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I. Algebraic Topology

Lectured in Michaelmas 2022 by Prof. J. Rasmussen
This course is an introduction to the basic ideas of algebraic topology. In the first half of
the course, we study an invariant of based topological spaces called the fundamental group.
This invariant associates a group to a topological space (with a basepoint). It has the import-
ant property that a continuous map between topological spaces induces a homomorphism
between their fundamental groups, and that the composition of two maps is mapped to the
composition of the corresponding homomorphisms. In slightly fancier language, the fun-
damental group determines a functor from the category of based topological spaces to the
category of groups. The phenomena that the fundamental group detects are essentially one-
dimensional; it measures the failure of closed loops in the space to bound two-dimensional
disks.

In the second half of the course, we study another functor from spaces to groups, called ho-
mology, which enables us to understand higher-dimensional ‘holes’ in the space. There are
many different ways to define homology; we use a relatively concrete one called simplicial
homology, which makes sense for a somewhat restricted class of spaces. The notion of ho-
mology plays a central role in modern geometry and topology as well as in many branches
of algebra and number theory.

Using these invariants we can distinguish various spaces from each other; for example, we
can prove thatℝ𝑛 is not homeomorphic toℝ𝑚 when 𝑛 is not equal to𝑚. We are also able to
prove the fundamental theorem of algebra, and to show that certain maps from a space to
itself (for example, any continuous map from the closed 𝑛-dimensional disk to itself) must
have fixed points.
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I. Algebraic Topology

1. Motivation
1.1. Invariants
Topological spaces are difficult to study on their own, and so we will assign algebraic invari-
ants to these spaces which allow us to reason more easily about these spaces. To a topolo-
gical space 𝑋 , a ‘numerical invariant’ is a number 𝑔(𝑋) ∈ ℝ ∪ {∞} such that 𝑋 ≃ 𝑌 (where
≃ denotes homeomorphism) implies 𝑔(𝑋) = 𝑔(𝑌). An example of a numerical invariant is
the number of path-connected components of 𝑋 . An algebraic invariant is a group 𝐺(𝑋) as-
signed to a topological space𝑋 such that𝑋 ≃ 𝑌 implies𝐺(𝑋) ≃ 𝐺(𝑌), where here≃ denotes
isomorphism. We will construct two kinds of such invariants: the fundamental group, and
invariants related to homology. The invariants we construct will behave nicely under maps:
if 𝑓∶ 𝑋 → 𝑌 is a continuous map, we induce a homomorphism 𝑓⋆∶ 𝐺(𝑋) → 𝐺(𝑌). We will
prove the following model theorems.

• If ℝ𝑛 ≃ ℝ𝑚, then 𝑛 = 𝑚.
• If 𝑓∶ 𝐷𝑛 → 𝐷𝑛 is continuous, then there exists 𝑥 ∈ 𝐷𝑛 with 𝑓(𝑥) = 𝑥.

The above theorems are easy to prove in the case 𝑛 = 1 by appealing to path-connectedness
and the intermediate value theorem. Our study allows us to prove similar things about these
higher dimensional cases, among other things.

1.2. Notation
• A space is a topological space.

• Amap is a continuous function, unless defined otherwise.

• If 𝑋 and 𝑌 are spaces, 𝑋 ≃ 𝑌 means that 𝑋 and 𝑌 are homeomorphic.

• If 𝐺 and 𝐻 are groups, 𝐺 ≃ 𝐻 means that 𝐺 and 𝐻 are isomorphic.

• Some common spaces include:

– The one-point space {•};
– 𝐼 = [0, 1] ⊂ ℝ;
– 𝐼𝑛 = 𝐼 ×⋯× 𝐼⏟⎵⎵⏟⎵⎵⏟

𝑛 times
, the 𝑛-dimensional closed unit cube;

– 𝐷𝑛 = {𝑣 ∈ ℝ𝑛 ∣ ‖𝑣‖ ≤ 1}, the 𝑛-dimensional closed unit disk (note that 𝐼𝑛 ≃ 𝐷𝑛);

– 𝑆𝑛−1 = {𝑣 ∈ ℝ𝑛 ∣ ‖𝑣‖ = 1}, the (𝑛 − 1)-dimensional unit sphere.
• Common maps include:

– If 𝑋 is a space, the identity map id𝑋 ∶ 𝑋 → 𝑋 is defined by 𝑥 ↦ 𝑥;
– If 𝑋 and 𝑌 are spaces with 𝑝 ∈ 𝑌 , the constant map 𝑐𝑋,𝑝∶ 𝑋 → 𝑌 is defined by
𝑥 ↦ 𝑝.
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2. Homotopy

2. Homotopy
2.1. Definition
Definition. Let 𝑓0, 𝑓1∶ 𝑋 → 𝑌 be continuous. We say 𝑓0 is homotopic to 𝑓1, written 𝑓0 ∼ 𝑓1,
if there exists a continuous 𝐻∶ 𝑋 × 𝐼 → 𝑌 with 𝐻(𝑥, 0) = 𝑓0(𝑥) and 𝐻(𝑥, 1) = 𝑓1(𝑥).

We can think of 𝐻 as a path from 𝑓0 to 𝑓1 in the set Hom(𝑋, 𝑌) of functions 𝑋 → 𝑌 , which
is continuous under a topology that will not be defined here.

Lemma (Gluing lemma). Let 𝑋 = 𝐶1 ∪ 𝐶2, where 𝐶1, 𝐶2 are closed in 𝑋 . Let 𝑓∶ 𝑋 → 𝑌 be
a function (that may be not continuous), such that 𝑓|𝐶1

and 𝑓|𝐶2
are continuous. Then 𝑓 is

continuous.

Proof. It suffices to show that the preimage of a closed set is closed. Let 𝐾 ⊆ 𝑌 be closed.
Then 𝐾𝑖 = 𝑓−1(𝐾) ∩ 𝐶𝑖 = (𝑓|𝐶𝑖

)
−1
(𝐾) is a closed set in 𝐶𝑖 and so is closed in 𝑋 because 𝐶𝑖 is

closed. Since 𝐾 = 𝐾1 ∪ 𝐾2, 𝐾 is also closed in 𝑋 .

Lemma. Homotopy is an equivalence relation.

Proof. Reflexivity is trivial, because 𝐻(𝑥, 𝑡) = 𝑓(𝑥) is continuous, as 𝐻 = 𝑓 ∘ 𝜋1 is the
composition of continuous maps. Symmetry holds because if𝐻(𝑥, 𝑡) is continuous,𝐻(𝑥, 1−
𝑡) is continuous as the composition of continuousmaps. For transitivity, if 𝑓0 ∼ 𝑓1 via𝐻 and
𝑓1 ∼ 𝑓2 via 𝐻′, we define

𝐻″(𝑥, 𝑡) = {
𝐻(𝑥, 2𝑡) 𝑡 < 1

2
𝐻′(𝑥, 2𝑡 − 1) 𝑡 ≥ 1

2

and this is continuous by the gluing lemma.

Note that we sometimes write 𝑓𝑡(𝑥) for a homotopy between 𝑓0 and 𝑓1.

Example. Let 𝑓1∶ 𝑋 → ℝ𝑛 be a map. Then 𝑓0∶ 𝑋 → ℝ𝑛 defined by 𝑐𝑋,0 has 𝑓1 ∼ 𝑓0 via the
homotopy 𝐻(𝑥, 𝑡) = 𝑡𝑓1(𝑥).

Example. Let 𝑓1∶ 𝑆1 → 𝑆2 be defined by 𝑓1(𝑥, 𝑦) = (𝑥, 𝑦, 0): the inclusion map from the
circle to the equator in the unit 2-sphere. Let 𝑓0∶ 𝑆1 → 𝑆2 be the constant map 𝑓0(𝑥, 𝑦) =
(0, 0, 1). Then 𝑓0 ∼ 𝑓1 via the homotopy 𝑓𝑡(𝑥, 𝑦) = (𝑥 sin 𝜋𝑡

2
, 𝑦 sin 𝜋𝑡

2
, cos 𝜋𝑡

2
).

Lemma. If 𝑓0, 𝑓1∶ 𝑋 → 𝑌 are homotopic via 𝑓𝑡, and 𝑔0, 𝑔1∶ 𝑌 → 𝑍 are homotopic via 𝑔𝑡,
then themap𝐻∶ 𝑋×𝐼 → 𝑍 defined by𝐻(𝑥, 𝑡) = 𝑔𝑡(𝑓𝑡(𝑥)), also denoted 𝑔𝑡∘𝑓𝑡, is a homotopy
for 𝑔0 ∘ 𝑓0 ∼ 𝑔1 ∘ 𝑓1.

Proof. This is a composition of continuous maps and hence continuous.
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I. Algebraic Topology

2.2. Contractible spaces
Definition. A space 𝑌 is contractible if id𝑌 ∼ 𝑐𝑌,𝑝 for some 𝑝 ∈ 𝑌 .
Example. If 𝑌 ⊆ ℝ𝑛 is convex and nonempty, 𝑌 is contractible via the homotopy𝐻(𝑦, 𝑡) =
(1 − 𝑡)𝑦 + 𝑡𝑝 for some 𝑝 ∈ 𝑌 .
Proposition. Let 𝑌 be contractible. Then 𝑓0 ∼ 𝑓1 for any maps 𝑓0, 𝑓1∶ 𝑋 → 𝑌 .

Proof. We have 𝑓0 = id𝑌 ∘ 𝑓0 ∼ 𝑐𝑌,𝑝 ∘ 𝑓0 = 𝑐𝑋,𝑝, and similarly 𝑓1 ∼ 𝑐𝑋,𝑝. By transitivity,
𝑓0 ∼ 𝑓1.

Corollary. Let 𝑌 be contractible. Then 𝑌 is path-connected.

Proof. If 𝑌 is contractible, and 𝑝, 𝑞 ∈ 𝑌 , then 𝑐{•},𝑝 ∼ 𝑐{•},𝑞 via𝐻∶ {•} × 𝐼 → 𝑌 . Then we can
define the path 𝛾(𝑡) = 𝐻(•, 𝑡) from 𝑝 to 𝑞 in 𝑌 .

Example. ℝ ∖ {0} is not contractible.
We will later prove that ℝ𝑛 ∖ {0} is not contractible for any 𝑛 ≥ 1, but we require some more
theory before this can be proven.

Definition. Spaces 𝑋, 𝑌 are homotopy equivalent, denoted 𝑋 ∼ 𝑌 , if there exist maps
𝑓∶ 𝑋 → 𝑌 and 𝑔∶ 𝑌 → 𝑋 such that 𝑓 ∘ 𝑔 ∼ id𝑌 and 𝑔 ∘ 𝑓 ∼ id𝑋 .

Example. If𝑋 ≃ 𝑌 ,𝑋 and𝑌 are homotopy equivalent. Note that the definition of homotopy
equivalence is simply the definition of homeomorphism, except that the requirement that
𝑓 ∘ 𝑔 and 𝑔 ∘ 𝑓 be equal to the identity is relaxed into simply being homotopic to the identity.
Lemma. Homotopy equivalence is an equivalence relation.

Proposition. 𝑋 is contractible if and only if 𝑋 ∼ {•}.

Proof. If𝑋 is contractible, id ∼ 𝑐𝑋,𝑝. Let 𝑓∶ 𝑋 → {•} be defined by 𝑓(𝑥) = •. Let 𝑔∶ {•} → 𝑋
be defined by 𝑔(𝑥) = 𝑝. Then 𝑓∘𝑔 = id{•} and 𝑔∘𝑓 = 𝑐𝑋,𝑝 ∼ id𝑋 . The converse is similar.

Example. We have ℝ𝑛+1 ∖ {0} ∼ 𝑆𝑛. Consider 𝑝∶ ℝ𝑛+1 ∖ {0} → 𝑆𝑛 defined by 𝑝(𝑣) = 𝑣
‖𝑣‖
,

and 𝑞∶ 𝑆𝑛 → ℝ𝑛+1 ∖ {0} defined by 𝑞(𝑣) = 𝑣. Then 𝑝 ∘ 𝑞 = id, and (𝑞 ∘ 𝑝)(𝑣) = 𝑣
‖𝑣‖
. This is

homotopic to the identity by
𝐻(𝑣, 𝑡) = 𝑣

(1 − 𝑡) + 𝑡‖𝑣‖
This is a special case of a retract, a continuous map onto a subspace.
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3. Groups from loops

3. Groups from loops

3.1. Homotopy relative to a set
Definition. Let 𝐴 ⊆ 𝑋 . We say 𝑓0, 𝑓1∶ 𝑋 → 𝑌 are homotopic relative to 𝐴, written 𝑓0 ∼
𝑓1 rel 𝐴, if 𝑓0 ∼ 𝑓1 via some homotopy𝐻∶ 𝑋 × 𝐼 → 𝑌 that fixes 𝐴, so𝐻(𝑎, 𝑡) = 𝑓0(𝑎) = 𝑓1(𝑎)
for all 𝑎 ∈ 𝐴.

Lemma. Homotopy relative to 𝐴 is an equivalence relation.

Lemma. If 𝑓0, 𝑓1∶ 𝑋 → 𝑌 and 𝑓0 ∼ 𝑓1 rel 𝐴, and 𝑔0, 𝑔1∶ 𝑌 → 𝑍 and 𝑔0 ∼ 𝑔1 rel 𝑓(𝐴), then
𝑔0 ∘ 𝑓0 ∼ 𝑔1 ∘ 𝑓1 rel 𝐴.

If 𝛾0, 𝛾1∶ 𝐼 → 𝑋 are two homotopic paths relative to their endpoints, so 𝛾0 ∼ 𝛾1 rel {0, 1}, we
write 𝛾0 ∼𝑒 𝛾1.

Lemma. Let 𝑓0, 𝑓1∶ 𝐼 → 𝐼, where 𝑓0(0) = 𝑓1(0) and 𝑓0(1) = 𝑓1(1). Then 𝑓0 ∼𝑒 𝑓1.

Proof. 𝐼 is convex, hence 𝐻(𝑥, 𝑡) = (1 − 𝑡)𝑓0(𝑥) + 𝑡𝑓1(𝑥) is a homotopy that preserves end-
points as required.

Corollary. Suppose 𝑓∶ 𝐼 → 𝐼, 𝛾∶ 𝐼 → 𝑋 . Then if 𝑓(0) = 0 and 𝑓(1) = 1, 𝛾∘𝑓 ∼𝑒 𝛾. Further,
if 𝑓(0) = 0 and 𝑓(1) = 0, we have 𝛾 ∘ 𝑓 ∼𝑒 𝑐𝐼,𝛾(0).

Proof. Wehave 𝑓(0) = id𝐼(0) and 𝑓(1) = id𝐼(1). Hence 𝑓 ∼𝑒 id𝐼 . Therefore, 𝛾∘𝑓 ∼𝑒 𝛾∘id𝐼 =
𝛾.

For the second claim, 𝑓(0) = 𝑐𝐼,0(0) and 𝑓(1) = 𝑐𝐼,0(1), hence 𝑓 ∼𝑒 𝑐𝐼,0 giving 𝛾 ∘ 𝑓 ∼𝑒
𝛾 ∘ 𝑐𝐼,0 = 𝑐𝐼,𝛾(0).

Definition. Let 𝑋 be a space, and 𝑝, 𝑞 ∈ 𝑋 . Let

Ω(𝑋, 𝑝, 𝑞) = {𝛾∶ 𝐼 → 𝑋 ∣ 𝛾 continuous, 𝛾(0) = 𝑝, 𝛾(1) = 𝑞}

be the set of paths from 𝑝 to 𝑞. Let Ω(𝑋, 𝑝) = Ω(𝑋, 𝑝, 𝑝) be the set of loops based at 𝑝.

Definition. Let 𝛾 ∈ Ω(𝑋, 𝑝, 𝑞), 𝛾′ ∈ Ω(𝑋, 𝑞, 𝑟). Then their composition 𝛾𝛾′ ∈ Ω(𝑋, 𝑝, 𝑟) is
given by

(𝛾𝛾′)(𝑡) = {
𝛾(2𝑡) 𝑡 ∈ [0, 1

2
]

𝛾′(2𝑡 − 1) 𝑡 ∈ [ 1
2
, 1]

𝛾𝛾′ is continuous by the gluing lemma.

Lemma. Let 𝛾0, 𝛾1 ∈ Ω(𝑋, 𝑝, 𝑞) and 𝛾′0, 𝛾′1 ∈ Ω(𝑋, 𝑞, 𝑟) such that 𝛾0 ∼𝑒 𝛾1 via𝐻∶ 𝐼 × 𝐼 → 𝑋
and 𝛾′0 ∼𝑒 𝛾′1 via 𝐻′∶ 𝐼 × 𝐼 → 𝑋 . Then 𝛾0𝛾′0 ∼𝑒 𝛾1𝛾′1.
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I. Algebraic Topology

Proof. The homotopy required is

𝐻(𝑥, 𝑡) = {
𝐻(2𝑥, 𝑡) 𝑥 ∈ [0, 1

2
]

𝐻′(2𝑥 − 1, 𝑡) 𝑥 ∈ [ 1
2
, 1]

Definition. Let 𝛾 ∈ Ω(𝑋, 𝑝, 𝑞). Then 𝛾−1 ∈ Ω(𝑋, 𝑞, 𝑝) is the reverse of 𝛾, given by
𝛾−1(𝑡) = 𝛾(1 − 𝑡)

Proposition. (i) Let 𝛾 ∈ Ω(𝑋, 𝑝, 𝑞). Then 𝑐𝐼,𝑝𝛾 ∼𝑒 𝛾 ∼𝑒 𝛾𝑐𝐼,𝑞.
(ii) 𝛾𝛾−1 ∼𝑒 𝑐𝐼,𝑝 and 𝛾−1𝛾 ∼𝑒 𝑐𝐼,𝑞.
(iii) If 𝛾(1) = 𝛾′(0) and 𝛾′(1) = 𝛾″(0), we have

𝛾(𝛾′𝛾″) ∼𝑒 (𝛾𝛾′)𝛾″

Proof. (i) The composition 𝑐𝐼,𝑝𝛾 has 𝑐𝐼,𝑝𝛾(𝑡) = 𝛾(𝑓(𝑡)) where 𝑓∶ 𝐼 → 𝐼 defined by

𝑓(𝑡) = {
0 𝑡 ∈ [0, 1

2
]

2𝑡 − 1 𝑡 ∈ [ 1
2
, 1]

Since 𝑓(0) = 0 and 𝑓(1) = 1, 𝛾 ∘ 𝑓 ∼𝑒 𝛾. Similarly, 𝛾𝑐𝐼,𝑞(𝑡) = 𝛾(𝑔(𝑡)) where

𝑔(𝑡) = {
2𝑡 𝑡 ∈ [0, 1

2
]

1 𝑡 ∈ [ 1
2
, 1]

(ii) 𝛾𝛾−1(𝑡) = 𝛾(𝑓(𝑡)) where

𝑓(𝑡) = {
2𝑡 𝑡 ∈ [0, 1

2
]

1 − 2𝑡 𝑡 ∈ [ 1
2
, 1]

Further, 𝛾−1𝛾(𝑡) = 𝛾(𝑔(𝑡)) where

𝑔(𝑡) = {
1 − 2𝑡 𝑡 ∈ [0, 1

2
]

2𝑡 − 1 𝑡 ∈ [ 1
2
, 1]

(iii) We can write 𝛾(𝛾′𝛾″)(𝑡) = (𝛾𝛾′)𝛾(𝑓(𝑡)) where 𝑓∶ 𝐼 → 𝐼 is the continuous function
defined by

𝑓(𝑡) =
⎧⎪
⎨⎪
⎩

𝑡
2

𝑡 ∈ [0, 1
2
]

𝑡 − 1
4

𝑡 ∈ [ 1
2
, 3
4
]

2𝑡 − 1 𝑡 ∈ [ 3
4
, 1]

noting that 𝑓(0) = 0 and 𝑓(1) = 1. Hence 𝛾(𝛾′𝛾″) ∼𝑒= (𝛾𝛾′)𝛾″.
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Definition. Let𝑋 be a space and𝑥0 ∈ 𝑋 . Wedefine the fundamental group or first homotopy
group of 𝑋 based at 𝑥0 by

𝜋1(𝑋, 𝑥0) = Ω(𝑋, 𝑥0)⟋∼𝑒

We say 𝑥0 is the basepoint. If 𝛾 ∈ Ω(𝑋, 𝑥0), we write [𝛾] for its image in 𝜋1(𝑋, 𝑥0), its equi-
valence class.

Theorem. We define multiplication in 𝜋1 by [𝛾] ∗ [𝛾′] = [𝛾𝛾′]. The identity is 1 = [𝑐𝐼,𝑥0].
The inverse is given by [𝛾]−1 = [𝛾−1]. These operations form a group.

Proof. Using the above lemma we explicitly check the group axioms. Identity:

1[𝛾] = [𝑐𝐼,𝑥0𝛾] = [𝛾]; [𝛾]1 = [𝛾𝑐𝐼,𝑥0] = [𝛾]

Inverses:
[𝛾][𝛾]−1 = [𝛾𝛾−1] = [𝑐𝐼,𝑥0] = 1

Associativity:

([𝛾][𝛾′])[𝛾″] = [𝛾𝛾′][𝛾″] = [(𝛾𝛾′)𝛾″] = [𝛾(𝛾′𝛾″)] = [𝛾][𝛾′𝛾″] = [𝛾]([𝛾′][𝛾″])

3.2. Induced maps
Definition. Let 𝑓∶ 𝑋 → 𝑌 be a continuous map, and 𝑓(𝑥0) = 𝑦0. Then we have a map
Ω(𝑋, 𝑥0) → Ω(𝑌, 𝑦0) defined by 𝛾 ↦ 𝑓 ∘ 𝛾. Note that if 𝛾0 ∼𝑒 𝛾1, we have 𝑓 ∘ 𝛾0 ∼𝑒 𝑓 ∘ 𝛾1.
Thus, this map descends to the induced homomorphism 𝑓⋆∶ 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑌, 𝑦0) defined
by [𝛾] ↦ [𝑓 ∘ 𝛾].

Definition. A pointed space (𝑋, 𝑥0) is a pair where 𝑋 is a space and 𝑥0 ∈ 𝑋 . We write
𝑓∶ (𝑋, 𝑥0) → (𝑌, 𝑦0) to denote a map 𝑓∶ 𝑋 → 𝑌 where 𝑓(𝑥0) = 𝑦0. In particular, for
𝑓∶ (𝑋, 𝑥0) → (𝑌, 𝑦0) there is an induced map 𝑓⋆∶ 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑌 , 𝑦0).

Proposition. Let 𝑓∶ (𝑋, 𝑥0) → (𝑌, 𝑦0). Then,

(i) The induced map 𝑓⋆∶ 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑌 , 𝑦0) is a group homomorphism.

(ii) (id(𝑋,𝑥0))⋆ = id𝜋1(𝑋,𝑥0).

(iii) If 𝑔∶ (𝑌, 𝑦0) → (𝑍, 𝑧0), we have (𝑔 ∘ 𝑓)⋆ = 𝑔⋆ ∘ 𝑓⋆.

(iv) If 𝑓0, 𝑓1∶ (𝑋, 𝑥0) → (𝑌, 𝑦0) with 𝑓0 ∼ 𝑓1 rel 𝑥0, then (𝑓0)⋆ = (𝑓1)⋆ (homotopy invari-
ance).

Remark. The action of taking the fundamental group of a pointed space thus yields a functor
𝜋1∶ 𝐓𝐨𝐩• → 𝐆𝐫𝐩. The following diagram, representing part (iii) of the proposition above,
commutes.
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𝜋1(𝑋, 𝑥0) 𝜋1(𝑍, 𝑧0)

𝜋1(𝑌, 𝑦0)

(𝑌 , 𝑦0)

(𝑋, 𝑥0) (𝑍, 𝑧0)

(𝑔∘𝑓)⋆

𝑓⋆ 𝑔⋆

𝑔𝑓

𝑔∘𝑓

Proof. (i) This follows from the fact that

𝑓 ∘ (𝛾𝛾′)(𝑡) = {
𝑓 ∘ 𝛾(2𝑡) 𝑡 ∈ [0, 1

2
]

𝑓 ∘ 𝛾′(2𝑡 − 1) 𝑡 ∈ [ 1
2
, 1]

= (𝑓 ∘ 𝛾)(𝑓 ∘ 𝛾′)(𝑡)

Hence,

𝑓⋆([𝛾][𝛾′]) = [𝑓 ∘ (𝛾𝛾′)] = [(𝑓 ∘ 𝛾)(𝑓 ∘ 𝛾′)] = [𝑓 ∘ 𝛾][𝑓 ∘ 𝛾′] = 𝑓⋆([𝛾])𝑓⋆([𝛾′])

(ii) id⋆([𝛾]) = [id𝑋 ∘ 𝛾] = [𝛾].
(iii) (𝑓 ∘ 𝑔)⋆([𝛾]) = [𝑓 ∘ 𝑔 ∘ 𝛾] = 𝑓⋆([𝑔 ∘ 𝛾]) = 𝑓⋆(𝑔⋆([𝛾])).
(iv) 𝑓0 ∼ 𝑓1 rel 𝑥0 and 𝛾(0) = 𝛾(1) = 𝑥0 implies 𝑓0 ∘ 𝛾 ∼𝑒 𝑓1 ∘ 𝛾, so (𝑓0)⋆([𝛾]) = (𝑓1)⋆([𝛾]).

Example. Let 𝑓∶ 𝑋 → 𝑌 be a homeomorphism, and let 𝑦0 = 𝑓(𝑥0). Then 𝑓∶ (𝑋, 𝑥0) →
(𝑌, 𝑦0) and 𝑓−1∶ (𝑌, 𝑦0) → (𝑋, 𝑥0) are inverses. Thus, 𝑓⋆∶ 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑌 , 𝑦0) and
𝑓−1⋆ ∶ 𝜋1(𝑌, 𝑦0) → 𝜋1(𝑋, 𝑥0) are inverses. Since 𝑓⋆ ∘ 𝑓−1⋆ = (𝑓 ∘ 𝑓−1)⋆ = id𝜋1(𝑌,𝑦0) and
𝑓−1⋆ ∘ 𝑓⋆ = id𝜋1(𝑋,𝑥0), we have that 𝑓⋆ is a group isomorphism, and 𝜋1 is a topological invari-
ant.

3.3. Retractions
Definition. Let 𝐴 ⊂ 𝑋 , where 𝜄∶ 𝐴 → 𝑋 is the inclusion map. Then 𝑝∶ 𝑋 → 𝐴 is a
retraction if 𝑝 ∘ 𝜄 = id𝐴. 𝑝∶ 𝑋 → 𝐴 is a strong deformation retraction, or s.d.r., if 𝑝 ∘ 𝜄 = id𝐴
and 𝜄 ∘ 𝑝 ∼ id𝑋 rel 𝐴.
Remark. In either case, if 𝑎0 ∈ 𝐴, 𝜄∶ (𝐴, 𝑎0) → (𝑋, 𝑎0) and 𝑝∶ (𝑋, 𝑎0) → (𝐴, 𝑎0). If 𝑝
is a retraction, 𝑝⋆ ∘ 𝜄⋆ = (𝑝 ∘ 𝜄)⋆ = (id𝐴)⋆ = id𝜋1(𝐴,𝑎0), so 𝜄⋆∶ 𝜋1(𝐴, 𝑎0) → 𝜋1(𝑋, 𝑎0) is
injective, and𝑝⋆∶ 𝜋1(𝑋, 𝑎0) → 𝜋1(𝐴, 𝑎0) is surjective. If𝑝 is a strong deformation retraction,
𝜄⋆ ∘ 𝑝⋆ = (𝜄 ∘ 𝑝)⋆ = (id𝑋)⋆ = id𝜋1(𝑋,𝑎0), so 𝑝⋆ and 𝜄⋆ are isomorphisms.
Remark. If 𝑝∶ 𝑋 → 𝐴 is a strong deformation retraction, then 𝐴 ∼ 𝑋 .
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Example. 𝑝∶ ℝ𝑛+1 ∖ {0} → 𝑆𝑛 given by 𝑣 ↦ 𝑣
‖𝑣‖

is a strong deformation retraction.

Example. ℝ2 ∖ {0, 1} has 𝐴, 𝐵 as strong deformation retractions, where 𝐴 is a figure-eight
with one loop surrounding each hole, and 𝐵 is a rectangle surrounding each hole with a
vertical line connecting the top and bottom edges through ( 1

2
, 0). This can be a useful trick

to show 𝐴 ∼ 𝐵.

3.4. Null-homotopy and extensions
Definition. We say 𝑓∶ 𝑋 → 𝑌 is null-homotopic if 𝑓 ∼ 𝑐𝑋,𝑝 for 𝑝 ∈ 𝑌 .

Example. If 𝑋 is contractible, then id𝑋 ∼ 𝑐𝑋,𝑞, so 𝑓 = 𝑓 ∘ id𝑋 ∼ 𝑓 ∘ 𝑐𝑋,𝑞 = 𝑓(𝑞). So
any 𝑓∶ 𝑋 → 𝑌 is null-homotopic. If 𝑓0 ∼ 𝑓1, then 𝑓0 is null-homotopic if and only if 𝑓1 is
null-homotopic.

Definition. Let𝐴 ⊂ 𝑋 and 𝑓∶ 𝐴 → 𝑌 . We say a continuousmap 𝐹 ∶ 𝑋 → 𝑌 is an extension
of 𝑓 if 𝐹|𝐴 = 𝑓. If such a map exists, we say 𝑓 extends to 𝑋 .

𝑋

𝐴 𝑌
𝐹𝜄

𝑓

Lemma. 𝑓∶ 𝑆1 → 𝑌 extends to 𝐷2 if and only if 𝑓 is null-homotopic.

Proof. If 𝐹 is an extension of 𝑓 to𝐷2, we define𝐻(𝑣, 𝑡) = 𝐹(𝑡𝑣). Then𝐻 is a homotopy from
𝑓 to 𝑐𝑆1,𝐹(0). So 𝑓 is null-homotopic.

Conversely, if 𝑓 is null-homotopic, let 𝐻∶ 𝑆1 × 𝐼 → 𝑌 be a homotopy for 𝑐𝑆1,𝑝 ∼ 𝑓. Then
we define

𝐹(𝑣) = {
𝐻( 𝑣

‖𝑣‖
, ‖𝑣‖) 𝑣 ≠ 0

𝑝 𝑣 = 0

One can check that this is indeed a continuous extension.

Definition. Let 𝛾 ∈ Ω(𝑋, 𝑥0). We define 𝛾∶ 𝑆1 → 𝑋 by 𝛾(𝑒2𝜋𝑖𝑡) = 𝛾(𝑡). This is well-defined
since 𝛾(0) = 𝛾(1), and it is continuous because 𝐼⟋{0, 1} ≃ 𝑆1.

Lemma. (i) If 𝛾0 ∼𝑒 𝛾1 via 𝐻(𝑥, 𝑡), we have 𝛾0 ∼ 𝛾1 via 𝐻∶ 𝑆1 × 𝐼 → 𝑌 given by
𝐻(𝑒2𝜋𝑖𝑥, 𝑡) = 𝐻(𝑥, 𝑡).

(ii) 𝛾𝛾′ ∼ 𝛾′𝛾.

Proof. (i) Note that 𝐻 is well-defined since 𝐻(0, 𝑡) = 𝐻(1, 𝑡) = 𝑥0.
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(ii) We have 𝛾𝛾′(𝑣) = 𝛾′𝛾(−𝑣), hence 𝛾𝛾′ = 𝛾′𝛾∘𝑎where 𝑎∶ 𝑆1 → 𝑆1 is the antipodal map.
Since 𝑎 ∼ id𝑆1 , we have 𝛾𝛾′ ∼ 𝛾′𝛾.

Consider the radial projection homeomorphismΦ∶ 𝐷2 → 𝐼×𝐼. Note thatΦ(𝑆1) = 𝜕(𝐼×𝐼) =
𝐼×{0, 1}∪{0, 1}×𝐼. SinceΦ is a homeomorphism, ℎ∶ 𝜕(𝐼×𝐼) → 𝑋 extends to 𝐼×𝐼 if and only
if ℎ∘Φ extends to𝐷2, which is true if and only if ℎ∘Φ is null-homotopic. Define 𝛼𝑖(𝑡) = ℎ(𝑡, 𝑖)
and 𝛽𝑖(𝑡) = ℎ(𝑖, 𝑡) for 𝑖 = 0, 1. Then, ℎ ∘ Φ ∼ 𝛼0𝛽1𝛼−11 𝛽−10 .

Proposition. Let 𝛾0, 𝛾1 ∈ Ω(𝑋, 𝑝, 𝑞). Then the following are equivalent.
(i) 𝛾0 ∼𝑒 𝛾1;

(ii) 𝛾0𝛾−11 is null-homotopic;

(iii) [𝛾0𝛾−11 ] = 1 in 𝜋1(𝑋, 𝑝).

Proof. Consider ℎ∶ 𝜕(𝐼 × 𝐼) → 𝑋 given by 𝛾0𝑐𝐼,𝑞𝛾−11 𝑐𝐼,𝑝. Note that ℎ is continuous by the
gluing lemma. 𝛾0 ∼𝑒 𝛾1 if and only if ℎ extends to 𝐼 × 𝐼, which is true if and only if ℎ ∘ Φ
extends to 𝐷2, if and only if 𝛾0𝑐𝐼,𝑞𝛾−11 𝑐𝐼,𝑝 is null-homotopic. But this is homotopic to 𝛾0𝛾−1,
so this proves that (i) and (ii) are equivalent.

Now, consider ℎ′∶ 𝜕(𝐼×𝐼) → 𝑋 given by 𝛾0𝛾−11 on one side, and on all other sides, 𝑐𝐼,𝑝. Then
[𝛾0𝛾−11 ] = 1 if and only if 𝛾0𝛾−11 ∼𝑒 𝑐𝐼,𝑝, if and only if ℎ′ extends to 𝐼 × 𝐼, if and only if ℎ ∘ Φ
extends to 𝐷2, if and only if 𝛾0𝛾−11 𝑐𝐼,𝑝𝑐−1𝐼,𝑝𝑐−1𝐼,𝑝 ∼ 𝛾0𝛾−11 is null-homotopic.

Corollary. The following are equivalent.

(i) 𝛾0 ∼𝑒 𝛾1 for all 𝛾0, 𝛾1 ∈ Ω(𝑋, 𝑝, 𝑞) and all 𝑝, 𝑞 ∈ 𝑋 .
(ii) any 𝑓∶ 𝑆1 → 𝑋 is null-homotopic;

(iii) 𝜋1(𝑋, 𝑥0) is the trivial group for all 𝑥0 ∈ 𝑋 .
Definition. 𝑋 is simply connected if 𝑋 is path-connected and 𝜋1(𝑋, 𝑥0) = 1 for all 𝑥0 ∈ 𝑋 .

3.5. Change of basepoint
Lemma. Let 𝑋0 be the path-connected component of 𝑋 containing a point 𝑥0 ∈ 𝑋 . If 𝑍 is
path-connected, 𝑓∶ 𝑍 → 𝑋 is continuous, and 𝑥0 ∈ Im𝑓, we have Im𝑓 ⊆ 𝑋0.

