i-skeleton for each i.

Theorem. If k < n, any continuous map S¥ — S” is null-homotopic.

Proof. S* ~|Sk| and S™ ~ |S"|. By the above corollary, f ~ |g| where |g| : S¥ — S™ is not surjective.
Let|g|: $* — S"\ {p}.

sk &y sn\ (p)

N

Sn

But ™ \ {p} ~ R" is contractible. So g’ is null-homotopic, so |g| ~ t o g’ is null-homotopic. O

7 Simplicial homology

7.1 Chain complexes

Definition. A (finitely generated) chain complex (C.,d) is
(i) a collection of free (finitely generated) abelian groups C; for i € Z (and if finitely gen-
erated, C; = 0 for all but finitely many i);
(ii) a collection of homomorphisms d; : C; — C;_1;
(iii) di_; od; = 0foralli.

= L4 dy dy d;

d3
- < C, < C_ < Co < G < G <

Usually, we write C, = P, Cj,and d = P, d; : C. — C.. We can check thatd;_; od; = 0 foralliis
equivalent to the statement thatd o d = d? = 0.

Remark. Free finitely generated abelian groups are isomorphic to Z" for some n. A chain complex
defined over Q, R, or Fp is similar, except that C; is a vector space over the Q, R, Fp and the d; are
linear maps. Every chain complex determines another chain complex over Q, R, [, by replacing 7"
with Q", for example, and the d; are given by the same matrices.

Remark. There is a unique group homomorphism to and from the trivial abelian group 0. Arrows to
and from this group can therefore be unlabelled.

Example (reduced chain complex of the simplex). Consider the reduced chain complex of A". We
define C.(A™) = (er | |I| = k + 1,1 C {0, ..., n}), the free abelian group on a basis given by the e;. We
also define d(e;) = Z‘J.Ilzo(—l)jefj where if I = igij ... 1 and ip < -+ < iy, we define I; = I'\ {i;}. For
example, consider C,(A2).

52(A2) = (€o12); 51(A2) = (€01,€02,€12); 50(A2) = {eg, €1, €2}; 5—1(A2) = {‘3@}
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and, for example,
d(egrz) = (=1)%5 + (—1)'egy + (—1)%eq; = €1, — epz + €01

d(eg;) =e; —ep; d(egz) =e;—eg; d(erx) =ey—eqp;  dleg) =d(ey) =d(e;) = 1%}
Note that C;(A%) = 0ifi < —1 ori > 2. We have d?(eq;,) = d(e1, — €pr + €01) = €, —e; — e, + ey +
e, — ey = 0, as required.

~ dy d; ~ dy ~
0 < C < Co < G < G < 0

Proposition. For C,(A"), d? = 0.

Proof. The e; are a basis for C,(A"), so it suffices to check that d?(e;) = 0 for each I. For some c Jjts
we have d?(e;) = Xj<jicjjrer, , wherel;; = I\{ij,i;}. We can compute that c;;» has a contribution
of (~1)J(=1)/'~! by first considering j then j’, since ijs is the (j' — 1)th element of I;. Note also that

by computing the term ig the sum W/ith J, J' in the other order, we have a contribution of (-1 (-1)L.
Hence ¢, = (-1)/(-1)) 7' + (-1)/ (-1)' = 0. 0

Example (chain complex of the simplex). The chain complex of A" is defined by C;(A") = C;(A") if
i >0, but C_;(A") = 0. This removes the empty face e. The d; are unchanged.

dy dp

0 < Co < G < G, 0

AN

Definition. Let K be an abstract simplicial complex in A”. Let
Ci(K) = (er [ Il =k + 1,e; € K) < Cie(a™)

Since e; € K implies e, €K, dy : Ci(K) = Ci_1(K). So (C.(K),d) is a chain complex.

Definition. Let (C., d) be a chain complex, and let x € Cj.. We say that x is a cycle or closed
if dx = 0, so x € kerd,. We say that x is a boundary or exact if x = dy for some y, so
x € Imdj,,.

Remark. The statement d? = 0 is equivalent to the statement Im d;.,; C ker dy, for each k, so bound-
aries are always cycles.

7.2 Homology groups

Definition. Let (C,,d) be a chain complex. Its kth homology group is

Hk(c) — ker dk/Im dk+1

Remark. Homology groups are abelian.
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Example. Consider C.(A?). Recall C, = (ey1,) and d(eg;,) = €12 — g, + €o1. Hence kerd, = 0 and
Imd; = 0, s0 Hy(C.(A?)) = 0.

