Algebraic Topology

Cambridge University Mathematical Tripos: Part II

4th May 2024

Contents

1 Motivation 3
1.1 Invariants 3
1.2 Notation 3
2 Homotopy 4
2.1 Definition 4
2.2 Contractible spaces 5
3 Groups from loops 6
3.1 Homotopy relative to a set 6
3.2 Induced maps 8
3.3 Retractions 9
3.4 Null-homotopy and extensions 10
3.5 Change of basepoint 11
4 Covering spaces 13
4.1 Definitions 13
4.2 Lifting paths and homotopies 14
4.3 Simply connected lifting 17
4.4 Universal covers 18
4.5 Degree of maps on the circle 19
4.6 Fundamental theorem of algebra 19
4.7 Wedge product 20
4.8 Covering transformations 21
4.9 Uniqueness of universal covers 22
4.10 Deck groups 23
4.11 Correspondence of subgroups and covers 23
5 Seifert-Van Kampen theorem 25
5.1 Free groups and presentations 25
5.2 Presentations 26
5.3 Covering with a pair of open sets 27
5.4 Amalgamated free products 28
5.5 Seifert-Van Kampen theorem 29
6 Simplicial complexes 30
6.1 Simplices 30
6.2 Abstract simplicial complexes 32
6.3 Euclidean simplicial complexes 33
6.4 Boundaries and cones 34
6.5 Barycentric subdivision 35
6.6 Simplicial approximation 37
7 Simplicial homology 39
7.1 Chain complexes 39
7.2 Homology groups 40
7.3 Chain maps 41
7.4 Chain homotopies 43
7.5 Exact sequences 45
7.6 Mayer-Vietoris sequence 48
7.7 Homology of triangulable spaces 49
7.8 Homology of orientable surfaces 51
7.9 Homology of non-orientable surfaces 54
7.10 Lefschetz fixed point theorem 55

1 Motivation

1.1 Invariants

Topological spaces are difficult to study on their own, and so we will assign algebraic invariants to these spaces which allow us to reason more easily about these spaces. To a topological space X, a 'numerical invariant' is a number $g(X) \in \mathbb{R} \cup\{\infty\}$ such that $X \simeq Y$ (where \simeq denotes homeomorphism) implies $g(X)=g(Y)$. An example of a numerical invariant is the number of path-connected components of X. An algebraic invariant is a group $G(X)$ assigned to a topological space X such that $X \simeq Y$ implies $G(X) \simeq G(Y)$, where here \simeq denotes isomorphism. We will construct two kinds of such invariants: the fundamental group, and invariants related to homology. The invariants we construct will behave nicely under maps: if $f: X \rightarrow Y$ is a continuous map, we induce a homomorphism $f_{\star}: G(X) \rightarrow G(Y)$. We will prove the following model theorems.

- If $\mathbb{R}^{n} \simeq \mathbb{R}^{m}$, then $n=m$.
- If $f: D^{n} \rightarrow D^{n}$ is continuous, then there exists $x \in D^{n}$ with $f(x)=x$.

The above theorems are easy to prove in the case $n=1$ by appealing to path-connectedness and the intermediate value theorem. Our study allows us to prove similar things about these higher dimensional cases, among other things.

1.2 Notation

- A space is a topological space.
- A map is a continuous function, unless defined otherwise.
- If X and Y are spaces, $X \simeq Y$ means that X and Y are homeomorphic.
- If G and H are groups, $G \simeq H$ means that G and H are isomorphic.
- Some common spaces include:
- The one-point space $\{\bullet\}$;
$-I=[0,1] \subset \mathbb{R}$;
- $I^{n}=\underbrace{I \times \cdots \times I}_{n \text { times }}$, the n-dimensional closed unit cube;
- $D^{n}=\left\{v \in \mathbb{R}^{n} \mid\|v\| \leq 1\right\}$, the n-dimensional closed unit disk (note that $I^{n} \simeq D^{n}$);
- $S^{n-1}=\left\{v \in \mathbb{R}^{n} \mid\|v\|=1\right\}$, the $(n-1)$-dimensional unit sphere.
- Common maps include:
- If X is a space, the identity map $\operatorname{id}_{X}: X \rightarrow X$ is defined by $x \mapsto x$;
- If X and Y are spaces with $p \in Y$, the constant map $c_{X, p}: X \rightarrow Y$ is defined by $x \mapsto p$.

2 Homotopy

2.1 Definition

Definition. Let $f_{0}, f_{1}: X \rightarrow Y$ be continuous. We say f_{0} is homotopic to f_{1}, written $f_{0} \sim f_{1}$, if there exists a continuous $H: X \times I \rightarrow Y$ with $H(x, 0)=f_{0}(x)$ and $H(x, 1)=f_{1}(x)$.

We can think of H as a path from f_{0} to f_{1} in the set $\operatorname{Hom}(X, Y)$ of functions $X \rightarrow Y$, which is continuous under a topology that will not be defined here.

Lemma (Gluing lemma). Let $X=C_{1} \cup C_{2}$, where C_{1}, C_{2} are closed in X. Let $f: X \rightarrow Y$ be a function (that may be not continuous), such that $\left.f\right|_{C_{1}}$ and $\left.f\right|_{C_{2}}$ are continuous. Then f is continuous.

Proof. It suffices to show that the preimage of a closed set is closed. Let $K \subseteq Y$ be closed. Then $K_{i}=f^{-1}(K) \cap C_{i}=\left(\left.f\right|_{C_{i}}\right)^{-1}(K)$ is a closed set in C_{i} and so is closed in X because C_{i} is closed. Since $K=K_{1} \cup K_{2}, K$ is also closed in X.

Lemma. Homotopy is an equivalence relation.

Proof. Reflexivity is trivial, because $H(x, t)=f(x)$ is continuous, as $H=f \circ \pi_{1}$ is the composition of continuous maps. Symmetry holds because if $H(x, t)$ is continuous, $H(x, 1-t)$ is continuous as the composition of continuous maps. For transitivity, if $f_{0} \sim f_{1}$ via H and $f_{1} \sim f_{2}$ via H^{\prime}, we define

$$
H^{\prime \prime}(x, t)= \begin{cases}H(x, 2 t) & t<\frac{1}{2} \\ H^{\prime}(x, 2 t-1) & t \geq \frac{1}{2}\end{cases}
$$

and this is continuous by the gluing lemma.
Note that we sometimes write $f_{t}(x)$ for a homotopy between f_{0} and f_{1}.
Example. Let $f_{1}: X \rightarrow \mathbb{R}^{n}$ be a map. Then $f_{0}: X \rightarrow \mathbb{R}^{n}$ defined by $c_{X, 0}$ has $f_{1} \sim f_{0}$ via the homotopy $H(x, t)=t f_{1}(x)$.
Example. Let $f_{1}: S^{1} \rightarrow S^{2}$ be defined by $f_{1}(x, y)=(x, y, 0)$: the inclusion map from the circle to the equator in the unit 2 -sphere. Let $f_{0}: S^{1} \rightarrow S^{2}$ be the constant map $f_{0}(x, y)=(0,0,1)$. Then $f_{0} \sim f_{1}$ via the homotopy $f_{t}(x, y)=\left(x \sin \frac{\pi t}{2}, y \sin \frac{\pi t}{2}, \cos \frac{\pi t}{2}\right)$.

Lemma. If $f_{0}, f_{1}: X \rightarrow Y$ are homotopic via f_{t}, and $g_{0}, g_{1}: Y \rightarrow Z$ are homotopic via g_{t}, then the map $H: X \times I \rightarrow Z$ defined by $H(x, t)=g_{t}\left(f_{t}(x)\right)$, also denoted $g_{t} \circ f_{t}$, is a homotopy for $g_{0} \circ f_{0} \sim g_{1} \circ f_{1}$.

Proof. This is a composition of continuous maps and hence continuous.

2.2 Contractible spaces

Definition. A space Y is contractible if $\mathrm{id}_{Y} \sim c_{Y, p}$ for some $p \in Y$.

Example. If $Y \subseteq \mathbb{R}^{n}$ is convex and nonempty, Y is contractible via the homotopy $H(y, t)=(1-t) y+$ $t p$ for some $p \in Y$.

Proposition. Let Y be contractible. Then $f_{0} \sim f_{1}$ for any maps $f_{0}, f_{1}: X \rightarrow Y$.

Proof. We have $f_{0}=\operatorname{id}_{Y} \circ f_{0} \sim c_{Y, p} \circ f_{0}=c_{X, p}$, and similarly $f_{1} \sim c_{X, p}$. By transitivity, $f_{0} \sim f_{1}$.

Corollary. Let Y be contractible. Then Y is path-connected.

Proof. If Y is contractible, and $p, q \in Y$, then $c_{\{\cdot\}, p} \sim c_{\{\cdot\}, q}$ via $H:\{\bullet\} \times I \rightarrow Y$. Then we can define the path $\gamma(t)=H(\cdot, t)$ from p to q in Y.

Example. $\mathbb{R} \backslash\{0\}$ is not contractible.
We will later prove that $\mathbb{R}^{n} \backslash\{0\}$ is not contractible for any $n \geq 1$, but we require some more theory before this can be proven.

Definition. Spaces X, Y are homotopy equivalent, denoted $X \sim Y$, if there exist maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $f \circ g \sim \operatorname{id}_{Y}$ and $g \circ f \sim \operatorname{id}_{X}$.

Example. If $X \simeq Y, X$ and Y are homotopy equivalent. Note that the definition of homotopy equivalence is simply the definition of homeomorphism, except that the requirement that $f \circ g$ and $g \circ f$ be equal to the identity is relaxed into simply being homotopic to the identity.

Lemma. Homotopy equivalence is an equivalence relation.

Proposition. X is contractible if and only if $X \sim\{\bullet\}$.

Proof. If X is contractible, id $\sim c_{X, p}$. Let $f: X \rightarrow\{\bullet\}$ be defined by $f(x)=\bullet$. Let $g:\{\bullet\} \rightarrow X$ be defined by $g(x)=p$. Then $f \circ g=\mathrm{id}_{\{\cdot\}}$ and $g \circ f=c_{X, p} \sim \mathrm{id}_{X}$. The converse is similar.

Example. We have $\mathbb{R}^{n+1} \backslash\{0\} \sim S^{n}$. Consider $p: \mathbb{R}^{n+1} \backslash\{0\} \rightarrow S^{n}$ defined by $p(v)=\frac{v}{\|v\|}$, and $q: S^{n} \rightarrow \mathbb{R}^{n+1} \backslash\{0\}$ defined by $q(v)=v$. Then $p \circ q=\mathrm{id}$, and $(q \circ p)(v)=\frac{v}{\|v\|}$. This is homotopic to the identity by

$$
H(v, t)=\frac{v}{(1-t)+t\|v\|}
$$

This is a special case of a retract, a continuous map onto a subspace.

3 Groups from loops

3.1 Homotopy relative to a set

Definition. Let $A \subseteq X$. We say $f_{0}, f_{1}: X \rightarrow Y$ are homotopic relative to A, written $f_{0} \sim$ f_{1} rel A, if $f_{0} \sim f_{1}$ via some homotopy $H: X \times I \rightarrow Y$ that fixes A, so $H(a, t)=f_{0}(a)=f_{1}(a)$ for all $a \in A$.

Lemma. Homotopy relative to A is an equivalence relation.

Lemma. If $f_{0}, f_{1}: X \rightarrow Y$ and $f_{0} \sim f_{1}$ rel A, and $g_{0}, g_{1}: Y \rightarrow Z$ and $g_{0} \sim g_{1}$ rel $f(A)$, then $g_{0} \circ f_{0} \sim g_{1} \circ f_{1}$ rel A.

If $\gamma_{0}, \gamma_{1}: I \rightarrow X$ are two homotopic paths relative to their endpoints, so $\gamma_{0} \sim \gamma_{1}$ rel $\{0,1\}$, we write $\gamma_{0} \sim_{e} \gamma_{1}$.

Lemma. Let $f_{0}, f_{1}: I \rightarrow I$, where $f_{0}(0)=f_{1}(0)$ and $f_{0}(1)=f_{1}(1)$. Then $f_{0} \sim_{e} f_{1}$.

Proof. I is convex, hence $H(x, t)=(1-t) f_{0}(x)+t f_{1}(x)$ is a homotopy that preserves endpoints as required.

Corollary. Suppose $f: I \rightarrow I, \gamma: I \rightarrow X$. Then if $f(0)=0$ and $f(1)=1, \gamma \circ f \sim_{e} \gamma$. Further, if $f(0)=0$ and $f(1)=0$, we have $\gamma \circ f \sim_{e} c_{I, \gamma(0)}$.

Proof. We have $f(0)=\operatorname{id}_{I}(0)$ and $f(1)=\operatorname{id}_{I}(1)$. Hence $f \sim_{e} \operatorname{id}_{I}$. Therefore, $\gamma \circ f \sim_{e} \gamma \circ \operatorname{id}_{I}=\gamma$. For the second claim, $f(0)=c_{I, 0}(0)$ and $f(1)=c_{I, 0}(1)$, hence $f \sim_{e} c_{I, 0}$ giving $\gamma \circ f \sim_{e} \gamma \circ c_{I, 0}=$ $c_{I, \gamma(0)}$.

Definition. Let X be a space, and $p, q \in X$. Let

$$
\Omega(X, p, q)=\{\gamma: I \rightarrow X \mid \gamma \text { continuous, } \gamma(0)=p, \gamma(1)=q\}
$$

be the set of paths from p to q. Let $\Omega(X, p)=\Omega(X, p, p)$ be the set of loops based at p.

Definition. Let $\gamma \in \Omega(X, p, q), \gamma^{\prime} \in \Omega(X, q, r)$. Then their composition $\gamma \gamma^{\prime} \in \Omega(X, p, r)$ is given by

$$
\left(\gamma \gamma^{\prime}\right)(t)=\left\{\begin{array}{ll}
\gamma(2 t) & t \in\left[\begin{array}{c}
0, \frac{1}{2} \\
\gamma^{\prime}(2 t-1)
\end{array}\right. \\
t \in\left[\frac{1}{2}, 1\right.
\end{array}\right]
$$

$\gamma \gamma^{\prime}$ is continuous by the gluing lemma.

Lemma. Let $\gamma_{0}, \gamma_{1} \in \Omega(X, p, q)$ and $\gamma_{0}^{\prime}, \gamma_{1}^{\prime} \in \Omega(X, q, r)$ such that $\gamma_{0} \sim_{e} \gamma_{1}$ via $H: I \times I \rightarrow X$ and $\gamma_{0}^{\prime} \sim_{e} \gamma_{1}^{\prime}$ via $H^{\prime}: I \times I \rightarrow X$. Then $\gamma_{0} \gamma_{0}^{\prime} \sim_{e} \gamma_{1} \gamma_{1}^{\prime}$.

Proof. The homotopy required is

$$
\bar{H}(x, t)= \begin{cases}H(2 x, t) & x \in\left[0, \frac{1}{2}\right. \\ H^{\prime}(2 x-1, t) & x \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

Definition. Let $\gamma \in \Omega(X, p, q)$. Then $\gamma^{-1} \in \Omega(X, q, p)$ is the reverse of γ, given by

$$
\gamma^{-1}(t)=\gamma(1-t)
$$

Proposition. (i) Let $\gamma \in \Omega(X, p, q)$. Then $c_{I, p} \gamma \sim_{e} \gamma \sim_{e} \gamma c_{I, q}$.
(ii) $\gamma \gamma^{-1} \sim_{e} c_{I, p}$ and $\gamma^{-1} \gamma \sim_{e} c_{I, q}$.
(iii) If $\gamma(1)=\gamma^{\prime}(0)$ and $\gamma^{\prime}(1)=\gamma^{\prime \prime}(0)$, we have

$$
\gamma\left(\gamma^{\prime} \gamma^{\prime \prime}\right) \sim_{e}\left(\gamma \gamma^{\prime}\right) \gamma^{\prime \prime}
$$

Proof. (i) The composition $c_{I, p} \gamma$ has $c_{I, p} \gamma(t)=\gamma(f(t))$ where $f: I \rightarrow I$ defined by

$$
f(t)= \begin{cases}0 & t \in\left[0, \frac{1}{2}\right. \\ 2 t-1 & t \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

Since $f(0)=0$ and $f(1)=1, \gamma \circ f \sim_{e} \gamma$. Similarly, $\gamma c_{I, q}(t)=\gamma(g(t))$ where

$$
g(t)= \begin{cases}2 t & t \in\left[0, \frac{1}{2}\right] \\ 1 & t \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

(ii) $\gamma \gamma^{-1}(t)=\gamma(f(t))$ where

$$
f(t)=\left\{\begin{array}{ll}
2 t & t \in\left[\begin{array}{r}
0, \frac{1}{2} \\
1-2 t
\end{array}\right. \\
t \in\left[\frac{1}{2}, 1\right.
\end{array}\right]
$$

Further, $\gamma^{-1} \gamma(t)=\gamma(g(t))$ where

$$
g(t)= \begin{cases}1-2 t & t \in\left[\begin{array}{c}
0, \frac{1}{2} \\
2 t-1
\end{array} \quad t \in\left[\frac{1}{2}, 1\right]\right.\end{cases}
$$

(iii) We can write $\gamma\left(\gamma^{\prime} \gamma^{\prime \prime}\right)(t)=\left(\gamma \gamma^{\prime}\right) \gamma(f(t))$ where $f: I \rightarrow I$ is the continuous function defined by

$$
f(t)= \begin{cases}\frac{t}{2} & t \in\left[\begin{array}{c}
0, \frac{1}{2} \\
t-\frac{1}{4}
\end{array}\right. \\
t \in\left[\frac{1}{2}, \frac{3}{4}\right. \\
2 t-1 & t \in\left[\frac{3}{4}, 1\right]\end{cases}
$$

noting that $f(0)=0$ and $f(1)=1$. Hence $\gamma\left(\gamma^{\prime} \gamma^{\prime \prime}\right) \sim_{e}=\left(\gamma \gamma^{\prime}\right) \gamma^{\prime \prime}$.

Definition. Let X be a space and $x_{0} \in X$. We define the fundamental group or first homotopy group of X based at x_{0} by

$$
\pi_{1}\left(X, x_{0}\right)=\Omega\left(X, x_{0}\right) / \sim_{e}
$$

We say x_{0} is the basepoint. If $\gamma \in \Omega\left(X, x_{0}\right)$, we write $[\gamma]$ for its image in $\pi_{1}\left(X, x_{0}\right)$, its equivalence class.

Theorem. We define multiplication in π_{1} by $[\gamma] *\left[\gamma^{\prime}\right]=\left[\gamma \gamma^{\prime}\right]$. The identity is $1=\left[c_{I, x_{0}}\right]$. The inverse is given by $[\gamma]^{-1}=\left[\gamma^{-1}\right]$. These operations form a group.

Proof. Using the above lemma we explicitly check the group axioms. Identity:

$$
1[\gamma]=\left[c_{I, x_{0}} \gamma\right]=[\gamma] ; \quad[\gamma] 1=\left[\gamma c_{I, x_{0}}\right]=[\gamma]
$$

Inverses:

$$
[\gamma][\gamma]^{-1}=\left[\gamma \gamma^{-1}\right]=\left[c_{I, x_{0}}\right]=1
$$

Associativity:

$$
\left([\gamma]\left[\gamma^{\prime}\right]\right)\left[\gamma^{\prime \prime}\right]=\left[\gamma \gamma^{\prime}\right]\left[\gamma^{\prime \prime}\right]=\left[\left(\gamma \gamma^{\prime}\right) \gamma^{\prime \prime}\right]=\left[\gamma\left(\gamma^{\prime} \gamma^{\prime \prime}\right)\right]=[\gamma]\left[\gamma^{\prime} \gamma^{\prime \prime}\right]=[\gamma]\left(\left[\gamma^{\prime}\right]\left[\gamma^{\prime \prime}\right]\right)
$$

3.2 Induced maps

Definition. Let $f: X \rightarrow Y$ be a continuous map, and $f\left(x_{0}\right)=y_{0}$. Then we have a map $\Omega\left(X, x_{0}\right) \rightarrow \Omega\left(Y, y_{0}\right)$ defined by $\gamma \mapsto f \circ \gamma$. Note that if $\gamma_{0} \sim_{e} \gamma_{1}$, we have $f \circ \gamma_{0} \sim_{e} f \circ \gamma_{1}$.
Thus, this map descends to the induced homomorphism $f_{\star}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ defined by $[\gamma] \mapsto[f \circ \gamma]$.

Definition. A pointed space (X, x_{0}) is a pair where X is a space and $x_{0} \in X$. We write $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ to denote a map $f: X \rightarrow Y$ where $f\left(x_{0}\right)=y_{0}$. In particular, for $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ there is an induced map $f_{\star}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$.

Proposition. Let $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$. Then,
(i) The induced map $f_{\star}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ is a group homomorphism.
(ii) $\left(\operatorname{id}_{\left(X, x_{0}\right)}\right)_{\star}=\operatorname{id}_{\pi_{1}\left(X, x_{0}\right)}$.
(iii) If $g:\left(Y, y_{0}\right) \rightarrow\left(Z, z_{0}\right)$, we have $(g \circ f)_{\star}=g_{\star} \circ f_{\star}$.
(iv) If $f_{0}, f_{1}:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ with $f_{0} \sim f_{1}$ rel x_{0}, then $\left(f_{0}\right)_{\star}=\left(f_{1}\right)_{\star}$ (homotopy invariance).

Remark. The action of taking the fundamental group of a pointed space thus yields a functor $\pi_{1}:$ Top. \rightarrow Grp. The following diagram, representing part (iii) of the proposition above, commutes.

Proof. (i) This follows from the fact that

$$
f \circ\left(\gamma \gamma^{\prime}\right)(t)= \begin{cases}f \circ \gamma(2 t) & t \in\left[\begin{array}{l}
0, \frac{1}{2} \\
f \circ \gamma^{\prime}(2 t-1)
\end{array}\right. \\
t \in\left[\begin{array}{l}
\frac{1}{2}, 1
\end{array}\right]=(f \circ \gamma)\left(f \circ \gamma^{\prime}\right)(t)\end{cases}
$$

Hence,

$$
f_{\star}\left([\gamma]\left[\gamma^{\prime}\right]\right)=\left[f \circ\left(\gamma \gamma^{\prime}\right)\right]=\left[(f \circ \gamma)\left(f \circ \gamma^{\prime}\right)\right]=[f \circ \gamma]\left[f \circ \gamma^{\prime}\right]=f_{\star}([\gamma]) f_{\star}\left(\left[\gamma^{\prime}\right]\right)
$$

(ii) $\operatorname{id}_{\star}([\gamma])=\left[\mathrm{id}_{X} \circ \gamma\right]=[\gamma]$.
(iii) $(f \circ g)_{\star}([\gamma])=[f \circ g \circ \gamma]=f_{\star}([g \circ \gamma])=f_{\star}\left(g_{\star}([\gamma])\right)$.
(iv) $f_{0} \sim f_{1}$ rel x_{0} and $\gamma(0)=\gamma(1)=x_{0}$ implies $f_{0} \circ \gamma \sim_{e} f_{1} \circ \gamma$, so $\left(f_{0}\right)_{*}([\gamma])=\left(f_{1}\right)_{*}([\gamma])$.

Example. Let $f: X \rightarrow Y$ be a homeomorphism, and let $y_{0}=f\left(x_{0}\right)$. Then $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ and $f^{-1}:\left(Y, y_{0}\right) \rightarrow\left(X, x_{0}\right)$ are inverses. Thus, $f_{\star}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ and $f_{\star}^{-1}: \pi_{1}\left(Y, y_{0}\right) \rightarrow$ $\pi_{1}\left(X, x_{0}\right)$ are inverses. Since $f_{\star} \circ f_{\star}^{-1}=\left(f \circ f^{-1}\right)_{\star}=\operatorname{id}_{\pi_{1}\left(Y, y_{0}\right)}$ and $f_{\star}^{-1} \circ f_{\star}=\operatorname{id}_{\pi_{1}\left(X, x_{0}\right)}$, we have that f_{\star} is a group isomorphism, and π_{1} is a topological invariant.

3.3 Retractions

Definition. Let $A \subset X$, where $\iota: A \rightarrow X$ is the inclusion map. Then $p: X \rightarrow A$ is a retraction if $p \circ \iota=\operatorname{id}_{A} . p: X \rightarrow A$ is a strong deformation retraction, or s.d.r., if $p \circ \iota=\operatorname{id}_{A}$ and $\iota p \sim \operatorname{id}_{X} \operatorname{rel} A$.

Remark. In either case, if $a_{0} \in A, \iota:\left(A, a_{0}\right) \rightarrow\left(X, a_{0}\right)$ and $p:\left(X, a_{0}\right) \rightarrow\left(A, a_{0}\right)$. If p is a retraction, $p_{\star} \circ \iota_{\star}=(p \circ \iota)_{\star}=\left(\mathrm{id}_{A}\right)_{\star}=\mathrm{id}_{\pi_{1}\left(A, a_{0}\right)}$, so $\iota_{\star}: \pi_{1}\left(A, a_{0}\right) \rightarrow \pi_{1}\left(X, a_{0}\right)$ is injective, and $p_{\star}: \pi_{1}\left(X, a_{0}\right) \rightarrow$ $\pi_{1}\left(A, a_{0}\right)$ is surjective. If p is a strong deformation retraction, $\iota_{\star} \circ p_{\star}=(\iota \circ p)_{\star}=\left(\mathrm{id}_{X}\right)_{\star}=\operatorname{id}_{\pi_{1}\left(X, a_{0}\right)}$, so p_{\star} and ι_{\star} are isomorphisms.
Remark. If $p: X \rightarrow A$ is a strong deformation retraction, then $A \sim X$.
Example. $p: \mathbb{R}^{n+1} \backslash\{0\} \rightarrow S^{n}$ given by $v \mapsto \frac{v}{\|v\|}$ is a strong deformation retraction.
Example. $\mathbb{R}^{2} \backslash\{0,1\}$ has A, B as strong deformation retractions, where A is a figure-eight with one loop surrounding each hole, and B is a rectangle surrounding each hole with a vertical line connecting the top and bottom edges through $\left(\frac{1}{2}, 0\right)$. This can be a useful trick to show $A \sim B$.

3.4 Null-homotopy and extensions

Definition. We say $f: X \rightarrow Y$ is null-homotopic if $f \sim c_{X, p}$ for $p \in Y$.

Example. If X is contractible, then $\operatorname{id}_{X} \sim c_{X, q}$, so $f=f \circ \operatorname{id}_{X} \sim f \circ c_{X, q}=f(q)$. So any $f: X \rightarrow Y$ is null-homotopic. If $f_{0} \sim f_{1}$, then f_{0} is null-homotopic if and only if f_{1} is null-homotopic.

Definition. Let $A \subset X$ and $f: A \rightarrow Y$. We say a continuous map $F: X \rightarrow Y$ is an extension of f if $\left.F\right|_{A}=f$. If such a map exists, we say f extends to X.

Lemma. $f: S^{1} \rightarrow Y$ extends to D^{2} if and only if f is null-homotopic.

Proof. If F is an extension of f to D^{2}, we define $H(v, t)=F(t v)$. Then H is a homotopy from f to $c_{S^{1}, F(0)}$. So f is null-homotopic.

Conversely, if f is null-homotopic, let $H: S^{1} \times I \rightarrow Y$ be a homotopy for $c_{S^{1}, p} \sim f$. Then we define

$$
F(v)= \begin{cases}H\left(\frac{v}{\|v\|},\|v\|\right) & v \neq 0 \\ p & v=0\end{cases}
$$

One can check that this is indeed a continuous extension.