Proof. Suppose 𝑓(𝑧0) = 𝑥0. Given 𝑧 ∈ 𝑍, choose 𝛾 ∈ Ω(𝑍, 𝑧0, 𝑧) by path-connectedness.
Then 𝑓 ∘ 𝛾 ∈ Ω(𝑋, 𝑥0, 𝑓(𝑧)), so 𝑓(𝑍) ⊆ 𝑋0.

Let 𝜄∶ (𝑋0, 𝑥0) → (𝑋, 𝑥0) be the inclusion map. Then if 𝑓∶ (𝑍, 𝑧0) → (𝑋, 𝑥0) and 𝑍 is path-
connected, 𝑓 factors through 𝜄 as 𝑓 = 𝜄 ∘ ̂𝑓 where ̂𝑓 ∶ (𝑍, 𝑧0) → (𝑋0, 𝑥0).
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Lemma. The map 𝜄⋆∶ 𝜋1(𝑋0, 𝑥0) → 𝜋1(𝑋, 𝑥0) is an isomorphism.

Proof. Let [𝛾] ∈ 𝜋1(𝑋, 𝑥0), so 𝛾∶ (𝐼, 0) → (𝑋, 𝑥0) giving 𝛾 = 𝜄 ∘ ̂𝛾 where ̂𝛾 ∈ Ω(𝑋0, 𝑥0);
[𝛾] = 𝜄⋆([ ̂𝛾]), so 𝜄⋆ is surjective. Now suppose 𝛾0 = 𝜄 ∘ ̂𝛾0, 𝛾1 = 𝜄 ∘ ̂𝛾1. If 𝜄⋆([ ̂𝛾0]) = 𝜄⋆([ ̂𝛾1]), so
𝛾0 ∼𝑒 𝛾1 via 𝐻∶ 𝐼 × 𝐼 → 𝑋 , we have 𝐻(0, 0) = 𝑥0, so 𝐻 = 𝜄 ∘ �̂� since 𝐼 × 𝐼 is path-connected.
Then we can check �̂� is a homotopy for ̂𝛾0 ∼𝑒 ̂𝛾1. Hence [ ̂𝛾0] = [ ̂𝛾1], so 𝜄⋆ is injective.

Let 𝑢 ∈ Ω(𝑋, 𝑥0, 𝑥1). Then we can define 𝑢♯∶ Ω(𝑋, 𝑥0) → Ω(𝑋, 𝑥1) by 𝛾 ↦ 𝑢−1𝛾𝑢. Hence
if 𝛾0 ∼𝑒 𝛾1, we have 𝑢−1𝛾0𝑢 ∼𝑒 𝑢−1𝛾1𝑢, so 𝑢♯ descends to a map 𝑢♯∶ 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑋, 𝑥1)
defined by [𝛾] ↦ [𝑢−1𝛾𝑢].

Proposition. 𝑢♯ is a group isomorphism with inverse (𝑢−1)♯.

𝜋1(𝑋, 𝑥0) 𝜋1(𝑋, 𝑥1)
𝑢♯

(𝑢−1)♯

Proof. First, it is a homomorphism.

𝑢♯([𝛾][𝛾′]) = [𝑢−1𝛾𝛾′𝑢] = [𝑢−1𝛾𝑐𝐼,𝑥0𝛾′𝑢]
= [𝑢−1𝛾𝑢𝑢−1𝛾′𝑢] = [𝑢−1𝛾𝑢][𝑢−1𝛾′𝑢] = 𝑢♯([𝛾])𝑢♯([𝛾′])

Consider the function 𝑢−1♯ . We have

𝑢−1♯ (𝑢♯([𝛾])) = [𝑢𝑢−1𝛾𝑢𝑢−1] = [𝑐𝐼,𝑥0𝛾𝑐𝐼,𝑥0] = [𝛾]

and
𝑢♯(𝑢−1♯ ([𝛾])) = [𝑢−1𝑢𝛾𝑢−1𝑢] = [𝑐𝐼,𝑥1𝛾𝑐𝐼,𝑥1] = [𝛾]

So 𝑢♯, 𝑢−1♯ are inverses, and therefore isomorphisms.

Corollary. A space 𝑋 is simply connected if it is path-connected and 𝜋1(𝑋, 𝑥0) = 1 for any
𝑥0 ∈ 𝑋 , since then it follows that 𝜋1(𝑋, 𝑥) = 1 for all 𝑥 ∈ 𝑋 .

Theorem. Let 𝑥0 ∈ 𝑋 , and 𝑓0, 𝑓1∶ 𝑋 → 𝑌 such that 𝑓0 ∼ 𝑓1 by 𝐻∶ 𝑋 × 𝐼 → 𝑌 . Let 𝑢(𝑡) =
𝐻(𝑥0, 𝑡) and 𝑦0 = 𝑓0(𝑥0), 𝑦1 = 𝑓1(𝑥0). Then 𝑢 ∈ Ω(𝑌, 𝑦0, 𝑦1). We have 𝑓𝑖 ∶ (𝑋, 𝑥0) → (𝑌, 𝑦𝑖)
which induce 𝑓𝑖⋆∶ 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑌, 𝑦𝑖). Then 𝑓1⋆ = 𝑢♯ ∘ 𝑓0⋆.

(𝑌 , 𝑦0) 𝜋1(𝑌 , 𝑦0)

(𝑋, 𝑥0) 𝜋1(𝑋, 𝑥0)

(𝑌 , 𝑦1) 𝜋1(𝑌 , 𝑦1)

𝑢♯

𝑓0

𝑓1

𝑓1⋆

𝑓0⋆

17
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Proof. We must show that 𝑓1⋆([𝛾]) = 𝑢♯(𝑓0⋆([𝛾])). Let 𝛾𝑖 = 𝑓𝑖 ∘ 𝛾. We therefore need to
show 𝛾1 ∼𝑒 𝑢−1𝛾0𝑢 for all 𝛾 ∈ Ω(𝑋, 𝑥0). Suppose we can show that 𝐻∶ 𝜕(𝐼 × 𝐼) → 𝑌 given
by 𝛾0, 𝑢, 𝛾−11 , 𝑢−1 on each side of the square extends to 𝐼 × 𝐼. Equivalently, 𝛾0𝑢𝛾−11 𝑢−1 =
𝑢−1𝛾0𝑢𝛾−11 is null-homotopic. This is equivalent to the statement 𝑢−1𝛾0𝑢 ∼𝑒 𝛾1. We know ℎ
extends to �̂� ∶ 𝐼 × 𝐼 → 𝑌 , because �̂�(𝑥, 𝑡) = 𝐻(𝛾(𝑥), 𝑡).

Corollary. Let 𝑋 ∼ 𝑌 via 𝑓 ∶ 𝑋 → 𝑌 and 𝑔∶ 𝑌 → 𝑋 , so 𝑓 ∘ 𝑔 ∼ id𝑌 and 𝑔 ∘ 𝑓 ∼ id𝑋 .
Let 𝑥0 ∈ 𝑋 and 𝑓(𝑥0) = 𝑦0. Let 𝑔(𝑦0) = 𝑥1 and 𝑓(𝑥1) = 𝑦1. Then we have induced
maps 𝑓(0)⋆ ∶ 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑌 , 𝑦0), 𝑔⋆∶ 𝜋1(𝑌 , 𝑦0) → 𝜋1(𝑋, 𝑥1), 𝑓(1)⋆ ∶ 𝜋1(𝑋, 𝑥1) → 𝜋1(𝑌 , 𝑦1).
Then 𝑔⋆ is an isomorphism.

(𝑋, 𝑥0) 𝜋1(𝑋, 𝑥0)

(𝑌, 𝑦0) 𝜋1(𝑌, 𝑦0)

(𝑋, 𝑥1) 𝜋1(𝑋, 𝑥1)

(𝑌, 𝑦1) 𝜋1(𝑌, 𝑦1)

𝑓

𝑔∘𝑓∼id𝑋

𝑓(0)⋆

𝑢♯

𝑔
𝑓∘𝑔∼id𝑌

𝑔⋆

𝑢♯
𝑓 𝑓(1)⋆

The left-hand commutative diagram, in the category of pointed topological spaces, com-
mutes up to homotopy. The right-hand induced diagram commutes.

Proof. We have id𝑋 ∼ 𝑔 ∘ 𝑓 via 𝐻∶ 𝑋 × 𝐼 → 𝑋 . Then 𝑔⋆ ∘ 𝑓(0)⋆ = (𝑔 ∘ 𝑓)⋆ = 𝑢♯ ∘ (id𝑋)⋆
where 𝑢(𝑡) = 𝐻(𝑥0, 𝑡) is a path from 𝑥0 to 𝑥1. Since 𝑢♯ is an isomorphism, 𝑔⋆ is surjective.
Similarly, 𝑓(1) ∘ 𝑔⋆ = (𝑓 ∘ 𝑔)⋆ is an isomorphism, so 𝑔⋆ is injective.

Corollary. Let 𝑋 be contractible. Then 𝜋1(𝑋, 𝑥0) = 1 is the trivial group.

Proof. The space Ω({•}, •) has one element, so 𝜋1({•}, •) = 1. Since 𝑋 ∼ {•}, the result
follows.

18



4. Covering spaces

4. Covering spaces

4.1. Definitions

Definition. Let 𝑝 ∶ ̂𝑋 → 𝑋 be a continuous function. We say 𝑈 ⊂ 𝑋 is evenly covered by 𝑝
if 𝑝−1(𝑈) ≃ ∐𝛼∈𝐴𝑈𝛼 and 𝑝|𝑈𝛼

∶ 𝑈𝛼 → 𝑈 is a homeomorphism for all 𝛼.

The topology on the coproduct∐𝛼∈𝐴𝑈𝛼 is such that 𝑉 is open if and only if each projection
𝑉∩𝑈𝛼 is open. The topology on𝑝−1(𝑈) is the subspace topology. In particular, the inclusions
𝜄𝛼∶ 𝑈𝛼 → ∐𝛼∈𝐴𝑈𝛼 → ̂𝑋 are continuous, as is the composition 𝜄𝛼(𝑝|𝑈𝛼

)
−1
∶ 𝑈 → 𝑋 since

𝑝|𝑈𝛼
is a homeomorphism.

Definition. 𝑝∶ ̂𝑋 → 𝑋 is a covering map if every 𝑥 ∈ 𝑋 has an open neighbourhood 𝑈𝑥
which is evenly covered by 𝑝. If so, we say ̂𝑋 is a covering space of 𝑋 .

Example. If 𝐴 is a space with the discrete topology, then 𝑝∶ 𝐴 × 𝑋 → 𝑋 is a covering map,
because 𝑝−1(𝑋) = ∐𝛼∈𝐴 {𝛼} × 𝑋 .

Example. 𝑝∶ ℝ → 𝑆1 given by 𝑝(𝑡) = 𝑒2𝜋𝑖𝑡 is a covering map. Indeed, if 𝑉 ⊆ ℝ is an
open interval of at most unit length, let 𝑈 = 𝑝(𝑉) and then 𝑝−1(𝑈) = ∐𝑛∈ℤ 𝑉𝑛 for 𝑉𝑛 =
{𝑛 + 𝑣 ∣ 𝑣 ∈ 𝑉}.

Example. Consider 𝑝𝑛∶ 𝑆1 → 𝑆1 defined by 𝑧 ↦ 𝑧𝑛. If 𝑉 ⊆ 𝑆1 is an open interval of length
< 2𝜋

𝑛
, let 𝑈 = 𝑝𝑛(𝑉). Then 𝑝−1𝑛 (𝑉) = ∐𝑖∈ℤ⟋𝑛ℤ

𝜔𝑖𝑉 for 𝜔 = 𝑒
2𝜋𝑖
𝑛 . Hence 𝑈 is evenly covered.

Definition. We define the 𝑛-dimensional real projective space as ℝℙ𝑛 = 𝑆𝑛⟋∼ where ∼ is
the equivalence relation generated by 𝑥 ∼ −𝑥 for all 𝑥 ∈ 𝑆𝑛.

Example. The quotient map 𝑝∶ 𝑆𝑛 → ℝℙ𝑛 is a covering map. Indeed, for 𝑥 ∈ 𝑆𝑛, let 𝑉𝑥 be
the open hemisphere centred at 𝑥. Then letting𝑈𝑥 = 𝑝(𝑉𝑥), we have 𝑝−1(𝑈(𝑥)) = 𝑈𝑥⨿−𝑈𝑥,
giving that 𝑈𝑥 is evenly covered.

4.2. Lifting paths and homotopies

Definition. Let 𝑝∶ ̂𝑋 → 𝑋 be a coveringmap, and 𝑓∶ 𝑍 → 𝑋 be continuous. A continuous
function ̂𝑓 ∶ 𝑍 → ̂𝑋 is a lift if 𝑝 ∘ ̂𝑓 = 𝑓. Hence, the following commutative diagram holds.

̂𝑋

𝑍 𝑋
𝑝

̂𝑓

𝑓

Theorem (Path lifting). Let 𝑝∶ ( ̂𝑋, ̂𝑥0) → (𝑋, 𝑥0) be a covering map, and 𝛾∶ [𝑎, 𝑏] → 𝑋 be
a path. Let 𝛾(𝑎) = 𝑥0 and 𝑝( ̂𝑥0) = ̂𝑥0. Then there exists a unique lift ̂𝛾∶ [𝑎, 𝑏] → ̂𝑋 with
̂𝛾(𝑎) = ̂𝑥0.
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The proof will be given after some lemmas. We say 𝑓∶ 𝑍 → 𝑋 has the (unique) lifting
property at 𝑧 ∈ 𝑍 if for any ̂𝑥 ∈ ̂𝑋 such that𝑝( ̂𝑥) = 𝑓(𝑧), there exists a (unique) lift ̂𝑓 ∶ 𝑍 → ̂𝑋
such that ̂𝑓(𝑧) = ̂𝑥.

Lemma (Lebesgue covering lemma). Let 𝑋 be a compact metric space, and {𝑈𝛼 ∣ 𝛼 ∈ 𝐴} is
an open cover of 𝑋 . Then there exists 𝛿 > 0 such that for every 𝑥 ∈ 𝑋 , the open ball 𝐵𝛿(𝑥)
is contained in 𝑈𝛼 for some 𝛼 ∈ 𝐴.

Proof. We have an open cover {𝑈𝛼 ∣ 𝛼 ∈ 𝐴} of 𝑋 , so given 𝑥 ∈ 𝑋 , we can find 𝛼𝑥 ∈ 𝐴
such that 𝑥 ∈ 𝑈𝛼𝑥 and 𝑈𝛼𝑥 is open. Hence there exists 𝛿𝑥 > 0 such that 𝐵2𝛿𝑥(𝑥) ⊂ 𝑈𝛼𝑥 .
Then {𝐵𝛿𝑥(𝑥) ∣ 𝑥 ∈ 𝑋} is an open cover of 𝑋 . By compactness there is a finite subcover
{𝐵𝛿𝑥𝑖 (𝑥𝑖) ∣ 𝑖 ∈ {1,… , 𝑘}}. Let 𝛿 = min𝑖∈{1,…,𝑘} 𝛿𝑥𝑖 > 0. Then for 𝑦 ∈ 𝑋 , we have 𝑦 ∈ 𝐵𝛿𝑥𝑖 (𝑥𝑖)
for some 𝑖, and 𝐵𝛿(𝑦) ⊂ 𝐵𝛿𝑥𝑖+𝛿(𝑥𝑖) ⊂ 𝐵2𝛿𝑥𝑖 (𝑥𝑖) ⊂ 𝑈𝛼𝑥 .

Lemma. Let 𝑝∶ ( ̂𝑋, ̂𝑥0) → (𝑋, 𝑥0) be a covering map, and 𝛾∶ [𝑎, 𝑏] → 𝑋 be a path such
that 𝛾(𝑎) = 𝑥0. Let Im 𝛾 ⊂ 𝑈 where 𝑈 ⊂ 𝑋 is evenly covered. Then 𝛾 has the unique lifting
property.

Note that this is simply the above path lifting theorem with an additional hypothesis.

Proof. Since 𝑈 is evenly covered, 𝑝−1(𝑈) = ∐𝛼∈𝐴𝑈𝛼, and 𝑝|𝑈𝛼
∶ 𝑈𝛼 → 𝑈 is a homeo-

morphism onto its image. So ̂𝑥0 ∈ 𝑈𝛼0 for some 𝛼0 ∈ 𝐴. Then the map (𝑝𝛼)−1 = 𝜄𝛼 ∘
(𝑝|𝑈𝛼

)
−1
∶ 𝑈 → ̂𝑋 is continuous. Then (𝑝|𝑈𝛼0

)
−1
(𝑥0) = ̂𝑥0, so ̂𝛾 = (𝑝𝛼0)

−1 ∘ 𝛾 is a lift of 𝛾
with ̂𝛾(𝑎) = ̂𝑥0.

Now we will prove uniqueness of the lift. Observe that 𝑝−1(𝑈) = 𝑈𝛼0 ⨿∐𝛼≠𝛼0 𝑈𝛼 discon-
nects 𝑝−1(𝑈). Note that [𝑎, 𝑏] is connected. We have that if ̂𝛾∶ [𝑎, 𝑏] → ̂𝑋 with ̂𝛾(𝑎) = ̂𝑥0
and 𝑝 ∘ ̂𝛾 = 𝛾, then Im ̂𝛾 ⊂ 𝑝−1(𝑈) implies Im ̂𝛾 ⊂ 𝑈𝛼0 . But 𝑝|𝑈𝛼0

is a homeomorphism, so

we must have ̂𝛾 = (𝑝𝛼0)
−1 ∘ 𝛾.

Lemma. Let 𝛾∶ [𝑎, 𝑏] → 𝑋 and 𝑎′ ∈ [𝑎, 𝑏]. If 𝛾|[𝑎,𝑎′] has the unique lifting property at 𝑎
and 𝛾|[𝑎′,𝑏] has the unique lifting property at 𝑎′, then 𝛾 has the unique lifting property at 𝑎.

Proof. If 𝑝( ̂𝑥) = 𝛾(𝑎), since 𝛾|[𝑎,𝑎′] has the unique lifting property at 𝑎, there exists a unique
lift ̂𝛾1 ∶ [𝑎, 𝑎′] → ̂𝑋 such that ̂𝛾1(𝑎) = ̂𝑥. Then 𝛾|[𝑎′,𝑏] has the unique lifting property at
𝑎′, so there exists a unique lift ̂𝛾2∶ [𝑎′, 𝑏] → ̂𝑋 with ̂𝛾2(𝑎′) = ̂𝛾1(𝑎′). Then the composition
̂𝛾 = ̂𝛾1 ̂𝛾2 is a lift of 𝛾, with ̂𝛾(𝑎) = ̂𝑥.

For uniqueness, suppose ̂𝛾 is a lift of 𝛾 with ̂𝛾(𝑎) = ̂𝑥. Then ̂𝛾|[𝑎,𝑎′] is a lift of 𝛾|[𝑎,𝑎′], so by
the unique lifting property, ̂𝛾|[𝑎,𝑎′] is uniquely determined such that ̂𝛾(𝑎) = ̂𝑥. Then by the
unique lifting property again, ̂𝛾|[𝑎′,𝑏] is also uniquely determined such that ̂𝛾|[𝑎′,𝑏] (𝑎′) =
̂𝛾|[𝑎,𝑎′] (𝑎′).
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We can now prove the path lifting theorem: any 𝛾∶ 𝐼 → 𝑋 has the unique lifting prop-
erty.

Proof. Let 𝑝∶ ̂𝑋 → 𝑋 be a covering map. Hence, for all 𝑥 ∈ 𝑋 , there exists an open neigh-
bourhood 𝑈𝑥 which is evenly covered. {𝑈𝑥 ∣ 𝑥 ∈ 𝑋} is therefore an open cover of 𝑋 , and so
{𝛾−1(𝑈𝑥) ∣ 𝑥 ∈ 𝑋} is an open cover of 𝐼. Since 𝐼 is compact, by the Lebesgue covering lemma,
there exists 𝛿 > 0 such that for all 𝑡, 𝐵𝛿(𝑡) ⊆ 𝛾−1(𝑈𝑥(𝑡)) for some 𝑥(𝑡). In other words,
𝛾(𝐵𝛿(𝑡)) ⊆ 𝑈𝑥(𝑡).

Let 𝑛 ∈ ℕ such that 1
𝑛
< 𝛿, and 𝑎𝑖 =

𝑖
𝑛
∈ 𝐼. Then [𝑎𝑖, 𝑎𝑖+1] ⊂ 𝐵𝛿(𝑎𝑖) for all 𝑖. Hence

𝛾[𝑎𝑖, 𝑎𝑖+1] ⊆ 𝑈𝑥(𝑎𝑖). Then [𝑎𝑖, 𝑎𝑖+1] is connected, hence 𝛾[𝑎𝑖, 𝑎𝑖+1] is connected. Since𝑈𝑥(𝑎𝑖)
is evenly covered, 𝛾|[𝑎𝑖 ,𝑎𝑖+1] has the unique lifting property. Then by induction on 𝑖, we can
see that 𝛾|[0,𝑎𝑖] has the unique lifting property, and hence so does 𝛾 in its entirety.

Theorem (Homotopy lifting). Let 𝑝∶ ( ̂𝑋, ̂𝑥0) → (𝑋, 𝑥0) be a covering map, and𝐻∶ 𝐼×𝐼 →
𝑋 be a homotopy. Then 𝐻 has the lifting property at (0, 0).

It also has the unique lifting property, but this will be more easily proven later.

Proof. 𝐼 is compact and connected, so by Tychonoff’s theorem, 𝐼 × 𝐼 is compact and connec-
ted. Suppose {𝑈𝑥 ∣ 𝑥 ∈ 𝑋} is an open cover of𝑋 consisting of evenly covered neighbourhoods
of points as before. Then, since 𝐼×𝐼 is compact, by the Lebesgue covering lemma there exists
𝛿 > 0 such that for all 𝑣 ∈ 𝐼 × 𝐼, 𝐵𝛿(𝑣) ⊆ 𝐻−1(𝑈𝑥(𝑣)). In particular, 𝐻(𝐵𝛿(𝑣)) ⊆ 𝑈𝑥(𝑣).

Let𝑛 ∈ ℕ such that √2
𝑛
< 𝛿, dividing 𝐼×𝐼 into squares of size 1

𝑛
, ordered from left-to-right and

then bottom-to-top. Label each square with an index 𝑖 ∈ {1,… , 𝑛2}. Let each square𝐴𝑖 have
lower left-hand corner 𝑣𝑖, for 𝑖 ∈ {1,… , 𝑛2}. Note that 𝐻(𝐴𝑖) ⊆ 𝐻(𝐵𝛿(𝑣𝑖)) ⊆ 𝑈𝑥(𝑣𝑖) = 𝑈 𝑖 is
evenly covered.

Let 𝐵𝑘 = ⋃𝑘
𝑖=1 𝐴𝑖. Then 𝐴𝑖 ≃ 𝐼 × 𝐼 is connected, so 𝐻|𝐴𝑖

has the lifting property at 𝑣𝑖.

We show by induction that 𝐻|𝐵𝑘 has the lifting property at (0, 0). For 𝑘 = 1, 𝐵1 = 𝐴1 and
(0, 0) = 𝑣1, so the result follows.

For other 𝑘, suppose that 𝐻|𝐵𝑘 has the lifting property at (0, 0), so �̂�𝑘∶ 𝐵𝑘 → ̂𝑋 with
�̂�𝑘(0, 0) = ̂𝑥. Then 𝐻|𝐴𝑘+1

has the lifting property at 𝑣𝑖, so choose a lift ̂ℎ𝑘∶ 𝐴𝑘+1 → ̂𝑋
such that ̂ℎ𝑘(𝑣𝑘+1) = �̂�𝑘(𝑣𝑘+1). Note that 𝑝(�̂�𝑘(𝑣𝑘+1)) = 𝐻(𝑣𝑘+1), so this exists by the lift-
ing property. Observe that 𝐴𝑘+1 ∩ 𝐵𝑘 = 𝐼𝑘 ∪ 𝐼′𝑘 is the union of (at most) two intervals with
intersection at their endpoints, so is homeomorphic to 𝐼. Hence by uniqueness of path lifting,
�̂�𝑘||𝐼𝑘 =

̂ℎ𝑘||𝐼𝑘 since both are lifts of 𝐻|𝐼𝑘 with 𝑣𝑘+1 ↦ �̂�𝑘(𝑣𝑘+1). Similarly, �̂�𝑘||𝐼′𝑘 =
̂ℎ𝑘||𝐼′𝑘 .

In other words, �̂�𝑘||𝐴𝑘+1∩𝐵𝑘
= ̂ℎ𝑘||𝐴𝑘+1∩𝐵𝑘

. By the gluing lemma, we can construct the well-
defined and continuous map �̂�𝑘+1∶ 𝐵𝑘+1 → 𝑋 given by �̂�𝑘 and ̂ℎ𝑘 on their domains. Then
�̂�𝑘+1 is a lift of 𝐻|𝐵𝑘+1 .

21



I. Algebraic Topology

Proposition. Let 𝑝∶ ( ̂𝑋, ̂𝑥0) → (𝑋, 𝑥0) be a covering map. Let 𝛾0, 𝛾1 ∈ Ω(𝑋, 𝑥0, 𝑥1), and
𝛾0 ∼𝑒 𝛾1. Let ̂𝛾𝑖 be the lift of 𝛾𝑖 to ̂𝑋 with ̂𝛾𝑖(0) = ̂𝑥0, which exists by the path lifting property.
Then ̂𝛾0 ∼𝑒 ̂𝛾1.

Proof. Let𝐻∶ 𝐼×𝐼 → 𝑋 be a homotopy between 𝛾0 and 𝛾1. By the homotopy lifting property,
there exists a lifted homotopy �̂� ∶ 𝐼 × 𝐼 → ̂𝑋 such that �̂�(0, 0) = ̂𝑥0. Let 𝛼𝑖(𝑡) = �̂�(𝑡, 𝑖) for
𝑖 = 0, 1, and 𝛽𝑖(𝑡) = �̂�(𝑖, 𝑡) for 𝑖 = 0, 1. Applying the uniqueness of path lifting to the 𝛼𝑖 and
the 𝛽𝑖,

(i) 𝛼0 is a lift of 𝛾0 with 𝛼0(0) = ̂𝑥0, so 𝛼0 = ̂𝛾0;

(ii) 𝛽0 is a lift of 𝑐𝐼,𝑥0 with 𝛽0(0) = ̂𝑥0, so 𝛽0 = ̂𝑐𝐼,𝑥0 = 𝑐𝐼,�̂�0 by uniqueness, and in
particular, 𝛼1(0) = 𝛽0(1) = ̂𝑥0;

(iii) 𝛼1 is a lift of 𝛾1 with 𝛼1(0) = ̂𝑥0, so 𝛼1 = ̂𝛾1;

(iv) let ̂𝑥1 = ̂𝛾0(1), and then 𝛽1 is a lift of 𝑐𝐼,𝑥1 , so 𝛽1(0) = ̂𝑥1, so 𝛽1 = 𝑐𝐼,�̂�1 .

Hence ̂𝛾0 ∼𝑒 ̂𝛾1 via �̂�.

Corollary. Let 𝑝∶ ( ̂𝑋, ̂𝑥0) → (𝑋, 𝑥0) be a covering map. Let 𝛾0, 𝛾1 ∈ Ω(𝑋, 𝑥0, 𝑥1), and
𝛾0 ∼𝑒 𝛾1. Then ̂𝛾0(1) = ̂𝛾1(1).

4.3. Simply connected lifting
Let 𝑝∶ ( ̂𝑋, ̂𝑥0) → (𝑋, 𝑥0) be a covering map. If 𝛾∶ 𝐼 → 𝑋 has 𝛾(0) = 𝑥0, let ̂𝛾∶ 𝐼 → ̂𝑋 be its
unique lift such that ̂𝛾(0) = ̂𝑥0.

Consider 𝛾𝛾′ = ̂𝛾 ̃𝛾′, where ̃𝛾′ is a lift of 𝛾′ such that ̃𝛾′(0) = ̂𝛾(1). Note that we needed to
change the start point of ̃𝛾′ in the covering space.

Definition. A space 𝑋 is locally path-connected if for every open set 𝑈 ⊆ 𝑋 and 𝑥 ∈ 𝑈 ,
there exists an open 𝑉 ⊆ 𝑈 with 𝑥 ∈ 𝑉 and 𝑉 path-connected.

Example. Consider

𝑋 = {(𝑥, 0) ∈ ℝ2} ∪ {( 1𝑛, 𝑦) ∈ ℝ2, 𝑛 ∈ ℤ} ∪ {(0, 𝑦) ∈ ℝ2}

Then, an open set containing a point (0, 𝑦) but not (0, 0) admits no smaller path-connected
open neighbourhood.

Proposition (simply connected lifting property). Let 𝑍 be a simply connected (and hence
path-connected) space that is also locally path-connected. If 𝑓∶ (𝑍, 𝑧0) → (𝑋, 𝑥0), then 𝑓
has a unique lift ̂𝑓 ∶ (𝑍, 𝑧0) → ( ̂𝑋, ̂𝑥0).

Remark. This proposition then implies the path lifting and homotopy lifting properties.
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Proof. Suppose ̂𝑓 ∶ (𝑍, 𝑧0) → ( ̂𝑋, ̂𝑥0) is a lift of 𝑓. Given 𝑧 ∈ 𝑍, consider a path 𝛾 ∈
Ω(𝑍, 𝑧0, 𝑧), which exists since 𝑍 is path-connected. Then ̂𝑓 ∘𝛾 is a lift of 𝑓∘𝛾, since 𝑝( ̂𝑓∘𝛾) =
(𝑝 ∘ ̂𝑓) ∘ 𝛾 = 𝑓 ∘ 𝛾. Then, ( ̂𝑓 ∘ 𝛾)(0) = ̂𝑓(𝑧0) = ̂𝑥0, so ̂𝑓 ∘ 𝛾 = 𝑓 ∘ 𝛾 is the unique lift of 𝑓 ∘ 𝛾
given by the unique path lifting property. Then ̂𝑓(𝑧) = ̂𝑓(𝛾(1)) = ( ̂𝑓 ∘ 𝛾)(1) = 𝑓 ∘ 𝛾(1) is
uniquely determined by the unique path lifting property. So any such lift is unique.

If 𝛾0, 𝛾1 ∈ Ω(𝑍, 𝑧0, 𝑧), 𝛾0 ∼𝑒 𝛾1 by simply-connectedness. In particular, 𝑓∘𝛾0 ∼𝑒 𝑓∘𝛾1, and by
the homotopy lifting property, 𝑓 ∘ 𝛾0(1) = 𝑓 ∘ 𝛾1(1). So the choice of path 𝛾 used above is not
relevant. Now, let us define ̂𝑓 ∶ (𝑍, 𝑧0) → ( ̂𝑋, ̂𝑥0) by ̂𝑓(𝑧) = 𝑓 ∘ 𝛾(1) where 𝛾 ∈ Ω(𝑍, 𝑧0, 𝑧)
is any path from 𝑧0 to 𝑧. Then 𝑝( ̂𝑓(𝑧)) = 𝑝 ∘ 𝑓 ∘ 𝛾(1) = 𝑓 ∘ 𝛾(1) = 𝑓(𝑧) since 𝑓 ∘ 𝛾 is a lift
of 𝑓 ∘ 𝛾. Hence ̂𝑓 as defined is a lift. If 𝑧 = 𝑧0, we can take 𝛾 = 𝑐𝐼,𝑧0 , so 𝑓 ∘ 𝛾 = 𝑐𝐼,𝑥0 . In
particular, 𝑓 ∘ 𝛾 = 𝑐𝐼,�̂�0 , so ̂𝑓(𝑧) = 𝑓 ∘ 𝛾(1) = ̂𝑥0 as required.

Now, it suffices to check that ̂𝑓 is a continuous function. Let 𝑈 ⊆ ̂𝑋 be an open neighbour-
hood of ̂𝑓(𝑧). We need to find an open neighbourhood 𝑉 ⊆ 𝑍 of 𝑧 such that ̂𝑓(𝑉) ⊆ 𝑈 .

First, we find a subset 𝑈 ′ ⊂ 𝑈 with ̂𝑓(𝑧) ∈ 𝑈 ′ such that 𝑝(𝑈 ′) is open and evenly covered.
Since 𝑝 is a covering map, there exists an open𝑊 ⊆ 𝑋 with 𝑓(𝑧) ∈ 𝑊 and which is evenly
covered. Hence 𝑝−1(𝑊) = ∐𝛼∈𝐴𝑊𝛼, and 𝑝( ̂𝑓(𝑧)) = 𝑓(𝑧), so ̂𝑓(𝑧) ∈ 𝑊𝛼0 for some 𝛼0 ∈ 𝐴.
Then,𝑊𝛼0 ⊆ ̂𝑋 is an open set. Let 𝑈 ′ = 𝑈 ∩𝑊𝛼0 . Then ̂𝑓(𝑧) ∈ 𝑈 ′, and 𝑝|𝑊𝛼0

∶ 𝑊𝛼0 → 𝑊
is a homeomorphism, so 𝑝(𝑈 ′) = 𝑝𝛼0(𝑈 ′) is open and evenly covered.

Next, 𝑓∶ 𝑍 → 𝑋 is continuous, so we need to find an open set 𝑉 ′ ⊆ 𝑍 with 𝑧 ∈ 𝑉 ′ and
𝑓(𝑉 ′) ⊆ 𝑝(𝑈 ′). Since 𝑍 is locally path-connected, there exists 𝑉 ⊆ 𝑉 ′ which is an open
path-connected set with 𝑧 ∈ 𝑉 .

Now we need to show 𝑉 satisfies the continuity requirement, that ̂𝑓(𝑉) ⊆ 𝑈 . Given 𝑧′ ∈ 𝑉 ,
let 𝛾′ ∈ Ω(𝑉, 𝑧, 𝑧′), which exists because 𝑉 is path-connected. Then Im𝑓 ∘ 𝛾′ ⊆ 𝑓(𝑉) ⊆
𝑝(𝑈 ′). Note that Im𝑓 ∘ 𝛾′ is evenly covered. Hence ̃𝛾′ = 𝑝−1𝛼0 ∘ 𝑓 ∘ 𝛾′ is a lift of 𝑓 ∘ 𝛾′ with
̃𝛾′(0) = 𝑝−1𝛼0 (𝑓(𝑧)) = ̂𝑓(𝑧). Then 𝛾𝛾′ ∈ Ω(𝑍, 𝑧0, 𝑧′), and ˆ𝑓∘ (𝛾𝛾′) = 𝑓 ∘ 𝛾 ̃𝛾′ by the discussion
at the beginning of the subsection. Hence ̂𝑓(𝑧′) = ˆ𝑓 ∘ (𝛾𝛾′)(1) = ̃𝛾′(1) = 𝑝−1𝛼0 ∘𝑓 ∘𝛾′(1) ∈ 𝑈 ′.
So ̂𝑓(𝑉) ⊆ 𝑈 as required.