We have C; = (€12, €02,€01), and d(aeq; + bey, + cegy) = ale; — eg) + bey — e1) + c(ey — ep) =
—(a+c)eg + (a —Dbe; + (b + c)e,. Hence aey; + bey, + ey, € kerd ifand only ifa = b = —c. So
X € (e1, — gy + eq1) = Im d,, giving H;(C.(A%)) = 0.

We have C, = (e, e;,e,) and d(e;) = eg, so kerdy = {aeg + be; + ce, | a + b+ ¢ = 0}. Conversely,
Imd; = span{e; — eg, e, — eg, e, — €;} = kerd,. So in fact Hy(C.(A2)) = 0.

Now C_; = (ey) = kerd_; = (eg) = Imd, so H_;(C.(A%)) = 0. So all of the homology groups of
C.(A2?) are trivial. Note that

H;(C.(A%) = )(eo,el,eﬁ/ ~7 i=0
span{e; —eg,e; —eg,€3 — €1} =

Definition. Let K be an abstract simplicial complex in A". Then we define the ith reduced
homology group of K to be H;(K) = H;(C.(K)). Then C.(K) = C. (K)/<e®> is a chain complex,
and H;(K) = H;(C.(K)) is the ith homology group of K.

Example. LetK = {eg, ey, ..., €., e}, 50 |K| isacollection of r+1 disjoint points. In this case, C;(K) =
0fori> 0. Cy(K) = (e, ..., e,) and d(e;) = @. C_;(K) = {eg). Hence kerd, = (e; — eo, ..., &, — €o)
and Imd; = 0, so Hy(C.(K)) = 7", and H_;(C.(K)) = 0. Note that Hy(C.(K)) = Z"t! = (e, ..., e,).

Example. Recall that any Euclidean simplicial complex is realised by an abstract simplicial complex,
but we have choice in the labelling of the vertices. Let T}, be the boundary of a convex n-gon in R2.
Then the abstract simplicial complex

r_
K = {eg,eo, -+»€n_1,€01, €125 .-+ ’e(n—z)(n—l)!e(n—l)o}

in A"! realises T),. Then

C1(K") = (€01 €125 -+ » €(n-2)(n—1)» €(n—1)0)
CO(K,) = <e0’ ceey en—1>

We have d(e;(j4+1)) = €j41 — €;, S0 kerd; = (x) where
X =eptept- - +en-2)m-1) ~ Comn-1)
Note that Im d; = span{e;,; — e;}. Hence
H1<K/) — kerdl/Im d2 — <x>/0 ~7

HO(K/) — kerd%m dl — (eo, . 7

L] en—1> ~
/span {e; —e€gy.es€p_q1 — €n_z}
Note that this result does not depend on the choice of n, and |T},| ~ S* also does not depend on n. In

fact, H,(K) depends only on |K].

7.3 Chain maps
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Definition. Let (C.,d) and (C.,d’) be chain complexes. A chain map f: C. - C! is
(i) for each i, a homomorphism f;: C; — C;, such that

(ii) fic10d; _diofl

Remark. We can interpret f as P, f; : C. — C!, given by a block matrix

o)

Then part (ii) of the definition is equivalent to the statement d’f = fd.

If x € kerd, we write [x] € H,(C) for its image under the map kerd — ker d/Im d

Remark. f(kerd) C kerd’ because if dx = 0, we have d'(f(x)) = f(d(x)) = f(0) = 0. f(Imd) C
Imd’, because if x = dy, we have f (x) = f(d(y)) = d'(f(y)). So f descends to a well-defined
homomorphism f, : kerd/ md~ kerd /I 4’ such that f,([x]) = [f(x)]. So f, : H.(C) — H.(C).
This is called the map lnduced by f.

Remark. The composition of two chain maps is a chain map, and (f o g), = f, o g,.

Let K be an abstract simplicial complex in A", and L be an abstract simplicial complex in A™. Let
f: K — L be asimplicial map, so it is determined by f: {0,...,n} = {0, ..., m}. We wish to define
a chainmap fy: C.(K) — C.(L), which will induce f, : H.(K) — H.(L). Perhaps the most obvious
guess would be to define fy(e;) = f(e;) =e D) This is not the correct definition.

First, consider f: A! — Al given by ¢, — ey, e; = e,. Then f(ey;) = eg, but ey; € C;(A') and
eo € Co(AY). So f does not preserve grading, and hence cannot be a chain map.