Definition. Let $\gamma \in \Omega\left(X, x_{0}\right)$. We define $\bar{\gamma}: S^{1} \rightarrow X$ by $\bar{\gamma}\left(e^{2 \pi i t}\right)=\gamma(t)$. This is well-defined since $\gamma(0)=\gamma(1)$, and it is continuous because $I /\{0,1\} \simeq S^{1}$.

Lemma. (i) If $\gamma_{0} \sim_{e} \gamma_{1}$ via $H(x, t)$, we have $\bar{\gamma}_{0} \sim \bar{\gamma}_{1}$ via $\bar{H}: S^{1} \times I \rightarrow Y$ given by (ii) $\frac{\bar{H}\left(e^{2 \pi i x}, t\right)}{\gamma \gamma^{\prime}} \sim H(x, t)$.

Proof. (i) Note that \bar{H} is well-defined since $H(0, t)=H(1, t)=x_{0}$.
(ii) We have $\overline{\gamma \gamma^{\prime}}(v)=\overline{\gamma^{\prime} \gamma}(-v)$, hence $\overline{\gamma \gamma^{\prime}}=\overline{\gamma^{\prime} \gamma} \circ a$ where $a: S^{1} \rightarrow S^{1}$ is the antipodal map. Since $a \sim \operatorname{id}_{S^{1}}$, we have $\gamma \gamma^{\prime} \sim \overline{\gamma^{\prime} \gamma}$.

Consider the radial projection homeomorphism $\Phi: D^{2} \rightarrow I \times I$. Note that $\Phi\left(S^{1}\right)=\partial(I \times I)=$ $I \times\{0,1\} \cup\{0,1\} \times I$. Since Φ is a homeomorphism, $h: \partial(I \times I) \rightarrow X$ extends to $I \times I$ if and only if
$h \circ \Phi$ extends to D^{2}, which is true if and only if $h \circ \Phi$ is null-homotopic. Define $\alpha_{i}(t)=h(t, i)$ and $\beta_{i}(t)=h(i, t)$ for $i=0,1$. Then, $h \circ \Phi \sim \overline{\alpha_{0} \beta_{1} \alpha_{1}^{-1} \beta_{0}^{-1}}$.

Proposition. Let $\gamma_{0}, \gamma_{1} \in \Omega(X, p, q)$. Then the following are equivalent.
(i) $\underline{\gamma_{0} \sim_{e} \gamma_{1}}$;
(ii) $\gamma_{0} \gamma_{1}^{-1}$ is null-homotopic;
(iii) $\left[\gamma_{0} \gamma_{1}^{-1}\right]=1$ in $\pi_{1}(X, p)$.

Proof. Consider $h: \partial(I \times I) \rightarrow X$ given by $\gamma_{0} c_{I, q} \gamma_{1}^{-1} c_{I, p}$. Note that h is continuous by the gluing
 and only if $\overline{\gamma_{0} c_{I, q} \gamma_{1}^{-1} c_{I, p}}$ is null-homotopic. But this is homotopic to $\overline{\gamma_{0} \gamma^{-1}}$, so this proves that (i) and (ii) are equivalent.

Now, consider $h^{\prime}: \partial(I \times I) \rightarrow X$ given by $\gamma_{0} \gamma_{1}^{-1}$ on one side, and on all other sides, $c_{I, p}$. Then $\left[\gamma_{0} \gamma_{1}^{-1}\right]=1$ if and only if $\gamma_{0} \gamma_{1}^{-1} \sim_{e} c_{I, p}$, if and only if h^{\prime} extends to $I \times I$, if and only if $h \circ \Phi$ extends to D^{2}, if and only if $\overline{\gamma_{0} \gamma_{1}^{-1} c_{I, p} c_{I, p}^{-1} c_{I, p}^{-1}} \sim \overline{\gamma_{0} \gamma_{1}^{-1}}$ is null-homotopic.

Corollary. The following are equivalent.
(i) $\gamma_{0} \sim_{e} \gamma_{1}$ for all $\gamma_{0}, \gamma_{1} \in \Omega(X, p, q)$ and all $p, q \in X$.
(ii) any $f: S^{1} \rightarrow X$ is null-homotopic;
(iii) $\pi_{1}\left(X, x_{0}\right)$ is the trivial group for all $x_{0} \in X$.

Definition. X is simply connected if X is path-connected and $\pi_{1}\left(X, x_{0}\right)=1$ for all $x_{0} \in X$.

3.5 Change of basepoint

Lemma. Let X_{0} be the path-connected component of X containing a point $x_{0} \in X$. If Z is path-connected, $f: Z \rightarrow X$ is continuous, and $x_{0} \in \operatorname{Im} f$, we have $\operatorname{Im} f \subseteq X_{0}$.

Proof. Suppose $f\left(z_{0}\right)=x_{0}$. Given $z \in Z$, choose $\gamma \in \Omega\left(Z, z_{0}, z\right)$ by path-connectedness. Then $f \circ \gamma \in \Omega\left(X, x_{0}, f(z)\right)$, so $f(Z) \subseteq X_{0}$.

Let $\iota:\left(X_{0}, x_{0}\right) \rightarrow\left(X, x_{0}\right)$ be the inclusion map. Then if $f:\left(Z, z_{0}\right) \rightarrow\left(X, x_{0}\right)$ and Z is path-connected, f factors through ι as $f=\iota \circ \hat{f}$ where $\hat{f}:\left(Z, z_{0}\right) \rightarrow\left(X_{0}, x_{0}\right)$.

Lemma. The map $\iota_{\star}: \pi_{1}\left(X_{0}, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ is an isomorphism.

Proof. Let $[\gamma] \in \pi_{1}\left(X, x_{0}\right)$, so $\gamma:(I, 0) \rightarrow\left(X, x_{0}\right)$ giving $\gamma=\iota \circ \hat{\gamma}$ where $\hat{\gamma} \in \Omega\left(X_{0}, x_{0}\right) ;[\gamma]=\iota_{\star}([\hat{\gamma}])$, so ι_{\star} is surjective. Now suppose $\gamma_{0}=\iota \hat{\gamma}_{0}, \gamma_{1}=\iota \hat{\gamma}_{1}$. If $\iota_{\star}\left(\left[\hat{\gamma}_{0}\right]\right)=\iota_{\star}\left(\left[\hat{\gamma}_{1}\right]\right)$, so $\gamma_{0} \sim_{e} \gamma_{1}$ via $H: I \times I \rightarrow X$, we have $H(0,0)=x_{0}$, so $H=\iota \hat{H}$ since $I \times I$ is path-connected. Then we can check \hat{H} is a homotopy for $\hat{\gamma}_{0} \sim_{e} \hat{\gamma}_{1}$. Hence $\left[\hat{\gamma}_{0}\right]=\left[\hat{\gamma}_{1}\right]$, so ι_{\star} is injective.

Let $u \in \Omega\left(X, x_{0}, x_{1}\right)$. Then we can define $u_{\sharp}: \Omega\left(X, x_{0}\right) \rightarrow \Omega\left(X, x_{1}\right)$ by $\gamma \mapsto u^{-1} \gamma u$. Hence if $\gamma_{0} \sim_{e} \gamma_{1}$, we have $u^{-1} \gamma_{0} u \sim_{e} u^{-1} \gamma_{1} u$, so u_{\sharp} descends to a map $u_{\sharp}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{1}\right)$ defined by $[\gamma] \mapsto$ [$u^{-1} \gamma u$].

Proposition. $u_{\#}$ is a group isomorphism with inverse $\left(u^{-1}\right)_{\#}$.

$$
\pi_{1}\left(X, x_{0}\right) \underset{\left(u^{-1}\right)_{\sharp}}{\stackrel{u_{\sharp}}{\leftrightarrows}} \pi_{1}\left(X, x_{1}\right)
$$

Proof. First, it is a homomorphism.

$$
\begin{aligned}
u_{\sharp}\left([\gamma]\left[\gamma^{\prime}\right]\right) & =\left[u^{-1} \gamma \gamma^{\prime} u\right]=\left[u^{-1} \gamma c_{I, x_{0}} \gamma^{\prime} u\right] \\
& =\left[u^{-1} \gamma u u^{-1} \gamma^{\prime} u\right]=\left[u^{-1} \gamma u\right]\left[u^{-1} \gamma^{\prime} u\right]=u_{\sharp}([\gamma]) u_{\sharp}\left(\left[\gamma^{\prime}\right]\right)
\end{aligned}
$$

Consider the function u_{\sharp}^{-1}. We have

$$
u_{\sharp}^{-1}\left(u_{\sharp}([\gamma])\right)=\left[u u^{-1} \gamma u u^{-1}\right]=\left[c_{I, x_{0}} \gamma c_{I, x_{0}}\right]=[\gamma]
$$

and

$$
u_{\sharp}\left(u_{\sharp}^{-1}([\gamma])\right)=\left[u^{-1} u \gamma u^{-1} u\right]=\left[c_{I, x_{1}} \gamma c_{I, x_{1}}\right]=[\gamma]
$$

So $u_{\sharp}, u_{\sharp}^{-1}$ are inverses, and therefore isomorphisms.

Corollary. A space X is simply connected if it is path-connected and $\pi_{1}\left(X, x_{0}\right)=1$ for any $x_{0} \in X$, since then it follows that $\pi_{1}(X, x)=1$ for all $x \in X$.

Theorem. Let $x_{0} \in X$, and $f_{0}, f_{1}: X \rightarrow Y$ such that $f_{0} \sim f_{1}$ by $H: X \times I \rightarrow Y$. Let $u(t)=$ $H\left(x_{0}, t\right)$ and $y_{0}=f_{0}\left(x_{0}\right), y_{1}=f_{1}\left(x_{0}\right)$. Then $u \in \Omega\left(Y, y_{0}, y_{1}\right)$. We have $f_{i}:\left(X, x_{0}\right) \rightarrow\left(Y, y_{i}\right)$ which induce $f_{i \star}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{i}\right)$. Then $f_{1 \star}=u_{\#} \circ f_{0 \star}$.

Proof. We must show that $f_{1 \star}([\gamma])=u_{\sharp}\left(f_{0 \star}([\gamma])\right)$. Let $\gamma_{i}=f_{i} \circ \gamma$. We therefore need to show $\gamma_{1} \sim_{e} u^{-1} \gamma_{0} u$ for all $\gamma \in \Omega\left(X, x_{0}\right)$. Suppose we can show that $H: \partial(I \times I) \rightarrow Y$ given by $\gamma_{0}, u, \gamma_{1}^{-1}, u^{-1}$ on each side of the square extends to $I \times I$. Equivalently, $\overline{\gamma_{0} u \gamma_{1}^{-1} u^{-1}}=\overline{u^{-1} \gamma_{0} u \gamma_{1}^{-1}}$ is null-homotopic. This is equivalent to the statement $u^{-1} \gamma_{0} u \sim_{e} \gamma_{1}$. We know h extends to $\hat{H}: I \times I \rightarrow Y$, because $\hat{H}(x, t)=H(\gamma(x), t)$.

Corollary. Let $X \sim Y$ via $f: X \rightarrow Y$ and $g: Y \rightarrow X$, so $f \circ g \sim \operatorname{id}_{Y}$ and $g \circ f \sim \operatorname{id}_{X}$. Let $x_{0} \in X$ and $f\left(x_{0}\right)=y_{0}$. Let $g\left(y_{0}\right)=x_{1}$ and $f\left(x_{1}\right)=y_{1}$. Then we have induced maps $f_{\star}^{(0)}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right), g_{\star}: \pi_{1}\left(Y, y_{0}\right) \rightarrow \pi_{1}\left(X, x_{1}\right), f_{\star}^{(1)}: \pi_{1}\left(X, x_{1}\right) \rightarrow \pi_{1}\left(Y, y_{1}\right)$. Then g_{\star} is an isomorphism.

The left-hand commutative diagram, in the category of pointed topological spaces, commutes up to homotopy. The right-hand induced diagram commutes.

Proof. We have $\operatorname{id}_{X} \sim g \circ f$ via $H: X \times I \rightarrow X$. Then $g_{\star} \circ f_{\star}^{(0)}=(g \circ f)_{\star}=u_{\sharp} \circ\left(\mathrm{id}_{X}\right)_{\star}$ where $u(t)=H\left(x_{0}, t\right)$ is a path from x_{0} to x_{1}. Since u_{\sharp} is an isomorphism, g_{\star} is surjective. Similarly, $f^{(1)} \circ g_{\star}=(f \circ g)_{\star}$ is an isomorphism, so g_{\star} is injective.

Corollary. Let X be contractible. Then $\pi_{1}\left(X, x_{0}\right)=1$ is the trivial group.

Proof. The space $\Omega(\{\bullet\}, \bullet)$ has one element, so $\pi_{1}(\{\bullet\}, \bullet)=1$. Since $X \sim\{\bullet\}$, the result follows.

4 Covering spaces

4.1 Definitions

Definition. Let $p: \hat{X} \rightarrow X$ be a continuous function. We say $U \subset X$ is evenly covered by p if $p^{-1}(U) \simeq \coprod_{\alpha \in A} U_{\alpha}$ and $\left.p\right|_{U_{\alpha}}: U_{\alpha} \rightarrow U$ is a homeomorphism for all α.

The topology on the coproduct $\coprod_{\alpha \in A} U_{\alpha}$ is such that V is open if and only if each projection $V \cap U_{\alpha}$ is open. The topology on $p^{-1}(U)$ is the subspace topology. In particular, the inclusions $\iota_{\alpha}: U_{\alpha} \rightarrow$ $\coprod_{\alpha \in A} U_{\alpha} \rightarrow \hat{X}$ are continuous, as is the composition $\iota_{\alpha}\left(\left.p\right|_{U_{\alpha}}\right)^{-1}: U \rightarrow X$ since $\left.p\right|_{U_{\alpha}}$ is a homeomorphism.

Definition. $p: \hat{X} \rightarrow X$ is a covering map if every $x \in X$ has an open neighbourhood U_{x} which is evenly covered by p. If so, we say \hat{X} is a covering space of X.

Example. If A is a space with the discrete topology, then $p: A \times X \rightarrow X$ is a covering map, because $p^{-1}(X)=\coprod_{\alpha \in A}\{\alpha\} \times X$.

Example. $p: \mathbb{R} \rightarrow S^{1}$ given by $p(t)=e^{2 \pi i t}$ is a covering map. Indeed, if $V \subseteq \mathbb{R}$ is an open interval of at most unit length, let $U=p(V)$ and then $p^{-1}(U)=\coprod_{n \in \mathbb{Z}} V_{n}$ for $V_{n}=\{n+v \mid v \in V\}$.
Example. Consider $p_{n}: S^{1} \rightarrow S^{1}$ defined by $z \mapsto z^{n}$. If $V \subseteq S^{1}$ is an open interval of length $<\frac{2 \pi}{n}$, let $U=p_{n}(V)$. Then $p_{n}^{-1}(V)=\coprod_{i \in \mathbb{Z} / n \mathbb{Z}} \omega^{i} V$ for $\omega=e^{\frac{2 \pi i}{n}}$. Hence U is evenly covered.

Definition. We define the n-dimensional real projective space as $\mathbb{R}^{n}=S^{n} / \sim$ where \sim is the equivalence relation generated by $x \sim-x$ for all $x \in S^{n}$.

Example. The quotient map $p: S^{n} \rightarrow \mathbb{R} \mathbb{P}^{n}$ is a covering map. Indeed, for $x \in S^{n}$, let V_{x} be the open hemisphere centred at x. Then letting $U_{x}=p\left(V_{x}\right)$, we have $p^{-1}(U(x))=U_{x} \amalg-U_{x}$, giving that U_{x} is evenly covered.

4.2 Lifting paths and homotopies

Definition. Let $p: \hat{X} \rightarrow X$ be a covering map, and $f: Z \rightarrow X$ be continuous. A continuous function $\hat{f}: Z \rightarrow \hat{X}$ is a lift if $p \circ \hat{f}=f$. Hence, the following commutative diagram holds.

Theorem (Path lifting). Let $p:\left(\hat{X}, \hat{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a covering map, and $\gamma:[a, b] \rightarrow X$ be a path. Let $\gamma(a)=x_{0}$ and $p\left(\hat{x}_{0}\right)=\hat{x}_{0}$. Then there exists a unique lift $\hat{\gamma}:[a, b] \rightarrow \hat{X}$ with $\hat{\gamma}(a)=\hat{x}_{0}$.

The proof will be given after some lemmas. We say $f: Z \rightarrow X$ has the (unique) lifting property at $z \in Z$ if for any $\hat{x} \in \hat{X}$ such that $p(\hat{x})=f(z)$, there exists a (unique) lift $\hat{f}: Z \rightarrow \hat{X}$ such that $\hat{f}(z)=\hat{x}$.

Lemma (Lebesgue covering lemma). Let X be a compact metric space, and $\left\{U_{\alpha} \mid \alpha \in A\right\}$ is an open cover of X. Then there exists $\delta>0$ such that for every $x \in X$, the open ball $B_{\delta}(x)$ is contained in U_{α} for some $\alpha \in A$.

Proof. We have an open cover $\left\{U_{\alpha} \mid \alpha \in A\right\}$ of X, so given $x \in X$, we can find $\alpha_{x} \in A$ such that $x \in U_{\alpha_{x}}$ and $U_{\alpha_{x}}$ is open. Hence there exists $\delta_{x}>0$ such that $B_{2 \delta_{x}}(x) \subset U_{\alpha_{x}}$. Then $\left\{B_{\delta_{x}}(x) \mid x \in X\right\}$ is an open cover of X. By compactness there is a finite subcover $\left\{B_{\delta_{x_{i}}}\left(x_{i}\right) \mid i \in\{1, \ldots, k\}\right\}$. Let $\delta=$ $\min _{i \in\{1, \ldots, k\}} \delta_{x_{i}}>0$. Then for $y \in X$, we have $y \in B_{\delta_{x_{i}}}\left(x_{i}\right)$ for some i, and $B_{\delta}(y) \subset B_{\delta_{x_{i}}+\delta}\left(x_{i}\right) \subset$ $B_{2 \delta_{x_{i}}}\left(x_{i}\right) \subset U_{\alpha_{x}}$.

Lemma. Let $p:\left(\hat{X}, \hat{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a covering map, and $\gamma:[a, b] \rightarrow X$ be a path such that $\gamma(a)=x_{0}$. Let $\operatorname{Im} \gamma \subset U$ where $U \subset X$ is evenly covered. Then γ has the unique lifting property.

Note that this is simply the above path lifting theorem with an additional hypothesis.
Proof. Since U is evenly covered, $p^{-1}(U)=\coprod_{\alpha \in A} U_{\alpha}$, and $\left.p\right|_{U_{\alpha}}: U_{\alpha} \rightarrow U$ is a homeomorphism onto its image. So $\hat{x}_{0} \in U_{\alpha_{0}}$ for some $\alpha_{0} \in A$. Then the map $\left(p_{\alpha}\right)^{-1}=\iota_{\alpha} \circ\left(\left.p\right|_{U_{\alpha}}\right)^{-1}: U \rightarrow \hat{X}$ is continuous. Then $\left(\left.p\right|_{U_{\alpha_{0}}}\right)^{-1}\left(x_{0}\right)=\hat{x}_{0}$, so $\hat{\gamma}=\left(p_{\alpha_{0}}\right)^{-1} \circ \gamma$ is a lift of γ with $\hat{\gamma}(a)=\hat{x}_{0}$.

Now we will prove uniqueness of the lift. Observe that $p^{-1}(U)=U_{\alpha_{0}} \amalg \coprod_{\alpha \neq \alpha_{0}} U_{\alpha}$ disconnects $p^{-1}(U)$. Note that $[a, b]$ is connected. We have that if $\hat{\gamma}:[a, b] \rightarrow \hat{X}$ with $\hat{\gamma}(a)=\hat{x}_{0}$ and $p \circ \hat{\gamma}=\gamma$, then $\operatorname{Im} \hat{\gamma} \subset p^{-1}(U)$ implies $\operatorname{Im} \hat{\gamma} \subset U_{\alpha_{0}}$. But $\left.p\right|_{U_{\alpha_{0}}}$ is a homeomorphism, so we must have $\hat{\gamma}=$ $\left(p_{\alpha_{0}}\right)^{-1} \circ \gamma$.

Lemma. Let $\gamma:[a, b] \rightarrow X$ and $a^{\prime} \in[a, b]$. If $\left.\gamma\right|_{\left[a, a^{\prime}\right]}$ has the unique lifting property at a and $\left.\gamma\right|_{\left[a^{\prime}, b\right]}$ has the unique lifting property at a^{\prime}, then γ has the unique lifting property at a.

Proof. If $p(\hat{x})=\gamma(a)$, since $\left.\gamma\right|_{\left[a, a^{\prime}\right]}$ has the unique lifting property at a, there exists a unique lift $\hat{\gamma}_{1}:\left[a, a^{\prime}\right] \rightarrow \hat{X}$ such that $\hat{\gamma}_{1}(a)=\hat{x}$. Then $\left.\gamma\right|_{\left[a^{\prime}, b\right]}$ has the unique lifting property at a^{\prime}, so there exists a unique lift $\hat{\gamma}_{2}:\left[a^{\prime}, b\right] \rightarrow \hat{X}$ with $\hat{\gamma}_{2}\left(a^{\prime}\right)=\hat{\gamma}_{1}\left(a^{\prime}\right)$. Then the composition $\hat{\gamma}=\hat{\gamma}_{1} \hat{\gamma}_{2}$ is a lift of γ, with $\hat{\gamma}(a)=\hat{x}$.
For uniqueness, suppose $\hat{\gamma}$ is a lift of γ with $\hat{\gamma}(a)=\hat{x}$. Then $\left.\hat{\gamma}\right|_{\left[a, a^{\prime}\right]}$ is a lift of $\left.\gamma\right|_{\left[a, a^{\prime}\right]}$, so by the unique lifting property, $\left.\hat{\gamma}\right|_{\left[a, a^{\prime}\right]}$ is uniquely determined such that $\hat{\gamma}(a)=\hat{x}$. Then by the unique lifting property again, $\left.\hat{\gamma}\right|_{\left[a^{\prime}, b\right]}$ is also uniquely determined such that $\left.\hat{\gamma}\right|_{\left[a^{\prime}, b\right]}\left(a^{\prime}\right)=\left.\hat{\gamma}\right|_{\left[a, a^{\prime}\right]}\left(a^{\prime}\right)$.

We can now prove the path lifting theorem: any $\gamma: I \rightarrow X$ has the unique lifting property.
Proof. Let $p: \hat{X} \rightarrow X$ be a covering map. Hence, for all $x \in X$, there exists an open neighbourhood U_{x} which is evenly covered. $\left\{U_{x} \mid x \in X\right\}$ is therefore an open cover of X, and so $\left\{\gamma^{-1}\left(U_{x}\right) \mid x \in X\right\}$ is an open cover of I. Since I is compact, by the Lebesgue covering lemma, there exists $\delta>0$ such that for all $t, B_{\delta}(t) \subseteq \gamma^{-1}\left(U_{x(t)}\right)$ for some $x(t)$. In other words, $\gamma\left(B_{\delta}(t)\right) \subseteq U_{x(t)}$.
Let $n \in \mathbb{N}$ such that $\frac{1}{n}<\delta$, and $a_{i}=\frac{i}{n} \in I$. Then $\left[a_{i}, a_{i+1}\right] \subset B_{\delta}\left(a_{i}\right)$ for all i. Hence $\gamma\left[a_{i}, a_{i+1}\right] \subseteq$ $U_{x\left(a_{i}\right)}$. Then $\left[a_{i}, a_{i+1}^{n}\right]$ is connected, hence $\gamma\left[a_{i}, a_{i+1}\right]$ is connected. Since $U_{x\left(a_{i}\right)}$ is evenly covered, $\left.\gamma\right|_{\left[a_{i}, a_{i+1}\right]}$ has the unique lifting property. Then by induction on i, we can see that $\left.\gamma\right|_{\left[0, a_{i}\right]}$ has the unique lifting property, and hence so does γ in its entirety.

Theorem (Homotopy lifting). Let $p:\left(\hat{X}, \hat{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a covering map, and $H: I \times I \rightarrow X$ be a homotopy. Then H has the lifting property at $(0,0)$.

It also has the unique lifting property, but this will be more easily proven later.

Proof. I is compact and connected, so by Tychonoff's theorem, $I \times I$ is compact and connected. Suppose $\left\{U_{x} \mid x \in X\right\}$ is an open cover of X consisting of evenly covered neighbourhoods of points as before. Then, since $I \times I$ is compact, by the Lebesgue covering lemma there exists $\delta>0$ such that for all $v \in I \times I, B_{\delta}(v) \subseteq H^{-1}\left(U_{x(v)}\right)$. In particular, $H\left(B_{\delta}(v)\right) \subseteq U_{x(v)}$.

Let $n \in \mathbb{N}$ such that $\frac{\sqrt{2}}{n}<\delta$, dividing $I \times I$ into squares of size $\frac{1}{n}$, ordered from left-to-right and then bottom-to-top. Label each square with an index $i \in\left\{1, \ldots, n^{2}\right\}$. Let each square A_{i} have lower left-hand corner v_{i}, for $i \in\left\{1, \ldots, n^{2}\right\}$. Note that $H\left(A_{i}\right) \subseteq H\left(B_{\delta}\left(v_{i}\right)\right) \subseteq U_{x\left(v_{i}\right)}=U_{i}$ is evenly covered.
Let $B_{k}=\bigcup_{i=1}^{k} A_{i}$. Then $A_{i} \simeq I \times I$ is connected, so $\left.H\right|_{A_{i}}$ has the lifting property at v_{i}.
We show by induction that $\left.H\right|_{B_{k}}$ has the lifting property at $(0,0)$. For $k=1, B_{1}=A_{1}$ and $(0,0)=v_{1}$, so the result follows.

For other k, suppose that $\left.H\right|_{B_{k}}$ has the lifting property at $(0,0)$, so $\hat{H}_{k}: B_{k} \rightarrow \hat{X}$ with $\hat{H}_{k}(0,0)=\hat{x}$. Then $\left.H\right|_{A_{k+1}}$ has the lifting property at v_{i}, so choose a lift $\hat{h}_{k}: A_{k+1} \rightarrow \hat{X}$ such that $\hat{h}_{k}\left(v_{k+1}\right)=$ $\hat{H}_{k}\left(v_{k+1}\right)$. Note that $p\left(\hat{H}_{k}\left(v_{k+1}\right)\right)=H\left(v_{k+1}\right)$, so this exists by the lifting property. Observe that $A_{k+1} \cap B_{k}=I_{k} \cup I_{k}^{\prime}$ is the union of (at most) two intervals with intersection at their endpoints, so is homeomorphic to I. Hence by uniqueness of path lifting, $\left.\hat{H}_{k}\right|_{I_{k}}=\left.\hat{h}_{k}\right|_{I_{k}}$ since both are lifts of $\left.H\right|_{I_{k}}$ with $v_{k+1} \mapsto \hat{H}_{k}\left(v_{k+1}\right)$. Similarly, $\left.\hat{H}_{k}\right|_{I_{k}^{\prime}}=\left.\hat{h}_{k}\right|_{I_{k}^{\prime}}$. In other words, $\left.\hat{H}_{k}\right|_{A_{k+1} \cap B_{k}}=\left.\hat{h}_{k}\right|_{A_{k+1} \cap B_{k}}$. By the gluing lemma, we can construct the well-defined and continuous map $\hat{H}_{k+1}: B_{k+1} \rightarrow X$ given by \hat{H}_{k} and \hat{h}_{k} on their domains. Then \hat{H}_{k+1} is a lift of $\left.H\right|_{B_{k+1}}$.

