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1 Motivation
1.1 Invariants
Topological spaces are difficult to study on their own, and so we will assign algebraic invariants to
these spaces which allow us to reason more easily about these spaces. To a topological space 𝑋 , a
‘numerical invariant’ is a number 𝑔(𝑋) ∈ ℝ ∪ {∞} such that 𝑋 ≃ 𝑌 (where ≃ denotes homeomorph-
ism) implies 𝑔(𝑋) = 𝑔(𝑌). An example of a numerical invariant is the number of path-connected
components of 𝑋 . An algebraic invariant is a group 𝐺(𝑋) assigned to a topological space 𝑋 such that
𝑋 ≃ 𝑌 implies 𝐺(𝑋) ≃ 𝐺(𝑌), where here ≃ denotes isomorphism. We will construct two kinds of
such invariants: the fundamental group, and invariants related to homology. The invariants we con-
struct will behave nicely undermaps: if 𝑓∶ 𝑋 → 𝑌 is a continuousmap, we induce a homomorphism
𝑓⋆ ∶ 𝐺(𝑋) → 𝐺(𝑌). We will prove the following model theorems.

• If ℝ𝑛 ≃ ℝ𝑚, then 𝑛 = 𝑚.
• If 𝑓∶ 𝐷𝑛 → 𝐷𝑛 is continuous, then there exists 𝑥 ∈ 𝐷𝑛 with 𝑓(𝑥) = 𝑥.

The above theorems are easy to prove in the case 𝑛 = 1 by appealing to path-connectedness and
the intermediate value theorem. Our study allows us to prove similar things about these higher
dimensional cases, among other things.

1.2 Notation
• A space is a topological space.

• Amap is a continuous function, unless defined otherwise.

• If 𝑋 and 𝑌 are spaces, 𝑋 ≃ 𝑌 means that 𝑋 and 𝑌 are homeomorphic.

• If 𝐺 and 𝐻 are groups, 𝐺 ≃ 𝐻 means that 𝐺 and 𝐻 are isomorphic.

• Some common spaces include:

– The one-point space {•};
– 𝐼 = [0, 1] ⊂ ℝ;
– 𝐼𝑛 = 𝐼 ×⋯× 𝐼⏟⎵⎵⏟⎵⎵⏟

𝑛 times
, the 𝑛-dimensional closed unit cube;

– 𝐷𝑛 = {𝑣 ∈ ℝ𝑛 ∣ ‖𝑣‖ ≤ 1}, the 𝑛-dimensional closed unit disk (note that 𝐼𝑛 ≃ 𝐷𝑛);

– 𝑆𝑛−1 = {𝑣 ∈ ℝ𝑛 ∣ ‖𝑣‖ = 1}, the (𝑛 − 1)-dimensional unit sphere.
• Common maps include:

– If 𝑋 is a space, the identity map id𝑋 ∶ 𝑋 → 𝑋 is defined by 𝑥 ↦ 𝑥;
– If 𝑋 and 𝑌 are spaces with 𝑝 ∈ 𝑌 , the constant map 𝑐𝑋,𝑝 ∶ 𝑋 → 𝑌 is defined by 𝑥 ↦ 𝑝.
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2 Homotopy
2.1 Definition

Definition. Let 𝑓0, 𝑓1 ∶ 𝑋 → 𝑌 be continuous. We say 𝑓0 is homotopic to 𝑓1, written 𝑓0 ∼ 𝑓1,
if there exists a continuous 𝐻∶ 𝑋 × 𝐼 → 𝑌 with 𝐻(𝑥, 0) = 𝑓0(𝑥) and 𝐻(𝑥, 1) = 𝑓1(𝑥).

We can think of𝐻 as a path from 𝑓0 to 𝑓1 in the set Hom(𝑋, 𝑌) of functions 𝑋 → 𝑌 , which is continu-
ous under a topology that will not be defined here.

Lemma (Gluing lemma). Let 𝑋 = 𝐶1 ∪ 𝐶2, where 𝐶1, 𝐶2 are closed in 𝑋 . Let 𝑓∶ 𝑋 → 𝑌 be
a function (that may be not continuous), such that 𝑓|𝐶1

and 𝑓|𝐶2
are continuous. Then 𝑓 is

continuous.

Proof. It suffices to show that the preimage of a closed set is closed. Let 𝐾 ⊆ 𝑌 be closed. Then
𝐾𝑖 = 𝑓−1(𝐾) ∩ 𝐶𝑖 = (𝑓|𝐶𝑖

)
−1
(𝐾) is a closed set in 𝐶𝑖 and so is closed in 𝑋 because 𝐶𝑖 is closed. Since

𝐾 = 𝐾1 ∪ 𝐾2, 𝐾 is also closed in 𝑋 .

Lemma. Homotopy is an equivalence relation.

Proof. Reflexivity is trivial, because𝐻(𝑥, 𝑡) = 𝑓(𝑥) is continuous, as𝐻 = 𝑓 ∘𝜋1 is the composition of
continuous maps. Symmetry holds because if 𝐻(𝑥, 𝑡) is continuous, 𝐻(𝑥, 1 − 𝑡) is continuous as the
composition of continuous maps. For transitivity, if 𝑓0 ∼ 𝑓1 via 𝐻 and 𝑓1 ∼ 𝑓2 via 𝐻′, we define

𝐻″(𝑥, 𝑡) = {
𝐻(𝑥, 2𝑡) 𝑡 < 1

2
𝐻′(𝑥, 2𝑡 − 1) 𝑡 ≥ 1

2

and this is continuous by the gluing lemma.

Note that we sometimes write 𝑓𝑡(𝑥) for a homotopy between 𝑓0 and 𝑓1.
Example. Let 𝑓1 ∶ 𝑋 → ℝ𝑛 be a map. Then 𝑓0 ∶ 𝑋 → ℝ𝑛 defined by 𝑐𝑋,0 has 𝑓1 ∼ 𝑓0 via the
homotopy 𝐻(𝑥, 𝑡) = 𝑡𝑓1(𝑥).
Example. Let 𝑓1 ∶ 𝑆1 → 𝑆2 be defined by 𝑓1(𝑥, 𝑦) = (𝑥, 𝑦, 0): the inclusion map from the circle to
the equator in the unit 2-sphere. Let 𝑓0 ∶ 𝑆1 → 𝑆2 be the constant map 𝑓0(𝑥, 𝑦) = (0, 0, 1). Then
𝑓0 ∼ 𝑓1 via the homotopy 𝑓𝑡(𝑥, 𝑦) = (𝑥 sin 𝜋𝑡

2
, 𝑦 sin 𝜋𝑡

2
, cos 𝜋𝑡

2
).

Lemma. If 𝑓0, 𝑓1 ∶ 𝑋 → 𝑌 are homotopic via 𝑓𝑡, and 𝑔0, 𝑔1 ∶ 𝑌 → 𝑍 are homotopic via 𝑔𝑡,
then themap𝐻∶ 𝑋×𝐼 → 𝑍 defined by𝐻(𝑥, 𝑡) = 𝑔𝑡(𝑓𝑡(𝑥)), also denoted 𝑔𝑡 ∘𝑓𝑡, is a homotopy
for 𝑔0 ∘ 𝑓0 ∼ 𝑔1 ∘ 𝑓1.

Proof. This is a composition of continuous maps and hence continuous.

4



2.2 Contractible spaces

Definition. A space 𝑌 is contractible if id𝑌 ∼ 𝑐𝑌,𝑝 for some 𝑝 ∈ 𝑌 .

Example. If 𝑌 ⊆ ℝ𝑛 is convex and nonempty, 𝑌 is contractible via the homotopy𝐻(𝑦, 𝑡) = (1−𝑡)𝑦+
𝑡𝑝 for some 𝑝 ∈ 𝑌 .

Proposition. Let 𝑌 be contractible. Then 𝑓0 ∼ 𝑓1 for any maps 𝑓0, 𝑓1 ∶ 𝑋 → 𝑌 .

Proof. We have 𝑓0 = id𝑌 ∘ 𝑓0 ∼ 𝑐𝑌,𝑝 ∘ 𝑓0 = 𝑐𝑋,𝑝, and similarly 𝑓1 ∼ 𝑐𝑋,𝑝. By transitivity, 𝑓0 ∼ 𝑓1.

Corollary. Let 𝑌 be contractible. Then 𝑌 is path-connected.

Proof. If 𝑌 is contractible, and 𝑝, 𝑞 ∈ 𝑌 , then 𝑐{•},𝑝 ∼ 𝑐{•},𝑞 via 𝐻∶ {•} × 𝐼 → 𝑌 . Then we can define
the path 𝛾(𝑡) = 𝐻(•, 𝑡) from 𝑝 to 𝑞 in 𝑌 .

Example. ℝ ∖ {0} is not contractible.
We will later prove that ℝ𝑛 ∖ {0} is not contractible for any 𝑛 ≥ 1, but we require some more theory
before this can be proven.

Definition. Spaces 𝑋, 𝑌 are homotopy equivalent, denoted 𝑋 ∼ 𝑌 , if there exist maps
𝑓∶ 𝑋 → 𝑌 and 𝑔∶ 𝑌 → 𝑋 such that 𝑓 ∘ 𝑔 ∼ id𝑌 and 𝑔 ∘ 𝑓 ∼ id𝑋 .

Example. If 𝑋 ≃ 𝑌 , 𝑋 and 𝑌 are homotopy equivalent. Note that the definition of homotopy equi-
valence is simply the definition of homeomorphism, except that the requirement that 𝑓 ∘ 𝑔 and 𝑔 ∘ 𝑓
be equal to the identity is relaxed into simply being homotopic to the identity.

Lemma. Homotopy equivalence is an equivalence relation.

Proposition. 𝑋 is contractible if and only if 𝑋 ∼ {•}.

Proof. If 𝑋 is contractible, id ∼ 𝑐𝑋,𝑝. Let 𝑓∶ 𝑋 → {•} be defined by 𝑓(𝑥) = •. Let 𝑔∶ {•} → 𝑋 be
defined by 𝑔(𝑥) = 𝑝. Then 𝑓 ∘ 𝑔 = id{•} and 𝑔 ∘ 𝑓 = 𝑐𝑋,𝑝 ∼ id𝑋 . The converse is similar.

Example. We have ℝ𝑛+1 ∖ {0} ∼ 𝑆𝑛. Consider 𝑝∶ ℝ𝑛+1 ∖ {0} → 𝑆𝑛 defined by 𝑝(𝑣) = 𝑣
‖𝑣‖
, and

𝑞∶ 𝑆𝑛 → ℝ𝑛+1 ∖ {0} defined by 𝑞(𝑣) = 𝑣. Then 𝑝 ∘ 𝑞 = id, and (𝑞 ∘ 𝑝)(𝑣) = 𝑣
‖𝑣‖
. This is homotopic to

the identity by
𝐻(𝑣, 𝑡) = 𝑣

(1 − 𝑡) + 𝑡‖𝑣‖
This is a special case of a retract, a continuous map onto a subspace.
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3 Groups from loops
3.1 Homotopy relative to a set

Definition. Let 𝐴 ⊆ 𝑋 . We say 𝑓0, 𝑓1 ∶ 𝑋 → 𝑌 are homotopic relative to 𝐴, written 𝑓0 ∼
𝑓1 rel 𝐴, if 𝑓0 ∼ 𝑓1 via some homotopy 𝐻∶ 𝑋 × 𝐼 → 𝑌 that fixes 𝐴, so 𝐻(𝑎, 𝑡) = 𝑓0(𝑎) = 𝑓1(𝑎)
for all 𝑎 ∈ 𝐴.

Lemma. Homotopy relative to 𝐴 is an equivalence relation.

Lemma. If 𝑓0, 𝑓1 ∶ 𝑋 → 𝑌 and 𝑓0 ∼ 𝑓1 rel 𝐴, and 𝑔0, 𝑔1 ∶ 𝑌 → 𝑍 and 𝑔0 ∼ 𝑔1 rel 𝑓(𝐴), then
𝑔0 ∘ 𝑓0 ∼ 𝑔1 ∘ 𝑓1 rel 𝐴.

If 𝛾0, 𝛾1 ∶ 𝐼 → 𝑋 are two homotopic paths relative to their endpoints, so 𝛾0 ∼ 𝛾1 rel {0, 1}, we write
𝛾0 ∼𝑒 𝛾1.

Lemma. Let 𝑓0, 𝑓1 ∶ 𝐼 → 𝐼, where 𝑓0(0) = 𝑓1(0) and 𝑓0(1) = 𝑓1(1). Then 𝑓0 ∼𝑒 𝑓1.

Proof. 𝐼 is convex, hence 𝐻(𝑥, 𝑡) = (1 − 𝑡)𝑓0(𝑥) + 𝑡𝑓1(𝑥) is a homotopy that preserves endpoints as
required.

Corollary. Suppose 𝑓∶ 𝐼 → 𝐼, 𝛾∶ 𝐼 → 𝑋 . Then if 𝑓(0) = 0 and 𝑓(1) = 1, 𝛾 ∘ 𝑓 ∼𝑒 𝛾. Further,
if 𝑓(0) = 0 and 𝑓(1) = 0, we have 𝛾 ∘ 𝑓 ∼𝑒 𝑐𝐼,𝛾(0).

Proof. We have 𝑓(0) = id𝐼(0) and 𝑓(1) = id𝐼(1). Hence 𝑓 ∼𝑒 id𝐼 . Therefore, 𝛾 ∘ 𝑓 ∼𝑒 𝛾 ∘ id𝐼 = 𝛾.
For the second claim, 𝑓(0) = 𝑐𝐼,0(0) and 𝑓(1) = 𝑐𝐼,0(1), hence 𝑓 ∼𝑒 𝑐𝐼,0 giving 𝛾 ∘ 𝑓 ∼𝑒 𝛾 ∘ 𝑐𝐼,0 =
𝑐𝐼,𝛾(0).

Definition. Let 𝑋 be a space, and 𝑝, 𝑞 ∈ 𝑋 . Let

Ω(𝑋, 𝑝, 𝑞) = {𝛾∶ 𝐼 → 𝑋 ∣ 𝛾 continuous, 𝛾(0) = 𝑝, 𝛾(1) = 𝑞}

be the set of paths from 𝑝 to 𝑞. Let Ω(𝑋, 𝑝) = Ω(𝑋, 𝑝, 𝑝) be the set of loops based at 𝑝.

Definition. Let 𝛾 ∈ Ω(𝑋, 𝑝, 𝑞), 𝛾′ ∈ Ω(𝑋, 𝑞, 𝑟). Then their composition 𝛾𝛾′ ∈ Ω(𝑋, 𝑝, 𝑟) is
given by

(𝛾𝛾′)(𝑡) = {
𝛾(2𝑡) 𝑡 ∈ [0, 1

2
]

𝛾′(2𝑡 − 1) 𝑡 ∈ [ 1
2
, 1]

𝛾𝛾′ is continuous by the gluing lemma.
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Lemma. Let 𝛾0, 𝛾1 ∈ Ω(𝑋, 𝑝, 𝑞) and 𝛾′0, 𝛾′1 ∈ Ω(𝑋, 𝑞, 𝑟) such that 𝛾0 ∼𝑒 𝛾1 via 𝐻∶ 𝐼 × 𝐼 → 𝑋
and 𝛾′0 ∼𝑒 𝛾′1 via 𝐻′ ∶ 𝐼 × 𝐼 → 𝑋 . Then 𝛾0𝛾′0 ∼𝑒 𝛾1𝛾′1.

Proof. The homotopy required is

𝐻(𝑥, 𝑡) = {
𝐻(2𝑥, 𝑡) 𝑥 ∈ [0, 1

2
]

𝐻′(2𝑥 − 1, 𝑡) 𝑥 ∈ [ 1
2
, 1]

Definition. Let 𝛾 ∈ Ω(𝑋, 𝑝, 𝑞). Then 𝛾−1 ∈ Ω(𝑋, 𝑞, 𝑝) is the reverse of 𝛾, given by

𝛾−1(𝑡) = 𝛾(1 − 𝑡)

Proposition. (i) Let 𝛾 ∈ Ω(𝑋, 𝑝, 𝑞). Then 𝑐𝐼,𝑝𝛾 ∼𝑒 𝛾 ∼𝑒 𝛾𝑐𝐼,𝑞.
(ii) 𝛾𝛾−1 ∼𝑒 𝑐𝐼,𝑝 and 𝛾−1𝛾 ∼𝑒 𝑐𝐼,𝑞.
(iii) If 𝛾(1) = 𝛾′(0) and 𝛾′(1) = 𝛾″(0), we have

𝛾(𝛾′𝛾″) ∼𝑒 (𝛾𝛾′)𝛾″

Proof. (i) The composition 𝑐𝐼,𝑝𝛾 has 𝑐𝐼,𝑝𝛾(𝑡) = 𝛾(𝑓(𝑡)) where 𝑓∶ 𝐼 → 𝐼 defined by

𝑓(𝑡) = {
0 𝑡 ∈ [0, 1

2
]

2𝑡 − 1 𝑡 ∈ [ 1
2
, 1]

Since 𝑓(0) = 0 and 𝑓(1) = 1, 𝛾 ∘ 𝑓 ∼𝑒 𝛾. Similarly, 𝛾𝑐𝐼,𝑞(𝑡) = 𝛾(𝑔(𝑡)) where

𝑔(𝑡) = {
2𝑡 𝑡 ∈ [0, 1

2
]

1 𝑡 ∈ [ 1
2
, 1]

(ii) 𝛾𝛾−1(𝑡) = 𝛾(𝑓(𝑡)) where

𝑓(𝑡) = {
2𝑡 𝑡 ∈ [0, 1

2
]

1 − 2𝑡 𝑡 ∈ [ 1
2
, 1]

Further, 𝛾−1𝛾(𝑡) = 𝛾(𝑔(𝑡)) where

𝑔(𝑡) = {
1 − 2𝑡 𝑡 ∈ [0, 1

2
]

2𝑡 − 1 𝑡 ∈ [ 1
2
, 1]

(iii) We can write 𝛾(𝛾′𝛾″)(𝑡) = (𝛾𝛾′)𝛾(𝑓(𝑡)) where 𝑓∶ 𝐼 → 𝐼 is the continuous function defined by

𝑓(𝑡) =
⎧⎪
⎨⎪
⎩

𝑡
2

𝑡 ∈ [0, 1
2
]

𝑡 − 1
4

𝑡 ∈ [ 1
2
, 3
4
]

2𝑡 − 1 𝑡 ∈ [ 3
4
, 1]
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noting that 𝑓(0) = 0 and 𝑓(1) = 1. Hence 𝛾(𝛾′𝛾″) ∼𝑒= (𝛾𝛾′)𝛾″.

Definition. Let𝑋 be a space and 𝑥0 ∈ 𝑋 . We define the fundamental group or first homotopy
group of 𝑋 based at 𝑥0 by

𝜋1(𝑋, 𝑥0) = Ω(𝑋, 𝑥0)⟋∼𝑒

We say 𝑥0 is the basepoint. If 𝛾 ∈ Ω(𝑋, 𝑥0), we write [𝛾] for its image in 𝜋1(𝑋, 𝑥0), its equival-
ence class.

Theorem. We define multiplication in 𝜋1 by [𝛾] ∗ [𝛾′] = [𝛾𝛾′]. The identity is 1 = [𝑐𝐼,𝑥0].
The inverse is given by [𝛾]−1 = [𝛾−1]. These operations form a group.

Proof. Using the above lemma we explicitly check the group axioms. Identity:

1[𝛾] = [𝑐𝐼,𝑥0𝛾] = [𝛾]; [𝛾]1 = [𝛾𝑐𝐼,𝑥0] = [𝛾]

Inverses:
[𝛾][𝛾]−1 = [𝛾𝛾−1] = [𝑐𝐼,𝑥0] = 1

Associativity:

([𝛾][𝛾′])[𝛾″] = [𝛾𝛾′][𝛾″] = [(𝛾𝛾′)𝛾″] = [𝛾(𝛾′𝛾″)] = [𝛾][𝛾′𝛾″] = [𝛾]([𝛾′][𝛾″])

3.2 Induced maps

Definition. Let 𝑓∶ 𝑋 → 𝑌 be a continuous map, and 𝑓(𝑥0) = 𝑦0. Then we have a map
Ω(𝑋, 𝑥0) → Ω(𝑌, 𝑦0) defined by 𝛾 ↦ 𝑓 ∘ 𝛾. Note that if 𝛾0 ∼𝑒 𝛾1, we have 𝑓 ∘ 𝛾0 ∼𝑒 𝑓 ∘ 𝛾1.
Thus, this map descends to the induced homomorphism 𝑓⋆ ∶ 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑌 , 𝑦0) defined
by [𝛾] ↦ [𝑓 ∘ 𝛾].

Definition. A pointed space (𝑋, 𝑥0) is a pair where 𝑋 is a space and 𝑥0 ∈ 𝑋 . We write
𝑓∶ (𝑋, 𝑥0) → (𝑌, 𝑦0) to denote a map 𝑓∶ 𝑋 → 𝑌 where 𝑓(𝑥0) = 𝑦0. In particular, for
𝑓∶ (𝑋, 𝑥0) → (𝑌, 𝑦0) there is an induced map 𝑓⋆ ∶ 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑌 , 𝑦0).

Proposition. Let 𝑓∶ (𝑋, 𝑥0) → (𝑌, 𝑦0). Then,
(i) The induced map 𝑓⋆ ∶ 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑌 , 𝑦0) is a group homomorphism.
(ii) (id(𝑋,𝑥0))⋆ = id𝜋1(𝑋,𝑥0).
(iii) If 𝑔∶ (𝑌, 𝑦0) → (𝑍, 𝑧0), we have (𝑔 ∘ 𝑓)⋆ = 𝑔⋆ ∘ 𝑓⋆.
(iv) If 𝑓0, 𝑓1 ∶ (𝑋, 𝑥0) → (𝑌, 𝑦0) with 𝑓0 ∼ 𝑓1 rel 𝑥0, then (𝑓0)⋆ = (𝑓1)⋆ (homotopy invari-

ance).

Remark. The action of taking the fundamental group of a pointed space thus yields a functor𝜋1 ∶ 𝐓𝐨𝐩• →
𝐆𝐫𝐩. The following diagram, representing part (iii) of the proposition above, commutes.
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𝜋1(𝑋, 𝑥0) 𝜋1(𝑍, 𝑧0)

𝜋1(𝑌, 𝑦0)

(𝑌, 𝑦0)

(𝑋, 𝑥0) (𝑍, 𝑧0)

(𝑔∘𝑓)⋆

𝑓⋆ 𝑔⋆

𝑔𝑓

𝑔∘𝑓

Proof. (i) This follows from the fact that

𝑓 ∘ (𝛾𝛾′)(𝑡) = {
𝑓 ∘ 𝛾(2𝑡) 𝑡 ∈ [0, 1

2
]

𝑓 ∘ 𝛾′(2𝑡 − 1) 𝑡 ∈ [ 1
2
, 1]

= (𝑓 ∘ 𝛾)(𝑓 ∘ 𝛾′)(𝑡)

Hence,
𝑓⋆([𝛾][𝛾′]) = [𝑓 ∘ (𝛾𝛾′)] = [(𝑓 ∘ 𝛾)(𝑓 ∘ 𝛾′)] = [𝑓 ∘ 𝛾][𝑓 ∘ 𝛾′] = 𝑓⋆([𝛾])𝑓⋆([𝛾′])

(ii) id⋆([𝛾]) = [id𝑋 ∘ 𝛾] = [𝛾].
(iii) (𝑓 ∘ 𝑔)⋆([𝛾]) = [𝑓 ∘ 𝑔 ∘ 𝛾] = 𝑓⋆([𝑔 ∘ 𝛾]) = 𝑓⋆(𝑔⋆([𝛾])).
(iv) 𝑓0 ∼ 𝑓1 rel 𝑥0 and 𝛾(0) = 𝛾(1) = 𝑥0 implies 𝑓0 ∘ 𝛾 ∼𝑒 𝑓1 ∘ 𝛾, so (𝑓0)⋆([𝛾]) = (𝑓1)⋆([𝛾]).

Example. Let 𝑓∶ 𝑋 → 𝑌 be a homeomorphism, and let 𝑦0 = 𝑓(𝑥0). Then 𝑓∶ (𝑋, 𝑥0) → (𝑌, 𝑦0)
and 𝑓−1 ∶ (𝑌, 𝑦0) → (𝑋, 𝑥0) are inverses. Thus, 𝑓⋆ ∶ 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑌, 𝑦0) and 𝑓−1⋆ ∶ 𝜋1(𝑌, 𝑦0) →
𝜋1(𝑋, 𝑥0) are inverses. Since 𝑓⋆ ∘ 𝑓−1⋆ = (𝑓 ∘𝑓−1)⋆ = id𝜋1(𝑌,𝑦0) and 𝑓−1⋆ ∘ 𝑓⋆ = id𝜋1(𝑋,𝑥0), we have that
𝑓⋆ is a group isomorphism, and 𝜋1 is a topological invariant.

3.3 Retractions

Definition. Let𝐴 ⊂ 𝑋 , where 𝜄∶ 𝐴 → 𝑋 is the inclusionmap. Then𝑝∶ 𝑋 → 𝐴 is a retraction
if 𝑝 ∘ 𝜄 = id𝐴. 𝑝∶ 𝑋 → 𝐴 is a strong deformation retraction, or s.d.r., if 𝑝 ∘ 𝜄 = id𝐴 and
𝜄 ∘ 𝑝 ∼ id𝑋 rel 𝐴.

Remark. In either case, if 𝑎0 ∈ 𝐴, 𝜄∶ (𝐴, 𝑎0) → (𝑋, 𝑎0) and 𝑝∶ (𝑋, 𝑎0) → (𝐴, 𝑎0). If 𝑝 is a retraction,
𝑝⋆ ∘𝜄⋆ = (𝑝∘𝜄)⋆ = (id𝐴)⋆ = id𝜋1(𝐴,𝑎0), so 𝜄⋆ ∶ 𝜋1(𝐴, 𝑎0) → 𝜋1(𝑋, 𝑎0) is injective, and 𝑝⋆ ∶ 𝜋1(𝑋, 𝑎0) →
𝜋1(𝐴, 𝑎0) is surjective. If 𝑝 is a strong deformation retraction, 𝜄⋆ ∘ 𝑝⋆ = (𝜄 ∘ 𝑝)⋆ = (id𝑋)⋆ = id𝜋1(𝑋,𝑎0),
so 𝑝⋆ and 𝜄⋆ are isomorphisms.
Remark. If 𝑝∶ 𝑋 → 𝐴 is a strong deformation retraction, then 𝐴 ∼ 𝑋 .
Example. 𝑝∶ ℝ𝑛+1 ∖ {0} → 𝑆𝑛 given by 𝑣 ↦ 𝑣

‖𝑣‖
is a strong deformation retraction.

Example. ℝ2 ∖ {0, 1} has 𝐴, 𝐵 as strong deformation retractions, where 𝐴 is a figure-eight with one
loop surrounding each hole, and 𝐵 is a rectangle surrounding each hole with a vertical line connect-
ing the top and bottom edges through ( 1

2
, 0). This can be a useful trick to show 𝐴 ∼ 𝐵.
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3.4 Null-homotopy and extensions

Definition. We say 𝑓∶ 𝑋 → 𝑌 is null-homotopic if 𝑓 ∼ 𝑐𝑋,𝑝 for 𝑝 ∈ 𝑌 .

Example. If 𝑋 is contractible, then id𝑋 ∼ 𝑐𝑋,𝑞, so 𝑓 = 𝑓 ∘ id𝑋 ∼ 𝑓 ∘ 𝑐𝑋,𝑞 = 𝑓(𝑞). So any 𝑓∶ 𝑋 → 𝑌
is null-homotopic. If 𝑓0 ∼ 𝑓1, then 𝑓0 is null-homotopic if and only if 𝑓1 is null-homotopic.

Definition. Let 𝐴 ⊂ 𝑋 and 𝑓∶ 𝐴 → 𝑌 . We say a continuous map 𝐹 ∶ 𝑋 → 𝑌 is an extension
of 𝑓 if 𝐹|𝐴 = 𝑓. If such a map exists, we say 𝑓 extends to 𝑋 .

𝑋

𝐴 𝑌
𝐹𝜄

𝑓

Lemma. 𝑓∶ 𝑆1 → 𝑌 extends to 𝐷2 if and only if 𝑓 is null-homotopic.

Proof. If 𝐹 is an extension of 𝑓 to 𝐷2, we define 𝐻(𝑣, 𝑡) = 𝐹(𝑡𝑣). Then 𝐻 is a homotopy from 𝑓 to
𝑐𝑆1,𝐹(0). So 𝑓 is null-homotopic.
Conversely, if 𝑓 is null-homotopic, let 𝐻∶ 𝑆1 × 𝐼 → 𝑌 be a homotopy for 𝑐𝑆1,𝑝 ∼ 𝑓. Then we define

𝐹(𝑣) = {𝐻(
𝑣
‖𝑣‖
, ‖𝑣‖) 𝑣 ≠ 0

𝑝 𝑣 = 0

One can check that this is indeed a continuous extension.

Definition. Let 𝛾 ∈ Ω(𝑋, 𝑥0). We define 𝛾∶ 𝑆1 → 𝑋 by 𝛾(𝑒2𝜋𝑖𝑡) = 𝛾(𝑡). This is well-defined
since 𝛾(0) = 𝛾(1), and it is continuous because 𝐼⟋{0, 1} ≃ 𝑆1.

Lemma. (i) If 𝛾0 ∼𝑒 𝛾1 via 𝐻(𝑥, 𝑡), we have 𝛾0 ∼ 𝛾1 via 𝐻∶ 𝑆1 × 𝐼 → 𝑌 given by
𝐻(𝑒2𝜋𝑖𝑥, 𝑡) = 𝐻(𝑥, 𝑡).