Consider also f : Al — Al given by ¢, > e; and e; — e,. Now, f(eq;) = eo1, f(eo) = e1, f(e1) = e,
so df(eqr) = d(eg1) = ey —eg but fd(eo;) = f(eg —eg) = eo —e;.

The solution to both problems is to change our perspective on the indices I. Until now, we have
defined I C {0, ...,n} and written I = iyi; ... i where iy < --- < ir. Instead, we will allow I €

(o, .. ,n
permitted.

, 801 = (ig, iy, ... ,ix) = ipip ... i With no restriction on order. For instance, ey, e;o are

We impose relations on the set of all such I to form an abelian group generated by equivalence classes
of the {0, ..., n}k+1. We will define that e; = —ep» when I, I' are related by switching two indices; so
€102 = —€g12 = €319- If e; contains a repetition, we require e; = 0.

More concretely, if I € {0, ... ,n}kH, let I' be the unique ordered permutation of I if I has no repeti-

tions. Then e; = (—1)5®e,, if I has no repetitions, and e; = 0 if I has a repetition, where (—1)5®
is the sign of the permutation o € S¥*! mapping I to I'. If we draw I and I’ in order as a bipartite
planar graph, connected by matching labels, S(I) is the number of crossings.

Lemma. Leti; € I, and suppose i; is in position i; in I'. Then S(I) — S(I;) = j — j’ mod 2.

Proposition. LetI € {0, ..., n}k+1. Then d(ej) = Zj.czo(—l)jte, where I; is obtained from I

by omitting the jth entry in the tuple I.
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We have already defined d for ordered sequences of indices; this proposition states that this formula
holds for all sequences of indices.

Proof.

k k k
D (—Dker, = Z(—l)j(—l)s(l-f)ezji = 2 (1 (1) WDe(p = (-1 Dd(ep) = dley)
Jj=0 j=0

j=0
O
Example. d(e0) = (=1%o + (=1)'eyo + (=1)%e5; = —eqy + ez — €1 = d(—eqyz), where by
definition, e;;9 = —eg12 S0 d(e319) = —d(ep12)-
Definition. Let f: K — L be a simplicial map. Then fy: Cx(K) — Ci(L) is defined by
fulep) = e where if I = (iy, ... , i) we define f(I) = (f (i), --- » f(ir))-
This definition of fj preserves grading.
Proposition. f} isa chain map.
Proof.
k . k .
d(fy(ep) = d(ef‘(I)) = Z()(_l)Je(f(I))j = fﬂ(zo(—lyelj) = fy(d(ep))
Jj= Jj=
O

Example. Let f: Al — A! be the simplicial map defined by f(ey) = e, and f(e;) = ey. Then
faleor) = ego = 0.

Now let f(eo) = e; and f(e;) = eo. Then fy(eo1) = e1o = —eo1, fy(eg) = e1, fyler) = eg. So
d(fn(em)) = —d(e) = eg —e; = f(d(ep1))-

7.4 Chain homotopies

Definition. Let f,, f; : (C,d) — (C’,d’) be chain maps. Then f is chain homotopic to fi,
written fy ~ fi, if there are

(i) homomorphisms h; : C; — Cj,;, where we write h = @i h;, satisfying

(i) d'h+ hd = fy — fi.
In this case, we say h is the chain homotopy.

Example. Suppose fy, f; : X — Y are homotopic maps via H. Suppose X = A".
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Im f;

Im f,

Here,
d(H(A™)) = H(0A") U fi(A") U fo(A") = OH + HO = f1 + f,

without considering signs.
Lemma. If fi ~ fy, then f;, = fo, : H.(C) — H.(C').

Proof. Let [x] € H.(C). Then dx = 0. So

Jrdx] = fo.lx] = [(fi = fo)x] = [(d"h + hd)x] = [d"h(x)] = 0
since d'h(x) € Imd’'. O

Definition. We say a chain complex (C, d) is contractible if idc ~ 0¢, where O is the zero
map.

Lemma. Let (C,d) be contractible. Then H,(C) = 0.

Proof. Let [x] € H.(C). Then [x] = id,[x] = 0,[x] = [0]. So H,(C) is the trivial group for each
k. O

Definition. Let K be an abstract simplicial complex in A". Let e, ¢ K. Then the cone is
Ce,(K) = KU{eg | €1 € K}

Remark. C, (K) is an abstract simplicial complex. If K’ is a realisation of K, where ¢, ¢ K and K is
independent of p, then C,(K’) is a realisation of C, (K).

Example. Consider A" = {e; € A" | 0 ¢ I} ~ A". Then C, (A") = A"+,
Proposition. éd',(Ce0 (K)) is contractible.