Proposition. Let $p:\left(\hat{X}, \hat{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a covering map. Let $\gamma_{0}, \gamma_{1} \in \Omega\left(X, x_{0}, x_{1}\right)$, and $\gamma_{0} \sim_{e} \gamma_{1}$. Let $\hat{\gamma}_{i}$ be the lift of γ_{i} to \hat{X} with $\hat{\gamma}_{i}(0)=\hat{x}_{0}$, which exists by the path lifting property. Then $\hat{\gamma}_{0} \sim_{e} \hat{\gamma}_{1}$.

Proof. Let $H: I \times I \rightarrow X$ be a homotopy between γ_{0} and γ_{1}. By the homotopy lifting property, there exists a lifted homotopy $\hat{H}: I \times I \rightarrow \hat{X}$ such that $\hat{H}(0,0)=\hat{x}_{0}$. Let $\alpha_{i}(t)=\hat{H}(t, i)$ for $i=0,1$, and $\beta_{i}(t)=\hat{H}(i, t)$ for $i=0,1$. Applying the uniqueness of path lifting to the α_{i} and the β_{i},
(i) α_{0} is a lift of γ_{0} with $\alpha_{0}(0)=\hat{x}_{0}$, so $\alpha_{0}=\hat{\gamma}_{0}$;
(ii) β_{0} is a lift of $c_{I, x_{0}}$ with $\beta_{0}(0)=\hat{x}_{0}$, so $\beta_{0}=\hat{c}_{I, x_{0}}=c_{I, \hat{x}_{0}}$ by uniqueness, and in particular, $\alpha_{1}(0)=\beta_{0}(1)=\hat{x}_{0} ;$
(iii) α_{1} is a lift of γ_{1} with $\alpha_{1}(0)=\hat{x}_{0}$, so $\alpha_{1}=\hat{\gamma}_{1}$;
(iv) let $\hat{x}_{1}=\hat{\gamma}_{0}(1)$, and then β_{1} is a lift of $c_{I, x_{1}}$, so $\beta_{1}(0)=\hat{x}_{1}$, so $\beta_{1}=c_{I, \hat{x}_{1}}$.

Hence $\hat{\gamma}_{0} \sim_{e} \hat{\gamma}_{1}$ via \hat{H}.

Corollary. Let $p:\left(\hat{X}, \hat{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a covering map. Let $\gamma_{0}, \gamma_{1} \in \Omega\left(X, x_{0}, x_{1}\right)$, and $\gamma_{0} \sim_{e}$ γ_{1}. Then $\hat{\gamma}_{0}(1)=\hat{\gamma}_{1}(1)$.

4.3 Simply connected lifting

Let $p:\left(\hat{X}, \hat{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a covering map. If $\gamma: I \rightarrow X$ has $\gamma(0)=x_{0}$, let $\hat{\gamma}: I \rightarrow \hat{X}$ be its unique lift such that $\hat{\gamma}(0)=\hat{x}_{0}$.
Consider $\widehat{\gamma \gamma^{\prime}}=\hat{\gamma} \tilde{\gamma}^{\prime}$, where $\tilde{\gamma}^{\prime}$ is a lift of γ^{\prime} such that $\tilde{\gamma}^{\prime}(0)=\hat{\gamma}(1)$. Note that we needed to change the start point of $\tilde{\gamma}^{\prime}$ in the covering space.

Definition. A space X is locally path-connected if for every open set $U \subseteq X$ and $x \in U$, there exists an open $V \subseteq U$ with $x \in V$ and V path-connected.

Example. Consider

$$
X=\left\{(x, 0) \in \mathbb{R}^{2}\right\} \cup\left\{\left(\frac{1}{n}, y\right) \in \mathbb{R}^{2}, n \in \mathbb{Z}\right\} \cup\left\{(0, y) \in \mathbb{R}^{2}\right\}
$$

Then, an open set containing a point $(0, y)$ but not $(0,0)$ admits no smaller path-connected open neighbourhood.

Proposition (simply connected lifting property). Let Z be a simply connected (and hence path-connected) space that is also locally path-connected. If $f:\left(Z, z_{0}\right) \rightarrow\left(X, x_{0}\right)$, then f has a unique lift $\hat{f}:\left(Z, z_{0}\right) \rightarrow\left(\hat{X}, \hat{x}_{0}\right)$.

Remark. This proposition then implies the path lifting and homotopy lifting properties.
Proof. Suppose $\hat{f}:\left(Z, z_{0}\right) \rightarrow\left(\hat{X}, \hat{x}_{0}\right)$ is a lift of f. Given $z \in Z$, consider a path $\gamma \in \Omega\left(Z, z_{0}, z\right)$, which exists since Z is path-connected. Then $\hat{f} \circ \gamma$ is a lift of $f \circ \gamma$, since $p(\hat{f} \circ \gamma)=(p \circ \hat{f}) \circ \gamma=f \circ \gamma$. Then, $(\hat{f} \circ \gamma)(0)=\hat{f}\left(z_{0}\right)=\hat{x}_{0}$, so $\hat{f} \circ \gamma=\widehat{f \circ \gamma}$ is the unique lift of $f \circ \gamma$ given by the unique path lifting property. Then $\hat{f}(z)=\hat{f}(\gamma(1))=(\hat{f} \circ \gamma)(1)=\widehat{f \circ \gamma}(1)$ is uniquely determined by the unique path lifting property. So any such lift is unique.

If $\gamma_{0}, \gamma_{1} \in \Omega\left(Z, z_{0}, z\right), \gamma_{0} \sim_{e} \gamma_{1}$ by simply-connectedness. In particular, $f \circ \gamma_{0} \sim_{e} f \circ \gamma_{1}$, and by the homotopy lifting property, $\widehat{f \circ \gamma_{0}}(1)=\widehat{f \circ \gamma_{1}}(1)$. So the choice of path γ used above is not relevant. Now, let us define $\hat{f}:\left(Z, z_{0}\right) \rightarrow\left(\hat{X}, \hat{x}_{0}\right)$ by $\hat{f}(z)=\widehat{f \circ \gamma}(1)$ where $\gamma \in \Omega\left(Z, z_{0}, z\right)$ is any path from z_{0} to z. Then $p(\hat{f}(z))=p \circ \widehat{f \circ \gamma}(1)=f \circ \gamma(1)=f(z)$ since $\widehat{f \circ \gamma}$ is a lift of $f \circ \gamma$. Hence \hat{f} as defined is a lift. If $z=z_{0}$, we can take $\gamma=c_{I, z_{0}}$, so $f \circ \gamma=c_{I, x_{0}}$. In particular, $\widehat{f \circ \gamma}=c_{I, \hat{x}_{0}}$, so $\hat{f}(z)=\widehat{f \circ \gamma}(1)=\hat{x}_{0}$ as required.
Now, it suffices to check that \hat{f} is a continuous function. Let $U \subseteq \hat{X}$ be an open neighbourhood of $\hat{f}(z)$. We need to find an open neighbourhood $V \subseteq Z$ of z such that $\hat{f}(V) \subseteq U$.
First, we find a subset $U^{\prime} \subset U$ with $\hat{f}(z) \in U^{\prime}$ such that $p\left(U^{\prime}\right)$ is open and evenly covered. Since p is a covering map, there exists an open $W \subseteq X$ with $f(z) \in W$ and which is evenly covered. Hence $p^{-1}(W)=\coprod_{\alpha \in A} W_{\alpha}$, and $p(\hat{f}(z))=f(z)$, so $\hat{f}(z) \in W_{\alpha_{0}}$ for some $\alpha_{0} \in A$. Then, $W_{\alpha_{0}} \subseteq \hat{X}$ is an open set. Let $U^{\prime}=U \cap W_{\alpha_{0}}$. Then $\hat{f}(z) \in U^{\prime}$, and $\left.p\right|_{W_{\alpha_{0}}}: W_{\alpha_{0}} \rightarrow W$ is a homeomorphism, so $p\left(U^{\prime}\right)=p_{\alpha_{0}}\left(U^{\prime}\right)$ is open and evenly covered.
Next, $f: Z \rightarrow X$ is continuous, so we need to find an open set $V^{\prime} \subseteq Z$ with $z \in V^{\prime}$ and $f\left(V^{\prime}\right) \subseteq p\left(U^{\prime}\right)$. Since Z is locally path-connected, there exists $V \subseteq V^{\prime}$ which is an open path-connected set with $z \in V$.

Now we need to show V satisfies the continuity requirement, that $\hat{f}(V) \subseteq U$. Given $z^{\prime} \in V$, let $\gamma^{\prime} \in \Omega\left(V, z, z^{\prime}\right)$, which exists because V is path-connected. Then $\operatorname{Im} f \circ \gamma^{\prime} \subseteq f(V) \subseteq p\left(U^{\prime}\right)$. Note that $\operatorname{Im} f \circ \gamma^{\prime}$ is evenly covered. Hence $\tilde{\gamma}^{\prime}=p_{\alpha_{0}}^{-1} \circ f \circ \gamma^{\prime}$ is a lift of $f \circ \gamma^{\prime}$ with $\tilde{\gamma}^{\prime}(0)=p_{\alpha_{0}}^{-1}(f(z))=\hat{f}(z)$. Then $\gamma \gamma^{\prime} \in \Omega\left(Z, z_{0}, z^{\prime}\right)$, and $\left.\widehat{f \circ\left(\gamma \gamma^{\prime}\right.}\right)=\widehat{f \circ \gamma} \tilde{\gamma}^{\prime}$ by the discussion at the beginning of the subsection. Hence $\hat{f}\left(z^{\prime}\right)=\widehat{f \circ\left(\gamma \gamma^{\prime}\right)}(1)=\tilde{\gamma}^{\prime}(1)=p_{\alpha_{0}}^{-1} \circ f \circ \gamma^{\prime}(1) \in U^{\prime}$. So $\hat{f}(V) \subseteq U$ as required.

4.4 Universal covers

Let $p:\left(\hat{X}, \hat{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a covering map. If $\gamma \in \Omega\left(X, x_{0}\right)$, let $\hat{\gamma}: I \rightarrow \hat{X}$ be its unique lift such that $\hat{\gamma}(0)=\hat{x}_{0}$, which exists by the path lifting property. Then there is a map $\varepsilon_{p}: \Omega\left(X, x_{0}\right) \rightarrow p^{-1}\left(x_{0}\right)$ by $\gamma \mapsto \hat{\gamma}(1)$, since $p(\hat{\gamma}(1))=\gamma(1)=x_{0}$. By the corollary above, if $\left[\gamma_{0}\right]=\left[\gamma_{1}\right]$ in π_{1}, we have $\varepsilon_{p}\left(\gamma_{0}\right)=\varepsilon_{p}\left(\gamma_{1}\right)$. In particular, ε_{p} descends to a well-defined map from $\pi_{1}\left(X, x_{0}\right)$ to $p^{-1}\left(x_{0}\right)$.

Definition. A covering map $p: \hat{X} \rightarrow X$ is a universal cover if \hat{X} is simply connected.
Example. $p: \mathbb{R} \rightarrow S^{1}$ defined by $x \mapsto e^{2 \pi i x}$ is a universal cover of S^{1}, since \mathbb{R} is contractible. $p_{2}: \mathbb{R}^{2} \rightarrow S^{1} \times S^{1}=T^{2}$ defined by $p_{2}(x, y)=(p(x), p(y))$ is a universal cover.

Proposition. If $p:\left(\hat{X}, \hat{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ is a universal cover, then $\varepsilon_{p}: \pi_{1}\left(X, x_{0}\right) \rightarrow p^{-1}\left(x_{0}\right)$ is a bijection of sets.

Proof. Suppose $\varepsilon_{p}\left[\gamma_{0}\right]=\hat{x}_{1}=\varepsilon_{p}\left[\gamma_{1}\right]$. Then $\hat{\gamma}_{0}$ and $\hat{\gamma}_{1}$ are paths in $\Omega\left(\hat{X}, \hat{x}_{0}, \hat{x}_{1}\right)$. Since \hat{X} is simply connected, $\hat{\gamma}_{0} \sim_{e} \hat{\gamma}_{1}$. In particular, $\gamma_{0}=p \circ \hat{\gamma}_{0} \sim_{e} p \circ \hat{\gamma}_{1}=\gamma_{1}$. Hence $\left[\gamma_{0}\right]=\left[\gamma_{1}\right]$, so ε_{p} is injective.
Given $\hat{x} \in p^{-1}\left(x_{0}\right), \hat{X}$ is path-connected as it is simply connected, so there exists a path $\eta \in \Omega\left(\hat{X}, \hat{x}_{0}, \hat{x}\right)$. Since $p(\hat{x})=x_{0}$, we find $\gamma=p \circ \eta \in \Omega\left(X, x_{0}\right)$. Then $\eta=\hat{\gamma}$ is the unique lift of γ. In particular, $\varepsilon_{p}(\gamma)=\eta(1)=\hat{x}$, so ε_{p} is surjective.

Example. Let $p:(\mathbb{R}, 0) \rightarrow\left(S^{1}, 1\right)$ be defined by $x \mapsto e^{2 \pi i x}$. We have $p^{-1}(1)=\mathbb{Z}$. Then, $\varepsilon: \pi_{1}\left(S^{1}, 1\right) \rightarrow$ \mathbb{Z} is a bijection.

Theorem. $\varepsilon_{p}: \pi_{1}\left(S^{1}, 1\right) \rightarrow \mathbb{Z}$ is an isomorphism of groups.

Proof. It is a bijection, so it suffices to check that it is a homomorphism. Given $n \in \mathbb{Z}$, we can define $\varphi_{n}: \mathbb{R} \rightarrow \mathbb{R}$ by $\varphi_{n}(x)=x+n$. Then, $p \circ \varphi_{n}=p$. If $\gamma \in \Omega\left(S^{1}, 1\right)$, we can find a lift $\hat{\gamma}$ of γ with $\hat{\gamma}(0)=0$. Then $p \circ \varphi_{n} \circ \hat{\gamma}=p \circ \hat{\gamma}=\gamma$, so $\varphi_{n} \circ \hat{\gamma}$ is a lift of γ with $\varphi_{n} \circ \hat{\gamma}(0)=n$.
Suppose $\varepsilon_{p}[\gamma]=n$, and $\varepsilon_{p}\left[\gamma^{\prime}\right]=n^{\prime}$. Then $\hat{\gamma}(1)=n, \hat{\gamma}^{\prime}(1)=n^{\prime}$, so $\varphi_{n} \circ \hat{\gamma}^{\prime}$ is a lift of γ^{\prime} that starts at n. Hence, $\widehat{\gamma \gamma^{\prime}}=\hat{\gamma}\left(\varphi_{n} \circ \hat{\gamma}^{\prime}\right)$ is a lift of the composition of paths. Thus, $\varepsilon\left[\gamma \gamma^{\prime}\right]=\widehat{\gamma \gamma^{\prime}}(1)=\varphi_{n}\left(\hat{\gamma}^{\prime}(1)\right)=n+n^{\prime}$. So ε_{p} is a homomorphism.

Corollary. S^{1} is not contractible.

Example. Let $f: S^{1} \rightarrow S^{1}$ be the identity map. Let $p:(\mathbb{R}, 0) \rightarrow\left(S^{1}, 1\right)$ be a covering map. Then there is no lift of f to \mathbb{R}. Otherwise, the identity map on \mathbb{Z} would factor through the trivial group. This shows that the simply connected lifting property does not extend to all path-connected spaces.

4.5 Degree of maps on the circle

Lemma. Let $z \in S^{1}$, and $u, v \in \Omega\left(S^{1}, z, 1\right)$. Then, the isomorphisms $u_{\sharp}, v_{\sharp}: \pi_{1}\left(S^{1}, z\right) \rightarrow$ $\pi_{1}\left(S^{1}, 1\right)$ are equal.

Proof. Consider $v_{\sharp}^{-1} \circ u_{\sharp}=\left(v^{-1}\right)_{\sharp} \circ u_{\sharp}$. Note, $\left(v_{\sharp}^{-1} \circ u_{\sharp}\right)[\gamma]=\left[v u^{-1} \gamma u v^{-1}\right]$. Since $v u^{-1} \in \Omega\left(S^{1}, 1\right)$, we can write $\left[v u^{-1} \gamma u u^{-1}\right]=[\eta][\gamma]\left[\eta^{-1}\right]$ where $\eta=v u^{-1}$. But this is exactly $[\gamma]$, since $\pi_{1}\left(S^{1}, 1\right) \simeq \mathbb{Z}$ is abelian. Hence $v_{\sharp}^{-1} \circ u_{\sharp}=\mathrm{id}$, and by symmetry, $u_{\sharp}^{-1} \circ v_{\sharp}=\mathrm{id}$.

Definition. Let $f: S^{1} \rightarrow S^{1}, f(1)=z$. Then choose $u \in \Omega\left(S^{1}, z, 1\right)$, then $f_{\star}: \pi_{1}\left(S^{1}, 1\right) \rightarrow$ $\pi_{1}\left(S^{1}, z\right)$, giving $u_{\sharp} \circ f_{\star}: \pi_{1}\left(S^{1}, 1\right) \rightarrow \pi_{1}\left(S^{1}, 1\right)$. This is a homomorphism $\mathbb{Z} \rightarrow \mathbb{Z}$, so is uniquely determined by its action on 1 . We define the degree of f, written $\operatorname{deg} f$, to be $\left(u_{\sharp} \circ f_{\star}\right)(1)$.

By the above lemma, this definition does not depend on the choice of path u.
Example. Let $\gamma_{n} \in \Omega\left(S^{1}, 1\right)$ be given by $\gamma_{n}(t)=e^{2 \pi i n t}$ for $n \in \mathbb{Z}$. Then $\hat{\gamma}_{n}(t)=n t$, so $\varepsilon_{p}\left[\gamma_{n}\right]=n$. The integers n correspond to the classes $\left[\gamma_{n}\right]$ in $\pi_{1}\left(S^{1}, 1\right)$.
Let $f_{n}=\bar{\gamma}_{n}: S^{1} \rightarrow S^{1}$, so $f_{n}(z)=z^{n}$. Then $f_{n} \circ \gamma_{1}=\gamma_{n}$, so $f_{n *}\left[\gamma_{1}\right]=\left[\gamma_{n}\right]$. Hence the degree of f_{n} is n.

Proposition. The degree of $f_{n}: S^{1} \rightarrow S^{1}$, defined by $z \mapsto z^{n}$, is n. If $g_{0}, g_{1}: S^{1} \rightarrow S^{1}$, then $g_{0} \sim g_{1}$ if and only if $\operatorname{deg} g_{0}=\operatorname{deg} g_{1} . g: S^{1} \rightarrow S^{1}$ extends to $G: D^{2} \rightarrow S^{1}$ if and only if $\operatorname{deg} g=0$.

Proof. Suppose $g_{0} \sim g_{1}$ via $H: S^{1} \times I \rightarrow S^{1}$. Let $u(t)=H(1, t)$, so $g_{1 \star}=u_{\sharp} \circ g_{0 \star}$, where $u \in$ $\Omega\left(S^{1}, g_{0}(1), g_{1}(1)\right)$. Let $v \in \Omega\left(S^{1}, g_{1}(1), 1\right)$. Then $u v \in \Omega\left(S^{1}, g_{0}(1), 1\right)$, and so $\operatorname{deg} g_{1}=v_{\#} \circ g_{1 \star}(1)=$ $v_{\sharp}\left(u_{\sharp} \circ g_{0}(1)\right)=(u v)_{\#} \circ g_{0 \star}(1)=\operatorname{deg} g_{0}$, since $u_{\sharp}[\gamma]=\left[u^{-1} \gamma u\right]$ so $(u \circ v)_{\sharp}=v_{\sharp} \circ u_{\sharp}$.
Conversely, it suffices to show that $g \sim f_{\operatorname{deg} g}$ by transitivity. Suppose $g(1)=1$. Then $g=\bar{\gamma}$ where $\gamma=g \circ \gamma_{1}$. Then $\operatorname{deg} g=g_{\star}(1)=\left[g \circ \gamma_{1}\right]=[\gamma] \in \pi_{1}\left(S^{1}, 1\right)$. In particular, if $\operatorname{deg} g=n$, we have $\gamma \sim \gamma_{n}$, so $g=\bar{\gamma} \sim \bar{\gamma}_{n}=f_{n}$.
In general, if $g(1)=e^{2 \pi i x}$, then $g \sim g_{0}$ where $g_{0}(z)=e^{-2 \pi i x} g(z)$ via $g_{t}(z)=e^{-2 \pi i t x} g(z)$. Then $g \sim g_{0}$ so $\operatorname{deg} g=\operatorname{deg} g_{0}$, so in particular $g \sim g_{0} \sim \gamma_{\operatorname{deg} g}$.
g extends to D^{2} if and only if $g \sim c_{S^{1}, z_{0}}$ for some $z_{0} \in S^{1}$. Equivalently, $g \sim c_{S^{1}, 1}=f_{0}$, so $\operatorname{deg} g=0$ by above.

4.6 Fundamental theorem of algebra

Let $p: \mathbb{C} \rightarrow \mathbb{C}$ be a polynomial, so $p(w)=w^{n}+a_{n-1} w^{n-1}+\cdots+a_{0}=w^{n}+q(w)$.

Lemma. Let $R_{0}=\max \left\{1, \sum_{i=0}^{n-1}\left|a_{i}\right|\right\}$. Then if $|w|>R_{0},\left|w^{n}\right|>|q(w)|$.

Proof. Consider

$$
\frac{|q(w)|}{\left|w^{n-1}\right|} \leq \sum_{i=0}^{n-1}\left|a_{i}\right||w|^{i-n+1}
$$

Hence, if $|w|>1$, each term $|w|^{i-n+1}$ is at most one.

$$
\sum_{i=0}^{n-1}\left|a_{i}\right||w|^{i-n+1} \leq \sum_{i=0}^{n-1}\left|a_{i}\right| \leq R_{0}
$$

Hence $\frac{|q(w)|}{|w|^{n}}<\frac{R_{0}}{|w|}<1$.
Consider $g_{0}, g_{1}: S^{1} \rightarrow \mathbb{C} \backslash\{0\}$ given by $g_{0}(z)=(R z)^{n}$ for some fixed $R>R_{0}$, and $g_{1}(z)=p(R z)$. Then $g_{0} \sim g_{1}$ via $g_{t}(z)=p_{t}(R z)$ where $p_{t}(w)=w^{n}+t q(w)$. This map_{w} has codomain $\mathbb{C} \backslash\{0\}$ by the above lemma. Let $\pi: \mathbb{C} \backslash\{0\} \rightarrow S^{1}$ be the radial projection $w \mapsto \frac{w}{|w|}$. Then $\pi \circ g_{0}, \pi \circ g_{1}: S^{1} \rightarrow S^{1}$ are homotopic maps. Therefore, $n=\operatorname{deg}\left(\pi \circ g_{0}\right)=\operatorname{deg}\left(\pi \circ g_{1}\right)$.

Theorem. If $n>0, p$ has a root $w_{0} \in \mathbb{C}$.

Proof. If $p(w) \neq 0$ for all $w, p: \mathbb{C} \rightarrow \mathbb{C} \backslash\{0\}$, so g_{1} extends to $G_{1}: D^{2} \rightarrow \mathbb{C} \backslash\{0\}$ given by $G_{1}(z)=p(R z)$. Then $\pi \circ G_{1}$ is an extension of $\pi \circ g_{1}$. So $n=\operatorname{deg} \pi \circ g_{1}=0$, so we have a constant polynomial.

4.7 Wedge product

Definition. Let $\left(X_{i}, x_{i}\right)$ be pointed spaces. The wedge product $\bigvee_{i=1}^{n}\left(X_{i}, x_{i}\right)=\coprod_{i=1}^{n}\left(X_{i}, x_{i}\right) / \sim$ for the equivalence relation \sim generated by $x_{i} \sim x_{j}$. For $n=2$, we also write $\left(X_{1}, x_{1}\right) \vee\left(X_{2}, x_{2}\right)$ for $\bigvee_{i=1}^{2}\left(X_{i}, x_{i}\right)$.

If each X_{i} has the property that for any $x_{i}, x_{i}^{\prime} \in X_{i}$, there exists a homeomorphism $\varphi: X_{i} \rightarrow X_{i}$ such that $\varphi\left(x_{i}\right)=\varphi\left(x_{i}^{\prime}\right)$, then the particular choice of base point used in the wedge product does not matter, and the expression $\bigvee_{i=1}^{n} X_{i}=\bigvee_{i=1}^{n}\left(X_{i}, x_{i}\right)$ is well-defined up to homeomorphism independent of the choice of the x_{i}.
Example. Consider the figure-eight $S^{1} \vee S^{1}$. There are inclusion maps $\iota_{1}, \iota_{2}:\left(S^{1}, 1\right) \rightarrow\left(S^{1} \vee S^{1}, x_{0}\right)$ where x_{0} is the point at which the two circles are joined. Let $a=\iota_{1 \star}(1) \in \pi_{1}\left(S^{1} \vee S^{1}, x_{0}\right)$, and similarly let $b=\iota_{2 \star}(1) \in \pi_{1}\left(S^{1} \vee S^{1}, x_{0}\right)$. The universal cover of $S^{1} \vee S^{1}$ is the infinite regular 4-valent tree, T_{∞} (4). If T_{n} (4) is the regular 4-valent tree of depth $n, T_{\infty}(4)=\bigcup_{n=1}^{\infty} T_{n}(4)$, so $U \subseteq T_{\infty}(4)$ is open if and only if $U \cap T_{n}(4)$ is open for all n. There is a covering map from $T_{\infty}(4)$ to $S^{1} \vee S^{1}$ by mapping each edge to one of the circles. $T_{\infty}(4)$ is simply connected, because the interval I is compact, so if $\gamma: I \rightarrow T_{\infty}(4), \operatorname{Im} \gamma \subseteq T_{n}(4)$ for some n, and each of the finite trees is contractible and therefore simply connected.

In particular, there is a bijection $\pi_{1}\left(S^{1} \vee S^{1}, x_{0}\right) \rightarrow p^{-1}\left(\left\{x_{0}\right\}\right)$ given by $[\gamma] \rightarrow \varepsilon_{p}(\gamma)$. Here, $\varepsilon_{p}(a b)=$ $\widehat{a b}(1)$, but $\varepsilon_{p}(b a)=\widehat{b a}(1) \neq \widehat{a b}(1)$. In $\pi_{1}\left(S^{1} \vee S^{1}, x_{0}\right), a b \neq b a$, so $\pi_{1}\left(S^{1} \vee S^{1}, x_{0}\right)$ is not abelian.

4.8 Covering transformations

Definition. Let $p_{i}: \hat{X}_{i} \rightarrow X$ be covering maps for $i=1,2$. A covering transformation $p:\left(p_{1}, \hat{X}_{1}\right) \rightarrow\left(p_{2}, \hat{X}_{2}\right)$ is a map $p: \hat{X}_{1} \rightarrow \hat{X}_{2}$ such that $p_{2} \circ p=p_{1}$.

Remark. We can think of p as a lift of p_{1} to \hat{X}_{2}.

Example. Let $p_{1}: S^{1} \rightarrow S^{1}$ be defined by $z \mapsto z^{6}$, and $p_{2}: S^{1} \rightarrow S^{1}$ be defined by $z \mapsto z^{2}$. Then $p:\left(p_{1}, S^{1}\right) \rightarrow\left(p_{2}, S^{1}\right)$ defined by $z \mapsto z^{3}$ is a covering transformation.

Lemma. Let X be locally path-connected. If $p:\left(p_{1}, \hat{X}_{1}\right) \rightarrow\left(p_{2}, \hat{X}_{2}\right)$ is a covering transformation, $p: \hat{X}_{1} \rightarrow \hat{X}_{2}$ is a covering map.