(ii) 𝛾𝛾′ ∼ 𝛾′𝛾.

Proof. (i) Note that 𝐻 is well-defined since 𝐻(0, 𝑡) = 𝐻(1, 𝑡) = 𝑥0.
(ii) We have 𝛾𝛾′(𝑣) = 𝛾′𝛾(−𝑣), hence 𝛾𝛾′ = 𝛾′𝛾 ∘ 𝑎 where 𝑎∶ 𝑆1 → 𝑆1 is the antipodal map. Since

𝑎 ∼ id𝑆1 , we have 𝛾𝛾′ ∼ 𝛾′𝛾.

Consider the radial projection homeomorphism Φ∶ 𝐷2 → 𝐼 × 𝐼. Note that Φ(𝑆1) = 𝜕(𝐼 × 𝐼) =
𝐼 × {0, 1} ∪ {0, 1} × 𝐼. Since Φ is a homeomorphism, ℎ∶ 𝜕(𝐼 × 𝐼) → 𝑋 extends to 𝐼 × 𝐼 if and only if
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ℎ ∘ Φ extends to 𝐷2, which is true if and only if ℎ ∘ Φ is null-homotopic. Define 𝛼𝑖(𝑡) = ℎ(𝑡, 𝑖) and
𝛽𝑖(𝑡) = ℎ(𝑖, 𝑡) for 𝑖 = 0, 1. Then, ℎ ∘ Φ ∼ 𝛼0𝛽1𝛼−11 𝛽−10 .

Proposition. Let 𝛾0, 𝛾1 ∈ Ω(𝑋, 𝑝, 𝑞). Then the following are equivalent.
(i) 𝛾0 ∼𝑒 𝛾1;
(ii) 𝛾0𝛾−11 is null-homotopic;
(iii) [𝛾0𝛾−11 ] = 1 in 𝜋1(𝑋, 𝑝).

Proof. Consider ℎ∶ 𝜕(𝐼 × 𝐼) → 𝑋 given by 𝛾0𝑐𝐼,𝑞𝛾−11 𝑐𝐼,𝑝. Note that ℎ is continuous by the gluing
lemma. 𝛾0 ∼𝑒 𝛾1 if and only if ℎ extends to 𝐼 × 𝐼, which is true if and only if ℎ ∘ Φ extends to 𝐷2, if
and only if 𝛾0𝑐𝐼,𝑞𝛾−11 𝑐𝐼,𝑝 is null-homotopic. But this is homotopic to 𝛾0𝛾−1, so this proves that (i) and
(ii) are equivalent.

Now, consider ℎ′ ∶ 𝜕(𝐼 × 𝐼) → 𝑋 given by 𝛾0𝛾−11 on one side, and on all other sides, 𝑐𝐼,𝑝. Then
[𝛾0𝛾−11 ] = 1 if and only if 𝛾0𝛾−11 ∼𝑒 𝑐𝐼,𝑝, if and only if ℎ′ extends to 𝐼 × 𝐼, if and only if ℎ ∘ Φ extends
to 𝐷2, if and only if 𝛾0𝛾−11 𝑐𝐼,𝑝𝑐−1𝐼,𝑝𝑐−1𝐼,𝑝 ∼ 𝛾0𝛾−11 is null-homotopic.

Corollary. The following are equivalent.
(i) 𝛾0 ∼𝑒 𝛾1 for all 𝛾0, 𝛾1 ∈ Ω(𝑋, 𝑝, 𝑞) and all 𝑝, 𝑞 ∈ 𝑋 .
(ii) any 𝑓∶ 𝑆1 → 𝑋 is null-homotopic;
(iii) 𝜋1(𝑋, 𝑥0) is the trivial group for all 𝑥0 ∈ 𝑋 .

Definition. 𝑋 is simply connected if 𝑋 is path-connected and 𝜋1(𝑋, 𝑥0) = 1 for all 𝑥0 ∈ 𝑋 .

3.5 Change of basepoint

Lemma. Let 𝑋0 be the path-connected component of 𝑋 containing a point 𝑥0 ∈ 𝑋 . If 𝑍 is
path-connected, 𝑓∶ 𝑍 → 𝑋 is continuous, and 𝑥0 ∈ Im𝑓, we have Im𝑓 ⊆ 𝑋0.

Proof. Suppose 𝑓(𝑧0) = 𝑥0. Given 𝑧 ∈ 𝑍, choose 𝛾 ∈ Ω(𝑍, 𝑧0, 𝑧) by path-connectedness. Then
𝑓 ∘ 𝛾 ∈ Ω(𝑋, 𝑥0, 𝑓(𝑧)), so 𝑓(𝑍) ⊆ 𝑋0.

Let 𝜄∶ (𝑋0, 𝑥0) → (𝑋, 𝑥0) be the inclusionmap. Then if 𝑓∶ (𝑍, 𝑧0) → (𝑋, 𝑥0) and𝑍 is path-connected,
𝑓 factors through 𝜄 as 𝑓 = 𝜄 ∘ ̂𝑓 where ̂𝑓 ∶ (𝑍, 𝑧0) → (𝑋0, 𝑥0).

Lemma. The map 𝜄⋆ ∶ 𝜋1(𝑋0, 𝑥0) → 𝜋1(𝑋, 𝑥0) is an isomorphism.

Proof. Let [𝛾] ∈ 𝜋1(𝑋, 𝑥0), so 𝛾∶ (𝐼, 0) → (𝑋, 𝑥0) giving 𝛾 = 𝜄∘ ̂𝛾where ̂𝛾 ∈ Ω(𝑋0, 𝑥0); [𝛾] = 𝜄⋆([ ̂𝛾]), so
𝜄⋆ is surjective. Now suppose 𝛾0 = 𝜄 ∘ ̂𝛾0, 𝛾1 = 𝜄 ∘ ̂𝛾1. If 𝜄⋆([ ̂𝛾0]) = 𝜄⋆([ ̂𝛾1]), so 𝛾0 ∼𝑒 𝛾1 via𝐻∶ 𝐼 × 𝐼 → 𝑋 ,
we have𝐻(0, 0) = 𝑥0, so𝐻 = 𝜄 ∘ �̂� since 𝐼 × 𝐼 is path-connected. Then we can check �̂� is a homotopy
for ̂𝛾0 ∼𝑒 ̂𝛾1. Hence [ ̂𝛾0] = [ ̂𝛾1], so 𝜄⋆ is injective.
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Let 𝑢 ∈ Ω(𝑋, 𝑥0, 𝑥1). Then we can define 𝑢♯ ∶ Ω(𝑋, 𝑥0) → Ω(𝑋, 𝑥1) by 𝛾 ↦ 𝑢−1𝛾𝑢. Hence if 𝛾0 ∼𝑒 𝛾1,
we have 𝑢−1𝛾0𝑢 ∼𝑒 𝑢−1𝛾1𝑢, so 𝑢♯ descends to a map 𝑢♯ ∶ 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑋, 𝑥1) defined by [𝛾] ↦
[𝑢−1𝛾𝑢].

Proposition. 𝑢♯ is a group isomorphism with inverse (𝑢−1)♯.

𝜋1(𝑋, 𝑥0) 𝜋1(𝑋, 𝑥1)
𝑢♯

(𝑢−1)♯

Proof. First, it is a homomorphism.

𝑢♯([𝛾][𝛾′]) = [𝑢−1𝛾𝛾′𝑢] = [𝑢−1𝛾𝑐𝐼,𝑥0𝛾′𝑢]
= [𝑢−1𝛾𝑢𝑢−1𝛾′𝑢] = [𝑢−1𝛾𝑢][𝑢−1𝛾′𝑢] = 𝑢♯([𝛾])𝑢♯([𝛾′])

Consider the function 𝑢−1♯ . We have

𝑢−1♯ (𝑢♯([𝛾])) = [𝑢𝑢−1𝛾𝑢𝑢−1] = [𝑐𝐼,𝑥0𝛾𝑐𝐼,𝑥0] = [𝛾]

and
𝑢♯(𝑢−1♯ ([𝛾])) = [𝑢−1𝑢𝛾𝑢−1𝑢] = [𝑐𝐼,𝑥1𝛾𝑐𝐼,𝑥1] = [𝛾]

So 𝑢♯, 𝑢−1♯ are inverses, and therefore isomorphisms.

Corollary. A space 𝑋 is simply connected if it is path-connected and 𝜋1(𝑋, 𝑥0) = 1 for any
𝑥0 ∈ 𝑋 , since then it follows that 𝜋1(𝑋, 𝑥) = 1 for all 𝑥 ∈ 𝑋 .

Theorem. Let 𝑥0 ∈ 𝑋 , and 𝑓0, 𝑓1 ∶ 𝑋 → 𝑌 such that 𝑓0 ∼ 𝑓1 by 𝐻∶ 𝑋 × 𝐼 → 𝑌 . Let 𝑢(𝑡) =
𝐻(𝑥0, 𝑡) and 𝑦0 = 𝑓0(𝑥0), 𝑦1 = 𝑓1(𝑥0). Then 𝑢 ∈ Ω(𝑌, 𝑦0, 𝑦1). We have 𝑓𝑖 ∶ (𝑋, 𝑥0) → (𝑌, 𝑦𝑖)
which induce 𝑓𝑖⋆ ∶ 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑌 , 𝑦𝑖). Then 𝑓1⋆ = 𝑢♯ ∘ 𝑓0⋆.

(𝑌 , 𝑦0) 𝜋1(𝑌, 𝑦0)

(𝑋, 𝑥0) 𝜋1(𝑋, 𝑥0)

(𝑌 , 𝑦1) 𝜋1(𝑌, 𝑦1)

𝑢♯

𝑓0

𝑓1

𝑓1⋆

𝑓0⋆

Proof. We must show that 𝑓1⋆([𝛾]) = 𝑢♯(𝑓0⋆([𝛾])). Let 𝛾𝑖 = 𝑓𝑖 ∘ 𝛾. We therefore need to show
𝛾1 ∼𝑒 𝑢−1𝛾0𝑢 for all 𝛾 ∈ Ω(𝑋, 𝑥0). Suppose we can show that𝐻∶ 𝜕(𝐼×𝐼) → 𝑌 given by 𝛾0, 𝑢, 𝛾−11 , 𝑢−1
on each side of the square extends to 𝐼 × 𝐼. Equivalently, 𝛾0𝑢𝛾−11 𝑢−1 = 𝑢−1𝛾0𝑢𝛾−11 is null-homotopic.
This is equivalent to the statement 𝑢−1𝛾0𝑢 ∼𝑒 𝛾1. We know ℎ extends to �̂� ∶ 𝐼 × 𝐼 → 𝑌 , because
�̂�(𝑥, 𝑡) = 𝐻(𝛾(𝑥), 𝑡).
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Corollary. Let 𝑋 ∼ 𝑌 via 𝑓 ∶ 𝑋 → 𝑌 and 𝑔∶ 𝑌 → 𝑋 , so 𝑓 ∘ 𝑔 ∼ id𝑌 and 𝑔 ∘ 𝑓 ∼ id𝑋 .
Let 𝑥0 ∈ 𝑋 and 𝑓(𝑥0) = 𝑦0. Let 𝑔(𝑦0) = 𝑥1 and 𝑓(𝑥1) = 𝑦1. Then we have induced maps
𝑓(0)⋆ ∶ 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑌, 𝑦0), 𝑔⋆ ∶ 𝜋1(𝑌 , 𝑦0) → 𝜋1(𝑋, 𝑥1), 𝑓(1)⋆ ∶ 𝜋1(𝑋, 𝑥1) → 𝜋1(𝑌 , 𝑦1). Then
𝑔⋆ is an isomorphism.

(𝑋, 𝑥0) 𝜋1(𝑋, 𝑥0)

(𝑌 , 𝑦0) 𝜋1(𝑌, 𝑦0)

(𝑋, 𝑥1) 𝜋1(𝑋, 𝑥1)

(𝑌 , 𝑦1) 𝜋1(𝑌, 𝑦1)

𝑓

𝑔∘𝑓∼id𝑋

𝑓(0)⋆

𝑢♯

𝑔
𝑓∘𝑔∼id𝑌

𝑔⋆

𝑢♯
𝑓 𝑓(1)⋆

The left-hand commutative diagram, in the category of pointed topological spaces, commutes
up to homotopy. The right-hand induced diagram commutes.

Proof. We have id𝑋 ∼ 𝑔 ∘ 𝑓 via 𝐻∶ 𝑋 × 𝐼 → 𝑋 . Then 𝑔⋆ ∘ 𝑓(0)⋆ = (𝑔 ∘ 𝑓)⋆ = 𝑢♯ ∘ (id𝑋)⋆ where
𝑢(𝑡) = 𝐻(𝑥0, 𝑡) is a path from 𝑥0 to 𝑥1. Since 𝑢♯ is an isomorphism, 𝑔⋆ is surjective. Similarly,
𝑓(1) ∘ 𝑔⋆ = (𝑓 ∘ 𝑔)⋆ is an isomorphism, so 𝑔⋆ is injective.

Corollary. Let 𝑋 be contractible. Then 𝜋1(𝑋, 𝑥0) = 1 is the trivial group.

Proof. The space Ω({•}, •) has one element, so 𝜋1({•}, •) = 1. Since 𝑋 ∼ {•}, the result follows.

4 Covering spaces
4.1 Definitions

Definition. Let 𝑝 ∶ ̂𝑋 → 𝑋 be a continuous function. We say 𝑈 ⊂ 𝑋 is evenly covered by 𝑝
if 𝑝−1(𝑈) ≃ ∐𝛼∈𝐴𝑈𝛼 and 𝑝|𝑈𝛼

∶ 𝑈𝛼 → 𝑈 is a homeomorphism for all 𝛼.

The topology on the coproduct∐𝛼∈𝐴𝑈𝛼 is such that 𝑉 is open if and only if each projection 𝑉 ∩𝑈𝛼
is open. The topology on 𝑝−1(𝑈) is the subspace topology. In particular, the inclusions 𝜄𝛼 ∶ 𝑈𝛼 →
∐𝛼∈𝐴𝑈𝛼 → ̂𝑋 are continuous, as is the composition 𝜄𝛼(𝑝|𝑈𝛼

)
−1
∶ 𝑈 → 𝑋 since 𝑝|𝑈𝛼

is a homeo-
morphism.

Definition. 𝑝∶ ̂𝑋 → 𝑋 is a covering map if every 𝑥 ∈ 𝑋 has an open neighbourhood 𝑈𝑥
which is evenly covered by 𝑝. If so, we say ̂𝑋 is a covering space of 𝑋 .

Example. If 𝐴 is a space with the discrete topology, then 𝑝∶ 𝐴×𝑋 → 𝑋 is a covering map, because
𝑝−1(𝑋) = ∐𝛼∈𝐴 {𝛼} × 𝑋 .
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Example. 𝑝∶ ℝ → 𝑆1 given by 𝑝(𝑡) = 𝑒2𝜋𝑖𝑡 is a covering map. Indeed, if 𝑉 ⊆ ℝ is an open interval
of at most unit length, let 𝑈 = 𝑝(𝑉) and then 𝑝−1(𝑈) = ∐𝑛∈ℤ 𝑉𝑛 for 𝑉𝑛 = {𝑛 + 𝑣 ∣ 𝑣 ∈ 𝑉}.

Example. Consider 𝑝𝑛 ∶ 𝑆1 → 𝑆1 defined by 𝑧 ↦ 𝑧𝑛. If 𝑉 ⊆ 𝑆1 is an open interval of length < 2𝜋
𝑛
,

let 𝑈 = 𝑝𝑛(𝑉). Then 𝑝−1𝑛 (𝑉) = ∐𝑖∈ℤ⟋𝑛ℤ
𝜔𝑖𝑉 for 𝜔 = 𝑒

2𝜋𝑖
𝑛 . Hence 𝑈 is evenly covered.

Definition. We define the 𝑛-dimensional real projective space as ℝℙ𝑛 = 𝑆𝑛⟋∼ where ∼ is
the equivalence relation generated by 𝑥 ∼ −𝑥 for all 𝑥 ∈ 𝑆𝑛.

Example. The quotient map 𝑝∶ 𝑆𝑛 → ℝℙ𝑛 is a coveringmap. Indeed, for 𝑥 ∈ 𝑆𝑛, let 𝑉𝑥 be the open
hemisphere centred at 𝑥. Then letting 𝑈𝑥 = 𝑝(𝑉𝑥), we have 𝑝−1(𝑈(𝑥)) = 𝑈𝑥 ⨿ −𝑈𝑥, giving that 𝑈𝑥 is
evenly covered.

4.2 Lifting paths and homotopies

Definition. Let 𝑝∶ ̂𝑋 → 𝑋 be a covering map, and 𝑓∶ 𝑍 → 𝑋 be continuous. A continuous
function ̂𝑓 ∶ 𝑍 → ̂𝑋 is a lift if 𝑝 ∘ ̂𝑓 = 𝑓. Hence, the following commutative diagram holds.

̂𝑋

𝑍 𝑋
𝑝

̂𝑓

𝑓

Theorem (Path lifting). Let 𝑝∶ ( ̂𝑋, ̂𝑥0) → (𝑋, 𝑥0) be a covering map, and 𝛾∶ [𝑎, 𝑏] → 𝑋 be
a path. Let 𝛾(𝑎) = 𝑥0 and 𝑝( ̂𝑥0) = ̂𝑥0. Then there exists a unique lift ̂𝛾∶ [𝑎, 𝑏] → ̂𝑋 with
̂𝛾(𝑎) = ̂𝑥0.

The proof will be given after some lemmas. We say 𝑓∶ 𝑍 → 𝑋 has the (unique) lifting property
at 𝑧 ∈ 𝑍 if for any ̂𝑥 ∈ ̂𝑋 such that 𝑝( ̂𝑥) = 𝑓(𝑧), there exists a (unique) lift ̂𝑓 ∶ 𝑍 → ̂𝑋 such that
̂𝑓(𝑧) = ̂𝑥.

Lemma (Lebesgue covering lemma). Let 𝑋 be a compact metric space, and {𝑈𝛼 ∣ 𝛼 ∈ 𝐴} is
an open cover of 𝑋 . Then there exists 𝛿 > 0 such that for every 𝑥 ∈ 𝑋 , the open ball 𝐵𝛿(𝑥) is
contained in 𝑈𝛼 for some 𝛼 ∈ 𝐴.

Proof. We have an open cover {𝑈𝛼 ∣ 𝛼 ∈ 𝐴} of 𝑋 , so given 𝑥 ∈ 𝑋 , we can find 𝛼𝑥 ∈ 𝐴 such that
𝑥 ∈ 𝑈𝛼𝑥 and 𝑈𝛼𝑥 is open. Hence there exists 𝛿𝑥 > 0 such that 𝐵2𝛿𝑥 (𝑥) ⊂ 𝑈𝛼𝑥 . Then {𝐵𝛿𝑥 (𝑥) ∣ 𝑥 ∈ 𝑋}
is an open cover of 𝑋 . By compactness there is a finite subcover {𝐵𝛿𝑥𝑖 (𝑥𝑖) ∣ 𝑖 ∈ {1,… , 𝑘}}. Let 𝛿 =
min𝑖∈{1,…,𝑘} 𝛿𝑥𝑖 > 0. Then for 𝑦 ∈ 𝑋 , we have 𝑦 ∈ 𝐵𝛿𝑥𝑖 (𝑥𝑖) for some 𝑖, and 𝐵𝛿(𝑦) ⊂ 𝐵𝛿𝑥𝑖+𝛿(𝑥𝑖) ⊂
𝐵2𝛿𝑥𝑖 (𝑥𝑖) ⊂ 𝑈𝛼𝑥 .
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Lemma. Let 𝑝∶ ( ̂𝑋, ̂𝑥0) → (𝑋, 𝑥0) be a covering map, and 𝛾∶ [𝑎, 𝑏] → 𝑋 be a path such
that 𝛾(𝑎) = 𝑥0. Let Im 𝛾 ⊂ 𝑈 where 𝑈 ⊂ 𝑋 is evenly covered. Then 𝛾 has the unique lifting
property.

Note that this is simply the above path lifting theorem with an additional hypothesis.

Proof. Since 𝑈 is evenly covered, 𝑝−1(𝑈) = ∐𝛼∈𝐴𝑈𝛼, and 𝑝|𝑈𝛼
∶ 𝑈𝛼 → 𝑈 is a homeomorphism

onto its image. So ̂𝑥0 ∈ 𝑈𝛼0 for some 𝛼0 ∈ 𝐴. Then the map (𝑝𝛼)−1 = 𝜄𝛼 ∘ (𝑝|𝑈𝛼
)
−1
∶ 𝑈 → ̂𝑋 is

continuous. Then (𝑝|𝑈𝛼0
)
−1
(𝑥0) = ̂𝑥0, so ̂𝛾 = (𝑝𝛼0)

−1 ∘ 𝛾 is a lift of 𝛾 with ̂𝛾(𝑎) = ̂𝑥0.

Now we will prove uniqueness of the lift. Observe that 𝑝−1(𝑈) = 𝑈𝛼0 ⨿ ∐𝛼≠𝛼0 𝑈𝛼 disconnects
𝑝−1(𝑈). Note that [𝑎, 𝑏] is connected. We have that if ̂𝛾∶ [𝑎, 𝑏] → ̂𝑋 with ̂𝛾(𝑎) = ̂𝑥0 and 𝑝 ∘ ̂𝛾 = 𝛾,
then Im ̂𝛾 ⊂ 𝑝−1(𝑈) implies Im ̂𝛾 ⊂ 𝑈𝛼0 . But 𝑝|𝑈𝛼0

is a homeomorphism, so we must have ̂𝛾 =

(𝑝𝛼0)
−1 ∘ 𝛾.

Lemma. Let 𝛾∶ [𝑎, 𝑏] → 𝑋 and 𝑎′ ∈ [𝑎, 𝑏]. If 𝛾|[𝑎,𝑎′] has the unique lifting property at 𝑎
and 𝛾|[𝑎′,𝑏] has the unique lifting property at 𝑎′, then 𝛾 has the unique lifting property at 𝑎.

Proof. If 𝑝( ̂𝑥) = 𝛾(𝑎), since 𝛾|[𝑎,𝑎′] has the unique lifting property at 𝑎, there exists a unique lift
̂𝛾1 ∶ [𝑎, 𝑎′] → ̂𝑋 such that ̂𝛾1(𝑎) = ̂𝑥. Then 𝛾|[𝑎′,𝑏] has the unique lifting property at 𝑎′, so there
exists a unique lift ̂𝛾2 ∶ [𝑎′, 𝑏] → ̂𝑋 with ̂𝛾2(𝑎′) = ̂𝛾1(𝑎′). Then the composition ̂𝛾 = ̂𝛾1 ̂𝛾2 is a lift of 𝛾,
with ̂𝛾(𝑎) = ̂𝑥.
For uniqueness, suppose ̂𝛾 is a lift of 𝛾 with ̂𝛾(𝑎) = ̂𝑥. Then ̂𝛾|[𝑎,𝑎′] is a lift of 𝛾|[𝑎,𝑎′], so by the
unique lifting property, ̂𝛾|[𝑎,𝑎′] is uniquely determined such that ̂𝛾(𝑎) = ̂𝑥. Then by the unique
lifting property again, ̂𝛾|[𝑎′,𝑏] is also uniquely determined such that ̂𝛾|[𝑎′,𝑏] (𝑎′) = ̂𝛾|[𝑎,𝑎′] (𝑎′).

We can now prove the path lifting theorem: any 𝛾∶ 𝐼 → 𝑋 has the unique lifting property.

Proof. Let 𝑝∶ ̂𝑋 → 𝑋 be a covering map. Hence, for all 𝑥 ∈ 𝑋 , there exists an open neighbourhood
𝑈𝑥 which is evenly covered. {𝑈𝑥 ∣ 𝑥 ∈ 𝑋} is therefore an open cover of 𝑋 , and so {𝛾−1(𝑈𝑥) ∣ 𝑥 ∈ 𝑋} is
an open cover of 𝐼. Since 𝐼 is compact, by the Lebesgue covering lemma, there exists 𝛿 > 0 such that
for all 𝑡, 𝐵𝛿(𝑡) ⊆ 𝛾−1(𝑈𝑥(𝑡)) for some 𝑥(𝑡). In other words, 𝛾(𝐵𝛿(𝑡)) ⊆ 𝑈𝑥(𝑡).

Let 𝑛 ∈ ℕ such that 1
𝑛
< 𝛿, and 𝑎𝑖 =

𝑖
𝑛
∈ 𝐼. Then [𝑎𝑖, 𝑎𝑖+1] ⊂ 𝐵𝛿(𝑎𝑖) for all 𝑖. Hence 𝛾[𝑎𝑖, 𝑎𝑖+1] ⊆

𝑈𝑥(𝑎𝑖). Then [𝑎𝑖, 𝑎𝑖+1] is connected, hence 𝛾[𝑎𝑖, 𝑎𝑖+1] is connected. Since 𝑈𝑥(𝑎𝑖) is evenly covered,
𝛾|[𝑎𝑖 ,𝑎𝑖+1] has the unique lifting property. Then by induction on 𝑖, we can see that 𝛾|[0,𝑎𝑖] has the
unique lifting property, and hence so does 𝛾 in its entirety.

Theorem (Homotopy lifting). Let𝑝∶ ( ̂𝑋, ̂𝑥0) → (𝑋, 𝑥0) be a coveringmap, and𝐻∶ 𝐼×𝐼 → 𝑋
be a homotopy. Then 𝐻 has the lifting property at (0, 0).

It also has the unique lifting property, but this will be more easily proven later.
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Proof. 𝐼 is compact and connected, so by Tychonoff’s theorem, 𝐼 × 𝐼 is compact and connected. Sup-
pose {𝑈𝑥 ∣ 𝑥 ∈ 𝑋} is an open cover of 𝑋 consisting of evenly covered neighbourhoods of points as
before. Then, since 𝐼 × 𝐼 is compact, by the Lebesgue covering lemma there exists 𝛿 > 0 such that
for all 𝑣 ∈ 𝐼 × 𝐼, 𝐵𝛿(𝑣) ⊆ 𝐻−1(𝑈𝑥(𝑣)). In particular, 𝐻(𝐵𝛿(𝑣)) ⊆ 𝑈𝑥(𝑣).

Let 𝑛 ∈ ℕ such that √2
𝑛

< 𝛿, dividing 𝐼 × 𝐼 into squares of size 1
𝑛
, ordered from left-to-right and

then bottom-to-top. Label each square with an index 𝑖 ∈ {1,… , 𝑛2}. Let each square 𝐴𝑖 have lower
left-hand corner 𝑣𝑖, for 𝑖 ∈ {1,… , 𝑛2}. Note that 𝐻(𝐴𝑖) ⊆ 𝐻(𝐵𝛿(𝑣𝑖)) ⊆ 𝑈𝑥(𝑣𝑖) = 𝑈 𝑖 is evenly covered.

Let 𝐵𝑘 = ⋃𝑘
𝑖=1 𝐴𝑖. Then 𝐴𝑖 ≃ 𝐼 × 𝐼 is connected, so 𝐻|𝐴𝑖

has the lifting property at 𝑣𝑖.

We show by induction that 𝐻|𝐵𝑘 has the lifting property at (0, 0). For 𝑘 = 1, 𝐵1 = 𝐴1 and (0, 0) = 𝑣1,
so the result follows.

For other 𝑘, suppose that 𝐻|𝐵𝑘 has the lifting property at (0, 0), so �̂�𝑘 ∶ 𝐵𝑘 → ̂𝑋 with �̂�𝑘(0, 0) = ̂𝑥.
Then 𝐻|𝐴𝑘+1

has the lifting property at 𝑣𝑖, so choose a lift ̂ℎ𝑘 ∶ 𝐴𝑘+1 → ̂𝑋 such that ̂ℎ𝑘(𝑣𝑘+1) =
�̂�𝑘(𝑣𝑘+1). Note that 𝑝(�̂�𝑘(𝑣𝑘+1)) = 𝐻(𝑣𝑘+1), so this exists by the lifting property. Observe that
𝐴𝑘+1 ∩ 𝐵𝑘 = 𝐼𝑘 ∪ 𝐼′𝑘 is the union of (at most) two intervals with intersection at their endpoints, so is
homeomorphic to 𝐼. Hence by uniqueness of path lifting, �̂�𝑘||𝐼𝑘 =

̂ℎ𝑘||𝐼𝑘 since both are lifts of 𝐻|𝐼𝑘
with 𝑣𝑘+1 ↦ �̂�𝑘(𝑣𝑘+1). Similarly, �̂�𝑘||𝐼′𝑘 =

̂ℎ𝑘||𝐼′𝑘 . In other words, �̂�𝑘||𝐴𝑘+1∩𝐵𝑘
= ̂ℎ𝑘||𝐴𝑘+1∩𝐵𝑘

. By the
gluing lemma, we can construct the well-defined and continuous map �̂�𝑘+1 ∶ 𝐵𝑘+1 → 𝑋 given by �̂�𝑘
and ̂ℎ𝑘 on their domains. Then �̂�𝑘+1 is a lift of 𝐻|𝐵𝑘+1 .

Proposition. Let 𝑝∶ ( ̂𝑋, ̂𝑥0) → (𝑋, 𝑥0) be a covering map. Let 𝛾0, 𝛾1 ∈ Ω(𝑋, 𝑥0, 𝑥1), and
𝛾0 ∼𝑒 𝛾1. Let ̂𝛾𝑖 be the lift of 𝛾𝑖 to ̂𝑋 with ̂𝛾𝑖(0) = ̂𝑥0, which exists by the path lifting property.
Then ̂𝛾0 ∼𝑒 ̂𝛾1.