Proof. Define h : 5k(Ce0(K)) - 5k+1(CeO(K)) by h(e;) = eg;. Note that if 0 € I, then ey; = 0.

If 0 € I then dh(e;) = 0, and hd(e;) = h<23{:0(—1)je1j) = h(epjo; + 2, ep) where 0 € I'. Then

hd(er) = e; +0 = e;. Otherwise, if 0 & I, then dh(e;) = d(eyr) = e1+Z?:0(—l)k+1eOIj = e;—h(dej).
In either case, dh + hd = id. O
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Corollary. H .(C¢,(K)) = 0. In particular,

HY(C,y (K)) = {OZ i ;8

Proof. Let C, (Cep(K)) = (C,d), and C.(C, ,(K)) = (C,d). The first part follows from the previous
result. For the second part, note that H_ 1(C (K)) =0,s0dy: Cy — C_; = <e®> ~ Z is surjective.

C. _kerd -
S0Z ~ Imd, ~ O/kerd /Imd since Hy(C) = 0. But %Im a, % d, rom d, =

Hy(C,,(K)). Fori > 0, note that ker d; = kerd; and Imd;,, = Imd,,,. Hence H;(C) = H;(C) for
i>0. O

Definition. Let S” = A"\ ¢, ,. Then

Z i=0,n
0 otherwise

H;(S") = {

Proof. Similar to the previous proof, but now we remove the ‘top’ generator instead of the ‘bottom’
one. O

Alternatively, we can prove this fact using the results from the next subsection.
7.5 Exact sequences

Definition. Let A, be a sequence of abelian groups for k € Z, and f): Ay — Ai_; be
homomorphisms. We say that the sequence is exact at Ay if ker ), = Im f),. If it is exact at
all Ay, we say the sequence is exact.

f f fx f
B Apy — Ay > Aplg — -

Example.
0—3a-tsp
is exact at A if and only if f is injective.
B—2ysc—30
is exact at C if and only if g is surjective.

0—3ya-Jtsp_Esc_ 3o

is exact if and only if f is injective, g is surjective, and g : B/Im - C is an isomorphism, so C =~

B/Im - An exact sequence of the form

0—3sa-1sp
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is called a short exact sequence.

Definition. Let g: B — C. Then the cokernel of g is cokerg = C/Irn g

In general, a sequence is exact if and only if
0 — coker fyy — A, —T5 ker fi_, — 0

is a short exact sequence for every k.

Definition. A short exact sequence of chain complexes is a short exact sequence

0o—>a —Lsp &y

~
(=)

where A., B., C. are chain complexes, and f, g are chain maps.

Equivalently, we have the diagram

s

A

A

L

\
I4
S g
0 > Ak_1 > Bgey —> Cooy —— 0
\
4

w
~
T AT
o
~
%&. Q %D.
~
(=)

S
=
Ay

s

f g
A2 > Bkea —> Gy —> 0

@ #13 \:de

where all squares commute since f, g are chain maps, and all rows are exact.

Lemma (snake lemma). Let 0 > A, ¥ > B. & > C. > 0 be a short exact se-

quence of chain complexes. Then there is an exact sequence

H(4) —L H.(B) —5— H(C) D

Ok
S -
[-> Hy_1(A) —— Hy_1(B) —— Hy_1(C)
The homomorphism dy, is called the connecting homomorphism. Since this exists for all k, this
gives a long exact sequence of homology groups.

Proof. Let [c] € Hi(C),so dc = 0. Then,

(i) gis surjective, so we can choose b € By, such that g(b) € c.
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(ii) g(db) = dg(b) = dc = 0,so db € ker g. Since the sequence is exact at B, we have db = f(a) for
some a € Ayi_;.

(iii) f(da) = d(fa) = d*(b) = 0. Since f is injective, da = 0.

We then define d;[c] = [a] € Hj_,(A). To visualise the above argument, the following diagrams can
be overlaid; the first diagram shows the groups, and the second diagram shows the corresponding
elements.

0 A —— B —E 3 G 5 0
47T
da -7 |ds dc
N K f N g
0 > Ak > By ————> Gy ————— 0
b%c
b7
=7 |ds
afF—1 v ap

This definition does not depend on any choices that we made; for example, [c] = [¢'] implies i [c] =
6k[c’].
(i) Ifg(b’) = c, then g(b — b") = 0. By exactness, b — b’ = f(a). Then db —db’ = f(d(a)). Let
f(a)=dband f(a') =db'. Soa—a’ =da,so[a] =[d].
(i) Suppose [c¢] = [¢']. Thenc — ¢’ = dy for y € Cj,,. g is surjective, so let y = g(3). Then
b—-b"=dB,sodb = db'. Since a = a’, we have [a] = [a’].