Proof. Given $x_{2} \in \hat{X}_{2}$, we find an open evenly covered neighbourhood $U_{x_{2}}$. Let $x=p_{2}\left(x_{2}\right) \in X$. Then p_{1}, p_{2} are covering maps of X, so there exist open neighbourhoods U_{1}, U_{2} of x such that U_{i} is evenly covered by p_{i}. Then $U=U_{1} \cap U_{2}$ is open and evenly covered by p_{1} and p_{2}. Since X is locally path-connected, let $V \subseteq U$ be an open neighbourhood of x that is path-connected. Then $p_{1}^{-1}(V)=$ $\coprod_{\alpha \in A} V_{\alpha}$ and $p_{2}^{-1}(V)=\coprod_{\beta \in B} V_{\beta}$, where $V_{\alpha} \simeq V \simeq V_{\beta}$ are all path-connected. Let $x_{\alpha}=p_{1, \alpha}^{-1}(x)$, and $x_{\beta}=p_{2, \beta}^{-1}(x)$. Then $p_{2}\left(p\left(x_{\alpha}\right)\right)=p_{1}\left(x_{\alpha}\right)=x$, so $p\left(x_{\alpha}\right)=x_{\beta}$ for some $\beta \in B$. Now, V_{α}, V_{β} are path-connected, so $p\left(V_{\alpha}\right) \subseteq V_{\beta}$ since each V_{β} is a (maximal) path-connected component of $p_{2}^{-1}(V)$. Therefore, $\left.p\right|_{V_{\alpha}}: V_{\alpha} \rightarrow V_{\beta}$ satisfies $\left.p_{2, \beta} \circ p\right|_{V_{\alpha}}=p_{1, \alpha}$, so $\left.p\right|_{V_{\alpha}}=p_{2, \beta}^{-1} \circ p_{1, \alpha}$ is a homeomorphism.

In particular, $p^{-1}\left(V_{\beta}\right)=\coprod_{\alpha \in V, p\left(x_{\alpha}\right)=x_{\beta}} V_{\alpha}$, and $\left.p\right|_{V_{\alpha}}: V_{\alpha} \rightarrow V_{\beta}$ is a homeomorphism. So V_{β} is evenly covered, so p is indeed a covering map.

4.9 Uniqueness of universal covers

Let X be a locally path-connected space, and $q:\left(\widetilde{X}, \tilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a universal cover. Let $p:\left(\hat{X}, \hat{x}_{0}\right) \rightarrow$ $\left(X, x_{0}\right)$.

Lemma. If $p: \hat{Y} \rightarrow Y$ is a bijective covering map, then p is a homeomorphism.

Proof. p is continuous and bijective, therefore $p^{-1}: Y \rightarrow \hat{Y}$ exists as a map of sets. We must show that this map is continuous. Since p is a covering map, Y has an open cover $\left\{U_{y} \mid y \in Y\right\}$ such that U_{y} is evenly covered. In particular, $\left.p^{-1}\right|_{U_{y}}: U_{y} \rightarrow p^{-1}\left(U_{y}\right)$ is a homeomorphism. Hence p^{-1} is continuous.

Recall that if $p_{i}: \hat{X}_{i} \rightarrow X$ are covering maps, a covering transformation from $\left(p_{1}, \hat{X}_{1}\right)$ to $\left(p_{2}, \hat{X}_{2}\right)$ is a lift \hat{p}_{1} of p_{1} to $X_{2} . \hat{p}_{1}$ is a covering isomorphism if it is bijective. Then, by the lemma, it is a homeomorphism.

Proposition. Let X be a locally path-connected space, and $q:\left(\widetilde{X}, \tilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a universal cover. Let $p:\left(\hat{X}, \hat{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$. Then there is a unique covering transformation $\hat{q}:(p, \hat{X}) \rightarrow(q, \widetilde{X})$

Proof. Note that \widetilde{X} is simply connected, and since X is locally path-connected, so is \widetilde{X}. So existence and uniqueness of \hat{q} is exactly the simply connected lifting property.

Corollary. If p is also a universal cover, \hat{q} is a covering isomorphism, and in particular, $\hat{X} \simeq$ \widetilde{X}.

Proof. \widetilde{X} is simply connected, so $\hat{q}: \widetilde{X} \rightarrow \hat{X}$ is a universal cover. Hence, there is a bijection between points $\hat{q}^{-1}(\hat{x})$ and elements $\pi_{1}(\hat{X}, \hat{x})$. But this is the one-element set, since \hat{X} is simply connected. So $\hat{q}^{-1}(\hat{x})$ has a single element, and so \hat{q} is a bijection.

Equivalently, if $q:\left(\widetilde{X}, \tilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ and $q^{\prime}:\left(\widetilde{X}^{\prime}, \tilde{x}_{0}^{\prime}\right) \rightarrow\left(X, x_{0}\right)$ are universal covers, there is a unique covering isomorphism $\hat{q}:\left(\widetilde{X}, \tilde{x}_{0}\right) \rightarrow\left(\widetilde{X}^{\prime}, \tilde{x}_{0}^{\prime}\right)$.

4.10 Deck groups

Definition. The deck group $G_{D}(p)$ is the set of covering automorphisms $g:(p, \hat{X}) \rightarrow(p, \hat{X})$, which forms a group under composition $g f=g \circ f$. This has a left action on \hat{X} by $g \cdot \hat{x}=g(\hat{x})$.

Example. Let $p:(\mathbb{R}, 0) \rightarrow\left(S^{1}, 1\right)$. The deck group $G_{D}(p)$ is exactly

$$
\left\{g_{n}: \mathbb{R} \rightarrow \mathbb{R} \mid g_{n}(t)=t+n\right\} \simeq \mathbb{Z}
$$

In this case, $G_{D}(p) \simeq \pi_{1}\left(S^{1}, 1\right)$.
Example. There is a bijection between $G_{D}(q)$ and $q^{-1}\left(x_{0}\right)$, by $g \mapsto g\left(\tilde{x}_{0}\right)$, by the above proposition with $\hat{X}=\widetilde{X}$.

Theorem. Let $q:\left(\widetilde{X}, \tilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a universal cover. Then $G_{D}(q) \simeq \pi_{1}\left(X, x_{0}\right)$.

Proof. There is a bijection between $\pi_{1}\left(X, x_{0}\right)$ and $q^{-1}\left(x_{0}\right)$ since q is a universal cover. By the above example, $q^{-1}\left(x_{0}\right)$ is in bijection with $G_{D}(q)$. In particular, we can map $[\gamma] \in \pi_{1}\left(X, x_{0}\right)$ to $\tilde{\gamma}(1) \in$ $q^{-1}\left(x_{0}\right)$, where $\tilde{\gamma}$ is the unique lift of γ starting at \tilde{x}_{0}, and $g\left(\tilde{x}_{0}\right) \in q^{-1}\left(x_{0}\right)$ is mapped to $g \in G_{D}(q)$. We need to check that this composed map is a homomorphism: it is already a bijection of sets.
[$\left.\gamma \gamma^{\prime}\right]$ is mapped to $\widetilde{\gamma \gamma^{\prime}}(1)=\tilde{\gamma}\left(g_{\tilde{\gamma}(1)} \circ \tilde{\gamma}\right)$ where $g_{\tilde{\gamma}(1)}$ is the unique element of $G_{D}(q)$ with $g_{\tilde{\gamma}(1)}\left(x_{0}\right)=$ $\tilde{\gamma}(1)$. Since $g_{\tilde{\gamma}(1)} \circ \tilde{\gamma}^{\prime}$ is a lift of $\tilde{\gamma}^{\prime}$ starting at $\tilde{\gamma}(1)$, we have $\widetilde{\gamma \gamma^{\prime}}(1)=\left(g_{\tilde{\gamma}(1)} \circ \tilde{\gamma}^{\prime}\right)(1)=g_{\tilde{\gamma}(1)}\left(\tilde{\gamma}^{\prime}(1)\right)=$ $g_{\tilde{\gamma}(1)}\left(g_{\tilde{\gamma}^{\prime}(1)}\left(\tilde{x}_{0}\right)\right)$. So $\widetilde{\gamma \gamma^{\prime}}(1)$ is the image of \tilde{x}_{0} under $g_{\tilde{\gamma}(1)} \circ g_{\tilde{\gamma}^{\prime}(1)}$, so this is indeed a homomorphism.

4.11 Correspondence of subgroups and covers

Proposition. Let $G=G_{D}(q) \simeq \pi_{1}\left(X, x_{0}\right)$. If $H \leq G$ is a subgroup, we have a tower of covering maps

where $X_{H}=H \backslash \widetilde{X}$ is the quotient given by $h \cdot x \sim x$ for all $h \in H$. In particular, $\pi_{H}: \widetilde{X} \rightarrow H \backslash \widetilde{X}$ is the quotient map, and $p_{H}: X_{H} \rightarrow X$ is given by $p_{H}(H \cdot x)=q(x)$. This is well-defined because $q \circ h=q$ as h is a deck transformation. In particular, if $H=G, p_{G}$ is a covering isomorphism, so $X \simeq G \backslash \widetilde{X}$.

A universal covering map is a quotient by the action of $G_{D}(q) \simeq \pi_{1}\left(X, x_{0}\right)$.
Proof. Let $x \in X$. Then choose U_{x} to be evenly covered by q. Then $q^{-1}\left(U_{x}\right)=\coprod_{\alpha \in A} U_{\alpha}=$ $\coprod_{g \in G_{D}(q)} g \cdot U_{\alpha_{0}}$ for $\tilde{x}_{0} \in U_{\alpha_{0}}$. Then $p_{H}^{-1}\left(U_{x}\right)=\coprod_{\beta=g H \in \text { cosets of } H} U_{\beta}$. Then $\pi_{H}^{-1}\left(U_{\beta}\right)=\coprod_{g h \in g H} g h$. $U_{\alpha_{0}}$, and $p_{H}^{-1}\left(U_{x}\right)=\amalg U_{\beta}$. So each is evenly covered.

Definition. $p: \widetilde{X} \rightarrow X$ is a normal cover if $G_{D}(p)$ acts transitively on $p^{-1}\left(x_{0}\right)$.

Example. The universal cover q is always a normal cover.

Proposition. Let $p:\left(\hat{X}, \hat{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a covering map. Then $p_{\star}: \pi_{1}\left(\hat{X}, \hat{x}_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ is injective. In particular, $\operatorname{Im} p_{\star} \simeq \pi_{1}\left(\hat{X}, \hat{x}_{0}\right)$ is a subgroup of $\pi_{1}\left(X, x_{0}\right)$.

Proof. If $p_{\star}\left[\gamma_{0}\right]=p_{\star}\left[\gamma_{1}\right]$, we have $p \circ \gamma_{0} \sim_{e} p \circ \gamma_{1}$, so $p \circ \hat{\gamma}_{0} \sim_{e} p \circ \hat{\gamma}_{1}$, so $\gamma_{0} \sim_{e} \gamma_{1}$. In particular, $\left[\gamma_{0}\right]=\left[\gamma_{1}\right]$.

Let $q:\left(\widetilde{X}, \tilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a universal cover, so \widetilde{X} and hence X are path-connected. Suppose further that X is locally path-connected, so \widetilde{X} is also locally path-connected. Consider

$$
\begin{aligned}
& S\left(X, x_{0}\right)=\left\{H \leq \pi_{1}\left(X, x_{0}\right)\right\} \\
& C\left(X, x_{0}\right)=\left\{\left(p, \hat{X}, \hat{x}_{0}\right) \mid p:\left(\hat{X}, \hat{x}_{0}\right) \rightarrow\left(X, x_{0}\right) \text { is a covering map, } \hat{X} \text { is path-connected }\right\} / \sim
\end{aligned}
$$

where $\left(p, \hat{X}, \hat{x}_{0}\right) \sim\left(p^{\prime}, \hat{X}^{\prime}, \hat{x}_{0}^{\prime}\right)$ if there is a covering isomorphism $q:(p, \hat{X}) \rightarrow\left(p^{\prime}, \hat{X}^{\prime}\right)$ mapping $\hat{x}_{0} \mapsto \hat{x}_{0}^{\prime}$. Let $\alpha: S\left(X, x_{0}\right) \rightarrow C\left(X, x_{0}\right)$ be given by $\alpha(H)=\left(p_{H}, X_{H}, x_{0, H}\right)$, where $X_{H}=H \backslash \widetilde{X}$, so $\widetilde{X} \xrightarrow{\pi_{H}} X_{H} \xrightarrow{p_{H}} X$ mapping \tilde{x}_{0} to $x_{0, H}$. Let $\beta: C\left(X, x_{0}\right) \rightarrow S\left(X, x_{0}\right)$ be defined by $\left(p, \hat{X}, \hat{x}_{0}\right) \mapsto$ $p_{\star}\left(\pi_{1}\left(\hat{X}, \hat{x}_{0}\right)\right)$.

Theorem. α, β are inverses, and hence bijections.

Remark. The entire group $G=\pi_{1}\left(X, x_{0}\right)$ is mapped to (id, X, x_{0}). The trivial group $1 \subseteq G$ is mapped to the universal cover $\left(q, \widetilde{X}, \tilde{x}_{0}\right)$. The index $[G: H]$ is exactly $\left|p_{H}^{-1}\left(x_{0}\right)\right|$. A conjugation $g^{-1} H g$ corresponds to a change of base point ($p_{H}, X_{H}, \hat{\gamma}(1)$), where $g=[\gamma]$ and $\hat{\gamma}: I \rightarrow X_{H}$ is a lift of γ with $\hat{\gamma}(0)=x_{0, H}$. If $H \unlhd G$ is a normal subgroup, p_{H} is a normal covering. The quotient G / H corresponds to the deck group $G_{D}\left(p_{H}\right)$.

Proof. Consider $\beta(\alpha(H))=p_{H \star}\left(\pi_{1}\left(X_{H}, x_{0, H}\right)\right)$. There are isomorphisms

$$
H \rightarrow \pi_{1}\left(X_{H}, x_{0, H}\right) \rightarrow p_{H \star}\left(\pi_{1}\left(X, x_{0}\right)\right)
$$

mapping

$$
[\gamma] \mapsto\left[\pi_{H} \circ \tilde{\gamma}\right] \mapsto\left[p_{H} \circ \pi_{H} \circ \tilde{\gamma}\right]=\left[\pi_{G} \circ \tilde{\gamma}\right]=[\gamma]
$$

where $\tilde{\gamma}$ is a lift of γ such that $\tilde{\gamma}(0)=\tilde{x}_{0}$. Hence $\beta(\alpha(H))=H$.
Conversely, consider $\alpha\left(\beta\left(\left(p, \hat{X}, \hat{x}_{0}\right)\right)\right)=\left(p_{H}, X_{H}, x_{0, H}\right)$ where $H=p_{\star}\left(\pi_{1}\left(X, x_{0}\right)\right)$. Consider

We claim that $\hat{q}=p^{\prime} \circ \pi_{H}$, where p^{\prime} is a covering isomorphism. If we can show this, we have $\left(p_{H}, X_{H}, x_{0, H}\right) \sim\left(p, \hat{X}, \hat{x}_{0}\right)$, so $\alpha \circ \beta$ is the identity on $C\left(X, x_{0}\right)$. If $h \in H=p_{\star}\left(\pi_{1}\left(\hat{X}, \hat{x}_{0}\right)\right), h=[p \circ \gamma]$ for some $\gamma \in \Omega\left(\hat{X}, \hat{x}_{0}\right)$. Then $\hat{q}(\tilde{x})=\widehat{q \circ \eta_{\tilde{x}}}(1)$ where $\eta_{\tilde{x}} \in \Omega\left(\tilde{X}, \tilde{x}_{0}, \tilde{x}\right)$. Then $\eta_{h \cdot \tilde{x}}=\eta_{h \circ \tilde{x}_{0}}\left(h \circ \eta_{\tilde{x}}\right)$, so $q \circ \eta_{h \cdot \tilde{x}}=\left(q \circ \eta_{h \cdot \tilde{x}_{0}}\right)\left(q \circ \eta_{\tilde{x}}\right)=(p \circ \gamma)\left(q \circ \eta_{\tilde{x}}\right)$, so in particular, $q \circ \eta_{h \cdot \tilde{x}}=(\gamma)\left(\widehat{q \circ \eta_{\tilde{x}}}\right)$. Hence $\hat{q}(h \cdot \tilde{x})=\left(q \circ \eta_{h \cdot \tilde{x}}\right)(1)=\widehat{q \circ \eta_{\tilde{x}}}(1)=\hat{q}(\tilde{x})$, so \hat{q} factors as shown. \hat{X} is connected, so p^{\prime} is surjective, so it is bijective and hence a covering isomorphism.

5 Seifert-Van Kampen theorem

5.1 Free groups and presentations

Consider $\pi_{1}\left(S^{1} \vee S^{1}, x_{0}\right)$ where x_{0} is the wedge point. The universal cover is the infinite 4 -valent tree $T_{\infty}(4)$, so $\pi_{1}\left(S^{1} \vee S^{1}\right)$ is in bijection with $q^{-1}\left(x_{0}\right)$, the vertices of $T_{\infty}(4)$. Let \tilde{x}_{0} be one such vertex. If \tilde{x} is a vertex, there is a unique shortest path from \tilde{x}_{0} to \tilde{x}. This gives an 'address' for \tilde{x} in $T_{\infty}(4)$ given by recording the type and direction of each edge used in the path. The set of such 'addresses' is in bijection with the set of reduced words $w=\ell_{1} \ldots \ell_{r}$ where $r \in \mathbb{N}$, and each l_{i} is one of a, a^{-1}, b, b^{-1}, such that w does not contain any substring of the form $a a^{-1}, a^{-1} a, b b^{-1} b^{-1} b$. Then each word w corresponds to an element $w \in \pi_{1}\left(S^{1} \vee S^{1}, x_{0}\right)$, the image of the shortest path under q. Note that the multiplication $w w^{\prime}$ in $\pi_{1}\left(S^{1} \vee S^{1}, x_{0}\right)$ corresponds to concatenation of words $w w^{\prime}$ and then the reduction of substrings such as $a a^{-1}$.

Definition. A free group with generating set S is a group F_{S} and a subset $S \subseteq F_{S}$ such that if G is a group and $\varphi: S \rightarrow G$ is a map of sets, there is a unique homomorphism $\Phi: F_{S} \rightarrow G$ with $\left.\Phi\right|_{S}=\varphi$.

Remark. The action of taking the free group of a set is a functor from Set to Grp, and it is left adjoint to the forgetful functor from Grp to Set. This property is known as the universal property of the free group.
Example. $\pi_{1}\left(S^{1} \vee S^{1}\right) \simeq F_{\{a, b\}}$. Indeed, given $\varphi:\{a, b\} \rightarrow G$, we define $\Phi\left(\ell_{1} \ldots \ell_{r}\right)=\varphi\left(\ell_{1}\right) \ldots \varphi\left(\ell_{r}\right)$, where we extend φ to all of $\left\{a, a^{-1}, b, b^{-1}\right\}$ by defining $\varphi\left(a^{-1}\right)=\varphi(a)^{-1}$ and $\varphi\left(b^{-1}\right)=\varphi(b)^{-1}$. This is a homomorphism: indeed,

$$
\Phi\left(w w^{\prime}\right)=\varphi\left(\ell_{1}\right) \ldots \varphi\left(\ell_{k}\right) \varphi\left(\ell_{1}^{\prime}\right) \ldots \varphi\left(\ell_{k}^{\prime}\right)=\Phi(w) \Phi\left(w^{\prime}\right)
$$

cancelling substrings of the form $a a^{-1}$ as required. The homomorphism is unique as required for the universal property of the free group.

Lemma. Let F_{S}, F_{T} be free groups on sets $S \subseteq F_{S}, T \subseteq F_{T}$. Let $\varphi: S \rightarrow T$ be a bijection. Then $\Phi: F_{S} \rightarrow F_{T}$ is an isomorphism.

Proof. Let $\psi=\varphi^{-1}$. Since F_{T} is free, there exists a homomorphism $\Psi: F_{T} \rightarrow F_{S}$ such that $\left.\Psi\right|_{T}=\psi$. Then $\Psi \circ \Phi: F_{S} \rightarrow F_{S}$ has the property that for all $s \in S$, we have $\psi \circ \varphi(s)=s . F_{S}$ is free, so there is
a unique homomorphism $\alpha: F_{S} \rightarrow F_{S}$ mapping $s \in S$ to s. So $\alpha=\mathrm{id}_{F_{S}}$. Hence $\Psi \circ \Phi=\mathrm{id}_{F_{S}}$, so by symmetry, they are inverse functions.

Corollary. If F_{S}, F_{S}^{\prime} are free groups generated by $S, F_{S} \simeq F_{S}^{\prime}$. So the isomorphism type of F_{S} depends only on $|S|$, the cardinality of S.

We therefore can write F_{n} for the free group (up to isomorphism) generated by n elements a_{1}, \ldots, a_{n}. Let $X=\bigvee_{i=1}^{n} S^{1}$ where x_{0} is the wedge point, with inclusion maps $j_{n}: S^{1} \rightarrow X$. Let $a_{i}=j_{i \star}(1)$ for $1 \in \pi_{1}\left(S^{1}, 1\right)$ be a generator. Then X has universal cover $\widetilde{X}=T_{\infty}(2 n)$, the infinite regular $2 n$-valent tree. In particular, $\pi_{1}\left(X, x_{0}\right)$ is the set of reduced words in $\left\{a_{1}^{ \pm 1}, \ldots, a_{n}^{ \pm 1}\right\}$, which is isomorphic to $F_{2 n}$ 。

5.2 Presentations

Definition. Let G be a group and $S \subseteq G$ be a subset. Let $\mathcal{S}_{S}=\{H \leq G \mid S \subseteq H\}$, then let $\langle S\rangle=\bigcap_{H \in \mathcal{S}_{S}} H$ be the smallest subgroup of G containing S, known as the subgroup generated by S. Similarly, let $\mathcal{N}_{S}=\{N \unlhd G \mid S \subseteq H\}$, and let $\left.\langle S\rangle\right\rangle=\bigcap_{H \in \mathcal{N}_{S}} H$ be the smallest normal subgroup of G containing S, called the subgroup normally generated by S.

Note that $\langle S\rangle$ is nonempty since $1 \in H$ for all $H \in \mathcal{S}_{S}$.
If $\langle S\rangle=G$, we say that S generates G. If so, there is a unique homomorphism $\Phi_{S}: F_{S} \rightarrow G$ that maps s to $s . \operatorname{Im} \Phi_{S} \leq G$, and it contains S, so Φ_{S} is surjective.

Definition. Given a set S and $R \subseteq F_{S}$, we define $\left.\langle S \mid R\rangle=F_{S} /\langle R\rangle\right\rangle$. If in addition $\langle\langle R\rangle\rangle=$ $\operatorname{ker} \Phi_{S}$, then $G \simeq F_{S} / \operatorname{ker} \Phi_{S}=F_{S} /\langle\langle R\rangle$. We say $\langle S \mid R\rangle$ is a presentation for G.

Proposition. Any group G admits a presentation.

Proof. Clearly $\langle G\rangle=G$, so let $S=G$. Let $R=\operatorname{ker} \Phi_{G}$, where $\Phi_{G}: F_{G} \rightarrow G$. Then by construction, $\left.F_{\mathrm{S}} /\langle R\rangle\right\rangle=F_{\mathrm{S}} / \operatorname{ker} \Phi_{G} \simeq G$.

Remark. These presentations are very large. It is often more useful to consider finite presentations of G, where both S and R are finite.
Example. $\langle a, b \mid\rangle \simeq F_{2} \cdot\langle a \mid\rangle \simeq F_{1}=\pi_{1}\left(S^{1}, 1\right) \simeq \mathbb{Z} .\left\langle a \mid a^{3}\right\rangle \simeq \mathbb{Z} / 3 \mathbb{Z} \cdot\left\langle a, b \mid a b^{-3}\right\rangle \simeq \mathbb{Z}$.
Proposition. Let $\langle S \mid R\rangle$ be a presentation, let $a \notin S$, and let $w \in F_{S}$. Then $\langle S \mid R\rangle \simeq$ $\left\langle S \cup\{a\} \mid R \cup\left\{a w^{-1}\right\}\right\rangle$.

Proof. We have homomorphisms $\varphi:\langle S \mid R\rangle \rightarrow\left\langle S \cup\{a\} \mid R \cup\left\{a w^{-1}\right\}\right\rangle$ mapping $s \in S$ to s, and $\psi:\left\langle S \cup\{a\} \mid R \cup\left\{a w^{-1}\right\}\right\rangle \rightarrow\langle S \mid R\rangle$ mapping $s \in S$ to s and a to w. These are inverses.

There are other operations we can apply to presentations. If $w \in R$, we can replace w with a conjugate $s w s^{-1}$ for $s \in S$, and it leaves the group unchanged. For example, $\langle a b \mid a b b\rangle=\langle a b \mid b a b\rangle$. Also, if $w_{1}, w_{2} \in R$, we can replace w_{1} with $w_{1} w_{2}$, so for example,

$$
\langle a b \mid b a b b, a b b\rangle=\langle a b \mid b, a b b\rangle \simeq\langle a \mid a\rangle \simeq 1
$$

Theorem. Given a finite set S and a finite set of relations $R \subseteq F_{S}$, there is no algorithm to determine if $\langle S \mid R\rangle \simeq 1$.

5.3 Covering with a pair of open sets

Theorem. Let $U_{1}, U_{2} \subseteq X$ be open, and $U_{1} \cap U_{2}$ be path-connected with $x_{0} \in U_{1} \cap U_{2}$ and $U_{1} \cup U_{2}=X$. Then $\iota_{1 \star}\left(\pi_{1}\left(U_{1}, x_{0}\right)\right) \cup \iota_{2 \star}\left(\pi_{1}\left(U_{2}, x_{0}\right)\right)$ generates $\pi_{1}\left(X, x_{0}\right)$, where $\iota_{i}: U_{i} \rightarrow X$ is the inclusion.

Proof. $\left\{U_{1}, U_{2}\right\}$ is an open cover of X, so if $\gamma \in \Omega\left(X, x_{0}\right)$, we have $\left\{\gamma^{-1}\left(U_{1}\right), \gamma^{-1}\left(U_{2}\right)\right\}$ is an open cover of I. By the Lebesgue covering lemma, we can find $n \in \mathbb{N}$ such that $\left[\frac{j}{n}, \frac{j+1}{n}\right]$ lies entirely inside $\gamma^{-1}\left(U_{1}\right)$ or $\gamma^{-1}\left(U_{2}\right)$ for all j. Each interval $\left[\frac{j}{n}, \frac{j+1}{n}\right]$ with the label 1 or 2 accordingly; if it lies in both, choose an arbitrary label. Let $0=t_{0}<t_{1}<\cdots<t_{k}=1$ be the points of the form $\frac{j}{n}$ where the labelling changes. Let $I_{i}=\left[t_{i-1}, t_{i}\right]$ for each $i \in\{0, \ldots, k\}$. Let $\gamma_{i}=\left.\gamma\right|_{I_{i}}$, so $\gamma\left(t_{i}\right) \in U_{1} \cap U_{2}$, and $\gamma\left(I_{i}\right) \subseteq U_{i \bmod 2}$ without loss of generality. Note that we can write γ as the composition of paths $\gamma=\gamma_{1} \ldots \gamma_{k}$.
Let $\eta_{1}, \ldots, \eta_{k-1}$ be paths with $\eta_{i} \in \Omega\left(U_{1} \cap U_{2}, \gamma\left(t_{i}\right), x_{0}\right)$, which exists since $U_{1} \cap U_{2}$ is path-connected. Then

$$
\gamma \sim_{e} \gamma_{1} \eta_{1} \eta_{1}^{-1} \gamma_{2} \eta_{2} \eta_{2}^{-1} \ldots \eta_{k-1} \eta_{k-1}^{-1} \gamma_{k}=(\underbrace{\left(\gamma_{1} \eta_{1}\right)}_{\delta_{1}} \underbrace{\left(\eta_{1}^{-1} \gamma_{2} \eta_{2}\right)}_{\delta_{2}} \eta_{2}^{-1} \ldots \eta_{k-1} \underbrace{\left(\eta_{k-1}^{-1} \gamma_{k}\right)}_{\delta_{k}}
$$

Then each $\delta_{i} \in \Omega_{i}\left(U_{1}, x_{0}\right)$, so $\left[\delta_{i}\right] \in \operatorname{Im} \iota_{(i \bmod 2)_{\star}} . \operatorname{So}[\gamma]=\left[\delta_{1}\right]\left[\delta_{2}\right] \ldots\left[\delta_{k}\right]$ is a product of elements in $\iota_{1 \star}\left(\pi_{1}\left(U_{1}, x_{0}\right)\right) \cup \iota_{2 \star}\left(\pi_{1}\left(U_{2}, x_{0}\right)\right)$, so $[\gamma]$ lies in the subgroup they generate.