Proof. Let 𝐻∶ 𝐼 × 𝐼 → 𝑋 be a homotopy between 𝛾0 and 𝛾1. By the homotopy lifting property, there
exists a lifted homotopy �̂� ∶ 𝐼 × 𝐼 → ̂𝑋 such that �̂�(0, 0) = ̂𝑥0. Let 𝛼𝑖(𝑡) = �̂�(𝑡, 𝑖) for 𝑖 = 0, 1, and
𝛽𝑖(𝑡) = �̂�(𝑖, 𝑡) for 𝑖 = 0, 1. Applying the uniqueness of path lifting to the 𝛼𝑖 and the 𝛽𝑖,
(i) 𝛼0 is a lift of 𝛾0 with 𝛼0(0) = ̂𝑥0, so 𝛼0 = ̂𝛾0;
(ii) 𝛽0 is a lift of 𝑐𝐼,𝑥0 with 𝛽0(0) = ̂𝑥0, so 𝛽0 = ̂𝑐𝐼,𝑥0 = 𝑐𝐼,�̂�0 by uniqueness, and in particular,

𝛼1(0) = 𝛽0(1) = ̂𝑥0;
(iii) 𝛼1 is a lift of 𝛾1 with 𝛼1(0) = ̂𝑥0, so 𝛼1 = ̂𝛾1;
(iv) let ̂𝑥1 = ̂𝛾0(1), and then 𝛽1 is a lift of 𝑐𝐼,𝑥1 , so 𝛽1(0) = ̂𝑥1, so 𝛽1 = 𝑐𝐼,�̂�1 .

Hence ̂𝛾0 ∼𝑒 ̂𝛾1 via �̂�.

Corollary. Let 𝑝∶ ( ̂𝑋, ̂𝑥0) → (𝑋, 𝑥0) be a covering map. Let 𝛾0, 𝛾1 ∈ Ω(𝑋, 𝑥0, 𝑥1), and 𝛾0 ∼𝑒
𝛾1. Then ̂𝛾0(1) = ̂𝛾1(1).
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4.3 Simply connected lifting
Let 𝑝∶ ( ̂𝑋, ̂𝑥0) → (𝑋, 𝑥0) be a covering map. If 𝛾∶ 𝐼 → 𝑋 has 𝛾(0) = 𝑥0, let ̂𝛾∶ 𝐼 → ̂𝑋 be its unique
lift such that ̂𝛾(0) = ̂𝑥0.
Consider 𝛾𝛾′ = ̂𝛾 ̃𝛾′, where ̃𝛾′ is a lift of 𝛾′ such that ̃𝛾′(0) = ̂𝛾(1). Note that we needed to change the
start point of ̃𝛾′ in the covering space.

Definition. A space 𝑋 is locally path-connected if for every open set𝑈 ⊆ 𝑋 and 𝑥 ∈ 𝑈 , there
exists an open 𝑉 ⊆ 𝑈 with 𝑥 ∈ 𝑉 and 𝑉 path-connected.

Example. Consider

𝑋 = {(𝑥, 0) ∈ ℝ2} ∪ {( 1𝑛 , 𝑦) ∈ ℝ2, 𝑛 ∈ ℤ} ∪ {(0, 𝑦) ∈ ℝ2}

Then, an open set containing a point (0, 𝑦) but not (0, 0) admits no smaller path-connected open
neighbourhood.

Proposition (simply connected lifting property). Let 𝑍 be a simply connected (and hence
path-connected) space that is also locally path-connected. If 𝑓∶ (𝑍, 𝑧0) → (𝑋, 𝑥0), then 𝑓 has
a unique lift ̂𝑓 ∶ (𝑍, 𝑧0) → ( ̂𝑋, ̂𝑥0).

Remark. This proposition then implies the path lifting and homotopy lifting properties.

Proof. Suppose ̂𝑓 ∶ (𝑍, 𝑧0) → ( ̂𝑋, ̂𝑥0) is a lift of 𝑓. Given 𝑧 ∈ 𝑍, consider a path 𝛾 ∈ Ω(𝑍, 𝑧0, 𝑧),
which exists since 𝑍 is path-connected. Then ̂𝑓 ∘ 𝛾 is a lift of 𝑓 ∘ 𝛾, since 𝑝( ̂𝑓 ∘ 𝛾) = (𝑝 ∘ ̂𝑓) ∘ 𝛾 = 𝑓 ∘ 𝛾.
Then, ( ̂𝑓 ∘ 𝛾)(0) = ̂𝑓(𝑧0) = ̂𝑥0, so ̂𝑓 ∘ 𝛾 = 𝑓 ∘ 𝛾 is the unique lift of 𝑓 ∘ 𝛾 given by the unique path
lifting property. Then ̂𝑓(𝑧) = ̂𝑓(𝛾(1)) = ( ̂𝑓 ∘ 𝛾)(1) = 𝑓 ∘ 𝛾(1) is uniquely determined by the unique
path lifting property. So any such lift is unique.

If 𝛾0, 𝛾1 ∈ Ω(𝑍, 𝑧0, 𝑧), 𝛾0 ∼𝑒 𝛾1 by simply-connectedness. In particular, 𝑓 ∘ 𝛾0 ∼𝑒 𝑓 ∘ 𝛾1, and by the
homotopy lifting property, 𝑓 ∘ 𝛾0(1) = 𝑓 ∘ 𝛾1(1). So the choice of path 𝛾 used above is not relevant.
Now, let us define ̂𝑓 ∶ (𝑍, 𝑧0) → ( ̂𝑋, ̂𝑥0) by ̂𝑓(𝑧) = 𝑓 ∘ 𝛾(1) where 𝛾 ∈ Ω(𝑍, 𝑧0, 𝑧) is any path from
𝑧0 to 𝑧. Then 𝑝( ̂𝑓(𝑧)) = 𝑝 ∘ 𝑓 ∘ 𝛾(1) = 𝑓 ∘ 𝛾(1) = 𝑓(𝑧) since 𝑓 ∘ 𝛾 is a lift of 𝑓 ∘ 𝛾. Hence ̂𝑓 as
defined is a lift. If 𝑧 = 𝑧0, we can take 𝛾 = 𝑐𝐼,𝑧0 , so 𝑓 ∘ 𝛾 = 𝑐𝐼,𝑥0 . In particular, 𝑓 ∘ 𝛾 = 𝑐𝐼,�̂�0 , so
̂𝑓(𝑧) = 𝑓 ∘ 𝛾(1) = ̂𝑥0 as required.

Now, it suffices to check that ̂𝑓 is a continuous function. Let 𝑈 ⊆ ̂𝑋 be an open neighbourhood of
̂𝑓(𝑧). We need to find an open neighbourhood 𝑉 ⊆ 𝑍 of 𝑧 such that ̂𝑓(𝑉) ⊆ 𝑈 .

First, we find a subset 𝑈 ′ ⊂ 𝑈 with ̂𝑓(𝑧) ∈ 𝑈 ′ such that 𝑝(𝑈 ′) is open and evenly covered. Since 𝑝
is a covering map, there exists an open𝑊 ⊆ 𝑋 with 𝑓(𝑧) ∈ 𝑊 and which is evenly covered. Hence
𝑝−1(𝑊) = ∐𝛼∈𝐴𝑊𝛼, and 𝑝( ̂𝑓(𝑧)) = 𝑓(𝑧), so ̂𝑓(𝑧) ∈ 𝑊𝛼0 for some 𝛼0 ∈ 𝐴. Then, 𝑊𝛼0 ⊆ ̂𝑋 is an
open set. Let 𝑈 ′ = 𝑈 ∩ 𝑊𝛼0 . Then ̂𝑓(𝑧) ∈ 𝑈 ′, and 𝑝|𝑊𝛼0

∶ 𝑊𝛼0 → 𝑊 is a homeomorphism, so
𝑝(𝑈 ′) = 𝑝𝛼0(𝑈 ′) is open and evenly covered.
Next, 𝑓∶ 𝑍 → 𝑋 is continuous, so we need to find an open set𝑉 ′ ⊆ 𝑍 with 𝑧 ∈ 𝑉 ′ and 𝑓(𝑉 ′) ⊆ 𝑝(𝑈 ′).
Since 𝑍 is locally path-connected, there exists 𝑉 ⊆ 𝑉 ′ which is an open path-connected set with
𝑧 ∈ 𝑉 .

17



Now we need to show 𝑉 satisfies the continuity requirement, that ̂𝑓(𝑉) ⊆ 𝑈 . Given 𝑧′ ∈ 𝑉 , let
𝛾′ ∈ Ω(𝑉, 𝑧, 𝑧′), which exists because 𝑉 is path-connected. Then Im𝑓 ∘ 𝛾′ ⊆ 𝑓(𝑉) ⊆ 𝑝(𝑈 ′). Note
that Im𝑓 ∘𝛾′ is evenly covered. Hence ̃𝛾′ = 𝑝−1𝛼0 ∘𝑓 ∘𝛾′ is a lift of 𝑓 ∘𝛾′ with ̃𝛾′(0) = 𝑝−1𝛼0 (𝑓(𝑧)) = ̂𝑓(𝑧).
Then 𝛾𝛾′ ∈ Ω(𝑍, 𝑧0, 𝑧′), and ˆ𝑓∘ (𝛾𝛾′) = 𝑓 ∘ 𝛾 ̃𝛾′ by the discussion at the beginning of the subsection.
Hence ̂𝑓(𝑧′) = ˆ𝑓 ∘ (𝛾𝛾′)(1) = ̃𝛾′(1) = 𝑝−1𝛼0 ∘ 𝑓 ∘ 𝛾′(1) ∈ 𝑈 ′. So ̂𝑓(𝑉) ⊆ 𝑈 as required.

4.4 Universal covers
Let 𝑝∶ ( ̂𝑋, ̂𝑥0) → (𝑋, 𝑥0) be a covering map. If 𝛾 ∈ Ω(𝑋, 𝑥0), let ̂𝛾∶ 𝐼 → ̂𝑋 be its unique lift such that
̂𝛾(0) = ̂𝑥0, which exists by the path lifting property. Then there is a map 𝜀𝑝 ∶ Ω(𝑋, 𝑥0) → 𝑝−1(𝑥0)
by 𝛾 ↦ ̂𝛾(1), since 𝑝( ̂𝛾(1)) = 𝛾(1) = 𝑥0. By the corollary above, if [𝛾0] = [𝛾1] in 𝜋1, we have
𝜀𝑝(𝛾0) = 𝜀𝑝(𝛾1). In particular, 𝜀𝑝 descends to a well-defined map from 𝜋1(𝑋, 𝑥0) to 𝑝−1(𝑥0).

Definition. A covering map 𝑝∶ ̂𝑋 → 𝑋 is a universal cover if ̂𝑋 is simply connected.

Example. 𝑝∶ ℝ → 𝑆1 defined by 𝑥 ↦ 𝑒2𝜋𝑖𝑥 is a universal cover of 𝑆1, since ℝ is contractible.
𝑝2 ∶ ℝ2 → 𝑆1 × 𝑆1 = 𝑇2 defined by 𝑝2(𝑥, 𝑦) = (𝑝(𝑥), 𝑝(𝑦)) is a universal cover.

Proposition. If 𝑝∶ ( ̂𝑋, ̂𝑥0) → (𝑋, 𝑥0) is a universal cover, then 𝜀𝑝 ∶ 𝜋1(𝑋, 𝑥0) → 𝑝−1(𝑥0) is a
bijection of sets.

Proof. Suppose 𝜀𝑝[𝛾0] = ̂𝑥1 = 𝜀𝑝[𝛾1]. Then ̂𝛾0 and ̂𝛾1 are paths in Ω( ̂𝑋, ̂𝑥0, ̂𝑥1). Since ̂𝑋 is simply
connected, ̂𝛾0 ∼𝑒 ̂𝛾1. In particular, 𝛾0 = 𝑝 ∘ ̂𝛾0 ∼𝑒 𝑝 ∘ ̂𝛾1 = 𝛾1. Hence [𝛾0] = [𝛾1], so 𝜀𝑝 is injective.

Given ̂𝑥 ∈ 𝑝−1(𝑥0), ̂𝑋 is path-connected as it is simply connected, so there exists a path 𝜂 ∈ Ω( ̂𝑋, ̂𝑥0, ̂𝑥).
Since 𝑝( ̂𝑥) = 𝑥0, we find 𝛾 = 𝑝 ∘ 𝜂 ∈ Ω(𝑋, 𝑥0). Then 𝜂 = ̂𝛾 is the unique lift of 𝛾. In particular,
𝜀𝑝(𝛾) = 𝜂(1) = ̂𝑥, so 𝜀𝑝 is surjective.

Example. Let𝑝∶ (ℝ, 0) → (𝑆1, 1) be defined by𝑥 ↦ 𝑒2𝜋𝑖𝑥. Wehave𝑝−1(1) = ℤ. Then, 𝜀∶ 𝜋1(𝑆1, 1) →
ℤ is a bijection.

Theorem. 𝜀𝑝 ∶ 𝜋1(𝑆1, 1) → ℤ is an isomorphism of groups.

Proof. It is a bijection, so it suffices to check that it is a homomorphism. Given 𝑛 ∈ ℤ, we can define
𝜑𝑛 ∶ ℝ → ℝ by 𝜑𝑛(𝑥) = 𝑥+𝑛. Then, 𝑝∘𝜑𝑛 = 𝑝. If 𝛾 ∈ Ω(𝑆1, 1), we can find a lift ̂𝛾 of 𝛾with ̂𝛾(0) = 0.
Then 𝑝 ∘ 𝜑𝑛 ∘ ̂𝛾 = 𝑝 ∘ ̂𝛾 = 𝛾, so 𝜑𝑛 ∘ ̂𝛾 is a lift of 𝛾 with 𝜑𝑛 ∘ ̂𝛾(0) = 𝑛.
Suppose 𝜀𝑝[𝛾] = 𝑛, and 𝜀𝑝[𝛾′] = 𝑛′. Then ̂𝛾(1) = 𝑛, ̂𝛾′(1) = 𝑛′, so 𝜑𝑛 ∘ ̂𝛾′ is a lift of 𝛾′ that starts at 𝑛.
Hence, 𝛾𝛾′ = ̂𝛾(𝜑𝑛∘ ̂𝛾′) is a lift of the composition of paths. Thus, 𝜀[𝛾𝛾′] = 𝛾𝛾′(1) = 𝜑𝑛( ̂𝛾′(1)) = 𝑛+𝑛′.
So 𝜀𝑝 is a homomorphism.

Corollary. 𝑆1 is not contractible.
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Example. Let 𝑓∶ 𝑆1 → 𝑆1 be the identity map. Let 𝑝∶ (ℝ, 0) → (𝑆1, 1) be a covering map. Then
there is no lift of 𝑓 to ℝ. Otherwise, the identity map on ℤ would factor through the trivial group.
This shows that the simply connected lifting property does not extend to all path-connected spaces.

4.5 Degree of maps on the circle

Lemma. Let 𝑧 ∈ 𝑆1, and 𝑢, 𝑣 ∈ Ω(𝑆1, 𝑧, 1). Then, the isomorphisms 𝑢♯, 𝑣♯ ∶ 𝜋1(𝑆1, 𝑧) →
𝜋1(𝑆1, 1) are equal.

Proof. Consider 𝑣−1♯ ∘ 𝑢♯ = (𝑣−1)♯ ∘ 𝑢♯. Note, (𝑣−1♯ ∘ 𝑢♯)[𝛾] = [𝑣𝑢−1𝛾𝑢𝑣−1]. Since 𝑣𝑢−1 ∈ Ω(𝑆1, 1), we
can write [𝑣𝑢−1𝛾𝑢𝑣−1] = [𝜂][𝛾][𝜂−1] where 𝜂 = 𝑣𝑢−1. But this is exactly [𝛾], since 𝜋1(𝑆1, 1) ≃ ℤ is
abelian. Hence 𝑣−1♯ ∘ 𝑢♯ = id, and by symmetry, 𝑢−1♯ ∘ 𝑣♯ = id.

Definition. Let 𝑓∶ 𝑆1 → 𝑆1, 𝑓(1) = 𝑧. Then choose 𝑢 ∈ Ω(𝑆1, 𝑧, 1), then 𝑓⋆ ∶ 𝜋1(𝑆1, 1) →
𝜋1(𝑆1, 𝑧), giving𝑢♯∘𝑓⋆ ∶ 𝜋1(𝑆1, 1) → 𝜋1(𝑆1, 1). This is a homomorphismℤ → ℤ, so is uniquely
determined by its action on 1. We define the degree of 𝑓, written deg𝑓, to be (𝑢♯ ∘ 𝑓⋆)(1).

By the above lemma, this definition does not depend on the choice of path 𝑢.
Example. Let 𝛾𝑛 ∈ Ω(𝑆1, 1) be given by 𝛾𝑛(𝑡) = 𝑒2𝜋𝑖𝑛𝑡 for 𝑛 ∈ ℤ. Then ̂𝛾𝑛(𝑡) = 𝑛𝑡, so 𝜀𝑝[𝛾𝑛] = 𝑛.
The integers 𝑛 correspond to the classes [𝛾𝑛] in 𝜋1(𝑆1, 1).
Let 𝑓𝑛 = 𝛾𝑛 ∶ 𝑆1 → 𝑆1, so 𝑓𝑛(𝑧) = 𝑧𝑛. Then 𝑓𝑛 ∘ 𝛾1 = 𝛾𝑛, so 𝑓𝑛⋆[𝛾1] = [𝛾𝑛]. Hence the degree of 𝑓𝑛 is
𝑛.

Proposition. The degree of 𝑓𝑛 ∶ 𝑆1 → 𝑆1, defined by 𝑧 ↦ 𝑧𝑛, is 𝑛. If 𝑔0, 𝑔1 ∶ 𝑆1 → 𝑆1, then
𝑔0 ∼ 𝑔1 if and only if deg 𝑔0 = deg 𝑔1. 𝑔∶ 𝑆1 → 𝑆1 extends to 𝐺∶ 𝐷2 → 𝑆1 if and only if
deg 𝑔 = 0.

Proof. Suppose 𝑔0 ∼ 𝑔1 via 𝐻∶ 𝑆1 × 𝐼 → 𝑆1. Let 𝑢(𝑡) = 𝐻(1, 𝑡), so 𝑔1⋆ = 𝑢♯ ∘ 𝑔0⋆, where 𝑢 ∈
Ω(𝑆1, 𝑔0(1), 𝑔1(1)). Let 𝑣 ∈ Ω(𝑆1, 𝑔1(1), 1). Then 𝑢𝑣 ∈ Ω(𝑆1, 𝑔0(1), 1), and so deg 𝑔1 = 𝑣♯ ∘ 𝑔1⋆(1) =
𝑣♯(𝑢♯ ∘ 𝑔0(1)) = (𝑢𝑣)♯ ∘ 𝑔0⋆(1) = deg 𝑔0, since 𝑢♯[𝛾] = [𝑢−1𝛾𝑢] so (𝑢 ∘ 𝑣)♯ = 𝑣♯ ∘ 𝑢♯.
Conversely, it suffices to show that 𝑔 ∼ 𝑓deg𝑔 by transitivity. Suppose 𝑔(1) = 1. Then 𝑔 = 𝛾 where
𝛾 = 𝑔 ∘ 𝛾1. Then deg 𝑔 = 𝑔⋆(1) = [𝑔 ∘ 𝛾1] = [𝛾] ∈ 𝜋1(𝑆1, 1). In particular, if deg 𝑔 = 𝑛, we have 𝛾 ∼ 𝛾𝑛,
so 𝑔 = 𝛾 ∼ 𝛾𝑛 = 𝑓𝑛.
In general, if 𝑔(1) = 𝑒2𝜋𝑖𝑥, then 𝑔 ∼ 𝑔0 where 𝑔0(𝑧) = 𝑒−2𝜋𝑖𝑥𝑔(𝑧) via 𝑔𝑡(𝑧) = 𝑒−2𝜋𝑖𝑡𝑥𝑔(𝑧). Then 𝑔 ∼ 𝑔0
so deg 𝑔 = deg 𝑔0, so in particular 𝑔 ∼ 𝑔0 ∼ 𝛾deg𝑔.
𝑔 extends to 𝐷2 if and only if 𝑔 ∼ 𝑐𝑆1,𝑧0 for some 𝑧0 ∈ 𝑆1. Equivalently, 𝑔 ∼ 𝑐𝑆1,1 = 𝑓0, so deg 𝑔 = 0
by above.

4.6 Fundamental theorem of algebra
Let 𝑝∶ ℂ → ℂ be a polynomial, so 𝑝(𝑤) = 𝑤𝑛 + 𝑎𝑛−1𝑤𝑛−1 +⋯+ 𝑎0 = 𝑤𝑛 + 𝑞(𝑤).
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Lemma. Let 𝑅0 = max {1,∑𝑛−1
𝑖=0 |𝑎𝑖|}. Then if |𝑤| > 𝑅0, |𝑤𝑛| > |𝑞(𝑤)|.

Proof. Consider
|𝑞(𝑤)|
|𝑤𝑛−1| ≤

𝑛−1
∑
𝑖=0

|𝑎𝑖||𝑤|
𝑖−𝑛+1

Hence, if |𝑤| > 1, each term |𝑤|𝑖−𝑛+1 is at most one.

𝑛−1
∑
𝑖=0

|𝑎𝑖||𝑤|
𝑖−𝑛+1 ≤

𝑛−1
∑
𝑖=0

|𝑎𝑖| ≤ 𝑅0

Hence ||𝑞(𝑤)||
|𝑤|𝑛

< 𝑅0
|𝑤|

< 1.

Consider 𝑔0, 𝑔1 ∶ 𝑆1 → ℂ ∖ {0} given by 𝑔0(𝑧) = (𝑅𝑧)𝑛 for some fixed 𝑅 > 𝑅0, and 𝑔1(𝑧) = 𝑝(𝑅𝑧).
Then 𝑔0 ∼ 𝑔1 via 𝑔𝑡(𝑧) = 𝑝𝑡(𝑅𝑧) where 𝑝𝑡(𝑤) = 𝑤𝑛 + 𝑡𝑞(𝑤). This map has codomain ℂ ∖ {0} by the
above lemma. Let 𝜋∶ ℂ ∖ {0} → 𝑆1 be the radial projection 𝑤 ↦ 𝑤

|𝑤|
. Then 𝜋 ∘ 𝑔0, 𝜋 ∘ 𝑔1 ∶ 𝑆1 → 𝑆1

are homotopic maps. Therefore, 𝑛 = deg(𝜋 ∘ 𝑔0) = deg(𝜋 ∘ 𝑔1).

Theorem. If 𝑛 > 0, 𝑝 has a root 𝑤0 ∈ ℂ.

Proof. If𝑝(𝑤) ≠ 0 for all𝑤, 𝑝∶ ℂ → ℂ∖{0}, so 𝑔1 extends to𝐺1 ∶ 𝐷2 → ℂ∖{0} given by𝐺1(𝑧) = 𝑝(𝑅𝑧).
Then 𝜋 ∘ 𝐺1 is an extension of 𝜋 ∘ 𝑔1. So 𝑛 = deg𝜋 ∘ 𝑔1 = 0, so we have a constant polynomial.

4.7 Wedge product

Definition. Let (𝑋𝑖, 𝑥𝑖) be pointed spaces. Thewedge product⋁
𝑛
𝑖=1(𝑋𝑖, 𝑥𝑖) =

∐𝑛
𝑖=1(𝑋𝑖, 𝑥𝑖)⟋∼

for the equivalence relation∼ generated by 𝑥𝑖 ∼ 𝑥𝑗 . For 𝑛 = 2, we also write (𝑋1, 𝑥1)∨(𝑋2, 𝑥2)
for⋁2

𝑖=1(𝑋𝑖, 𝑥𝑖).

If each 𝑋𝑖 has the property that for any 𝑥𝑖, 𝑥′𝑖 ∈ 𝑋𝑖, there exists a homeomorphism 𝜑∶ 𝑋𝑖 → 𝑋𝑖 such
that𝜑(𝑥𝑖) = 𝜑(𝑥′𝑖), then the particular choice of base point used in thewedge product does notmatter,
and the expression⋁𝑛

𝑖=1 𝑋𝑖 = ⋁𝑛
𝑖=1(𝑋𝑖, 𝑥𝑖) is well-defined up to homeomorphism independent of the

choice of the 𝑥𝑖.
Example. Consider the figure-eight 𝑆1 ∨ 𝑆1. There are inclusion maps 𝜄1, 𝜄2 ∶ (𝑆1, 1) → (𝑆1 ∨ 𝑆1, 𝑥0)
where 𝑥0 is the point at which the two circles are joined. Let 𝑎 = 𝜄1⋆(1) ∈ 𝜋1(𝑆1 ∨ 𝑆1, 𝑥0), and
similarly let 𝑏 = 𝜄2⋆(1) ∈ 𝜋1(𝑆1∨𝑆1, 𝑥0). The universal cover of 𝑆1∨𝑆1 is the infinite regular 4-valent
tree, 𝑇∞(4). If 𝑇𝑛(4) is the regular 4-valent tree of depth 𝑛, 𝑇∞(4) = ⋃∞

𝑛=1 𝑇𝑛(4), so𝑈 ⊆ 𝑇∞(4) is open
if and only if 𝑈 ∩ 𝑇𝑛(4) is open for all 𝑛. There is a covering map from 𝑇∞(4) to 𝑆1 ∨ 𝑆1 by mapping
each edge to one of the circles. 𝑇∞(4) is simply connected, because the interval 𝐼 is compact, so if
𝛾∶ 𝐼 → 𝑇∞(4), Im 𝛾 ⊆ 𝑇𝑛(4) for some 𝑛, and each of the finite trees is contractible and therefore
simply connected.
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In particular, there is a bijection 𝜋1(𝑆1 ∨ 𝑆1, 𝑥0) → 𝑝−1({𝑥0}) given by [𝛾] → 𝜀𝑝(𝛾). Here, 𝜀𝑝(𝑎𝑏) =
𝑎𝑏(1), but 𝜀𝑝(𝑏𝑎) = 𝑏𝑎(1) ≠ 𝑎𝑏(1). In 𝜋1(𝑆1 ∨ 𝑆1, 𝑥0), 𝑎𝑏 ≠ 𝑏𝑎, so 𝜋1(𝑆1 ∨ 𝑆1, 𝑥0) is not abelian.

4.8 Covering transformations

Definition. Let 𝑝𝑖 ∶ ̂𝑋𝑖 → 𝑋 be covering maps for 𝑖 = 1, 2. A covering transformation
𝑝∶ (𝑝1, ̂𝑋1) → (𝑝2, ̂𝑋2) is a map 𝑝∶ ̂𝑋1 → ̂𝑋2 such that 𝑝2 ∘ 𝑝 = 𝑝1.

̂𝑋1 ̂𝑋2

𝑋
𝑝1

𝑝

𝑝2

Remark. We can think of 𝑝 as a lift of 𝑝1 to ̂𝑋2.

̂𝑋2

̂𝑋1 𝑋

𝑝2

𝑝1

𝑝

Example. Let 𝑝1 ∶ 𝑆1 → 𝑆1 be defined by 𝑧 ↦ 𝑧6, and 𝑝2 ∶ 𝑆1 → 𝑆1 be defined by 𝑧 ↦ 𝑧2. Then
𝑝∶ (𝑝1, 𝑆1) → (𝑝2, 𝑆1) defined by 𝑧 ↦ 𝑧3 is a covering transformation.

𝑆1 𝑆1

𝑆1
𝑧↦𝑧6

𝑧↦𝑧3

𝑧↦𝑧2

Lemma. Let 𝑋 be locally path-connected. If 𝑝∶ (𝑝1, ̂𝑋1) → (𝑝2, ̂𝑋2) is a covering transform-
ation, 𝑝∶ ̂𝑋1 → ̂𝑋2 is a covering map.

̂𝑋1

̂𝑋2

𝑋

𝑝1

𝑝

𝑝2

Proof. Given 𝑥2 ∈ ̂𝑋2, we find an open evenly covered neighbourhood 𝑈𝑥2 . Let 𝑥 = 𝑝2(𝑥2) ∈ 𝑋 .
Then 𝑝1, 𝑝2 are covering maps of 𝑋 , so there exist open neighbourhoods 𝑈1, 𝑈2 of 𝑥 such that 𝑈 𝑖 is
evenly covered by 𝑝𝑖. Then 𝑈 = 𝑈1 ∩ 𝑈2 is open and evenly covered by 𝑝1 and 𝑝2. Since 𝑋 is locally
path-connected, let 𝑉 ⊆ 𝑈 be an open neighbourhood of 𝑥 that is path-connected. Then 𝑝−11 (𝑉) =
∐𝛼∈𝐴 𝑉𝛼 and 𝑝−12 (𝑉) = ∐𝛽∈𝐵 𝑉 𝛽, where 𝑉𝛼 ≃ 𝑉 ≃ 𝑉 𝛽 are all path-connected. Let 𝑥𝛼 = 𝑝−11,𝛼(𝑥),
and 𝑥𝛽 = 𝑝−12,𝛽(𝑥). Then 𝑝2(𝑝(𝑥𝛼)) = 𝑝1(𝑥𝛼) = 𝑥, so 𝑝(𝑥𝛼) = 𝑥𝛽 for some 𝛽 ∈ 𝐵. Now, 𝑉𝛼, 𝑉 𝛽 are
path-connected, so 𝑝(𝑉𝛼) ⊆ 𝑉 𝛽 since each 𝑉 𝛽 is a (maximal) path-connected component of 𝑝−12 (𝑉).
Therefore, 𝑝|𝑉𝛼 ∶ 𝑉𝛼 → 𝑉 𝛽 satisfies 𝑝2,𝛽 ∘ 𝑝|𝑉𝛼 = 𝑝1,𝛼, so 𝑝|𝑉𝛼 = 𝑝−12,𝛽 ∘ 𝑝1,𝛼 is a homeomorphism.
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In particular, 𝑝−1(𝑉 𝛽) = ∐𝛼∈𝑉,𝑝(𝑥𝛼)=𝑥𝛽
𝑉𝛼, and 𝑝|𝑉𝛼 ∶ 𝑉𝛼 → 𝑉 𝛽 is a homeomorphism. So 𝑉 𝛽 is

evenly covered, so 𝑝 is indeed a covering map.