We need to check exactness. We will show that ker C Im in each case, the other direction is left as
an exercise.

(i) Consider Hy(C). If 9y[c] = 0, then a = da for a € Ay. Then d(f()) = f(da) = f(a) = db. So

d(b— f(a)) = 0, giving [b— f(a)] € Hk(B). Then g,[b— f(a)] = [g(b)—g(f ()] = [g(b)] = [c]
by exactness. So [c] € Im g, as required.

(ii) Consider Hi(B). If g,[b] = 0, then g(b) = dy for some y € Cj,;. g is surjective, so y = g(f)
for B € Bygyq- Theng(b—dpB) =c—dg(f) =c—c=0,s0b—df = f(a) fora € Ax. So
f(da) = df(a) = db — d?B = 0. Hence [b] = [b —df] = f.[a]. So [B] € Im f..

(iii) Consider Hy_;(A). If f,[a] = 0, then f(a) = db for some b in By_;. Then [a] = J;[g(b)] since
dg(b) = g(db) = g(f(a)) = 0. So [a] € Im Jy.
O

Example. Let B = C,(A"), and A = C.(S"1). Let C be defined by

C, = <eO...n> k=n
k= .
0 otherwise
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Note that

H,(C) = Z k=n
k “|o otherwise
Let n > 1. Then we have a short exact sequence 0 — S"~! / > A" g > C > 0 and

hence we have

H(S"™) —L 3 B (A" —5 H(C) D

[é Hy_1(S"™1) % Hj_ 1(A") 25 H1(0)

Now, letting k = n, we can therefore find the exact sequence

Hy(S") —— 00— Z j

Ok

Hn—l(gn_l) —> 0 H 0

By exactness at Z and H,,_;(S"!), 9y, is an isomorphism. Hence H,,_;(S"*"!) = Z

7.6 Mayer—Vietoris sequence

Let K;, K, be abstract simplicial complexes in A". Then K; N K, and K; U K, are also abstract sim-
plicial complexes in A". We have the following commutative square of simplicial maps given by

inclusion.
K,

K, NK, K, UK,
K,

This induces a commutative square of chain maps as shown.

C.(Ky)

C.(K; NKy) C.(K; UK3)

C.(K3)

Proposition. Let K;, K, be abstract simplicial complexes in A". Then the sequence

0 —3 C.(K NK,y) —=3 C.(K) @ C.(Ky) —3 C.(K, UK,) — 0
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is a short exact sequence of chain complexes, where

i= (%M); i=0w —Jjx)

lzﬁ

Proof. We must check exactness at each location. iy is injective, so i is injective.

If j((a,b)) = 0, then jiz(a) = j(b),soa =b € C.(K;) N C.(K;) = C.(K; N K;). Hence (a,b) = i(a),
so ker j C Imi. For the other direction, gf(a) = (jiy  i13)(a) — (ja4 ° irg(a)) = 0 since the square of
inclusion maps commutes. So Im i C ker j, so the sequence is exact at C,(K;) & C.(K,).

Lete; € K; UK,. Thene; € K, ore; € K,. Ife; € K; thene; = j((e;,0)). If e; € K, thene; =
j((0,—ey)). So e; € Im j in either case. Since the e; form a free basis, j is surjective as required. [

Theorem (Mayer—Vietoris sequence). Let K;, K, be abstract simplicial complexes in A”".
Then there is a long exact sequence

Hi(K; NK5) L—> Hy(K;) @ Hi(K3) ]—> Hi(K; UK5) j

. Ok .
[‘> Hy_1(K3 NKy) —— Hy_1(Ky) @ Hy_1(Ky) L Hy_1(K; UK3)

Proof. Follows from the above theorem and the snake lemma. O

Example. Let K;, K, be abstract simplicial complexes in A”, A™. Then let K; I1 K, C A"*™+! be the
abstract simplicial complex where the vertices of A"*™+1 are e, ..., e,,, €(, ... , €}y, and we embed K;
and K, into K; LI K, in the natural way. More precisely, e; € K; gives e; € K; LI1K,, and e; € K, gives
e} € K; II1K,. Then |K; I K,| = |K;| I |K,|. K; K, = K; UK} where K;, K are disjoint abstract
simplicial complexes in A"*™+1 50 K; N K} = {e@}. The Mayer-Vietoris sequence gives

Hy({eg)) ———> H(K)) @ Hy(Ky) —2—% H(K; LK) j

Ok

[‘> Hk—l({eg}) % Hy_1(Ky) @ Hi_1(K3) JH Hy_1(K; I Ky)
Note that Hy({e}) = 0. Hence, the sequence

0 — Hy(Ky) ® Hi(K;) — Hi(Ky UKy) —> 0
is exact. So Hy(K;) @ Hy(K,) ~ H(K; I K5).