Corollary. Let $U_{1}, U_{2} \subseteq X$ be open and simply connected with $U_{1} \cup U_{2}=X$, and let $U_{1} \cap U_{2}$ be path-connected and contain x_{0}. Then X is simply connected.

Proof. $\pi_{1}\left(X, x_{0}\right)$ is generated by $\iota_{1 \star}\left(\pi_{1}\left(U_{1}, x_{0}\right)\right) \cup t_{2 \star}\left(\pi_{1}\left(U_{2}, x_{0}\right)\right)=\{1\}$.
Example. $S^{n}=U^{+} \cup U^{-}$, where $U^{+}=S^{n}=\{(1,0, \ldots, 0)\}$ and $U^{-}=S^{n}-\{(-1,0, \ldots, 0)\}$. Then $U^{+} \simeq U^{-} \simeq \mathbb{R}^{n}$ by stereographic projection. $U^{+} \cap U^{-} \simeq \mathbb{R}^{n}-\{0\}$. Hence $\pi_{1}\left(U^{ \pm}, x_{0}\right)=1$ since \mathbb{R}^{n} is contractible. $U^{+} \cap U^{-}$is path-connected if $n>1$, so $\pi_{1}\left(S^{n}, x_{0}\right)=1$ for $n>1$.
Example (attaching a disk). If $f: S^{1} \rightarrow X$ with $f(1)=x_{0}$, let $X \cup_{f} D^{2}=X \amalg D^{2} / \sim$, where \sim is the smallest equivalence relation such that $z \sim f(z)$ for $z \in S^{1}$. Let π be the quotient map from $X \amalg D^{2}$ to $X \cup_{f} D^{2}$. Then let $U_{1}=\pi\left(X \cup D^{2} \backslash\{0\}\right)$ and $U_{2}=\pi\left(D^{2}\right)$. Then $U_{1} \cup U_{2}=X \cup_{f} D^{2}$, and $U_{1} \cap U_{2}=\left(D^{2}\right)^{\circ} \backslash\{0\}$ is path-connected. $\pi_{1}\left(U_{2}\right)=1$, so $\pi_{1}\left(X \cup_{f} D^{2}\right)$ is generated by $\pi_{1}(X)$. Note that $f_{\star}: \pi_{1}\left(S^{1}, 1\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$, so $f_{\star}(1)$ lies in the kernel of the inclusion $\pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(X \cup_{f} D^{2}, x_{0}\right)$, since $f_{\star}(1)$ is null-homotopic in $X \cup_{f} D^{2}$. So $\pi_{1}\left(X \cup_{f} D^{2}\right)$ surjects onto $\pi_{1}(X) /\left\langle\left\langle f_{\star}(1)\right\rangle\right.$.

This is in fact an isomorphism. Suppose $[\gamma] \in \pi_{1}\left(X \cup_{f} D^{2}, x_{0}\right)$ is mapped to the trivial element of $\pi_{1}(X) /\left\langle\left\langle f_{\star}(1)\right\rangle\right.$, so $[\gamma]$ can be viewed as an element of $\left\langle\left\langle f_{\star}(1)\right\rangle\right\rangle$. Note that all such $[\gamma]$ are of the form $a_{1} f_{\star}\left(n_{1}\right) a_{1}^{-1} \ldots a_{k} f_{\star}\left(n_{k}\right) a_{k}^{-1}$. Since $f_{\star}(n)=1$ in $\pi_{1}\left(X \cup_{f} D^{2}, x_{0}\right),[\gamma]=1$.

5.4 Amalgamated free products

Definition. Let $\iota_{1}: H \rightarrow G_{1}, \iota_{2}: H \rightarrow G_{2}$ be group homomorphisms. A group G is an amalgamated free product of G_{1} and G_{2} along H if:
(i) There are homomorphisms $\varphi_{1}: G_{1} \rightarrow G, \varphi_{2}: G_{2} \rightarrow G$ such that the following diagram commutes.

(ii) It is universal with this property, so for any other group \bar{G} with a commutative square as above, there is a unique homomorphism $\psi: G \rightarrow \bar{G}$ such that the following diagram commutes.

Remark. The amalgamated free product is the colimit of the following diagram.

Hence, it is a categorical pushout.

Proposition. If G, G^{\prime} are amalgamated products of G_{1}, G_{2}, then $G \simeq G^{\prime}$.

Proof. There are homomorphisms $\alpha: G \rightarrow G^{\prime}, \beta: G^{\prime} \rightarrow G$, and the uniqueness in the definition implies $\alpha \circ \beta=\operatorname{id}_{G^{\prime}}$ and $\beta \circ \alpha=\operatorname{id}_{G}$. In other words, the following diagram commutes.

Proposition. An amalgamated product of any two groups exists.
The universal property of the presentation is that $\left.\langle S \mid R\rangle \simeq F_{S} /\langle R\rangle\right\rangle$. Suppose $S \subseteq G$ satisfies the relations R in G, so all of the relations map to the identity. Then there is a unique homomorphism $\langle S \mid R\rangle \rightarrow G$ mapping $s \in S$ to s, since there is a unique homomorphism $F_{S} \rightarrow G$ mapping $s \in S$ to s, and since S satisfies the relations, this factors through $F_{S} /\langle R\rangle$.
For example, consider a map $\left\langle a \mid a^{4}\right\rangle \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ that maps a to 1 . We can check that the relation $1^{4}=0$ in $\mathbb{Z} / 2 \mathbb{Z}$ holds.

Proof. Consider presentations $G_{i}=\left\langle S_{i} \mid R_{i}\right\rangle$ of G_{1}, G_{2}, and $H=\langle T \mid W\rangle$. Then define

$$
G=G_{1} *_{H} G_{2}=\left\langle S_{1} \cup S_{2} \cup T \mid R_{1} \cup R_{2} \cup\left\{t_{i}^{-1} \iota_{1}\left(t_{i}\right), t_{i}^{-1} \iota_{2}\left(t_{i}\right) \mid t_{i} \in T\right\}\right\rangle
$$

Then $\varphi_{i}: G_{i} \rightarrow G$ are given by $s \in S_{i}$ mapping to s. Given $j_{1}, j_{2}: G_{1}, G_{2} \rightarrow \bar{G}$, we define $\psi: G \rightarrow \bar{G}$ mapping $s \in S_{1}$ to $j_{1}(s), s \in S_{2}$ to $j_{2}(s)$, and $t \in T$ to $j_{1} \circ \iota_{1}(t)=j_{2} \circ \iota_{2}(t)$, and check that the relations hold.

This is isomorphic to $\left\langle S_{1} \cup S_{2} \mid R_{1} \cup R_{2} \cup\left\{l_{1}\left(t_{i}\right) \iota_{2}^{-1}\left(t_{i}\right) \mid t_{i} \in T\right\}\right\rangle$.

5.5 Seifert-Van Kampen theorem

Theorem (Seifert-Van Kampen). Let $X=U_{1} \cup U_{2}$ where U_{i} are open sets with $U_{1} \cap U_{2}$ path-connected and containing x_{0}. Let $G_{i}=\pi_{1}\left(U_{i}, x_{0}\right)$, and $H=\pi_{1}\left(U_{1} \cap U_{2}, x_{0}\right)$, so

Then $\pi_{1}\left(X, x_{0}\right)=G_{1} *_{H} G_{2}$.
Remark. The 'easy' part of the proof is that we have a commutative diagram

so we obtain a map $\psi: G_{1} *_{H} G_{2} \rightarrow \pi_{1}\left(X, x_{0}\right)$ by universality of the amalgamated free product. Clearly ψ is surjective by the theorem in the previous subsection, and the difficult part of the proof is showing that ψ is injective.

Proof sketch. We show that if $H: I \times I \rightarrow X$ is a homotopy between γ_{0} and γ_{1}, then $\left[\gamma_{0}\right]=\left[\gamma_{1}\right]$ using the relations in $G_{1} *_{H} G_{2}$. We can divide $I \times I$ into squares of size $\frac{1}{n}$ such that the image of each square under H lies in either U_{1} or U_{2} by the Lebesgue covering lemma. Each row represents a path $\gamma_{\frac{i}{n}}$, and by operating row-by-row we will show $\gamma_{\frac{i}{n}}$ is related to $\gamma_{\frac{i+1}{n}}$ in $G_{1} *_{H} G_{2}$. To move from one row to the next, if there are different labels above and below, the boundary lies in $U_{1} \cap U_{2}$, so we use the relations $\iota_{1 \star}\left(t_{1}\right)=\iota_{2 \star}\left(t_{1}\right)$.

Example. Consider $X \cup_{f} D^{2}=U_{1} \cup U_{2}$ where $U_{1}=X \cup_{f} D^{2} \backslash\{0\}$ and $U_{2}=\left(D^{2}\right)^{\circ}$, with $x_{0} \in U_{1} \cap U_{2}$ Let $p: U_{1} \rightarrow X$ be the inclusion. Since $D^{2} \backslash\{0\}$ has a strong deformation retraction to S^{1}, we know U_{1} has a strong deformation retraction to X, so $\pi_{1}\left(U_{1}, x_{0}\right) \simeq \pi_{1}\left(X, p\left(x_{0}\right)\right)$. Note that $\pi_{1}\left(U_{2}, x_{0}\right)$ is the trivial group, since $\left(D^{2}\right)^{\circ}$ is contractible. Note that $U_{1} \cap U_{2}=\left(D^{2}\right)^{\circ} \backslash\{0\}$ is homotopy equivalent to S^{1}, so $\pi_{1}\left(U_{1} \cap U_{2}, x_{0}\right)=\mathbb{Z}=\langle\gamma\rangle$.

Then, by the Seifert-Van Kampen theorem, we have $\pi_{1}\left(X \cup_{f} D^{2}\right) \simeq \pi_{1}(X) *_{\mathbb{Z}} 1$. If $\pi_{1}\left(X, x_{0}\right)=\langle S \mid R\rangle$, we have in particular that

$$
\pi_{1}\left(X \cup_{f} D^{2}\right) \simeq\left\langle S, t \mid R \cup\left\{t, t^{-1} f_{\star}(t)\right\}\right\rangle=\left\langle S \mid R \cup f_{\star}(t)\right\rangle=\pi_{1}\left(X, x_{0}\right) /\left\langle\left\langle f_{\star}(t)\right\rangle\right.
$$

Example. Consider the torus $T^{2}=S^{1} \vee S^{1} \cup_{f} D^{2}$. Let a, b be generators for $\pi_{1}\left(S^{1} \vee S^{1}\right)$. Then the commutator $a b a^{-1} b^{-1}$ represents the disk attached. So $\pi_{1}\left(T^{2}\right)=\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle=\mathbb{Z}^{2}$.

Example. Let Σ_{g} be a surface of genus g. Then $\Sigma_{g}=\bigvee_{i=1}^{g}\left(S^{1} \vee S^{1}\right) \cup_{f} D^{2}$, so

$$
\pi_{1}\left(\Sigma_{g}\right) \simeq\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g} \mid \prod_{i=1}^{g} a_{i} b_{i} a_{i}^{-1} b_{i}^{-1}\right\rangle
$$

Example. A surface of genus two can be realised as a union of U_{1}, U_{2} where $U_{1} \cap U_{2} \simeq S^{1}$ and $\pi_{1}\left(U_{i}\right)=\left\langle a_{i}, b_{i}\right\rangle$, then $\pi_{1}\left(\Sigma_{2}\right)=\left\langle a_{1}, b_{1}\right\rangle *_{\mathbb{Z}}\left\langle a_{2}, b_{2}\right\rangle$.

6 Simplicial complexes

6.1 Simplices

We have shown that $\pi_{1}\left(S^{1}, x_{0}\right) \simeq \mathbb{Z}$, and $\pi_{1}\left(S^{n}, x_{0}\right) \simeq 1$ for $n>1$, so $S^{1} \nsim S^{n}$. We would like to show that $S^{n} \sim S^{m}$ only holds if $n=m$. One proof of this fact is that any $f: S^{n} \rightarrow S^{m}$ with $n<m$ is null-
homotopic, but the identity on S^{m} is not. Both of these claims require proof: simplicial complexes will allow us to prove the first, and homology will allow us to prove the second.

Definition. The n-simplex is the topological space

$$
\Delta^{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1} \mid x_{i} \geq 0, \sum_{i=0}^{n} x_{i}=1\right\}
$$

with the subspace topology.
Remark. Δ^{1} is homeomorphic to $I . \Delta^{2}$ is an equilateral triangle, and Δ^{3} is a regular tetrahedron. For all n, Δ^{n} is closed and bounded in \mathbb{R}^{n+1}, and hence compact and Hausdorff. The standard basis vectors e_{0}, \ldots, e_{n} are the vertices of Δ^{n}.

Definition. If $I \subseteq\{0, \ldots, n\}$, the Ith face of Δ^{n} is

$$
e_{I}=\left\{x \in \Delta^{n} \mid x_{i}=0 \text { for } i \notin I\right\}
$$

We define $F\left(\Delta^{n}\right)=\left\{e_{I} \mid I \subseteq\{0, \ldots, n\}\right\}$ to be the set of faces of Δ^{n}.
If $I=\left\{i_{0}, \ldots, i_{k}\right\}$ with $i_{0}<\cdots<i_{k}$, we write $I=i_{0} i_{1} \ldots i_{k}$.
Remark. Note that $e_{\{i\}}=e_{i}$, and $\Delta^{n}=e_{\{0,1, \ldots, n\}}$. e_{I} is a closed subset of Δ^{n}, and is homeomorphic to $\Delta^{|I|-1} . e_{I} \subseteq e_{J}$ if and only if $I \subseteq J . e_{I} \cap e_{J}=e_{I \cap J}$.

Definition. A map $|f|: \Delta^{n} \rightarrow \mathbb{R}^{N}$ is affine linear if it is the restriction of a linear map $\mathbb{R}^{n+1} \rightarrow$ \mathbb{R}^{n}. Equivalently, $|f|\left(\sum_{i=0}^{n} x_{i} e_{i}\right)=\sum_{i=0}^{n} x_{i}|f|\left(e_{i}\right)$. We say an affine linear map $|f|: \Delta^{n} \rightarrow \Delta^{m}$ is simplicial if it maps vertices in Δ^{n} to vertices in Δ^{m}, so there is a map of sets $\hat{f}:\{0, \ldots, n\} \rightarrow$ $\{0, \ldots, m\}$ where $|f|\left(e_{i}\right)=e_{\hat{f}(i)}$.

Remark. Affine linear maps are continuous, and are determined entirely by their action on e_{i}. In particular, simplicial maps $|f|$ are determined by \hat{f}. For $I \subseteq\{0, \ldots, n\}$, we have $|f|\left(e_{I}\right)=e_{\hat{f}(I)}$.

Definition. Vectors $v_{0}, \ldots, v_{n} \in \mathbb{R}^{N}$ are affine linearly independent if whenever $\sum t_{i} v_{i}=0$ and $\sum t_{i}=0$, we have $t_{i}=0$ for all i. Equivalently,
(i) If $\sum t_{i} v_{i}=\sum t_{i}^{\prime} v_{i}$ and $\sum t_{i}=\sum t_{i}^{\prime}$, then for each $i, t_{i}=t_{i}^{\prime}$.
(ii) The vectors $v_{1}-v_{0}, v_{2}-v_{0}, \ldots, v_{n}-v_{0}$ are linearly independent.
(iii) The unique affine linear map $|f|: \Delta^{n} \rightarrow \mathbb{R}^{N}$ given by $|f|\left(e_{i}\right)=v_{i}$ is injective.

If v_{0}, \ldots, v_{n} are affine linearly independent, we write

$$
\left[v_{0}, \ldots, v_{n}\right]=\operatorname{Im}|f|=\left\{\sum x_{i} v_{i} \mid \sum x_{i}=1, x_{i} \geq 0\right\}
$$

and we say $\left[v_{0}, \ldots, v_{n}\right]$ is a Euclidean simplex.
Remark. Δ^{n} is compact and $\left[v_{0}, \ldots, v_{n}\right]$ is Hausdorff, so by the topological inverse function theorem, $|f|: \Delta^{n} \rightarrow\left[v_{0}, \ldots, v_{n}\right]$ is a homeomorphism if the v_{i} are affine linearly independent.

Lemma. If $X \subseteq \mathbb{R}^{N}$, let $Z(X)$ be the set of $x \in X$ such that if $x=\sum t_{i} x_{i}$ for $t_{i}>0, \sum t_{i}=1$ and all $x_{i} \in X$, then $x_{i}=x$ for some i. Then $Z\left(\left[v_{0}, \ldots, v_{n}\right]\right)=\left\{v_{0}, \ldots, v_{n}\right\}$.

Proof. We show that $v_{k} \in Z\left(\left[v_{0}, \ldots, v_{n}\right]\right)$; the converse is clear from the definition of the simplex. Suppose $v_{k}=\sum t_{i} x_{i}$ for $t_{i}>0$ and $\sum t_{i}=1$. Then $x_{i}=\sum_{j=0}^{n} s_{i j} v_{j}$, since $x_{i} \in\left[v_{0}, \ldots, v_{n}\right]$. So $v_{k}=\sum_{j}\left(\sum_{i} t_{i} s_{i j}\right) v_{j}$. Since the v_{i} are affine linearly independent, and $\sum_{j}\left(\sum_{i} t_{i} s_{i j}\right)=1$, we must have $\sum t_{i} s_{i j}=0$ for $j \neq k$. But $t_{i}>0$ and $s_{i j} \geq 0$, so the only case is when all $s_{i j}$ are exactly zero for $j \neq k$, so $x_{j}=v_{k}$.

Corollary. If $\left[v_{0}, \ldots, v_{n}\right]=\left[v_{0}^{\prime}, \ldots, v_{n}^{\prime}\right]$ as subsets of \mathbb{R}^{N}, then $\left\{v_{0}, \ldots, v_{n}\right\}=\left\{v_{0}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ as sets.

Therefore, a simplex determines its set of vertices.
Proof. $\left\{v_{0}, \ldots, v_{n}\right\}=Z\left(\left[v_{0}, \ldots, v_{n}\right]\right)=Z\left(\left[v_{0}^{\prime}, \ldots, v_{n}^{\prime}\right]\right)=\left\{v_{0}^{\prime}, \ldots, v_{n}^{\prime}\right\}$.

Definition. $\mathcal{S}\left(\mathbb{R}^{n}\right)$ is the set of Euclidean simplices $\sigma \subseteq \mathbb{R}^{n}$. Hence, $\mathcal{S}\left(\mathbb{R}^{n}\right)$ is in bijection with the set $\left\{\left\{v_{0}, \ldots, v_{k}\right\} \mid v_{i} \in \mathbb{R}^{N}, k \geq-1, v_{i}\right.$ affine linearly independent $\}$.

6.2 Abstract simplicial complexes

Definition. An abstract simplicial complex in Δ^{n} is a subset K of the faces $F\left(\Delta^{n}\right)$ such that $e_{I} \in K$ whenever e_{J} is in K and $I \subseteq J$.

Remark. Abstract simplicial complexes are downward-closed sets of faces. They have no intrinsic topology. The set of faces $F\left(\Delta^{n}\right)$ of the n-dimensional simplex Δ^{n} is an abstract simplicial complex.

Definition. If K is an abstract simplicial complex, its polyhedron is $|K|=\bigcup_{e_{I} \in K} e_{I} \subseteq \Delta^{n}$.

Remark. Polyhedra are compact and Hausdorff.
Definition. We define $K_{r}=\left\{e_{I} \in K| | I \mid \leq r+1\right\}$ to be the set of faces of dimension at most r. This is called the r-skeleton of K.

The r-skeleton is an abstract simplicial complex. Note that

$$
\left\{e_{\varnothing}\right\}=K_{-1} \subset K_{0} \subset \cdots \subset K_{n}=K
$$

We write $\operatorname{dim} K=\max \left\{\operatorname{dim} e_{I} \mid e_{I} \in K\right\}$.

Definition. The vertex set $V(K)$ is the polyhedron $\left|K_{0}\right|$.

Example. $\Delta^{n}=F\left(\Delta^{n}\right)=\left\{e_{I} \mid I \subseteq\{0, \ldots, n\}\right\}$ is a simplicial complex. Its polyhedron is Δ^{n}, which is homeomorphic to D^{n} by radial projection.

Example. $\mathbb{S}^{n-1}=\Delta_{n-1}^{n}=\left\{e_{i} \mid I \subsetneq\{0, \ldots, n\}\right\}$ is a simplicial complex. This has polyhedron $\partial \Delta^{n}$ by definition of the boundary. This is homeomorphic to S^{n-1} by radial projection.

Definition. Let K, L be abstract simplicial complexes in Δ^{n} and Δ^{m} respectively. A simplicial map $f: K \rightarrow L$ is a map such that there is a simplicial map $|f|: \Delta^{n} \rightarrow \Delta^{m}$ with $f\left(e_{I}\right)=|f|\left(e_{I}\right)$. Equivalently, there is a map $\hat{f}:\{0, \ldots, n\} \rightarrow\{0, \ldots, m\}$ such that $f\left(e_{I}\right)=e_{\hat{f}(I)}$ and $e_{I} \in K$ implies $e_{\hat{f}(I)} \in L$.

Remark. The identity map is simplicial. The composition of two simplicial maps is simplicial.

Definition. We say a simplicial map $f: K \rightarrow L$ is a simplicial isomorphism if f is a bijection, or equivalently, $|f|$ is a bijection or $|f|$ is a homeomorphism, treating $|f|$ as a map $|K| \rightarrow|L|$.

6.3 Euclidean simplicial complexes

Recall that $\mathcal{S}\left(\mathbb{R}^{n}\right)$ is the set of Euclidean simplices $\left[v_{0}, \ldots, v_{n}\right]$ where the v_{i} are affine linearly independent.

Definition. $K \subseteq \mathcal{S}\left(\mathbb{R}^{n}\right)$ is a Euclidean simplicial complex if
(i) K is finite;
(ii) if $\sigma \in K$ and $\tau \in F(\sigma)$, then $\tau \in K$;
(iii) if $\sigma_{1}, \sigma_{2} \in K$, then $\sigma_{1} \cap \sigma_{2} \in F\left(\sigma_{1}\right) \cap F\left(\sigma_{2}\right)$, so in particular, $\sigma_{1} \cap \sigma_{2} \in K$.

If so, we write $|K|=\bigcup_{\sigma \in K} \sigma \subseteq \mathbb{R}^{n}$ with the subspace topology. We write

$$
K_{r}=\{\sigma \in K \mid \operatorname{dim} \sigma \leq r\}
$$

for its r-skeleton, which is a Euclidean simplicial complex.

Proposition. Let $|\varphi|: \Delta^{n} \rightarrow \mathbb{R}^{n}$ be affine linear, and K^{\prime} be an abstract simplicial complex in Δ^{n}, such that $\mid \varphi \|_{\left|K^{\prime}\right|}$ is injective. Then $\varphi\left(K^{\prime}\right)=\left\{|\varphi|\left(e_{I}\right) \mid e_{I} \in K^{\prime}\right\}$ is a Euclidean simplicial complex.

Proof. Property (i) is clear since $F\left(\Delta^{n}\right)$ is finite. For property (ii), note that if $\sigma \in \varphi\left(K^{\prime}\right)$, there is $e_{I} \in K^{\prime}$ such that $\sigma=|\varphi|\left(e_{I}\right)$. If $\tau \in F(\sigma)$, we have $\tau=|\varphi|\left(e_{J}\right)$ for $e_{J} \subseteq e_{I}$. Then $e_{J} \in K^{\prime}$ since K^{\prime} is an abstract simplicial complex. So $\tau=|\varphi|\left(e_{J}\right)=\varphi\left(K^{\prime}\right)$.
Suppose $\sigma_{1}=|\varphi|\left(e_{I_{1}}\right)$ and $\sigma_{2}=|\varphi|\left(e_{I_{2}}\right)$ where $e_{I_{1}}, e_{I_{2}} \in K^{\prime}$. Then $\sigma_{1} \cap \sigma_{2}=|\varphi|\left(e_{I_{1}}\right) \cap|\varphi|\left(e_{I_{2}}\right)=$ $|\varphi|\left(e_{I_{1}} \cap e_{I_{2}}\right)$ by injectivity. This is equal to $|\varphi|\left(e_{I_{1} \cap I_{2}}\right) \in F\left(\sigma_{1}\right) \cap F\left(\sigma_{2}\right)$.

Definition. We say that the Euclidean simplicial complex $\varphi\left(K^{\prime}\right)$ is a realisation of an abstract simplicial complex K^{\prime} in Δ^{n}, if $|\varphi|: \Delta^{n} \rightarrow \mathbb{R}^{n}$ is affine linear and injective on $\left|K^{\prime}\right|$.

Remark. If $\varphi\left(K^{\prime}\right)$ is a realisation of $K^{\prime},|\varphi|_{\left|K^{\prime}\right|}$ is injective, so $|\varphi|:\left|K^{\prime}\right| \rightarrow|\varphi(K)|$ is a homeomorphism.

Proposition. Let $K \subseteq \mathbb{R}^{N}$ be a Euclidean simplicial complex. Then $K=\varphi\left(K^{\prime}\right)$ for some abstract simplicial complex K^{\prime}, and $|\varphi|:\left|K^{\prime}\right| \rightarrow|K|$. Any two K^{\prime} are related by a simplicial isomorphism.

Informally, every Euclidean simplicial complex is the realisation of some abstract simplicial complex.

Proof. Let $V(K)=\left|K_{0}\right|=\left\{v_{0}, \ldots, v_{n}\right\} \subset \mathbb{R}^{N}$ be the vertex set of the Euclidean simplicial complex. Define $K^{\prime}=\left\{e_{\left\{i_{0}, \ldots, i_{k}\right\}} \mid\left[v_{i_{0}}, \ldots, v_{i_{k}}\right] \in K\right\}$. Let $|\varphi|: \Delta^{n} \rightarrow \mathbb{R}^{N}$ be given by $|\varphi|\left(e_{i}\right)=v_{i}$.
We show that $\mid \varphi \|_{\left|K^{\prime}\right|}$ is injective. If $\sigma=\left[v_{i_{0}}, \ldots, v_{i_{k}}\right] \in K$, we have that $v_{i_{0}}, \ldots, v_{i_{k}}$ are affine linearly independent since K is a Euclidean simplicial complex. Then $|\varphi|_{e_{I}}$ is injective.
Suppose $|\varphi|(p)=|\varphi|(q)=x \in \mathbb{R}^{N}$, where $p \in e_{I} \in K^{\prime}$ and $q \in e_{J} \in K^{\prime}$. Then $x \in|\varphi|\left(e_{I}\right) \cap|\varphi|\left(e_{J}\right)$, which is the intersection of simplices in K, so $x \in|\varphi|\left(e_{I^{\prime}}\right)$ for $I^{\prime} \subseteq I \cap J$. Since $\mid \varphi \|_{e_{I}}$ and $\mid \varphi \|_{e_{J}}$ are injective, we must have $p, q \in e_{I^{\prime}}$. But $\mid \varphi \|_{e_{I^{\prime}}}$ is also injective, so $p=q$.