4.4. Universal covers
Let 𝑝∶ ( ̂𝑋, ̂𝑥0) → (𝑋, 𝑥0) be a covering map. If 𝛾 ∈ Ω(𝑋, 𝑥0), let ̂𝛾∶ 𝐼 → ̂𝑋 be its unique
lift such that ̂𝛾(0) = ̂𝑥0, which exists by the path lifting property. Then there is a map
𝜀𝑝∶ Ω(𝑋, 𝑥0) → 𝑝−1(𝑥0) by 𝛾 ↦ ̂𝛾(1), since 𝑝( ̂𝛾(1)) = 𝛾(1) = 𝑥0. By the corollary above, if
[𝛾0] = [𝛾1] in 𝜋1, we have 𝜀𝑝(𝛾0) = 𝜀𝑝(𝛾1). In particular, 𝜀𝑝 descends to a well-defined map
from 𝜋1(𝑋, 𝑥0) to 𝑝−1(𝑥0).

Definition. A covering map 𝑝∶ ̂𝑋 → 𝑋 is a universal cover if ̂𝑋 is simply connected.

Example. 𝑝∶ ℝ → 𝑆1 defined by 𝑥 ↦ 𝑒2𝜋𝑖𝑥 is a universal cover of 𝑆1, sinceℝ is contractible.
𝑝2∶ ℝ2 → 𝑆1 × 𝑆1 = 𝑇2 defined by 𝑝2(𝑥, 𝑦) = (𝑝(𝑥), 𝑝(𝑦)) is a universal cover.
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Proposition. If 𝑝∶ ( ̂𝑋, ̂𝑥0) → (𝑋, 𝑥0) is a universal cover, then 𝜀𝑝∶ 𝜋1(𝑋, 𝑥0) → 𝑝−1(𝑥0) is
a bijection of sets.

Proof. Suppose 𝜀𝑝[𝛾0] = ̂𝑥1 = 𝜀𝑝[𝛾1]. Then ̂𝛾0 and ̂𝛾1 are paths in Ω( ̂𝑋, ̂𝑥0, ̂𝑥1). Since ̂𝑋 is
simply connected, ̂𝛾0 ∼𝑒 ̂𝛾1. In particular, 𝛾0 = 𝑝 ∘ ̂𝛾0 ∼𝑒 𝑝 ∘ ̂𝛾1 = 𝛾1. Hence [𝛾0] = [𝛾1], so
𝜀𝑝 is injective.
Given ̂𝑥 ∈ 𝑝−1(𝑥0), ̂𝑋 is path-connected as it is simply connected, so there exists a path
𝜂 ∈ Ω( ̂𝑋, ̂𝑥0, ̂𝑥). Since 𝑝( ̂𝑥) = 𝑥0, we find 𝛾 = 𝑝 ∘ 𝜂 ∈ Ω(𝑋, 𝑥0). Then 𝜂 = ̂𝛾 is the unique
lift of 𝛾. In particular, 𝜀𝑝(𝛾) = 𝜂(1) = ̂𝑥, so 𝜀𝑝 is surjective.

Example. Let 𝑝∶ (ℝ, 0) → (𝑆1, 1) be defined by 𝑥 ↦ 𝑒2𝜋𝑖𝑥. We have 𝑝−1(1) = ℤ. Then,
𝜀∶ 𝜋1(𝑆1, 1) → ℤ is a bijection.
Theorem. 𝜀𝑝∶ 𝜋1(𝑆1, 1) → ℤ is an isomorphism of groups.

Proof. It is a bijection, so it suffices to check that it is a homomorphism. Given 𝑛 ∈ ℤ, we
can define 𝜑𝑛∶ ℝ → ℝ by 𝜑𝑛(𝑥) = 𝑥 + 𝑛. Then, 𝑝 ∘ 𝜑𝑛 = 𝑝. If 𝛾 ∈ Ω(𝑆1, 1), we can find a
lift ̂𝛾 of 𝛾with ̂𝛾(0) = 0. Then 𝑝 ∘ 𝜑𝑛 ∘ ̂𝛾 = 𝑝 ∘ ̂𝛾 = 𝛾, so 𝜑𝑛 ∘ ̂𝛾 is a lift of 𝛾with 𝜑𝑛 ∘ ̂𝛾(0) = 𝑛.
Suppose 𝜀𝑝[𝛾] = 𝑛, and 𝜀𝑝[𝛾′] = 𝑛′. Then ̂𝛾(1) = 𝑛, ̂𝛾′(1) = 𝑛′, so 𝜑𝑛 ∘ ̂𝛾′ is a lift of 𝛾′
that starts at 𝑛. Hence, 𝛾𝛾′ = ̂𝛾(𝜑𝑛 ∘ ̂𝛾′) is a lift of the composition of paths. Thus, 𝜀[𝛾𝛾′] =
𝛾𝛾′(1) = 𝜑𝑛( ̂𝛾′(1)) = 𝑛 + 𝑛′. So 𝜀𝑝 is a homomorphism.

Corollary. 𝑆1 is not contractible.
Example. Let 𝑓∶ 𝑆1 → 𝑆1 be the identity map. Let 𝑝∶ (ℝ, 0) → (𝑆1, 1) be a covering map.
Then there is no lift of 𝑓 to ℝ. Otherwise, the identity map on ℤ would factor through the
trivial group. This shows that the simply connected lifting property does not extend to all
path-connected spaces.

4.5. Degree of maps on the circle
Lemma. Let 𝑧 ∈ 𝑆1, and 𝑢, 𝑣 ∈ Ω(𝑆1, 𝑧, 1). Then, the isomorphisms 𝑢♯, 𝑣♯∶ 𝜋1(𝑆1, 𝑧) →
𝜋1(𝑆1, 1) are equal.

Proof. Consider 𝑣−1♯ ∘ 𝑢♯ = (𝑣−1)♯ ∘ 𝑢♯. Note, (𝑣−1♯ ∘ 𝑢♯)[𝛾] = [𝑣𝑢−1𝛾𝑢𝑣−1]. Since 𝑣𝑢−1 ∈
Ω(𝑆1, 1), we can write [𝑣𝑢−1𝛾𝑢𝑣−1] = [𝜂][𝛾][𝜂−1] where 𝜂 = 𝑣𝑢−1. But this is exactly [𝛾],
since 𝜋1(𝑆1, 1) ≃ ℤ is abelian. Hence 𝑣−1♯ ∘ 𝑢♯ = id, and by symmetry, 𝑢−1♯ ∘ 𝑣♯ = id.

Definition. Let 𝑓∶ 𝑆1 → 𝑆1, 𝑓(1) = 𝑧. Then choose 𝑢 ∈ Ω(𝑆1, 𝑧, 1), then 𝑓⋆∶ 𝜋1(𝑆1, 1) →
𝜋1(𝑆1, 𝑧), giving 𝑢♯ ∘ 𝑓⋆∶ 𝜋1(𝑆1, 1) → 𝜋1(𝑆1, 1). This is a homomorphism ℤ → ℤ, so is
uniquely determined by its action on 1. We define the degree of 𝑓, written deg𝑓, to be (𝑢♯ ∘
𝑓⋆)(1).
By the above lemma, this definition does not depend on the choice of path 𝑢.
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Example. Let 𝛾𝑛 ∈ Ω(𝑆1, 1) be given by 𝛾𝑛(𝑡) = 𝑒2𝜋𝑖𝑛𝑡 for 𝑛 ∈ ℤ. Then ̂𝛾𝑛(𝑡) = 𝑛𝑡, so
𝜀𝑝[𝛾𝑛] = 𝑛. The integers 𝑛 correspond to the classes [𝛾𝑛] in 𝜋1(𝑆1, 1).
Let 𝑓𝑛 = 𝛾𝑛∶ 𝑆1 → 𝑆1, so 𝑓𝑛(𝑧) = 𝑧𝑛. Then 𝑓𝑛 ∘ 𝛾1 = 𝛾𝑛, so 𝑓𝑛⋆[𝛾1] = [𝛾𝑛]. Hence the degree
of 𝑓𝑛 is 𝑛.
Proposition. The degree of 𝑓𝑛 ∶ 𝑆1 → 𝑆1, defined by 𝑧 ↦ 𝑧𝑛, is 𝑛. If 𝑔0, 𝑔1∶ 𝑆1 → 𝑆1, then
𝑔0 ∼ 𝑔1 if and only if deg 𝑔0 = deg 𝑔1. 𝑔∶ 𝑆1 → 𝑆1 extends to 𝐺∶ 𝐷2 → 𝑆1 if and only if
deg 𝑔 = 0.

Proof. Suppose 𝑔0 ∼ 𝑔1 via 𝐻∶ 𝑆1 × 𝐼 → 𝑆1. Let 𝑢(𝑡) = 𝐻(1, 𝑡), so 𝑔1⋆ = 𝑢♯ ∘ 𝑔0⋆, where
𝑢 ∈ Ω(𝑆1, 𝑔0(1), 𝑔1(1)). Let 𝑣 ∈ Ω(𝑆1, 𝑔1(1), 1). Then 𝑢𝑣 ∈ Ω(𝑆1, 𝑔0(1), 1), and so deg 𝑔1 =
𝑣♯∘𝑔1⋆(1) = 𝑣♯(𝑢♯∘𝑔0(1)) = (𝑢𝑣)♯∘𝑔0⋆(1) = deg 𝑔0, since 𝑢♯[𝛾] = [𝑢−1𝛾𝑢] so (𝑢∘𝑣)♯ = 𝑣♯∘𝑢♯.
Conversely, it suffices to show that 𝑔 ∼ 𝑓deg𝑔 by transitivity. Suppose 𝑔(1) = 1. Then 𝑔 = 𝛾
where 𝛾 = 𝑔 ∘ 𝛾1. Then deg 𝑔 = 𝑔⋆(1) = [𝑔 ∘ 𝛾1] = [𝛾] ∈ 𝜋1(𝑆1, 1). In particular, if deg 𝑔 = 𝑛,
we have 𝛾 ∼ 𝛾𝑛, so 𝑔 = 𝛾 ∼ 𝛾𝑛 = 𝑓𝑛.
In general, if 𝑔(1) = 𝑒2𝜋𝑖𝑥, then 𝑔 ∼ 𝑔0 where 𝑔0(𝑧) = 𝑒−2𝜋𝑖𝑥𝑔(𝑧) via 𝑔𝑡(𝑧) = 𝑒−2𝜋𝑖𝑡𝑥𝑔(𝑧).
Then 𝑔 ∼ 𝑔0 so deg 𝑔 = deg 𝑔0, so in particular 𝑔 ∼ 𝑔0 ∼ 𝛾deg𝑔.
𝑔 extends to 𝐷2 if and only if 𝑔 ∼ 𝑐𝑆1,𝑧0 for some 𝑧0 ∈ 𝑆1. Equivalently, 𝑔 ∼ 𝑐𝑆1,1 = 𝑓0, so
deg 𝑔 = 0 by above.

4.6. Fundamental theorem of algebra
Let 𝑝∶ ℂ → ℂ be a polynomial, so 𝑝(𝑤) = 𝑤𝑛 + 𝑎𝑛−1𝑤𝑛−1 +⋯+ 𝑎0 = 𝑤𝑛 + 𝑞(𝑤).

Lemma. Let 𝑅0 = max {1,∑𝑛−1
𝑖=0 |𝑎𝑖|}. Then if |𝑤| > 𝑅0, |𝑤𝑛| > |𝑞(𝑤)|.

Proof. Consider
|𝑞(𝑤)|
|𝑤𝑛−1| ≤

𝑛−1
∑
𝑖=0

|𝑎𝑖||𝑤|
𝑖−𝑛+1

Hence, if |𝑤| > 1, each term |𝑤|𝑖−𝑛+1 is at most one.

𝑛−1
∑
𝑖=0

|𝑎𝑖||𝑤|
𝑖−𝑛+1 ≤

𝑛−1
∑
𝑖=0

|𝑎𝑖| ≤ 𝑅0

Hence ||𝑞(𝑤)||
|𝑤|𝑛

< 𝑅0
|𝑤|

< 1.

Consider 𝑔0, 𝑔1∶ 𝑆1 → ℂ ∖ {0} given by 𝑔0(𝑧) = (𝑅𝑧)𝑛 for some fixed 𝑅 > 𝑅0, and 𝑔1(𝑧) =
𝑝(𝑅𝑧). Then 𝑔0 ∼ 𝑔1 via 𝑔𝑡(𝑧) = 𝑝𝑡(𝑅𝑧)where 𝑝𝑡(𝑤) = 𝑤𝑛+𝑡𝑞(𝑤). This map has codomain
ℂ ∖ {0} by the above lemma. Let 𝜋∶ ℂ ∖ {0} → 𝑆1 be the radial projection 𝑤 ↦ 𝑤

|𝑤|
. Then

𝜋∘𝑔0, 𝜋 ∘ 𝑔1∶ 𝑆1 → 𝑆1 are homotopic maps. Therefore, 𝑛 = deg(𝜋 ∘𝑔0) = deg(𝜋 ∘𝑔1).
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Theorem. If 𝑛 > 0, 𝑝 has a root 𝑤0 ∈ ℂ.

Proof. If 𝑝(𝑤) ≠ 0 for all 𝑤, 𝑝∶ ℂ → ℂ ∖ {0}, so 𝑔1 extends to 𝐺1∶ 𝐷2 → ℂ ∖ {0} given by
𝐺1(𝑧) = 𝑝(𝑅𝑧). Then 𝜋 ∘ 𝐺1 is an extension of 𝜋 ∘ 𝑔1. So 𝑛 = deg𝜋 ∘ 𝑔1 = 0, so we have a
constant polynomial.

4.7. Wedge product

Definition. Let (𝑋𝑖, 𝑥𝑖) be pointed spaces. Thewedge product⋁
𝑛
𝑖=1(𝑋𝑖, 𝑥𝑖) =

∐𝑛
𝑖=1(𝑋𝑖, 𝑥𝑖)⟋∼

for the equivalence relation∼ generated by𝑥𝑖 ∼ 𝑥𝑗 . For𝑛 = 2, we alsowrite (𝑋1, 𝑥1)∨(𝑋2, 𝑥2)
for⋁2

𝑖=1(𝑋𝑖, 𝑥𝑖).

If each 𝑋𝑖 has the property that for any 𝑥𝑖, 𝑥′𝑖 ∈ 𝑋𝑖, there exists a homeomorphism 𝜑∶ 𝑋𝑖 →
𝑋𝑖 such that𝜑(𝑥𝑖) = 𝜑(𝑥′𝑖), then the particular choice of base point used in thewedge product
does not matter, and the expression ⋁𝑛

𝑖=1 𝑋𝑖 = ⋁𝑛
𝑖=1(𝑋𝑖, 𝑥𝑖) is well-defined up to homeo-

morphism independent of the choice of the 𝑥𝑖.

Example. Consider the figure-eight 𝑆1 ∨ 𝑆1. There are inclusion maps 𝜄1, 𝜄2∶ (𝑆1, 1) →
(𝑆1 ∨ 𝑆1, 𝑥0) where 𝑥0 is the point at which the two circles are joined. Let 𝑎 = 𝜄1⋆(1) ∈
𝜋1(𝑆1 ∨ 𝑆1, 𝑥0), and similarly let 𝑏 = 𝜄2⋆(1) ∈ 𝜋1(𝑆1 ∨ 𝑆1, 𝑥0). The universal cover of 𝑆1 ∨ 𝑆1
is the infinite regular 4-valent tree, 𝑇∞(4). If 𝑇𝑛(4) is the regular 4-valent tree of depth 𝑛,
𝑇∞(4) = ⋃∞

𝑛=1 𝑇𝑛(4), so 𝑈 ⊆ 𝑇∞(4) is open if and only if 𝑈 ∩ 𝑇𝑛(4) is open for all 𝑛. There
is a covering map from 𝑇∞(4) to 𝑆1 ∨ 𝑆1 by mapping each edge to one of the circles. 𝑇∞(4)
is simply connected, because the interval 𝐼 is compact, so if 𝛾∶ 𝐼 → 𝑇∞(4), Im 𝛾 ⊆ 𝑇𝑛(4) for
some 𝑛, and each of the finite trees is contractible and therefore simply connected.

In particular, there is a bijection 𝜋1(𝑆1 ∨ 𝑆1, 𝑥0) → 𝑝−1({𝑥0}) given by [𝛾] → 𝜀𝑝(𝛾). Here,
𝜀𝑝(𝑎𝑏) = 𝑎𝑏(1), but 𝜀𝑝(𝑏𝑎) = 𝑏𝑎(1) ≠ 𝑎𝑏(1). In 𝜋1(𝑆1 ∨ 𝑆1, 𝑥0), 𝑎𝑏 ≠ 𝑏𝑎, so 𝜋1(𝑆1 ∨ 𝑆1, 𝑥0)
is not abelian.

4.8. Covering transformations

Definition. Let 𝑝𝑖 ∶ ̂𝑋𝑖 → 𝑋 be covering maps for 𝑖 = 1, 2. A covering transformation
𝑝∶ (𝑝1, ̂𝑋1) → (𝑝2, ̂𝑋2) is a map 𝑝∶ ̂𝑋1 → ̂𝑋2 such that 𝑝2 ∘ 𝑝 = 𝑝1.

̂𝑋1 ̂𝑋2

𝑋
𝑝1

𝑝

𝑝2

Remark. We can think of 𝑝 as a lift of 𝑝1 to ̂𝑋2.
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̂𝑋2

̂𝑋1 𝑋

𝑝2

𝑝1

𝑝

Example. Let 𝑝1∶ 𝑆1 → 𝑆1 be defined by 𝑧 ↦ 𝑧6, and 𝑝2∶ 𝑆1 → 𝑆1 be defined by 𝑧 ↦ 𝑧2.
Then 𝑝∶ (𝑝1, 𝑆1) → (𝑝2, 𝑆1) defined by 𝑧 ↦ 𝑧3 is a covering transformation.

𝑆1 𝑆1

𝑆1
𝑧↦𝑧6

𝑧↦𝑧3

𝑧↦𝑧2

Lemma. Let 𝑋 be locally path-connected. If 𝑝∶ (𝑝1, ̂𝑋1) → (𝑝2, ̂𝑋2) is a covering transform-
ation, 𝑝∶ ̂𝑋1 → ̂𝑋2 is a covering map.

̂𝑋1

̂𝑋2

𝑋

𝑝1

𝑝

𝑝2

Proof. Given 𝑥2 ∈ ̂𝑋2, we find an open evenly covered neighbourhood𝑈𝑥2 . Let 𝑥 = 𝑝2(𝑥2) ∈
𝑋 . Then 𝑝1, 𝑝2 are covering maps of 𝑋 , so there exist open neighbourhoods 𝑈1, 𝑈2 of 𝑥 such
that 𝑈 𝑖 is evenly covered by 𝑝𝑖. Then 𝑈 = 𝑈1 ∩𝑈2 is open and evenly covered by 𝑝1 and 𝑝2.
Since 𝑋 is locally path-connected, let 𝑉 ⊆ 𝑈 be an open neighbourhood of 𝑥 that is path-
connected. Then 𝑝−11 (𝑉) = ∐𝛼∈𝐴 𝑉𝛼 and 𝑝−12 (𝑉) = ∐𝛽∈𝐵 𝑉 𝛽, where 𝑉𝛼 ≃ 𝑉 ≃ 𝑉 𝛽 are
all path-connected. Let 𝑥𝛼 = 𝑝−11,𝛼(𝑥), and 𝑥𝛽 = 𝑝−12,𝛽(𝑥). Then 𝑝2(𝑝(𝑥𝛼)) = 𝑝1(𝑥𝛼) = 𝑥, so
𝑝(𝑥𝛼) = 𝑥𝛽 for some 𝛽 ∈ 𝐵. Now, 𝑉𝛼, 𝑉 𝛽 are path-connected, so 𝑝(𝑉𝛼) ⊆ 𝑉 𝛽 since each 𝑉 𝛽
is a (maximal) path-connected component of 𝑝−12 (𝑉). Therefore, 𝑝|𝑉𝛼 ∶ 𝑉𝛼 → 𝑉 𝛽 satisfies
𝑝2,𝛽 ∘ 𝑝|𝑉𝛼 = 𝑝1,𝛼, so 𝑝|𝑉𝛼 = 𝑝−12,𝛽 ∘ 𝑝1,𝛼 is a homeomorphism. In particular, 𝑝−1(𝑉 𝛽) =
∐𝛼∈𝑉,𝑝(𝑥𝛼)=𝑥𝛽

𝑉𝛼, and 𝑝|𝑉𝛼 ∶ 𝑉𝛼 → 𝑉 𝛽 is a homeomorphism. So 𝑉 𝛽 is evenly covered, so
𝑝 is indeed a covering map.

4.9. Uniqueness of universal covers
Let 𝑋 be a locally path-connected space, and 𝑞∶ (𝑋, ̃𝑥0) → (𝑋, 𝑥0) be a universal cover. Let
𝑝∶ ( ̂𝑋, ̂𝑥0) → (𝑋, 𝑥0).

Lemma. If 𝑝∶ ̂𝑌 → 𝑌 is a bijective covering map, then 𝑝 is a homeomorphism.

Proof. 𝑝 is continuous and bijective, therefore 𝑝−1∶ 𝑌 → ̂𝑌 exists as a map of sets. We
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must show that this map is continuous. Since 𝑝 is a covering map, 𝑌 has an open cover
{𝑈𝑦 ∣ 𝑦 ∈ 𝑌} such that 𝑈𝑦 is evenly covered. In particular, 𝑝−1||𝑈𝑦

∶ 𝑈𝑦 → 𝑝−1(𝑈𝑦) is a
homeomorphism. Hence 𝑝−1 is continuous.

Recall that if 𝑝𝑖 ∶ ̂𝑋𝑖 → 𝑋 are covering maps, a covering transformation from (𝑝1, ̂𝑋1) to
(𝑝2, ̂𝑋2) is a lift ̂𝑝1 of 𝑝1 to 𝑋2. ̂𝑝1 is a covering isomorphism if it is bijective. Then, by the
lemma, it is a homeomorphism.

Proposition. Let 𝑋 be a locally path-connected space, and 𝑞∶ (𝑋, ̃𝑥0) → (𝑋, 𝑥0) be a uni-
versal cover. Let 𝑝∶ ( ̂𝑋, ̂𝑥0) → (𝑋, 𝑥0). Then there is a unique covering transformation
̂𝑞∶ (𝑝, ̂𝑋) → (𝑞, 𝑋)

( ̂𝑋, ̂𝑥0)

(𝑋, ̃𝑥0) (𝑋, 𝑥0)

𝑝

𝑞

̂𝑞

Proof. Note that 𝑋 is simply connected, and since 𝑋 is locally path-connected, so is 𝑋 . So
existence and uniqueness of ̂𝑞 is exactly the simply connected lifting property.

Corollary. If 𝑝 is also a universal cover, ̂𝑞 is a covering isomorphism, and in particular,
̂𝑋 ≃ 𝑋 .

Proof. 𝑋 is simply connected, so ̂𝑞∶ 𝑋 → ̂𝑋 is a universal cover. Hence, there is a bijection
between points ̂𝑞−1( ̂𝑥) and elements 𝜋1( ̂𝑋, ̂𝑥). But this is the one-element set, since ̂𝑋 is
simply connected. So ̂𝑞−1( ̂𝑥) has a single element, and so ̂𝑞 is a bijection.

Equivalently, if 𝑞∶ (𝑋, ̃𝑥0) → (𝑋, 𝑥0) and 𝑞′∶ (𝑋 ′, ̃𝑥′0) → (𝑋, 𝑥0) are universal covers, there
is a unique covering isomorphism ̂𝑞∶ (𝑋, ̃𝑥0) → (𝑋 ′, ̃𝑥′0).

4.10. Deck groups
Definition. The deck group𝐺𝐷(𝑝) is the set of covering automorphisms 𝑔∶ (𝑝, ̂𝑋) → (𝑝, ̂𝑋),
which forms a group under composition 𝑔𝑓 = 𝑔∘𝑓. This has a left action on ̂𝑋 by 𝑔⋅ ̂𝑥 = 𝑔( ̂𝑥).
Example. Let 𝑝∶ (ℝ, 0) → (𝑆1, 1). The deck group 𝐺𝐷(𝑝) is exactly

{𝑔𝑛∶ ℝ → ℝ ∣ 𝑔𝑛(𝑡) = 𝑡 + 𝑛} ≃ ℤ

In this case, 𝐺𝐷(𝑝) ≃ 𝜋1(𝑆1, 1).
Example. There is a bijection between 𝐺𝐷(𝑞) and 𝑞−1(𝑥0), by 𝑔 ↦ 𝑔( ̃𝑥0), by the above
proposition with ̂𝑋 = 𝑋 .
Theorem. Let 𝑞∶ (𝑋, ̃𝑥0) → (𝑋, 𝑥0) be a universal cover. Then 𝐺𝐷(𝑞) ≃ 𝜋1(𝑋, 𝑥0).
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Proof. There is a bijection between 𝜋1(𝑋, 𝑥0) and 𝑞−1(𝑥0) since 𝑞 is a universal cover. By the
above example, 𝑞−1(𝑥0) is in bijection with𝐺𝐷(𝑞). In particular, we canmap [𝛾] ∈ 𝜋1(𝑋, 𝑥0)
to ̃𝛾(1) ∈ 𝑞−1(𝑥0), where ̃𝛾 is the unique lift of 𝛾 starting at ̃𝑥0, and 𝑔( ̃𝑥0) ∈ 𝑞−1(𝑥0) ismapped
to 𝑔 ∈ 𝐺𝐷(𝑞). We need to check that this composed map is a homomorphism: it is already
a bijection of sets.

[𝛾𝛾′] is mapped to 𝛾𝛾′(1) = ̃𝛾(𝑔�̃�(1) ∘ ̃𝛾) where 𝑔�̃�(1) is the unique element of 𝐺𝐷(𝑞) with
𝑔�̃�(1)(𝑥0) = ̃𝛾(1). Since 𝑔�̃�(1) ∘ ̃𝛾′ is a lift of ̃𝛾′ starting at ̃𝛾(1), we have 𝛾𝛾′(1) = (𝑔�̃�(1) ∘ ̃𝛾′)(1) =
𝑔�̃�(1)( ̃𝛾′(1)) = 𝑔�̃�(1)(𝑔�̃�′(1)( ̃𝑥0)). So 𝛾𝛾′(1) is the image of ̃𝑥0 under 𝑔�̃�(1)∘𝑔�̃�′(1), so this is indeed
a homomorphism.

4.11. Correspondence of subgroups and covers
Proposition. Let 𝐺 = 𝐺𝐷(𝑞) ≃ 𝜋1(𝑋, 𝑥0). If 𝐻 ≤ 𝐺 is a subgroup, we have a tower of
covering maps

𝑋 1

𝑋𝐻 𝐻

𝑋 𝐺

𝜋𝐻

𝑝𝐻

where 𝑋𝐻 = 𝐻 ∖ 𝑋 is the quotient given by ℎ ⋅ 𝑥 ∼ 𝑥 for all ℎ ∈ 𝐻. In particular, 𝜋𝐻 ∶ 𝑋 →
𝐻 ∖ 𝑋 is the quotient map, and 𝑝𝐻 ∶ 𝑋𝐻 → 𝑋 is given by 𝑝𝐻(𝐻 ⋅ 𝑥) = 𝑞(𝑥). This is well-
defined because 𝑞 ∘ ℎ = 𝑞 as ℎ is a deck transformation. In particular, if 𝐻 = 𝐺, 𝑝𝐺 is a
covering isomorphism, so 𝑋 ≃ 𝐺 ∖ 𝑋 .

A universal covering map is a quotient by the action of 𝐺𝐷(𝑞) ≃ 𝜋1(𝑋, 𝑥0).

Proof. Let 𝑥 ∈ 𝑋 . Then choose 𝑈𝑥 to be evenly covered by 𝑞. Then 𝑞−1(𝑈𝑥) = ∐𝛼∈𝐴𝑈𝛼 =
∐𝑔∈𝐺𝐷(𝑞) 𝑔 ⋅ 𝑈𝛼0 for ̃𝑥0 ∈ 𝑈𝛼0 . Then 𝑝−1𝐻 (𝑈𝑥) = ∐𝛽=𝑔𝐻∈cosets of𝐻 𝑈𝛽. Then 𝜋−1𝐻 (𝑈𝛽) =
∐𝑔ℎ∈𝑔𝐻 𝑔ℎ ⋅ 𝑈𝛼0 , and 𝑝−1𝐻 (𝑈𝑥) = ∐𝑈𝛽. So each is evenly covered.

Definition. 𝑝∶ 𝑋 → 𝑋 is a normal cover if 𝐺𝐷(𝑝) acts transitively on 𝑝−1(𝑥0).

Example. The universal cover 𝑞 is always a normal cover.

Proposition. Let𝑝∶ ( ̂𝑋, ̂𝑥0) → (𝑋, 𝑥0) be a coveringmap. Then𝑝⋆∶ 𝜋1( ̂𝑋, ̂𝑥0) → 𝜋1(𝑋, 𝑥0)
is injective. In particular, Im𝑝⋆ ≃ 𝜋1( ̂𝑋, ̂𝑥0) is a subgroup of 𝜋1(𝑋, 𝑥0).

Proof. If 𝑝⋆[𝛾0] = 𝑝⋆[𝛾1], we have 𝑝∘𝛾0 ∼𝑒 𝑝∘𝛾1, so 𝑝∘ ̂𝛾0 ∼𝑒 𝑝∘ ̂𝛾1, so 𝛾0 ∼𝑒 𝛾1. In particular,
[𝛾0] = [𝛾1].
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Let 𝑞∶ (𝑋, ̃𝑥0) → (𝑋, 𝑥0) be auniversal cover, so𝑋 andhence𝑋 are path-connected. Suppose
further that 𝑋 is locally path-connected, so 𝑋 is also locally path-connected. Consider

𝑆(𝑋, 𝑥0) = {𝐻 ≤ 𝜋1(𝑋, 𝑥0)}

𝐶(𝑋, 𝑥0) = {(𝑝, ̂𝑋, ̂𝑥0) ∣ 𝑝∶ ( ̂𝑋, ̂𝑥0) → (𝑋, 𝑥0) is a covering map, ̂𝑋 is path-connected}⟋∼

where (𝑝, ̂𝑋, ̂𝑥0) ∼ (𝑝′, ̂𝑋 ′, ̂𝑥′0) if there is a covering isomorphism 𝑞∶ (𝑝, ̂𝑋) → (𝑝′, ̂𝑋 ′)map-
ping ̂𝑥0 ↦ ̂𝑥′0. Let 𝛼∶ 𝑆(𝑋, 𝑥0) → 𝐶(𝑋, 𝑥0) be given by 𝛼(𝐻) = (𝑝𝐻 , 𝑋𝐻 , 𝑥0,𝐻), where
𝑋𝐻 = 𝐻 ∖ 𝑋 , so 𝑋 𝜋𝐻−−→ 𝑋𝐻

𝑝𝐻−−→ 𝑋 mapping ̃𝑥0 to 𝑥0,𝐻 . Let 𝛽∶ 𝐶(𝑋, 𝑥0) → 𝑆(𝑋, 𝑥0) be
defined by (𝑝, ̂𝑋, ̂𝑥0) ↦ 𝑝⋆(𝜋1( ̂𝑋, ̂𝑥0)).
Theorem. 𝛼, 𝛽 are inverses, and hence bijections.
Remark. The entire group 𝐺 = 𝜋1(𝑋, 𝑥0) is mapped to (id, 𝑋, 𝑥0). The trivial group 1 ⊆
𝐺 is mapped to the universal cover (𝑞, 𝑋, ̃𝑥0). The index [𝐺 ∶ 𝐻] is exactly ||𝑝−1𝐻 (𝑥0)||. A
conjugation 𝑔−1𝐻𝑔 corresponds to a change of base point (𝑝𝐻 , 𝑋𝐻 , ̂𝛾(1)), where 𝑔 = [𝛾] and
̂𝛾∶ 𝐼 → 𝑋𝐻 is a lift of 𝛾 with ̂𝛾(0) = 𝑥0,𝐻 . If 𝐻 ⊴ 𝐺 is a normal subgroup, 𝑝𝐻 is a normal
covering. The quotient 𝐺⟋𝐻 corresponds to the deck group 𝐺𝐷(𝑝𝐻).

Proof. Consider 𝛽(𝛼(𝐻)) = 𝑝𝐻⋆(𝜋1(𝑋𝐻 , 𝑥0,𝐻)). There are isomorphisms

𝐻 → 𝜋1(𝑋𝐻 , 𝑥0,𝐻) → 𝑝𝐻⋆(𝜋1(𝑋, 𝑥0))

mapping
[𝛾] ↦ [𝜋𝐻 ∘ ̃𝛾] ↦ [𝑝𝐻 ∘ 𝜋𝐻 ∘ ̃𝛾] = [𝜋𝐺 ∘ ̃𝛾] = [𝛾]

where ̃𝛾 is a lift of 𝛾 such that ̃𝛾(0) = ̃𝑥0. Hence 𝛽(𝛼(𝐻)) = 𝐻.
Conversely, consider 𝛼(𝛽((𝑝, ̂𝑋, ̂𝑥0))) = (𝑝𝐻 , 𝑋𝐻 , 𝑥0,𝐻) where 𝐻 = 𝑝⋆(𝜋1(𝑋, 𝑥0)). Consider

(𝑋𝐻 , 𝑥0,𝐻) ( ̂𝑋, ̂𝑥0)

(𝑋, ̃𝑥0) (𝑋, 𝑥0)

𝑝′

𝑝

𝑞

̂𝑞𝜋𝐻

We claim that ̂𝑞 = 𝑝′ ∘𝜋𝐻 , where 𝑝′ is a covering isomorphism. If we can show this, we have
(𝑝𝐻 , 𝑋𝐻 , 𝑥0,𝐻) ∼ (𝑝, ̂𝑋, ̂𝑥0), so 𝛼 ∘ 𝛽 is the identity on 𝐶(𝑋, 𝑥0). If ℎ ∈ 𝐻 = 𝑝⋆(𝜋1( ̂𝑋, ̂𝑥0)),
ℎ = [𝑝 ∘ 𝛾] for some 𝛾 ∈ Ω( ̂𝑋, ̂𝑥0). Then ̂𝑞( ̃𝑥) = 𝑞 ∘ 𝜂𝑥(1) where 𝜂𝑥 ∈ Ω(𝑋, ̃𝑥0, ̃𝑥). Then
𝜂ℎ⋅𝑥 = 𝜂ℎ∘𝑥0(ℎ ∘ 𝜂𝑥), so 𝑞 ∘ 𝜂ℎ⋅𝑥 = (𝑞 ∘ 𝜂ℎ⋅𝑥0)(𝑞 ∘ 𝜂𝑥) = (𝑝 ∘ 𝛾)(𝑞 ∘ 𝜂𝑥), so in particular,
𝑞 ∘ 𝜂ℎ⋅𝑥 = (𝛾)(𝑞 ∘ 𝜂𝑥). Hence ̂𝑞(ℎ⋅ ̃𝑥) = (𝑞∘𝜂ℎ⋅𝑥)(1) = 𝑞 ∘ 𝜂𝑥(1) = ̂𝑞( ̃𝑥), so ̂𝑞 factors as shown.
̂𝑋 is connected, so 𝑝′ is surjective, so it is bijective and hence a covering isomorphism.
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5. Seifert–Van Kampen theorem
5.1. Free groups and presentations
Consider 𝜋1(𝑆1 ∨ 𝑆1, 𝑥0) where 𝑥0 is the wedge point. The universal cover is the infinite
4-valent tree 𝑇∞(4), so 𝜋1(𝑆1 ∨ 𝑆1) is in bijection with 𝑞−1(𝑥0), the vertices of 𝑇∞(4). Let
̃𝑥0 be one such vertex. If ̃𝑥 is a vertex, there is a unique shortest path from ̃𝑥0 to ̃𝑥. This
gives an ‘address’ for ̃𝑥 in 𝑇∞(4) given by recording the type and direction of each edge
used in the path. The set of such ‘addresses’ is in bijection with the set of reduced words
𝑤 = ℓ1…ℓ𝑟where 𝑟 ∈ ℕ, and each 𝑙𝑖 is one of 𝑎, 𝑎−1, 𝑏, 𝑏−1, such that𝑤 does not contain any
substring of the form 𝑎𝑎−1, 𝑎−1𝑎, 𝑏𝑏−1𝑏−1𝑏. Then each word 𝑤 corresponds to an element
𝑤 ∈ 𝜋1(𝑆1 ∨ 𝑆1, 𝑥0), the image of the shortest path under 𝑞. Note that the multiplication
𝑤𝑤′ in 𝜋1(𝑆1 ∨ 𝑆1, 𝑥0) corresponds to concatenation of words 𝑤𝑤′ and then the reduction
of substrings such as 𝑎𝑎−1.
Definition. A free group with generating set 𝑆 is a group 𝐹𝑆 and a subset 𝑆 ⊆ 𝐹𝑠 such that
if 𝐺 is a group and 𝜑∶ 𝑆 → 𝐺 is a map of sets, there is a unique homomorphism Φ∶ 𝐹𝑠 → 𝐺
with Φ|𝑆 = 𝜑.