4.9 Uniqueness of universal covers
Let𝑋 be a locally path-connected space, and 𝑞∶ (𝑋, ̃𝑥0) → (𝑋, 𝑥0) be auniversal cover. Let𝑝∶ ( ̂𝑋, ̂𝑥0) →
(𝑋, 𝑥0).

Lemma. If 𝑝∶ ̂𝑌 → 𝑌 is a bijective covering map, then 𝑝 is a homeomorphism.

Proof. 𝑝 is continuous and bijective, therefore 𝑝−1 ∶ 𝑌 → ̂𝑌 exists as a map of sets. We must show
that this map is continuous. Since 𝑝 is a covering map, 𝑌 has an open cover {𝑈𝑦 ∣ 𝑦 ∈ 𝑌} such that
𝑈𝑦 is evenly covered. In particular, 𝑝−1||𝑈𝑦

∶ 𝑈𝑦 → 𝑝−1(𝑈𝑦) is a homeomorphism. Hence 𝑝−1 is
continuous.

Recall that if 𝑝𝑖 ∶ ̂𝑋𝑖 → 𝑋 are covering maps, a covering transformation from (𝑝1, ̂𝑋1) to (𝑝2, ̂𝑋2)
is a lift ̂𝑝1 of 𝑝1 to 𝑋2. ̂𝑝1 is a covering isomorphism if it is bijective. Then, by the lemma, it is a
homeomorphism.

Proposition. Let 𝑋 be a locally path-connected space, and 𝑞∶ (𝑋, ̃𝑥0) → (𝑋, 𝑥0) be a uni-
versal cover. Let 𝑝∶ ( ̂𝑋, ̂𝑥0) → (𝑋, 𝑥0). Then there is a unique covering transformation
̂𝑞∶ (𝑝, ̂𝑋) → (𝑞, 𝑋)

( ̂𝑋, ̂𝑥0)

(𝑋, ̃𝑥0) (𝑋, 𝑥0)

𝑝

𝑞

̂𝑞

Proof. Note that 𝑋 is simply connected, and since 𝑋 is locally path-connected, so is 𝑋 . So existence
and uniqueness of ̂𝑞 is exactly the simply connected lifting property.

Corollary. If 𝑝 is also a universal cover, ̂𝑞 is a covering isomorphism, and in particular, ̂𝑋 ≃
𝑋 .

Proof. 𝑋 is simply connected, so ̂𝑞∶ 𝑋 → ̂𝑋 is a universal cover. Hence, there is a bijection between
points ̂𝑞−1( ̂𝑥) and elements 𝜋1( ̂𝑋, ̂𝑥). But this is the one-element set, since ̂𝑋 is simply connected. So
̂𝑞−1( ̂𝑥) has a single element, and so ̂𝑞 is a bijection.

Equivalently, if 𝑞∶ (𝑋, ̃𝑥0) → (𝑋, 𝑥0) and 𝑞′ ∶ (𝑋 ′, ̃𝑥′0) → (𝑋, 𝑥0) are universal covers, there is a
unique covering isomorphism ̂𝑞∶ (𝑋, ̃𝑥0) → (𝑋 ′, ̃𝑥′0).
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4.10 Deck groups

Definition. The deck group 𝐺𝐷(𝑝) is the set of covering automorphisms 𝑔∶ (𝑝, ̂𝑋) → (𝑝, ̂𝑋),
which forms a group under composition 𝑔𝑓 = 𝑔∘𝑓. This has a left action on ̂𝑋 by 𝑔 ⋅ ̂𝑥 = 𝑔( ̂𝑥).

Example. Let 𝑝∶ (ℝ, 0) → (𝑆1, 1). The deck group 𝐺𝐷(𝑝) is exactly

{𝑔𝑛 ∶ ℝ → ℝ ∣ 𝑔𝑛(𝑡) = 𝑡 + 𝑛} ≃ ℤ

In this case, 𝐺𝐷(𝑝) ≃ 𝜋1(𝑆1, 1).
Example. There is a bijection between 𝐺𝐷(𝑞) and 𝑞−1(𝑥0), by 𝑔 ↦ 𝑔( ̃𝑥0), by the above proposition
with ̂𝑋 = 𝑋 .

Theorem. Let 𝑞∶ (𝑋, ̃𝑥0) → (𝑋, 𝑥0) be a universal cover. Then 𝐺𝐷(𝑞) ≃ 𝜋1(𝑋, 𝑥0).

Proof. There is a bijection between 𝜋1(𝑋, 𝑥0) and 𝑞−1(𝑥0) since 𝑞 is a universal cover. By the above
example, 𝑞−1(𝑥0) is in bijection with 𝐺𝐷(𝑞). In particular, we can map [𝛾] ∈ 𝜋1(𝑋, 𝑥0) to ̃𝛾(1) ∈
𝑞−1(𝑥0), where ̃𝛾 is the unique lift of 𝛾 starting at ̃𝑥0, and 𝑔( ̃𝑥0) ∈ 𝑞−1(𝑥0) is mapped to 𝑔 ∈ 𝐺𝐷(𝑞).
We need to check that this composed map is a homomorphism: it is already a bijection of sets.

[𝛾𝛾′] is mapped to 𝛾𝛾′(1) = ̃𝛾(𝑔�̃�(1) ∘ ̃𝛾) where 𝑔�̃�(1) is the unique element of 𝐺𝐷(𝑞) with 𝑔�̃�(1)(𝑥0) =
̃𝛾(1). Since 𝑔�̃�(1) ∘ ̃𝛾′ is a lift of ̃𝛾′ starting at ̃𝛾(1), we have 𝛾𝛾′(1) = (𝑔�̃�(1) ∘ ̃𝛾′)(1) = 𝑔�̃�(1)( ̃𝛾′(1)) =
𝑔�̃�(1)(𝑔�̃�′(1)( ̃𝑥0)). So 𝛾𝛾′(1) is the image of ̃𝑥0 under 𝑔�̃�(1) ∘ 𝑔�̃�′(1), so this is indeed a homomorphism.

4.11 Correspondence of subgroups and covers

Proposition. Let 𝐺 = 𝐺𝐷(𝑞) ≃ 𝜋1(𝑋, 𝑥0). If 𝐻 ≤ 𝐺 is a subgroup, we have a tower of
covering maps

𝑋 1

𝑋𝐻 𝐻

𝑋 𝐺

𝜋𝐻

𝑝𝐻

where𝑋𝐻 = 𝐻∖𝑋 is the quotient given byℎ⋅𝑥 ∼ 𝑥 for allℎ ∈ 𝐻. In particular,𝜋𝐻 ∶ 𝑋 → 𝐻∖𝑋
is the quotient map, and 𝑝𝐻 ∶ 𝑋𝐻 → 𝑋 is given by 𝑝𝐻(𝐻 ⋅ 𝑥) = 𝑞(𝑥). This is well-defined
because 𝑞 ∘ ℎ = 𝑞 as ℎ is a deck transformation. In particular, if 𝐻 = 𝐺, 𝑝𝐺 is a covering
isomorphism, so 𝑋 ≃ 𝐺 ∖ 𝑋 .

A universal covering map is a quotient by the action of 𝐺𝐷(𝑞) ≃ 𝜋1(𝑋, 𝑥0).

Proof. Let 𝑥 ∈ 𝑋 . Then choose 𝑈𝑥 to be evenly covered by 𝑞. Then 𝑞−1(𝑈𝑥) = ∐𝛼∈𝐴𝑈𝛼 =
∐𝑔∈𝐺𝐷(𝑞) 𝑔⋅𝑈𝛼0 for ̃𝑥0 ∈ 𝑈𝛼0 . Then 𝑝−1𝐻 (𝑈𝑥) = ∐𝛽=𝑔𝐻∈cosets of𝐻 𝑈𝛽. Then 𝜋−1𝐻 (𝑈𝛽) = ∐𝑔ℎ∈𝑔𝐻 𝑔ℎ ⋅
𝑈𝛼0 , and 𝑝−1𝐻 (𝑈𝑥) = ∐𝑈𝛽. So each is evenly covered.
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Definition. 𝑝∶ 𝑋 → 𝑋 is a normal cover if 𝐺𝐷(𝑝) acts transitively on 𝑝−1(𝑥0).

Example. The universal cover 𝑞 is always a normal cover.

Proposition. Let 𝑝∶ ( ̂𝑋, ̂𝑥0) → (𝑋, 𝑥0) be a covering map. Then 𝑝⋆ ∶ 𝜋1( ̂𝑋, ̂𝑥0) → 𝜋1(𝑋, 𝑥0)
is injective. In particular, Im𝑝⋆ ≃ 𝜋1( ̂𝑋, ̂𝑥0) is a subgroup of 𝜋1(𝑋, 𝑥0).

Proof. If 𝑝⋆[𝛾0] = 𝑝⋆[𝛾1], we have 𝑝 ∘ 𝛾0 ∼𝑒 𝑝 ∘ 𝛾1, so 𝑝 ∘ ̂𝛾0 ∼𝑒 𝑝 ∘ ̂𝛾1, so 𝛾0 ∼𝑒 𝛾1. In particular,
[𝛾0] = [𝛾1].

Let 𝑞∶ (𝑋, ̃𝑥0) → (𝑋, 𝑥0) be a universal cover, so 𝑋 and hence 𝑋 are path-connected. Suppose further
that 𝑋 is locally path-connected, so 𝑋 is also locally path-connected. Consider

𝑆(𝑋, 𝑥0) = {𝐻 ≤ 𝜋1(𝑋, 𝑥0)}

𝐶(𝑋, 𝑥0) = {(𝑝, ̂𝑋, ̂𝑥0) ∣ 𝑝∶ ( ̂𝑋, ̂𝑥0) → (𝑋, 𝑥0) is a covering map, ̂𝑋 is path-connected}⟋∼

where (𝑝, ̂𝑋, ̂𝑥0) ∼ (𝑝′, ̂𝑋 ′, ̂𝑥′0) if there is a covering isomorphism 𝑞∶ (𝑝, ̂𝑋) → (𝑝′, ̂𝑋 ′) mapping
̂𝑥0 ↦ ̂𝑥′0. Let 𝛼∶ 𝑆(𝑋, 𝑥0) → 𝐶(𝑋, 𝑥0) be given by 𝛼(𝐻) = (𝑝𝐻 , 𝑋𝐻 , 𝑥0,𝐻), where 𝑋𝐻 = 𝐻 ∖ 𝑋 ,
so 𝑋 𝜋𝐻−−→ 𝑋𝐻

𝑝𝐻−−→ 𝑋 mapping ̃𝑥0 to 𝑥0,𝐻 . Let 𝛽∶ 𝐶(𝑋, 𝑥0) → 𝑆(𝑋, 𝑥0) be defined by (𝑝, ̂𝑋, ̂𝑥0) ↦
𝑝⋆(𝜋1( ̂𝑋, ̂𝑥0)).

Theorem. 𝛼, 𝛽 are inverses, and hence bijections.

Remark. The entire group 𝐺 = 𝜋1(𝑋, 𝑥0) is mapped to (id, 𝑋, 𝑥0). The trivial group 1 ⊆ 𝐺 is mapped
to the universal cover (𝑞, 𝑋, ̃𝑥0). The index [𝐺 ∶ 𝐻] is exactly ||𝑝−1𝐻 (𝑥0)||. A conjugation 𝑔−1𝐻𝑔 cor-
responds to a change of base point (𝑝𝐻 , 𝑋𝐻 , ̂𝛾(1)), where 𝑔 = [𝛾] and ̂𝛾∶ 𝐼 → 𝑋𝐻 is a lift of 𝛾 with
̂𝛾(0) = 𝑥0,𝐻 . If𝐻 ⊴ 𝐺 is a normal subgroup, 𝑝𝐻 is a normal covering. The quotient𝐺⟋𝐻 corresponds
to the deck group 𝐺𝐷(𝑝𝐻).

Proof. Consider 𝛽(𝛼(𝐻)) = 𝑝𝐻⋆(𝜋1(𝑋𝐻 , 𝑥0,𝐻)). There are isomorphisms

𝐻 → 𝜋1(𝑋𝐻 , 𝑥0,𝐻) → 𝑝𝐻⋆(𝜋1(𝑋, 𝑥0))

mapping
[𝛾] ↦ [𝜋𝐻 ∘ ̃𝛾] ↦ [𝑝𝐻 ∘ 𝜋𝐻 ∘ ̃𝛾] = [𝜋𝐺 ∘ ̃𝛾] = [𝛾]

where ̃𝛾 is a lift of 𝛾 such that ̃𝛾(0) = ̃𝑥0. Hence 𝛽(𝛼(𝐻)) = 𝐻.
Conversely, consider 𝛼(𝛽((𝑝, ̂𝑋, ̂𝑥0))) = (𝑝𝐻 , 𝑋𝐻 , 𝑥0,𝐻) where 𝐻 = 𝑝⋆(𝜋1(𝑋, 𝑥0)). Consider

(𝑋𝐻 , 𝑥0,𝐻) ( ̂𝑋, ̂𝑥0)

(𝑋, ̃𝑥0) (𝑋, 𝑥0)

𝑝′

𝑝

𝑞

̂𝑞𝜋𝐻
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We claim that ̂𝑞 = 𝑝′ ∘ 𝜋𝐻 , where 𝑝′ is a covering isomorphism. If we can show this, we have
(𝑝𝐻 , 𝑋𝐻 , 𝑥0,𝐻) ∼ (𝑝, ̂𝑋, ̂𝑥0), so 𝛼 ∘ 𝛽 is the identity on 𝐶(𝑋, 𝑥0). If ℎ ∈ 𝐻 = 𝑝⋆(𝜋1( ̂𝑋, ̂𝑥0)), ℎ = [𝑝 ∘ 𝛾]
for some 𝛾 ∈ Ω( ̂𝑋, ̂𝑥0). Then ̂𝑞( ̃𝑥) = 𝑞 ∘ 𝜂𝑥(1) where 𝜂𝑥 ∈ Ω(𝑋, ̃𝑥0, ̃𝑥). Then 𝜂ℎ⋅𝑥 = 𝜂ℎ∘𝑥0(ℎ ∘ 𝜂𝑥),
so 𝑞 ∘ 𝜂ℎ⋅𝑥 = (𝑞 ∘ 𝜂ℎ⋅𝑥0)(𝑞 ∘ 𝜂𝑥) = (𝑝 ∘ 𝛾)(𝑞 ∘ 𝜂𝑥), so in particular, 𝑞 ∘ 𝜂ℎ⋅𝑥 = (𝛾)(𝑞 ∘ 𝜂𝑥). Hence
̂𝑞(ℎ ⋅ ̃𝑥) = (𝑞 ∘ 𝜂ℎ⋅𝑥)(1) = 𝑞 ∘ 𝜂𝑥(1) = ̂𝑞( ̃𝑥), so ̂𝑞 factors as shown. ̂𝑋 is connected, so 𝑝′ is surjective,
so it is bijective and hence a covering isomorphism.

5 Seifert–Van Kampen theorem
5.1 Free groups and presentations
Consider 𝜋1(𝑆1∨𝑆1, 𝑥0)where 𝑥0 is the wedge point. The universal cover is the infinite 4-valent tree
𝑇∞(4), so 𝜋1(𝑆1 ∨ 𝑆1) is in bijection with 𝑞−1(𝑥0), the vertices of 𝑇∞(4). Let ̃𝑥0 be one such vertex. If
̃𝑥 is a vertex, there is a unique shortest path from ̃𝑥0 to ̃𝑥. This gives an ‘address’ for ̃𝑥 in 𝑇∞(4) given
by recording the type and direction of each edge used in the path. The set of such ‘addresses’ is in
bijection with the set of reduced words 𝑤 = ℓ1…ℓ𝑟 where 𝑟 ∈ ℕ, and each 𝑙𝑖 is one of 𝑎, 𝑎−1, 𝑏, 𝑏−1,
such that 𝑤 does not contain any substring of the form 𝑎𝑎−1, 𝑎−1𝑎, 𝑏𝑏−1𝑏−1𝑏. Then each word 𝑤
corresponds to an element 𝑤 ∈ 𝜋1(𝑆1 ∨ 𝑆1, 𝑥0), the image of the shortest path under 𝑞. Note that
the multiplication 𝑤𝑤′ in 𝜋1(𝑆1 ∨ 𝑆1, 𝑥0) corresponds to concatenation of words 𝑤𝑤′ and then the
reduction of substrings such as 𝑎𝑎−1.

Definition. A free group with generating set 𝑆 is a group 𝐹𝑆 and a subset 𝑆 ⊆ 𝐹𝑠 such that if
𝐺 is a group and 𝜑∶ 𝑆 → 𝐺 is a map of sets, there is a unique homomorphism Φ∶ 𝐹𝑠 → 𝐺
with Φ|𝑆 = 𝜑.

𝐹𝑆

𝑆 𝐺
Φ

𝜑

Remark. The action of taking the free group of a set is a functor from 𝐒𝐞𝐭 to𝐆𝐫𝐩, and it is left adjoint
to the forgetful functor from𝐆𝐫𝐩 to 𝐒𝐞𝐭. This property is known as the universal property of the free
group.

Example. 𝜋1(𝑆1 ∨ 𝑆1) ≃ 𝐹{𝑎,𝑏}. Indeed, given 𝜑∶ {𝑎, 𝑏} → 𝐺, we define Φ(ℓ1…ℓ𝑟) = 𝜑(ℓ1)…𝜑(ℓ𝑟),
where we extend 𝜑 to all of {𝑎, 𝑎−1, 𝑏, 𝑏−1} by defining 𝜑(𝑎−1) = 𝜑(𝑎)−1 and 𝜑(𝑏−1) = 𝜑(𝑏)−1. This is
a homomorphism: indeed,

Φ(𝑤𝑤′) = 𝜑(ℓ1)…𝜑(ℓ𝑘)𝜑(ℓ′1)…𝜑(ℓ′𝑘) = Φ(𝑤)Φ(𝑤′)

cancelling substrings of the form 𝑎𝑎−1 as required. The homomorphism is unique as required for the
universal property of the free group.

Lemma. Let 𝐹𝑆, 𝐹𝑇 be free groups on sets 𝑆 ⊆ 𝐹𝑆, 𝑇 ⊆ 𝐹𝑇 . Let 𝜑∶ 𝑆 → 𝑇 be a bijection.
Then Φ∶ 𝐹𝑆 → 𝐹𝑇 is an isomorphism.

Proof. Let 𝜓 = 𝜑−1. Since 𝐹𝑇 is free, there exists a homomorphism Ψ∶ 𝐹𝑇 → 𝐹𝑆 such that Ψ|𝑇 = 𝜓.
Then Ψ ∘ Φ∶ 𝐹𝑆 → 𝐹𝑆 has the property that for all 𝑠 ∈ 𝑆, we have 𝜓 ∘ 𝜑(𝑠) = 𝑠. 𝐹𝑆 is free, so there is
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a unique homomorphism 𝛼∶ 𝐹𝑆 → 𝐹𝑆 mapping 𝑠 ∈ 𝑆 to 𝑠. So 𝛼 = id𝐹𝑆 . Hence Ψ ∘ Φ = id𝐹𝑆 , so by
symmetry, they are inverse functions.

Corollary. If 𝐹𝑆, 𝐹′𝑆 are free groups generated by 𝑆, 𝐹𝑆 ≃ 𝐹′𝑆. So the isomorphism type of 𝐹𝑆
depends only on |𝑆|, the cardinality of 𝑆.

We therefore can write 𝐹𝑛 for the free group (up to isomorphism) generated by 𝑛 elements 𝑎1,… , 𝑎𝑛.
Let 𝑋 = ⋁𝑛

𝑖=1 𝑆1 where 𝑥0 is the wedge point, with inclusion maps 𝑗𝑛 ∶ 𝑆1 → 𝑋 . Let 𝑎𝑖 = 𝑗𝑖⋆(1) for
1 ∈ 𝜋1(𝑆1, 1) be a generator. Then 𝑋 has universal cover 𝑋 = 𝑇∞(2𝑛), the infinite regular 2𝑛-valent
tree. In particular, 𝜋1(𝑋, 𝑥0) is the set of reduced words in {𝑎±11 ,… , 𝑎±1𝑛 }, which is isomorphic to
𝐹2𝑛.

5.2 Presentations

Definition. Let 𝐺 be a group and 𝑆 ⊆ 𝐺 be a subset. Let 𝒮𝑆 = {𝐻 ≤ 𝐺 ∣ 𝑆 ⊆ 𝐻}, then let
⟨𝑆⟩ = ⋂𝐻∈𝒮𝑆

𝐻 be the smallest subgroup of𝐺 containing 𝑆, known as the subgroup generated
by 𝑆. Similarly, let𝒩𝑆 = {𝑁 ⊴ 𝐺 ∣ 𝑆 ⊆ 𝐻}, and let ⟨⟨𝑆⟩⟩ = ⋂𝐻∈𝒩𝑆

𝐻 be the smallest normal
subgroup of 𝐺 containing 𝑆, called the subgroup normally generated by 𝑆.

Note that ⟨𝑆⟩ is nonempty since 1 ∈ 𝐻 for all 𝐻 ∈ 𝒮𝑆.
If ⟨𝑆⟩ = 𝐺, we say that 𝑆 generates 𝐺. If so, there is a unique homomorphism Φ𝑆 ∶ 𝐹𝑆 → 𝐺 that maps
𝑠 to 𝑠. ImΦ𝑆 ≤ 𝐺, and it contains 𝑆, so Φ𝑆 is surjective.

Definition. Given a set 𝑆 and 𝑅 ⊆ 𝐹𝑆, we define ⟨𝑆 ∣ 𝑅⟩ = 𝐹𝑆⟋⟨⟨𝑅⟩⟩. If in addition ⟨⟨𝑅⟩⟩ =
kerΦ𝑆, then 𝐺 ≃ 𝐹𝑆⟋kerΦ𝑆

= 𝐹𝑆⟋⟨⟨𝑅⟩⟩. We say ⟨𝑆 ∣ 𝑅⟩ is a presentation for 𝐺.

Proposition. Any group 𝐺 admits a presentation.

Proof. Clearly ⟨𝐺⟩ = 𝐺, so let 𝑆 = 𝐺. Let 𝑅 = kerΦ𝐺, where Φ𝐺 ∶ 𝐹𝐺 → 𝐺. Then by construction,
𝐹𝑆⟋⟨⟨𝑅⟩⟩ = 𝐹𝑆⟋kerΦ𝐺

≃ 𝐺.

Remark. These presentations are very large. It is often more useful to consider finite presentations
of 𝐺, where both 𝑆 and 𝑅 are finite.
Example. ⟨𝑎, 𝑏 ∣⟩ ≃ 𝐹2. ⟨𝑎 ∣⟩ ≃ 𝐹1 = 𝜋1(𝑆1, 1) ≃ ℤ. ⟨𝑎 ∣ 𝑎3⟩ ≃ ℤ⟋3ℤ. ⟨𝑎, 𝑏 ∣ 𝑎𝑏−3⟩ ≃ ℤ.

Proposition. Let ⟨𝑆 ∣ 𝑅⟩ be a presentation, let 𝑎 ∉ 𝑆, and let 𝑤 ∈ 𝐹𝑆. Then ⟨𝑆 ∣ 𝑅⟩ ≃
⟨𝑆 ∪ {𝑎} ∣ 𝑅 ∪ {𝑎𝑤−1}⟩.

Proof. We have homomorphisms 𝜑∶ ⟨𝑆 ∣ 𝑅⟩ → ⟨𝑆 ∪ {𝑎} ∣ 𝑅 ∪ {𝑎𝑤−1}⟩ mapping 𝑠 ∈ 𝑆 to 𝑠, and
𝜓∶ ⟨𝑆 ∪ {𝑎} ∣ 𝑅 ∪ {𝑎𝑤−1}⟩ → ⟨𝑆 ∣ 𝑅⟩mapping 𝑠 ∈ 𝑆 to 𝑠 and 𝑎 to 𝑤. These are inverses.
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There are other operationswe can apply to presentations. If𝑤 ∈ 𝑅, we can replace𝑤with a conjugate
𝑠𝑤𝑠−1 for 𝑠 ∈ 𝑆, and it leaves the group unchanged. For example, ⟨𝑎𝑏 ∣ 𝑎𝑏𝑏⟩ = ⟨𝑎𝑏 ∣ 𝑏𝑎𝑏⟩. Also, if
𝑤1, 𝑤2 ∈ 𝑅, we can replace 𝑤1 with 𝑤1𝑤2, so for example,

⟨𝑎𝑏 ∣ 𝑏𝑎𝑏𝑏, 𝑎𝑏𝑏⟩ = ⟨𝑎𝑏 ∣ 𝑏, 𝑎𝑏𝑏⟩ ≃ ⟨𝑎 ∣ 𝑎⟩ ≃ 1

Theorem. Given a finite set 𝑆 and a finite set of relations 𝑅 ⊆ 𝐹𝑆, there is no algorithm to
determine if ⟨𝑆 ∣ 𝑅⟩ ≃ 1.

5.3 Covering with a pair of open sets

Theorem. Let 𝑈1, 𝑈2 ⊆ 𝑋 be open, and 𝑈1 ∩ 𝑈2 be path-connected with 𝑥0 ∈ 𝑈1 ∩ 𝑈2 and
𝑈1 ∪𝑈2 = 𝑋 . Then 𝜄1⋆(𝜋1(𝑈1, 𝑥0)) ∪ 𝜄2⋆(𝜋1(𝑈2, 𝑥0)) generates 𝜋1(𝑋, 𝑥0), where 𝜄𝑖 ∶ 𝑈 𝑖 → 𝑋 is
the inclusion.

Proof. {𝑈1, 𝑈2} is an open cover of𝑋 , so if 𝛾 ∈ Ω(𝑋, 𝑥0), we have {𝛾−1(𝑈1), 𝛾−1(𝑈2)} is an open cover of
𝐼. By the Lebesgue covering lemma, we can find 𝑛 ∈ ℕ such that [ 𝑗

𝑛
, 𝑗+1

𝑛
] lies entirely inside 𝛾−1(𝑈1)

or 𝛾−1(𝑈2) for all 𝑗. Each interval [
𝑗
𝑛
, 𝑗+1

𝑛
] with the label 1 or 2 accordingly; if it lies in both, choose

an arbitrary label. Let 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑘 = 1 be the points of the form 𝑗
𝑛
where the labelling

changes. Let 𝐼𝑖 = [𝑡𝑖−1, 𝑡𝑖] for each 𝑖 ∈ {0,… , 𝑘}. Let 𝛾𝑖 = 𝛾|𝐼𝑖 , so 𝛾(𝑡𝑖) ∈ 𝑈1∩𝑈2, and 𝛾(𝐼𝑖) ⊆ 𝑈 𝑖mod 2
without loss of generality. Note that we can write 𝛾 as the composition of paths 𝛾 = 𝛾1…𝛾𝑘.
Let 𝜂1,… , 𝜂𝑘−1 be paths with 𝜂𝑖 ∈ Ω(𝑈1 ∩𝑈2, 𝛾(𝑡𝑖), 𝑥0), which exists since𝑈1 ∩𝑈2 is path-connected.
Then

𝛾 ∼𝑒 𝛾1𝜂1𝜂−11 𝛾2𝜂2𝜂−12 …𝜂𝑘−1𝜂−1𝑘−1𝛾𝑘 = (𝛾1𝜂1)⏟
𝛿1

(𝜂−11 𝛾2𝜂2)⏟⎵⎵⏟⎵⎵⏟
𝛿2

𝜂−12 …𝜂𝑘−1 (𝜂−1𝑘−1𝛾𝑘)⏟⎵⏟⎵⏟
𝛿𝑘

Then each 𝛿𝑖 ∈ Ω𝑖(𝑈1, 𝑥0), so [𝛿𝑖] ∈ Im 𝜄(𝑖mod 2)⋆. So [𝛾] = [𝛿1][𝛿2]… [𝛿𝑘] is a product of elements
in 𝜄1⋆(𝜋1(𝑈1, 𝑥0)) ∪ 𝜄2⋆(𝜋1(𝑈2, 𝑥0)), so [𝛾] lies in the subgroup they generate.

Corollary. Let 𝑈1, 𝑈2 ⊆ 𝑋 be open and simply connected with 𝑈1 ∪ 𝑈2 = 𝑋 , and let 𝑈1 ∩ 𝑈2
be path-connected and contain 𝑥0. Then 𝑋 is simply connected.

Proof. 𝜋1(𝑋, 𝑥0) is generated by 𝜄1⋆(𝜋1(𝑈1, 𝑥0)) ∪ 𝜄2⋆(𝜋1(𝑈2, 𝑥0)) = {1}.

Example. 𝑆𝑛 = 𝑈+ ∪ 𝑈−, where 𝑈+ = 𝑆𝑛 = {(1, 0,… , 0)} and 𝑈− = 𝑆𝑛 − {(−1, 0,… , 0)}. Then
𝑈+ ≃ 𝑈− ≃ ℝ𝑛 by stereographic projection. 𝑈+ ∩ 𝑈− ≃ ℝ𝑛 − {0}. Hence 𝜋1(𝑈±, 𝑥0) = 1 since ℝ𝑛

is contractible. 𝑈+ ∩ 𝑈− is path-connected if 𝑛 > 1, so 𝜋1(𝑆𝑛, 𝑥0) = 1 for 𝑛 > 1.