Definition. A simplicial map of Euclidean simplicial complexes is a map $f: K_{1} \rightarrow K_{2}$ if there are realisations $\varphi_{i}: K_{i}^{\prime} \rightarrow K_{i}$ and a simplicial map of abstract simplicial complexes $f^{\prime}: K_{1}^{\prime} \rightarrow K_{2}^{\prime}$ so that the following diagram commutes.

Remark. The composition of simplicial maps of Euclidean simplicial complexes is also a simplicial map.

6.4 Boundaries and cones

Definition. Let σ be an n-dimensional Euclidean simplex. Let $F(\sigma)$ be the set of faces of σ, a Euclidean simplicial complex with $|F(\sigma)|=\sigma$. Let $\phi \sigma=F(\sigma)_{n-1}=F(\sigma) \backslash\{\sigma\}$, a Euclidean simplicial complex. Let $\partial \sigma=|\phi \sigma| \subset \mathbb{R}^{N}$ be the boundary of σ. It is homeomorphic to S^{n-1}. Let $\sigma^{\circ}=\sigma \backslash \partial \sigma$ be the interior of σ.

Definition. Let $X \subseteq \mathbb{R}^{N}$ and $p \in \mathbb{R}^{N}$. We say p is independent of X if for each $x \in X$, the ray $p x$ from p to x has $p x \cap X=\{x\}$.

Definition. If p is independent of X, the cone is defined by

$$
C_{p}(X)=\{t p+(1-t) x \mid t \in[0,1], x \in X\}
$$

Example. Let $X=\left[v_{0}, \ldots, v_{n}\right]$ be an n-simplex. Then p is independent of X if and only if $\left\{v_{0}, \ldots, v_{n}, p\right\}$ is an affine linearly independent set. If so, $C_{p}(X)=\left[v_{0}, \ldots, v_{n}, p\right]$.

Definition. Let K be a Euclidean simplicial complex in \mathbb{R}^{N} and p be independent of $|K|$. Then we define the cone

$$
C_{p}(K)=K \cup\left\{\left[v_{0}, \ldots, v_{j}, p\right] \mid\left[v_{0}, \ldots, v_{j}\right] \in K\right\}
$$

Lemma. If p is independent of $|K|$, then $C_{p}(K)$ is a Euclidean simplicial complex and $\left|C_{p}(K)\right|=C_{p}(|K|)$.

6.5 Barycentric subdivision

Definition. If $\sigma=\left[v_{0}, \ldots, v_{n}\right]$ is an n-simplex in \mathbb{R}^{N}, we define its barycentre

$$
b_{\sigma}=\frac{1}{n+1} \sum_{i=0}^{n} v_{i}
$$

Lemma. b_{σ} is independent of $\partial \sigma$, and $C_{b_{\sigma}}(\partial \sigma)=\sigma$.

We will define maps β from $\mathcal{S}\left(\mathbb{R}^{N}\right)$ to the set of Euclidean simplicial complexes in \mathbb{R}^{N}, and B from the set of Euclidean simplicial complexes in \mathbb{R}^{N} to Euclidean simplicial complexes in \mathbb{R}^{N}, satisfying $|\beta(\sigma)|=\sigma$ and $|B(K)|=|K|$. The maps β and B are called barycentric subdivision. In order to do this, we will inductively define β and B on simplices and Euclidean simplicial complexes of dimension at most n, and prove the following theorems.

Theorem (first inductive hypothesis). Let $\sigma \in \mathcal{S}\left(\mathbb{R}^{N}\right)$ be an n-simplex. Then $\beta(\sigma)$ is a Euclidean simplicial complex of dimension n, and $|\beta(\sigma)|=\sigma$. If τ is a face of σ and $\sigma_{1} \in \beta(\sigma)$ then $\sigma_{1} \cap \tau \in \beta(\tau)$.

Theorem (second inductive hypothesis). Let K be an n-dimensional Euclidean simplicial complex. Then $B(K)$ is an n-dimensional Euclidean simplicial complex with polyhedron $|B(K)|=|K|$.

For the base case, let $n=-1$. The only -1 -dimensional simplex is \varnothing. We define $\beta(\varnothing)=\{\varnothing\}$. The only -1 -dimensional simplicial complex is $\{\varnothing\}$, and we define $B(\{\varnothing\})=\{\varnothing\}$. Both inductive hypotheses hold for this case.

In general, suppose β and B are defined on $n-1$-dimensional simplices and simplicial complexes and that both inductive hypotheses hold. We now define $\beta(\sigma)=C_{b_{\sigma}}(B(\partial \sigma))$ and $B(K)=\bigcup_{\sigma \in K} \beta(\sigma)$.
Example. Let σ be a zero-dimensional simplex. Then $\beta_{\sigma}(\sigma)=\sigma$.
Example. Let σ be the one-dimensional simplex. $\phi \sigma$ is two points p_{1}, p_{2} and the empty set. Then $B(\phi \sigma)=\left\{\varnothing, p_{1}, p_{2}\right\}$. Therefore, $C_{p}(B(\phi \sigma))=\left\{\varnothing, p, p_{1}, p_{2}, p p_{1}, p p_{2}\right\}$.

Example. Let σ be a two-dimensional simplex with vertices p_{1}, p_{2}, p_{3}. Then $C_{p}(B(\phi \sigma))$ has six 2simplices, twelve 1 -simplices, seven 0 -simplices and one empty simplex.

Proof of first inductive hypothesis. $\phi \sigma$ is a Euclidean simplicial complex of dimension $n-1$, hence $B(\phi \sigma)$ is a Euclidean simplicial complex by the second inductive hypothesis, and $|B(\phi \sigma)|=|\phi \sigma|=\partial \sigma$. By the lemmas above, b_{σ} is independent of $\partial \sigma=|B(\partial \sigma)|$, so $C_{b_{\sigma}}(B(\phi \sigma))$ is a Euclidean simplicial complex with polyhedron $\left|C_{b_{\sigma}}(B(\phi \sigma))\right|=C_{b_{\sigma}}(\partial \sigma)=\sigma$. The next part follows from the lemma: if $\sigma \in C_{p}(K)$, then $\sigma \cap|K| \in K$.

Proof of second inductive hypothesis. We check the properties required for a Euclidean simplicial complex for $B(K)=\bigcup_{\sigma \in K} \beta(\sigma)$. $\beta(\sigma)$ is finite for each σ and K is finite, so $B(K)$ is finite. If $\sigma \in B(K)$ then $\sigma \in \beta\left(\sigma^{\prime}\right)$ for some $\sigma^{\prime} \in K$, so if $\tau \in F(\sigma)$, then $\tau \in \beta\left(\sigma^{\prime}\right)$ since $\beta\left(\sigma^{\prime}\right)$ is a Euclidean simplicial complex, so $\tau \in B(K)$, so the second property holds. Suppose $\sigma_{1}, \sigma_{2} \in B(K)$ where $\sigma_{i} \in \beta\left(\sigma_{i}^{\prime}\right)$ and $\sigma_{i}^{\prime} \in K$. Then $\sigma_{1} \cap \sigma_{2} \subseteq \sigma_{1}^{\prime} \cap \sigma_{2}^{\prime}=\tau$ since $\left|\beta\left(\sigma_{i}^{\prime}\right)\right|=\sigma_{i}^{\prime}$, where $\tau \in K$ since K is a Euclidean simplicial complex. Then $\sigma_{1} \cap \tau, \sigma_{2} \cap \tau \in \beta(\tau)$ by the second part of the first inductive hypothesis. In particular, $\beta(\tau)$ is a Euclidean simplicial complex, so $\sigma_{1} \cap \sigma_{2}=\underbrace{\left(\sigma_{1} \cap \tau\right)}_{\in \beta(\tau)} \cap \underbrace{\left(\sigma_{2} \cap \tau\right)}_{\in \beta(\tau)} \in \beta(\tau) \subseteq B(K)$, so the third property holds. So K is a Euclidean simplicial complex. Now, by the first inductive hypothesis, $|B(K)|=\bigcup_{\sigma \in K} \beta(\sigma)=\bigcup_{\sigma \in K} \sigma=|K|$.

Lemma. Let $\sigma \in \mathcal{S}\left(\mathbb{R}^{N}\right)$ and $x, v \in \sigma$. Then $\|v-x\| \leq \max _{v_{i} \in V(\sigma)}\left\|v-v_{i}\right\|$.

Proof. We can write $x=\sum x_{i} v_{i}$, where $\sum x_{i}=1, x_{i} \geq 0$, and $v_{i} \in V(\sigma)$. But also, $v=\sum x_{i} v$. Hence,

$$
\|v-x\|=\left\|\sum x_{i}\left(v-v_{i}\right)\right\| \leq \sum x_{i}\left\|v-v_{i}\right\| \leq \sum x_{i} \max \left\|v-v_{i}\right\|=\max \left\|v-v_{i}\right\|
$$

Applying this twice, $\|x-v\| \leq \max _{v_{i} \in V(\sigma)}\left\|v-v_{i}\right\| \leq \max _{v_{i}, v_{j} \in V(\sigma)}\left\|v_{i}-v_{j}\right\|$.
Definition. The mesh of a simplex $\sigma \in \mathcal{S}\left(\mathbb{R}^{N}\right)$ is

$$
\mu(\sigma)=\max _{v_{i}, v_{j} \in V(\sigma)}\left\|v_{i}-v_{j}\right\|=\max _{x, v \in \sigma}\|v-x\|
$$

If K is a Euclidean simplicial complex, its mesh is $\mu(K)=\max _{\sigma \in K} \mu(\sigma)$.

Lemma. Let b_{σ} be the barycentre of σ, so $b_{\sigma}=\frac{1}{n+1} \sum_{i=0}^{n} v_{i}$ for $\sigma=\left[v_{0}, \ldots, v_{n}\right]$. Then $\max _{v \in \sigma}\left\|b_{\sigma}-v\right\| \leq \frac{n}{n+1} \mu(\sigma)$.

Proof. $\left\|b_{\sigma}-v\right\| \leq \max _{v_{i} \in V(\sigma)}\left\|b_{\sigma}-v_{i}\right\|$. We have

$$
\left\|b_{\sigma}-v_{i}\right\|=\frac{1}{n+1}\left\|\sum_{j \neq i} v_{j}-n v_{i}\right\| \leq \frac{1}{n+1} \sum_{j \neq i}\left\|v_{j}-v_{i}\right\| \leq \frac{1}{n+1} \cdot n \mu(\sigma)
$$

Corollary. Let σ be a Euclidean simplex of dimension n. Then $\mu(\beta(\sigma)) \leq \frac{n}{n+1} \mu(\sigma)$. Let K be a Euclidean simplicial complex of dimension n. Then $\mu(B(K)) \leq \frac{n}{n+1} \mu(K)$.

Proof. Let $\tau \in \beta(\sigma)$. Suppose $\tau \in B(\not \subset \sigma)$. Then, $\mu(\tau) \leq \frac{n-1}{n} \mu(B(\not \partial \sigma)) \leq \frac{n}{n+1} \mu(\sigma)$ by induction. Otherwise, $\tau=\left[v_{0}, \ldots, v_{k}, b_{\sigma}\right]$, where $\left[v_{0}, \ldots, v_{k}\right] \in B\left(\not(\sigma)\right.$. Then $\left\|v_{i}-v_{j}\right\| \leq \frac{n-1}{n} \mu(\sigma)$ by induction, and $\left\|v_{i}-b_{\sigma}\right\| \leq \frac{n}{n+1} \mu(\sigma)$ by the lemma.

6.6 Simplicial approximation

Lemma. (i) Let $x \in \Delta^{n}$. Then there exists a unique $I \subseteq\{0, \ldots, n\}$ such that $x \in e_{I}^{\circ}$.
(ii) If $x \in e_{I}^{\circ}$, then $x \in e_{J}$ if and only if $I \subseteq J$, or equivalently, $e_{I} \subseteq e_{J}$.
(iii) Let K be an abstract simplicial complex in Δ^{n}, and let $x \in e_{I}^{\circ}$. Suppose that $x \in|K|$. Then $e_{I} \in K$.

Proof. Part (i). Let $I=\left\{i \in\{0, \ldots, n\} \mid x_{i} \neq 0\right\}$. Part (ii). Follows from part (i).
Part (iii). $x \in|K|$ implies $x \in e_{J}$ for some $e_{J} \in K$. By part (ii), we have $e_{I} \subseteq e_{J}$. Since K is an abstract simplicial complex and $e_{J} \in K$, we have $e_{I} \in K$.

Corollary. Let K be a Euclidean simplicial complex, and $x \in|K|$. Then there exists a unique $\sigma \in K$ with $x \in \sigma^{\circ}$.

Proof. Let $\varphi: K^{\prime} \rightarrow K$ be a realisation of K, so K^{\prime} is an abstract simplicial complex and φ is a bijection inducing a homeomorphism on the polyhedra. Let $x^{\prime}=\left|\varphi^{-1}\right|(x) \in|K|$. Then x^{\prime} lies in the interior of a unique e_{I} by part (i) of the lemma above. Note that $e_{I} \in K^{\prime}$ by part (iii), so $\varphi\left(e_{I}\right)$ is the unique $\sigma \in K$ with $x \in \sigma^{\circ}$.

Definition. Let K be a Euclidean simplicial complex, and let $v \in V(K)$. Then the $\operatorname{star} \mathrm{St}_{K}(v)$ is $\bigcup_{\{\sigma \in K \mid v \in \sigma\}} \sigma^{\circ}$.

Lemma. (i) Let $x \in|K|$ and $x \in \sigma^{\circ}$. Then $x \in \operatorname{St}_{K}(v)$ if and only if $v \in V(\sigma)$.
(ii) $\mathrm{St}_{K}(v)=|K| \backslash \bigcup_{\{\sigma \in K \mid v \notin V(\sigma)\}} \sigma^{\circ}=|K| \backslash \bigcup_{\{\sigma \in K \mid v \notin V(\sigma)\}} \sigma$.
(iii) $\left\{\mathrm{St}_{K}(v) \mid v \in V(K)\right\}$ is an open cover of $|K|$.

Proof. Part (i). Follows from the fact that if $x \in|K|, x$ lies in a unique interior of σ for $\sigma \in K$.
Part (ii). The first equality follows from part (i). The second follows from the fact that if $\tau \in F(\sigma)$ and $v \notin V(\sigma)$, then $v \notin V(\tau)$.

Part (iii). Part (ii) exhibits $\mathrm{St}_{K}(v)$ as the complement of a finite union of closed sets in $|K|$, so it is open. If $x \in|K|$, then $x \in \sigma^{\circ}$ for some σ, and if $v \in V(\sigma)$, then $x \in \mathrm{St}_{K}(v)$, so it is a cover.

Definition. Let K, L be Euclidean simplicial complexes. Let $f:|K| \rightarrow|L|$ be a continuous map, and let $\hat{g}: V(K) \rightarrow V(L)$. We say that \hat{g} is a simplicial approximation of f if $f\left(\mathrm{St}_{K}(v)\right) \subseteq$ $\mathrm{St}_{L}(\hat{\mathrm{~g}}(v))$ for all $v \in V(K)$.

Theorem. Let $\varphi: K^{\prime} \rightarrow K$ be a realisation of a Euclidean simplicial complex K, and let L be a Euclidean simplicial complex in \mathbb{R}^{M}. We define $g^{\prime}:\left|K^{\prime}\right| \rightarrow \mathbb{R}^{M}$ to be the affine linear map with $\left|g^{\prime}\right|(v)=\hat{g}(\varphi(v))$ if $v \in V\left(K^{\prime}\right)$. Let $|g|=\left|g^{\prime}\right| \circ|\varphi|^{-1}$. Then $|g|$ defines a simplicial map $g: K \rightarrow L$, and $|g| \sim f$.

Proof. Let $\sigma \in K$. We must show that $|g|(\sigma) \in L$. Let $x \in \sigma^{\circ}$ be an arbitrary point in the interior. Then $f(x) \in|L|$, so $f(x) \in \tau^{\circ}$ with $\tau \in L$. Then $x \in \bigcap_{v \in V(\sigma)} \mathrm{St}_{K}(v)$, so $f(x) \in \bigcap_{v \in V(\sigma)} f\left(\mathrm{St}_{K}(v)\right) \subseteq$ $\bigcap_{v \in V(\sigma)} \mathrm{St}_{L}(g(v))$ since g is a simplicial approximation of f. Now, if $v \in V(\sigma), f(x) \in \tau^{\circ}$ and $f(x) \in \mathrm{St}_{L}(g(v))$, so $g(v) \in \tau$ by part (i) of the lemma above. Hence, every vertex of $|g|(\sigma)$ is a vertex of τ, so $|g|(\sigma)$ is a face of $\tau \in L$, so $|g|(\sigma) \in L$ as required. So $g: K \rightarrow L$ is simplicial.
For the second part, we define $H:|K| \times I \rightarrow \mathbb{R}^{M}$ by $H(x, t)=t|g|(x)+(1-t) f(x)$. This is clearly a homotopy in \mathbb{R}^{M}, but we need to show it is a homotopy in $|L|$. Suppose $x \in \sigma^{\circ}$ and $f(x) \in \tau^{\circ}$ as before. Then $x=\sum_{v_{i} \in V(\sigma)} x_{i} v_{i}$, so $|g|(x)=\sum_{v_{i} \in V(\sigma)} x_{i}|g|\left(v_{i}\right) \in \tau$ since $|g|\left(v_{i}\right) \in \tau$. Since τ is convex, and $|g|(x), f(x) \in \tau$, we must have $H(x, t) \in \tau$ for $t \in[0,1]$. So $H:|K| \times I \rightarrow|L|$, which is the desired homotopy.

Theorem (simplicial approximation theorem). Let K, L be Euclidean simplicial complexes. Let $f:|K| \rightarrow|L|$ be a continuous map. Then there exists $r>0$ and a simplicial map $g: B^{r}(K) \rightarrow L$ such that $|g| \sim f$.

Note that $\left|B^{r}(K)\right|=|K|$, so $|g|:\left|B^{r}(K)\right| \rightarrow|L|$ can be thought of as a map $|K| \rightarrow|L|$.
Proof. We have the open cover $\left\{\operatorname{St}_{L}(v) \mid v \in V(L)\right\}$ of $|L| . f:|K| \rightarrow|L|$ is continuous, so $\left\{f^{-1}\left(\operatorname{St}_{L}(v)\right) \mid v \in V(L)\right\}$ is an open cover of $|K|$. Now, $|K|$ is a compact metric space, so we can apply the Lebesgue covering lemma to find $\delta>0$ and a function $|K| \rightarrow V(L)$ mapping x to some vertex v_{x} such that $B_{\delta}(x) \subseteq f^{-1}\left(\mathrm{St}_{L}\left(v_{x}\right)\right)$. Let r be a natural number such that $\mu\left(B^{r}(K)\right)<\delta$, and let $K^{\prime}=B^{r}(K)$. If $\sigma \in K^{\prime}$ and $x \in V(\sigma)$, then $\sigma \subseteq B_{\delta}(x)$, since $\mu\left(K^{\prime}\right)<\delta$. If $x \in V\left(K^{\prime}\right)$, then

$$
\mathrm{St}_{K^{\prime}}(x)=\bigcup_{\{\sigma \mid x \in V(\sigma)\}} \sigma^{\circ} \subseteq \bigcup_{\{\sigma \mid x \in V(\sigma)\}} \sigma \subseteq B_{\delta}(x)
$$

Hence, $f\left(\operatorname{St}_{K^{\prime}}(x)\right) \subseteq f\left(B_{\delta}(x)\right) \subseteq \operatorname{St}_{L}\left(v_{x}\right)$, so the function $\hat{g}: V\left(K^{\prime}\right) \rightarrow V(L)$ given by $\hat{g}(x)=v_{x}$ is a simplicial approximation of f. So by the previous theorem, \hat{g} determines a simplicial map $g: K^{\prime} \rightarrow L$ with $|g| \sim f$.

Corollary. Let K, L be Euclidean simplicial complexes, where $\operatorname{dim} K<\operatorname{dim} L$. Let $f:|K| \rightarrow$ $|L|$ be continuous. Then $f \sim|g|$ where $|g|$ is not surjective.

Proof. Let $g: B^{r}(K) \rightarrow L$ be a simplicial map such that $f \sim|g|$. Let $k=\operatorname{dim} B^{r}(K)=\operatorname{dim} K$. Then $|g|:|K| \rightarrow\left|L_{k}\right| \subsetneq|L|$ since $\operatorname{dim} L>k$. So $|g|$ is not surjective.

Remark. It is a general fact that simplicial functions map an i-skeleton into an i-skeleton for each i.
Theorem. If $k<n$, any continuous map $S^{k} \rightarrow S^{n}$ is null-homotopic.

Proof. $S^{k} \simeq\left|\mathbb{S}^{k}\right|$ and $S^{n} \simeq\left|\mathbb{S}^{n}\right|$. By the above corollary, $f \sim|g|$ where $|g|: S^{k} \rightarrow S^{n}$ is not surjective. Let $|g|: S^{k} \rightarrow S^{n} \backslash\{p\}$.

But $S^{n} \backslash\{p\} \simeq \mathbb{R}^{n}$ is contractible. So g^{\prime} is null-homotopic, so $|g| \sim \iota g^{\prime}$ is null-homotopic.

7 Simplicial homology

7.1 Chain complexes

Definition. A (finitely generated) chain complex ($C ., d$) is
(i) a collection of free (finitely generated) abelian groups C_{i} for $i \in \mathbb{Z}$ (and if finitely generated, $C_{i}=0$ for all but finitely many i);
(ii) a collection of homomorphisms $d_{i}: C_{i} \rightarrow C_{i-1}$;
(iii) $d_{i-1} \circ d_{i}=0$ for all i.

$$
\cdots \stackrel{d_{-2}}{\leftarrow} C_{-2} \stackrel{d}{-1}_{\leftarrow}^{r} C_{-1} \stackrel{d_{0}}{\leftarrow} C_{0} \stackrel{d_{1}}{\longleftarrow} C_{1} \stackrel{d_{2}}{\longleftarrow} C_{2} \stackrel{d_{3}}{\longleftarrow} \cdots
$$

Usually, we write $C .=\bigoplus_{i} C_{i}$, and $d=\bigoplus_{i} d_{i}: C . \rightarrow C$. We can check that $d_{i-1} \circ d_{i}=0$ for all i is equivalent to the statement that $d \circ d=d^{2}=0$.
Remark. Free finitely generated abelian groups are isomorphic to \mathbb{Z}^{n} for some n. A chain complex defined over \mathbb{Q}, \mathbb{R}, or \mathbb{F}_{p} is similar, except that C_{i} is a vector space over the $\mathbb{Q}, \mathbb{R}, \mathbb{F}_{p}$ and the d_{i} are linear maps. Every chain complex determines another chain complex over $\mathbb{Q}, \mathbb{R}, \mathbb{F}_{p}$ by replacing $\mathbb{Z}^{n_{i}}$ with $\mathbb{Q}^{n_{i}}$, for example, and the d_{i} are given by the same matrices.

Remark. There is a unique group homomorphism to and from the trivial abelian group 0. Arrows to and from this group can therefore be unlabelled.
Example (reduced chain complex of the simplex). Consider the reduced chain complex of Δ^{n}. We define $\left.\widetilde{C}_{k}\left(\Delta^{n}\right)=\left\langle e_{I}\right||I|=k+1, I \subseteq\{0, \ldots, n\}\right\rangle$, the free abelian group on a basis given by the e_{I}. We also define $d\left(e_{I}\right)=\sum_{j=0}^{|I|}(-1)^{j} e_{I_{\jmath}}$ where if $I=i_{0} i_{1} \ldots i_{k}$ and $i_{0}<\cdots<i_{k}$, we define $I_{\hat{J}}=I \backslash\left\{i_{j}\right\}$. For example, consider $\widetilde{C} .\left(\Delta^{2}\right)$.

$$
\widetilde{C}_{2}\left(\Delta^{2}\right)=\left\langle e_{012}\right\rangle ; \quad \widetilde{C}_{1}\left(\Delta^{2}\right)=\left\langle e_{01}, e_{02}, e_{12}\right\rangle ; \quad \widetilde{C}_{0}\left(\Delta^{2}\right)=\left\{e_{0}, e_{1}, e_{2}\right\} ; \quad \widetilde{C}_{-1}\left(\Delta^{2}\right)=\left\{e_{\varnothing}\right\}
$$

and, for example,

$$
\begin{gathered}
d\left(e_{012}\right)=(-1)^{0} e_{12}+(-1)^{1} e_{02}+(-1)^{2} e_{01}=e_{12}-e_{02}+e_{01} \\
d\left(e_{01}\right)=e_{1}-e_{0} ; \quad d\left(e_{02}\right)=e_{2}-e_{0} ; \quad d\left(e_{12}\right)=e_{2}-e_{1} ; \quad d\left(e_{0}\right)=d\left(e_{1}\right)=d\left(e_{2}\right)=e_{\varnothing}
\end{gathered}
$$

Note that $\widetilde{C}_{i}\left(\Delta^{2}\right)=0$ if $i<-1$ or $i>2$. We have $d^{2}\left(e_{012}\right)=d\left(e_{12}-e_{02}+e_{01}\right)=e_{2}-e_{1}-e_{2}+e_{0}+$ $e_{1}-e_{0}=0$, as required.

$$
0 \longleftarrow \widetilde{C}_{-1} \stackrel{d_{0}}{\longleftarrow} \widetilde{C}_{0} \stackrel{d_{1}}{\longleftarrow} \widetilde{C}_{1} \stackrel{d_{2}}{\longleftarrow} \widetilde{C}_{2} \longleftarrow 0
$$

Proposition. For $\widetilde{C} .\left(\Delta^{n}\right), d^{2}=0$.

Proof. The e_{I} are a basis for $\widetilde{C} .\left(\Delta^{n}\right)$, so it suffices to check that $d^{2}\left(e_{I}\right)=0$ for each I. For some $c_{j j^{\prime}}$, we have $d^{2}\left(e_{I}\right)=\sum_{j<j^{\prime}} c_{j j^{\prime}} e_{I_{j, j^{\prime}}}$ where $I_{\hat{j}, j^{\prime}}=I \backslash\left\{i_{j}, i_{j^{\prime}}\right\}$. We can compute that $c_{j j^{\prime}}$ has a contribution of $(-1)^{j}(-1)^{j^{\prime}-1}$ by first considering j then j^{\prime}, since $i_{j^{\prime}}$ is the $\left(j^{\prime}-1\right)$ th element of $I_{\hat{j}}$. Note also that by computing the term in the sum with j, j^{\prime} in the other order, we have a contribution of $(-1)^{j^{\prime}}(-1)^{i}$. Hence $c_{j j^{\prime}}=(-1)^{j}(-1)^{j^{\prime}-1}+(-1)^{j^{\prime}}(-1)^{i}=0$.

Example (chain complex of the simplex). The chain complex of Δ^{n} is defined by $C_{i}\left(\Delta^{n}\right)=\widetilde{C}_{i}\left(\Delta^{n}\right)$ if $i \geq 0$, but $C_{-1}\left(\Delta^{n}\right)=0$. This removes the empty face e_{\varnothing}. The d_{i} are unchanged.

$$
0 \longleftarrow C_{0} \stackrel{d_{1}}{\longleftarrow} C_{1} \stackrel{d_{2}}{\longleftarrow} C_{2} \longleftarrow 0
$$

Definition. Let K be an abstract simplicial complex in Δ^{n}. Let

$$
\left.\widetilde{C}_{k}(K)=\left\langle e_{I}\right||I|=k+1, e_{I} \in K\right\rangle \leq \widetilde{C}_{k}\left(\Delta^{n}\right)
$$

Since $e_{I} \in K$ implies $e_{I_{j}} \in K, d_{k}: \widetilde{C}_{k}(K) \rightarrow \widetilde{C}_{k-1}(K)$. So ($\left.\widetilde{C} .(K), d\right)$ is a chain complex.