𝐹𝑆

𝑆 𝐺
Φ

𝜑

Remark. The action of taking the free group of a set is a functor from 𝐒𝐞𝐭 to 𝐆𝐫𝐩, and it is
left adjoint to the forgetful functor from𝐆𝐫𝐩 to 𝐒𝐞𝐭. This property is known as the universal
property of the free group.

Example. 𝜋1(𝑆1 ∨ 𝑆1) ≃ 𝐹{𝑎,𝑏}. Indeed, given 𝜑∶ {𝑎, 𝑏} → 𝐺, we define Φ(ℓ1…ℓ𝑟) =
𝜑(ℓ1)…𝜑(ℓ𝑟), where we extend 𝜑 to all of {𝑎, 𝑎−1, 𝑏, 𝑏−1} by defining 𝜑(𝑎−1) = 𝜑(𝑎)−1 and
𝜑(𝑏−1) = 𝜑(𝑏)−1. This is a homomorphism: indeed,

Φ(𝑤𝑤′) = 𝜑(ℓ1)…𝜑(ℓ𝑘)𝜑(ℓ′1)…𝜑(ℓ′𝑘) = Φ(𝑤)Φ(𝑤′)

cancelling substrings of the form 𝑎𝑎−1 as required. The homomorphism is unique as re-
quired for the universal property of the free group.

Lemma. Let 𝐹𝑆, 𝐹𝑇 be free groups on sets 𝑆 ⊆ 𝐹𝑆, 𝑇 ⊆ 𝐹𝑇 . Let 𝜑∶ 𝑆 → 𝑇 be a bijection.
Then Φ∶ 𝐹𝑆 → 𝐹𝑇 is an isomorphism.

Proof. Let 𝜓 = 𝜑−1. Since 𝐹𝑇 is free, there exists a homomorphism Ψ∶ 𝐹𝑇 → 𝐹𝑆 such that
Ψ|𝑇 = 𝜓. Then Ψ ∘ Φ∶ 𝐹𝑆 → 𝐹𝑆 has the property that for all 𝑠 ∈ 𝑆, we have 𝜓 ∘ 𝜑(𝑠) = 𝑠. 𝐹𝑆
is free, so there is a unique homomorphism 𝛼∶ 𝐹𝑆 → 𝐹𝑆 mapping 𝑠 ∈ 𝑆 to 𝑠. So 𝛼 = id𝐹𝑆 .
Hence Ψ ∘ Φ = id𝐹𝑆 , so by symmetry, they are inverse functions.

Corollary. If 𝐹𝑆, 𝐹′𝑆 are free groups generated by 𝑆, 𝐹𝑆 ≃ 𝐹′𝑆. So the isomorphism type of 𝐹𝑆
depends only on |𝑆|, the cardinality of 𝑆.
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We therefore can write 𝐹𝑛 for the free group (up to isomorphism) generated by 𝑛 elements
𝑎1,… , 𝑎𝑛. Let 𝑋 = ⋁𝑛

𝑖=1 𝑆1 where 𝑥0 is the wedge point, with inclusion maps 𝑗𝑛∶ 𝑆1 → 𝑋 .
Let 𝑎𝑖 = 𝑗𝑖⋆(1) for 1 ∈ 𝜋1(𝑆1, 1) be a generator. Then 𝑋 has universal cover 𝑋 = 𝑇∞(2𝑛),
the infinite regular 2𝑛-valent tree. In particular, 𝜋1(𝑋, 𝑥0) is the set of reduced words in
{𝑎±11 ,… , 𝑎±1𝑛 }, which is isomorphic to 𝐹2𝑛.

5.2. Presentations
Definition. Let 𝐺 be a group and 𝑆 ⊆ 𝐺 be a subset. Let 𝒮𝑆 = {𝐻 ≤ 𝐺 ∣ 𝑆 ⊆ 𝐻}, then
let ⟨𝑆⟩ = ⋂𝐻∈𝒮𝑆

𝐻 be the smallest subgroup of 𝐺 containing 𝑆, known as the subgroup
generated by𝑆. Similarly, let𝒩𝑆 = {𝑁 ⊴ 𝐺 ∣ 𝑆 ⊆ 𝐻}, and let ⟨⟨𝑆⟩⟩ = ⋂𝐻∈𝒩𝑆

𝐻 be the smallest
normal subgroup of 𝐺 containing 𝑆, called the subgroup normally generated by 𝑆.
Note that ⟨𝑆⟩ is nonempty since 1 ∈ 𝐻 for all 𝐻 ∈ 𝒮𝑆.
If ⟨𝑆⟩ = 𝐺, we say that 𝑆 generates 𝐺. If so, there is a unique homomorphism Φ𝑆 ∶ 𝐹𝑆 → 𝐺
that maps 𝑠 to 𝑠. ImΦ𝑆 ≤ 𝐺, and it contains 𝑆, so Φ𝑆 is surjective.

Definition. Given a set 𝑆 and 𝑅 ⊆ 𝐹𝑆, we define ⟨𝑆 ∣ 𝑅⟩ = 𝐹𝑆⟋⟨⟨𝑅⟩⟩. If in addition ⟨⟨𝑅⟩⟩ =
kerΦ𝑆, then 𝐺 ≃ 𝐹𝑆⟋kerΦ𝑆

= 𝐹𝑆⟋⟨⟨𝑅⟩⟩. We say ⟨𝑆 ∣ 𝑅⟩ is a presentation for 𝐺.

Proposition. Any group 𝐺 admits a presentation.

Proof. Clearly ⟨𝐺⟩ = 𝐺, so let 𝑆 = 𝐺. Let 𝑅 = kerΦ𝐺, where Φ𝐺 ∶ 𝐹𝐺 → 𝐺. Then by
construction, 𝐹𝑆⟋⟨⟨𝑅⟩⟩ = 𝐹𝑆⟋kerΦ𝐺

≃ 𝐺.

Remark. These presentations are very large. It is oftenmore useful to consider finite present-
ations of 𝐺, where both 𝑆 and 𝑅 are finite.
Example. ⟨𝑎, 𝑏 ∣⟩ ≃ 𝐹2. ⟨𝑎 ∣⟩ ≃ 𝐹1 = 𝜋1(𝑆1, 1) ≃ ℤ. ⟨𝑎 ∣ 𝑎3⟩ ≃ ℤ⟋3ℤ. ⟨𝑎, 𝑏 ∣ 𝑎𝑏−3⟩ ≃ ℤ.
Proposition. Let ⟨𝑆 ∣ 𝑅⟩ be a presentation, let 𝑎 ∉ 𝑆, and let 𝑤 ∈ 𝐹𝑆. Then ⟨𝑆 ∣ 𝑅⟩ ≃
⟨𝑆 ∪ {𝑎} ∣ 𝑅 ∪ {𝑎𝑤−1}⟩.

Proof. We have homomorphisms 𝜑∶ ⟨𝑆 ∣ 𝑅⟩ → ⟨𝑆 ∪ {𝑎} ∣ 𝑅 ∪ {𝑎𝑤−1}⟩ mapping 𝑠 ∈ 𝑆 to 𝑠,
and 𝜓∶ ⟨𝑆 ∪ {𝑎} ∣ 𝑅 ∪ {𝑎𝑤−1}⟩ → ⟨𝑆 ∣ 𝑅⟩mapping 𝑠 ∈ 𝑆 to 𝑠 and 𝑎 to 𝑤. These are inverses.

There are other operations we can apply to presentations. If 𝑤 ∈ 𝑅, we can replace 𝑤 with
a conjugate 𝑠𝑤𝑠−1 for 𝑠 ∈ 𝑆, and it leaves the group unchanged. For example, ⟨𝑎𝑏 ∣ 𝑎𝑏𝑏⟩ =
⟨𝑎𝑏 ∣ 𝑏𝑎𝑏⟩. Also, if 𝑤1, 𝑤2 ∈ 𝑅, we can replace 𝑤1 with 𝑤1𝑤2, so for example,

⟨𝑎𝑏 ∣ 𝑏𝑎𝑏𝑏, 𝑎𝑏𝑏⟩ = ⟨𝑎𝑏 ∣ 𝑏, 𝑎𝑏𝑏⟩ ≃ ⟨𝑎 ∣ 𝑎⟩ ≃ 1

Theorem. Given a finite set 𝑆 and a finite set of relations 𝑅 ⊆ 𝐹𝑆, there is no algorithm to
determine if ⟨𝑆 ∣ 𝑅⟩ ≃ 1.

32



5. Seifert–Van Kampen theorem

5.3. Covering with a pair of open sets
Theorem. Let 𝑈1, 𝑈2 ⊆ 𝑋 be open, and 𝑈1 ∩ 𝑈2 be path-connected with 𝑥0 ∈ 𝑈1 ∩ 𝑈2 and
𝑈1 ∪ 𝑈2 = 𝑋 . Then 𝜄1⋆(𝜋1(𝑈1, 𝑥0)) ∪ 𝜄2⋆(𝜋1(𝑈2, 𝑥0)) generates 𝜋1(𝑋, 𝑥0), where 𝜄𝑖 ∶ 𝑈 𝑖 → 𝑋
is the inclusion.

Proof. {𝑈1, 𝑈2} is an open cover of 𝑋 , so if 𝛾 ∈ Ω(𝑋, 𝑥0), we have {𝛾−1(𝑈1), 𝛾−1(𝑈2)} is an
open cover of 𝐼. By the Lebesgue covering lemma, we can find 𝑛 ∈ ℕ such that [ 𝑗

𝑛
, 𝑗+1

𝑛
]

lies entirely inside 𝛾−1(𝑈1) or 𝛾−1(𝑈2) for all 𝑗. Each interval [
𝑗
𝑛
, 𝑗+1

𝑛
] with the label 1 or 2

accordingly; if it lies in both, choose an arbitrary label. Let 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑘 = 1 be
the points of the form 𝑗

𝑛
where the labelling changes. Let 𝐼𝑖 = [𝑡𝑖−1, 𝑡𝑖] for each 𝑖 ∈ {0,… , 𝑘}.

Let 𝛾𝑖 = 𝛾|𝐼𝑖 , so 𝛾(𝑡𝑖) ∈ 𝑈1 ∩𝑈2, and 𝛾(𝐼𝑖) ⊆ 𝑈 𝑖mod 2 without loss of generality. Note that we
can write 𝛾 as the composition of paths 𝛾 = 𝛾1…𝛾𝑘.

Let 𝜂1,… , 𝜂𝑘−1 be paths with 𝜂𝑖 ∈ Ω(𝑈1 ∩ 𝑈2, 𝛾(𝑡𝑖), 𝑥0), which exists since 𝑈1 ∩ 𝑈2 is path-
connected. Then

𝛾 ∼𝑒 𝛾1𝜂1𝜂−11 𝛾2𝜂2𝜂−12 …𝜂𝑘−1𝜂−1𝑘−1𝛾𝑘 = (𝛾1𝜂1)⏟
𝛿1

(𝜂−11 𝛾2𝜂2)⏟⎵⎵⏟⎵⎵⏟
𝛿2

𝜂−12 …𝜂𝑘−1 (𝜂−1𝑘−1𝛾𝑘)⏟⎵⏟⎵⏟
𝛿𝑘

Then each 𝛿𝑖 ∈ Ω𝑖(𝑈1, 𝑥0), so [𝛿𝑖] ∈ Im 𝜄(𝑖mod 2)⋆. So [𝛾] = [𝛿1][𝛿2]… [𝛿𝑘] is a product of
elements in 𝜄1⋆(𝜋1(𝑈1, 𝑥0)) ∪ 𝜄2⋆(𝜋1(𝑈2, 𝑥0)), so [𝛾] lies in the subgroup they generate.

Corollary. Let𝑈1, 𝑈2 ⊆ 𝑋 be open and simply connected with𝑈1 ∪𝑈2 = 𝑋 , and let𝑈1 ∩𝑈2
be path-connected and contain 𝑥0. Then 𝑋 is simply connected.

Proof. 𝜋1(𝑋, 𝑥0) is generated by 𝜄1⋆(𝜋1(𝑈1, 𝑥0)) ∪ 𝜄2⋆(𝜋1(𝑈2, 𝑥0)) = {1}.

Example. 𝑆𝑛 = 𝑈+ ∪ 𝑈−, where 𝑈+ = 𝑆𝑛 = {(1, 0,… , 0)} and 𝑈− = 𝑆𝑛 − {(−1, 0,… , 0)}.
Then𝑈+ ≃ 𝑈− ≃ ℝ𝑛 by stereographic projection. 𝑈+∩𝑈− ≃ ℝ𝑛−{0}. Hence𝜋1(𝑈±, 𝑥0) =
1 since ℝ𝑛 is contractible. 𝑈+ ∩ 𝑈− is path-connected if 𝑛 > 1, so 𝜋1(𝑆𝑛, 𝑥0) = 1 for 𝑛 > 1.

Example (attaching a disk). If 𝑓∶ 𝑆1 → 𝑋 with 𝑓(1) = 𝑥0, let 𝑋 ∪𝑓 𝐷2 = 𝑋 ⨿ 𝐷2
⟋∼, where

∼ is the smallest equivalence relation such that 𝑧 ∼ 𝑓(𝑧) for 𝑧 ∈ 𝑆1. Let 𝜋 be the quotient
map from 𝑋 ⨿ 𝐷2 to 𝑋 ∪𝑓 𝐷2. Then let 𝑈1 = 𝜋(𝑋 ∪ 𝐷2 ∖ {0}) and 𝑈2 = 𝜋(𝐷2). Then
𝑈1 ∪𝑈2 = 𝑋 ∪𝑓 𝐷2, and 𝑈1 ∩𝑈2 = (𝐷2)∘ ∖ {0} is path-connected. 𝜋1(𝑈2) = 1, so 𝜋1(𝑋 ∪𝑓 𝐷2)
is generated by 𝜋1(𝑋). Note that 𝑓⋆∶ 𝜋1(𝑆1, 1) → 𝜋1(𝑋, 𝑥0), so 𝑓⋆(1) lies in the kernel of
the inclusion 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑋 ∪𝑓 𝐷2, 𝑥0), since 𝑓⋆(1) is null-homotopic in 𝑋 ∪𝑓 𝐷2. So
𝜋1(𝑋 ∪𝑓 𝐷2) surjects onto 𝜋1(𝑋)⟋⟨⟨𝑓⋆(1)⟩⟩.

This is in fact an isomorphism. Suppose [𝛾] ∈ 𝜋1(𝑋 ∪𝑓 𝐷2, 𝑥0) is mapped to the trivial
element of 𝜋1(𝑋)⟋⟨⟨𝑓⋆(1)⟩⟩, so [𝛾] can be viewed as an element of ⟨⟨𝑓⋆(1)⟩⟩. Note that all such
[𝛾] are of the form 𝑎1𝑓⋆(𝑛1)𝑎−11 …𝑎𝑘𝑓⋆(𝑛𝑘)𝑎−1𝑘 . Since 𝑓⋆(𝑛) = 1 in 𝜋1(𝑋 ∪𝑓 𝐷2, 𝑥0), [𝛾] = 1.
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5.4. Amalgamated free products

Definition. Let 𝜄1∶ 𝐻 → 𝐺1, 𝜄2∶ 𝐻 → 𝐺2 be group homomorphisms. A group 𝐺 is an
amalgamated free product of 𝐺1 and 𝐺2 along 𝐻 if:

(i) There are homomorphisms 𝜑1∶ 𝐺1 → 𝐺,𝜑2∶ 𝐺2 → 𝐺 such that the following dia-
gram commutes.

𝐺1

𝐻 𝐺

𝐺2

𝜑1𝜄1

𝜄2 𝜑2

(ii) It is universal with this property, so for any other group 𝐺 with a commutative square
as above, there is a unique homomorphism 𝜓∶ 𝐺 → 𝐺 such that the following dia-
gram commutes.

𝐺1

𝐻 𝐺 𝐺

𝐺2

𝑗1

𝜑1
𝜄1

𝜄2

𝜓

𝑗2

𝜑2

Remark. The amalgamated free product is the colimit of the following diagram.

𝐺1

𝐻

𝐺2

𝜄1

𝜄2

Hence, it is a categorical pushout.

Proposition. If 𝐺,𝐺′ are amalgamated products of 𝐺1, 𝐺2, then 𝐺 ≃ 𝐺′.

Proof. There are homomorphisms 𝛼∶ 𝐺 → 𝐺′, 𝛽 ∶ 𝐺′ → 𝐺, and the uniqueness in the
definition implies 𝛼 ∘ 𝛽 = id𝐺′ and 𝛽 ∘ 𝛼 = id𝐺. In other words, the following diagram
commutes.
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𝐺1

𝐻 𝐺 𝐺′

𝐺2

𝜑1 𝜑′1

𝜄1

𝜄2

𝛼

𝛽
𝜑2 𝜑′2

Proposition. An amalgamated product of any two groups exists.

The universal property of the presentation is that ⟨𝑆 ∣ 𝑅⟩ ≃ 𝐹𝑆⟋⟨⟨𝑅⟩⟩. Suppose 𝑆 ⊆ 𝐺 satisfies
the relations 𝑅 in 𝐺, so all of the relations map to the identity. Then there is a unique homo-
morphism ⟨𝑆 ∣ 𝑅⟩ → 𝐺 mapping 𝑠 ∈ 𝑆 to 𝑠, since there is a unique homomorphism 𝐹𝑆 → 𝐺
mapping 𝑠 ∈ 𝑆 to 𝑠, and since 𝑆 satisfies the relations, this factors through 𝐹𝑆⟋⟨⟨𝑅⟩⟩.

For example, consider a map ⟨𝑎 ∣ 𝑎4⟩ → ℤ⟋2ℤ that maps 𝑎 to 1. We can check that the
relation 14 = 0 in ℤ⟋2ℤ holds.

Proof. Consider presentations 𝐺𝑖 = ⟨𝑆 𝑖 ∣ 𝑅𝑖⟩ of 𝐺1, 𝐺2, and 𝐻 = ⟨𝑇 ∣ 𝑊⟩. Then define

𝐺 = 𝐺1 ∗𝐻 𝐺2 = ⟨𝑆1 ∪ 𝑆2 ∪ 𝑇 ∣ 𝑅1 ∪ 𝑅2 ∪ {𝑡−1𝑖 𝜄1(𝑡𝑖), 𝑡−1𝑖 𝜄2(𝑡𝑖) ∣ 𝑡𝑖 ∈ 𝑇}⟩

Then 𝜑𝑖 ∶ 𝐺𝑖 → 𝐺 are given by 𝑠 ∈ 𝑆 𝑖 mapping to 𝑠. Given 𝑗1, 𝑗2∶ 𝐺1, 𝐺2 → 𝐺, we define
𝜓∶ 𝐺 → 𝐺 mapping 𝑠 ∈ 𝑆1 to 𝑗1(𝑠), 𝑠 ∈ 𝑆2 to 𝑗2(𝑠), and 𝑡 ∈ 𝑇 to 𝑗1 ∘ 𝜄1(𝑡) = 𝑗2 ∘ 𝜄2(𝑡), and
check that the relations hold.

This is isomorphic to ⟨𝑆1 ∪ 𝑆2 || 𝑅1 ∪ 𝑅2 ∪ {𝜄1(𝑡𝑖)𝜄−12 (𝑡𝑖) ∣ 𝑡𝑖 ∈ 𝑇}⟩.

5.5. Seifert–Van Kampen theorem
Theorem (Seifert–Van Kampen). Let 𝑋 = 𝑈1 ∪ 𝑈2 where 𝑈 𝑖 are open sets with 𝑈1 ∩ 𝑈2
path-connected and containing 𝑥0. Let 𝐺𝑖 = 𝜋1(𝑈 𝑖, 𝑥0), and 𝐻 = 𝜋1(𝑈1 ∩ 𝑈2, 𝑥0), so

𝑈1 𝐺1

𝑈1 ∩ 𝑈2 𝑋 𝐻 𝜋1(𝑋)

𝑈2 𝐺2

𝑗1 𝑗1⋆𝜄1

𝜄2

𝜄1⋆

𝜄2⋆𝑗2 𝑗2⋆

Then 𝜋1(𝑋, 𝑥0) = 𝐺1 ∗𝐻 𝐺2.

Remark. The ‘easy’ part of the proof is that we have a commutative diagram
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𝐺1

𝐻 𝐺1 ∗𝐻 𝐺2 𝜋1(𝑋)

𝐺2

𝑗1⋆

𝜓1
𝜄1⋆

𝜄2⋆

𝜓

𝑗2⋆

𝜓2

so we obtain a map 𝜓∶ 𝐺1 ∗𝐻 𝐺2 → 𝜋1(𝑋, 𝑥0) by universality of the amalgamated free
product. Clearly 𝜓 is surjective by the theorem in the previous subsection, and the difficult
part of the proof is showing that 𝜓 is injective.

Proof sketch. We show that if𝐻∶ 𝐼×𝐼 → 𝑋 is a homotopy between 𝛾0 and 𝛾1, then [𝛾0] = [𝛾1]
using the relations in𝐺1∗𝐻𝐺2. We can divide 𝐼×𝐼 into squares of size

1
𝑛
such that the image

of each square under 𝐻 lies in either 𝑈1 or 𝑈2 by the Lebesgue covering lemma. Each row
represents a path 𝛾 𝑖

𝑛
, and by operating row-by-row we will show 𝛾 𝑖

𝑛
is related to 𝛾 𝑖+1

𝑛
in

𝐺1 ∗𝐻 𝐺2. To move from one row to the next, if there are different labels above and below,
the boundary lies in 𝑈1 ∩ 𝑈2, so we use the relations 𝜄1⋆(𝑡1) = 𝜄2⋆(𝑡1).

Example. Consider 𝑋 ∪𝑓𝐷2 = 𝑈1∪𝑈2 where𝑈1 = 𝑋 ∪𝑓𝐷2 ∖ {0} and𝑈2 = (𝐷2)∘, with 𝑥0 ∈
𝑈1∩𝑈2. Let𝑝∶ 𝑈1 → 𝑋 be the inclusion. Since𝐷2∖{0}has a strong deformation retraction to
𝑆1, we know𝑈1 has a strong deformation retraction to 𝑋 , so 𝜋1(𝑈1, 𝑥0) ≃ 𝜋1(𝑋, 𝑝(𝑥0)). Note
that 𝜋1(𝑈2, 𝑥0) is the trivial group, since (𝐷2)∘ is contractible. Note that𝑈1∩𝑈2 = (𝐷2)∘ ∖{0}
is homotopy equivalent to 𝑆1, so 𝜋1(𝑈1 ∩ 𝑈2, 𝑥0) = ℤ = ⟨𝛾⟩.
Then, by the Seifert–VanKampen theorem, we have𝜋1(𝑋∪𝑓𝐷2) ≃ 𝜋1(𝑋)∗ℤ1. If𝜋1(𝑋, 𝑥0) =
⟨𝑆 ∣ 𝑅⟩, we have in particular that

𝜋1(𝑋 ∪𝑓 𝐷2) ≃ ⟨𝑆, 𝑡 || 𝑅 ∪ {𝑡, 𝑡−1𝑓⋆(𝑡)}⟩ = ⟨𝑆 ∣ 𝑅 ∪ 𝑓⋆(𝑡)⟩ = 𝜋1(𝑋, 𝑥0)⟋⟨⟨𝑓⋆(𝑡)⟩⟩

Example. Consider the torus𝑇2 = 𝑆1∨𝑆1∪𝑓𝐷2. Let 𝑎, 𝑏 be generators for𝜋1(𝑆1∨𝑆1). Then
the commutator 𝑎𝑏𝑎−1𝑏−1 represents the disk attached. So𝜋1(𝑇2) = ⟨𝑎, 𝑏 ∣ 𝑎𝑏𝑎−1𝑏−1⟩ = ℤ2.

Example. Let Σ𝑔 be a surface of genus 𝑔. Then Σ𝑔 = ⋁𝑔
𝑖=1(𝑆1 ∨ 𝑆1) ∪𝑓 𝐷2, so

𝜋1(Σ𝑔) ≃ ⟨𝑎1, 𝑏1,… , 𝑎𝑔, 𝑏𝑔
||||

𝑔
∏
𝑖=1

𝑎𝑖𝑏𝑖𝑎−1𝑖 𝑏−1𝑖 ⟩

Example. A surface of genus two can be realised as a union of 𝑈1, 𝑈2 where 𝑈1 ∩ 𝑈2 ≃ 𝑆1
and 𝜋1(𝑈 𝑖) = ⟨𝑎𝑖, 𝑏𝑖⟩, then 𝜋1(Σ2) = ⟨𝑎1, 𝑏1⟩ ∗ℤ ⟨𝑎2, 𝑏2⟩.
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6. Simplicial complexes
6.1. Simplices
We have shown that 𝜋1(𝑆1, 𝑥0) ≃ ℤ, and 𝜋1(𝑆𝑛, 𝑥0) ≃ 1 for 𝑛 > 1, so 𝑆1 ≁ 𝑆𝑛. We would like
to show that 𝑆𝑛 ∼ 𝑆𝑚 only holds if 𝑛 = 𝑚. One proof of this fact is that any 𝑓∶ 𝑆𝑛 → 𝑆𝑚
with 𝑛 < 𝑚 is null-homotopic, but the identity on 𝑆𝑚 is not. Both of these claims require
proof: simplicial complexes will allow us to prove the first, and homology will allow us to
prove the second.

Definition. The 𝑛-simplex is the topological space

Δ𝑛 = {(𝑥0,… , 𝑥𝑛) ∈ ℝ𝑛+1
||||
𝑥𝑖 ≥ 0,

𝑛
∑
𝑖=0

𝑥𝑖 = 1}

with the subspace topology.

Remark. Δ1 is homeomorphic to 𝐼. Δ2 is an equilateral triangle, and Δ3 is a regular tetrahed-
ron. For all 𝑛, Δ𝑛 is closed and bounded in ℝ𝑛+1, and hence compact and Hausdorff. The
standard basis vectors 𝑒0,… , 𝑒𝑛 are the vertices of Δ𝑛.

Definition. If 𝐼 ⊆ {0,… , 𝑛}, the 𝐼th face of Δ𝑛 is

𝑒𝐼 = {𝑥 ∈ Δ𝑛 ∣ 𝑥𝑖 = 0 for 𝑖 ∉ 𝐼}

We define 𝐹(Δ𝑛) = {𝑒𝐼 ∣ 𝐼 ⊆ {0,… , 𝑛}} to be the set of faces of Δ𝑛.

If 𝐼 = {𝑖0,… , 𝑖𝑘} with 𝑖0 < ⋯ < 𝑖𝑘, we write 𝐼 = 𝑖0𝑖1…𝑖𝑘.

Remark. Note that 𝑒{𝑖} = 𝑒𝑖, and Δ𝑛 = 𝑒{0,1,…,𝑛}. 𝑒𝐼 is a closed subset of Δ𝑛, and is homeo-
morphic to Δ|𝐼|−1. 𝑒𝐼 ⊆ 𝑒𝐽 if and only if 𝐼 ⊆ 𝐽. 𝑒𝐼 ∩ 𝑒𝐽 = 𝑒𝐼∩𝐽 .

Definition. A map |𝑓|∶ Δ𝑛 → ℝ𝑁 is affine linear if it is the restriction of a linear map
ℝ𝑛+1 → ℝ𝑛. Equivalently, |𝑓|(∑𝑛

𝑖=0 𝑥𝑖𝑒𝑖) = ∑𝑛
𝑖=0 𝑥𝑖|𝑓|(𝑒𝑖). We say an affine linear map

|𝑓|∶ Δ𝑛 → Δ𝑚 is simplicial if it maps vertices in Δ𝑛 to vertices in Δ𝑚, so there is a map of
sets ̂𝑓 ∶ {0,… , 𝑛} → {0,… ,𝑚} where |𝑓|(𝑒𝑖) = 𝑒 ̂𝑓(𝑖).

Remark. Affine linear maps are continuous, and are determined entirely by their action
on 𝑒𝑖. In particular, simplicial maps |𝑓| are determined by ̂𝑓. For 𝐼 ⊆ {0,… , 𝑛}, we have
|𝑓|(𝑒𝐼) = 𝑒 ̂𝑓(𝐼).

Definition. Vectors 𝑣0,… , 𝑣𝑛 ∈ ℝ𝑁 are affine linearly independent if whenever∑𝑡𝑖𝑣𝑖 = 0
and∑𝑡𝑖 = 0, we have 𝑡𝑖 = 0 for all 𝑖. Equivalently,

(i) If∑𝑡𝑖𝑣𝑖 = ∑𝑡′𝑖𝑣𝑖 and∑𝑡𝑖 = ∑𝑡′𝑖 , then for each 𝑖, 𝑡𝑖 = 𝑡′𝑖 .

(ii) The vectors 𝑣1 − 𝑣0, 𝑣2 − 𝑣0,… , 𝑣𝑛 − 𝑣0 are linearly independent.

(iii) The unique affine linear map |𝑓|∶ Δ𝑛 → ℝ𝑁 given by |𝑓|(𝑒𝑖) = 𝑣𝑖 is injective.
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If 𝑣0,… , 𝑣𝑛 are affine linearly independent, we write

[𝑣0,… , 𝑣𝑛] = Im |𝑓| = {∑𝑥𝑖𝑣𝑖 ∣ ∑𝑥𝑖 = 1, 𝑥𝑖 ≥ 0}

and we say [𝑣0,… , 𝑣𝑛] is a Euclidean simplex.

Remark. Δ𝑛 is compact and [𝑣0,… , 𝑣𝑛] is Hausdorff, so by the topological inverse function
theorem, |𝑓|∶ Δ𝑛 → [𝑣0,… , 𝑣𝑛] is a homeomorphism if the 𝑣𝑖 are affine linearly independ-
ent.

Lemma. If 𝑋 ⊆ ℝ𝑁 , let 𝑍(𝑋) be the set of 𝑥 ∈ 𝑋 such that if 𝑥 = ∑𝑡𝑖𝑥𝑖 for 𝑡𝑖 > 0,∑ 𝑡𝑖 = 1
and all 𝑥𝑖 ∈ 𝑋 , then 𝑥𝑖 = 𝑥 for some 𝑖. Then 𝑍([𝑣0,… , 𝑣𝑛]) = {𝑣0,… , 𝑣𝑛}.

Proof. We show that 𝑣𝑘 ∈ 𝑍([𝑣0,… , 𝑣𝑛]); the converse is clear from the definition of the
simplex. Suppose 𝑣𝑘 = ∑𝑡𝑖𝑥𝑖 for 𝑡𝑖 > 0 and ∑𝑡𝑖 = 1. Then 𝑥𝑖 = ∑𝑛

𝑗=0 𝑠𝑖𝑗𝑣𝑗 , since
𝑥𝑖 ∈ [𝑣0,… , 𝑣𝑛]. So 𝑣𝑘 = ∑𝑗 (∑𝑖 𝑡𝑖𝑠𝑖𝑗)𝑣𝑗 . Since the 𝑣𝑖 are affine linearly independent,
and∑𝑗 (∑𝑖 𝑡𝑖𝑠𝑖𝑗) = 1, we must have∑𝑡𝑖𝑠𝑖𝑗 = 0 for 𝑗 ≠ 𝑘. But 𝑡𝑖 > 0 and 𝑠𝑖𝑗 ≥ 0, so the
only case is when all 𝑠𝑖𝑗 are exactly zero for 𝑗 ≠ 𝑘, so 𝑥𝑗 = 𝑣𝑘.

Corollary. If [𝑣0,… , 𝑣𝑛] = [𝑣′0,… , 𝑣′𝑛] as subsets of ℝ𝑁 , then {𝑣0,… , 𝑣𝑛} = {𝑣′0,… , 𝑣′𝑛} as
sets.

Therefore, a simplex determines its set of vertices.

Proof. {𝑣0,… , 𝑣𝑛} = 𝑍([𝑣0,… , 𝑣𝑛]) = 𝑍([𝑣′0,… , 𝑣′𝑛]) = {𝑣′0,… , 𝑣′𝑛}.

Definition. 𝒮(ℝ𝑛) is the set of Euclidean simplices 𝜎 ⊆ ℝ𝑛. Hence, 𝒮(ℝ𝑛) is in bijection
with the set {{𝑣0,… , 𝑣𝑘} ∣ 𝑣𝑖 ∈ ℝ𝑁 , 𝑘 ≥ −1, 𝑣𝑖 affine linearly independent}.

6.2. Abstract simplicial complexes
Definition. An abstract simplicial complex in Δ𝑛 is a subset 𝐾 of the faces 𝐹(Δ𝑛) such that
𝑒𝐼 ∈ 𝐾 whenever 𝑒𝐽 is in 𝐾 and 𝐼 ⊆ 𝐽.

Remark. Abstract simplicial complexes are downward-closed sets of faces. They have no
intrinsic topology. The set of faces 𝐹(Δ𝑛) of the 𝑛-dimensional simplex Δ𝑛 is an abstract
simplicial complex.

Definition. If 𝐾 is an abstract simplicial complex, its polyhedron is |𝐾| = ⋃𝑒𝐼∈𝐾 𝑒𝐼 ⊆ Δ𝑛.

Remark. Polyhedra are compact and Hausdorff.

Definition. We define𝐾𝑟 = {𝑒𝐼 ∈ 𝐾 ∣ |𝐼| ≤ 𝑟 + 1} to be the set of faces of dimension at most
𝑟. This is called the 𝑟-skeleton of 𝐾.
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The 𝑟-skeleton is an abstract simplicial complex. Note that

{𝑒∅} = 𝐾−1 ⊂ 𝐾0 ⊂ ⋯ ⊂ 𝐾𝑛 = 𝐾

We write dim𝐾 = max {dim 𝑒𝐼 ∣ 𝑒𝐼 ∈ 𝐾}.
Definition. The vertex set 𝑉(𝐾) is the polyhedron |𝐾0|.
Example. 𝚫𝑛 = 𝐹(Δ𝑛) = {𝑒𝐼 ∣ 𝐼 ⊆ {0,… , 𝑛}} is a simplicial complex. Its polyhedron is Δ𝑛,
which is homeomorphic to 𝐷𝑛 by radial projection.