Example (attaching a disk). If 𝑓∶ 𝑆1 → 𝑋 with 𝑓(1) = 𝑥0, let 𝑋 ∪𝑓 𝐷2 = 𝑋 ⨿ 𝐷2
⟋∼, where ∼ is

the smallest equivalence relation such that 𝑧 ∼ 𝑓(𝑧) for 𝑧 ∈ 𝑆1. Let 𝜋 be the quotient map from
𝑋 ⨿ 𝐷2 to 𝑋 ∪𝑓 𝐷2. Then let 𝑈1 = 𝜋(𝑋 ∪ 𝐷2 ∖ {0}) and 𝑈2 = 𝜋(𝐷2). Then 𝑈1 ∪ 𝑈2 = 𝑋 ∪𝑓 𝐷2, and
𝑈1 ∩𝑈2 = (𝐷2)∘ ∖ {0} is path-connected. 𝜋1(𝑈2) = 1, so 𝜋1(𝑋 ∪𝑓 𝐷2) is generated by 𝜋1(𝑋). Note that
𝑓⋆ ∶ 𝜋1(𝑆1, 1) → 𝜋1(𝑋, 𝑥0), so 𝑓⋆(1) lies in the kernel of the inclusion 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑋 ∪𝑓 𝐷2, 𝑥0),
since 𝑓⋆(1) is null-homotopic in 𝑋 ∪𝑓 𝐷2. So 𝜋1(𝑋 ∪𝑓 𝐷2) surjects onto 𝜋1(𝑋)⟋⟨⟨𝑓⋆(1)⟩⟩.
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This is in fact an isomorphism. Suppose [𝛾] ∈ 𝜋1(𝑋 ∪𝑓 𝐷2, 𝑥0) is mapped to the trivial element of
𝜋1(𝑋)⟋⟨⟨𝑓⋆(1)⟩⟩, so [𝛾] can be viewed as an element of ⟨⟨𝑓⋆(1)⟩⟩. Note that all such [𝛾] are of the form
𝑎1𝑓⋆(𝑛1)𝑎−11 …𝑎𝑘𝑓⋆(𝑛𝑘)𝑎−1𝑘 . Since 𝑓⋆(𝑛) = 1 in 𝜋1(𝑋 ∪𝑓 𝐷2, 𝑥0), [𝛾] = 1.

5.4 Amalgamated free products

Definition. Let 𝜄1 ∶ 𝐻 → 𝐺1, 𝜄2 ∶ 𝐻 → 𝐺2 be group homomorphisms. A group 𝐺 is an
amalgamated free product of 𝐺1 and 𝐺2 along 𝐻 if:
(i) There are homomorphisms 𝜑1 ∶ 𝐺1 → 𝐺,𝜑2 ∶ 𝐺2 → 𝐺 such that the following diagram

commutes.
𝐺1

𝐻 𝐺

𝐺2

𝜑1𝜄1

𝜄2 𝜑2

(ii) It is universal with this property, so for any other group 𝐺 with a commutative square
as above, there is a unique homomorphism 𝜓∶ 𝐺 → 𝐺 such that the following diagram
commutes.

𝐺1

𝐻 𝐺 𝐺

𝐺2

𝑗1

𝜑1
𝜄1

𝜄2

𝜓

𝑗2

𝜑2

Remark. The amalgamated free product is the colimit of the following diagram.

𝐺1

𝐻

𝐺2

𝜄1

𝜄2

Hence, it is a categorical pushout.

Proposition. If 𝐺,𝐺′ are amalgamated products of 𝐺1, 𝐺2, then 𝐺 ≃ 𝐺′.

Proof. There are homomorphisms 𝛼∶ 𝐺 → 𝐺′, 𝛽 ∶ 𝐺′ → 𝐺, and the uniqueness in the definition
implies 𝛼 ∘ 𝛽 = id𝐺′ and 𝛽 ∘ 𝛼 = id𝐺. In other words, the following diagram commutes.
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𝐺1

𝐻 𝐺 𝐺′

𝐺2

𝜑1 𝜑′1

𝜄1

𝜄2

𝛼

𝛽
𝜑2 𝜑′2

Proposition. An amalgamated product of any two groups exists.

The universal property of the presentation is that ⟨𝑆 ∣ 𝑅⟩ ≃ 𝐹𝑆⟋⟨⟨𝑅⟩⟩. Suppose 𝑆 ⊆ 𝐺 satisfies the
relations 𝑅 in 𝐺, so all of the relations map to the identity. Then there is a unique homomorphism
⟨𝑆 ∣ 𝑅⟩ → 𝐺 mapping 𝑠 ∈ 𝑆 to 𝑠, since there is a unique homomorphism 𝐹𝑆 → 𝐺 mapping 𝑠 ∈ 𝑆 to 𝑠,
and since 𝑆 satisfies the relations, this factors through 𝐹𝑆⟋⟨⟨𝑅⟩⟩.

For example, consider a map ⟨𝑎 ∣ 𝑎4⟩ → ℤ⟋2ℤ that maps 𝑎 to 1. We can check that the relation 14 = 0
in ℤ⟋2ℤ holds.

Proof. Consider presentations 𝐺𝑖 = ⟨𝑆 𝑖 ∣ 𝑅𝑖⟩ of 𝐺1, 𝐺2, and 𝐻 = ⟨𝑇 ∣ 𝑊⟩. Then define

𝐺 = 𝐺1 ∗𝐻 𝐺2 = ⟨𝑆1 ∪ 𝑆2 ∪ 𝑇 ∣ 𝑅1 ∪ 𝑅2 ∪ {𝑡−1𝑖 𝜄1(𝑡𝑖), 𝑡−1𝑖 𝜄2(𝑡𝑖) ∣ 𝑡𝑖 ∈ 𝑇}⟩

Then 𝜑𝑖 ∶ 𝐺𝑖 → 𝐺 are given by 𝑠 ∈ 𝑆 𝑖 mapping to 𝑠. Given 𝑗1, 𝑗2 ∶ 𝐺1, 𝐺2 → 𝐺, we define 𝜓∶ 𝐺 → 𝐺
mapping 𝑠 ∈ 𝑆1 to 𝑗1(𝑠), 𝑠 ∈ 𝑆2 to 𝑗2(𝑠), and 𝑡 ∈ 𝑇 to 𝑗1 ∘ 𝜄1(𝑡) = 𝑗2 ∘ 𝜄2(𝑡), and check that the relations
hold.

This is isomorphic to ⟨𝑆1 ∪ 𝑆2 || 𝑅1 ∪ 𝑅2 ∪ {𝜄1(𝑡𝑖)𝜄−12 (𝑡𝑖) ∣ 𝑡𝑖 ∈ 𝑇}⟩.

5.5 Seifert–Van Kampen theorem

Theorem (Seifert–Van Kampen). Let 𝑋 = 𝑈1 ∪ 𝑈2 where 𝑈 𝑖 are open sets with 𝑈1 ∩ 𝑈2
path-connected and containing 𝑥0. Let 𝐺𝑖 = 𝜋1(𝑈 𝑖, 𝑥0), and 𝐻 = 𝜋1(𝑈1 ∩ 𝑈2, 𝑥0), so

𝑈1 𝐺1

𝑈1 ∩ 𝑈2 𝑋 𝐻 𝜋1(𝑋)

𝑈2 𝐺2

𝑗1 𝑗1⋆𝜄1

𝜄2

𝜄1⋆

𝜄2⋆𝑗2 𝑗2⋆

Then 𝜋1(𝑋, 𝑥0) = 𝐺1 ∗𝐻 𝐺2.

Remark. The ‘easy’ part of the proof is that we have a commutative diagram
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𝐺1

𝐻 𝐺1 ∗𝐻 𝐺2 𝜋1(𝑋)

𝐺2

𝑗1⋆

𝜓1
𝜄1⋆

𝜄2⋆

𝜓

𝑗2⋆

𝜓2

so we obtain a map 𝜓∶ 𝐺1 ∗𝐻 𝐺2 → 𝜋1(𝑋, 𝑥0) by universality of the amalgamated free product.
Clearly 𝜓 is surjective by the theorem in the previous subsection, and the difficult part of the proof is
showing that 𝜓 is injective.

Proof sketch. We show that if 𝐻∶ 𝐼 × 𝐼 → 𝑋 is a homotopy between 𝛾0 and 𝛾1, then [𝛾0] = [𝛾1] using
the relations in 𝐺1 ∗𝐻 𝐺2. We can divide 𝐼 × 𝐼 into squares of size 1

𝑛
such that the image of each

square under 𝐻 lies in either 𝑈1 or 𝑈2 by the Lebesgue covering lemma. Each row represents a path
𝛾 𝑖
𝑛
, and by operating row-by-row we will show 𝛾 𝑖

𝑛
is related to 𝛾 𝑖+1

𝑛
in 𝐺1 ∗𝐻 𝐺2. To move from one

row to the next, if there are different labels above and below, the boundary lies in 𝑈1 ∩𝑈2, so we use
the relations 𝜄1⋆(𝑡1) = 𝜄2⋆(𝑡1).

Example. Consider 𝑋 ∪𝑓𝐷2 = 𝑈1 ∪𝑈2 where𝑈1 = 𝑋 ∪𝑓𝐷2 ∖ {0} and𝑈2 = (𝐷2)∘, with 𝑥0 ∈ 𝑈1 ∩𝑈2.
Let 𝑝∶ 𝑈1 → 𝑋 be the inclusion. Since 𝐷2 ∖ {0} has a strong deformation retraction to 𝑆1, we know
𝑈1 has a strong deformation retraction to 𝑋 , so 𝜋1(𝑈1, 𝑥0) ≃ 𝜋1(𝑋, 𝑝(𝑥0)). Note that 𝜋1(𝑈2, 𝑥0) is the
trivial group, since (𝐷2)∘ is contractible. Note that 𝑈1 ∩ 𝑈2 = (𝐷2)∘ ∖ {0} is homotopy equivalent to
𝑆1, so 𝜋1(𝑈1 ∩ 𝑈2, 𝑥0) = ℤ = ⟨𝛾⟩.
Then, by the Seifert–Van Kampen theorem, we have 𝜋1(𝑋 ∪𝑓𝐷2) ≃ 𝜋1(𝑋)∗ℤ 1. If 𝜋1(𝑋, 𝑥0) = ⟨𝑆 ∣ 𝑅⟩,
we have in particular that

𝜋1(𝑋 ∪𝑓 𝐷2) ≃ ⟨𝑆, 𝑡 || 𝑅 ∪ {𝑡, 𝑡−1𝑓⋆(𝑡)}⟩ = ⟨𝑆 ∣ 𝑅 ∪ 𝑓⋆(𝑡)⟩ = 𝜋1(𝑋, 𝑥0)⟋⟨⟨𝑓⋆(𝑡)⟩⟩

Example. Consider the torus 𝑇2 = 𝑆1 ∨ 𝑆1 ∪𝑓 𝐷2. Let 𝑎, 𝑏 be generators for 𝜋1(𝑆1 ∨ 𝑆1). Then the
commutator 𝑎𝑏𝑎−1𝑏−1 represents the disk attached. So 𝜋1(𝑇2) = ⟨𝑎, 𝑏 ∣ 𝑎𝑏𝑎−1𝑏−1⟩ = ℤ2.

Example. Let Σ𝑔 be a surface of genus 𝑔. Then Σ𝑔 = ⋁𝑔
𝑖=1(𝑆1 ∨ 𝑆1) ∪𝑓 𝐷2, so

𝜋1(Σ𝑔) ≃ ⟨𝑎1, 𝑏1,… , 𝑎𝑔, 𝑏𝑔
||||

𝑔
∏
𝑖=1

𝑎𝑖𝑏𝑖𝑎−1𝑖 𝑏−1𝑖 ⟩

Example. A surface of genus two can be realised as a union of 𝑈1, 𝑈2 where 𝑈1 ∩ 𝑈2 ≃ 𝑆1 and
𝜋1(𝑈 𝑖) = ⟨𝑎𝑖, 𝑏𝑖⟩, then 𝜋1(Σ2) = ⟨𝑎1, 𝑏1⟩ ∗ℤ ⟨𝑎2, 𝑏2⟩.

6 Simplicial complexes
6.1 Simplices
We have shown that 𝜋1(𝑆1, 𝑥0) ≃ ℤ, and 𝜋1(𝑆𝑛, 𝑥0) ≃ 1 for 𝑛 > 1, so 𝑆1 ≁ 𝑆𝑛. We would like to show
that 𝑆𝑛 ∼ 𝑆𝑚 only holds if 𝑛 = 𝑚. One proof of this fact is that any 𝑓∶ 𝑆𝑛 → 𝑆𝑚 with 𝑛 < 𝑚 is null-
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homotopic, but the identity on 𝑆𝑚 is not. Both of these claims require proof: simplicial complexes
will allow us to prove the first, and homology will allow us to prove the second.

Definition. The 𝑛-simplex is the topological space

Δ𝑛 = {(𝑥0,… , 𝑥𝑛) ∈ ℝ𝑛+1
||||
𝑥𝑖 ≥ 0,

𝑛
∑
𝑖=0

𝑥𝑖 = 1}

with the subspace topology.

Remark. Δ1 is homeomorphic to 𝐼. Δ2 is an equilateral triangle, and Δ3 is a regular tetrahedron. For
all 𝑛, Δ𝑛 is closed and bounded in ℝ𝑛+1, and hence compact and Hausdorff. The standard basis
vectors 𝑒0,… , 𝑒𝑛 are the vertices of Δ𝑛.

Definition. If 𝐼 ⊆ {0,… , 𝑛}, the 𝐼th face of Δ𝑛 is

𝑒𝐼 = {𝑥 ∈ Δ𝑛 ∣ 𝑥𝑖 = 0 for 𝑖 ∉ 𝐼}

We define 𝐹(Δ𝑛) = {𝑒𝐼 ∣ 𝐼 ⊆ {0,… , 𝑛}} to be the set of faces of Δ𝑛.

If 𝐼 = {𝑖0,… , 𝑖𝑘} with 𝑖0 < ⋯ < 𝑖𝑘, we write 𝐼 = 𝑖0𝑖1…𝑖𝑘.
Remark. Note that 𝑒{𝑖} = 𝑒𝑖, and Δ𝑛 = 𝑒{0,1,…,𝑛}. 𝑒𝐼 is a closed subset of Δ𝑛, and is homeomorphic to
Δ|𝐼|−1. 𝑒𝐼 ⊆ 𝑒𝐽 if and only if 𝐼 ⊆ 𝐽. 𝑒𝐼 ∩ 𝑒𝐽 = 𝑒𝐼∩𝐽 .

Definition. Amap |𝑓|∶ Δ𝑛 → ℝ𝑁 isaffine linear if it is the restriction of a linearmapℝ𝑛+1 →
ℝ𝑛. Equivalently, |𝑓|(∑𝑛

𝑖=0 𝑥𝑖𝑒𝑖) = ∑𝑛
𝑖=0 𝑥𝑖|𝑓|(𝑒𝑖). We say an affine linear map |𝑓|∶ Δ𝑛 → Δ𝑚

is simplicial if it maps vertices in Δ𝑛 to vertices in Δ𝑚, so there is a map of sets ̂𝑓 ∶ {0,… , 𝑛} →
{0,… ,𝑚} where |𝑓|(𝑒𝑖) = 𝑒 ̂𝑓(𝑖).

Remark. Affine linear maps are continuous, and are determined entirely by their action on 𝑒𝑖. In
particular, simplicial maps |𝑓| are determined by ̂𝑓. For 𝐼 ⊆ {0,… , 𝑛}, we have |𝑓|(𝑒𝐼) = 𝑒 ̂𝑓(𝐼).

Definition. Vectors 𝑣0,… , 𝑣𝑛 ∈ ℝ𝑁 are affine linearly independent if whenever∑𝑡𝑖𝑣𝑖 = 0
and∑𝑡𝑖 = 0, we have 𝑡𝑖 = 0 for all 𝑖. Equivalently,
(i) If∑𝑡𝑖𝑣𝑖 = ∑𝑡′𝑖𝑣𝑖 and∑𝑡𝑖 = ∑𝑡′𝑖 , then for each 𝑖, 𝑡𝑖 = 𝑡′𝑖 .
(ii) The vectors 𝑣1 − 𝑣0, 𝑣2 − 𝑣0,… , 𝑣𝑛 − 𝑣0 are linearly independent.
(iii) The unique affine linear map |𝑓|∶ Δ𝑛 → ℝ𝑁 given by |𝑓|(𝑒𝑖) = 𝑣𝑖 is injective.
If 𝑣0,… , 𝑣𝑛 are affine linearly independent, we write

[𝑣0,… , 𝑣𝑛] = Im |𝑓| = {∑𝑥𝑖𝑣𝑖 ∣ ∑𝑥𝑖 = 1, 𝑥𝑖 ≥ 0}

and we say [𝑣0,… , 𝑣𝑛] is a Euclidean simplex.

Remark. Δ𝑛 is compact and [𝑣0,… , 𝑣𝑛] is Hausdorff, so by the topological inverse function theorem,
|𝑓|∶ Δ𝑛 → [𝑣0,… , 𝑣𝑛] is a homeomorphism if the 𝑣𝑖 are affine linearly independent.
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Lemma. If 𝑋 ⊆ ℝ𝑁 , let 𝑍(𝑋) be the set of 𝑥 ∈ 𝑋 such that if 𝑥 = ∑𝑡𝑖𝑥𝑖 for 𝑡𝑖 > 0,∑ 𝑡𝑖 = 1
and all 𝑥𝑖 ∈ 𝑋 , then 𝑥𝑖 = 𝑥 for some 𝑖. Then 𝑍([𝑣0,… , 𝑣𝑛]) = {𝑣0,… , 𝑣𝑛}.

Proof. We show that 𝑣𝑘 ∈ 𝑍([𝑣0,… , 𝑣𝑛]); the converse is clear from the definition of the simplex.
Suppose 𝑣𝑘 = ∑𝑡𝑖𝑥𝑖 for 𝑡𝑖 > 0 and ∑𝑡𝑖 = 1. Then 𝑥𝑖 = ∑𝑛

𝑗=0 𝑠𝑖𝑗𝑣𝑗 , since 𝑥𝑖 ∈ [𝑣0,… , 𝑣𝑛]. So
𝑣𝑘 = ∑𝑗 (∑𝑖 𝑡𝑖𝑠𝑖𝑗)𝑣𝑗 . Since the 𝑣𝑖 are affine linearly independent, and∑𝑗 (∑𝑖 𝑡𝑖𝑠𝑖𝑗) = 1, we must
have∑𝑡𝑖𝑠𝑖𝑗 = 0 for 𝑗 ≠ 𝑘. But 𝑡𝑖 > 0 and 𝑠𝑖𝑗 ≥ 0, so the only case is when all 𝑠𝑖𝑗 are exactly zero for
𝑗 ≠ 𝑘, so 𝑥𝑗 = 𝑣𝑘.

Corollary. If [𝑣0,… , 𝑣𝑛] = [𝑣′0,… , 𝑣′𝑛] as subsets of ℝ𝑁 , then {𝑣0,… , 𝑣𝑛} = {𝑣′0,… , 𝑣′𝑛} as
sets.

Therefore, a simplex determines its set of vertices.

Proof. {𝑣0,… , 𝑣𝑛} = 𝑍([𝑣0,… , 𝑣𝑛]) = 𝑍([𝑣′0,… , 𝑣′𝑛]) = {𝑣′0,… , 𝑣′𝑛}.

Definition. 𝒮(ℝ𝑛) is the set of Euclidean simplices 𝜎 ⊆ ℝ𝑛. Hence, 𝒮(ℝ𝑛) is in bijection
with the set {{𝑣0,… , 𝑣𝑘} ∣ 𝑣𝑖 ∈ ℝ𝑁 , 𝑘 ≥ −1, 𝑣𝑖 affine linearly independent}.

6.2 Abstract simplicial complexes

Definition. An abstract simplicial complex in Δ𝑛 is a subset 𝐾 of the faces 𝐹(Δ𝑛) such that
𝑒𝐼 ∈ 𝐾 whenever 𝑒𝐽 is in 𝐾 and 𝐼 ⊆ 𝐽.

Remark. Abstract simplicial complexes are downward-closed sets of faces. They have no intrinsic
topology. The set of faces 𝐹(Δ𝑛) of the 𝑛-dimensional simplex Δ𝑛 is an abstract simplicial complex.

Definition. If 𝐾 is an abstract simplicial complex, its polyhedron is |𝐾| = ⋃𝑒𝐼∈𝐾 𝑒𝐼 ⊆ Δ𝑛.

Remark. Polyhedra are compact and Hausdorff.

Definition. We define 𝐾𝑟 = {𝑒𝐼 ∈ 𝐾 ∣ |𝐼| ≤ 𝑟 + 1} to be the set of faces of dimension at most
𝑟. This is called the 𝑟-skeleton of 𝐾.

The 𝑟-skeleton is an abstract simplicial complex. Note that

{𝑒∅} = 𝐾−1 ⊂ 𝐾0 ⊂ ⋯ ⊂ 𝐾𝑛 = 𝐾

We write dim𝐾 = max {dim 𝑒𝐼 ∣ 𝑒𝐼 ∈ 𝐾}.

Definition. The vertex set 𝑉(𝐾) is the polyhedron |𝐾0|.
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Example. 𝚫𝑛 = 𝐹(Δ𝑛) = {𝑒𝐼 ∣ 𝐼 ⊆ {0,… , 𝑛}} is a simplicial complex. Its polyhedron is Δ𝑛, which is
homeomorphic to 𝐷𝑛 by radial projection.

Example. 𝕊𝑛−1 = 𝚫𝑛
𝑛−1 = {𝑒𝑖 ∣ 𝐼 ⊊ {0,… , 𝑛}} is a simplicial complex. This has polyhedron 𝜕Δ𝑛 by

definition of the boundary. This is homeomorphic to 𝑆𝑛−1 by radial projection.

Definition. Let𝐾, 𝐿 be abstract simplicial complexes inΔ𝑛 andΔ𝑚 respectively. A simplicial
map𝑓∶ 𝐾 → 𝐿 is amap such that there is a simplicialmap |𝑓|∶ Δ𝑛 → Δ𝑚with𝑓(𝑒𝐼) = |𝑓|(𝑒𝐼).
Equivalently, there is a map ̂𝑓 ∶ {0,… , 𝑛} → {0,… ,𝑚} such that 𝑓(𝑒𝐼) = 𝑒 ̂𝑓(𝐼) and 𝑒𝐼 ∈ 𝐾
implies 𝑒 ̂𝑓(𝐼) ∈ 𝐿.

Remark. The identity map is simplicial. The composition of two simplicial maps is simplicial.

Definition. We say a simplicial map 𝑓∶ 𝐾 → 𝐿 is a simplicial isomorphism if 𝑓 is a bijection,
or equivalently, |𝑓| is a bijection or |𝑓| is a homeomorphism, treating |𝑓| as a map |𝐾| → |𝐿|.

6.3 Euclidean simplicial complexes
Recall that 𝒮(ℝ𝑛) is the set of Euclidean simplices [𝑣0,… , 𝑣𝑛] where the 𝑣𝑖 are affine linearly inde-
pendent.

Definition. 𝐾 ⊆ 𝒮(ℝ𝑛) is a Euclidean simplicial complex if
(i) 𝐾 is finite;
(ii) if 𝜎 ∈ 𝐾 and 𝜏 ∈ 𝐹(𝜎), then 𝜏 ∈ 𝐾;
(iii) if 𝜎1, 𝜎2 ∈ 𝐾, then 𝜎1 ∩ 𝜎2 ∈ 𝐹(𝜎1) ∩ 𝐹(𝜎2), so in particular, 𝜎1 ∩ 𝜎2 ∈ 𝐾.
If so, we write |𝐾| = ⋃𝜎∈𝐾 𝜎 ⊆ ℝ𝑛 with the subspace topology. We write

𝐾𝑟 = {𝜎 ∈ 𝐾 ∣ dim𝜎 ≤ 𝑟}

for its 𝑟-skeleton, which is a Euclidean simplicial complex.

Proposition. Let |𝜑|∶ Δ𝑛 → ℝ𝑛 be affine linear, and 𝐾′ be an abstract simplicial complex
in Δ𝑛, such that |𝜑|||𝐾′| is injective. Then 𝜑(𝐾′) = {|𝜑|(𝑒𝐼) ∣ 𝑒𝐼 ∈ 𝐾′} is a Euclidean simplicial
complex.

Proof. Property (i) is clear since 𝐹(Δ𝑛) is finite. For property (ii), note that if 𝜎 ∈ 𝜑(𝐾′), there is
𝑒𝐼 ∈ 𝐾′ such that 𝜎 = |𝜑|(𝑒𝐼). If 𝜏 ∈ 𝐹(𝜎), we have 𝜏 = |𝜑|(𝑒𝐽) for 𝑒𝐽 ⊆ 𝑒𝐼 . Then 𝑒𝐽 ∈ 𝐾′ since 𝐾′ is
an abstract simplicial complex. So 𝜏 = |𝜑|(𝑒𝐽) = 𝜑(𝐾′).
Suppose 𝜎1 = |𝜑|(𝑒𝐼1) and 𝜎2 = |𝜑|(𝑒𝐼2) where 𝑒𝐼1 , 𝑒𝐼2 ∈ 𝐾′. Then 𝜎1 ∩ 𝜎2 = |𝜑|(𝑒𝐼1) ∩ |𝜑|(𝑒𝐼2) =
|𝜑|(𝑒𝐼1 ∩ 𝑒𝐼2) by injectivity. This is equal to |𝜑|(𝑒𝐼1∩𝐼2) ∈ 𝐹(𝜎1) ∩ 𝐹(𝜎2).

Definition. We say that the Euclidean simplicial complex𝜑(𝐾′) is a realisation of an abstract
simplicial complex 𝐾′ in Δ𝑛, if |𝜑|∶ Δ𝑛 → ℝ𝑛 is affine linear and injective on |𝐾′|.

Remark. If 𝜑(𝐾′) is a realisation of𝐾′, |𝜑|||𝐾′| is injective, so |𝜑|∶ |𝐾′| → |𝜑(𝐾)| is a homeomorphism.
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Proposition. Let 𝐾 ⊆ ℝ𝑁 be a Euclidean simplicial complex. Then 𝐾 = 𝜑(𝐾′) for some
abstract simplicial complex 𝐾′, and |𝜑|∶ |𝐾′| → |𝐾|. Any two 𝐾′ are related by a simplicial
isomorphism.

Informally, every Euclidean simplicial complex is the realisation of some abstract simplicial com-
plex.

Proof. Let 𝑉(𝐾) = |𝐾0| = {𝑣0,… , 𝑣𝑛} ⊂ ℝ𝑁 be the vertex set of the Euclidean simplicial complex.
Define 𝐾′ = {𝑒{𝑖0,…,𝑖𝑘} ∣ [𝑣𝑖0 ,… , 𝑣𝑖𝑘] ∈ 𝐾}. Let |𝜑|∶ Δ𝑛 → ℝ𝑁 be given by |𝜑|(𝑒𝑖) = 𝑣𝑖.
We show that |𝜑|||𝐾′| is injective. If 𝜎 = [𝑣𝑖0 ,… , 𝑣𝑖𝑘] ∈ 𝐾, we have that 𝑣𝑖0 ,… , 𝑣𝑖𝑘 are affine linearly
independent since 𝐾 is a Euclidean simplicial complex. Then |𝜑|𝑒𝐼 is injective.

Suppose |𝜑|(𝑝) = |𝜑|(𝑞) = 𝑥 ∈ ℝ𝑁 , where 𝑝 ∈ 𝑒𝐼 ∈ 𝐾′ and 𝑞 ∈ 𝑒𝐽 ∈ 𝐾′. Then 𝑥 ∈ |𝜑|(𝑒𝐼) ∩ |𝜑|(𝑒𝐽),
which is the intersection of simplices in 𝐾, so 𝑥 ∈ |𝜑|(𝑒𝐼′) for 𝐼′ ⊆ 𝐼 ∩ 𝐽. Since |𝜑||𝑒𝐼 and |𝜑||𝑒𝐽 are
injective, we must have 𝑝, 𝑞 ∈ 𝑒𝐼′ . But |𝜑||𝑒𝐼′ is also injective, so 𝑝 = 𝑞.

Definition. A simplicial map of Euclidean simplicial complexes is a map 𝑓∶ 𝐾1 → 𝐾2 if
there are realisations 𝜑𝑖 ∶ 𝐾′

𝑖 → 𝐾𝑖 and a simplicial map of abstract simplicial complexes
𝑓′ ∶ 𝐾′

1 → 𝐾′
2 so that the following diagram commutes.

𝐾′
1 𝐾′

2

𝐾1 𝐾2

𝜑1 𝜑2

𝑓′

𝑓

Remark. The composition of simplicial maps of Euclidean simplicial complexes is also a simplicial
map.

6.4 Boundaries and cones

Definition. Let 𝜎 be an 𝑛-dimensional Euclidean simplex. Let 𝐹(𝜎) be the set of faces of 𝜎,
a Euclidean simplicial complex with |𝐹(𝜎)| = 𝜎. Let 𝜕/𝜎 = 𝐹(𝜎)𝑛−1 = 𝐹(𝜎) ∖ {𝜎}, a Euclidean
simplicial complex. Let 𝜕𝜎 = |𝜕/𝜎| ⊂ ℝ𝑁 be the boundary of 𝜎. It is homeomorphic to 𝑆𝑛−1.
Let 𝜎∘ = 𝜎 ∖ 𝜕𝜎 be the interior of 𝜎.