7.7 Homology of triangulable spaces

Theorem. Let f,, f; : K — L be simplicial approximations to a continuous map F: |[K| —
IL|. Then fog ~ fig, SO fox = frs-
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Theorem. There is an isomorphism vg : H,(BK) — H,(K) such that vy = f, where
f: BK — K is any simplicial approximation to the identity map on |K|.

Definition. Let F: |[K| — |L| be continuous. By the simplicial approximation theorem,
there exists f : B" — L that is a simplicial approximation to F. Define F, : H,(K) — H.(L)
byFE, =f. o VI_{}r'

Theorem. F, is well-defined, so does not depend on the choice of f. (idg), = idgy (k). Fur-
ther, (Fo G), = F, o G,.

Theorem. Let Fy, F; : |K| — |L| be continuous with F, ~ F;. Then F,, = F,,.
Proposition. Let |[K| ~ |L|. Then H,(K) ~ H.(L).

Proof. LetF: |K| — |L|and G : |L| — |K]|be functions such that FoG ~ id;;and GoF ~ idg|. Then
F oG, = idH.(L) and G, oF, = idH.(K) by functoriality. Hence F, and G, are inverse isomorphisms
of groups. O

Definition. A space X is triangulable if there exists an abstract simplicial complex K with
K| ~ X.

Remark. The above proposition implies that if X is triangulable, there is a well-defined homology
group H,(X) = H.(K) where K is any abstract simplicial complex with polyhedron |K| ~ X. Not all
topological spaces are homotopy equivalent to a triangulable space. One example is \/;’:1 st

Proposition. Let |K| be path-connected. Then Hy(K) ~ Z.

Proof. Cy(K) is generated by the vertices e; of K. Consider F; : A° — |K| mapping e, € A° to e; € K.
Then H,(A%) = Z = {[e,]), and E.([ey]) = [e;]. Since K is path-connected, F; ~ Fj. So [¢] =
Fi,([eo]) = Fj.([eo]) = [e;]. Hence all [e;] are equal. The [e;] are not boundaries, so Hy(K) is not
trivial. O

Corollary. Hy(K) = Z* where k is the number of path-connected components of |K]|.

Proof. |K] is a disjoint union of the k path-connected components of |K|, so Hy(K) is the direct sum
of the homology groups of these components. O

We know S" ~ |S"|, so
Z k=0,n

Hy(S") = Hi(S") =
K(S™) k(S {O otherwise
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Hence S" ~ S™ implies n = m.

Corollary. R" ~ R™ implies n = m.

Proof. Let f: R"® — R™ be a homeomorphism. Then S"~! ~ R" \ {0} ~ R™ \ {f(0)} ~ S™~L. So
Sn=1 ~ §m=1 giving n = m. O

Corollary. There is no retraction r : D" — S"~1,

Proof. We suppose n > 0. Let j: S"~! — D" be the inclusion. r is a retraction if and only if r o j =
idgn-1. This gives (r o j), = idy, (sn-1). Note that H,_;(D") = H,_;(A") = 0, and H,_(S" 1Y) =27
If r is a retraction, then r, and j, are inverse homomorphisms of groups, but Z is not isomorphic to
0. So r is not a retraction. O

Theorem (Brouwer fixed point theorem). Let F : D" — D" be a continuous function. Then
F has a fixed point.

Remark. This is a generalisation of the intermediate value theorem for high dimensions.

Proof. Suppose there is no fixed point. Then, we define G : D" — S"~! by letting G(x), x, F(x) lie in
this order on a straight line in D”. If G is a well-defined continuous map, it is a retraction, contradict-
ing the previous result.