Example. 𝕊𝑛−1 = 𝚫𝑛
𝑛−1 = {𝑒𝑖 ∣ 𝐼 ⊊ {0,… , 𝑛}} is a simplicial complex. This has polyhedron

𝜕Δ𝑛 by definition of the boundary. This is homeomorphic to 𝑆𝑛−1 by radial projection.
Definition. Let𝐾, 𝐿 be abstract simplicial complexes inΔ𝑛 andΔ𝑚 respectively. A simplicial
map 𝑓∶ 𝐾 → 𝐿 is a map such that there is a simplicial map |𝑓|∶ Δ𝑛 → Δ𝑚 with 𝑓(𝑒𝐼) =
|𝑓|(𝑒𝐼). Equivalently, there is a map ̂𝑓 ∶ {0,… , 𝑛} → {0,… ,𝑚} such that 𝑓(𝑒𝐼) = 𝑒 ̂𝑓(𝐼) and
𝑒𝐼 ∈ 𝐾 implies 𝑒 ̂𝑓(𝐼) ∈ 𝐿.
Remark. The identity map is simplicial. The composition of two simplicial maps is simpli-
cial.

Definition. We say a simplicialmap 𝑓∶ 𝐾 → 𝐿 is a simplicial isomorphism if 𝑓 is a bijection,
or equivalently, |𝑓| is a bijection or |𝑓| is a homeomorphism, treating |𝑓| as a map |𝐾| → |𝐿|.

6.3. Euclidean simplicial complexes
Recall that 𝒮(ℝ𝑛) is the set of Euclidean simplices [𝑣0,… , 𝑣𝑛]where the 𝑣𝑖 are affine linearly
independent.

Definition. 𝐾 ⊆ 𝒮(ℝ𝑛) is a Euclidean simplicial complex if
(i) 𝐾 is finite;

(ii) if 𝜎 ∈ 𝐾 and 𝜏 ∈ 𝐹(𝜎), then 𝜏 ∈ 𝐾;
(iii) if 𝜎1, 𝜎2 ∈ 𝐾, then 𝜎1 ∩ 𝜎2 ∈ 𝐹(𝜎1) ∩ 𝐹(𝜎2), so in particular, 𝜎1 ∩ 𝜎2 ∈ 𝐾.
If so, we write |𝐾| = ⋃𝜎∈𝐾 𝜎 ⊆ ℝ𝑛 with the subspace topology. We write

𝐾𝑟 = {𝜎 ∈ 𝐾 ∣ dim𝜎 ≤ 𝑟}

for its 𝑟-skeleton, which is a Euclidean simplicial complex.
Proposition. Let |𝜑|∶ Δ𝑛 → ℝ𝑛 be affine linear, and 𝐾′ be an abstract simplicial complex
inΔ𝑛, such that |𝜑|||𝐾′| is injective. Then 𝜑(𝐾′) = {|𝜑|(𝑒𝐼) ∣ 𝑒𝐼 ∈ 𝐾′} is a Euclidean simplicial
complex.

Proof. Property (i) is clear since 𝐹(Δ𝑛) is finite. For property (ii), note that if 𝜎 ∈ 𝜑(𝐾′), there
is 𝑒𝐼 ∈ 𝐾′ such that 𝜎 = |𝜑|(𝑒𝐼). If 𝜏 ∈ 𝐹(𝜎), we have 𝜏 = |𝜑|(𝑒𝐽) for 𝑒𝐽 ⊆ 𝑒𝐼 . Then 𝑒𝐽 ∈ 𝐾′

since 𝐾′ is an abstract simplicial complex. So 𝜏 = |𝜑|(𝑒𝐽) = 𝜑(𝐾′).
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Suppose 𝜎1 = |𝜑|(𝑒𝐼1) and 𝜎2 = |𝜑|(𝑒𝐼2) where 𝑒𝐼1 , 𝑒𝐼2 ∈ 𝐾′. Then 𝜎1 ∩ 𝜎2 = |𝜑|(𝑒𝐼1) ∩
|𝜑|(𝑒𝐼2) = |𝜑|(𝑒𝐼1 ∩ 𝑒𝐼2) by injectivity. This is equal to |𝜑|(𝑒𝐼1∩𝐼2) ∈ 𝐹(𝜎1) ∩ 𝐹(𝜎2).

Definition. We say that the Euclidean simplicial complex 𝜑(𝐾′) is a realisation of an ab-
stract simplicial complex 𝐾′ in Δ𝑛, if |𝜑|∶ Δ𝑛 → ℝ𝑛 is affine linear and injective on |𝐾′|.
Remark. If 𝜑(𝐾′) is a realisation of 𝐾′, |𝜑|||𝐾′| is injective, so |𝜑|∶ |𝐾′| → |𝜑(𝐾)| is a homeo-
morphism.

Proposition. Let 𝐾 ⊆ ℝ𝑁 be a Euclidean simplicial complex. Then 𝐾 = 𝜑(𝐾′) for some
abstract simplicial complex 𝐾′, and |𝜑|∶ |𝐾′| → |𝐾|. Any two 𝐾′ are related by a simplicial
isomorphism.

Informally, every Euclidean simplicial complex is the realisation of some abstract simplicial
complex.

Proof. Let 𝑉(𝐾) = |𝐾0| = {𝑣0,… , 𝑣𝑛} ⊂ ℝ𝑁 be the vertex set of the Euclidean simplicial
complex. Define𝐾′ = {𝑒{𝑖0,…,𝑖𝑘} ∣ [𝑣𝑖0 ,… , 𝑣𝑖𝑘] ∈ 𝐾}. Let |𝜑|∶ Δ𝑛 → ℝ𝑁 be given by |𝜑|(𝑒𝑖) =
𝑣𝑖.
We show that |𝜑|||𝐾′| is injective. If 𝜎 = [𝑣𝑖0 ,… , 𝑣𝑖𝑘] ∈ 𝐾, we have that 𝑣𝑖0 ,… , 𝑣𝑖𝑘 are affine
linearly independent since 𝐾 is a Euclidean simplicial complex. Then |𝜑|𝑒𝐼 is injective.

Suppose |𝜑|(𝑝) = |𝜑|(𝑞) = 𝑥 ∈ ℝ𝑁 , where 𝑝 ∈ 𝑒𝐼 ∈ 𝐾′ and 𝑞 ∈ 𝑒𝐽 ∈ 𝐾′. Then 𝑥 ∈
|𝜑|(𝑒𝐼) ∩ |𝜑|(𝑒𝐽), which is the intersection of simplices in 𝐾, so 𝑥 ∈ |𝜑|(𝑒𝐼′) for 𝐼′ ⊆ 𝐼 ∩ 𝐽.
Since |𝜑||𝑒𝐼 and |𝜑||𝑒𝐽 are injective, we must have 𝑝, 𝑞 ∈ 𝑒𝐼′ . But |𝜑||𝑒𝐼′ is also injective, so𝑝 = 𝑞.

Definition. A simplicial map of Euclidean simplicial complexes is a map 𝑓∶ 𝐾1 → 𝐾2 if
there are realisations 𝜑𝑖 ∶ 𝐾′

𝑖 → 𝐾𝑖 and a simplicial map of abstract simplicial complexes
𝑓′∶ 𝐾′

1 → 𝐾′
2 so that the following diagram commutes.

𝐾′
1 𝐾′

2

𝐾1 𝐾2

𝜑1 𝜑2

𝑓′

𝑓

Remark. The composition of simplicial maps of Euclidean simplicial complexes is also a
simplicial map.

6.4. Boundaries and cones
Definition. Let 𝜎 be an 𝑛-dimensional Euclidean simplex. Let 𝐹(𝜎) be the set of faces of 𝜎,
a Euclidean simplicial complex with |𝐹(𝜎)| = 𝜎. Let 𝜕/𝜎 = 𝐹(𝜎)𝑛−1 = 𝐹(𝜎) ∖ {𝜎}, a Euclidean
simplicial complex. Let 𝜕𝜎 = |𝜕/𝜎| ⊂ ℝ𝑁 be the boundary of 𝜎. It is homeomorphic to 𝑆𝑛−1.
Let 𝜎∘ = 𝜎 ∖ 𝜕𝜎 be the interior of 𝜎.
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Definition. Let 𝑋 ⊆ ℝ𝑁 and 𝑝 ∈ ℝ𝑁 . We say 𝑝 is independent of 𝑋 if for each 𝑥 ∈ 𝑋 , the
ray 𝑝𝑥 from 𝑝 to 𝑥 has 𝑝𝑥 ∩ 𝑋 = {𝑥}.
Definition. If 𝑝 is independent of 𝑋 , the cone is defined by

𝐶𝑝(𝑋) = {𝑡𝑝 + (1 − 𝑡)𝑥 ∣ 𝑡 ∈ [0, 1], 𝑥 ∈ 𝑋}

Example. Let 𝑋 = [𝑣0,… , 𝑣𝑛] be an 𝑛-simplex. Then 𝑝 is independent of 𝑋 if and only if
{𝑣0,… , 𝑣𝑛, 𝑝} is an affine linearly independent set. If so, 𝐶𝑝(𝑋) = [𝑣0,… , 𝑣𝑛, 𝑝].
Definition. Let 𝐾 be a Euclidean simplicial complex in ℝ𝑁 and 𝑝 be independent of |𝐾|.
Then we define the cone

𝐶𝑝(𝐾) = 𝐾 ∪ {[𝑣0,… , 𝑣𝑗 , 𝑝] ∣ [𝑣0,… , 𝑣𝑗] ∈ 𝐾}

Lemma. If𝑝 is independent of |𝐾|, then𝐶𝑝(𝐾) is a Euclidean simplicial complex and ||𝐶𝑝(𝐾)|| =
𝐶𝑝(|𝐾|).

6.5. Barycentric subdivision
Definition. If 𝜎 = [𝑣0,… , 𝑣𝑛] is an 𝑛-simplex in ℝ𝑁 , we define its barycentre

𝑏𝜎 =
1

𝑛 + 1
𝑛
∑
𝑖=0

𝑣𝑖

Lemma. 𝑏𝜎 is independent of 𝜕𝜎, and 𝐶𝑏𝜎(𝜕𝜎) = 𝜎.
We will define maps 𝛽 from 𝒮(ℝ𝑁) to the set of Euclidean simplicial complexes in ℝ𝑁 , and
𝐵 from the set of Euclidean simplicial complexes in ℝ𝑁 to Euclidean simplicial complexes
in ℝ𝑁 , satisfying |𝛽(𝜎)| = 𝜎 and |𝐵(𝐾)| = |𝐾|. The maps 𝛽 and 𝐵 are called barycentric sub-
division. In order to do this, we will inductively define 𝛽 and 𝐵 on simplices and Euclidean
simplicial complexes of dimension at most 𝑛, and prove the following theorems.
Theorem (first inductive hypothesis). Let 𝜎 ∈ 𝒮(ℝ𝑁) be an 𝑛-simplex. Then 𝛽(𝜎) is a
Euclidean simplicial complex of dimension 𝑛, and |𝛽(𝜎)| = 𝜎. If 𝜏 is a face of 𝜎 and 𝜎1 ∈ 𝛽(𝜎)
then 𝜎1 ∩ 𝜏 ∈ 𝛽(𝜏).
Theorem (second inductive hypothesis). Let 𝐾 be an 𝑛-dimensional Euclidean simplicial
complex. Then 𝐵(𝐾) is an 𝑛-dimensional Euclidean simplicial complex with polyhedron
|𝐵(𝐾)| = |𝐾|.
For the base case, let 𝑛 = −1. The only−1-dimensional simplex is∅. We define 𝛽(∅) = {∅}.
The only −1-dimensional simplicial complex is {∅}, and we define 𝐵({∅}) = {∅}. Both
inductive hypotheses hold for this case.

In general, suppose 𝛽 and 𝐵 are defined on 𝑛−1-dimensional simplices and simplicial com-
plexes and that both inductive hypotheses hold. We now define 𝛽(𝜎) = 𝐶𝑏𝜎(𝐵(𝜕/𝜎)) and
𝐵(𝐾) = ⋃𝜎∈𝐾 𝛽(𝜎).
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Example. Let 𝜎 be a zero-dimensional simplex. Then 𝛽𝜎(𝜎) = 𝜎.
Example. Let 𝜎 be the one-dimensional simplex. 𝜕/𝜎 is two points 𝑝1, 𝑝2 and the empty set.
Then 𝐵(𝜕/𝜎) = {∅, 𝑝1, 𝑝2}. Therefore, 𝐶𝑝(𝐵(𝜕/𝜎)) = {∅, 𝑝, 𝑝1, 𝑝2, 𝑝𝑝1, 𝑝𝑝2}.
Example. Let 𝜎 be a two-dimensional simplex with vertices 𝑝1, 𝑝2, 𝑝3. Then 𝐶𝑝(𝐵(𝜕/𝜎)) has
six 2-simplices, twelve 1-simplices, seven 0-simplices and one empty simplex.

Proof of first inductive hypothesis. 𝜕/𝜎 is a Euclidean simplicial complex of dimension 𝑛 −
1, hence 𝐵(𝜕/𝜎) is a Euclidean simplicial complex by the second inductive hypothesis, and
|𝐵(𝜕/𝜎)| = |𝜕/𝜎| = 𝜕𝜎. By the lemmas above, 𝑏𝜎 is independent of 𝜕𝜎 = |𝐵(𝜕/𝜎)|, so 𝐶𝑏𝜎(𝐵(𝜕/𝜎))
is a Euclidean simplicial complex with polyhedron ||𝐶𝑏𝜎(𝐵(𝜕/𝜎))|| = 𝐶𝑏𝜎(𝜕𝜎) = 𝜎. The next
part follows from the lemma: if 𝜎 ∈ 𝐶𝑝(𝐾), then 𝜎 ∩ |𝐾| ∈ 𝐾.

Proof of second inductive hypothesis. We check the properties required for a Euclidean sim-
plicial complex for 𝐵(𝐾) = ⋃𝜎∈𝐾 𝛽(𝜎). 𝛽(𝜎) is finite for each 𝜎 and 𝐾 is finite, so 𝐵(𝐾) is
finite. If 𝜎 ∈ 𝐵(𝐾) then 𝜎 ∈ 𝛽(𝜎′) for some 𝜎′ ∈ 𝐾, so if 𝜏 ∈ 𝐹(𝜎), then 𝜏 ∈ 𝛽(𝜎′) since
𝛽(𝜎′) is a Euclidean simplicial complex, so 𝜏 ∈ 𝐵(𝐾), so the second property holds. Suppose
𝜎1, 𝜎2 ∈ 𝐵(𝐾) where 𝜎𝑖 ∈ 𝛽(𝜎′𝑖 ) and 𝜎′𝑖 ∈ 𝐾. Then 𝜎1 ∩ 𝜎2 ⊆ 𝜎′1 ∩ 𝜎′2 = 𝜏 since ||𝛽(𝜎′𝑖 )|| = 𝜎′𝑖 ,
where 𝜏 ∈ 𝐾 since 𝐾 is a Euclidean simplicial complex. Then 𝜎1 ∩ 𝜏, 𝜎2 ∩ 𝜏 ∈ 𝛽(𝜏) by
the second part of the first inductive hypothesis. In particular, 𝛽(𝜏) is a Euclidean sim-
plicial complex, so 𝜎1 ∩ 𝜎2 = (𝜎1 ∩ 𝜏)⏟⎵⏟⎵⏟

∈𝛽(𝜏)

∩ (𝜎2 ∩ 𝜏)⏟⎵⏟⎵⏟
∈𝛽(𝜏)

∈ 𝛽(𝜏) ⊆ 𝐵(𝐾), so the third property

holds. So 𝐾 is a Euclidean simplicial complex. Now, by the first inductive hypothesis,
|𝐵(𝐾)| = ⋃𝜎∈𝐾 𝛽(𝜎) = ⋃𝜎∈𝐾 𝜎 = |𝐾|.

Lemma. Let 𝜎 ∈ 𝒮(ℝ𝑁) and 𝑥, 𝑣 ∈ 𝜎. Then ‖𝑣 − 𝑥‖ ≤ max𝑣𝑖∈𝑉(𝜎) ‖𝑣 − 𝑣𝑖‖.

Proof. We canwrite 𝑥 = ∑𝑥𝑖𝑣𝑖, where∑𝑥𝑖 = 1, 𝑥𝑖 ≥ 0, and 𝑣𝑖 ∈ 𝑉(𝜎). But also, 𝑣 = ∑𝑥𝑖𝑣.
Hence,

‖𝑣 − 𝑥‖ = ‖
‖∑𝑥𝑖(𝑣 − 𝑣𝑖)‖‖ ≤ ∑𝑥𝑖‖𝑣 − 𝑣𝑖‖ ≤ ∑𝑥𝑖max ‖𝑣 − 𝑣𝑖‖ = max ‖𝑣 − 𝑣𝑖‖

Applying this twice, ‖𝑥 − 𝑣‖ ≤ max𝑣𝑖∈𝑉(𝜎) ‖𝑣 − 𝑣𝑖‖ ≤ max𝑣𝑖 ,𝑣𝑗∈𝑉(𝜎)
‖
‖𝑣𝑖 − 𝑣𝑗‖‖.

Definition. Themesh of a simplex 𝜎 ∈ 𝒮(ℝ𝑁) is

𝜇(𝜎) = max
𝑣𝑖 ,𝑣𝑗∈𝑉(𝜎)

‖
‖𝑣𝑖 − 𝑣𝑗‖‖ = max

𝑥,𝑣∈𝜎
‖𝑣 − 𝑥‖

If 𝐾 is a Euclidean simplicial complex, its mesh is 𝜇(𝐾) = max𝜎∈𝐾 𝜇(𝜎).

Lemma. Let 𝑏𝜎 be the barycentre of 𝜎, so 𝑏𝜎 = 1
𝑛+1

∑𝑛
𝑖=0 𝑣𝑖 for 𝜎 = [𝑣0,… , 𝑣𝑛]. Then

max𝑣∈𝜎 ‖𝑏𝜎 − 𝑣‖ ≤ 𝑛
𝑛+1

𝜇(𝜎).
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Proof. ‖𝑏𝜎 − 𝑣‖ ≤ max𝑣𝑖∈𝑉(𝜎) ‖𝑏𝜎 − 𝑣𝑖‖. We have

‖𝑏𝜎 − 𝑣𝑖‖ =
1

𝑛 + 1
‖
‖‖‖
∑
𝑗≠𝑖

𝑣𝑗 − 𝑛𝑣𝑖
‖
‖‖‖
≤ 1
𝑛 + 1 ∑𝑗≠𝑖

‖
‖𝑣𝑗 − 𝑣𝑖‖‖ ≤

1
𝑛 + 1 ⋅ 𝑛𝜇(𝜎)

Corollary. Let 𝜎 be a Euclidean simplex of dimension 𝑛. Then 𝜇(𝛽(𝜎)) ≤ 𝑛
𝑛+1

𝜇(𝜎). Let 𝐾
be a Euclidean simplicial complex of dimension 𝑛. Then 𝜇(𝐵(𝐾)) ≤ 𝑛

𝑛+1
𝜇(𝐾).

Proof. Let 𝜏 ∈ 𝛽(𝜎). Suppose 𝜏 ∈ 𝐵(𝜕/𝜎). Then, 𝜇(𝜏) ≤ 𝑛−1
𝑛
𝜇(𝐵(𝜕/𝜎)) ≤ 𝑛

𝑛+1
𝜇(𝜎) by induction.

Otherwise, 𝜏 = [𝑣0,… , 𝑣𝑘, 𝑏𝜎], where [𝑣0,… , 𝑣𝑘] ∈ 𝐵(𝜕/𝜎). Then ‖‖𝑣𝑖 − 𝑣𝑗‖‖ ≤
𝑛−1
𝑛
𝜇(𝜎) by

induction, and ‖𝑣𝑖 − 𝑏𝜎‖ ≤
𝑛

𝑛+1
𝜇(𝜎) by the lemma.

6.6. Simplicial approximation
Lemma. (i) Let 𝑥 ∈ Δ𝑛. Then there exists a unique 𝐼 ⊆ {0,… , 𝑛} such that 𝑥 ∈ 𝑒∘𝐼 .
(ii) If 𝑥 ∈ 𝑒∘𝐼 , then 𝑥 ∈ 𝑒𝐽 if and only if 𝐼 ⊆ 𝐽, or equivalently, 𝑒𝐼 ⊆ 𝑒𝐽 .
(iii) Let 𝐾 be an abstract simplicial complex in Δ𝑛, and let 𝑥 ∈ 𝑒∘𝐼 . Suppose that 𝑥 ∈ |𝐾|.

Then 𝑒𝐼 ∈ 𝐾.

Proof. Part (i). Let 𝐼 = {𝑖 ∈ {0,… , 𝑛} ∣ 𝑥𝑖 ≠ 0}. Part (ii). Follows from part (i).

Part (iii). 𝑥 ∈ |𝐾| implies 𝑥 ∈ 𝑒𝐽 for some 𝑒𝐽 ∈ 𝐾. By part (ii), we have 𝑒𝐼 ⊆ 𝑒𝐽 . Since 𝐾 is
an abstract simplicial complex and 𝑒𝐽 ∈ 𝐾, we have 𝑒𝐼 ∈ 𝐾.

Corollary. Let𝐾 be a Euclidean simplicial complex, and 𝑥 ∈ |𝐾|. Then there exists a unique
𝜎 ∈ 𝐾 with 𝑥 ∈ 𝜎∘.

Proof. Let 𝜑∶ 𝐾′ → 𝐾 be a realisation of 𝐾, so 𝐾′ is an abstract simplicial complex and 𝜑 is
a bijection inducing a homeomorphism on the polyhedra. Let 𝑥′ = ||𝜑−1||(𝑥) ∈ |𝐾|. Then 𝑥′
lies in the interior of a unique 𝑒𝐼 by part (i) of the lemma above. Note that 𝑒𝐼 ∈ 𝐾′ by part
(iii), so 𝜑(𝑒𝐼) is the unique 𝜎 ∈ 𝐾 with 𝑥 ∈ 𝜎∘.

Definition. Let 𝐾 be a Euclidean simplicial complex, and let 𝑣 ∈ 𝑉(𝐾). Then the star
St𝐾(𝑣) is⋃{𝜎∈𝐾∣𝑣∈𝜎} 𝜎∘.

Lemma. (i) Let 𝑥 ∈ |𝐾| and 𝑥 ∈ 𝜎∘. Then 𝑥 ∈ St𝐾(𝑣) if and only if 𝑣 ∈ 𝑉(𝜎).
(ii) St𝐾(𝑣) = |𝐾| ∖ ⋃{𝜎∈𝐾∣𝑣∉𝑉(𝜎)} 𝜎∘ = |𝐾| ∖ ⋃{𝜎∈𝐾∣𝑣∉𝑉(𝜎)} 𝜎.

(iii) {St𝐾(𝑣) ∣ 𝑣 ∈ 𝑉(𝐾)} is an open cover of |𝐾|.
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Proof. Part (i). Follows from the fact that if 𝑥 ∈ |𝐾|, 𝑥 lies in a unique interior of 𝜎 for 𝜎 ∈ 𝐾.

Part (ii). The first equality follows from part (i). The second follows from the fact that if
𝜏 ∈ 𝐹(𝜎) and 𝑣 ∉ 𝑉(𝜎), then 𝑣 ∉ 𝑉(𝜏).

Part (iii). Part (ii) exhibits St𝐾(𝑣) as the complement of a finite union of closed sets in |𝐾|,
so it is open. If 𝑥 ∈ |𝐾|, then 𝑥 ∈ 𝜎∘ for some 𝜎, and if 𝑣 ∈ 𝑉(𝜎), then 𝑥 ∈ St𝐾(𝑣), so it is a
cover.

Definition. Let 𝐾, 𝐿 be Euclidean simplicial complexes. Let 𝑓∶ |𝐾| → |𝐿| be a continuous
map, and let ̂𝑔∶ 𝑉(𝐾) → 𝑉(𝐿). We say that ̂𝑔 is a simplicial approximation of 𝑓 if 𝑓(St𝐾(𝑣)) ⊆
St𝐿( ̂𝑔(𝑣)) for all 𝑣 ∈ 𝑉(𝐾).

Theorem. Let 𝜑∶ 𝐾′ → 𝐾 be a realisation of a Euclidean simplicial complex 𝐾, and let 𝐿
be a Euclidean simplicial complex in ℝ𝑀 . We define 𝑔′∶ |𝐾′| → ℝ𝑀 to be the affine linear
map with |𝑔′|(𝑣) = ̂𝑔(𝜑(𝑣)) if 𝑣 ∈ 𝑉(𝐾′). Let |𝑔| = |𝑔′| ∘ |𝜑|−1. Then |𝑔| defines a simplicial
map 𝑔∶ 𝐾 → 𝐿, and |𝑔| ∼ 𝑓.

Proof. Let 𝜎 ∈ 𝐾. We must show that |𝑔|(𝜎) ∈ 𝐿. Let 𝑥 ∈ 𝜎∘ be an arbitrary point in
the interior. Then 𝑓(𝑥) ∈ |𝐿|, so 𝑓(𝑥) ∈ 𝜏∘ with 𝜏 ∈ 𝐿. Then 𝑥 ∈ ⋂𝑣∈𝑉(𝜎) St𝐾(𝑣), so
𝑓(𝑥) ∈ ⋂𝑣∈𝑉(𝜎) 𝑓(St𝐾(𝑣)) ⊆ ⋂𝑣∈𝑉(𝜎) St𝐿(𝑔(𝑣)) since 𝑔 is a simplicial approximation of 𝑓.
Now, if 𝑣 ∈ 𝑉(𝜎), 𝑓(𝑥) ∈ 𝜏∘ and 𝑓(𝑥) ∈ St𝐿(𝑔(𝑣)), so 𝑔(𝑣) ∈ 𝜏 by part (i) of the lemma
above. Hence, every vertex of |𝑔|(𝜎) is a vertex of 𝜏, so |𝑔|(𝜎) is a face of 𝜏 ∈ 𝐿, so |𝑔|(𝜎) ∈ 𝐿
as required. So 𝑔∶ 𝐾 → 𝐿 is simplicial.

For the second part, we define 𝐻∶ |𝐾| × 𝐼 → ℝ𝑀 by 𝐻(𝑥, 𝑡) = 𝑡|𝑔|(𝑥) + (1 − 𝑡)𝑓(𝑥). This
is clearly a homotopy in ℝ𝑀 , but we need to show it is a homotopy in |𝐿|. Suppose 𝑥 ∈ 𝜎∘
and 𝑓(𝑥) ∈ 𝜏∘ as before. Then 𝑥 = ∑𝑣𝑖∈𝑉(𝜎)

𝑥𝑖𝑣𝑖, so |𝑔|(𝑥) = ∑𝑣𝑖∈𝑉(𝜎)
𝑥𝑖|𝑔|(𝑣𝑖) ∈ 𝜏 since

|𝑔|(𝑣𝑖) ∈ 𝜏. Since 𝜏 is convex, and |𝑔|(𝑥), 𝑓(𝑥) ∈ 𝜏, we must have 𝐻(𝑥, 𝑡) ∈ 𝜏 for 𝑡 ∈ [0, 1].
So 𝐻∶ |𝐾| × 𝐼 → |𝐿|, which is the desired homotopy.

Theorem (simplicial approximation theorem). Let 𝐾, 𝐿 be Euclidean simplicial complexes.
Let 𝑓∶ |𝐾| → |𝐿| be a continuous map. Then there exists 𝑟 > 0 and a simplicial map
𝑔∶ 𝐵𝑟(𝐾) → 𝐿 such that |𝑔| ∼ 𝑓.

Note that |𝐵𝑟(𝐾)| = |𝐾|, so |𝑔|∶ |𝐵𝑟(𝐾)| → |𝐿| can be thought of as a map |𝐾| → |𝐿|.

Proof. We have the open cover {St𝐿(𝑣) ∣ 𝑣 ∈ 𝑉(𝐿)} of |𝐿|. 𝑓∶ |𝐾| → |𝐿| is continuous, so
{𝑓−1(St𝐿(𝑣)) ∣ 𝑣 ∈ 𝑉(𝐿)} is an open cover of |𝐾|. Now, |𝐾| is a compact metric space, so we
can apply the Lebesgue covering lemma to find 𝛿 > 0 and a function |𝐾| → 𝑉(𝐿)mapping
𝑥 to some vertex 𝑣𝑥 such that 𝐵𝛿(𝑥) ⊆ 𝑓−1(St𝐿(𝑣𝑥)). Let 𝑟 be a natural number such that
𝜇(𝐵𝑟(𝐾)) < 𝛿, and let 𝐾′ = 𝐵𝑟(𝐾). If 𝜎 ∈ 𝐾′ and 𝑥 ∈ 𝑉(𝜎), then 𝜎 ⊆ 𝐵𝛿(𝑥), since 𝜇(𝐾′) < 𝛿.
If 𝑥 ∈ 𝑉(𝐾′), then

St𝐾′(𝑥) = ⋃
{𝜎∣𝑥∈𝑉(𝜎)}

𝜎∘ ⊆ ⋃
{𝜎∣𝑥∈𝑉(𝜎)}

𝜎 ⊆ 𝐵𝛿(𝑥)
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Hence, 𝑓(St𝐾′(𝑥)) ⊆ 𝑓(𝐵𝛿(𝑥)) ⊆ St𝐿(𝑣𝑥), so the function ̂𝑔∶ 𝑉(𝐾′) → 𝑉(𝐿) given by ̂𝑔(𝑥) =
𝑣𝑥 is a simplicial approximation of 𝑓. So by the previous theorem, ̂𝑔 determines a simplicial
map 𝑔∶ 𝐾′ → 𝐿 with |𝑔| ∼ 𝑓.

Corollary. Let𝐾, 𝐿 beEuclidean simplicial complexes, where dim𝐾 < dim𝐿. Let𝑓∶ |𝐾| →
|𝐿| be continuous. Then 𝑓 ∼ |𝑔| where |𝑔| is not surjective.

Proof. Let 𝑔∶ 𝐵𝑟(𝐾) → 𝐿 be a simplicial map such that 𝑓 ∼ |𝑔|. Let 𝑘 = dim𝐵𝑟(𝐾) = dim𝐾.
Then |𝑔|∶ |𝐾| → |𝐿𝑘| ⊊ |𝐿| since dim𝐿 > 𝑘. So |𝑔| is not surjective.

Remark. It is a general fact that simplicial functions map an 𝑖-skeleton into an 𝑖-skeleton for
each 𝑖.
Theorem. If 𝑘 < 𝑛, any continuous map 𝑆𝑘 → 𝑆𝑛 is null-homotopic.

Proof. 𝑆𝑘 ≃ ||𝕊𝑘|| and 𝑆𝑛 ≃ |𝕊𝑛|. By the above corollary, 𝑓 ∼ |𝑔| where |𝑔|∶ 𝑆𝑘 → 𝑆𝑛 is not
surjective. Let |𝑔|∶ 𝑆𝑘 → 𝑆𝑛 ∖ {𝑝}.

𝑆𝑘 𝑆𝑛 ∖ {𝑝}

𝑆𝑛

𝑔′

𝜄
|𝑔|

But 𝑆𝑛∖{𝑝} ≃ ℝ𝑛 is contractible. So 𝑔′ is null-homotopic, so |𝑔| ∼ 𝜄∘𝑔′ is null-homotopic.
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7. Simplicial homology
7.1. Chain complexes
Definition. A (finitely generated) chain complex (𝐶•, 𝑑) is
(i) a collection of free (finitely generated) abelian groups 𝐶𝑖 for 𝑖 ∈ ℤ (and if finitely

generated, 𝐶𝑖 = 0 for all but finitely many 𝑖);
(ii) a collection of homomorphisms 𝑑𝑖 ∶ 𝐶𝑖 → 𝐶𝑖−1;
(iii) 𝑑𝑖−1 ∘ 𝑑𝑖 = 0 for all 𝑖.

⋯ 𝐶−2 𝐶−1 𝐶0 𝐶1 𝐶2 ⋯𝑑3𝑑2𝑑1𝑑0𝑑−1𝑑−2

Usually, we write 𝐶• =⨁𝑖 𝐶𝑖, and 𝑑 = ⨁𝑖 𝑑𝑖 ∶ 𝐶• → 𝐶•. We can check that 𝑑𝑖−1 ∘ 𝑑𝑖 = 0 for
all 𝑖 is equivalent to the statement that 𝑑 ∘ 𝑑 = 𝑑2 = 0.
Remark. Free finitely generated abelian groups are isomorphic to ℤ𝑛 for some 𝑛. A chain
complex defined over ℚ, ℝ, or 𝔽𝑝 is similar, except that 𝐶𝑖 is a vector space over the ℚ,ℝ, 𝔽𝑝
and the 𝑑𝑖 are linear maps. Every chain complex determines another chain complex over
ℚ,ℝ, 𝔽𝑝 by replacing ℤ𝑛𝑖 with ℚ𝑛𝑖 , for example, and the 𝑑𝑖 are given by the same matrices.
Remark. There is a unique group homomorphism to and from the trivial abelian group 0.
Arrows to and from this group can therefore be unlabelled.

Example (reduced chain complex of the simplex). Consider the reduced chain complex of
Δ𝑛. We define 𝐶𝑘(Δ𝑛) = ⟨𝑒𝐼 ∣ |𝐼| = 𝑘 + 1, 𝐼 ⊆ {0,… , 𝑛}⟩, the free abelian group on a basis
given by the 𝑒𝐼 . We also define 𝑑(𝑒𝐼) = ∑|𝐼|

𝑗=0(−1)𝑗𝑒𝐼 ̂𝚥 where if 𝐼 = 𝑖0𝑖1…𝑖𝑘 and 𝑖0 < ⋯ < 𝑖𝑘,
we define 𝐼 ̂𝚥 = 𝐼 ∖ {𝑖𝑗}. For example, consider 𝐶•(Δ2).

𝐶2(Δ2) = ⟨𝑒012⟩ ; 𝐶1(Δ2) = ⟨𝑒01, 𝑒02, 𝑒12⟩ ; 𝐶0(Δ2) = {𝑒0, 𝑒1, 𝑒2}; 𝐶−1(Δ2) = {𝑒∅}

and, for example,

𝑑(𝑒012) = (−1)0𝑒12 + (−1)1𝑒02 + (−1)2𝑒01 = 𝑒12 − 𝑒02 + 𝑒01

𝑑(𝑒01) = 𝑒1 − 𝑒0; 𝑑(𝑒02) = 𝑒2 − 𝑒0; 𝑑(𝑒12) = 𝑒2 − 𝑒1; 𝑑(𝑒0) = 𝑑(𝑒1) = 𝑑(𝑒2) = 𝑒∅
Note that 𝐶𝑖(Δ2) = 0 if 𝑖 < −1 or 𝑖 > 2. We have 𝑑2(𝑒012) = 𝑑(𝑒12 − 𝑒02 + 𝑒01) = 𝑒2 − 𝑒1 −
𝑒2 + 𝑒0 + 𝑒1 − 𝑒0 = 0, as required.