Definition. Let 𝑋 ⊆ ℝ𝑁 and 𝑝 ∈ ℝ𝑁 . We say 𝑝 is independent of 𝑋 if for each 𝑥 ∈ 𝑋 , the
ray 𝑝𝑥 from 𝑝 to 𝑥 has 𝑝𝑥 ∩ 𝑋 = {𝑥}.

Definition. If 𝑝 is independent of 𝑋 , the cone is defined by

𝐶𝑝(𝑋) = {𝑡𝑝 + (1 − 𝑡)𝑥 ∣ 𝑡 ∈ [0, 1], 𝑥 ∈ 𝑋}

Example. Let𝑋 = [𝑣0,… , 𝑣𝑛] be an𝑛-simplex. Then𝑝 is independent of𝑋 if and only if {𝑣0,… , 𝑣𝑛, 𝑝}
is an affine linearly independent set. If so, 𝐶𝑝(𝑋) = [𝑣0,… , 𝑣𝑛, 𝑝].
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Definition. Let 𝐾 be a Euclidean simplicial complex in ℝ𝑁 and 𝑝 be independent of |𝐾|.
Then we define the cone

𝐶𝑝(𝐾) = 𝐾 ∪ {[𝑣0,… , 𝑣𝑗 , 𝑝] ∣ [𝑣0,… , 𝑣𝑗] ∈ 𝐾}

Lemma. If 𝑝 is independent of |𝐾|, then 𝐶𝑝(𝐾) is a Euclidean simplicial complex and
||𝐶𝑝(𝐾)|| = 𝐶𝑝(|𝐾|).

6.5 Barycentric subdivision

Definition. If 𝜎 = [𝑣0,… , 𝑣𝑛] is an 𝑛-simplex in ℝ𝑁 , we define its barycentre

𝑏𝜎 =
1

𝑛 + 1
𝑛
∑
𝑖=0

𝑣𝑖

Lemma. 𝑏𝜎 is independent of 𝜕𝜎, and 𝐶𝑏𝜎(𝜕𝜎) = 𝜎.

We will define maps 𝛽 from 𝒮(ℝ𝑁) to the set of Euclidean simplicial complexes in ℝ𝑁 , and 𝐵 from
the set of Euclidean simplicial complexes in ℝ𝑁 to Euclidean simplicial complexes in ℝ𝑁 , satisfying
|𝛽(𝜎)| = 𝜎 and |𝐵(𝐾)| = |𝐾|. The maps 𝛽 and 𝐵 are called barycentric subdivision. In order to do this,
we will inductively define 𝛽 and 𝐵 on simplices and Euclidean simplicial complexes of dimension at
most 𝑛, and prove the following theorems.

Theorem (first inductive hypothesis). Let 𝜎 ∈ 𝒮(ℝ𝑁) be an 𝑛-simplex. Then 𝛽(𝜎) is a Euc-
lidean simplicial complex of dimension 𝑛, and |𝛽(𝜎)| = 𝜎. If 𝜏 is a face of 𝜎 and 𝜎1 ∈ 𝛽(𝜎)
then 𝜎1 ∩ 𝜏 ∈ 𝛽(𝜏).

Theorem (second inductive hypothesis). Let 𝐾 be an 𝑛-dimensional Euclidean simplicial
complex. Then 𝐵(𝐾) is an 𝑛-dimensional Euclidean simplicial complex with polyhedron
|𝐵(𝐾)| = |𝐾|.

For the base case, let𝑛 = −1. The only−1-dimensional simplex is∅. We define𝛽(∅) = {∅}. The only
−1-dimensional simplicial complex is {∅}, and we define 𝐵({∅}) = {∅}. Both inductive hypotheses
hold for this case.

In general, suppose 𝛽 and 𝐵 are defined on 𝑛−1-dimensional simplices and simplicial complexes and
that both inductive hypotheses hold. Wenowdefine𝛽(𝜎) = 𝐶𝑏𝜎(𝐵(𝜕/𝜎)) and𝐵(𝐾) = ⋃𝜎∈𝐾 𝛽(𝜎).
Example. Let 𝜎 be a zero-dimensional simplex. Then 𝛽𝜎(𝜎) = 𝜎.
Example. Let 𝜎 be the one-dimensional simplex. 𝜕/𝜎 is two points 𝑝1, 𝑝2 and the empty set. Then
𝐵(𝜕/𝜎) = {∅, 𝑝1, 𝑝2}. Therefore, 𝐶𝑝(𝐵(𝜕/𝜎)) = {∅, 𝑝, 𝑝1, 𝑝2, 𝑝𝑝1, 𝑝𝑝2}.
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Example. Let 𝜎 be a two-dimensional simplex with vertices 𝑝1, 𝑝2, 𝑝3. Then 𝐶𝑝(𝐵(𝜕/𝜎)) has six 2-
simplices, twelve 1-simplices, seven 0-simplices and one empty simplex.

Proof of first inductive hypothesis. 𝜕/𝜎 is a Euclidean simplicial complex of dimension 𝑛 − 1, hence
𝐵(𝜕/𝜎) is a Euclidean simplicial complex by the second inductive hypothesis, and |𝐵(𝜕/𝜎)| = |𝜕/𝜎| = 𝜕𝜎.
By the lemmas above, 𝑏𝜎 is independent of 𝜕𝜎 = |𝐵(𝜕/𝜎)|, so 𝐶𝑏𝜎(𝐵(𝜕/𝜎)) is a Euclidean simplicial
complex with polyhedron ||𝐶𝑏𝜎(𝐵(𝜕/𝜎))|| = 𝐶𝑏𝜎(𝜕𝜎) = 𝜎. The next part follows from the lemma: if
𝜎 ∈ 𝐶𝑝(𝐾), then 𝜎 ∩ |𝐾| ∈ 𝐾.

Proof of second inductive hypothesis. Wecheck the properties required for aEuclidean simplicial com-
plex for 𝐵(𝐾) = ⋃𝜎∈𝐾 𝛽(𝜎). 𝛽(𝜎) is finite for each 𝜎 and 𝐾 is finite, so 𝐵(𝐾) is finite. If 𝜎 ∈ 𝐵(𝐾)
then 𝜎 ∈ 𝛽(𝜎′) for some 𝜎′ ∈ 𝐾, so if 𝜏 ∈ 𝐹(𝜎), then 𝜏 ∈ 𝛽(𝜎′) since 𝛽(𝜎′) is a Euclidean simplicial
complex, so 𝜏 ∈ 𝐵(𝐾), so the second property holds. Suppose 𝜎1, 𝜎2 ∈ 𝐵(𝐾) where 𝜎𝑖 ∈ 𝛽(𝜎′𝑖 ) and
𝜎′𝑖 ∈ 𝐾. Then 𝜎1 ∩ 𝜎2 ⊆ 𝜎′1 ∩ 𝜎′2 = 𝜏 since ||𝛽(𝜎′𝑖 )|| = 𝜎′𝑖 , where 𝜏 ∈ 𝐾 since 𝐾 is a Euclidean simplicial
complex. Then 𝜎1 ∩ 𝜏, 𝜎2 ∩ 𝜏 ∈ 𝛽(𝜏) by the second part of the first inductive hypothesis. In partic-
ular, 𝛽(𝜏) is a Euclidean simplicial complex, so 𝜎1 ∩ 𝜎2 = (𝜎1 ∩ 𝜏)⏟⎵⏟⎵⏟

∈𝛽(𝜏)

∩ (𝜎2 ∩ 𝜏)⏟⎵⏟⎵⏟
∈𝛽(𝜏)

∈ 𝛽(𝜏) ⊆ 𝐵(𝐾), so the

third property holds. So 𝐾 is a Euclidean simplicial complex. Now, by the first inductive hypothesis,
|𝐵(𝐾)| = ⋃𝜎∈𝐾 𝛽(𝜎) = ⋃𝜎∈𝐾 𝜎 = |𝐾|.

Lemma. Let 𝜎 ∈ 𝒮(ℝ𝑁) and 𝑥, 𝑣 ∈ 𝜎. Then ‖𝑣 − 𝑥‖ ≤ max𝑣𝑖∈𝑉(𝜎) ‖𝑣 − 𝑣𝑖‖.

Proof. We can write 𝑥 = ∑𝑥𝑖𝑣𝑖, where∑𝑥𝑖 = 1, 𝑥𝑖 ≥ 0, and 𝑣𝑖 ∈ 𝑉(𝜎). But also, 𝑣 = ∑𝑥𝑖𝑣. Hence,

‖𝑣 − 𝑥‖ = ‖
‖∑𝑥𝑖(𝑣 − 𝑣𝑖)‖‖ ≤ ∑𝑥𝑖‖𝑣 − 𝑣𝑖‖ ≤ ∑𝑥𝑖max ‖𝑣 − 𝑣𝑖‖ = max ‖𝑣 − 𝑣𝑖‖

Applying this twice, ‖𝑥 − 𝑣‖ ≤ max𝑣𝑖∈𝑉(𝜎) ‖𝑣 − 𝑣𝑖‖ ≤ max𝑣𝑖 ,𝑣𝑗∈𝑉(𝜎)
‖
‖𝑣𝑖 − 𝑣𝑗‖‖.

Definition. Themesh of a simplex 𝜎 ∈ 𝒮(ℝ𝑁) is

𝜇(𝜎) = max
𝑣𝑖 ,𝑣𝑗∈𝑉(𝜎)

‖
‖𝑣𝑖 − 𝑣𝑗‖‖ = max

𝑥,𝑣∈𝜎
‖𝑣 − 𝑥‖

If 𝐾 is a Euclidean simplicial complex, its mesh is 𝜇(𝐾) = max𝜎∈𝐾 𝜇(𝜎).

Lemma. Let 𝑏𝜎 be the barycentre of 𝜎, so 𝑏𝜎 = 1
𝑛+1

∑𝑛
𝑖=0 𝑣𝑖 for 𝜎 = [𝑣0,… , 𝑣𝑛]. Then

max𝑣∈𝜎 ‖𝑏𝜎 − 𝑣‖ ≤ 𝑛
𝑛+1

𝜇(𝜎).

Proof. ‖𝑏𝜎 − 𝑣‖ ≤ max𝑣𝑖∈𝑉(𝜎) ‖𝑏𝜎 − 𝑣𝑖‖. We have

‖𝑏𝜎 − 𝑣𝑖‖ =
1

𝑛 + 1
‖
‖‖‖
∑
𝑗≠𝑖

𝑣𝑗 − 𝑛𝑣𝑖
‖
‖‖‖
≤ 1
𝑛 + 1 ∑𝑗≠𝑖

‖
‖𝑣𝑗 − 𝑣𝑖‖‖ ≤

1
𝑛 + 1 ⋅ 𝑛𝜇(𝜎)
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Corollary. Let 𝜎 be a Euclidean simplex of dimension 𝑛. Then 𝜇(𝛽(𝜎)) ≤ 𝑛
𝑛+1

𝜇(𝜎). Let 𝐾 be
a Euclidean simplicial complex of dimension 𝑛. Then 𝜇(𝐵(𝐾)) ≤ 𝑛

𝑛+1
𝜇(𝐾).

Proof. Let 𝜏 ∈ 𝛽(𝜎). Suppose 𝜏 ∈ 𝐵(𝜕/𝜎). Then, 𝜇(𝜏) ≤ 𝑛−1
𝑛
𝜇(𝐵(𝜕/𝜎)) ≤ 𝑛

𝑛+1
𝜇(𝜎) by induction.

Otherwise, 𝜏 = [𝑣0,… , 𝑣𝑘, 𝑏𝜎], where [𝑣0,… , 𝑣𝑘] ∈ 𝐵(𝜕/𝜎). Then ‖‖𝑣𝑖 − 𝑣𝑗‖‖ ≤
𝑛−1
𝑛
𝜇(𝜎) by induction,

and ‖𝑣𝑖 − 𝑏𝜎‖ ≤
𝑛

𝑛+1
𝜇(𝜎) by the lemma.

6.6 Simplicial approximation

Lemma. (i) Let 𝑥 ∈ Δ𝑛. Then there exists a unique 𝐼 ⊆ {0,… , 𝑛} such that 𝑥 ∈ 𝑒∘𝐼 .
(ii) If 𝑥 ∈ 𝑒∘𝐼 , then 𝑥 ∈ 𝑒𝐽 if and only if 𝐼 ⊆ 𝐽, or equivalently, 𝑒𝐼 ⊆ 𝑒𝐽 .
(iii) Let 𝐾 be an abstract simplicial complex in Δ𝑛, and let 𝑥 ∈ 𝑒∘𝐼 . Suppose that 𝑥 ∈ |𝐾|.

Then 𝑒𝐼 ∈ 𝐾.

Proof. Part (i). Let 𝐼 = {𝑖 ∈ {0,… , 𝑛} ∣ 𝑥𝑖 ≠ 0}. Part (ii). Follows from part (i).

Part (iii). 𝑥 ∈ |𝐾| implies 𝑥 ∈ 𝑒𝐽 for some 𝑒𝐽 ∈ 𝐾. By part (ii), we have 𝑒𝐼 ⊆ 𝑒𝐽 . Since 𝐾 is an abstract
simplicial complex and 𝑒𝐽 ∈ 𝐾, we have 𝑒𝐼 ∈ 𝐾.

Corollary. Let 𝐾 be a Euclidean simplicial complex, and 𝑥 ∈ |𝐾|. Then there exists a unique
𝜎 ∈ 𝐾 with 𝑥 ∈ 𝜎∘.

Proof. Let 𝜑∶ 𝐾′ → 𝐾 be a realisation of𝐾, so𝐾′ is an abstract simplicial complex and 𝜑 is a bijection
inducing a homeomorphism on the polyhedra. Let 𝑥′ = ||𝜑−1||(𝑥) ∈ |𝐾|. Then 𝑥′ lies in the interior
of a unique 𝑒𝐼 by part (i) of the lemma above. Note that 𝑒𝐼 ∈ 𝐾′ by part (iii), so 𝜑(𝑒𝐼) is the unique
𝜎 ∈ 𝐾 with 𝑥 ∈ 𝜎∘.

Definition. Let 𝐾 be a Euclidean simplicial complex, and let 𝑣 ∈ 𝑉(𝐾). Then the star St𝐾(𝑣)
is⋃{𝜎∈𝐾∣𝑣∈𝜎} 𝜎∘.

Lemma. (i) Let 𝑥 ∈ |𝐾| and 𝑥 ∈ 𝜎∘. Then 𝑥 ∈ St𝐾(𝑣) if and only if 𝑣 ∈ 𝑉(𝜎).
(ii) St𝐾(𝑣) = |𝐾| ∖ ⋃{𝜎∈𝐾∣𝑣∉𝑉(𝜎)} 𝜎∘ = |𝐾| ∖ ⋃{𝜎∈𝐾∣𝑣∉𝑉(𝜎)} 𝜎.
(iii) {St𝐾(𝑣) ∣ 𝑣 ∈ 𝑉(𝐾)} is an open cover of |𝐾|.

Proof. Part (i). Follows from the fact that if 𝑥 ∈ |𝐾|, 𝑥 lies in a unique interior of 𝜎 for 𝜎 ∈ 𝐾.
Part (ii). The first equality follows from part (i). The second follows from the fact that if 𝜏 ∈ 𝐹(𝜎)
and 𝑣 ∉ 𝑉(𝜎), then 𝑣 ∉ 𝑉(𝜏).
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Part (iii). Part (ii) exhibits St𝐾(𝑣) as the complement of a finite union of closed sets in |𝐾|, so it is
open. If 𝑥 ∈ |𝐾|, then 𝑥 ∈ 𝜎∘ for some 𝜎, and if 𝑣 ∈ 𝑉(𝜎), then 𝑥 ∈ St𝐾(𝑣), so it is a cover.

Definition. Let 𝐾, 𝐿 be Euclidean simplicial complexes. Let 𝑓∶ |𝐾| → |𝐿| be a continuous
map, and let ̂𝑔∶ 𝑉(𝐾) → 𝑉(𝐿). We say that ̂𝑔 is a simplicial approximation of 𝑓 if 𝑓(St𝐾(𝑣)) ⊆
St𝐿( ̂𝑔(𝑣)) for all 𝑣 ∈ 𝑉(𝐾).

Theorem. Let 𝜑∶ 𝐾′ → 𝐾 be a realisation of a Euclidean simplicial complex 𝐾, and let 𝐿 be
a Euclidean simplicial complex in ℝ𝑀 . We define 𝑔′ ∶ |𝐾′| → ℝ𝑀 to be the affine linear map
with |𝑔′|(𝑣) = ̂𝑔(𝜑(𝑣)) if 𝑣 ∈ 𝑉(𝐾′). Let |𝑔| = |𝑔′| ∘ |𝜑|−1. Then |𝑔| defines a simplicial map
𝑔∶ 𝐾 → 𝐿, and |𝑔| ∼ 𝑓.

Proof. Let 𝜎 ∈ 𝐾. We must show that |𝑔|(𝜎) ∈ 𝐿. Let 𝑥 ∈ 𝜎∘ be an arbitrary point in the interior.
Then 𝑓(𝑥) ∈ |𝐿|, so 𝑓(𝑥) ∈ 𝜏∘ with 𝜏 ∈ 𝐿. Then 𝑥 ∈ ⋂𝑣∈𝑉(𝜎) St𝐾(𝑣), so 𝑓(𝑥) ∈ ⋂𝑣∈𝑉(𝜎) 𝑓(St𝐾(𝑣)) ⊆
⋂𝑣∈𝑉(𝜎) St𝐿(𝑔(𝑣)) since 𝑔 is a simplicial approximation of 𝑓. Now, if 𝑣 ∈ 𝑉(𝜎), 𝑓(𝑥) ∈ 𝜏∘ and
𝑓(𝑥) ∈ St𝐿(𝑔(𝑣)), so 𝑔(𝑣) ∈ 𝜏 by part (i) of the lemma above. Hence, every vertex of |𝑔|(𝜎) is a vertex
of 𝜏, so |𝑔|(𝜎) is a face of 𝜏 ∈ 𝐿, so |𝑔|(𝜎) ∈ 𝐿 as required. So 𝑔∶ 𝐾 → 𝐿 is simplicial.
For the second part, we define 𝐻∶ |𝐾| × 𝐼 → ℝ𝑀 by 𝐻(𝑥, 𝑡) = 𝑡|𝑔|(𝑥) + (1 − 𝑡)𝑓(𝑥). This is clearly
a homotopy in ℝ𝑀 , but we need to show it is a homotopy in |𝐿|. Suppose 𝑥 ∈ 𝜎∘ and 𝑓(𝑥) ∈ 𝜏∘
as before. Then 𝑥 = ∑𝑣𝑖∈𝑉(𝜎)

𝑥𝑖𝑣𝑖, so |𝑔|(𝑥) = ∑𝑣𝑖∈𝑉(𝜎)
𝑥𝑖|𝑔|(𝑣𝑖) ∈ 𝜏 since |𝑔|(𝑣𝑖) ∈ 𝜏. Since 𝜏 is

convex, and |𝑔|(𝑥), 𝑓(𝑥) ∈ 𝜏, we must have 𝐻(𝑥, 𝑡) ∈ 𝜏 for 𝑡 ∈ [0, 1]. So 𝐻∶ |𝐾| × 𝐼 → |𝐿|, which is
the desired homotopy.

Theorem (simplicial approximation theorem). Let 𝐾, 𝐿 be Euclidean simplicial complexes.
Let 𝑓∶ |𝐾| → |𝐿| be a continuous map. Then there exists 𝑟 > 0 and a simplicial map
𝑔∶ 𝐵𝑟(𝐾) → 𝐿 such that |𝑔| ∼ 𝑓.

Note that |𝐵𝑟(𝐾)| = |𝐾|, so |𝑔|∶ |𝐵𝑟(𝐾)| → |𝐿| can be thought of as a map |𝐾| → |𝐿|.

Proof. Wehave the open cover {St𝐿(𝑣) ∣ 𝑣 ∈ 𝑉(𝐿)} of |𝐿|. 𝑓∶ |𝐾| → |𝐿| is continuous, so {𝑓−1(St𝐿(𝑣)) ∣ 𝑣 ∈ 𝑉(𝐿)}
is an open cover of |𝐾|. Now, |𝐾| is a compact metric space, so we can apply the Lebesgue cov-
ering lemma to find 𝛿 > 0 and a function |𝐾| → 𝑉(𝐿) mapping 𝑥 to some vertex 𝑣𝑥 such that
𝐵𝛿(𝑥) ⊆ 𝑓−1(St𝐿(𝑣𝑥)). Let 𝑟 be a natural number such that 𝜇(𝐵𝑟(𝐾)) < 𝛿, and let 𝐾′ = 𝐵𝑟(𝐾). If
𝜎 ∈ 𝐾′ and 𝑥 ∈ 𝑉(𝜎), then 𝜎 ⊆ 𝐵𝛿(𝑥), since 𝜇(𝐾′) < 𝛿. If 𝑥 ∈ 𝑉(𝐾′), then

St𝐾′(𝑥) = ⋃
{𝜎∣𝑥∈𝑉(𝜎)}

𝜎∘ ⊆ ⋃
{𝜎∣𝑥∈𝑉(𝜎)}

𝜎 ⊆ 𝐵𝛿(𝑥)

Hence, 𝑓(St𝐾′(𝑥)) ⊆ 𝑓(𝐵𝛿(𝑥)) ⊆ St𝐿(𝑣𝑥), so the function ̂𝑔∶ 𝑉(𝐾′) → 𝑉(𝐿) given by ̂𝑔(𝑥) = 𝑣𝑥 is a
simplicial approximation of 𝑓. So by the previous theorem, ̂𝑔 determines a simplicial map 𝑔∶ 𝐾′ → 𝐿
with |𝑔| ∼ 𝑓.

Corollary. Let 𝐾, 𝐿 be Euclidean simplicial complexes, where dim𝐾 < dim𝐿. Let 𝑓∶ |𝐾| →
|𝐿| be continuous. Then 𝑓 ∼ |𝑔| where |𝑔| is not surjective.
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Proof. Let 𝑔∶ 𝐵𝑟(𝐾) → 𝐿 be a simplicial map such that 𝑓 ∼ |𝑔|. Let 𝑘 = dim𝐵𝑟(𝐾) = dim𝐾. Then
|𝑔|∶ |𝐾| → |𝐿𝑘| ⊊ |𝐿| since dim𝐿 > 𝑘. So |𝑔| is not surjective.

Remark. It is a general fact that simplicial functions map an 𝑖-skeleton into an 𝑖-skeleton for each 𝑖.

Theorem. If 𝑘 < 𝑛, any continuous map 𝑆𝑘 → 𝑆𝑛 is null-homotopic.

Proof. 𝑆𝑘 ≃ ||𝕊𝑘|| and 𝑆𝑛 ≃ |𝕊𝑛|. By the above corollary, 𝑓 ∼ |𝑔| where |𝑔|∶ 𝑆𝑘 → 𝑆𝑛 is not surjective.
Let |𝑔|∶ 𝑆𝑘 → 𝑆𝑛 ∖ {𝑝}.

𝑆𝑘 𝑆𝑛 ∖ {𝑝}

𝑆𝑛

𝑔′

𝜄
|𝑔|

But 𝑆𝑛 ∖ {𝑝} ≃ ℝ𝑛 is contractible. So 𝑔′ is null-homotopic, so |𝑔| ∼ 𝜄 ∘ 𝑔′ is null-homotopic.

7 Simplicial homology
7.1 Chain complexes

Definition. A (finitely generated) chain complex (𝐶•, 𝑑) is
(i) a collection of free (finitely generated) abelian groups 𝐶𝑖 for 𝑖 ∈ ℤ (and if finitely gen-

erated, 𝐶𝑖 = 0 for all but finitely many 𝑖);
(ii) a collection of homomorphisms 𝑑𝑖 ∶ 𝐶𝑖 → 𝐶𝑖−1;
(iii) 𝑑𝑖−1 ∘ 𝑑𝑖 = 0 for all 𝑖.

⋯ 𝐶−2 𝐶−1 𝐶0 𝐶1 𝐶2 ⋯𝑑3𝑑2𝑑1𝑑0𝑑−1𝑑−2

Usually, we write 𝐶• = ⨁𝑖 𝐶𝑖, and 𝑑 = ⨁𝑖 𝑑𝑖 ∶ 𝐶• → 𝐶•. We can check that 𝑑𝑖−1 ∘ 𝑑𝑖 = 0 for all 𝑖 is
equivalent to the statement that 𝑑 ∘ 𝑑 = 𝑑2 = 0.
Remark. Free finitely generated abelian groups are isomorphic to ℤ𝑛 for some 𝑛. A chain complex
defined over ℚ, ℝ, or 𝔽𝑝 is similar, except that 𝐶𝑖 is a vector space over the ℚ,ℝ, 𝔽𝑝 and the 𝑑𝑖 are
linear maps. Every chain complex determines another chain complex over ℚ,ℝ, 𝔽𝑝 by replacing ℤ𝑛𝑖
with ℚ𝑛𝑖 , for example, and the 𝑑𝑖 are given by the same matrices.
Remark. There is a unique group homomorphism to and from the trivial abelian group 0. Arrows to
and from this group can therefore be unlabelled.

Example (reduced chain complex of the simplex). Consider the reduced chain complex of Δ𝑛. We
define 𝐶𝑘(Δ𝑛) = ⟨𝑒𝐼 ∣ |𝐼| = 𝑘 + 1, 𝐼 ⊆ {0,… , 𝑛}⟩, the free abelian group on a basis given by the 𝑒𝐼 . We
also define 𝑑(𝑒𝐼) = ∑|𝐼|

𝑗=0(−1)𝑗𝑒𝐼 ̂𝚥 where if 𝐼 = 𝑖0𝑖1…𝑖𝑘 and 𝑖0 < ⋯ < 𝑖𝑘, we define 𝐼 ̂𝚥 = 𝐼 ∖ {𝑖𝑗}. For
example, consider 𝐶•(Δ2).

𝐶2(Δ2) = ⟨𝑒012⟩ ; 𝐶1(Δ2) = ⟨𝑒01, 𝑒02, 𝑒12⟩ ; 𝐶0(Δ2) = {𝑒0, 𝑒1, 𝑒2}; 𝐶−1(Δ2) = {𝑒∅}
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and, for example,

𝑑(𝑒012) = (−1)0𝑒12 + (−1)1𝑒02 + (−1)2𝑒01 = 𝑒12 − 𝑒02 + 𝑒01

𝑑(𝑒01) = 𝑒1 − 𝑒0; 𝑑(𝑒02) = 𝑒2 − 𝑒0; 𝑑(𝑒12) = 𝑒2 − 𝑒1; 𝑑(𝑒0) = 𝑑(𝑒1) = 𝑑(𝑒2) = 𝑒∅
Note that 𝐶𝑖(Δ2) = 0 if 𝑖 < −1 or 𝑖 > 2. We have 𝑑2(𝑒012) = 𝑑(𝑒12 − 𝑒02 + 𝑒01) = 𝑒2 − 𝑒1 − 𝑒2 + 𝑒0 +
𝑒1 − 𝑒0 = 0, as required.

0 𝐶−1 𝐶0 𝐶1 𝐶2 0𝑑2𝑑1𝑑0

Proposition. For 𝐶•(Δ𝑛), 𝑑2 = 0.

Proof. The 𝑒𝐼 are a basis for 𝐶•(Δ𝑛), so it suffices to check that 𝑑2(𝑒𝐼) = 0 for each 𝐼. For some 𝑐𝑗𝑗′ ,
we have 𝑑2(𝑒𝐼) = ∑𝑗<𝑗′ 𝑐𝑗𝑗′𝑒𝐼 ̂𝚥, ̂𝚥′

where 𝐼 ̂𝚥, ̂𝚥′ = 𝐼 ∖{𝑖𝑗 , 𝑖𝑗′}. We can compute that 𝑐𝑗𝑗′ has a contribution
of (−1)𝑗(−1)𝑗′−1 by first considering 𝑗 then 𝑗′, since 𝑖𝑗′ is the (𝑗′ − 1)th element of 𝐼 ̂𝚥. Note also that
by computing the term in the sumwith 𝑗, 𝑗′ in the other order, we have a contribution of (−1)𝑗′(−1)𝑖.
Hence 𝑐𝑗𝑗′ = (−1)𝑗(−1)𝑗′−1 + (−1)𝑗′(−1)𝑖 = 0.

Example (chain complex of the simplex). The chain complex of Δ𝑛 is defined by 𝐶𝑖(Δ𝑛) = 𝐶𝑖(Δ𝑛) if
𝑖 ≥ 0, but 𝐶−1(Δ𝑛) = 0. This removes the empty face 𝑒∅. The 𝑑𝑖 are unchanged.

0 𝐶0 𝐶1 𝐶2 0𝑑2𝑑1

Definition. Let 𝐾 be an abstract simplicial complex in Δ𝑛. Let

𝐶𝑘(𝐾) = ⟨𝑒𝐼 ∣ |𝐼| = 𝑘 + 1, 𝑒𝐼 ∈ 𝐾⟩ ≤ 𝐶𝑘(Δ𝑛)

Since 𝑒𝐼 ∈ 𝐾 implies 𝑒𝐼 ̂𝚥 ∈ 𝐾, 𝑑𝑘 ∶ 𝐶𝑘(𝐾) → 𝐶𝑘−1(𝐾). So (𝐶•(𝐾), 𝑑) is a chain complex.

Definition. Let (𝐶•, 𝑑) be a chain complex, and let 𝑥 ∈ 𝐶𝑘. We say that 𝑥 is a cycle or closed
if 𝑑𝑥 = 0, so 𝑥 ∈ ker𝑑𝑘. We say that 𝑥 is a boundary or exact if 𝑥 = 𝑑𝑦 for some 𝑦, so
𝑥 ∈ Im𝑑𝑘+1.