Definition. Let $(C ., d)$ be a chain complex, and let $x \in C_{k}$. We say that x is a cycle or closed if $d x=0$, so $x \in \operatorname{ker} d_{k}$. We say that x is a boundary or exact if $x=d y$ for some y, so $x \in \operatorname{Im} d_{k+1}$.

Remark. The statement $d^{2}=0$ is equivalent to the statement $\operatorname{Im} d_{k+1} \subseteq \operatorname{ker} d_{k}$ for each k, so boundaries are always cycles.

7.2 Homology groups

Definition. Let $(C ., d)$ be a chain complex. Its kth homology group is

$$
H_{k}(C)=\operatorname{ker} d_{k} / \operatorname{Im} d_{k+1}
$$

Remark. Homology groups are abelian.

Example. Consider $\widetilde{C} .\left(\Delta^{2}\right)$. Recall $\widetilde{C}_{2}=\left\langle e_{012}\right\rangle$ and $d\left(e_{012}\right)=e_{12}-e_{02}+e_{01}$. Hence ker $d_{2}=0$ and $\operatorname{Im} d_{3}=0$, so $H_{2}\left(\widetilde{C} .\left(\Delta^{2}\right)\right)=0$.

We have $\widetilde{C}_{1}=\left\langle e_{12}, e_{02}, e_{01}\right\rangle$, and $d\left(a e_{01}+b e_{12}+c e_{02}\right)=a\left(e_{1}-e_{0}\right)+b\left(e_{2}-e_{1}\right)+c\left(e_{2}-e_{0}\right)=$ $-(a+c) e_{0}+(a-b) e_{1}+(b+c) e_{2}$. Hence $a e_{01}+b e_{12}+c e_{02} \in$ ker d if and only if $a=b=-c$. So $x \in\left\langle e_{12}-e_{02}+e_{01}\right\rangle=\operatorname{Im} d_{2}$, giving $H_{1}\left(\widetilde{C} .\left(\Delta^{2}\right)\right)=0$.
We have $\widetilde{C}_{0}=\left\langle e_{0}, e_{1}, e_{2}\right\rangle$ and $d\left(e_{i}\right)=e_{\varnothing}$, so ker $d_{0}=\left\{a e_{0}+b e_{1}+c e_{2} \mid a+b+c=0\right\}$. Conversely, $\operatorname{Im} d_{1}=\operatorname{span}\left\{e_{1}-e_{0}, e_{2}-e_{0}, e_{2}-e_{1}\right\}=\operatorname{ker} d_{0}$. So in fact $H_{0}\left(\widetilde{C} .\left(\Delta^{2}\right)\right)=0$.

Now $\widetilde{C}_{-1}=\left\langle e_{\varnothing}\right\rangle=\operatorname{ker} d_{-1}=\left\langle e_{\varnothing}\right\rangle=\operatorname{Im} d_{0}$ so $H_{-1}\left(\widetilde{C} .\left(\Delta^{2}\right)\right)=0$. So all of the homology groups of $\widetilde{C} .\left(\Delta^{2}\right)$ are trivial. Note that

$$
H_{i}\left(C .\left(\Delta^{2}\right)\right)= \begin{cases}H_{i}\left(\widetilde{C} .\left(\Delta^{2}\right)\right) & i>0 \\ \left\langle e_{0}, e_{1}, e_{2}\right\rangle / \operatorname{span}\left\{e_{1}-e_{0}, e_{2}-e_{0}, e_{2}-e_{1}\right\} \simeq \mathbb{Z} & i=0\end{cases}
$$

Definition. Let K be an abstract simplicial complex in Δ^{n}. Then we define the i th reduced homology group of K to be $\widetilde{H}_{i}(K)=H_{i}(\widetilde{C} .(K))$. Then $C .(K)=\widetilde{C} .(K) /\left\langle e_{\varnothing}\right\rangle$ is a chain complex, and $H_{i}(K)=H_{i}(C .(K))$ is the i th homology group of K.

Example. Let $K=\left\{e_{0}, e_{1}, \ldots, e_{r}, e_{\varnothing}\right\}$, so $|K|$ is a collection of $r+1$ disjoint points. In this case, $\widetilde{C}_{i}(K)=$ 0 for $i>0 . \widetilde{C}_{0}(K)=\left\langle e_{0}, \ldots, e_{r}\right\rangle$ and $d\left(e_{i}\right)=\varnothing . \widetilde{C}_{-1}(K)=\left\langle e_{\varnothing}\right\rangle$. Hence ker $d_{0}=\left\langle e_{1}-e_{0}, \ldots, e_{r}-e_{0}\right\rangle$ and $\operatorname{Im} d_{1}=0$, so $H_{0}(\widetilde{C} .(K))=\mathbb{Z}^{r}$, and $H_{-1}(\widetilde{C} .(K))=0$. Note that $H_{0}(C .(K))=\mathbb{Z}^{r+1}=\left\langle e_{0}, \ldots, e_{r}\right\rangle$.
Example. Recall that any Euclidean simplicial complex is realised by an abstract simplicial complex, but we have choice in the labelling of the vertices. Let T_{n} be the boundary of a convex n-gon in \mathbb{R}^{2}. Then the abstract simplicial complex

$$
K^{\prime}=\left\{e_{\varnothing}, e_{0}, \ldots, e_{n-1}, e_{01}, e_{12}, \ldots, e_{(n-2)(n-1)}, e_{(n-1) 0}\right\}
$$

in Δ^{n-1} realises T_{n}. Then

$$
\begin{aligned}
& C_{1}\left(K^{\prime}\right)=\left\langle e_{01}, e_{12}, \ldots, e_{(n-2)(n-1)}, e_{(n-1) 0}\right\rangle \\
& C_{0}\left(K^{\prime}\right)=\left\langle e_{0}, \ldots, e_{n-1}\right\rangle
\end{aligned}
$$

We have $d\left(e_{i(i+1)}\right)=e_{i+1}-e_{i}$, so ker $d_{1}=\langle x\rangle$ where

$$
x=e_{01}+e_{12}+\cdots+e_{(n-2)(n-1)}-e_{0(n-1)}
$$

Note that $\operatorname{Im} d_{1}=\operatorname{span}\left\{e_{i+1}-e_{i}\right\}$. Hence

$$
\begin{aligned}
& H_{1}\left(K^{\prime}\right)=\operatorname{ker} d_{1} / \operatorname{Im} d_{2}=\langle x\rangle / 0 \simeq \mathbb{Z} \\
& H_{0}\left(K^{\prime}\right)=\operatorname{ker} d_{0} / \operatorname{Im} d_{1}=\left\langle e_{0}, \ldots, e_{n-1}\right\rangle / \operatorname{span}\left\{e_{1}-e_{0}, \ldots, e_{n-1}-e_{n-2}\right\} \simeq \mathbb{Z}
\end{aligned}
$$

Note that this result does not depend on the choice of n, and $\left|T_{n}\right| \simeq S^{1}$ also does not depend on n. In fact, H. (K) depends only on $|K|$.

7.3 Chain maps

Definition. Let $\left(C_{.}, d\right)$ and $\left(C^{\prime}, d^{\prime}\right)$ be chain complexes. A chain map $f: C . \rightarrow C^{\prime}$, is
(i) for each i, a homomorphism $f_{i}: C_{i} \rightarrow C_{i}^{\prime}$, such that
(ii) $f_{i-1} \circ d_{i}=d_{i}^{\prime} \circ f_{i}$.

Remark. We can interpret f as $\bigoplus_{i} f_{i}: C . \rightarrow C^{\prime}$, given by a block matrix

$$
\left(\begin{array}{ccc}
f_{n} & & \\
& f_{n-1} & \\
& & \ddots
\end{array}\right)
$$

Then part (ii) of the definition is equivalent to the statement $d^{\prime} f=f d$.
If $x \in \operatorname{ker} d$, we write $[x] \in H$.(C) for its image under the map ker $d \rightarrow$ ker $d / \operatorname{Im} d$.
Remark. $f($ ker $d) \subseteq$ ker d^{\prime} because if $d x=0$, we have $d^{\prime}(f(x))=f(d(x))=f(0)=0 . f(\operatorname{Im} d) \subseteq$ Im d^{\prime}, because if $x=d y$, we have $f(x)=f(d(y))=d^{\prime}(f(y))$. So f descends to a well-defined homomorphism $f_{\star}:$ ker $d / \operatorname{Im} d \rightarrow$ ker $d^{\prime} / \operatorname{Im} d^{\prime}$ such that $f_{\star}([x])=[f(x)]$. So $f_{\star}: H .(C) \rightarrow H_{.}\left(C^{\prime}\right)$. This is called the map induced by f.
Remark. The composition of two chain maps is a chain map, and $(f \circ g)_{\star}=f_{\star} \circ g_{\star}$.
Let K be an abstract simplicial complex in Δ^{n}, and L be an abstract simplicial complex in Δ^{m}. Let $f: K \rightarrow L$ be a simplicial map, so it is determined by $\hat{f}:\{0, \ldots, n\} \rightarrow\{0, \ldots, m\}$. We wish to define a chain map $f_{\sharp}: C .(K) \rightarrow C .(L)$, which will induce $f_{\star}: H_{.}(K) \rightarrow H_{.}(L)$. Perhaps the most obvious guess would be to define $f_{\sharp}\left(e_{I}\right)=f\left(e_{I}\right)=e_{\hat{f}(I)}$. This is not the correct definition.
First, consider $f: \Delta^{1} \rightarrow \Delta^{1}$ given by $e_{0} \mapsto e_{0}, e_{1} \mapsto e_{0}$. Then $f\left(e_{01}\right)=e_{0}$, but $e_{01} \in C_{1}\left(\Delta^{1}\right)$ and $e_{0} \in C_{0}\left(\Delta^{1}\right)$. So f does not preserve grading, and hence cannot be a chain map.

Consider also $f: \Delta^{1} \rightarrow \Delta^{1}$ given by $e_{0} \mapsto e_{1}$ and $e_{1} \mapsto e_{0}$. Now, $f\left(e_{01}\right)=e_{01}, f\left(e_{0}\right)=e_{1}, f\left(e_{1}\right)=e_{0}$, so $d f\left(e_{01}\right)=d\left(e_{01}\right)=e_{1}-e_{0}$ but $f d\left(e_{01}\right)=f\left(e_{1}-e_{0}\right)=e_{0}-e_{1}$.
The solution to both problems is to change our perspective on the indices I. Until now, we have defined $I \subseteq\{0, \ldots, n\}$ and written $I=i_{0} i_{1} \ldots i_{k}$ where $i_{0}<\cdots<i_{k}$. Instead, we will allow $I \in$ $\{0, \ldots, n\}^{k+1}$, so $I=\left(i_{0}, i_{1}, \ldots, i_{k}\right)=i_{0} i_{1} \ldots i_{k}$ with no restriction on order. For instance, e_{00}, e_{10} are permitted.

We impose relations on the set of all such I to form an abelian group generated by equivalence classes of the $\{0, \ldots, n\}^{k+1}$. We will define that $e_{I}=-e_{I^{\prime}}$ when I, I^{\prime} are related by switching two indices; so $e_{102}=-e_{012}=e_{210}$. If e_{I} contains a repetition, we require $e_{I}=0$.
More concretely, if $I \in\{0, \ldots, n\}^{k+1}$, let I^{\prime} be the unique ordered permutation of I if I has no repetitions. Then $e_{I}=(-1)^{S(I)} e_{I^{\prime}}$ if I has no repetitions, and $e_{I}=0$ if I has a repetition, where $(-1)^{S(I)}$ is the sign of the permutation $\sigma \in S^{k+1}$ mapping I to I^{\prime}. If we draw I and I^{\prime} in order as a bipartite planar graph, connected by matching labels, $S(I)$ is the number of crossings.

Lemma. Let $i_{j} \in I$, and suppose i_{j} is in position $i_{j^{\prime}}$ in I^{\prime}. Then $S(I)-S\left(I_{j}\right) \equiv j-j^{\prime} \bmod 2$.

Proposition. Let $I \in\{0, \ldots, n\}^{k+1}$. Then $d\left(e_{I}\right)=\sum_{j=0}^{k}(-1)^{j} e_{I_{\hat{\jmath}}}$, where $I_{\hat{\jmath}}$ is obtained from I by omitting the j th entry in the tuple I.

We have already defined d for ordered sequences of indices; this proposition states that this formula holds for all sequences of indices.

Proof.

$$
\sum_{j=0}^{k}(-1)^{k} e_{I_{j}}=\sum_{j=0}^{k}(-1)^{j}(-1)^{S\left(I_{j}\right)} e_{I_{j}^{\prime}}=\sum_{j=0}^{k}(-1)^{j^{\prime}}(-1)^{S(I)} e_{\left(I^{\prime}\right)_{j}}=(-1)^{S(I)} d\left(e_{I^{\prime}}\right)=d\left(e_{I}\right)
$$

Example. $d\left(e_{210}\right)=(-1)^{0} e_{10}+(-1)^{1} e_{20}+(-1)^{2} e_{21}=-e_{01}+e_{02}-e_{12}=d\left(-e_{012}\right)$, where by definition, $e_{210}=-e_{012}$ so $d\left(e_{210}\right)=-d\left(e_{012}\right)$.

Definition. Let $f: K \rightarrow L$ be a simplicial map. Then $f_{\sharp}: C_{k}(K) \rightarrow C_{k}(L)$ is defined by $f_{\sharp}\left(e_{I}\right)=e_{\hat{f}(I)}$ where if $I=\left(i_{0}, \ldots, i_{k}\right)$ we define $\hat{f}(I)=\left(\hat{f}\left(i_{0}\right), \ldots, \hat{f}\left(i_{k}\right)\right)$.

This definition of $f_{\#}$ preserves grading.

Proposition. f_{\sharp} is a chain map.

Proof.

$$
d\left(f_{\sharp}\left(e_{I}\right)\right)=d\left(e_{\hat{f}(I)}\right)=\sum_{j=0}^{k}(-1)^{j} e_{(\hat{f}(I))_{\hat{j}}}=f_{\sharp}\left(\sum_{j=0}^{k}(-1)^{j} e_{I_{\hat{j}}}\right)=f_{\sharp}\left(d\left(e_{I}\right)\right)
$$

Example. Let $f: \Delta^{1} \rightarrow \Delta^{1}$ be the simplicial map defined by $f\left(e_{0}\right)=e_{0}$ and $f\left(e_{1}\right)=e_{0}$. Then $f_{\#}\left(e_{01}\right)=e_{00}=0$.
Now let $f\left(e_{0}\right)=e_{1}$ and $f\left(e_{1}\right)=e_{0}$. Then $f_{\sharp}\left(e_{01}\right)=e_{10}=-e_{01}, f_{\sharp}\left(e_{0}\right)=e_{1}, f_{\sharp}\left(e_{1}\right)=e_{0}$. So $d\left(f_{\sharp}\left(e_{01}\right)\right)=-d\left(e_{01}\right)=e_{0}-e_{1}=f\left(d\left(e_{01}\right)\right)$.

7.4 Chain homotopies

Definition. Let $f_{0}, f_{1}:(C, d) \rightarrow\left(C^{\prime}, d^{\prime}\right)$ be chain maps. Then f_{0} is chain homotopic to f_{1}, written $f_{0} \sim f_{1}$, if there are
(i) homomorphisms $h_{i}: C_{i} \rightarrow C_{i+1}^{\prime}$, where we write $h=\bigoplus_{i} h_{i}$, satisfying
(ii) $d^{\prime} h+h d=f_{0}-f_{1}$.

In this case, we say h is the chain homotopy.

Example. Suppose $f_{0}, f_{1}: X \rightarrow Y$ are homotopic maps via H. Suppose $X=\Delta^{n}$.

Here,

$$
\partial\left(H\left(\Delta^{n}\right)\right)=H\left(\partial \Delta^{n}\right) \cup f_{1}\left(\Delta^{n}\right) \cup f_{0}\left(\Delta^{n}\right) \Longrightarrow \partial H+H \partial=f_{1}+f_{0}
$$

without considering signs.

Lemma. If $f_{1} \sim f_{0}$, then $f_{1 \star}=f_{0 \star}: H .(C) \rightarrow H .\left(C^{\prime}\right)$.

Proof. Let $[x] \in H .(C)$. Then $d x=0$. So

$$
f_{1 \star}[x]-f_{0 \star}[x]=\left[\left(f_{1}-f_{0}\right) x\right]=\left[\left(d^{\prime} h+h d\right) x\right]=\left[d^{\prime} h(x)\right]=0
$$

since $d^{\prime} h(x) \in \operatorname{Im} d^{\prime}$.

Definition. We say a chain complex (C, d) is contractible if $\operatorname{id}_{C} \sim 0_{C}$, where 0_{C} is the zero map.

Lemma. Let (C, d) be contractible. Then $H .(C)=0$.

Proof. Let $[x] \in H .(C)$. Then $[x]=\operatorname{id}_{\star}[x]=0_{\star}[x]=[0]$. So $H_{k}(C)$ is the trivial group for each k.

Definition. Let K be an abstract simplicial complex in Δ^{n}. Let $e_{0} \notin K$. Then the cone is $C_{e_{0}}(K)=K \cup\left\{e_{0 I} \mid e_{I} \in K\right\}$.

Remark. $C_{e_{0}}(K)$ is an abstract simplicial complex. If K^{\prime} is a realisation of K, where $e_{0} \notin K$ and K^{\prime} is independent of p, then $C_{p}\left(K^{\prime}\right)$ is a realisation of $C_{e_{0}}(K)$.

Example. Consider $\hat{\Delta}^{n}=\left\{e_{I} \in \Delta^{n+1} \mid 0 \notin I\right\} \simeq \Delta^{n}$. Then $C_{e_{0}}\left(\hat{\Delta}^{n}\right)=\Delta^{n+1}$.
Proposition. $\widetilde{C} .\left(C_{e_{0}}(K)\right)$ is contractible.

Proof. Define $h: \widetilde{C}_{k}\left(C_{e_{0}}(K)\right) \rightarrow \widetilde{C}_{k+1}\left(C_{e_{0}}(K)\right)$ by $h\left(e_{I}\right)=e_{0 I}$. Note that if $0 \in I$, then $e_{0 I}=0$.
If $0 \in I$ then $d h\left(e_{I}\right)=0$, and $h d\left(e_{I}\right)=h\left(\sum_{j=0}^{k}(-1)^{j} e_{I_{j}}\right)=h\left(e_{I \backslash\{0\}}+\sum e_{I^{\prime}}\right)$ where $0 \in I^{\prime}$. Then $h d\left(e_{I}\right)=e_{I}+0=e_{I}$. Otherwise, if $0 \notin I$, then $d h\left(e_{I}\right)=d\left(e_{0 I}\right)=e_{I}+\sum_{j=0}^{k}(-1)^{k+1} e_{0 I_{j}}=e_{I}-h\left(d e_{I}\right)$. In either case, $d h+h d=\mathrm{id}$.

Corollary. $\widetilde{H} .\left(C_{e_{0}}(K)\right)=0$. In particular,

$$
H_{i}\left(C_{e_{0}}(K)\right)= \begin{cases}\mathbb{Z} & i=0 \\ 0 & i \neq 0\end{cases}
$$

Proof. Let $\widetilde{C} .\left(C_{e_{0}}(K)\right)=(\widetilde{C}, \widetilde{d})$, and $C .\left(C_{e_{0}}(K)\right)=(C, d)$. The first part follows from the previous result. For the second part, note that $\widetilde{H}_{-1}\left(C_{e_{0}}(K)\right)=0$, so $\widetilde{d}_{0}: \widetilde{C}_{0} \rightarrow \widetilde{C}_{-1}=\left\langle e_{\varnothing}\right\rangle \simeq \mathbb{Z}$ is surjective. So $\mathbb{Z} \simeq \operatorname{Im} \widetilde{d}_{0} \simeq \widetilde{C}_{0} / \operatorname{ker} \widetilde{d}_{0} \simeq \widetilde{C}_{0} / \operatorname{Im} \widetilde{d}_{1}$ since $\widetilde{H}_{0}(C)=0$. But $\widetilde{C}_{0} / \operatorname{Im} \widetilde{d}_{1} \simeq C_{0} / \operatorname{Im} d_{1}=\operatorname{ker} d_{0} / \operatorname{Im} d_{1}=$ $H_{0}\left(C_{e_{0}}(K)\right)$. For $i \geq 0$, note that $\operatorname{ker} \widetilde{d}_{i}=\operatorname{ker} d_{i}$ and $\operatorname{Im} \widetilde{d}_{i+1}=\operatorname{Im} d_{i+1}$. Hence $H_{i}(\widetilde{C})=H_{i}(C)$ for $i>0$.

Definition. Let $\mathbb{S}^{n}=\Delta^{n} \backslash e_{0 \ldots n}$. Then

$$
H_{i}\left(\mathbb{S}^{n}\right)= \begin{cases}\mathbb{Z} & i=0, n \\ 0 & \text { otherwise }\end{cases}
$$

Proof. Similar to the previous proof, but now we remove the 'top' generator instead of the 'bottom' one.

Alternatively, we can prove this fact using the results from the next subsection.

7.5 Exact sequences

Definition. Let A_{k} be a sequence of abelian groups for $k \in \mathbb{Z}$, and $f_{k}: A_{k} \rightarrow A_{k-1}$ be homomorphisms. We say that the sequence is exact at A_{k} if $\operatorname{ker} f_{k}=\operatorname{Im} f_{k+1}$. If it is exact at all A_{k}, we say the sequence is exact.

$$
\cdots \xrightarrow{f_{k+2}} A_{k+1} \xrightarrow{f_{k+1}} A_{k} \xrightarrow{f_{k}} A_{k-1} \xrightarrow{f_{k-1}} \cdots
$$

Example.

$$
0 \longrightarrow A \xrightarrow{f} B
$$

is exact at A if and only if f is injective.

$$
B \xrightarrow{g} C \longrightarrow 0
$$

is exact at C if and only if g is surjective.

$$
0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0
$$

is exact if and only if f is injective, g is surjective, and $g: B / \operatorname{Im} f \rightarrow C$ is an isomorphism, so $C \simeq$ $B / \operatorname{Im} f$. An exact sequence of the form

$$
0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0
$$

is called a short exact sequence.
Definition. Let $g: B \rightarrow C$. Then the cokernel of g is coker $g=C / \operatorname{Im} g$.
In general, a sequence is exact if and only if

$$
0 \longrightarrow \operatorname{coker} f_{k+1} \xrightarrow{f_{k+1}} A_{k} \xrightarrow{f_{k}} \operatorname{ker} f_{k-1} \longrightarrow 0
$$

is a short exact sequence for every k.
Definition. A short exact sequence of chain complexes is a short exact sequence

$$
0 \longrightarrow A . \xrightarrow{f} B . \xrightarrow{g} C . \longrightarrow 0
$$

where $A ., B_{\text {. }}, C$. are chain complexes, and f, g are chain maps.
Equivalently, we have the diagram

where all squares commute since f, g are chain maps, and all rows are exact.

Lemma (snake lemma). Let $0 \longrightarrow A . \stackrel{f}{\longrightarrow} B . \xrightarrow{g} C . \longrightarrow 0$ be a short exact sequence of chain complexes. Then there is an exact sequence

The homomorphism ∂_{k} is called the connecting homomorphism. Since this exists for all k, this gives a long exact sequence of homology groups.

Proof. Let $[c] \in H_{k}(C)$, so $d c=0$. Then,
(i) g is surjective, so we can choose $b \in B_{k}$ such that $g(b) \in c$.
(ii) $g(d b)=d g(b)=d c=0$, so $d b \in \operatorname{ker} g$. Since the sequence is exact at B, we have $d b=f(a)$ for some $a \in A_{k-1}$.
(iii) $f(d a)=d(f a)=d^{2}(b)=0$. Since f is injective, $d a=0$.

We then define $\partial_{k}[c]=[a] \in H_{k-1}(A)$. To visualise the above argument, the following diagrams can be overlaid; the first diagram shows the groups, and the second diagram shows the corresponding elements.

This definition does not depend on any choices that we made; for example, $[c]=\left[c^{\prime}\right]$ implies $\partial_{k}[c]=$ $\partial_{k}\left[c^{\prime}\right]$.
(i) If $g\left(b^{\prime}\right)=c$, then $g\left(b-b^{\prime}\right)=0$. By exactness, $b-b^{\prime}=f(\alpha)$. Then $d b-d b^{\prime}=f(d(\alpha))$. Let $f(a)=d b$ and $f\left(a^{\prime}\right)=d b^{\prime}$. So $a-a^{\prime}=d \alpha$, so $[a]=\left[a^{\prime}\right]$.
(ii) Suppose $[c]=\left[c^{\prime}\right]$. Then $c-c^{\prime}=d \gamma$ for $\gamma \in C_{k+1} . g$ is surjective, so let $\gamma=g(\beta)$. Then $b-b^{\prime}=d \beta$, so $d b=d b^{\prime}$. Since $a=a^{\prime}$, we have $[a]=\left[a^{\prime}\right]$.

We need to check exactness. We will show that ker \subseteq Im in each case, the other direction is left as an exercise.
(i) Consider $H_{k}(C)$. If $\partial_{k}[c]=0$, then $a=d \alpha$ for $\alpha \in A_{k}$. Then $d(f(\alpha))=f(d \alpha)=f(a)=d b$. So $d(b-f(\alpha))=0$, giving $[b-f(\alpha)] \in H_{k}(B)$. Then $g_{\star}[b-f(\alpha)]=[g(b)-g(f(\alpha))]=[g(b)]=[c]$ by exactness. So $[c] \in \operatorname{Im} g_{\star}$ as required.
(ii) Consider $H_{k}(B)$. If $g_{\star}[b]=0$, then $g(b)=d \gamma$ for some $\gamma \in C_{k+1} . g$ is surjective, so $\gamma=g(\beta)$ for $\beta \in B_{k+1}$. Then $g(b-d \beta)=c-d g(\beta)=c-c=0$, so $b-d \beta=f(\alpha)$ for $\alpha \in A_{k}$. So $f(d \alpha)=d f(\alpha)=d b-d^{2} \beta=0$. Hence $[b]=[b-d \beta]=f_{\star}[\alpha]$. So $[\beta] \in \operatorname{Im} f_{\star}$.
(iii) Consider $H_{k-1}(A)$. If $f_{\star}[a]=0$, then $f(a)=d b$ for some b in B_{k-1}. Then $[a]=\partial_{k}[g(b)]$ since $d g(b)=g(d b)=g(f(a))=0$. So $[a] \in \operatorname{Im} \partial_{k}$.

Example. Let $B=C .\left(\Delta^{n}\right)$, and $A=C .\left(\mathbb{S}^{n-1}\right)$. Let C be defined by

$$
C_{k}= \begin{cases}\left\langle e_{0 \ldots n}\right\rangle & k=n \\ 0 & \text { otherwise }\end{cases}
$$

Note that

$$
H_{k}(C)= \begin{cases}\mathbb{Z} & k=n \\ 0 & \text { otherwise }\end{cases}
$$

Let $n>1$. Then we have a short exact sequence $0 \longrightarrow \mathbb{S}^{n-1} \xrightarrow{f} \Delta^{n} \xrightarrow{g} C \longrightarrow 0$ and hence we have

Now, letting $k=n$, we can therefore find the exact sequence

By exactness at \mathbb{Z} and $H_{n-1}\left(\mathbb{S}^{n-1}\right), \partial_{k}$ is an isomorphism. Hence $H_{n-1}\left(\mathbb{S}^{n-1}\right)=\mathbb{Z}$.