0 𝐶−1 𝐶0 𝐶1 𝐶2 0𝑑2𝑑1𝑑0

Proposition. For 𝐶•(Δ𝑛), 𝑑2 = 0.

Proof. The 𝑒𝐼 are a basis for 𝐶•(Δ𝑛), so it suffices to check that 𝑑2(𝑒𝐼) = 0 for each 𝐼. For
some 𝑐𝑗𝑗′ , we have 𝑑2(𝑒𝐼) = ∑𝑗<𝑗′ 𝑐𝑗𝑗′𝑒𝐼 ̂𝚥, ̂𝚥′

where 𝐼 ̂𝚥, ̂𝚥′ = 𝐼∖{𝑖𝑗 , 𝑖𝑗′}. We can compute that 𝑐𝑗𝑗′
has a contribution of (−1)𝑗(−1)𝑗′−1 by first considering 𝑗 then 𝑗′, since 𝑖𝑗′ is the (𝑗′ − 1)th
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element of 𝐼 ̂𝚥. Note also that by computing the term in the sum with 𝑗, 𝑗′ in the other order,
we have a contribution of (−1)𝑗′(−1)𝑖. Hence 𝑐𝑗𝑗′ = (−1)𝑗(−1)𝑗′−1 + (−1)𝑗′(−1)𝑖 = 0.

Example (chain complex of the simplex). The chain complex of Δ𝑛 is defined by 𝐶𝑖(Δ𝑛) =
𝐶𝑖(Δ𝑛) if 𝑖 ≥ 0, but 𝐶−1(Δ𝑛) = 0. This removes the empty face 𝑒∅. The 𝑑𝑖 are unchanged.

0 𝐶0 𝐶1 𝐶2 0𝑑2𝑑1

Definition. Let 𝐾 be an abstract simplicial complex in Δ𝑛. Let

𝐶𝑘(𝐾) = ⟨𝑒𝐼 ∣ |𝐼| = 𝑘 + 1, 𝑒𝐼 ∈ 𝐾⟩ ≤ 𝐶𝑘(Δ𝑛)

Since 𝑒𝐼 ∈ 𝐾 implies 𝑒𝐼 ̂𝚥 ∈ 𝐾, 𝑑𝑘∶ 𝐶𝑘(𝐾) → 𝐶𝑘−1(𝐾). So (𝐶•(𝐾), 𝑑) is a chain complex.

Definition. Let (𝐶•, 𝑑) be a chain complex, and let 𝑥 ∈ 𝐶𝑘. We say that 𝑥 is a cycle or closed
if 𝑑𝑥 = 0, so 𝑥 ∈ ker𝑑𝑘. We say that 𝑥 is a boundary or exact if 𝑥 = 𝑑𝑦 for some 𝑦, so
𝑥 ∈ Im𝑑𝑘+1.

Remark. The statement 𝑑2 = 0 is equivalent to the statement Im 𝑑𝑘+1 ⊆ ker𝑑𝑘 for each 𝑘,
so boundaries are always cycles.

7.2. Homology groups
Definition. Let (𝐶•, 𝑑) be a chain complex. Its 𝑘th homology group is

𝐻𝑘(𝐶) = ker𝑑𝑘⟋Im𝑑𝑘+1

Remark. Homology groups are abelian.

Example. Consider𝐶•(Δ2). Recall𝐶2 = ⟨𝑒012⟩ and 𝑑(𝑒012) = 𝑒12−𝑒02+𝑒01. Hence ker 𝑑2 =
0 and Im𝑑3 = 0, so 𝐻2(𝐶•(Δ2)) = 0.

We have 𝐶1 = ⟨𝑒12, 𝑒02, 𝑒01⟩, and 𝑑(𝑎𝑒01+𝑏𝑒12+𝑐𝑒02) = 𝑎(𝑒1−𝑒0)+𝑏(𝑒2−𝑒1)+𝑐(𝑒2−𝑒0) =
−(𝑎+𝑐)𝑒0+(𝑎−𝑏)𝑒1+(𝑏+𝑐)𝑒2. Hence 𝑎𝑒01+𝑏𝑒12+𝑐𝑒02 ∈ ker𝑑 if and only if 𝑎 = 𝑏 = −𝑐.
So 𝑥 ∈ ⟨𝑒12 − 𝑒02 + 𝑒01⟩ = Im𝑑2, giving 𝐻1(𝐶•(Δ2)) = 0.

We have 𝐶0 = ⟨𝑒0, 𝑒1, 𝑒2⟩ and 𝑑(𝑒𝑖) = 𝑒∅, so ker 𝑑0 = {𝑎𝑒0 + 𝑏𝑒1 + 𝑐𝑒2 ∣ 𝑎 + 𝑏 + 𝑐 = 0}.
Conversely, Im 𝑑1 = span {𝑒1 − 𝑒0, 𝑒2 − 𝑒0, 𝑒2 − 𝑒1} = ker𝑑0. So in fact 𝐻0(𝐶•(Δ2)) = 0.

Now 𝐶−1 = ⟨𝑒∅⟩ = ker𝑑−1 = ⟨𝑒∅⟩ = Im𝑑0 so 𝐻−1(𝐶•(Δ2)) = 0. So all of the homology
groups of 𝐶•(Δ2) are trivial. Note that

𝐻𝑖(𝐶•(Δ2)) = {
𝐻𝑖(𝐶•(Δ2)) 𝑖 > 0
⟨𝑒0, 𝑒1, 𝑒2⟩⟋span {𝑒1 − 𝑒0, 𝑒2 − 𝑒0, 𝑒2 − 𝑒1} ≃ ℤ 𝑖 = 0
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Definition. Let 𝐾 be an abstract simplicial complex in Δ𝑛. Then we define the 𝑖th reduced
homology group of𝐾 to be𝐻𝑖(𝐾) = 𝐻𝑖(𝐶•(𝐾)). Then𝐶•(𝐾) = 𝐶•(𝐾)⟋⟨𝑒∅⟩ is a chain complex,
and 𝐻𝑖(𝐾) = 𝐻𝑖(𝐶•(𝐾)) is the 𝑖th homology group of 𝐾.
Example. Let 𝐾 = {𝑒0, 𝑒1,… , 𝑒𝑟, 𝑒∅}, so |𝐾| is a collection of 𝑟 + 1 disjoint points. In this
case, 𝐶𝑖(𝐾) = 0 for 𝑖 > 0. 𝐶0(𝐾) = ⟨𝑒0,… , 𝑒𝑟⟩ and 𝑑(𝑒𝑖) = ∅. 𝐶−1(𝐾) = ⟨𝑒∅⟩. Hence
ker𝑑0 = ⟨𝑒1 − 𝑒0,… , 𝑒𝑟 − 𝑒0⟩ and Im 𝑑1 = 0, so 𝐻0(𝐶•(𝐾)) = ℤ𝑟, and 𝐻−1(𝐶•(𝐾)) = 0. Note
that 𝐻0(𝐶•(𝐾)) = ℤ𝑟+1 = ⟨𝑒0,… , 𝑒𝑟⟩.
Example. Recall that any Euclidean simplicial complex is realised by an abstract simplicial
complex, but we have choice in the labelling of the vertices. Let 𝑇𝑛 be the boundary of a
convex 𝑛-gon in ℝ2. Then the abstract simplicial complex

𝐾′ = {𝑒∅, 𝑒0,… , 𝑒𝑛−1, 𝑒01, 𝑒12,… , 𝑒(𝑛−2)(𝑛−1), 𝑒(𝑛−1)0}

in Δ𝑛−1 realises 𝑇𝑛. Then

𝐶1(𝐾′) = ⟨𝑒01, 𝑒12,… , 𝑒(𝑛−2)(𝑛−1), 𝑒(𝑛−1)0⟩
𝐶0(𝐾′) = ⟨𝑒0,… , 𝑒𝑛−1⟩

We have 𝑑(𝑒𝑖(𝑖+1)) = 𝑒𝑖+1 − 𝑒𝑖, so ker 𝑑1 = ⟨𝑥⟩ where

𝑥 = 𝑒01 + 𝑒12 +⋯+ 𝑒(𝑛−2)(𝑛−1) − 𝑒0(𝑛−1)

Note that Im𝑑1 = span {𝑒𝑖+1 − 𝑒𝑖}. Hence

𝐻1(𝐾′) = ker𝑑1⟋Im𝑑2 =
⟨𝑥⟩⟋0 ≃ ℤ

𝐻0(𝐾′) = ker𝑑0⟋Im𝑑1 =
⟨𝑒0,… , 𝑒𝑛−1⟩⟋span {𝑒1 − 𝑒0,… , 𝑒𝑛−1 − 𝑒𝑛−2} ≃ ℤ

Note that this result does not depend on the choice of 𝑛, and |𝑇𝑛| ≃ 𝑆1 also does not depend
on 𝑛. In fact, 𝐻•(𝐾) depends only on |𝐾|.

7.3. Chain maps
Definition. Let (𝐶•, 𝑑) and (𝐶′

•, 𝑑′) be chain complexes. A chain map 𝑓∶ 𝐶• → 𝐶′
• is

(i) for each 𝑖, a homomorphism 𝑓𝑖 ∶ 𝐶𝑖 → 𝐶′
𝑖 , such that

(ii) 𝑓𝑖−1 ∘ 𝑑𝑖 = 𝑑′𝑖 ∘ 𝑓𝑖.
Remark. We can interpret 𝑓 as⨁𝑖 𝑓𝑖 ∶ 𝐶• → 𝐶′

•, given by a block matrix

(
𝑓𝑛

𝑓𝑛−1
⋱
)

Then part (ii) of the definition is equivalent to the statement 𝑑′𝑓 = 𝑓𝑑.
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If 𝑥 ∈ ker𝑑, we write [𝑥] ∈ 𝐻•(𝐶) for its image under the map ker 𝑑 → ker𝑑⟋Im𝑑.

Remark. 𝑓(ker𝑑) ⊆ ker𝑑′ because if 𝑑𝑥 = 0, we have 𝑑′(𝑓(𝑥)) = 𝑓(𝑑(𝑥)) = 𝑓(0) = 0.
𝑓(Im𝑑) ⊆ Im𝑑′, because if 𝑥 = 𝑑𝑦, we have 𝑓(𝑥) = 𝑓(𝑑(𝑦)) = 𝑑′(𝑓(𝑦)). So 𝑓 descends to a
well-defined homomorphism 𝑓⋆∶ ker𝑑⟋Im𝑑 → ker𝑑′⟋Im𝑑′ such that 𝑓⋆([𝑥]) = [𝑓(𝑥)]. So
𝑓⋆∶ 𝐻•(𝐶) → 𝐻•(𝐶′). This is called the map induced by 𝑓.

Remark. The composition of two chain maps is a chain map, and (𝑓 ∘ 𝑔)⋆ = 𝑓⋆ ∘ 𝑔⋆.

Let 𝐾 be an abstract simplicial complex inΔ𝑛, and 𝐿 be an abstract simplicial complex inΔ𝑚.
Let 𝑓∶ 𝐾 → 𝐿 be a simplicial map, so it is determined by ̂𝑓 ∶ {0,… , 𝑛} → {0,… ,𝑚}. Wewish
to define a chain map 𝑓♯∶ 𝐶•(𝐾) → 𝐶•(𝐿), which will induce 𝑓⋆∶ 𝐻•(𝐾) → 𝐻•(𝐿). Perhaps
the most obvious guess would be to define 𝑓♯(𝑒𝐼) = 𝑓(𝑒𝐼) = 𝑒 ̂𝑓(𝐼). This is not the correct
definition.

First, consider 𝑓∶ 𝚫1 → 𝚫1 given by 𝑒0 ↦ 𝑒0, 𝑒1 ↦ 𝑒0. Then 𝑓(𝑒01) = 𝑒0, but 𝑒01 ∈ 𝐶1(𝚫1)
and 𝑒0 ∈ 𝐶0(𝚫1). So 𝑓 does not preserve grading, and hence cannot be a chain map.

Consider also 𝑓∶ 𝚫1 → 𝚫1 given by 𝑒0 ↦ 𝑒1 and 𝑒1 ↦ 𝑒0. Now, 𝑓(𝑒01) = 𝑒01, 𝑓(𝑒0) =
𝑒1, 𝑓(𝑒1) = 𝑒0, so 𝑑𝑓(𝑒01) = 𝑑(𝑒01) = 𝑒1 − 𝑒0 but 𝑓𝑑(𝑒01) = 𝑓(𝑒1 − 𝑒0) = 𝑒0 − 𝑒1.

The solution to both problems is to change our perspective on the indices 𝐼. Until now, we
have defined 𝐼 ⊆ {0,… , 𝑛} and written 𝐼 = 𝑖0𝑖1…𝑖𝑘 where 𝑖0 < ⋯ < 𝑖𝑘. Instead, we will
allow 𝐼 ∈ {0,… , 𝑛}𝑘+1, so 𝐼 = (𝑖0, 𝑖1,… , 𝑖𝑘) = 𝑖0𝑖1…𝑖𝑘 with no restriction on order. For
instance, 𝑒00, 𝑒10 are permitted.

We impose relations on the set of all such 𝐼 to form an abelian group generated by equi-
valence classes of the {0,… , 𝑛}𝑘+1. We will define that 𝑒𝐼 = −𝑒𝐼′ when 𝐼, 𝐼′ are related
by switching two indices; so 𝑒102 = −𝑒012 = 𝑒210. If 𝑒𝐼 contains a repetition, we require
𝑒𝐼 = 0.

More concretely, if 𝐼 ∈ {0,… , 𝑛}𝑘+1, let 𝐼′ be the unique ordered permutation of 𝐼 if 𝐼 has
no repetitions. Then 𝑒𝐼 = (−1)𝑆(𝐼)𝑒𝐼′ if 𝐼 has no repetitions, and 𝑒𝐼 = 0 if 𝐼 has a repetition,
where (−1)𝑆(𝐼) is the sign of the permutation 𝜎 ∈ 𝑆𝑘+1 mapping 𝐼 to 𝐼′. If we draw 𝐼 and
𝐼′ in order as a bipartite planar graph, connected by matching labels, 𝑆(𝐼) is the number of
crossings.

Lemma. Let 𝑖𝑗 ∈ 𝐼, and suppose 𝑖𝑗 is in position 𝑖𝑗′ in 𝐼′. Then 𝑆(𝐼) − 𝑆(𝐼 ̂𝚥) ≡ 𝑗 − 𝑗′ mod 2.

Proposition. Let 𝐼 ∈ {0,… , 𝑛}𝑘+1. Then 𝑑(𝑒𝐼) = ∑𝑘
𝑗=0(−1)𝑗𝑒𝐼 ̂𝚥 , where 𝐼 ̂𝚥 is obtained from 𝐼

by omitting the 𝑗th entry in the tuple 𝐼.

We have already defined 𝑑 for ordered sequences of indices; this proposition states that this
formula holds for all sequences of indices.
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Proof.
𝑘
∑
𝑗=0

(−1)𝑘𝑒𝐼 ̂𝚥 =
𝑘
∑
𝑗=0

(−1)𝑗(−1)𝑆(𝐼 ̂𝚥)𝑒𝐼′̂𝚥 =
𝑘
∑
𝑗=0

(−1)𝑗′(−1)𝑆(𝐼)𝑒(𝐼′) ̂𝚥 = (−1)𝑆(𝐼)𝑑(𝑒𝐼′) = 𝑑(𝑒𝐼)

Example. 𝑑(𝑒210) = (−1)0𝑒10 + (−1)1𝑒20 + (−1)2𝑒21 = −𝑒01 + 𝑒02 − 𝑒12 = 𝑑(−𝑒012), where
by definition, 𝑒210 = −𝑒012 so 𝑑(𝑒210) = −𝑑(𝑒012).
Definition. Let 𝑓∶ 𝐾 → 𝐿 be a simplicial map. Then 𝑓♯∶ 𝐶𝑘(𝐾) → 𝐶𝑘(𝐿) is defined by
𝑓♯(𝑒𝐼) = 𝑒 ̂𝑓(𝐼) where if 𝐼 = (𝑖0,… , 𝑖𝑘) we define ̂𝑓(𝐼) = ( ̂𝑓(𝑖0),… , ̂𝑓(𝑖𝑘)).
This definition of 𝑓♯ preserves grading.
Proposition. 𝑓♯ is a chain map.

Proof.

𝑑(𝑓♯(𝑒𝐼)) = 𝑑(𝑒 ̂𝑓(𝐼)) =
𝑘
∑
𝑗=0

(−1)𝑗𝑒( ̂𝑓(𝐼)) ̂𝚥
= 𝑓♯(

𝑘
∑
𝑗=0

(−1)𝑗𝑒𝐼 ̂𝚥) = 𝑓♯(𝑑(𝑒𝐼))

Example. Let 𝑓∶ 𝚫1 → 𝚫1 be the simplicial map defined by 𝑓(𝑒0) = 𝑒0 and 𝑓(𝑒1) = 𝑒0.
Then 𝑓♯(𝑒01) = 𝑒00 = 0.
Now let 𝑓(𝑒0) = 𝑒1 and 𝑓(𝑒1) = 𝑒0. Then 𝑓♯(𝑒01) = 𝑒10 = −𝑒01, 𝑓♯(𝑒0) = 𝑒1, 𝑓♯(𝑒1) = 𝑒0. So
𝑑(𝑓♯(𝑒01)) = −𝑑(𝑒01) = 𝑒0 − 𝑒1 = 𝑓(𝑑(𝑒01)).

7.4. Chain homotopies
Definition. Let 𝑓0, 𝑓1∶ (𝐶, 𝑑) → (𝐶′, 𝑑′) be chain maps. Then 𝑓0 is chain homotopic to 𝑓1,
written 𝑓0 ∼ 𝑓1, if there are
(i) homomorphisms ℎ𝑖 ∶ 𝐶𝑖 → 𝐶′

𝑖+1, where we write ℎ = ⨁𝑖 ℎ𝑖, satisfying
(ii) 𝑑′ℎ + ℎ𝑑 = 𝑓0 − 𝑓1.

In this case, we say ℎ is the chain homotopy.
Example. Suppose 𝑓0, 𝑓1∶ 𝑋 → 𝑌 are homotopic maps via 𝐻. Suppose 𝑋 = Δ𝑛.

Im𝑓0

Im𝑓1

Im𝐻
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Here,
𝜕(𝐻(Δ𝑛)) = 𝐻(𝜕Δ𝑛) ∪ 𝑓1(Δ𝑛) ∪ 𝑓0(Δ𝑛) ⟹ 𝜕𝐻 +𝐻𝜕 = 𝑓1 + 𝑓0

without considering signs.

Lemma. If 𝑓1 ∼ 𝑓0, then 𝑓1⋆ = 𝑓0⋆∶ 𝐻•(𝐶) → 𝐻•(𝐶′).

Proof. Let [𝑥] ∈ 𝐻•(𝐶). Then 𝑑𝑥 = 0. So

𝑓1⋆[𝑥] − 𝑓0⋆[𝑥] = [(𝑓1 − 𝑓0)𝑥] = [(𝑑′ℎ + ℎ𝑑)𝑥] = [𝑑′ℎ(𝑥)] = 0

since 𝑑′ℎ(𝑥) ∈ Im𝑑′.

Definition. We say a chain complex (𝐶, 𝑑) is contractible if id𝐶 ∼ 0𝐶 , where 0𝐶 is the zero
map.

Lemma. Let (𝐶, 𝑑) be contractible. Then 𝐻•(𝐶) = 0.

Proof. Let [𝑥] ∈ 𝐻•(𝐶). Then [𝑥] = id⋆[𝑥] = 0⋆[𝑥] = [0]. So 𝐻𝑘(𝐶) is the trivial group for
each 𝑘.

Definition. Let 𝐾 be an abstract simplicial complex in Δ𝑛. Let 𝑒0 ∉ 𝐾. Then the cone is
𝐶𝑒0(𝐾) = 𝐾 ∪ {𝑒0𝐼 ∣ 𝑒𝐼 ∈ 𝐾}.
Remark. 𝐶𝑒0(𝐾) is an abstract simplicial complex. If 𝐾′ is a realisation of 𝐾, where 𝑒0 ∉ 𝐾
and 𝐾′ is independent of 𝑝, then 𝐶𝑝(𝐾′) is a realisation of 𝐶𝑒0(𝐾).
Example. Consider �̂�𝑛 = {𝑒𝐼 ∈ 𝚫𝑛+1 ∣ 0 ∉ 𝐼} ≃ 𝚫𝑛. Then 𝐶𝑒0(�̂�𝑛) = 𝚫𝑛+1.

Proposition. 𝐶•(𝐶𝑒0(𝐾)) is contractible.

Proof. Define ℎ∶ 𝐶𝑘(𝐶𝑒0(𝐾)) → 𝐶𝑘+1(𝐶𝑒0(𝐾)) by ℎ(𝑒𝐼) = 𝑒0𝐼 . Note that if 0 ∈ 𝐼, then
𝑒0𝐼 = 0.

If 0 ∈ 𝐼 then 𝑑ℎ(𝑒𝐼) = 0, and ℎ𝑑(𝑒𝐼) = ℎ(∑𝑘
𝑗=0(−1)𝑗𝑒𝐼 ̂𝚥) = ℎ(𝑒𝐼∖{0} + ∑𝑒𝐼′) where

0 ∈ 𝐼′. Then ℎ𝑑(𝑒𝐼) = 𝑒𝐼 + 0 = 𝑒𝐼 . Otherwise, if 0 ∉ 𝐼, then 𝑑ℎ(𝑒𝐼) = 𝑑(𝑒0𝐼) =
𝑒𝐼 +∑𝑘

𝑗=0(−1)𝑘+1𝑒0𝐼 ̂𝚥 = 𝑒𝐼 − ℎ(𝑑𝑒𝐼). In either case, 𝑑ℎ + ℎ𝑑 = id.

Corollary. 𝐻•(𝐶𝑒0(𝐾)) = 0. In particular,

𝐻𝑖(𝐶𝑒0(𝐾)) = {ℤ 𝑖 = 0
0 𝑖 ≠ 0

Proof. Let 𝐶•(𝐶𝑒0(𝐾)) = (𝐶, 𝑑), and 𝐶•(𝐶𝑒0(𝐾)) = (𝐶, 𝑑). The first part follows from the
previous result. For the second part, note that𝐻−1(𝐶𝑒0(𝐾)) = 0, so 𝑑0∶ 𝐶0 → 𝐶−1 = ⟨𝑒∅⟩ ≃
ℤ is surjective. So ℤ ≃ Im𝑑0 ≃ 𝐶0⟋ker𝑑0 ≃

𝐶0⟋Im𝑑1 since 𝐻0(𝐶) = 0. But 𝐶0⟋Im𝑑1 ≃
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𝐶0⟋Im𝑑1 =
ker𝑑0⟋Im𝑑1 = 𝐻0(𝐶𝑒0(𝐾)). For 𝑖 ≥ 0, note that ker 𝑑𝑖 = ker𝑑𝑖 and Im 𝑑𝑖+1 =

Im𝑑𝑖+1. Hence 𝐻𝑖(𝐶) = 𝐻𝑖(𝐶) for 𝑖 > 0.

Definition. Let 𝕊𝑛 = 𝚫𝑛 ∖ 𝑒0…𝑛. Then

𝐻𝑖(𝕊𝑛) = {ℤ 𝑖 = 0, 𝑛
0 otherwise

Proof. Similar to the previous proof, but now we remove the ‘top’ generator instead of the
‘bottom’ one.

Alternatively, we can prove this fact using the results from the next subsection.

7.5. Exact sequences
Definition. Let 𝐴𝑘 be a sequence of abelian groups for 𝑘 ∈ ℤ, and 𝑓𝑘∶ 𝐴𝑘 → 𝐴𝑘−1 be
homomorphisms. We say that the sequence is exact at 𝐴𝑘 if ker𝑓𝑘 = Im𝑓𝑘+1. If it is exact
at all 𝐴𝑘, we say the sequence is exact.

⋯ 𝐴𝑘+1 𝐴𝑘 𝐴𝑘−1 ⋯𝑓𝑘+2 𝑓𝑘+1 𝑓𝑘 𝑓𝑘−1

Example.
0 𝐴 𝐵𝑓

is exact at 𝐴 if and only if 𝑓 is injective.

𝐵 𝐶 0𝑔

is exact at 𝐶 if and only if 𝑔 is surjective.

0 𝐴 𝐵 𝐶 0𝑓 𝑔

is exact if and only if 𝑓 is injective, 𝑔 is surjective, and 𝑔∶ 𝐵⟋Im𝑓 → 𝐶 is an isomorphism,
so 𝐶 ≃ 𝐵⟋Im𝑓. An exact sequence of the form

0 𝐴 𝐵 𝐶 0𝑓 𝑔

is called a short exact sequence.

Definition. Let 𝑔∶ 𝐵 → 𝐶. Then the cokernel of 𝑔 is coker 𝑔 = 𝐶⟋Im 𝑔.

In general, a sequence is exact if and only if

0 coker𝑓𝑘+1 𝐴𝑘 ker𝑓𝑘−1 0𝑓𝑘+1 𝑓𝑘

is a short exact sequence for every 𝑘.
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Definition. A short exact sequence of chain complexes is a short exact sequence

0 𝐴• 𝐵• 𝐶• 0𝑓 𝑔

where 𝐴•, 𝐵•, 𝐶• are chain complexes, and 𝑓, 𝑔 are chain maps.

Equivalently, we have the diagram

⋮ ⋮ ⋮

0 𝐴𝑘 𝐵𝑘 𝐶𝑘 0

0 𝐴𝑘−1 𝐵𝑘−1 𝐶𝑘−1 0

0 𝐴𝑘−2 𝐵𝑘−2 𝐶𝑘−2 0

⋮ ⋮ ⋮

𝑓 𝑔

𝑓 𝑔

𝑓 𝑔

𝑑𝐴

𝑑𝐴

𝑑𝐴

𝑑𝐴

𝑑𝐵

𝑑𝐵

𝑑𝐵

𝑑𝐵

𝑑𝐶

𝑑𝐶

𝑑𝐶

𝑑𝐶

where all squares commute since 𝑓, 𝑔 are chain maps, and all rows are exact.

Lemma (snake lemma). Let 0 𝐴• 𝐵• 𝐶• 0𝑓 𝑔 be a short exact
sequence of chain complexes. Then there is an exact sequence

𝐻𝑘(𝐴) 𝐻𝑘(𝐵) 𝐻𝑘(𝐶)

𝐻𝑘−1(𝐴) 𝐻𝑘−1(𝐵) 𝐻𝑘−1(𝐶)

𝑓⋆ 𝑔⋆

𝜕𝑘𝑓⋆ 𝑔⋆

The homomorphism 𝜕𝑘 is called the connecting homomorphism. Since this exists for all 𝑘,
this gives a long exact sequence of homology groups.

Proof. Let [𝑐] ∈ 𝐻𝑘(𝐶), so 𝑑𝑐 = 0. Then,

(i) 𝑔 is surjective, so we can choose 𝑏 ∈ 𝐵𝑘 such that 𝑔(𝑏) ∈ 𝑐.

(ii) 𝑔(𝑑𝑏) = 𝑑𝑔(𝑏) = 𝑑𝑐 = 0, so 𝑑𝑏 ∈ ker 𝑔. Since the sequence is exact at 𝐵, we have
𝑑𝑏 = 𝑓(𝑎) for some 𝑎 ∈ 𝐴𝑘−1.

(iii) 𝑓(𝑑𝑎) = 𝑑(𝑓𝑎) = 𝑑2(𝑏) = 0. Since 𝑓 is injective, 𝑑𝑎 = 0.

We then define 𝜕𝑘[𝑐] = [𝑎] ∈ 𝐻𝑘−1(𝐴). To visualise the above argument, the following
diagrams can be overlaid; the first diagram shows the groups, and the second diagram shows
the corresponding elements.
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0 𝐴𝑘 𝐵𝑘 𝐶𝑘 0

0 𝐴𝑘−1 𝐵𝑘−1 𝐶𝑘−1 0

𝑏 𝑐

𝑎 𝑑𝑏

𝑓 𝑔

𝑓 𝑔

𝑑𝐴 𝑑𝐵 𝑑𝐶
𝜕𝑘

𝑔

𝑑𝐵

𝑓

𝜕𝑘

This definition does not depend on any choices that wemade; for example, [𝑐] = [𝑐′] implies
𝜕𝑘[𝑐] = 𝜕𝑘[𝑐′].

(i) If 𝑔(𝑏′) = 𝑐, then 𝑔(𝑏 − 𝑏′) = 0. By exactness, 𝑏 − 𝑏′ = 𝑓(𝛼). Then 𝑑𝑏− 𝑑𝑏′ = 𝑓(𝑑(𝛼)).
Let 𝑓(𝑎) = 𝑑𝑏 and 𝑓(𝑎′) = 𝑑𝑏′. So 𝑎 − 𝑎′ = 𝑑𝛼, so [𝑎] = [𝑎′].

(ii) Suppose [𝑐] = [𝑐′]. Then 𝑐−𝑐′ = 𝑑𝛾 for 𝛾 ∈ 𝐶𝑘+1. 𝑔 is surjective, so let 𝛾 = 𝑔(𝛽). Then
𝑏 − 𝑏′ = 𝑑𝛽, so 𝑑𝑏 = 𝑑𝑏′. Since 𝑎 = 𝑎′, we have [𝑎] = [𝑎′].

We need to check exactness. We will show that ker ⊆ Im in each case, the other direction is
left as an exercise.

(i) Consider 𝐻𝑘(𝐶). If 𝜕𝑘[𝑐] = 0, then 𝑎 = 𝑑𝛼 for 𝛼 ∈ 𝐴𝑘. Then 𝑑(𝑓(𝛼)) = 𝑓(𝑑𝛼) =
𝑓(𝑎) = 𝑑𝑏. So 𝑑(𝑏 − 𝑓(𝛼)) = 0, giving [𝑏 − 𝑓(𝛼)] ∈ 𝐻𝑘(𝐵). Then 𝑔⋆[𝑏 − 𝑓(𝛼)] =
[𝑔(𝑏) − 𝑔(𝑓(𝛼))] = [𝑔(𝑏)] = [𝑐] by exactness. So [𝑐] ∈ Im 𝑔⋆ as required.

(ii) Consider 𝐻𝑘(𝐵). If 𝑔⋆[𝑏] = 0, then 𝑔(𝑏) = 𝑑𝛾 for some 𝛾 ∈ 𝐶𝑘+1. 𝑔 is surjective, so
𝛾 = 𝑔(𝛽) for 𝛽 ∈ 𝐵𝑘+1. Then 𝑔(𝑏 − 𝑑𝛽) = 𝑐 − 𝑑𝑔(𝛽) = 𝑐 − 𝑐 = 0, so 𝑏 − 𝑑𝛽 = 𝑓(𝛼)
for 𝛼 ∈ 𝐴𝑘. So 𝑓(𝑑𝛼) = 𝑑𝑓(𝛼) = 𝑑𝑏 − 𝑑2𝛽 = 0. Hence [𝑏] = [𝑏 − 𝑑𝛽] = 𝑓⋆[𝛼]. So
[𝛽] ∈ Im𝑓⋆.

(iii) Consider 𝐻𝑘−1(𝐴). If 𝑓⋆[𝑎] = 0, then 𝑓(𝑎) = 𝑑𝑏 for some 𝑏 in 𝐵𝑘−1. Then [𝑎] =
𝜕𝑘[𝑔(𝑏)] since 𝑑𝑔(𝑏) = 𝑔(𝑑𝑏) = 𝑔(𝑓(𝑎)) = 0. So [𝑎] ∈ Im 𝜕𝑘.

Example. Let 𝐵 = 𝐶•(𝚫𝑛), and 𝐴 = 𝐶•(𝕊𝑛−1). Let 𝐶 be defined by

𝐶𝑘 = {⟨𝑒0…𝑛⟩ 𝑘 = 𝑛
0 otherwise
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Note that

𝐻𝑘(𝐶) = {ℤ 𝑘 = 𝑛
0 otherwise

Let𝑛 > 1. Thenwehave a short exact sequence 0 𝕊𝑛−1 𝚫𝑛 𝐶 0𝑓 𝑔

and hence we have

𝐻𝑘(𝕊𝑛−1) 𝐻𝑘(𝚫𝑛) 𝐻𝑘(𝐶)

𝐻𝑘−1(𝕊𝑛−1) 𝐻𝑘−1(𝚫𝑛) 𝐻𝑘−1(𝐶)

𝑓⋆ 𝑔⋆

𝜕𝑘𝑓⋆ 𝑔⋆

Now, letting 𝑘 = 𝑛, we can therefore find the exact sequence

𝐻𝑛(𝕊𝑛−1) 0 ℤ

𝐻𝑛−1(𝕊𝑛−1) 0 0
𝜕𝑘

By exactness at ℤ and 𝐻𝑛−1(𝕊𝑛−1), 𝜕𝑘 is an isomorphism. Hence 𝐻𝑛−1(𝕊𝑛−1) = ℤ.

7.6. Mayer–Vietoris sequence
Let 𝐾1, 𝐾2 be abstract simplicial complexes in Δ𝑛. Then 𝐾1∩𝐾2 and 𝐾1∪𝐾2 are also abstract
simplicial complexes in Δ𝑛. We have the following commutative square of simplicial maps
given by inclusion.

𝐾1

𝐾1 ∩ 𝐾2 𝐾1 ∪ 𝐾2

𝐾2

𝑖1 𝑗1

𝑖2 𝑗2

This induces a commutative square of chain maps as shown.

𝐶•(𝐾1)

𝐶•(𝐾1 ∩ 𝐾2) 𝐶•(𝐾1 ∪ 𝐾2)

𝐶•(𝐾2)

𝑖1♯ 𝑗1♯

𝑖2♯ 𝑗2♯

Proposition. Let 𝐾1, 𝐾2 be abstract simplicial complexes in Δ𝑛. Then the sequence
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0 𝐶•(𝐾1 ∩ 𝐾2) 𝐶•(𝐾1) ⊕ 𝐶•(𝐾2) 𝐶•(𝐾1 ∪ 𝐾2) 0𝑖 𝑗

is a short exact sequence of chain complexes, where

𝑖 = (𝑖1♯𝑖2♯
) ; 𝑗 = (𝑗1♯ −𝑗2♯)

Proof. We must check exactness at each location. 𝑖1♯ is injective, so 𝑖 is injective.

If 𝑗((𝑎, 𝑏)) = 0, then 𝑗1♯(𝑎) = 𝑗2♯(𝑏), so 𝑎 = 𝑏 ∈ 𝐶•(𝐾1) ∩ 𝐶•(𝐾2) = 𝐶•(𝐾1 ∩ 𝐾2). Hence
(𝑎, 𝑏) = 𝑖(𝑎), so ker 𝑗 ⊆ Im 𝑖. For the other direction, 𝑔𝑓(𝑎) = (𝑗1♯ ∘ 𝑖1♯)(𝑎)− (𝑗2♯ ∘ 𝑖2♯(𝑎)) = 0
since the square of inclusion maps commutes. So Im 𝑖 ⊆ ker 𝑗, so the sequence is exact at
𝐶•(𝐾1) ⊕ 𝐶•(𝐾2).