Remark. The statement 𝑑2 = 0 is equivalent to the statement Im 𝑑𝑘+1 ⊆ ker𝑑𝑘 for each 𝑘, so bound-
aries are always cycles.

7.2 Homology groups

Definition. Let (𝐶•, 𝑑) be a chain complex. Its 𝑘th homology group is

𝐻𝑘(𝐶) = ker𝑑𝑘⟋Im𝑑𝑘+1

Remark. Homology groups are abelian.
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Example. Consider 𝐶•(Δ2). Recall 𝐶2 = ⟨𝑒012⟩ and 𝑑(𝑒012) = 𝑒12 − 𝑒02 + 𝑒01. Hence ker 𝑑2 = 0 and
Im𝑑3 = 0, so 𝐻2(𝐶•(Δ2)) = 0.
We have 𝐶1 = ⟨𝑒12, 𝑒02, 𝑒01⟩, and 𝑑(𝑎𝑒01 + 𝑏𝑒12 + 𝑐𝑒02) = 𝑎(𝑒1 − 𝑒0) + 𝑏(𝑒2 − 𝑒1) + 𝑐(𝑒2 − 𝑒0) =
−(𝑎 + 𝑐)𝑒0 + (𝑎 − 𝑏)𝑒1 + (𝑏 + 𝑐)𝑒2. Hence 𝑎𝑒01 + 𝑏𝑒12 + 𝑐𝑒02 ∈ ker𝑑 if and only if 𝑎 = 𝑏 = −𝑐. So
𝑥 ∈ ⟨𝑒12 − 𝑒02 + 𝑒01⟩ = Im𝑑2, giving 𝐻1(𝐶•(Δ2)) = 0.
We have 𝐶0 = ⟨𝑒0, 𝑒1, 𝑒2⟩ and 𝑑(𝑒𝑖) = 𝑒∅, so ker 𝑑0 = {𝑎𝑒0 + 𝑏𝑒1 + 𝑐𝑒2 ∣ 𝑎 + 𝑏 + 𝑐 = 0}. Conversely,
Im𝑑1 = span {𝑒1 − 𝑒0, 𝑒2 − 𝑒0, 𝑒2 − 𝑒1} = ker𝑑0. So in fact 𝐻0(𝐶•(Δ2)) = 0.
Now 𝐶−1 = ⟨𝑒∅⟩ = ker𝑑−1 = ⟨𝑒∅⟩ = Im𝑑0 so 𝐻−1(𝐶•(Δ2)) = 0. So all of the homology groups of
𝐶•(Δ2) are trivial. Note that

𝐻𝑖(𝐶•(Δ2)) = {
𝐻𝑖(𝐶•(Δ2)) 𝑖 > 0
⟨𝑒0, 𝑒1, 𝑒2⟩⟋span {𝑒1 − 𝑒0, 𝑒2 − 𝑒0, 𝑒2 − 𝑒1} ≃ ℤ 𝑖 = 0

Definition. Let 𝐾 be an abstract simplicial complex in Δ𝑛. Then we define the 𝑖th reduced
homology group of 𝐾 to be𝐻𝑖(𝐾) = 𝐻𝑖(𝐶•(𝐾)). Then 𝐶•(𝐾) = 𝐶•(𝐾)⟋⟨𝑒∅⟩ is a chain complex,
and 𝐻𝑖(𝐾) = 𝐻𝑖(𝐶•(𝐾)) is the 𝑖th homology group of 𝐾.

Example. Let𝐾 = {𝑒0, 𝑒1,… , 𝑒𝑟, 𝑒∅}, so |𝐾| is a collection of 𝑟+1disjoint points. In this case,𝐶𝑖(𝐾) =
0 for 𝑖 > 0. 𝐶0(𝐾) = ⟨𝑒0,… , 𝑒𝑟⟩ and 𝑑(𝑒𝑖) = ∅. 𝐶−1(𝐾) = ⟨𝑒∅⟩. Hence ker 𝑑0 = ⟨𝑒1 − 𝑒0,… , 𝑒𝑟 − 𝑒0⟩
and Im𝑑1 = 0, so 𝐻0(𝐶•(𝐾)) = ℤ𝑟, and 𝐻−1(𝐶•(𝐾)) = 0. Note that 𝐻0(𝐶•(𝐾)) = ℤ𝑟+1 = ⟨𝑒0,… , 𝑒𝑟⟩.
Example. Recall that any Euclidean simplicial complex is realised by an abstract simplicial complex,
but we have choice in the labelling of the vertices. Let 𝑇𝑛 be the boundary of a convex 𝑛-gon in ℝ2.
Then the abstract simplicial complex

𝐾′ = {𝑒∅, 𝑒0,… , 𝑒𝑛−1, 𝑒01, 𝑒12,… , 𝑒(𝑛−2)(𝑛−1), 𝑒(𝑛−1)0}

in Δ𝑛−1 realises 𝑇𝑛. Then

𝐶1(𝐾′) = ⟨𝑒01, 𝑒12,… , 𝑒(𝑛−2)(𝑛−1), 𝑒(𝑛−1)0⟩
𝐶0(𝐾′) = ⟨𝑒0,… , 𝑒𝑛−1⟩

We have 𝑑(𝑒𝑖(𝑖+1)) = 𝑒𝑖+1 − 𝑒𝑖, so ker 𝑑1 = ⟨𝑥⟩ where

𝑥 = 𝑒01 + 𝑒12 +⋯+ 𝑒(𝑛−2)(𝑛−1) − 𝑒0(𝑛−1)
Note that Im𝑑1 = span {𝑒𝑖+1 − 𝑒𝑖}. Hence

𝐻1(𝐾′) = ker𝑑1⟋Im𝑑2 =
⟨𝑥⟩⟋0 ≃ ℤ

𝐻0(𝐾′) = ker𝑑0⟋Im𝑑1 =
⟨𝑒0,… , 𝑒𝑛−1⟩⟋span {𝑒1 − 𝑒0,… , 𝑒𝑛−1 − 𝑒𝑛−2} ≃ ℤ

Note that this result does not depend on the choice of 𝑛, and |𝑇𝑛| ≃ 𝑆1 also does not depend on 𝑛. In
fact, 𝐻•(𝐾) depends only on |𝐾|.

7.3 Chain maps
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Definition. Let (𝐶•, 𝑑) and (𝐶′
•, 𝑑′) be chain complexes. A chain map 𝑓∶ 𝐶• → 𝐶′

• is
(i) for each 𝑖, a homomorphism 𝑓𝑖 ∶ 𝐶𝑖 → 𝐶′

𝑖 , such that
(ii) 𝑓𝑖−1 ∘ 𝑑𝑖 = 𝑑′𝑖 ∘ 𝑓𝑖.

Remark. We can interpret 𝑓 as⨁𝑖 𝑓𝑖 ∶ 𝐶• → 𝐶′
•, given by a block matrix

(
𝑓𝑛

𝑓𝑛−1
⋱
)

Then part (ii) of the definition is equivalent to the statement 𝑑′𝑓 = 𝑓𝑑.

If 𝑥 ∈ ker𝑑, we write [𝑥] ∈ 𝐻•(𝐶) for its image under the map ker𝑑 → ker𝑑⟋Im𝑑.
Remark. 𝑓(ker𝑑) ⊆ ker𝑑′ because if 𝑑𝑥 = 0, we have 𝑑′(𝑓(𝑥)) = 𝑓(𝑑(𝑥)) = 𝑓(0) = 0. 𝑓(Im𝑑) ⊆
Im𝑑′, because if 𝑥 = 𝑑𝑦, we have 𝑓(𝑥) = 𝑓(𝑑(𝑦)) = 𝑑′(𝑓(𝑦)). So 𝑓 descends to a well-defined
homomorphism 𝑓⋆ ∶ ker𝑑⟋Im𝑑 → ker𝑑′⟋Im𝑑′ such that 𝑓⋆([𝑥]) = [𝑓(𝑥)]. So 𝑓⋆ ∶ 𝐻•(𝐶) → 𝐻•(𝐶′).
This is called the map induced by 𝑓.
Remark. The composition of two chain maps is a chain map, and (𝑓 ∘ 𝑔)⋆ = 𝑓⋆ ∘ 𝑔⋆.

Let 𝐾 be an abstract simplicial complex in Δ𝑛, and 𝐿 be an abstract simplicial complex in Δ𝑚. Let
𝑓∶ 𝐾 → 𝐿 be a simplicial map, so it is determined by ̂𝑓 ∶ {0,… , 𝑛} → {0,… ,𝑚}. We wish to define
a chain map 𝑓♯ ∶ 𝐶•(𝐾) → 𝐶•(𝐿), which will induce 𝑓⋆ ∶ 𝐻•(𝐾) → 𝐻•(𝐿). Perhaps the most obvious
guess would be to define 𝑓♯(𝑒𝐼) = 𝑓(𝑒𝐼) = 𝑒 ̂𝑓(𝐼). This is not the correct definition.

First, consider 𝑓∶ 𝚫1 → 𝚫1 given by 𝑒0 ↦ 𝑒0, 𝑒1 ↦ 𝑒0. Then 𝑓(𝑒01) = 𝑒0, but 𝑒01 ∈ 𝐶1(𝚫1) and
𝑒0 ∈ 𝐶0(𝚫1). So 𝑓 does not preserve grading, and hence cannot be a chain map.
Consider also 𝑓∶ 𝚫1 → 𝚫1 given by 𝑒0 ↦ 𝑒1 and 𝑒1 ↦ 𝑒0. Now, 𝑓(𝑒01) = 𝑒01, 𝑓(𝑒0) = 𝑒1, 𝑓(𝑒1) = 𝑒0,
so 𝑑𝑓(𝑒01) = 𝑑(𝑒01) = 𝑒1 − 𝑒0 but 𝑓𝑑(𝑒01) = 𝑓(𝑒1 − 𝑒0) = 𝑒0 − 𝑒1.
The solution to both problems is to change our perspective on the indices 𝐼. Until now, we have
defined 𝐼 ⊆ {0,… , 𝑛} and written 𝐼 = 𝑖0𝑖1…𝑖𝑘 where 𝑖0 < ⋯ < 𝑖𝑘. Instead, we will allow 𝐼 ∈
{0,… , 𝑛}𝑘+1, so 𝐼 = (𝑖0, 𝑖1,… , 𝑖𝑘) = 𝑖0𝑖1…𝑖𝑘 with no restriction on order. For instance, 𝑒00, 𝑒10 are
permitted.

We impose relations on the set of all such 𝐼 to form an abelian group generated by equivalence classes
of the {0,… , 𝑛}𝑘+1. We will define that 𝑒𝐼 = −𝑒𝐼′ when 𝐼, 𝐼′ are related by switching two indices; so
𝑒102 = −𝑒012 = 𝑒210. If 𝑒𝐼 contains a repetition, we require 𝑒𝐼 = 0.

More concretely, if 𝐼 ∈ {0,… , 𝑛}𝑘+1, let 𝐼′ be the unique ordered permutation of 𝐼 if 𝐼 has no repeti-
tions. Then 𝑒𝐼 = (−1)𝑆(𝐼)𝑒𝐼′ if 𝐼 has no repetitions, and 𝑒𝐼 = 0 if 𝐼 has a repetition, where (−1)𝑆(𝐼)
is the sign of the permutation 𝜎 ∈ 𝑆𝑘+1 mapping 𝐼 to 𝐼′. If we draw 𝐼 and 𝐼′ in order as a bipartite
planar graph, connected by matching labels, 𝑆(𝐼) is the number of crossings.

Lemma. Let 𝑖𝑗 ∈ 𝐼, and suppose 𝑖𝑗 is in position 𝑖𝑗′ in 𝐼′. Then 𝑆(𝐼) − 𝑆(𝐼 ̂𝚥) ≡ 𝑗 − 𝑗′ mod 2.

Proposition. Let 𝐼 ∈ {0,… , 𝑛}𝑘+1. Then 𝑑(𝑒𝐼) = ∑𝑘
𝑗=0(−1)𝑗𝑒𝐼 ̂𝚥 , where 𝐼 ̂𝚥 is obtained from 𝐼

by omitting the 𝑗th entry in the tuple 𝐼.
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We have already defined 𝑑 for ordered sequences of indices; this proposition states that this formula
holds for all sequences of indices.

Proof.

𝑘
∑
𝑗=0

(−1)𝑘𝑒𝐼 ̂𝚥 =
𝑘
∑
𝑗=0

(−1)𝑗(−1)𝑆(𝐼 ̂𝚥)𝑒𝐼′̂𝚥 =
𝑘
∑
𝑗=0

(−1)𝑗′(−1)𝑆(𝐼)𝑒(𝐼′) ̂𝚥 = (−1)𝑆(𝐼)𝑑(𝑒𝐼′) = 𝑑(𝑒𝐼)

Example. 𝑑(𝑒210) = (−1)0𝑒10 + (−1)1𝑒20 + (−1)2𝑒21 = −𝑒01 + 𝑒02 − 𝑒12 = 𝑑(−𝑒012), where by
definition, 𝑒210 = −𝑒012 so 𝑑(𝑒210) = −𝑑(𝑒012).

Definition. Let 𝑓∶ 𝐾 → 𝐿 be a simplicial map. Then 𝑓♯ ∶ 𝐶𝑘(𝐾) → 𝐶𝑘(𝐿) is defined by
𝑓♯(𝑒𝐼) = 𝑒 ̂𝑓(𝐼) where if 𝐼 = (𝑖0,… , 𝑖𝑘) we define ̂𝑓(𝐼) = ( ̂𝑓(𝑖0),… , ̂𝑓(𝑖𝑘)).

This definition of 𝑓♯ preserves grading.

Proposition. 𝑓♯ is a chain map.

Proof.

𝑑(𝑓♯(𝑒𝐼)) = 𝑑(𝑒 ̂𝑓(𝐼)) =
𝑘
∑
𝑗=0

(−1)𝑗𝑒( ̂𝑓(𝐼)) ̂𝚥
= 𝑓♯(

𝑘
∑
𝑗=0

(−1)𝑗𝑒𝐼 ̂𝚥) = 𝑓♯(𝑑(𝑒𝐼))

Example. Let 𝑓∶ 𝚫1 → 𝚫1 be the simplicial map defined by 𝑓(𝑒0) = 𝑒0 and 𝑓(𝑒1) = 𝑒0. Then
𝑓♯(𝑒01) = 𝑒00 = 0.
Now let 𝑓(𝑒0) = 𝑒1 and 𝑓(𝑒1) = 𝑒0. Then 𝑓♯(𝑒01) = 𝑒10 = −𝑒01, 𝑓♯(𝑒0) = 𝑒1, 𝑓♯(𝑒1) = 𝑒0. So
𝑑(𝑓♯(𝑒01)) = −𝑑(𝑒01) = 𝑒0 − 𝑒1 = 𝑓(𝑑(𝑒01)).

7.4 Chain homotopies

Definition. Let 𝑓0, 𝑓1 ∶ (𝐶, 𝑑) → (𝐶′, 𝑑′) be chain maps. Then 𝑓0 is chain homotopic to 𝑓1,
written 𝑓0 ∼ 𝑓1, if there are
(i) homomorphisms ℎ𝑖 ∶ 𝐶𝑖 → 𝐶′

𝑖+1, where we write ℎ = ⨁𝑖 ℎ𝑖, satisfying
(ii) 𝑑′ℎ + ℎ𝑑 = 𝑓0 − 𝑓1.

In this case, we say ℎ is the chain homotopy.

Example. Suppose 𝑓0, 𝑓1 ∶ 𝑋 → 𝑌 are homotopic maps via 𝐻. Suppose 𝑋 = Δ𝑛.
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Im𝑓0

Im𝑓1

Im𝐻

Here,
𝜕(𝐻(Δ𝑛)) = 𝐻(𝜕Δ𝑛) ∪ 𝑓1(Δ𝑛) ∪ 𝑓0(Δ𝑛) ⟹ 𝜕𝐻 +𝐻𝜕 = 𝑓1 + 𝑓0

without considering signs.

Lemma. If 𝑓1 ∼ 𝑓0, then 𝑓1⋆ = 𝑓0⋆ ∶ 𝐻•(𝐶) → 𝐻•(𝐶′).

Proof. Let [𝑥] ∈ 𝐻•(𝐶). Then 𝑑𝑥 = 0. So

𝑓1⋆[𝑥] − 𝑓0⋆[𝑥] = [(𝑓1 − 𝑓0)𝑥] = [(𝑑′ℎ + ℎ𝑑)𝑥] = [𝑑′ℎ(𝑥)] = 0

since 𝑑′ℎ(𝑥) ∈ Im𝑑′.

Definition. We say a chain complex (𝐶, 𝑑) is contractible if id𝐶 ∼ 0𝐶 , where 0𝐶 is the zero
map.

Lemma. Let (𝐶, 𝑑) be contractible. Then 𝐻•(𝐶) = 0.

Proof. Let [𝑥] ∈ 𝐻•(𝐶). Then [𝑥] = id⋆[𝑥] = 0⋆[𝑥] = [0]. So 𝐻𝑘(𝐶) is the trivial group for each
𝑘.

Definition. Let 𝐾 be an abstract simplicial complex in Δ𝑛. Let 𝑒0 ∉ 𝐾. Then the cone is
𝐶𝑒0(𝐾) = 𝐾 ∪ {𝑒0𝐼 ∣ 𝑒𝐼 ∈ 𝐾}.

Remark. 𝐶𝑒0(𝐾) is an abstract simplicial complex. If 𝐾′ is a realisation of 𝐾, where 𝑒0 ∉ 𝐾 and 𝐾′ is
independent of 𝑝, then 𝐶𝑝(𝐾′) is a realisation of 𝐶𝑒0(𝐾).

Example. Consider �̂�𝑛 = {𝑒𝐼 ∈ 𝚫𝑛+1 ∣ 0 ∉ 𝐼} ≃ 𝚫𝑛. Then 𝐶𝑒0(�̂�𝑛) = 𝚫𝑛+1.

Proposition. 𝐶•(𝐶𝑒0(𝐾)) is contractible.

Proof. Define ℎ∶ 𝐶𝑘(𝐶𝑒0(𝐾)) → 𝐶𝑘+1(𝐶𝑒0(𝐾)) by ℎ(𝑒𝐼) = 𝑒0𝐼 . Note that if 0 ∈ 𝐼, then 𝑒0𝐼 = 0.

If 0 ∈ 𝐼 then 𝑑ℎ(𝑒𝐼) = 0, and ℎ𝑑(𝑒𝐼) = ℎ(∑𝑘
𝑗=0(−1)𝑗𝑒𝐼 ̂𝚥) = ℎ(𝑒𝐼∖{0} + ∑𝑒𝐼′) where 0 ∈ 𝐼′. Then

ℎ𝑑(𝑒𝐼) = 𝑒𝐼+0 = 𝑒𝐼 . Otherwise, if 0 ∉ 𝐼, then 𝑑ℎ(𝑒𝐼) = 𝑑(𝑒0𝐼) = 𝑒𝐼+∑
𝑘
𝑗=0(−1)𝑘+1𝑒0𝐼 ̂𝚥 = 𝑒𝐼−ℎ(𝑑𝑒𝐼).

In either case, 𝑑ℎ + ℎ𝑑 = id.
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Corollary. 𝐻•(𝐶𝑒0(𝐾)) = 0. In particular,

𝐻𝑖(𝐶𝑒0(𝐾)) = {ℤ 𝑖 = 0
0 𝑖 ≠ 0

Proof. Let 𝐶•(𝐶𝑒0(𝐾)) = (𝐶, 𝑑), and 𝐶•(𝐶𝑒0(𝐾)) = (𝐶, 𝑑). The first part follows from the previous
result. For the second part, note that 𝐻−1(𝐶𝑒0(𝐾)) = 0, so 𝑑0 ∶ 𝐶0 → 𝐶−1 = ⟨𝑒∅⟩ ≃ ℤ is surjective.

So ℤ ≃ Im𝑑0 ≃ 𝐶0⟋ker𝑑0 ≃
𝐶0⟋Im𝑑1 since 𝐻0(𝐶) = 0. But 𝐶0⟋Im𝑑1 ≃

𝐶0⟋Im𝑑1 =
ker𝑑0⟋Im𝑑1 =

𝐻0(𝐶𝑒0(𝐾)). For 𝑖 ≥ 0, note that ker 𝑑𝑖 = ker𝑑𝑖 and Im 𝑑𝑖+1 = Im𝑑𝑖+1. Hence 𝐻𝑖(𝐶) = 𝐻𝑖(𝐶) for
𝑖 > 0.

Definition. Let 𝕊𝑛 = 𝚫𝑛 ∖ 𝑒0…𝑛. Then

𝐻𝑖(𝕊𝑛) = {ℤ 𝑖 = 0, 𝑛
0 otherwise

Proof. Similar to the previous proof, but now we remove the ‘top’ generator instead of the ‘bottom’
one.

Alternatively, we can prove this fact using the results from the next subsection.

7.5 Exact sequences

Definition. Let 𝐴𝑘 be a sequence of abelian groups for 𝑘 ∈ ℤ, and 𝑓𝑘 ∶ 𝐴𝑘 → 𝐴𝑘−1 be
homomorphisms. We say that the sequence is exact at 𝐴𝑘 if ker𝑓𝑘 = Im𝑓𝑘+1. If it is exact at
all 𝐴𝑘, we say the sequence is exact.

⋯ 𝐴𝑘+1 𝐴𝑘 𝐴𝑘−1 ⋯𝑓𝑘+2 𝑓𝑘+1 𝑓𝑘 𝑓𝑘−1

Example.
0 𝐴 𝐵𝑓

is exact at 𝐴 if and only if 𝑓 is injective.

𝐵 𝐶 0𝑔

is exact at 𝐶 if and only if 𝑔 is surjective.

0 𝐴 𝐵 𝐶 0𝑓 𝑔

is exact if and only if 𝑓 is injective, 𝑔 is surjective, and 𝑔∶ 𝐵⟋Im𝑓 → 𝐶 is an isomorphism, so 𝐶 ≃
𝐵⟋Im𝑓. An exact sequence of the form

0 𝐴 𝐵 𝐶 0𝑓 𝑔
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is called a short exact sequence.

Definition. Let 𝑔∶ 𝐵 → 𝐶. Then the cokernel of 𝑔 is coker 𝑔 = 𝐶⟋Im 𝑔.

In general, a sequence is exact if and only if

0 coker𝑓𝑘+1 𝐴𝑘 ker𝑓𝑘−1 0𝑓𝑘+1 𝑓𝑘

is a short exact sequence for every 𝑘.

Definition. A short exact sequence of chain complexes is a short exact sequence

0 𝐴• 𝐵• 𝐶• 0𝑓 𝑔

where 𝐴•, 𝐵•, 𝐶• are chain complexes, and 𝑓, 𝑔 are chain maps.

Equivalently, we have the diagram

⋮ ⋮ ⋮

0 𝐴𝑘 𝐵𝑘 𝐶𝑘 0

0 𝐴𝑘−1 𝐵𝑘−1 𝐶𝑘−1 0

0 𝐴𝑘−2 𝐵𝑘−2 𝐶𝑘−2 0

⋮ ⋮ ⋮

𝑓 𝑔

𝑓 𝑔

𝑓 𝑔

𝑑𝐴

𝑑𝐴

𝑑𝐴

𝑑𝐴

𝑑𝐵

𝑑𝐵

𝑑𝐵

𝑑𝐵

𝑑𝐶

𝑑𝐶

𝑑𝐶

𝑑𝐶

where all squares commute since 𝑓, 𝑔 are chain maps, and all rows are exact.

Lemma (snake lemma). Let 0 𝐴• 𝐵• 𝐶• 0𝑓 𝑔 be a short exact se-
quence of chain complexes. Then there is an exact sequence

𝐻𝑘(𝐴) 𝐻𝑘(𝐵) 𝐻𝑘(𝐶)

𝐻𝑘−1(𝐴) 𝐻𝑘−1(𝐵) 𝐻𝑘−1(𝐶)

𝑓⋆ 𝑔⋆

𝜕𝑘𝑓⋆ 𝑔⋆

The homomorphism 𝜕𝑘 is called the connecting homomorphism. Since this exists for all 𝑘, this
gives a long exact sequence of homology groups.

Proof. Let [𝑐] ∈ 𝐻𝑘(𝐶), so 𝑑𝑐 = 0. Then,
(i) 𝑔 is surjective, so we can choose 𝑏 ∈ 𝐵𝑘 such that 𝑔(𝑏) ∈ 𝑐.
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(ii) 𝑔(𝑑𝑏) = 𝑑𝑔(𝑏) = 𝑑𝑐 = 0, so 𝑑𝑏 ∈ ker 𝑔. Since the sequence is exact at 𝐵, we have 𝑑𝑏 = 𝑓(𝑎) for
some 𝑎 ∈ 𝐴𝑘−1.

(iii) 𝑓(𝑑𝑎) = 𝑑(𝑓𝑎) = 𝑑2(𝑏) = 0. Since 𝑓 is injective, 𝑑𝑎 = 0.
We then define 𝜕𝑘[𝑐] = [𝑎] ∈ 𝐻𝑘−1(𝐴). To visualise the above argument, the following diagrams can
be overlaid; the first diagram shows the groups, and the second diagram shows the corresponding
elements.

0 𝐴𝑘 𝐵𝑘 𝐶𝑘 0

0 𝐴𝑘−1 𝐵𝑘−1 𝐶𝑘−1 0

𝑏 𝑐

𝑎 𝑑𝑏

𝑓 𝑔

𝑓 𝑔

𝑑𝐴 𝑑𝐵 𝑑𝐶
𝜕𝑘

𝑔

𝑑𝐵

𝑓

𝜕𝑘

This definition does not depend on any choices that we made; for example, [𝑐] = [𝑐′] implies 𝜕𝑘[𝑐] =
𝜕𝑘[𝑐′].
(i) If 𝑔(𝑏′) = 𝑐, then 𝑔(𝑏 − 𝑏′) = 0. By exactness, 𝑏 − 𝑏′ = 𝑓(𝛼). Then 𝑑𝑏 − 𝑑𝑏′ = 𝑓(𝑑(𝛼)). Let

𝑓(𝑎) = 𝑑𝑏 and 𝑓(𝑎′) = 𝑑𝑏′. So 𝑎 − 𝑎′ = 𝑑𝛼, so [𝑎] = [𝑎′].
(ii) Suppose [𝑐] = [𝑐′]. Then 𝑐 − 𝑐′ = 𝑑𝛾 for 𝛾 ∈ 𝐶𝑘+1. 𝑔 is surjective, so let 𝛾 = 𝑔(𝛽). Then

𝑏 − 𝑏′ = 𝑑𝛽, so 𝑑𝑏 = 𝑑𝑏′. Since 𝑎 = 𝑎′, we have [𝑎] = [𝑎′].
We need to check exactness. We will show that ker ⊆ Im in each case, the other direction is left as
an exercise.

(i) Consider𝐻𝑘(𝐶). If 𝜕𝑘[𝑐] = 0, then 𝑎 = 𝑑𝛼 for 𝛼 ∈ 𝐴𝑘. Then 𝑑(𝑓(𝛼)) = 𝑓(𝑑𝛼) = 𝑓(𝑎) = 𝑑𝑏. So
𝑑(𝑏−𝑓(𝛼)) = 0, giving [𝑏−𝑓(𝛼)] ∈ 𝐻𝑘(𝐵). Then 𝑔⋆[𝑏−𝑓(𝛼)] = [𝑔(𝑏)−𝑔(𝑓(𝛼))] = [𝑔(𝑏)] = [𝑐]
by exactness. So [𝑐] ∈ Im 𝑔⋆ as required.

(ii) Consider 𝐻𝑘(𝐵). If 𝑔⋆[𝑏] = 0, then 𝑔(𝑏) = 𝑑𝛾 for some 𝛾 ∈ 𝐶𝑘+1. 𝑔 is surjective, so 𝛾 = 𝑔(𝛽)
for 𝛽 ∈ 𝐵𝑘+1. Then 𝑔(𝑏 − 𝑑𝛽) = 𝑐 − 𝑑𝑔(𝛽) = 𝑐 − 𝑐 = 0, so 𝑏 − 𝑑𝛽 = 𝑓(𝛼) for 𝛼 ∈ 𝐴𝑘. So
𝑓(𝑑𝛼) = 𝑑𝑓(𝛼) = 𝑑𝑏 − 𝑑2𝛽 = 0. Hence [𝑏] = [𝑏 − 𝑑𝛽] = 𝑓⋆[𝛼]. So [𝛽] ∈ Im𝑓⋆.

(iii) Consider 𝐻𝑘−1(𝐴). If 𝑓⋆[𝑎] = 0, then 𝑓(𝑎) = 𝑑𝑏 for some 𝑏 in 𝐵𝑘−1. Then [𝑎] = 𝜕𝑘[𝑔(𝑏)] since
𝑑𝑔(𝑏) = 𝑔(𝑑𝑏) = 𝑔(𝑓(𝑎)) = 0. So [𝑎] ∈ Im 𝜕𝑘.