Let p € D" and v € S" L. LetR,, ={p+tv|t>0LIfp+tv € S"1, then (p + tv, p + tv) = 1, 50
(p, p) + 2t (v, p) + t> = 1. Hence

t=—(p.v) /(0P + 1= (p.p)

We define

ﬂn@=mu(4n@r¢@mf+rwnm)

This is a continuous function. Now, we define P(p,v) = p+7(p, v)v, which is the intersection of R, ,
with $*~1, which is also continuous. So

G(x) = P(F(x), x = Fx) )

lx — FQl

is well-defined and continuous. O

7.8 Homology of orientable surfaces

We can often compute homology groups only using the Mayer-Vietoris sequence and functoriality
properties.
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Example. Consider the torus T2. We can write a triangulation K of T2 as K; UK,, with |K;| ~ S' X1,
and |[K; NK,| ~ S} 1IS}. Note that the inclusion Lyt Sjl- < |K;| is a homotopy equivalence, and
11, ~ tp;. Then the Mayer-Vietoris sequence gives

Hy(K;) @ Hy(Ky) —— Hy(K) j

[‘> Hy(Ky N Kp) —— Hi(Ky) @ Hy(Kp) —— Hi(K) j

[? Ho(Ky NK3) — = Ho(Ky) @ Ho(Kp) —— Ho(K) —— 0
giving

0 — Hy(K) D

[92@2 — Z®Z — H(K) j

[>ZEBZ —> Z®Z — Hy(K) — 0

Hence we have short exact sequences

0 —— Hy(K) —> keray ———> 0
0 ——> cokeray; — H;(K) —— kerayg ——> 0

0 —— cokeraag — Hy(K) ———— 0

The maps «; are given by the matrix G 1) Therefore, ker o; ~ Z and coker a; ~ Z. Hence H,(K) =~
Z,Hy(K) ~ 7%, and Hy(K) ~ Z.

Z k=0,2
H(T>)={7?> k=1
0 otherwise

Proposition. Suppose that 0 > A
ABZ.

~
o~

> 7" > 0 is exact. Then B ~

Proof. Byexactness, Z" =~ B, ’4- The result then follows from the structure theorem for abelian groups.
O

Example. Let L, be a triangulation of T2, and let L, be L, \ {o} where o is a 2-simplex. Then
0L;; ~do = S',and |L; ;| ~ S* v S'. We inductively define Ly = Ly_1; Us1 Lyj,and Lg; = Lg \ @
where o is a 2-simplex. Then L, is a triangulation of the compact surface of genus g. Note also that

2

Lgy ~ Ly 17 Ug Ly where o' is an edge of S'. So Ly ; ~ \/if1 St
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Proposition.
VA k=0,2
Hy(Ly) =17*%8 k=1
0 otherwise
and
Z k=0
Hi(Lg1) =128 k=1
0 otherwise
Further, tg, : Hy(0Lg;) = H;(Lg,) is the zero map.

Proof. By induction, we show the result for Hy(L,) implies the result for Hy(Lg ;), and then Hy(Lg ;)
gives Hy(Lg,1). The base case is H.(T?) which was shown above. For the first implication, we use
the Mayer-Vietoris sequence. Note that Ly = Lg ; UsL,, A2, Then,

Hy(Lg ) ® Hy(A%) —— Hy(Ly) j

o}

[> H\(0Lg) —— Hi(Lg,) ® Hy(A2) — Hi(Ly) )

(S

[-> Hy(0Lg1) ——> Ho(Lg,1) @ Ho(A?) —— Hy(Ly)
giving

060 —— Z
j

[P
[‘> Zz ﬁ Hy(Lg,) ®0 —> 728

01
[é z 0 > 787 > Z
The bottom row of the Mayer-Vietoris sequence always has this form if K;, K,, K; N K, are connected.
Note that since ¢, is injective, the map before it is the zero map by exactness, so we can remove the
bottom row and replace it with zero. We have that 9, is injective, and H;(Ly ) is torsion-free, so 0, is
an isomorphism. Hence (; is the zero map and j is an isomorphism. Since 0 = t; = ¢4, + ¢, we have
tg. = 0. Further, as j is an isomorphism, Hy(Lg ;) ~ H;(Lg) = 728 as required.