Let 𝑒𝐼 ∈ 𝐾1 ∪ 𝐾2. Then 𝑒𝐼 ∈ 𝐾1 or 𝑒𝐼 ∈ 𝐾2. If 𝑒𝐼 ∈ 𝐾1 then 𝑒𝐼 = 𝑗((𝑒𝐼 , 0)). If 𝑒𝐼 ∈ 𝐾2 then
𝑒𝐼 = 𝑗((0, −𝑒𝐼)). So 𝑒𝐼 ∈ Im 𝑗 in either case. Since the 𝑒𝐼 form a free basis, 𝑗 is surjective as
required.

Theorem (Mayer–Vietoris sequence). Let 𝐾1, 𝐾2 be abstract simplicial complexes in Δ𝑛.
Then there is a long exact sequence

𝐻𝑘(𝐾1 ∩ 𝐾2) 𝐻𝑘(𝐾1) ⊕ 𝐻𝑘(𝐾2) 𝐻𝑘(𝐾1 ∪ 𝐾2)

𝐻𝑘−1(𝐾1 ∩ 𝐾2) 𝐻𝑘−1(𝐾1) ⊕ 𝐻𝑘−1(𝐾2) 𝐻𝑘−1(𝐾1 ∪ 𝐾2)

𝑖⋆ 𝑗⋆

𝜕𝑘𝑖⋆ 𝑗⋆

Proof. Follows from the above theorem and the snake lemma.

Example. Let𝐾1, 𝐾2 be abstract simplicial complexes inΔ𝑛, Δ𝑚. Then let𝐾1⨿𝐾2 ⊂ Δ𝑛+𝑚+1

be the abstract simplicial complex where the vertices ofΔ𝑛+𝑚+1 are 𝑒0,… , 𝑒𝑛, 𝑒′0,… , 𝑒′𝑚, and
we embed 𝐾1 and 𝐾2 into 𝐾1 ⨿ 𝐾2 in the natural way. More precisely, 𝑒𝐼 ∈ 𝐾1 gives 𝑒𝐼 ∈
𝐾1 ⨿ 𝐾2, and 𝑒𝐼 ∈ 𝐾2 gives 𝑒′𝐽 ∈ 𝐾1 ⨿ 𝐾2. Then |𝐾1 ⨿ 𝐾2| = |𝐾1| ⨿ |𝐾2|. 𝐾1 ⨿ 𝐾2 = 𝐾1 ∪ 𝐾′

2
where 𝐾1, 𝐾′

2 are disjoint abstract simplicial complexes in Δ𝑛+𝑚+1, so 𝐾1 ∩ 𝐾′
2 = {𝑒∅}. The

Mayer–Vietoris sequence gives

𝐻𝑘({𝑒∅}) 𝐻𝑘(𝐾1) ⊕ 𝐻𝑘(𝐾2) 𝐻𝑘(𝐾1 ⨿ 𝐾2)

𝐻𝑘−1({𝑒∅}) 𝐻𝑘−1(𝐾1) ⊕ 𝐻𝑘−1(𝐾2) 𝐻𝑘−1(𝐾1 ⨿ 𝐾2)

𝑖⋆ 𝑗⋆

𝜕𝑘𝑖⋆ 𝑗⋆

Note that 𝐻𝑘({𝑒∅}) = 0. Hence, the sequence

0 𝐻𝑘(𝐾1) ⊕ 𝐻𝑘(𝐾2) 𝐻𝑘(𝐾1 ⨿ 𝐾2) 0

is exact. So 𝐻𝑘(𝐾1) ⊕ 𝐻𝑘(𝐾2) ≃ 𝐻𝑘(𝐾1 ⨿ 𝐾2).
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7.7. Homology of triangulable spaces
Theorem. Let 𝑓0, 𝑓1∶ 𝐾 → 𝐿 be simplicial approximations to a continuous map 𝐹 ∶ |𝐾| →
|𝐿|. Then 𝑓0♯ ∼ 𝑓1♯, so 𝑓0⋆ = 𝑓1⋆.

Theorem. There is an isomorphism 𝜈𝐾 ∶ 𝐻•(𝐵𝐾) → 𝐻•(𝐾) such that 𝜈𝐾 = 𝑓⋆ where
𝑓∶ 𝐵𝐾 → 𝐾 is any simplicial approximation to the identity map on |𝐾|.
Definition. Let 𝐹 ∶ |𝐾| → |𝐿| be continuous. By the simplicial approximation theorem,
there exists 𝑓∶ 𝐵𝑟 → 𝐿 that is a simplicial approximation to 𝐹. Define 𝐹⋆∶ 𝐻•(𝐾) → 𝐻•(𝐿)
by 𝐹⋆ = 𝑓⋆ ∘ 𝜈−1𝐾,𝑟.
Theorem. 𝐹⋆ is well-defined, so does not depend on the choice of 𝑓. (id𝐾)⋆ = id𝐻•(𝐾).
Further, (𝐹 ∘ 𝐺)⋆ = 𝐹⋆ ∘ 𝐺⋆.

Theorem. Let 𝐹0, 𝐹1∶ |𝐾| → |𝐿| be continuous with 𝐹0 ∼ 𝐹1. Then 𝐹0⋆ = 𝐹1⋆.

Proposition. Let |𝐾| ∼ |𝐿|. Then 𝐻•(𝐾) ≃ 𝐻•(𝐿).

Proof. Let 𝐹 ∶ |𝐾| → |𝐿| and 𝐺∶ |𝐿| → |𝐾| be functions such that 𝐹 ∘ 𝐺 ∼ id|𝐿| and 𝐺 ∘ 𝐹 ∼
id|𝐾|. Then 𝐹⋆ ∘ 𝐺⋆ = id𝐻•(𝐿) and 𝐺⋆ ∘ 𝐹⋆ = id𝐻•(𝐾) by functoriality. Hence 𝐹⋆ and 𝐺⋆ are
inverse isomorphisms of groups.

Definition. A space 𝑋 is triangulable if there exists an abstract simplicial complex 𝐾 with
|𝐾| ≃ 𝑋 .
Remark. The above proposition implies that if 𝑋 is triangulable, there is a well-defined ho-
mology group 𝐻•(𝑋) = 𝐻•(𝐾) where 𝐾 is any abstract simplicial complex with polyhedron
|𝐾| ≃ 𝑋 . Not all topological spaces are homotopy equivalent to a triangulable space. One
example is⋁∞

𝑖=1 𝑆1.
Proposition. Let |𝐾| be path-connected. Then 𝐻0(𝐾) ≃ ℤ.

Proof. 𝐶0(𝐾) is generated by the vertices 𝑒𝑖 of 𝐾. Consider 𝐹𝑖 ∶ Δ0 → |𝐾| mapping 𝑒0 ∈ Δ0
to 𝑒𝑖 ∈ 𝐾. Then𝐻⋆(Δ0) = ℤ = ⟨[𝑒0]⟩, and 𝐹⋆([𝑒0]) = [𝑒𝑖]. Since𝐾 is path-connected, 𝐹𝑖 ∼ 𝐹𝑗 .
So [𝑒𝑖] = 𝐹𝑖⋆([𝑒0]) = 𝐹𝑗⋆([𝑒0]) = [𝑒𝑗]. Hence all [𝑒𝑖] are equal. The [𝑒𝑖] are not boundaries,
so 𝐻0(𝐾) is not trivial.

Corollary. 𝐻0(𝐾) = ℤ𝑘 where 𝑘 is the number of path-connected components of |𝐾|.

Proof. |𝐾| is a disjoint union of the 𝑘 path-connected components of |𝐾|, so 𝐻0(𝐾) is the
direct sum of the homology groups of these components.

We know 𝑆𝑛 ≃ |𝕊𝑛|, so

𝐻𝑘(𝑆𝑛) = 𝐻𝑘(𝕊𝑛) = {ℤ 𝑘 = 0, 𝑛
0 otherwise

Hence 𝑆𝑛 ∼ 𝑆𝑚 implies 𝑛 = 𝑚.
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Corollary. ℝ𝑛 ≃ ℝ𝑚 implies 𝑛 = 𝑚.

Proof. Let 𝑓∶ ℝ𝑛 → ℝ𝑚 be a homeomorphism. Then 𝑆𝑛−1 ∼ ℝ𝑛∖{0} ≃ ℝ𝑚∖{𝑓(0)} ∼ 𝑆𝑚−1.
So 𝑆𝑛−1 ∼ 𝑆𝑚−1, giving 𝑛 = 𝑚.

Corollary. There is no retraction 𝑟∶ 𝐷𝑛 → 𝑆𝑛−1.

Proof. We suppose 𝑛 > 0. Let 𝑗∶ 𝑆𝑛−1 → 𝐷𝑛 be the inclusion. 𝑟 is a retraction if and only
if 𝑟 ∘ 𝑗 = id𝑆𝑛−1 . This gives (𝑟 ∘ 𝑗)⋆ = id𝐻•(𝑆𝑛−1). Note that 𝐻𝑛−1(𝐷𝑛) = 𝐻𝑛−1(𝚫𝑛) = 0, and
𝐻𝑛−1(𝑆𝑛−1) = ℤ. If 𝑟 is a retraction, then 𝑟⋆ and 𝑗⋆ are inverse homomorphisms of groups,
but ℤ is not isomorphic to 0. So 𝑟 is not a retraction.

Theorem (Brouwer fixed point theorem). Let𝐹 ∶ 𝐷𝑛 → 𝐷𝑛 be a continuous function. Then
𝐹 has a fixed point.

Remark. This is a generalisation of the intermediate value theorem for high dimensions.

Proof. Suppose there is no fixed point. Then, wedefine𝐺∶ 𝐷𝑛 → 𝑆𝑛−1 by letting𝐺(𝑥), 𝑥, 𝐹(𝑥)
lie in this order on a straight line in 𝐷𝑛. If 𝐺 is a well-defined continuous map, it is a retrac-
tion, contradicting the previous result.

Let𝑝 ∈ 𝐷𝑛 and 𝑣 ∈ 𝑆𝑛−1. Let𝑅𝑝,𝑣 = {𝑝 + 𝑡𝑣 ∣ 𝑡 ≥ 0}. If𝑝+𝑡𝑣 ∈ 𝑆𝑛−1, then ⟨𝑝 + 𝑡𝑣, 𝑝 + 𝑡𝑣⟩ =
1, so ⟨𝑝, 𝑝⟩ + 2𝑡 ⟨𝑣, 𝑝⟩ + 𝑡2 = 1. Hence

𝑡 = − ⟨𝑝, 𝑣⟩ ±√⟨𝑝, 𝑣⟩2 + 1 − ⟨𝑝, 𝑝⟩

We define

𝜏(𝑝, 𝑣) = max (− ⟨𝑝, 𝑣⟩ ±√⟨𝑝, 𝑣⟩2 + 1 − ⟨𝑝, 𝑝⟩)

This is a continuous function. Now, we define 𝑃(𝑝, 𝑣) = 𝑝 + 𝜏(𝑝, 𝑣)𝑣, which is the intersec-
tion of 𝑅𝑝,𝑣 with 𝑆𝑛−1, which is also continuous. So

𝐺(𝑥) = 𝑃(𝐹(𝑥), 𝑥 − 𝐹(𝑥)
‖𝑥 − 𝐹(𝑥)‖)

is well-defined and continuous.

7.8. Homology of orientable surfaces
We can often compute homology groups only using the Mayer–Vietoris sequence and func-
toriality properties.
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Example. Consider the torus 𝑇2. We can write a triangulation 𝐾 of 𝑇2 as 𝐾1 ∪ 𝐾2, with
|𝐾𝑖| ≃ 𝑆1 × 𝐼, and |𝐾1 ∩ 𝐾2| ≃ 𝑆11 ⨿ 𝑆12. Note that the inclusion 𝜄𝑗,𝑖 ∶ 𝑆1𝑗 ↪ |𝐾𝑖| is a homotopy
equivalence, and 𝜄1,𝑖 ∼ 𝜄2,𝑖. Then the Mayer–Vietoris sequence gives

𝐻2(𝐾1) ⊕ 𝐻2(𝐾2) 𝐻2(𝐾)

𝐻1(𝐾1 ∩ 𝐾2) 𝐻1(𝐾1) ⊕ 𝐻1(𝐾2) 𝐻1(𝐾)

𝐻0(𝐾1 ∩ 𝐾2) 𝐻0(𝐾1) ⊕ 𝐻0(𝐾2) 𝐻0(𝐾) 0

𝛼1

𝛼0

giving
0 𝐻2(𝐾)

ℤ ⊕ ℤ ℤ⊕ ℤ 𝐻1(𝐾)

ℤ ⊕ ℤ ℤ⊕ ℤ 𝐻0(𝐾) 0

𝛼1

𝛼0

Hence we have short exact sequences

0 𝐻2(𝐾) ker𝛼1 0

0 coker𝛼1 𝐻1(𝐾) ker𝛼0 0

0 coker𝛼0 𝐻0(𝐾) 0

The maps 𝛼𝑖 are given by the matrix (
1 1
1 1). Therefore, ker𝛼𝑖 ≃ ℤ and coker𝛼𝑖 ≃ ℤ. Hence

𝐻2(𝐾) ≃ ℤ, 𝐻1(𝐾) ≃ ℤ2, and 𝐻0(𝐾) ≃ ℤ.

𝐻𝑘(𝑇2) =
⎧
⎨
⎩

ℤ 𝑘 = 0, 2
ℤ2 𝑘 = 1
0 otherwise

Proposition. Suppose that 0 𝐴 𝐵 ℤ𝑟 0 is exact. Then 𝐵 ≃
𝐴⊕ ℤ𝑟.

Proof. By exactness, ℤ𝑟 ≃ 𝐵⟋𝐴. The result then follows from the structure theorem for
abelian groups.
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Example. Let 𝐿1 be a triangulation of 𝑇2, and let 𝐿1,1 be 𝐿1 ∖ {𝜎} where 𝜎 is a 2-simplex.
Then 𝜕𝐿1,1 ≃ 𝜕𝜎 = 𝕊1, and ||𝐿1,1|| ∼ 𝑆1 ∨ 𝑆1. We inductively define 𝐿𝑔 = 𝐿𝑔−1,1 ∪𝕊1 𝐿1,1, and
𝐿𝑔,1 = 𝐿𝑔 ∖ 𝜎 where 𝜎 is a 2-simplex. Then 𝐿𝑔 is a triangulation of the compact surface of
genus 𝑔. Note also that 𝐿𝑔,1 ≃ 𝐿𝑔−1,1 ∪𝜎1 𝐿1,1 where 𝜎1 is an edge of 𝕊1. So 𝐿𝑔,1 ∼ ⋁2𝑔

𝑖=1 𝑆1.
Proposition.

𝐻𝑘(𝐿𝑔) =
⎧
⎨
⎩

ℤ 𝑘 = 0, 2
ℤ2𝑔 𝑘 = 1
0 otherwise

and

𝐻𝑘(𝐿𝑔,1) =
⎧
⎨
⎩

ℤ 𝑘 = 0
ℤ2𝑔 𝑘 = 1
0 otherwise

Further, 𝜄𝑔⋆∶ 𝐻1(𝜕𝐿𝑔,1) → 𝐻1(𝐿𝑔,1) is the zero map.

Proof. By induction, we show the result for𝐻𝑘(𝐿𝑔) implies the result for𝐻𝑘(𝐿𝑔,1), and then
𝐻𝑘(𝐿𝑔,1) gives 𝐻𝑘(𝐿𝑔+1). The base case is 𝐻•(𝑇2) which was shown above. For the first
implication, we use the Mayer–Vietoris sequence. Note that 𝐿𝑔 = 𝐿𝑔,1 ∪𝜕𝐿𝑔,1 𝚫2. Then,

𝐻2(𝐿𝑔,1) ⊕ 𝐻2(𝚫2) 𝐻2(𝐿𝑔)

𝐻1(𝜕𝐿𝑔,1) 𝐻1(𝐿𝑔,1) ⊕ 𝐻1(𝚫2) 𝐻1(𝐿𝑔)

𝐻0(𝜕𝐿𝑔,1) 𝐻0(𝐿𝑔,1) ⊕ 𝐻0(𝚫2) 𝐻0(𝐿𝑔)

𝜕2

𝜕1

𝜄1

𝜄0

giving
0 ⊕ 0 ℤ

ℤ 𝐻1(𝐿𝑔,1) ⊕ 0 ℤ2𝑔

ℤ ℤ⊕ ℤ ℤ

𝜕2

𝜕1

𝜄1

𝜄0

The bottom row of the Mayer–Vietoris sequence always has this form if 𝐾1, 𝐾2, 𝐾1 ∩ 𝐾2 are
connected. Note that since 𝜄0 is injective, the map before it is the zero map by exactness,
so we can remove the bottom row and replace it with zero. We have that 𝜕2 is injective,
and 𝐻1(𝐿𝑔,1) is torsion-free, so 𝜕2 is an isomorphism. Hence 𝜄1 is the zero map and 𝑗 is an
isomorphism. Since 0 = 𝜄1 = 𝜄𝑔⋆ + 𝜄′⋆, we have 𝜄𝑔⋆ = 0. Further, as 𝑗 is an isomorphism,
𝐻1(𝐿𝑔,1) ≃ 𝐻1(𝐿𝑔) = ℤ2𝑔 as required.
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Now we show the result for 𝐻𝑘(𝐿𝑔,1) implies the result for 𝐻𝑘(𝐿𝑔+1). Note that 𝐿𝑔+1 =
𝐿𝑔,1 ∪𝜕𝐿𝑔,1 𝐿1,1. Hence,

𝐻2(𝐿𝑔,1) ⊕ 𝐻2(𝐿1,1) 𝐻2(𝐿𝑔+1)

𝐻1(𝜕𝐿𝑔,1) 𝐻1(𝐿𝑔,1) ⊕ 𝐻2(𝐿1,1) 𝐻1(𝐿𝑔+1) 0𝜄

so
0 ⊕ 0 𝐻2(𝐿𝑔+1)

ℤ ℤ2𝑔 ⊕ℤ2 𝐻1(𝐿𝑔+1) 0𝜄

By assumption, 𝜄 is the zero map. Hence𝐻2(𝐿𝑔+1) ≃ 𝐻1(𝜕𝐿𝑔,1) ≃ ℤ as 𝜕2 is an isomorphism.
Also, ℤ2𝑔+2 ≃ 𝐻1(𝐿𝑔+1) by exactness.

7.9. Homology of non-orientable surfaces
Let𝑀1 be a triangulation of ℝℙ2. Let𝑀𝑟,1 be𝑀𝑟 with a 2-simplex removed, so 𝜕𝑀𝑟,1 ≃ 𝕊1.
Let𝑀𝑟+1 = 𝑀𝑟,1 ∪𝜕𝑀𝑟,1 𝑀1,1. Then𝑀𝑟+1,1 = 𝑀𝑟,1 ∪𝚫1 𝑀1,1, attaching along an interval. For
example, ||𝑀1,1|| is homeomorphic to the Möbius band. Then𝑀𝑟,1 ∼ ⋁𝑟

𝑖=1 𝑆1.
Proposition.

𝐻𝑘(𝑀𝑟) =
⎧
⎨
⎩

ℤ𝑟−1 ⊕ℤ⟋2ℤ 𝑘 = 1
ℤ 𝑘 = 0
0 otherwise

and

𝐻𝑘(𝑀𝑟,1) =
⎧
⎨
⎩

ℤ𝑟 𝑘 = 1
ℤ 𝑘 = 0
0 otherwise

Further, 𝜄𝑟⋆∶ 𝐻1(𝜕𝑀𝑟,1) → 𝐻1(𝑀𝑟,1) has the property that 𝜄𝑟⋆(1) is twice a primitive element,
or equivalently, 𝐻1(𝑀𝑟,1)⟋Im 𝜄𝑟⋆ = ℤ𝑟−1 ⊕ℤ⟋2ℤ.

Proof. Weproceed by induction in the sameway. For the base case, note that 𝜕𝑀1,1 ≃ 𝑆1 and
𝑀1,1 ≃ 𝑆1, and the map from 𝜕𝑀1,1 → 𝑀1,1 is given by 𝑧 ↦ 𝑧2, so the map𝐻1(𝑆1) → 𝐻1(𝑆1)
is given bymultiplication by 2. Suppose the result holds for𝐻𝑘(𝑀𝑟). Then,𝑀𝑟 = 𝑀𝑟,1∪𝜕𝑀𝑟,1
𝚫2, and

𝐻2(𝑀𝑟,1) ⊕ 𝐻2(𝚫2) 𝐻2(𝑀𝑟)

𝐻1(𝜕𝑀𝑟,1) 𝐻1(𝑀𝑟,1) ⊕ 𝐻1(𝚫2) 𝐻1(𝑀𝑟) 0𝜄𝑟⋆
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𝜄𝑟⋆ is injective, so 𝜕2 = 0, giving 0 𝐻2(𝑀𝑟) 0 . Hence,

0 ⊕ 0 0

ℤ 𝐻1(𝑀𝑟,1) ⊕ 0 ℤ𝑟−1 ⊕ℤ⟋2ℤ 0𝜄𝑟⋆

Since 𝐻1(𝑀𝑟,1) is torsion-free,

0 ℤ 𝐻1(𝑀𝑟,1) ℤ𝑟−1 ⊕ℤ⟋2ℤ 0

gives that 𝐻1(𝑀𝑟,1) = ℤ𝑟.
Now,𝑀𝑟+1 = 𝑀𝑟,1 ∪𝜕𝑀𝑟,1 𝑀1,1 hence

𝐻2(𝑀𝑟,1) ⊕ 𝐻2(𝑀1,1) 𝐻2(𝑀𝑟+1)

𝐻1(𝕊1) 𝐻1(𝑀𝑟,1) ⊕ 𝐻1(𝑀𝑟,1) 𝐻1(𝑀𝑟+1) 0

so
0 ⊕ 0 0

ℤ 𝐻1(𝑀𝑟,1) ⊕ 𝐻1(𝑀𝑟,1) 𝐻1(𝑀𝑟+1) 0
0

Hence 𝐻1(𝑀𝑟+1) ≃ ℤ2 ⊕ℤ⟋(2𝑒1, 2) ≃ ℤ𝑟 ⊕ℤ⟋2ℤ.

7.10. Lefschetz fixed point theorem
Let (𝐶, 𝑑) be a chain complex over ℚ (or any other field). Then 𝐻•(𝐶) is a ℚ-vector space.
Let 𝑓∶ 𝐶 → 𝐶 be a chain map, so it induces 𝑓⋆∶ 𝐻•(𝐶) → 𝐻•(𝐶). 𝑓 and 𝑓⋆ are both linear
endomorphisms of vector spaces.

Definition. The Lefschetz number of 𝑓 is 𝐿(𝑓) = ∑𝑘(−1)𝑘 tr𝑓𝑘 where 𝑓𝑘∶ 𝐶𝑘 → 𝐶𝑘, and
𝐿(𝑓⋆) = ∑𝑘(−1)𝑘 tr𝑓𝑘⋆ where 𝑓𝑘⋆∶ 𝐻𝑘(𝐶) → 𝐻𝑘(𝐶).
Proposition. 𝐿(𝑓) = 𝐿(𝑓⋆).

Proof. Let𝑈𝑘 = Im𝑑𝑘+1 ⊆ ker𝑑𝑘 ⊆ 𝐶𝑘. Then, ker 𝑑𝑘 = 𝑈𝑘⊕𝑉 𝑘, and 𝐶𝑘 = 𝑈𝑘⊕𝑉 𝑘⊕𝑈 ′
𝑘.

Then 𝑑∶ 𝑈 ′
𝑘 → 𝑈𝑘−1 is an isomorphism. With respect to this decomposition, 𝑑 is a matrix

in block form given by

𝑑 = (
0 0 𝐼
0 0 0
0 0 0

)
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Also, 𝑓(Im𝑑𝑘+1) ⊆ Im𝑑𝑘+1 since 𝑓 is a chain map, and 𝑓(ker𝑑𝑘) ⊆ ker𝑑𝑘. So in block
form,

𝑓 = (
𝐴𝑘 𝑋𝑘 ⋆
0 𝐵𝑘 ⋆
0 0 𝐴′

𝑘

)

Then, the equation 𝑑𝑓 = 𝑓𝑑 shows 𝐴𝑘 = 𝐴′
𝑘+1. Hence, 𝐻𝑘(𝐶) = ker𝑑𝑘⟋Im𝑑𝑘+1 =

𝑈𝑘 ⊕𝑉 𝑘⟋𝑈𝑘
≃ 𝑉 𝑘, and 𝑓𝑘⋆∶ 𝐻𝑘(𝐶) → 𝐻𝑘(𝐶) maps [𝑣] to [𝐵𝑘𝑣 + 𝑋𝑘𝑣] = [𝐵𝑘𝑣], so 𝑓𝑘⋆

is multiplication by 𝐵𝑘. Then 𝐿(𝑓) = ∑𝑘(−1)𝑘 tr𝑓𝑘 = ∑(−1)𝑘(tr𝐴𝑘 + tr𝐵𝑘 + tr𝐴𝑘−1) =
∑(−1)𝑘 tr𝐵𝑘 = 𝐿(𝑓⋆).

Definition. Let 𝐶 = 𝐶•(𝐾). Then the Euler characteristic is defined by 𝜒(𝐶) = 𝐿(id𝐶).
Hence𝜒(𝐶(𝐾)) = ∑𝑘(−1)𝑘 dim𝐶𝑘(𝐾). Note that𝐿(id𝐶) = 𝐿(id𝐻•(𝐾)) = ∑𝑘(−1)𝑘 dim𝐻𝑘(𝐾)
depends only on |𝐾|.
Theorem (Lefschetz fixed point theorem). Let 𝐹 ∶ |𝐾| → |𝐾| be a continuous map. Let
𝐿(𝐹) = 𝐿(𝐹⋆) be the Lefschetz number of 𝐹, where 𝐹⋆∶ 𝐻•(𝐾) → 𝐻•(𝐾). Then if 𝐿(𝐹) ≠ 0,
𝐹 has a fixed point.
Remark. This is a generalisation of the Brouwer fixed point theorem.

Proof sketch. If 𝐹 has no fixed point, then since |𝐾| is compact, there exists 𝜀 > 0 such that
|𝐹(𝑥) − 𝑥| ≥ 𝜀 for all 𝑥. If 𝑓∶ 𝐵𝑟+𝑛𝐾 → 𝐵𝑟𝐾 is a simplicial approximation of 𝐹, then the
above implies that 𝐹⋆(𝜎) does not contain 𝜎 for any simplex 𝜎 ∈ 𝐶•(𝐾). Hence 𝐿(𝐹) = 𝐿(𝑓) =
0.
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Lectured in Michaelmas 2022 by Prof. R. Nickl
In this course, we study measure theory and integration, and its applications to probability
theory. We begin by defining the notion of ameasure, which extends the notion of the length
of an interval to a much larger class of ‘measurable’ sets. In the context of a probability
space, a probability measure is a way to associate probabilities to events that could occur.
Measures have the countable additivity property, which allows us to compute the measure
of certain limits of measurable sets. Using this property, we can analyse limiting behaviour
by considering the measure of a set on which a certain event occurs.

Measure theory allows us to define the Lebesgue integral. This integral agrees with the
Riemann integral onmost well-behaved functions, but it has manymore convenient proper-
ties concerning limits. For example, the dominated convergence theorem gives a sufficient
condition for when the limit of the integrals of functions is the integral of the limit. Another
example is that the set of Lebegsue integrable functions forms a complete normed vector
space, but this is not true of the Riemann integral.

Using the Lebesgue integral, we can define the Fourier transform of an integrable function.
This linear operator is ‘almost’ injective: if the Fourier transform of a function is also in-
tegrable, we can recover the original function almost everywhere. Properties of the Fourier
transform are used to deduce the central limit theorem.
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II. Probability and Measure

1. Measures

1.1. Definitions

Definition. Let 𝐸 be a (nonempty) set. A collection ℰ of subsets of 𝐸 is called a 𝜎-algebra if
the following properties hold:

• ∅ ∈ ℰ;

• 𝐴 ∈ ℰ ⟹ 𝐴𝑐 = 𝐸 ∖ 𝐴 ∈ ℰ;

• if (𝐴𝑛)𝑛∈ℕ is a countable collection of sets in ℰ,⋃𝑛∈ℕ 𝐴𝑛 ∈ ℰ.

Example. Let ℰ = {∅, 𝐸}. This is a 𝜎-algebra. Also, 𝒫(𝐸) = {𝐴 ⊆ 𝐸} is a 𝜎-algebra.

Remark. Since⋂𝑛 𝐴𝑛 = (⋃𝑛 𝐴𝑐
𝑛)

𝑐, any 𝜎-algebra ℰ is closed under countable intersections
as well as under countable unions. Note that 𝐵 ∖ 𝐴 = 𝐵 ∩ 𝐴𝑐 ∈ ℰ, so 𝜎-algebras are closed
under set difference.

Definition. A set 𝐸 with a 𝜎-algebra ℰ is called ameasurable space. The elements of ℰ are
calledmeasurable sets.

Definition. A measure 𝜇 is a set function 𝜇 ∶ ℰ → [0,∞], such that 𝜇(∅) = 0, and for a
sequence (𝐴𝑛)𝑛∈ℕ such that the 𝐴𝑛 are disjoint, we have

𝜇(⋃
𝑛∈ℕ

𝐴𝑛) = ∑
𝑛∈ℕ

𝜇(𝐴𝑛)

This is the countable additivity property of the measure.

Remark. If 𝐸 is countable, then for any 𝐴 ∈ 𝒫(𝐸) and measure 𝜇, we have

𝜇(𝐴) = 𝜇(⋃
𝑥∈𝐴

{𝑥}) = ∑
𝑥∈𝐴

𝜇({𝑥})

Hence, measures are uniquely defined by the measure of each singleton. This corresponds
to the notion of a probability mass function.

Definition. For a collection𝒜 of subsets of 𝐸, we define the 𝜎-algebra 𝜎(𝐴) generated by𝒜
by

𝜎(𝒜) = {𝐴 ⊆ 𝐸∶ 𝐴 ∈ ℰ for all 𝜎-algebras ℰ ⊇ 𝒜}

So it is the smallest 𝜎-algebra containing 𝒜. Equivalently,

𝜎(𝒜) = ⋂
ℰ⊇𝒜,ℰ a 𝜎-algebra

ℰ
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1.2. Rings and algebras
To construct good generators, we define the following.

Definition. 𝒜 ⊆ 𝒫(𝐸) is called a ring over 𝐸 if∅ ∈ 𝒜 and 𝐴, 𝐵 ∈ 𝒜 implies 𝐵 ∖𝐴 ∈ 𝒜 and
𝐴 ∪ 𝐵 ∈ 𝒜.
Rings are easier to manage than 𝜎-algebras because there are only finitary operators.
Definition. 𝒜 is called an algebra over 𝐸 if ∅ ∈ 𝒜 and 𝐴, 𝐵 ∈ 𝒜 implies 𝐴𝑐 ∈ 𝒜 and
𝐴 ∪ 𝐵 ∈ 𝒜.
Remark. Rings are closed under symmetric difference 𝐴 △ 𝐵 = (𝐵 ∖ 𝐴) ∪ (𝐴 ∖ 𝐵), and are
closed under intersections 𝐴 ∩ 𝐵 = 𝐴 ∪ 𝐵 ∖ 𝐴 △ 𝐵. Algebras are rings, because 𝐵 ∖ 𝐴 =
𝐵∩𝐴𝑐 = (𝐵𝑐∪𝐴)𝑐. Not all rings are algebras, because rings do not need to include the entire
space.

Proposition (Disjointification of countable unions). Consider⋃𝑛 𝐴𝑛 for 𝐴𝑛 ∈ ℰ, where ℰ
is a 𝜎-algebra (or a ring, if the union is finite). Then there exist 𝐵𝑛 ∈ ℰ that are disjoint such
that⋃𝑛 𝐴𝑛 = ⋃𝑛 𝐵𝑛.

Proof. Define 𝐴𝑛 = ⋃𝑗≤𝑛 𝐴𝑗 , then 𝐵𝑛+1 = 𝐴𝑛 ∖ 𝐴𝑛−1.

Definition. A set function on a collection𝒜 of subsets of 𝐸, where∅ ∈ 𝒜, is amap 𝜇∶ 𝒜 →
[0,∞] such that 𝜇(∅) = 0. We say 𝜇 is increasing if 𝜇(𝐴) ≤ 𝜇(𝐵) for all 𝐴 ⊆ 𝐵 in 𝒜. We
say 𝜇 is additive if 𝜇(𝐴 ∪ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵) for disjoint 𝐴, 𝐵 ∈ 𝒜 and 𝐴 ∪ 𝐵 ∈ 𝒜. We say 𝜇
is countably additive if 𝜇(⋃𝑛 𝐴𝑛) = ∑𝑛 𝜇(𝐴𝑛) for disjoint sequences 𝐴𝑛 where⋃𝑛 𝐴𝑛 and
each 𝐴𝑛 lie in 𝒜. We say 𝜇 is countably subadditive if 𝜇(⋃𝑛 𝐴𝑛) ≤ ∑𝑛 𝜇(𝐴𝑛) for arbitrary
sequences 𝐴𝑛 under the above conditions.

Remark. A measure satisfies all four of the above conditions. Countable additivity implies
the other conditions.

Theorem (Carathéodory’s theorem). Let 𝜇 be a countably additive set function on a ring𝒜
of subsets of 𝐸. Then there exists a measure 𝜇⋆ on 𝜎(𝒜) such that 𝜇⋆|𝒜 = 𝜇.
We will later prove that this extended measure is unique.