Example. Let 𝐵 = 𝐶•(𝚫𝑛), and 𝐴 = 𝐶•(𝕊𝑛−1). Let 𝐶 be defined by

𝐶𝑘 = {⟨𝑒0…𝑛⟩ 𝑘 = 𝑛
0 otherwise
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Note that

𝐻𝑘(𝐶) = {ℤ 𝑘 = 𝑛
0 otherwise

Let 𝑛 > 1. Then we have a short exact sequence 0 𝕊𝑛−1 𝚫𝑛 𝐶 0𝑓 𝑔 and
hence we have

𝐻𝑘(𝕊𝑛−1) 𝐻𝑘(𝚫𝑛) 𝐻𝑘(𝐶)

𝐻𝑘−1(𝕊𝑛−1) 𝐻𝑘−1(𝚫𝑛) 𝐻𝑘−1(𝐶)

𝑓⋆ 𝑔⋆

𝜕𝑘𝑓⋆ 𝑔⋆

Now, letting 𝑘 = 𝑛, we can therefore find the exact sequence

𝐻𝑛(𝕊𝑛−1) 0 ℤ

𝐻𝑛−1(𝕊𝑛−1) 0 0
𝜕𝑘

By exactness at ℤ and 𝐻𝑛−1(𝕊𝑛−1), 𝜕𝑘 is an isomorphism. Hence 𝐻𝑛−1(𝕊𝑛−1) = ℤ.

7.6 Mayer–Vietoris sequence
Let 𝐾1, 𝐾2 be abstract simplicial complexes in Δ𝑛. Then 𝐾1 ∩ 𝐾2 and 𝐾1 ∪ 𝐾2 are also abstract sim-
plicial complexes in Δ𝑛. We have the following commutative square of simplicial maps given by
inclusion.

𝐾1

𝐾1 ∩ 𝐾2 𝐾1 ∪ 𝐾2

𝐾2

𝑖1 𝑗1

𝑖2 𝑗2

This induces a commutative square of chain maps as shown.

𝐶•(𝐾1)

𝐶•(𝐾1 ∩ 𝐾2) 𝐶•(𝐾1 ∪ 𝐾2)

𝐶•(𝐾2)

𝑖1♯ 𝑗1♯

𝑖2♯ 𝑗2♯

Proposition. Let 𝐾1, 𝐾2 be abstract simplicial complexes in Δ𝑛. Then the sequence
0 𝐶•(𝐾1 ∩ 𝐾2) 𝐶•(𝐾1) ⊕ 𝐶•(𝐾2) 𝐶•(𝐾1 ∪ 𝐾2) 0𝑖 𝑗
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is a short exact sequence of chain complexes, where

𝑖 = (𝑖1♯𝑖2♯
) ; 𝑗 = (𝑗1♯ −𝑗2♯)

Proof. We must check exactness at each location. 𝑖1♯ is injective, so 𝑖 is injective.
If 𝑗((𝑎, 𝑏)) = 0, then 𝑗1♯(𝑎) = 𝑗2♯(𝑏), so 𝑎 = 𝑏 ∈ 𝐶•(𝐾1) ∩ 𝐶•(𝐾2) = 𝐶•(𝐾1 ∩ 𝐾2). Hence (𝑎, 𝑏) = 𝑖(𝑎),
so ker 𝑗 ⊆ Im 𝑖. For the other direction, 𝑔𝑓(𝑎) = (𝑗1♯ ∘ 𝑖1♯)(𝑎) − (𝑗2♯ ∘ 𝑖2♯(𝑎)) = 0 since the square of
inclusion maps commutes. So Im 𝑖 ⊆ ker 𝑗, so the sequence is exact at 𝐶•(𝐾1) ⊕ 𝐶•(𝐾2).
Let 𝑒𝐼 ∈ 𝐾1 ∪ 𝐾2. Then 𝑒𝐼 ∈ 𝐾1 or 𝑒𝐼 ∈ 𝐾2. If 𝑒𝐼 ∈ 𝐾1 then 𝑒𝐼 = 𝑗((𝑒𝐼 , 0)). If 𝑒𝐼 ∈ 𝐾2 then 𝑒𝐼 =
𝑗((0, −𝑒𝐼)). So 𝑒𝐼 ∈ Im 𝑗 in either case. Since the 𝑒𝐼 form a free basis, 𝑗 is surjective as required.

Theorem (Mayer–Vietoris sequence). Let 𝐾1, 𝐾2 be abstract simplicial complexes in Δ𝑛.
Then there is a long exact sequence

𝐻𝑘(𝐾1 ∩ 𝐾2) 𝐻𝑘(𝐾1) ⊕ 𝐻𝑘(𝐾2) 𝐻𝑘(𝐾1 ∪ 𝐾2)

𝐻𝑘−1(𝐾1 ∩ 𝐾2) 𝐻𝑘−1(𝐾1) ⊕ 𝐻𝑘−1(𝐾2) 𝐻𝑘−1(𝐾1 ∪ 𝐾2)

𝑖⋆ 𝑗⋆

𝜕𝑘𝑖⋆ 𝑗⋆

Proof. Follows from the above theorem and the snake lemma.

Example. Let 𝐾1, 𝐾2 be abstract simplicial complexes in Δ𝑛, Δ𝑚. Then let 𝐾1 ⨿𝐾2 ⊂ Δ𝑛+𝑚+1 be the
abstract simplicial complex where the vertices of Δ𝑛+𝑚+1 are 𝑒0,… , 𝑒𝑛, 𝑒′0,… , 𝑒′𝑚, and we embed 𝐾1
and 𝐾2 into 𝐾1⨿𝐾2 in the natural way. More precisely, 𝑒𝐼 ∈ 𝐾1 gives 𝑒𝐼 ∈ 𝐾1⨿𝐾2, and 𝑒𝐼 ∈ 𝐾2 gives
𝑒′𝐽 ∈ 𝐾1 ⨿ 𝐾2. Then |𝐾1 ⨿ 𝐾2| = |𝐾1| ⨿ |𝐾2|. 𝐾1 ⨿ 𝐾2 = 𝐾1 ∪ 𝐾′

2 where 𝐾1, 𝐾′
2 are disjoint abstract

simplicial complexes in Δ𝑛+𝑚+1, so 𝐾1 ∩ 𝐾′
2 = {𝑒∅}. The Mayer–Vietoris sequence gives

𝐻𝑘({𝑒∅}) 𝐻𝑘(𝐾1) ⊕ 𝐻𝑘(𝐾2) 𝐻𝑘(𝐾1 ⨿ 𝐾2)

𝐻𝑘−1({𝑒∅}) 𝐻𝑘−1(𝐾1) ⊕ 𝐻𝑘−1(𝐾2) 𝐻𝑘−1(𝐾1 ⨿ 𝐾2)

𝑖⋆ 𝑗⋆

𝜕𝑘𝑖⋆ 𝑗⋆

Note that 𝐻𝑘({𝑒∅}) = 0. Hence, the sequence

0 𝐻𝑘(𝐾1) ⊕ 𝐻𝑘(𝐾2) 𝐻𝑘(𝐾1 ⨿ 𝐾2) 0

is exact. So 𝐻𝑘(𝐾1) ⊕ 𝐻𝑘(𝐾2) ≃ 𝐻𝑘(𝐾1 ⨿ 𝐾2).

7.7 Homology of triangulable spaces

Theorem. Let 𝑓0, 𝑓1 ∶ 𝐾 → 𝐿 be simplicial approximations to a continuous map 𝐹 ∶ |𝐾| →
|𝐿|. Then 𝑓0♯ ∼ 𝑓1♯, so 𝑓0⋆ = 𝑓1⋆.
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Theorem. There is an isomorphism 𝜈𝐾 ∶ 𝐻•(𝐵𝐾) → 𝐻•(𝐾) such that 𝜈𝐾 = 𝑓⋆ where
𝑓∶ 𝐵𝐾 → 𝐾 is any simplicial approximation to the identity map on |𝐾|.

Definition. Let 𝐹 ∶ |𝐾| → |𝐿| be continuous. By the simplicial approximation theorem,
there exists 𝑓∶ 𝐵𝑟 → 𝐿 that is a simplicial approximation to 𝐹. Define 𝐹⋆ ∶ 𝐻•(𝐾) → 𝐻•(𝐿)
by 𝐹⋆ = 𝑓⋆ ∘ 𝜈−1𝐾,𝑟.

Theorem. 𝐹⋆ is well-defined, so does not depend on the choice of 𝑓. (id𝐾)⋆ = id𝐻•(𝐾). Fur-
ther, (𝐹 ∘ 𝐺)⋆ = 𝐹⋆ ∘ 𝐺⋆.

Theorem. Let 𝐹0, 𝐹1 ∶ |𝐾| → |𝐿| be continuous with 𝐹0 ∼ 𝐹1. Then 𝐹0⋆ = 𝐹1⋆.

Proposition. Let |𝐾| ∼ |𝐿|. Then 𝐻•(𝐾) ≃ 𝐻•(𝐿).

Proof. Let 𝐹 ∶ |𝐾| → |𝐿| and𝐺∶ |𝐿| → |𝐾| be functions such that 𝐹∘𝐺 ∼ id|𝐿| and𝐺∘𝐹 ∼ id|𝐾|. Then
𝐹⋆ ∘ 𝐺⋆ = id𝐻•(𝐿) and 𝐺⋆ ∘ 𝐹⋆ = id𝐻•(𝐾) by functoriality. Hence 𝐹⋆ and 𝐺⋆ are inverse isomorphisms
of groups.

Definition. A space 𝑋 is triangulable if there exists an abstract simplicial complex 𝐾 with
|𝐾| ≃ 𝑋 .

Remark. The above proposition implies that if 𝑋 is triangulable, there is a well-defined homology
group 𝐻•(𝑋) = 𝐻•(𝐾) where 𝐾 is any abstract simplicial complex with polyhedron |𝐾| ≃ 𝑋 . Not all
topological spaces are homotopy equivalent to a triangulable space. One example is⋁∞

𝑖=1 𝑆1.

Proposition. Let |𝐾| be path-connected. Then 𝐻0(𝐾) ≃ ℤ.

Proof. 𝐶0(𝐾) is generated by the vertices 𝑒𝑖 of 𝐾. Consider 𝐹𝑖 ∶ Δ0 → |𝐾|mapping 𝑒0 ∈ Δ0 to 𝑒𝑖 ∈ 𝐾.
Then 𝐻⋆(Δ0) = ℤ = ⟨[𝑒0]⟩, and 𝐹⋆([𝑒0]) = [𝑒𝑖]. Since 𝐾 is path-connected, 𝐹𝑖 ∼ 𝐹𝑗 . So [𝑒𝑖] =
𝐹𝑖⋆([𝑒0]) = 𝐹𝑗⋆([𝑒0]) = [𝑒𝑗]. Hence all [𝑒𝑖] are equal. The [𝑒𝑖] are not boundaries, so 𝐻0(𝐾) is not
trivial.

Corollary. 𝐻0(𝐾) = ℤ𝑘 where 𝑘 is the number of path-connected components of |𝐾|.

Proof. |𝐾| is a disjoint union of the 𝑘 path-connected components of |𝐾|, so 𝐻0(𝐾) is the direct sum
of the homology groups of these components.

We know 𝑆𝑛 ≃ |𝕊𝑛|, so

𝐻𝑘(𝑆𝑛) = 𝐻𝑘(𝕊𝑛) = {ℤ 𝑘 = 0, 𝑛
0 otherwise
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Hence 𝑆𝑛 ∼ 𝑆𝑚 implies 𝑛 = 𝑚.

Corollary. ℝ𝑛 ≃ ℝ𝑚 implies 𝑛 = 𝑚.

Proof. Let 𝑓∶ ℝ𝑛 → ℝ𝑚 be a homeomorphism. Then 𝑆𝑛−1 ∼ ℝ𝑛 ∖ {0} ≃ ℝ𝑚 ∖ {𝑓(0)} ∼ 𝑆𝑚−1. So
𝑆𝑛−1 ∼ 𝑆𝑚−1, giving 𝑛 = 𝑚.

Corollary. There is no retraction 𝑟∶ 𝐷𝑛 → 𝑆𝑛−1.

Proof. We suppose 𝑛 > 0. Let 𝑗∶ 𝑆𝑛−1 → 𝐷𝑛 be the inclusion. 𝑟 is a retraction if and only if 𝑟 ∘ 𝑗 =
id𝑆𝑛−1 . This gives (𝑟 ∘ 𝑗)⋆ = id𝐻•(𝑆𝑛−1). Note that 𝐻𝑛−1(𝐷𝑛) = 𝐻𝑛−1(𝚫𝑛) = 0, and 𝐻𝑛−1(𝑆𝑛−1) = ℤ.
If 𝑟 is a retraction, then 𝑟⋆ and 𝑗⋆ are inverse homomorphisms of groups, but ℤ is not isomorphic to
0. So 𝑟 is not a retraction.

Theorem (Brouwer fixed point theorem). Let 𝐹 ∶ 𝐷𝑛 → 𝐷𝑛 be a continuous function. Then
𝐹 has a fixed point.

Remark. This is a generalisation of the intermediate value theorem for high dimensions.

Proof. Suppose there is no fixed point. Then, we define 𝐺∶ 𝐷𝑛 → 𝑆𝑛−1 by letting 𝐺(𝑥), 𝑥, 𝐹(𝑥) lie in
this order on a straight line in𝐷𝑛. If𝐺 is a well-defined continuous map, it is a retraction, contradict-
ing the previous result.

Let 𝑝 ∈ 𝐷𝑛 and 𝑣 ∈ 𝑆𝑛−1. Let 𝑅𝑝,𝑣 = {𝑝 + 𝑡𝑣 ∣ 𝑡 ≥ 0}. If 𝑝 + 𝑡𝑣 ∈ 𝑆𝑛−1, then ⟨𝑝 + 𝑡𝑣, 𝑝 + 𝑡𝑣⟩ = 1, so
⟨𝑝, 𝑝⟩ + 2𝑡 ⟨𝑣, 𝑝⟩ + 𝑡2 = 1. Hence

𝑡 = − ⟨𝑝, 𝑣⟩ ±√⟨𝑝, 𝑣⟩2 + 1 − ⟨𝑝, 𝑝⟩

We define
𝜏(𝑝, 𝑣) = max (− ⟨𝑝, 𝑣⟩ ±√⟨𝑝, 𝑣⟩2 + 1 − ⟨𝑝, 𝑝⟩)

This is a continuous function. Now, we define 𝑃(𝑝, 𝑣) = 𝑝+𝜏(𝑝, 𝑣)𝑣, which is the intersection of 𝑅𝑝,𝑣
with 𝑆𝑛−1, which is also continuous. So

𝐺(𝑥) = 𝑃(𝐹(𝑥), 𝑥 − 𝐹(𝑥)
‖𝑥 − 𝐹(𝑥)‖)

is well-defined and continuous.

7.8 Homology of orientable surfaces
We can often compute homology groups only using the Mayer–Vietoris sequence and functoriality
properties.
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Example. Consider the torus 𝑇2. We can write a triangulation 𝐾 of 𝑇2 as 𝐾1∪𝐾2, with |𝐾𝑖| ≃ 𝑆1×𝐼,
and |𝐾1 ∩ 𝐾2| ≃ 𝑆11 ⨿ 𝑆12. Note that the inclusion 𝜄𝑗,𝑖 ∶ 𝑆1𝑗 ↪ |𝐾𝑖| is a homotopy equivalence, and
𝜄1,𝑖 ∼ 𝜄2,𝑖. Then the Mayer–Vietoris sequence gives

𝐻2(𝐾1) ⊕ 𝐻2(𝐾2) 𝐻2(𝐾)

𝐻1(𝐾1 ∩ 𝐾2) 𝐻1(𝐾1) ⊕ 𝐻1(𝐾2) 𝐻1(𝐾)

𝐻0(𝐾1 ∩ 𝐾2) 𝐻0(𝐾1) ⊕ 𝐻0(𝐾2) 𝐻0(𝐾) 0

𝛼1

𝛼0

giving
0 𝐻2(𝐾)

ℤ ⊕ ℤ ℤ⊕ ℤ 𝐻1(𝐾)

ℤ ⊕ ℤ ℤ⊕ ℤ 𝐻0(𝐾) 0

𝛼1

𝛼0

Hence we have short exact sequences

0 𝐻2(𝐾) ker𝛼1 0

0 coker𝛼1 𝐻1(𝐾) ker𝛼0 0

0 coker𝛼0 𝐻0(𝐾) 0

Themaps 𝛼𝑖 are given by thematrix (
1 1
1 1). Therefore, ker𝛼𝑖 ≃ ℤ and coker𝛼𝑖 ≃ ℤ. Hence𝐻2(𝐾) ≃

ℤ, 𝐻1(𝐾) ≃ ℤ2, and 𝐻0(𝐾) ≃ ℤ.

𝐻𝑘(𝑇2) =
⎧
⎨
⎩

ℤ 𝑘 = 0, 2
ℤ2 𝑘 = 1
0 otherwise

Proposition. Suppose that 0 𝐴 𝐵 ℤ𝑟 0 is exact. Then 𝐵 ≃
𝐴⊕ ℤ𝑟.

Proof. By exactness,ℤ𝑟 ≃ 𝐵⟋𝐴. The result then follows from the structure theorem for abelian groups.

Example. Let 𝐿1 be a triangulation of 𝑇2, and let 𝐿1,1 be 𝐿1 ∖ {𝜎} where 𝜎 is a 2-simplex. Then
𝜕𝐿1,1 ≃ 𝜕𝜎 = 𝕊1, and ||𝐿1,1|| ∼ 𝑆1 ∨ 𝑆1. We inductively define 𝐿𝑔 = 𝐿𝑔−1,1 ∪𝕊1 𝐿1,1, and 𝐿𝑔,1 = 𝐿𝑔 ∖ 𝜎
where 𝜎 is a 2-simplex. Then 𝐿𝑔 is a triangulation of the compact surface of genus 𝑔. Note also that
𝐿𝑔,1 ≃ 𝐿𝑔−1,1 ∪𝜎1 𝐿1,1 where 𝜎1 is an edge of 𝕊1. So 𝐿𝑔,1 ∼ ⋁2𝑔

𝑖=1 𝑆1.

52



Proposition.

𝐻𝑘(𝐿𝑔) =
⎧
⎨
⎩

ℤ 𝑘 = 0, 2
ℤ2𝑔 𝑘 = 1
0 otherwise

and

𝐻𝑘(𝐿𝑔,1) =
⎧
⎨
⎩

ℤ 𝑘 = 0
ℤ2𝑔 𝑘 = 1
0 otherwise

Further, 𝜄𝑔⋆ ∶ 𝐻1(𝜕𝐿𝑔,1) → 𝐻1(𝐿𝑔,1) is the zero map.

Proof. By induction, we show the result for𝐻𝑘(𝐿𝑔) implies the result for𝐻𝑘(𝐿𝑔,1), and then𝐻𝑘(𝐿𝑔,1)
gives 𝐻𝑘(𝐿𝑔+1). The base case is 𝐻•(𝑇2) which was shown above. For the first implication, we use
the Mayer–Vietoris sequence. Note that 𝐿𝑔 = 𝐿𝑔,1 ∪𝜕𝐿𝑔,1 𝚫2. Then,

𝐻2(𝐿𝑔,1) ⊕ 𝐻2(𝚫2) 𝐻2(𝐿𝑔)

𝐻1(𝜕𝐿𝑔,1) 𝐻1(𝐿𝑔,1) ⊕ 𝐻1(𝚫2) 𝐻1(𝐿𝑔)

𝐻0(𝜕𝐿𝑔,1) 𝐻0(𝐿𝑔,1) ⊕ 𝐻0(𝚫2) 𝐻0(𝐿𝑔)

𝜕2

𝜕1

𝜄1

𝜄0

giving
0 ⊕ 0 ℤ

ℤ 𝐻1(𝐿𝑔,1) ⊕ 0 ℤ2𝑔

ℤ ℤ⊕ ℤ ℤ

𝜕2

𝜕1

𝜄1

𝜄0

The bottom row of theMayer–Vietoris sequence always has this form if 𝐾1, 𝐾2, 𝐾1∩𝐾2 are connected.
Note that since 𝜄0 is injective, the map before it is the zero map by exactness, so we can remove the
bottom row and replace it with zero. We have that 𝜕2 is injective, and𝐻1(𝐿𝑔,1) is torsion-free, so 𝜕2 is
an isomorphism. Hence 𝜄1 is the zero map and 𝑗 is an isomorphism. Since 0 = 𝜄1 = 𝜄𝑔⋆ + 𝜄′⋆, we have
𝜄𝑔⋆ = 0. Further, as 𝑗 is an isomorphism, 𝐻1(𝐿𝑔,1) ≃ 𝐻1(𝐿𝑔) = ℤ2𝑔 as required.
Nowwe show the result for𝐻𝑘(𝐿𝑔,1) implies the result for𝐻𝑘(𝐿𝑔+1). Note that 𝐿𝑔+1 = 𝐿𝑔,1∪𝜕𝐿𝑔,1 𝐿1,1.
Hence,

𝐻2(𝐿𝑔,1) ⊕ 𝐻2(𝐿1,1) 𝐻2(𝐿𝑔+1)

𝐻1(𝜕𝐿𝑔,1) 𝐻1(𝐿𝑔,1) ⊕ 𝐻2(𝐿1,1) 𝐻1(𝐿𝑔+1) 0𝜄
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so
0 ⊕ 0 𝐻2(𝐿𝑔+1)

ℤ ℤ2𝑔 ⊕ℤ2 𝐻1(𝐿𝑔+1) 0𝜄

By assumption, 𝜄 is the zero map. Hence 𝐻2(𝐿𝑔+1) ≃ 𝐻1(𝜕𝐿𝑔,1) ≃ ℤ as 𝜕2 is an isomorphism. Also,
ℤ2𝑔+2 ≃ 𝐻1(𝐿𝑔+1) by exactness.

7.9 Homology of non-orientable surfaces
Let 𝑀1 be a triangulation of ℝℙ2. Let 𝑀𝑟,1 be 𝑀𝑟 with a 2-simplex removed, so 𝜕𝑀𝑟,1 ≃ 𝕊1. Let
𝑀𝑟+1 = 𝑀𝑟,1 ∪𝜕𝑀𝑟,1 𝑀1,1. Then 𝑀𝑟+1,1 = 𝑀𝑟,1 ∪𝚫1 𝑀1,1, attaching along an interval. For example,
||𝑀1,1|| is homeomorphic to the Möbius band. Then𝑀𝑟,1 ∼ ⋁𝑟

𝑖=1 𝑆1.

Proposition.

𝐻𝑘(𝑀𝑟) =
⎧
⎨
⎩

ℤ𝑟−1 ⊕ℤ⟋2ℤ 𝑘 = 1
ℤ 𝑘 = 0
0 otherwise

and

𝐻𝑘(𝑀𝑟,1) =
⎧
⎨
⎩

ℤ𝑟 𝑘 = 1
ℤ 𝑘 = 0
0 otherwise

Further, 𝜄𝑟⋆ ∶ 𝐻1(𝜕𝑀𝑟,1) → 𝐻1(𝑀𝑟,1) has the property that 𝜄𝑟⋆(1) is twice a primitive element,
or equivalently, 𝐻1(𝑀𝑟,1)⟋Im 𝜄𝑟⋆ = ℤ𝑟−1 ⊕ℤ⟋2ℤ.

Proof. We proceed by induction in the same way. For the base case, note that 𝜕𝑀1,1 ≃ 𝑆1 and𝑀1,1 ≃
𝑆1, and the map from 𝜕𝑀1,1 → 𝑀1,1 is given by 𝑧 ↦ 𝑧2, so the map 𝐻1(𝑆1) → 𝐻1(𝑆1) is given by
multiplication by 2. Suppose the result holds for 𝐻𝑘(𝑀𝑟). Then,𝑀𝑟 = 𝑀𝑟,1 ∪𝜕𝑀𝑟,1 𝚫2, and

𝐻2(𝑀𝑟,1) ⊕ 𝐻2(𝚫2) 𝐻2(𝑀𝑟)

𝐻1(𝜕𝑀𝑟,1) 𝐻1(𝑀𝑟,1) ⊕ 𝐻1(𝚫2) 𝐻1(𝑀𝑟) 0𝜄𝑟⋆

𝜄𝑟⋆ is injective, so 𝜕2 = 0, giving 0 𝐻2(𝑀𝑟) 0 . Hence,

0 ⊕ 0 0

ℤ 𝐻1(𝑀𝑟,1) ⊕ 0 ℤ𝑟−1 ⊕ℤ⟋2ℤ 0𝜄𝑟⋆

Since 𝐻1(𝑀𝑟,1) is torsion-free,

0 ℤ 𝐻1(𝑀𝑟,1) ℤ𝑟−1 ⊕ℤ⟋2ℤ 0
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gives that 𝐻1(𝑀𝑟,1) = ℤ𝑟.
Now,𝑀𝑟+1 = 𝑀𝑟,1 ∪𝜕𝑀𝑟,1 𝑀1,1 hence

𝐻2(𝑀𝑟,1) ⊕ 𝐻2(𝑀1,1) 𝐻2(𝑀𝑟+1)

𝐻1(𝕊1) 𝐻1(𝑀𝑟,1) ⊕ 𝐻1(𝑀𝑟,1) 𝐻1(𝑀𝑟+1) 0

so
0 ⊕ 0 0

ℤ 𝐻1(𝑀𝑟,1) ⊕ 𝐻1(𝑀𝑟,1) 𝐻1(𝑀𝑟+1) 0
0

Hence 𝐻1(𝑀𝑟+1) ≃ ℤ2 ⊕ℤ⟋(2𝑒1, 2) ≃ ℤ𝑟 ⊕ℤ⟋2ℤ.

7.10 Lefschetz fixed point theorem
Let (𝐶, 𝑑) be a chain complex overℚ (or any other field). Then𝐻•(𝐶) is aℚ-vector space. Let 𝑓∶ 𝐶 →
𝐶 be a chain map, so it induces 𝑓⋆ ∶ 𝐻•(𝐶) → 𝐻•(𝐶). 𝑓 and 𝑓⋆ are both linear endomorphisms of
vector spaces.

Definition. The Lefschetz number of 𝑓 is 𝐿(𝑓) = ∑𝑘(−1)𝑘 tr𝑓𝑘 where 𝑓𝑘 ∶ 𝐶𝑘 → 𝐶𝑘, and
𝐿(𝑓⋆) = ∑𝑘(−1)𝑘 tr𝑓𝑘⋆ where 𝑓𝑘⋆ ∶ 𝐻𝑘(𝐶) → 𝐻𝑘(𝐶).

Proposition. 𝐿(𝑓) = 𝐿(𝑓⋆).

Proof. Let 𝑈𝑘 = Im𝑑𝑘+1 ⊆ ker𝑑𝑘 ⊆ 𝐶𝑘. Then, ker 𝑑𝑘 = 𝑈𝑘 ⊕ 𝑉 𝑘, and 𝐶𝑘 = 𝑈𝑘 ⊕ 𝑉 𝑘 ⊕𝑈 ′
𝑘. Then

𝑑∶ 𝑈 ′
𝑘 → 𝑈𝑘−1 is an isomorphism. With respect to this decomposition, 𝑑 is a matrix in block form

given by

𝑑 = (
0 0 𝐼
0 0 0
0 0 0

)

Also, 𝑓(Im𝑑𝑘+1) ⊆ Im𝑑𝑘+1 since 𝑓 is a chain map, and 𝑓(ker𝑑𝑘) ⊆ ker𝑑𝑘. So in block form,

𝑓 = (
𝐴𝑘 𝑋𝑘 ⋆
0 𝐵𝑘 ⋆
0 0 𝐴′

𝑘

)

Then, the equation 𝑑𝑓 = 𝑓𝑑 shows 𝐴𝑘 = 𝐴′
𝑘+1. Hence, 𝐻𝑘(𝐶) = ker𝑑𝑘⟋Im𝑑𝑘+1 =

𝑈𝑘 ⊕𝑉 𝑘⟋𝑈𝑘
≃

𝑉 𝑘, and 𝑓𝑘⋆ ∶ 𝐻𝑘(𝐶) → 𝐻𝑘(𝐶)maps [𝑣] to [𝐵𝑘𝑣+𝑋𝑘𝑣] = [𝐵𝑘𝑣], so 𝑓𝑘⋆ is multiplication by 𝐵𝑘. Then
𝐿(𝑓) = ∑𝑘(−1)𝑘 tr𝑓𝑘 = ∑(−1)𝑘(tr𝐴𝑘 + tr𝐵𝑘 + tr𝐴𝑘−1) = ∑(−1)𝑘 tr𝐵𝑘 = 𝐿(𝑓⋆).
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Definition. Let𝐶 = 𝐶•(𝐾). Then theEuler characteristic is defined by𝜒(𝐶) = 𝐿(id𝐶). Hence
𝜒(𝐶(𝐾)) = ∑𝑘(−1)𝑘 dim𝐶𝑘(𝐾). Note that 𝐿(id𝐶) = 𝐿(id𝐻•(𝐾)) = ∑𝑘(−1)𝑘 dim𝐻𝑘(𝐾) de-
pends only on |𝐾|.

Theorem (Lefschetz fixed point theorem). Let 𝐹 ∶ |𝐾| → |𝐾| be a continuous map. Let
𝐿(𝐹) = 𝐿(𝐹⋆) be the Lefschetz number of 𝐹, where 𝐹⋆ ∶ 𝐻•(𝐾) → 𝐻•(𝐾). Then if 𝐿(𝐹) ≠ 0, 𝐹
has a fixed point.

Remark. This is a generalisation of the Brouwer fixed point theorem.

Proof sketch. If𝐹 has no fixed point, then since |𝐾| is compact, there exists 𝜀 > 0 such that |𝐹(𝑥) − 𝑥| ≥
𝜀 for all 𝑥. If 𝑓∶ 𝐵𝑟+𝑛𝐾 → 𝐵𝑟𝐾 is a simplicial approximation of 𝐹, then the above implies that 𝐹⋆(𝜎)
does not contain 𝜎 for any simplex 𝜎 ∈ 𝐶•(𝐾). Hence 𝐿(𝐹) = 𝐿(𝑓) = 0.
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