Now we show the result for Hy (L ;) implies the result for Hy(Lg,;). Note that Lg,; = Lg; Uorg, L1,1-
Hence,

Hy(Lg1) @ Hy(Ly,1) —> Hy(Lgy1) j

[‘> H(0Lg,) —— Hy(Lg,1) ® Ha(Ly,) — Hi(Lgy)) —> 0

53



SO

0®0 — Hy(Lg,1) ]

[> Z — 72@2> — Hy(Ly) —> 0
By assumption, ¢ is the zero map. Hence H,(Lg,;) ~ H;(dLg,) ~ Z as 0, is an isomorphism. Also,
7°8%2 ~ H,(Lg,1) by exactness. O
7.9 Homology of non-orientable surfaces

Let M, be a triangulation of RP2. Let M,; be M, with a 2-simplex removed, so M, ; ~ S'. Let
M,y = M1 Usp,, Myy. Then M1, = M, ; Uar My, attaching along an interval. For example,

|M; ;| is homeomorphic to the M&bius band. Then M, ; ~ \/ir=1 St

Proposition.
Zr—l @Z/ZZ k=1
H,M,)=1{7 k=0
0 otherwise
and
7' k=1

Hk(Mr,l) =1Z k=0
0 otherwise
Further, ¢, : H;(0M, ;) — H;(M, ) has the property that ¢,.,(1) is twice a primitive element,
or equivalently, Hl(Mr,l)/Im y, = 71 Z/ZZ'

Proof. We proceed by induction in the same way. For the base case, note that 6M; ; ~ S* and M; ; ~
S, and the map from M, ; — M, is given by z — z?, so the map H;(S) — H,(S) is given by
multiplication by 2. Suppose the result holds for Hy(M,). Then, M, = M, ; Ugp, , A?, and

Hy(M,,) @ Hy(A%) — Hy(M,) j

[é Hl(aMr,l) lrﬁ Hl(Mr,l)®H1(A2) H Hl(Mr) H 0
t,, is injective, so 8, = 0, giving 0 —— H,(M,) ——> 0 . Hence,

00— %0
j

[-> Z —— H(M:,)) ®0 — 7 '®%4hy — 0

Since H;(M, ) is torsion-free,

0 —Z —> HM,)) — 27" @27 —> 0
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gives that H;(M, ;) = Z".

Now, M1 = M, Usn,, My,; hence

Hy,(M,1) @ Hy(M, ;) — Hy(M,) j

[‘> Hy(S') —> H(M, 1) ® H{(M,;) — H(M,y;) —> 0

SO
060 > 0 j
[—> 0
7 — H\(M,,) ® H{(M, ;) —> H(M,;) —> 0
2
Hence H;(M, ) =~ VAl Z/(2e1,2) ~7"® Z/ZZ' O

7.10 Lefschetz fixed point theorem

Let (C, d) be a chain complex over Q (or any other field). Then H,(C) is a Q-vector space. Let f : C —
C be a chain map, so it induces f, : H.(C) - H.(C). f and f, are both linear endomorphisms of
vector spaces.

Definition. The Lefschetz number of f is L(f) = ). k(—l)k tr fx where fi : C, » Cy, and
L(f.) = Xy (=D tr fy.. where fi, : Hi(C) — Hy(C).

Proposition. L(f) = L(f,).

Proof. Let Uy = Imdy,, C kerdy C Ci. Then, kerdy = Uy @ Vi, and Cy = U @ Vi @ Uy,. Then
d: Uy = Uk, is an isomorphism. With respect to this decomposition, d is a matrix in block form

given by
0 0 I
d=(0 0 O
0 0 O
Also, f(Imdy,;) C Imdy,, since f is a chain map, and f(kerd;) C ker dj. So in block form,
Ak Xk *
f = 0 Bk *
0 0 A
Then, the equation df = fd shows A = A, ,. Hence, H,(C) = ker dk/Im diy1 = Uk ® Vk/Uk =

Visand fi, : H(C) - H(C) maps [v] to [ B0+ X U] = [BiV], s0 f,. is multiplication by B,. Then
L(f) = D (-DFtr fro = T(=D¥(tr Ag + tr By + trAg_y) = (=1  tr By = L(f.). O
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Definition. Let C = C,(K). Then the Euler characteristic is defined by y(C) = L(id¢). Hence
2(C(K)) = Y, (-D¥dim Ci(K). Note that L(idc) = L(idg, k) = X, (—1DF dim Hy(K) de-
pends only on |K|.

Theorem (Lefschetz fixed point theorem). Let F: |K| — |K| be a continuous map. Let
L(F) = L(F,) be the Lefschetz number of F, where F, : H,(K) - H,(K). Then if L(F) # 0, F
has a fixed point.

Remark. This is a generalisation of the Brouwer fixed point theorem.
Proof sketch. If F hasno fixed point, then since |K| is compact, there exists € > O such that |F(x) — x| >

e forall x. If f : B"*"K — B'K is a simplicial approximation of F, then the above implies that F, (o)
does not contain o for any simplex o € C,(K). Hence L(F) = L(f) = 0. O
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