7.6 Mayer-Vietoris sequence

Let K_{1}, K_{2} be abstract simplicial complexes in Δ^{n}. Then $K_{1} \cap K_{2}$ and $K_{1} \cup K_{2}$ are also abstract simplicial complexes in Δ^{n}. We have the following commutative square of simplicial maps given by inclusion.

This induces a commutative square of chain maps as shown.

Proposition. Let K_{1}, K_{2} be abstract simplicial complexes in Δ^{n}. Then the sequence

$$
0 \longrightarrow C .\left(K_{1} \cap K_{2}\right) \xrightarrow{i} C .\left(K_{1}\right) \oplus C .\left(K_{2}\right) \xrightarrow{j} C .\left(K_{1} \cup K_{2}\right) \longrightarrow 0
$$

is a short exact sequence of chain complexes, where

$$
i=\binom{i_{1 \sharp}}{i_{2 \sharp}} ; \quad j=\left(\begin{array}{ll}
j_{1 \sharp} & -j_{2 \sharp}
\end{array}\right)
$$

Proof. We must check exactness at each location. $i_{1 \sharp}$ is injective, so i is injective.
If $j((a, b))=0$, then $j_{1 \sharp}(a)=j_{2 \sharp}(b)$, so $a=b \in C .\left(K_{1}\right) \cap C .\left(K_{2}\right)=C .\left(K_{1} \cap K_{2}\right)$. Hence $(a, b)=i(a)$, so ker $j \subseteq \operatorname{Im} i$. For the other direction, $g f(a)=\left(j_{1 \sharp} \circ i_{1 \sharp}\right)(a)-\left(j_{2 \sharp} \circ i_{2 \sharp}(a)\right)=0$ since the square of inclusion maps commutes. So $\operatorname{Im} i \subseteq \operatorname{ker} j$, so the sequence is exact at $C .\left(K_{1}\right) \oplus C .\left(K_{2}\right)$.

Let $e_{I} \in K_{1} \cup K_{2}$. Then $e_{I} \in K_{1}$ or $e_{I} \in K_{2}$. If $e_{I} \in K_{1}$ then $e_{I}=j\left(\left(e_{I}, 0\right)\right)$. If $e_{I} \in K_{2}$ then $e_{I}=$ $j\left(\left(0,-e_{I}\right)\right)$. So $e_{I} \in \operatorname{Im} j$ in either case. Since the e_{I} form a free basis, j is surjective as required.

Theorem (Mayer-Vietoris sequence). Let K_{1}, K_{2} be abstract simplicial complexes in Δ^{n}. Then there is a long exact sequence

Proof. Follows from the above theorem and the snake lemma.
Example. Let K_{1}, K_{2} be abstract simplicial complexes in Δ^{n}, Δ^{m}. Then let $K_{1} \amalg K_{2} \subset \Delta^{n+m+1}$ be the abstract simplicial complex where the vertices of Δ^{n+m+1} are $e_{0}, \ldots, e_{n}, e_{0}^{\prime}, \ldots, e_{m}^{\prime}$, and we embed K_{1} and K_{2} into $K_{1} \amalg K_{2}$ in the natural way. More precisely, $e_{I} \in K_{1}$ gives $e_{I} \in K_{1} \amalg K_{2}$, and $e_{I} \in K_{2}$ gives $e_{J}^{\prime} \in K_{1} \amalg K_{2}$. Then $\left|K_{1} \amalg K_{2}\right|=\left|K_{1}\right| \amalg\left|K_{2}\right| . K_{1} \amalg K_{2}=K_{1} \cup K_{2}^{\prime}$ where K_{1}, K_{2}^{\prime} are disjoint abstract simplicial complexes in Δ^{n+m+1}, so $K_{1} \cap K_{2}^{\prime}=\left\{e_{\varnothing}\right\}$. The Mayer-Vietoris sequence gives

$$
\begin{aligned}
& H_{k}\left(\left\{e_{\varnothing}\right\}\right) \xrightarrow{i_{\star}} H_{k}\left(K_{1}\right) \oplus H_{k}\left(K_{2}\right) \xrightarrow{j_{\star}} H_{k}\left(K_{1} \amalg K_{2}\right) \\
\rightarrow & H_{k-1}\left(\left\{e_{\varnothing}\right\}\right) \xrightarrow{\partial_{k}} H_{k-1}\left(K_{1}\right) \oplus H_{k-1}\left(K_{2}\right) \xrightarrow{j_{\star}} H_{k-1}\left(K_{1} \amalg K_{2}\right)
\end{aligned}
$$

Note that $H_{k}\left(\left\{e_{\varnothing}\right\}\right)=0$. Hence, the sequence

$$
0 \longrightarrow H_{k}\left(K_{1}\right) \oplus H_{k}\left(K_{2}\right) \longrightarrow H_{k}\left(K_{1} \amalg K_{2}\right) \longrightarrow 0
$$

is exact. So $H_{k}\left(K_{1}\right) \oplus H_{k}\left(K_{2}\right) \simeq H_{k}\left(K_{1} \amalg K_{2}\right)$.

7.7 Homology of triangulable spaces

Theorem. Let $f_{0}, f_{1}: K \rightarrow L$ be simplicial approximations to a continuous map $F:|K| \rightarrow$ $|L|$. Then $f_{0 \sharp} \sim f_{1 \sharp}$, so $f_{0 \star}=f_{1 \star}$.

Theorem. There is an isomorphism $\nu_{K}: H_{.}(B K) \rightarrow H_{.}(K)$ such that $\nu_{K}=f_{\star}$ where $f: B K \rightarrow K$ is any simplicial approximation to the identity map on $|K|$.

Definition. Let $F:|K| \rightarrow|L|$ be continuous. By the simplicial approximation theorem, there exists $f: B^{r} \rightarrow L$ that is a simplicial approximation to F. Define $F_{\star}: H_{.}(K) \rightarrow H_{.}(L)$ by $F_{\star}=f_{\star} \circ \nu_{K, r}^{-1}$.

Theorem. F_{\star} is well-defined, so does not depend on the choice of $f .\left(\mathrm{id}_{K}\right)_{\star}=\mathrm{id}_{H .(K)}$. Further, $(F \circ G)_{\star}=F_{\star} \circ G_{\star}$.

Theorem. Let $F_{0}, F_{1}:|K| \rightarrow|L|$ be continuous with $F_{0} \sim F_{1}$. Then $F_{0 \star}=F_{1 \star}$.

Proposition. Let $|K| \sim|L|$. Then $H .(K) \simeq H$. (L).

Proof. Let $F:|K| \rightarrow|L|$ and $G:|L| \rightarrow|K|$ be functions such that $F \circ G \sim \operatorname{id}_{|L|}$ and $G \circ F \sim \operatorname{id}_{|K|}$. Then $F_{\star} \circ G_{\star}=\operatorname{id}_{H .(L)}$ and $G_{\star} \circ F_{\star}=\operatorname{id}_{H .(K)}$ by functoriality. Hence F_{\star} and G_{\star} are inverse isomorphisms of groups.

Definition. A space X is triangulable if there exists an abstract simplicial complex K with $|K| \simeq X$.

Remark. The above proposition implies that if X is triangulable, there is a well-defined homology group $H .(X)=H .(K)$ where K is any abstract simplicial complex with polyhedron $|K| \simeq X$. Not all topological spaces are homotopy equivalent to a triangulable space. One example is $\bigvee_{i=1}^{\infty} S^{1}$.

Proposition. Let $|K|$ be path-connected. Then $H_{0}(K) \simeq \mathbb{Z}$.

Proof. $C_{0}(K)$ is generated by the vertices e_{i} of K. Consider $F_{i}: \Delta^{0} \rightarrow|K|$ mapping $e_{0} \in \Delta^{0}$ to $e_{i} \in K$. Then $H_{\star}\left(\Delta^{0}\right)=\mathbb{Z}=\left\langle\left[e_{0}\right]\right\rangle$, and $F_{\star}\left(\left[e_{0}\right]\right)=\left[e_{i}\right]$. Since K is path-connected, $F_{i} \sim F_{j}$. So $\left[e_{i}\right]=$ $F_{i \star}\left(\left[e_{0}\right]\right)=F_{j \star}\left(\left[e_{0}\right]\right)=\left[e_{j}\right]$. Hence all $\left[e_{i}\right]$ are equal. The $\left[e_{i}\right]$ are not boundaries, so $H_{0}(K)$ is not trivial.

Corollary. $H_{0}(K)=\mathbb{Z}^{k}$ where k is the number of path-connected components of $|K|$.

Proof. $|K|$ is a disjoint union of the k path-connected components of $|K|$, so $H_{0}(K)$ is the direct sum of the homology groups of these components.

We know $S^{n} \simeq\left|\mathbb{S}^{n}\right|$, so

$$
H_{k}\left(S^{n}\right)=H_{k}\left(\mathbb{S}^{n}\right)= \begin{cases}\mathbb{Z} & k=0, n \\ 0 & \text { otherwise }\end{cases}
$$

Hence $S^{n} \sim S^{m}$ implies $n=m$.
Corollary. $\mathbb{R}^{n} \simeq \mathbb{R}^{m}$ implies $n=m$.

Proof. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a homeomorphism. Then $S^{n-1} \sim \mathbb{R}^{n} \backslash\{0\} \simeq \mathbb{R}^{m} \backslash\{f(0)\} \sim S^{m-1}$. So $S^{n-1} \sim S^{m-1}$, giving $n=m$.

Corollary. There is no retraction $r: D^{n} \rightarrow S^{n-1}$.

Proof. We suppose $n>0$. Let $j: S^{n-1} \rightarrow D^{n}$ be the inclusion. r is a retraction if and only if $r \circ j=$ $\mathrm{id}_{S^{n-1}}$. This gives $(r \circ j)_{\star}=\operatorname{id}_{H .\left(S^{n-1}\right)}$. Note that $H_{n-1}\left(D^{n}\right)=H_{n-1}\left(\Delta^{n}\right)=0$, and $H_{n-1}\left(S^{n-1}\right)=\mathbb{Z}$. If r is a retraction, then r_{\star} and j_{\star} are inverse homomorphisms of groups, but \mathbb{Z} is not isomorphic to 0 . So r is not a retraction.

Theorem (Brouwer fixed point theorem). Let $F: D^{n} \rightarrow D^{n}$ be a continuous function. Then F has a fixed point.

Remark. This is a generalisation of the intermediate value theorem for high dimensions.
Proof. Suppose there is no fixed point. Then, we define $G: D^{n} \rightarrow S^{n-1}$ by letting $G(x), x, F(x)$ lie in this order on a straight line in D^{n}. If G is a well-defined continuous map, it is a retraction, contradicting the previous result.

Let $p \in D^{n}$ and $v \in S^{n-1}$. Let $R_{p, v}=\{p+t v \mid t \geq 0\}$. If $p+t v \in S^{n-1}$, then $\langle p+t v, p+t v\rangle=1$, so $\langle p, p\rangle+2 t\langle v, p\rangle+t^{2}=1$. Hence

$$
t=-\langle p, v\rangle \pm \sqrt{\langle p, v\rangle^{2}+1-\langle p, p\rangle}
$$

We define

$$
\tau(p, v)=\max \left(-\langle p, v\rangle \pm \sqrt{\langle p, v\rangle^{2}+1-\langle p, p\rangle}\right)
$$

This is a continuous function. Now, we define $P(p, v)=p+\tau(p, v) v$, which is the intersection of $R_{p, v}$ with S^{n-1}, which is also continuous. So

$$
G(x)=P\left(F(x), \frac{x-F(x)}{\|x-F(x)\|}\right)
$$

is well-defined and continuous.

7.8 Homology of orientable surfaces

We can often compute homology groups only using the Mayer-Vietoris sequence and functoriality properties.

Example. Consider the torus T^{2}. We can write a triangulation K of T^{2} as $K_{1} \cup K_{2}$, with $\left|K_{i}\right| \simeq S^{1} \times I$, and $\left|K_{1} \cap K_{2}\right| \simeq S_{1}^{1} \amalg S_{2}^{1}$. Note that the inclusion $\iota_{j, i}: S_{j}^{1} \hookrightarrow\left|K_{i}\right|$ is a homotopy equivalence, and $\iota_{1, i} \sim \iota_{2, i}$. Then the Mayer-Vietoris sequence gives

$$
\begin{array}{r}
H_{2}\left(K_{1}\right) \oplus H_{2}\left(K_{2}\right) \longrightarrow H_{2}(K) \square \\
\rightarrow H_{1}\left(K_{1} \cap K_{2}\right) \frac{\alpha_{1}}{\alpha_{1}} H_{1}\left(K_{1}\right) \oplus H_{1}\left(K_{2}\right) \longrightarrow H_{1}(K) \square \\
\rightarrow H_{0}\left(K_{1} \cap K_{2}\right) \xrightarrow[\alpha_{0}]{\longrightarrow} H_{0}\left(K_{1}\right) \oplus H_{0}\left(K_{2}\right) \longrightarrow H_{0}(K) \longrightarrow 0
\end{array}
$$

giving

Hence we have short exact sequences

$$
\begin{aligned}
& 0 \longrightarrow H_{2}(K) \longrightarrow \operatorname{ker} \alpha_{1} \longrightarrow \operatorname{coker} \alpha_{1} \longrightarrow H_{1}(K) \longrightarrow \operatorname{ker} \alpha_{0} \longrightarrow 0 \\
& 0 \longrightarrow H_{0}(K) \longrightarrow \operatorname{coker} \alpha_{0} \longrightarrow H^{\longrightarrow} \longrightarrow
\end{aligned}
$$

The maps α_{i} are given by the matrix $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$. Therefore, $\operatorname{ker} \alpha_{i} \simeq \mathbb{Z}$ and coker $\alpha_{i} \simeq \mathbb{Z}$. Hence $H_{2}(K) \simeq$ $\mathbb{Z}, H_{1}(K) \simeq \mathbb{Z}^{2}$, and $H_{0}(K) \simeq \mathbb{Z}$.

$$
H_{k}\left(T^{2}\right)= \begin{cases}\mathbb{Z} & k=0,2 \\ \mathbb{Z}^{2} & k=1 \\ 0 & \text { otherwise }\end{cases}
$$

Proposition. Suppose that $0 \longrightarrow A \longrightarrow B \longrightarrow \mathbb{Z}^{r} \longrightarrow 0$ is exact. Then $B \simeq$ $A \oplus \mathbb{Z}^{r}$.

Proof. By exactness, $\mathbb{Z}^{r} \simeq B / A$. The result then follows from the structure theorem for abelian groups.

Example. Let L_{1} be a triangulation of T^{2}, and let $L_{1,1}$ be $L_{1} \backslash\{\sigma\}$ where σ is a 2-simplex. Then $\partial L_{1,1} \simeq \partial \sigma=\mathbb{S}^{1}$, and $\left|L_{1,1}\right| \sim S^{1} \vee S^{1}$. We inductively define $L_{g}=L_{g-1,1} \cup_{\mathbb{S}^{1}} L_{1,1}$, and $L_{g, 1}=L_{g} \backslash \sigma$ where σ is a 2 -simplex. Then L_{g} is a triangulation of the compact surface of genus g. Note also that $L_{g, 1} \simeq L_{g-1,1} \cup_{\sigma^{1}} L_{1,1}$ where σ^{1} is an edge of \mathbb{S}^{1}. So $L_{g, 1} \sim \bigvee_{i=1}^{2 g} S^{1}$.

Proposition.

$$
H_{k}\left(L_{g}\right)= \begin{cases}\mathbb{Z} & k=0,2 \\ \mathbb{Z}^{2 g} & k=1 \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
H_{k}\left(L_{g, 1}\right)= \begin{cases}\mathbb{Z} & k=0 \\ \mathbb{Z}^{2 g} & k=1 \\ 0 & \text { otherwise }\end{cases}
$$

Further, $\iota_{g_{\star}}: H_{1}\left(\partial L_{g, 1}\right) \rightarrow H_{1}\left(L_{g, 1}\right)$ is the zero map.

Proof. By induction, we show the result for $H_{k}\left(L_{g}\right)$ implies the result for $H_{k}\left(L_{g, 1}\right)$, and then $H_{k}\left(L_{g, 1}\right)$ gives $H_{k}\left(L_{g+1}\right)$. The base case is H. $\left(T^{2}\right)$ which was shown above. For the first implication, we use the Mayer-Vietoris sequence. Note that $L_{g}=L_{g, 1} \cup_{\partial L_{g, 1}} \Delta^{2}$. Then,

$$
\begin{array}{r}
H_{2}\left(L_{g, 1}\right) \oplus H_{2}\left(\Delta^{2}\right) \longrightarrow H_{2}\left(L_{g}\right)- \\
\rightarrow H_{1}\left(\partial L_{g, 1}\right) \xrightarrow[\iota_{1}]{\partial_{2}} H_{1}\left(L_{g, 1}\right) \oplus H_{1}\left(\Delta^{2}\right) \longrightarrow H_{1}\left(L_{g}\right)- \\
\rightarrow H_{0}\left(\partial L_{g, 1}\right) \xrightarrow[\iota_{0}]{\partial_{1}} H_{0}\left(L_{g, 1}\right) \oplus H_{0}\left(\Delta^{2}\right) \longrightarrow H_{0}\left(L_{g}\right)
\end{array}
$$

giving

The bottom row of the Mayer-Vietoris sequence always has this form if $K_{1}, K_{2}, K_{1} \cap K_{2}$ are connected. Note that since t_{0} is injective, the map before it is the zero map by exactness, so we can remove the bottom row and replace it with zero. We have that ∂_{2} is injective, and $H_{1}\left(L_{g, 1}\right)$ is torsion-free, so ∂_{2} is an isomorphism. Hence ι_{1} is the zero map and j is an isomorphism. Since $0=\iota_{1}=\iota_{g_{\star}}+\iota_{\star}^{\prime}$, we have $\iota_{g_{\star}}=0$. Further, as j is an isomorphism, $H_{1}\left(L_{g, 1}\right) \simeq H_{1}\left(L_{g}\right)=\mathbb{Z}^{2 g}$ as required.
Now we show the result for $H_{k}\left(L_{g, 1}\right)$ implies the result for $H_{k}\left(L_{g+1}\right)$. Note that $L_{g+1}=L_{g, 1} \cup_{\partial L_{g, 1}} L_{1,1}$. Hence,

$$
\begin{array}{r}
H_{2}\left(L_{g, 1}\right) \oplus H_{2}\left(L_{1,1}\right) \longrightarrow H_{2}\left(L_{g+1}\right) \\
\longrightarrow H_{1}\left(\partial L_{g, 1}\right) \longrightarrow H_{1}\left(L_{g, 1}\right) \oplus H_{2}\left(L_{1,1}\right) \longrightarrow H_{1}\left(L_{g+1}\right) \longrightarrow 0
\end{array}
$$

By assumption, ι is the zero map. Hence $H_{2}\left(L_{g+1}\right) \simeq H_{1}\left(\partial L_{g, 1}\right) \simeq \mathbb{Z}$ as ∂_{2} is an isomorphism. Also, $\mathbb{Z}^{2 g+2} \simeq H_{1}\left(L_{g+1}\right)$ by exactness.

7.9 Homology of non-orientable surfaces

Let M_{1} be a triangulation of $\mathbb{R} \mathbb{P}^{2}$. Let $M_{r, 1}$ be M_{r} with a 2 -simplex removed, so $\partial M_{r, 1} \simeq \mathbb{S}^{1}$. Let $M_{r+1}=M_{r, 1} \cup_{\partial M_{r, 1}} M_{1,1}$. Then $M_{r+1,1}=M_{r, 1} \cup_{\Delta^{1}} M_{1,1}$, attaching along an interval. For example, $\left|M_{1,1}\right|$ is homeomorphic to the Möbius band. Then $M_{r, 1} \sim \bigvee_{i=1}^{r} S^{1}$.

Proposition.

$$
H_{k}\left(M_{r}\right)= \begin{cases}\mathbb{Z}^{r-1} \oplus \mathbb{Z} / 2 \mathbb{Z} & k=1 \\ \mathbb{Z} & k=0 \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
H_{k}\left(M_{r, 1}\right)= \begin{cases}\mathbb{Z}^{r} & k=1 \\ \mathbb{Z} & k=0 \\ 0 & \text { otherwise }\end{cases}
$$

Further, $t_{r \star}: H_{1}\left(\partial M_{r, 1}\right) \rightarrow H_{1}\left(M_{r, 1}\right)$ has the property that $\iota_{r \star}(1)$ is twice a primitive element, or equivalently, $H_{1}\left(M_{r, 1}\right) / \operatorname{Im} \iota_{r \star}=\mathbb{Z}^{r-1} \oplus \mathbb{Z} / 2 \mathbb{Z}$.

Proof. We proceed by induction in the same way. For the base case, note that $\partial M_{1,1} \simeq S^{1}$ and $M_{1,1} \simeq$ S^{1}, and the map from $\partial M_{1,1} \rightarrow M_{1,1}$ is given by $z \mapsto z^{2}$, so the map $H_{1}\left(S^{1}\right) \rightarrow H_{1}\left(S^{1}\right)$ is given by multiplication by 2 . Suppose the result holds for $H_{k}\left(M_{r}\right)$. Then, $M_{r}=M_{r, 1} \cup_{\partial M_{r, 1}} \Delta^{2}$, and

$$
\begin{array}{r}
\left.H_{2}\left(M_{r, 1}\right) \oplus H_{2}\left(\Delta^{2}\right) \longrightarrow H_{2}\left(M_{r}\right)\right] \\
\rightarrow H_{1}\left(\partial M_{r, 1}\right) \xrightarrow[\iota_{r \star}]{\iota_{1}} H_{1}\left(M_{r, 1}\right) \oplus H_{1}\left(\Delta^{2}\right) \longrightarrow H_{1}\left(M_{r}\right) \longrightarrow 0
\end{array}
$$

$\iota_{r \star}$ is injective, so $\partial_{2}=0$, giving $0 \longrightarrow H_{2}\left(M_{r}\right) \longrightarrow 0$. Hence,

Since $H_{1}\left(M_{r, 1}\right)$ is torsion-free,

$$
0 \longrightarrow \mathbb{Z} \longrightarrow H_{1}\left(M_{r, 1}\right) \longrightarrow \mathbb{Z}^{r-1} \oplus \mathbb{Z} / 2 \mathbb{Z} \longrightarrow 0
$$

gives that $H_{1}\left(M_{r, 1}\right)=\mathbb{Z}^{r}$.
Now, $M_{r+1}=M_{r, 1} \cup_{\partial M_{r, 1}} M_{1,1}$ hence

$$
\begin{array}{r}
H_{2}\left(M_{r, 1}\right) \oplus H_{2}\left(M_{1,1}\right) \longrightarrow H_{2}\left(M_{r+1}\right) \\
\longrightarrow H_{1}\left(\mathbb{S}^{1}\right) \longrightarrow H_{1}\left(M_{r, 1}\right) \oplus H_{1}\left(M_{r, 1}\right) \longrightarrow H_{1}\left(M_{r+1}\right) \longrightarrow 0
\end{array}
$$

so

$$
\begin{gathered}
0 \oplus 0 \longrightarrow 0 \\
\qquad \mathbb{Z} \longrightarrow H_{1}\left(M_{r, 1}\right) \oplus H_{1}\left(M_{r, 1}\right) \longrightarrow H_{1}\left(M_{r+1}\right) \longrightarrow 0
\end{gathered}
$$

Hence $H_{1}\left(M_{r+1}\right) \simeq \mathbb{Z}^{2} \oplus \mathbb{Z} /\left(2 e_{1}, 2\right) \simeq \mathbb{Z}^{r} \oplus \mathbb{Z} / 2 \mathbb{Z}$.

7.10 Lefschetz fixed point theorem

Let (C, d) be a chain complex over \mathbb{Q} (or any other field). Then H.(C) is a \mathbb{Q}-vector space. Let $f: C \rightarrow$ C be a chain map, so it induces $f_{\star}: H_{.}(C) \rightarrow H_{.}(C) . f$ and f_{\star} are both linear endomorphisms of vector spaces.

Definition. The Lefschetz number of f is $L(f)=\sum_{k}(-1)^{k} \operatorname{tr} f_{k}$ where $f_{k}: C_{k} \rightarrow C_{k}$, and $L\left(f_{\star}\right)=\sum_{k}(-1)^{k} \operatorname{tr} f_{k \star}$ where $f_{k \star}: H_{k}(C) \rightarrow H_{k}(C)$.

Proposition. $L(f)=L\left(f_{\star}\right)$.

Proof. Let $U_{k}=\operatorname{Im} d_{k+1} \subseteq \operatorname{ker} d_{k} \subseteq C_{k}$. Then, ker $d_{k}=U_{k} \oplus V_{k}$, and $C_{k}=U_{k} \oplus V_{k} \oplus U_{k}^{\prime}$. Then $d: U_{k}^{\prime} \rightarrow U_{k-1}$ is an isomorphism. With respect to this decomposition, d is a matrix in block form given by

$$
d=\left(\begin{array}{lll}
0 & 0 & I \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Also, $f\left(\operatorname{Im} d_{k+1}\right) \subseteq \operatorname{Im} d_{k+1}$ since f is a chain map, and $f\left(\operatorname{ker} d_{k}\right) \subseteq \operatorname{ker} d_{k}$. So in block form,

$$
f=\left(\begin{array}{ccc}
A_{k} & X_{k} & \star \\
0 & B_{k} & \star \\
0 & 0 & A_{k}^{\prime}
\end{array}\right)
$$

Then, the equation $d f=f d$ shows $A_{k}=A_{k+1}^{\prime}$. Hence, $H_{k}(C)=\operatorname{ker} d_{k} / \operatorname{Im} d_{k+1}=U_{k} \oplus V_{k} U_{k} \simeq$ V_{k}, and $f_{k_{\star}}: H_{k}(C) \rightarrow H_{k}(C)$ maps $[v]$ to $\left[B_{k} v+X_{k} v\right]=\left[B_{k} v\right]$, so $f_{k \star}$ is multiplication by B_{k}. Then $L(f)=\sum_{k}(-1)^{k} \operatorname{tr} f_{k}=\sum(-1)^{k}\left(\operatorname{tr} A_{k}+\operatorname{tr} B_{k}+\operatorname{tr} A_{k-1}\right)=\sum(-1)^{k} \operatorname{tr} B_{k}=L\left(f_{\star}\right)$.

Definition. Let $C=C .(K)$. Then the Euler characteristic is defined by $\chi(C)=L\left(\mathrm{id}_{C}\right)$. Hence $\chi(C(K))=\sum_{k}(-1)^{k} \operatorname{dim} C_{k}(K)$. Note that $L\left(\operatorname{id}_{C}\right)=L\left(\operatorname{id}_{H .(K)}\right)=\sum_{k}(-1)^{k} \operatorname{dim} H_{k}(K)$ depends only on $|K|$.

Theorem (Lefschetz fixed point theorem). Let $F:|K| \rightarrow|K|$ be a continuous map. Let $L(F)=L\left(F_{\star}\right)$ be the Lefschetz number of F, where $F_{\star}: H_{.}(K) \rightarrow H_{.}(K)$. Then if $L(F) \neq 0, F$ has a fixed point.

Remark. This is a generalisation of the Brouwer fixed point theorem.
Proof sketch. If F has no fixed point, then since $|K|$ is compact, there exists $\varepsilon>0$ such that $|F(x)-x| \geq$ ε for all x. If $f: B^{r+n} K \rightarrow B^{r} K$ is a simplicial approximation of F, then the above implies that $F_{\star}(\sigma)$ does not contain σ for any simplex $\sigma \in C$. (K). Hence $L(F)=L(f)=0$.