Proof. For 𝐵 ⊆ 𝐸, we define the outer measure 𝜇⋆ as

𝜇⋆(𝐵) = inf {∑
𝑛∈ℕ

𝜇(𝐴𝑛), 𝐴𝑛 ∈ 𝒜, 𝐵 ⊆ ⋃
𝑛∈ℕ

𝐴𝑛}

If there is no sequence 𝐴𝑛 such that 𝐵 ⊆ ⋃𝑛∈ℕ 𝐴𝑛, we declare the outer measure 𝜇⋆(𝐵) to
be∞. We define the class

ℳ = {𝐴 ⊆ 𝐸 ∣ ∀𝐵 ⊆ 𝐸, 𝜇⋆(𝐵) = 𝜇⋆(𝐵 ∩ 𝐴) + 𝜇⋆(𝐵 ∩ 𝐴𝑐)}

This is the class of 𝜇⋆-measurable sets.
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Step 1. 𝜇⋆ is countably sub-additive on 𝒫(𝐸). It suffices to prove that for 𝐵 ⊆ 𝐸 and 𝐵𝑛 ⊆ 𝐸
such that 𝐵 ⊆ ⋃𝑛 𝐵𝑛 we have

𝜇⋆(𝐵) ≤ ∑
𝑛
𝜇⋆(𝐵𝑛) (†)

We can assume without loss of generality that 𝜇⋆(𝐵𝑛) < ∞ for all 𝑛, otherwise there is
nothing to prove. For all 𝜀 > 0 there exists a collection 𝐴𝑛,𝑚 such that 𝐵𝑛 ⊆ ⋃𝑚 𝐴𝑛,𝑚 and

𝜇⋆(𝐵𝑛) +
𝜀
2𝑛 ≥ ∑

𝑚
𝜇(𝐴𝑛,𝑚)

Now, since 𝜇⋆ is increasing, and 𝐵 ⊆ ⋃𝑛 𝐵𝑛 ⊆ ⋃𝑛⋃𝑚 𝐴𝑛,𝑚, we have

𝜇⋆(𝐵) ≤ 𝜇⋆(⋃
𝑛,𝑚

𝐴𝑛,𝑚) ≤ ∑
𝑛,𝑚

𝜇(𝐴𝑛,𝑚) ≤ ∑
𝑛
𝜇⋆(𝐵𝑛) +∑

𝑛

𝜀
2𝑛 = ∑

𝑛
𝜇⋆(𝐵𝑛) + 𝜀

Since 𝜀 was arbitrary in the construction, (†) follows by construction.
Step 2. 𝜇⋆ extends 𝜇. Let 𝐴 ∈ 𝒜, and we want to show 𝜇⋆(𝐴) = 𝜇(𝐴). We can write
𝐴 = 𝐴 ∪ ∅ ∪…, hence 𝜇⋆(𝐴) ≤ 𝜇(𝐴) + 0 +⋯ = 𝜇(𝐴) by definition of 𝜇⋆. We need to prove
the converse, that𝜇(𝐴) ≤ 𝜇⋆(𝐴). If𝜇⋆ is infinite, there is nothing to prove. For the finite case,
suppose there is a sequence 𝐴𝑛 where 𝜇(𝐴𝑛) < ∞ and 𝐴 ⊆ ⋃𝑛 𝐴𝑛. Then, 𝐴 = ⋃𝑛(𝐴 ∩ 𝐴𝑛),
which is a union of elements of the ring 𝒜. Since 𝜇 is a countably additive set function on
𝒜, it is countably subadditive. Hence 𝜇(𝐴) ≤ ∑𝑛 𝜇(𝐴∩𝐴𝑛) ≤ ∑𝑛 𝜇(𝐴𝑛). Since the 𝐴𝑛 were
arbitrary, we have 𝜇(𝐴) ≤ 𝜇⋆(𝐴) as required.
Step 3.ℳ ⊇ 𝒜. Let𝐴 ∈ 𝒜. Wemust show that for all 𝐵 ⊆ 𝐸, 𝜇⋆(𝐵) = 𝜇⋆(𝐵∩𝐴)+𝜇⋆(𝐵∩𝐴𝑐).
We have 𝐵 ⊆ (𝐵∩𝐴)∪(𝐵∩𝐴𝑐)∪∅∪…, hence by countable subadditivity (†), 𝜇⋆(𝐵) ≤ 𝜇⋆(𝐵∩
𝐴) + 𝜇⋆(𝐵 ∩ 𝐴𝑐). It now suffices to prove the converse, that 𝜇⋆(𝐵) ≥ 𝜇⋆(𝐵 ∩ 𝐴) + 𝜇⋆(𝐵 ∩ 𝐴𝑐).
We can assume 𝜇⋆(𝐵) is finite, and assume there exists 𝐴𝑛 ∈ 𝒜 such that 𝐵 ⊆ ⋃𝑛 𝐴𝑛 and
𝜇⋆(𝐵) + 𝜀 ≥ ∑𝑛 𝜇(𝐴𝑛). Now, 𝐵 ∩ 𝐴 ⊆ ⋃𝑛(𝐴𝑛 ∩ 𝐴), and 𝐵 ∩ 𝐴𝑐 ⊆ ⋃𝑛(𝐴𝑛 ∩ 𝐴𝑐). All of the
members of these two unions are elements of 𝒜, since 𝐴𝑛 ∩ 𝐴𝑐 = 𝐴𝑛 ∖ 𝐴. Therefore,

𝜇⋆(𝐵 ∩ 𝐴) + 𝜇⋆(𝐵 ∩ 𝐴𝑐) ≤ ∑
𝑛
𝜇(𝐴𝑛 ∩ 𝐴) +∑

𝑛
𝜇(𝐴𝑛 ∩ 𝐴𝑐)

≤ ∑
𝑛
[𝜇(𝐴𝑛 ∩ 𝐴) + 𝜇(𝐴𝑛 ∩ 𝐴𝑐)]

≤ ∑
𝑛
𝜇(𝐴𝑛) ≤ 𝜇⋆(𝐵) + 𝜀

Since 𝜀 was arbitrary, 𝜇⋆(𝐵) = 𝜇⋆(𝐵 ∩ 𝐴) + 𝜇⋆(𝐵 ∩ 𝐴𝑐) as required.
Step 4. ℳ is an algebra. Clearly ∅ lies in ℳ, and by the symmetry in the definition of
ℳ, complements lie in ℳ. We need to check ℳ is stable under finite intersections. Let
𝐴1, 𝐴2 ∈ ℳ and let 𝐵 ⊆ 𝐸. We have

𝜇⋆(𝐵) = 𝜇⋆(𝐵 ∩ 𝐴1) + 𝜇⋆(𝐵 ∩ 𝐴𝑐
1) = 𝜇⋆(𝐵 ∩ 𝐴1 ∩ 𝐴2) + 𝜇⋆(𝐵 ∩ 𝐴1 ∩ 𝐴𝑐

2) + 𝜇⋆(𝐵 ∩ 𝐴𝑐
1)
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We can write 𝐴1 ∩ 𝐴𝑐
2 = (𝐴1 ∩ 𝐴𝑐

2)𝑐 ∩ 𝐴1, and 𝐴𝑐
1 = (𝐴1 ∩ 𝐴2)𝑐 ∩ 𝐴𝑐

1. Hence

𝜇⋆(𝐵) = 𝜇⋆(𝐵 ∩ 𝐴1 ∩ 𝐴2) + 𝜇⋆(𝐵 ∩ (𝐴1 ∩ 𝐴2)𝑐 ∩ 𝐴1) + 𝜇⋆(𝐵 ∩ (𝐴1 ∩ 𝐴2)𝑐 ∩ 𝐴𝑐
1)

= 𝜇⋆(𝐵 ∩ 𝐴1 ∩ 𝐴2) + 𝜇⋆(𝐵 ∩ (𝐴1 ∩ 𝐴2)𝑐)

which is the requirement for 𝐴1 ∩ 𝐴2 to lie inℳ.

Step 5. ℳ is a 𝜎-algebra and 𝜇⋆ is a measure on ℳ. It suffices now to show that ℳ has
countable unions and the measure respects these countable unions. Let 𝐴 = ⋃𝑛 𝐴𝑛 for
𝐴𝑛 ∈ ℳ. Without loss of generality, let the 𝐴𝑛 be disjoint. We want to show 𝐴 ∈ ℳ, and
that 𝜇⋆(𝐴) = ∑𝑛 𝜇⋆(𝐴𝑛). By (†), we have 𝜇⋆(𝐵) ≤ 𝜇⋆(𝐵 ∩ 𝐴) + 𝜇⋆(𝐵 ∩ 𝐴𝑐) + 0 + … so we
need to check only the converse of this inequality. Also, 𝜇⋆(𝐴) ≤ ∑𝑛 𝜇⋆(𝐴𝑛), so we need
only check the converse of this inequality as well. Similarly to before,

𝜇⋆(𝐵) = 𝜇⋆(𝐵 ∩ 𝐴1) + 𝜇⋆(𝐵 ∩ 𝐴𝑐
1)

= 𝜇⋆(𝐵 ∩ 𝐴1) + 𝜇⋆(𝐵 ∩ 𝐴𝑐
1 ∩ 𝐴2) + 𝜇⋆(𝐵 ∩ 𝐴𝑐

1 ∩ 𝐴𝑐
2)

= 𝜇⋆(𝐵 ∩ 𝐴1) + 𝜇⋆(𝐵 ∩ 𝐴2) + 𝜇⋆(𝐵 ∩ 𝐴𝑐
1 ∩ 𝐴𝑐

2)
= 𝜇⋆(𝐵 ∩ 𝐴1) + 𝜇⋆(𝐵 ∩ 𝐴2) + 𝜇⋆(𝐵 ∩ 𝐴𝑐

1 ∩ 𝐴𝑐
2 ∩ 𝐴3) + 𝜇⋆(𝐵 ∩ 𝐴𝑐

1 ∩ 𝐴𝑐
2 ∩ 𝐴𝑐

3)
= 𝜇⋆(𝐵 ∩ 𝐴1) + 𝜇⋆(𝐵 ∩ 𝐴2) + 𝜇⋆(𝐵 ∩ 𝐴3) + 𝜇⋆(𝐵 ∩ 𝐴𝑐

1 ∩ 𝐴𝑐
2 ∩ 𝐴𝑐

3)
= ⋯
= ∑

𝑛≤𝑁
𝜇⋆(𝐵 ∩ 𝐴𝑛) + 𝜇⋆(𝐵 ∩ 𝐴𝑐

1 ∩⋯ ∩ 𝐴𝑐
𝑁)

Since⋃𝑛≤𝑁 𝐴𝑛 ⊆ 𝐴, we have⋂𝑛≤𝑁 𝐴𝑐
𝑛 ⊇ 𝐴𝑐. 𝜇⋆ is increasing, hence, taking limits,

𝜇⋆(𝐵) ≥
∞
∑
𝑛=1

𝜇⋆(𝐵 ∩ 𝐴𝑛) + 𝜇⋆(𝐵 ∩ 𝐴𝑐)

By (†),
𝜇⋆(𝐵) ≥ 𝜇⋆(𝐵 ∩ 𝐴) + 𝜇⋆(𝐵 ∩ 𝐴𝑐)

as required. Henceℳ is a 𝜎-algebra. For the other inequality, we take the above result for
𝐵 = 𝐴.

𝜇⋆(𝐴) ≥
∞
∑
𝑛=1

𝜇⋆(𝐴 ∩ 𝐴𝑛) + 𝜇⋆(𝐴 ∩ 𝐴𝑐) =
∞
∑
𝑛=1

𝜇⋆(𝐴𝑛)

So 𝜇⋆ is countably additive onℳ and is hence a measure onℳ.

1.3. Uniqueness of extension
Definition. A collection 𝒜 of subsets of 𝐸 is called a 𝜋-system if ∅ ∈ 𝒜 and 𝐴, 𝐵 ∈ 𝒜 ⟹
𝐴∩ 𝐵 ∈ 𝒜.
Definition. A collection 𝒜 of subsets of 𝐸 is called a 𝑑-system if 𝐸 ∈ 𝒜, and if 𝐵1 ⊂ 𝐵2 are
elements of𝒜, we have 𝐵2 ∖𝐵1 ∈ 𝒜, and if 𝐴𝑛 ∈ 𝒜 and 𝐴𝑛 is an increasing sequence of sets,
we have⋃𝑛 𝐴𝑛 ∈ 𝒜.
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Proposition. A 𝑑-system which is also a 𝜋-system is a 𝜎-algebra.

Proof. Refer to the first example sheet.

Lemma (Dynkin). Let 𝒜 be a 𝜋-system. Then any 𝑑-system that contains 𝒜 also contains
𝜎(𝒜).

Proof. We define
𝒟 = ⋂

𝒟′ is a 𝑑-system; 𝒟′⊇𝒜
𝒟′

We can show this is a 𝑑-system. It suffices to prove that𝒟 is a 𝜋-system, because this is then
a 𝜎-algebra. We now define

𝒟′ = {𝐵 ∈ 𝒟 ∣ ∀𝐴 ∈ 𝒜, 𝐵 ∩ 𝐴 ∈ 𝒟}

We can see that 𝒟′ ⊇ 𝒜, as 𝒜 is a 𝜋-system. We now show that 𝒟′ is a 𝑑-system. Clearly
𝐸∩𝐴 = 𝐴 ∈ 𝒜 ⊆ 𝒟′ hence 𝐸 ∈ 𝒟′. Let 𝐵1, 𝐵2 ∈ 𝒟′ such that 𝐵1 ⊆ 𝐵2. Then (𝐵2 ∖𝐵1)∩𝐴 =
(𝐵2 ∩𝐴) ∖ (𝐵1 ∩𝐴), and since 𝐵𝑖 ∩𝐴 ∈ 𝒟 this difference also lies in𝒟, so 𝐵2 ∖𝐵1 ∈ 𝒟′. Now,
suppose 𝐵𝑛 is an increasing sequence converging to 𝐵, and 𝐵𝑛 ∈ 𝒟′. Then 𝐵𝑛 ∩ 𝐴 ∈ 𝒟, and
𝒟 is a 𝑑-system, we have 𝐵 ∩ 𝐴 ∈ 𝒟, so 𝐵 ∈ 𝒟′.

Hence 𝒟′ is a 𝑑-system that contains 𝒜, so 𝒟 ⊆ 𝒟′, and 𝒟′ ⊆ 𝒟 by construction of 𝒟′,
giving𝒟 = 𝒟′. We then define

𝒟″ = {𝐵 ∈ 𝒟 ∣ ∀𝐴 ∈ 𝒟, 𝐵 ∩ 𝐴 ∈ 𝒟}

Note that 𝒜 ⊆ 𝒟″, because 𝒟′ = 𝒟 ⊇ 𝒜. Running the same argument as before, we can
show that𝒟″ = 𝒟, and so𝒟″ = 𝒟 is a 𝜋-system.

Theorem (Uniqueness of extension). Let 𝜇1, 𝜇2 be measures on a measurable space (𝐸, ℰ),
such that 𝜇1(𝐸) = 𝜇2(𝐸) < ∞. Suppose that 𝜇1 and 𝜇2 coincide on a 𝜋-system 𝒜, such that
ℰ ⊆ 𝜎(𝒜). Then 𝜇1 = 𝜇2 on 𝜎(𝒜), and hence on ℰ.

Proof. We define
𝒟 = {𝐴 ∈ ℰ ∣ 𝜇1(𝐴) = 𝜇2(𝐴)}

This collection contains 𝒜 by assumption. By Dynkin’s lemma, it suffices to prove 𝒟 is a
𝑑-system, because then 𝒟 ⊇ 𝜎(𝒜) ⊇ ℰ giving 𝒟 = ℰ. Note that 𝐸 ∈ 𝒟 by assumption. By
additivity and finiteness of 𝜇𝑖, for 𝐵1 ⊆ 𝐵2 elements of 𝒟, we have 𝜇1(𝐵2 ∖ 𝐵1) = 𝜇1(𝐵2) −
𝜇1(𝐵1) = 𝜇2(𝐵2) − 𝜇2(𝐵1) = 𝜇2(𝐵2 ∖ 𝐵1), where the subtractions are valid by finiteness of 𝜇,
so set differences lie in𝒟.
Now suppose 𝐵𝑛 is an increasing sequence converging to 𝐵 for 𝐵𝑛 ∈ 𝒟. This implies that
𝐵 ∖ 𝐵𝑛 is a decreasing sequence converging to ∅, and by a result from the first example
sheet we have 𝜇𝑖(𝐵 ∖ 𝐵𝑛) → 𝜇(∅) = 0. Since 𝜇𝑖 are finite, 𝜇𝑖(𝐵𝑛) → 𝜇𝑖(𝐵) as 𝑛 → ∞. Then,
𝜇1(𝐵) = lim𝑛∈ℕ 𝜇1(𝐵𝑛) = lim𝑛∈ℕ 𝜇2(𝐵𝑛) = 𝜇2(𝐵), so𝒟 is closed under increasing sequences
and hence is a 𝑑 system.
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Remark. The above theorem applies to finite measures (𝜇 such that 𝜇(𝐸) < ∞) only. How-
ever, the theorem can be extended to measures that are 𝜎-finite, for which 𝐸 = ⋃𝑛∈ℕ 𝐸𝑛
where 𝜇(𝐸𝑛) < ∞.

1.4. Borel measures
Definition. Let (𝐸, 𝜏) be a Hausdorff topological space. The 𝜎-algebra generated by the
open sets of 𝐸 is called the Borel 𝜎-algebra on 𝐸, denoted ℬ(𝐸) = 𝜎(𝜏). We write ℬ = ℬ(ℝ).
Members of ℬ(𝐸) are called Borel sets. A measure 𝜇 on (𝐸,ℬ(𝐸)) is called a Borel measure
on𝐸. A Radonmeasure is a Borel measure 𝜇 on 𝐸 such that 𝜇(𝐾) < ∞ for all𝐾 ⊆ 𝐸 compact.
Note that in a Hausdorff space, compact sets are closed and hence measurable.

1.5. Lebesgue measure
We will construct a unique Borel measure 𝜇 on ℝ𝑑 such that

𝜇(
𝑑
∏
𝑖=1

[𝑎𝑖, 𝑏𝑖]) =
𝑑
∏
𝑖=1

|𝑏𝑖 − 𝑎𝑖|

Initially, we will perform this construction for 𝑑 = 1, and later we will consider product
measures to extend this to higher dimensions.

Theorem (Construction of the Lebesgue measure). There exists a unique Borel measure 𝜇
on ℝ such that

𝑎 < 𝑏 ⟹ 𝜇((𝑎, 𝑏]) = 𝑏 − 𝑎

Proof. Consider the subsets of ℝ of the form

𝐴 = (𝑎1, 𝑏1] ∪ ⋯ ∪ (𝑎𝑛, 𝑏𝑛]

where the intervals in question are disjoint. The set 𝒜 of such sets forms a ring and a 𝜋-
system of Borel sets. This generates the same 𝜎-algebra as that generated by finite unions of
open intervals, by the first example sheet. Open intervals with rational endpoints generate
ℬ, so 𝜎(𝐴) ⊇ ℬ. We define the set function 𝜇 on 𝒜 by 𝜇(𝐴) = ∑𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖). 𝜇 is additive,
and well-defined since if 𝐴 = ⋃𝑗 𝐶𝑗 = ⋃𝑘 𝐷𝑘 for distinct disjoint unions, we can write
𝐶𝑗 = ⋃𝑘(𝐶𝑗 ∩ 𝐷𝑘) and 𝐷𝑘 = ⋃𝑗(𝐷𝑘 ∩ 𝐶𝑗), giving

𝜇(𝐴) = 𝜇(⋃
𝑗
𝐶𝑗) = ∑

𝑗
𝜇(𝐶𝑗) = ∑

𝑗
𝜇(⋃

𝑗
(𝐶𝑗 ∩ 𝐷𝑘)) = ∑

𝑗
∑
𝑘
𝜇(𝐶𝑗 ∩ 𝐷𝑘) = 𝜇(⋃

𝑘
𝐷𝑘)

To prove the existence of 𝜇 onℬ, we apply Carathéodory’s extension theorem, and therefore
must check that 𝜇 is countably additive on 𝒜. Equivalently, by a question on an example
sheet, it suffices to show that for all sequences 𝐴𝑛 ∈ 𝒜 such that 𝐴𝑛 decreases to ∅, we
have 𝜇(𝐴𝑛) → 0. Suppose this is not the case, so there exist 𝜀 > 0 and 𝐵𝑛 ∈ 𝒜 such that
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𝐵𝑛 decreases to∅ but 𝜇(𝐵𝑛) ≥ 2𝜀 for infinitely many 𝑛 (and so without loss of generality for
all 𝑛). We can approximate 𝐵𝑛 from within by a sequence 𝐶𝑛. Suppose 𝐵𝑛 = ⋃𝑁𝑛

𝑖=1(𝑎𝑛𝑖, 𝑏𝑛𝑖],
then define 𝐶𝑛 = ⋃𝑁𝑛

𝑖=1(𝑎𝑛𝑖 +
2−𝑛𝜀
𝑁𝑛

, 𝑏𝑛𝑖]. Note that the 𝐶𝑛 lie in 𝒜, and 𝜇(𝐵𝑛 ∖ 𝐶𝑛) ≤ 2−𝑛𝜀
Since 𝐵𝑛 is decreasing, we have 𝐵𝑁 = ⋂𝑛≤𝑁 𝐵𝑛, and

𝐵𝑁 ∖ (𝐶1 ∩⋯ ∩ 𝐶𝑁) = 𝐵𝑛 ∩ (⋃
𝑛≤𝑁

𝐶𝑐
𝑛) = ⋃

𝑛≤𝑁
𝐵𝑁 ∖ 𝐶𝑛 ⊆ ⋃

𝑛≤𝑁
𝐵𝑛 ∖ 𝐶𝑛

Since 𝜇 is increasing,

𝜇(𝐵𝑁 ∖ (𝐶1 ∩⋯ ∩ 𝐶𝑁)) ≤ 𝜇(⋃
𝑛≤𝑁

𝐵𝑛 ∖ 𝐶𝑛) ≤ ∑
𝑛≤𝑁

𝜇(𝐵𝑛 ∖ 𝐶𝑛) ≤ ∑
𝑛≤𝑁

2−𝑁𝜀 ≤ 𝜀

Since in addition 𝜇(𝐵𝑁) ≥ 2𝜀, additivity implies that 𝜇(𝐶1 ∩ ⋯ ∩ 𝐶𝑁) ≥ 𝜀. This means
that 𝐶1 ∩ ⋯ ∩ 𝐶𝑁 cannot be empty. We can add the left endpoints of the intervals, giving
𝐾𝑁 = 𝐶1 ∩ ⋯ ∩ 𝐶𝑁 . By Analysis I, 𝐾𝑁 is a nested sequence of nonempty closed intervals
and therefore there is a point 𝑥 ∈ ℝ such that 𝑥 ∈ 𝐾𝑁 for all 𝑁. But 𝐾𝑁 ⊆ 𝐶𝑁 ⊆ 𝐵𝑁 , so
𝑥 ∈ ⋂𝑁 𝐵𝑛, which is a contradiction since⋂𝑁 𝐵𝑁 is empty. Therefore, a measure 𝜇 on ℬ
exists.

Now we prove uniqueness. Suppose 𝜇, 𝜆 are measures such that the measure of an interval
(𝑎, 𝑏] is 𝑏−𝑎. We define newmeasures 𝜇𝑛(𝐴) = 𝜇(𝐴∩(𝑛, 𝑛+1]) and 𝜆𝑛(𝐴) = 𝜆(𝐴∩(𝑛, 𝑛+1]).
These new measures are finite with total mass 1. Hence, we can use the uniqueness of
extension theorem to show 𝜇𝑛 = 𝜆𝑛 on ℬ. We find

𝜇(𝐴) = 𝜇(⋃
𝑛
𝐴 ∩ (𝑛, 𝑛 + 1]) = ∑

𝑛∈ℤ
𝜇(𝐴 ∩ (𝑛, 𝑛 + 1]) = ∑

𝑛∈ℤ
𝜇𝑛(𝐴) = ∑

𝑛∈ℤ
𝜆𝑛(𝐴) = ⋯ = 𝜆(𝐴)

Definition. A Borel set 𝐵 ∈ ℬ is called a Lebesgue null set if 𝜇(𝐵) = 0.

Remark. A singleton {𝑥} can be written as⋂𝑛 (𝑥 −
1
𝑛
, 𝑥], hence 𝜇(𝑥) = lim𝑛

1
𝑛
= 0. Hence

singletons are null sets. In particular, 𝜇((𝑎, 𝑏)) = 𝜇((𝑎, 𝑏]) = 𝜇([𝑎, 𝑏)) = 𝜇([𝑎, 𝑏]). Any
countable set 𝑄 = ⋃𝑞 {𝑞} is a null set. Not all null sets are countable; the Cantor set is an
example.

TheLebesguemeasure is translation-invariant. Let𝑥 ∈ ℝ, then the set𝐵+𝑥 = {𝑏 + 𝑥 ∣ 𝑏 ∈ 𝐵}
lies in ℬ if and only if 𝐵 ∈ ℬ, and in this case, it satisfies 𝜇(𝐵 + 𝑥) = 𝜇(𝐵). We can define
the translated Lebesgue measure 𝜇𝑥(𝐵) = 𝜇(𝐵 + 𝑥) for all 𝐵 ∈ ℬ, but since the Lebesgue
measure is unique, 𝜇𝑥 = 𝜇.
The class of outer measurable sets ℳ used in Carathéodory’s extension theorem is here
called the class of Lebesgue measurable sets. This class can be shown to be

ℳ = {𝑀 = 𝐴 ∪ 𝑁,𝐴 ∈ ℬ,𝑁 ⊆ 𝐵, 𝐵 ∈ ℬ, 𝜇(𝐵) = 0} ⊋ ℬ
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1.6. Existence of non-measurable sets
Assuming the axiomof choice, there exists a non-measurable set of reals. Consider𝐸 = (0, 1]
with addition defined modulo one. By the same argument as before, the Lebesgue measure
is translation-invariant modulo one. Consider the subgroup 𝑄 = 𝐸 ∩ℚ of (𝐸, +). We define
𝑥 ∼ 𝑦 if 𝑥 − 𝑦 ∈ 𝑄. Then, this gives equivalence classes [𝑥] = {𝑦 ∈ 𝐸∶ 𝑥 ∼ 𝑦} for all 𝑥 ∈ 𝐸.
Assuming the axiom of choice, we can select a representative of [𝑥] for each 𝑥 ∈ 𝐸, and
denote by 𝑆 the set of such representatives. We can partition 𝐸 into the union of its cosets,
so 𝐸 = ⋃𝑞∈𝑄(𝑆 + 𝑞) is a disjoint union.

Suppose 𝑆 is a Borel set. Then 𝑆 + 𝑞 is also a Borel set. We can therefore write

1 = 𝜇(𝐸) = 𝜇(⋃
𝑞∈𝑄

(𝑆 + 𝑞)) = ∑
𝑞∈𝑄

𝜇(𝑆 + 𝑞) = ∑
𝑞∈𝑄

𝜇(𝑆)

But no value for 𝜇(𝑆) ∈ [0,∞] can be assigned to make this equation hold. Therefore 𝑆 is
not a Borel set.

One can further show that 𝜇 cannot be extended to all subsets 𝒫(𝐸).
Theorem (Banach, Kuratowski). Assuming the continuumhypothesis, there exists nomeas-
ure 𝜇 on the set 𝒫((0, 1]) such that 𝜇((0, 1]) = 1 and 𝜇({𝑥}) = 0 for 𝑥 ∈ (0, 1].

1.7. Probability spaces
Definition. If a measure space (𝐸, ℰ, 𝜇) has 𝜇(𝐸) = 1, we call it a probability space, and
instead write (Ω,ℱ, ℙ). We call Ω the outcome space or sample space, ℱ the set of events,
and ℙ the probability measure.
The axioms of probability theory (Kolmogorov, 1933), are

(i) ℙ (Ω) = 1;
(ii) 0 ≤ ℙ (𝐸) ≤ 1 for all 𝐸 ∈ ℱ;
(iii) if 𝐴𝑛 are a disjoint sequence of events in ℱ, then ℙ (⋃𝑛 𝐴𝑛) = ∑𝑛 ℙ (𝐴𝑛).
This is exactly what is required by our definition: ℙ is a measure on a 𝜎-algebra.
Definition. Events 𝐴𝑖, 𝑖 ∈ 𝐼 are independent if for all finite 𝐽 ⊆ 𝐼, we have

ℙ(⋂
𝑗∈𝐽

𝐴𝑗) =∏
𝑗∈𝐽

ℙ (𝐴𝑗)

𝜎-algebras 𝒜𝑖, 𝑖 ∈ 𝐼 are independent if for any 𝐴𝑗 ∈ 𝒜𝑗 where 𝐽 ⊆ 𝐼 is finite, the 𝐴𝑗 are
independent.

Kolmogorov showed that these definitions are sufficient to derive the law of large num-
bers.
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Proposition. Let𝒜1, 𝒜2 be 𝜋-systems of sets inℱ. Suppose ℙ (𝐴1 ∩ 𝐴2) = ℙ (𝐴1) ℙ (𝐴2) for
all 𝐴1 ∈ 𝒜1, 𝐴2 ∈ 𝒜2. Then the 𝜎-algebras 𝜎(𝒜1), 𝜎(𝒜2) are independent.
This follows by uniqueness.

1.8. Borel–Cantelli lemmas
Definition. Let 𝐴𝑛 ∈ ℱ be a sequence of events. Then the limit superior of 𝐴𝑛 is

lim sup
𝑛

𝐴𝑛 =⋂
𝑛

⋃
𝑚≥𝑛

𝐴𝑚 = {𝐴𝑛 infinitely often}

The limit inferior of 𝐴𝑛 is

lim inf
𝑛

𝐴𝑛 =⋃
𝑛

⋂
𝑚≥𝑛

𝐴𝑚 = {𝐴𝑛 eventually}

Lemma (First Borel–Cantelli lemma). Let 𝐴𝑛 ∈ ℱ be a sequence of events such that
∑𝑛 ℙ (𝐴𝑛) < ∞. Then ℙ (𝐴𝑛 infinitely often) = 0.

Proof. For all 𝑛, we have

ℙ(lim sup
𝑛

𝐴𝑛) = ℙ(⋂
𝑛

⋃
𝑚≥𝑛

𝐴𝑚) ≤ ℙ(⋃
𝑚≥𝑛

𝐴𝑚) ≤ ∑
𝑚≥𝑛

ℙ (𝐴𝑚) → 0

This proof did not require thatℙ be a probabilitymeasure, just that it is ameasure. Therefore,
we can use this for arbitrary measures.

Lemma (Second Borel–Cantelli lemma). Let 𝐴𝑛 ∈ ℱ be a sequence of independent events,
and∑𝑛 ℙ (𝐴𝑛) = ∞. Then ℙ (𝐴𝑛 infinitely often) = 1.

Proof. By independence, for all 𝑁 ≥ 𝑛 ∈ ℕ and using 1 − 𝑎 ≤ 𝑒−𝑎, we find

ℙ(
𝑁

⋂
𝑚=𝑛

𝐴𝑐
𝑚) =

𝑁
∏
𝑚=𝑛

(1 − ℙ (𝐴𝑚)) ≤
𝑁
∏
𝑚=𝑛

𝑒−ℙ(𝐴𝑚) = 𝑒−∑𝑁
𝑚=𝑛 ℙ(𝐴𝑚)

As 𝑁 → ∞, this approaches zero. Since ⋂𝑁
𝑚=𝑛 𝐴𝑐

𝑚 decreases to ⋂∞
𝑚=𝑛 𝐴𝑐

𝑚, by countable
additivity we must have ℙ (⋂∞

𝑚=𝑛 𝐴𝑐
𝑚) = 0. But then

ℙ (𝐴𝑛 infinitely often) = ℙ(⋂
𝑛

⋃
𝑚≥𝑛

𝐴𝑚) = 1 − ℙ(⋃
𝑛

⋂
𝑚≥𝑛

𝐴𝑐
𝑚) ≥ 1 −∑

𝑛
ℙ(⋂

𝑚≥𝑛
𝐴𝑐
𝑚) = 1

Hence this probability is equal to one.
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2. Measurable functions
2.1. Definition
Definition. Let (𝐸, ℰ), (𝐺, 𝒢) be measurable spaces. A function 𝑓∶ 𝐸 → 𝐺 is called ℰ-𝒢-
measurable if when 𝐴 ∈ 𝒢, we have 𝑓−1(𝐴) ∈ ℰ.
Informally, the preimage of ameasurable set under ameasurable function ismeasurable.

If 𝐺 = ℝ and 𝒢 = ℬ, we can just say that 𝑓∶ (𝐸, ℰ) → 𝐺 is measurable. Moreover, if 𝐸 is a
topological space and ℰ = ℬ(𝐸), we say 𝑓 is Borel measurable.
Note that preimages 𝑓−1 commute with many set operations such as intersection, union,
and complement. This implies that {𝑓−1(𝐴) ∣ 𝐴 ∈ 𝒢} is a 𝜎-algebra over 𝐸, and likewise,
{𝐴 ∣ 𝑓−1(𝐴) ∈ ℰ} is a 𝜎-algebra over 𝐺. Hence, if𝒜 is a collection of subsets of 𝐺 generating
𝒢 such that 𝑓−1(𝐴) ∈ ℰ for all 𝐴 ∈ 𝒜, the class {𝐴 ∣ 𝑓−1 ∈ ℰ} is a 𝜎-algebra that contains 𝒜
and hence that contains 𝒢. In particular, it suffices to check 𝑓−1(𝐴) ∈ ℰ for all elements of
a generator to conclude that 𝑓 is measurable.
If 𝑓∶ (𝐸, ℰ) → ℝ, the collection 𝒜 = {(−∞, 𝑦]∶ 𝑦 ∈ ℝ} generates ℬ as is shown on the first
example sheet. Hence 𝑓 is measurable whenever 𝑓−1((−∞, 𝑦]) = {𝑥 ∈ 𝐸 ∣ 𝑓(𝑥) ≤ 𝑦} ∈ ℰ
for all 𝑦 ∈ ℝ.
If 𝐸 is a topological space and ℰ = ℬ(𝐸), then if 𝑓∶ 𝐸 → ℝ is continuous, the preimages
of open sets 𝐵 are open, and hence Borel sets. The open sets in ℝ generate the 𝜎-algebra ℬ.
Hence, continuous functions to the real line are measurable.

Example. Consider the indicator function 𝟙𝐴 of a set 𝐴. This is measurable if and only if 𝐴
is measurable, or equivalently 𝐴 ∈ ℰ.
Example. The composition of measurable functions is measurable. Measurability is pre-
served under addition, multiplication, countable infimum, countable supremum, countable
limit inferior, countable limit superior, and some other operations. Note that given a collec-
tion of maps {𝑓𝑖 ∶ 𝐸 → (𝐺, 𝒢) ∣ 𝑖 ∈ 𝐼}, we can make them all measurable by taking ℰ to be a
large enough 𝜎-algebra, for instance 𝜎({𝑓−1𝑖 (𝐴) ∣ 𝐴 ∈ 𝒢, 𝑖 ∈ 𝐼}).

2.2. Monotone class theorem
Theorem. Let 𝒜 be a 𝜋-system that generates the 𝜎-algebra ℰ over 𝐸. Let 𝒱 be a vector
space of bounded maps from 𝐸 to ℝ such that

(i) 𝟙𝐸 ∈ 𝒱;
(ii) 𝟙𝐴 ∈ 𝒱 for all 𝐴 ∈ 𝒜;
(iii) if𝑓 is bounded and𝑓𝑛 ∈ 𝒱 are nonnegative functions that forman increasing sequence

that converge pointwise to 𝑓 on 𝐸, then 𝑓 ∈ 𝒱.
Then 𝒱 contains all bounded measurable functions 𝑓∶ 𝐸 → ℝ.
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Proof. Define𝒟 = {𝐴 ∈ ℰ ∣ 𝟙𝐴 ∈ 𝒱}. This contains 𝒜 by hypothesis, as well as 𝐸 itself. We
show 𝒟 is a 𝑑-system, so that by Dynkin’s lemma, ℰ = 𝒟. Indeed, 𝐸 ∈ 𝒟 by assumption.
For 𝐴 ⊆ 𝐵 and 𝐴, 𝐵 ∈ 𝒟, we have 𝟙𝐵∖𝐴 = 𝟙𝐵 − 𝟙𝐴 which is well-defined and lies in 𝒱 as 𝒱
is a vector space. Finally, if 𝐴𝑛 ∈ 𝒟 increases to 𝐴, we have 𝟙𝐴𝑛 increases pointwise to 𝟙𝐴,
which lies in 𝒱 by the second hypothesis. Hence ℰ = 𝒟.
Let 𝑓∶ 𝐸 → ℝ be a bounded measurable function, which we will assume at first is nonneg-
ative. We define

𝑓𝑛 =
𝑛2𝑛

∑
𝑗=0

𝑗
2𝑛 𝟙𝐴𝑛𝑗

; 𝐴𝑛𝑗 = {{𝑥 ∈ 𝐸 ∣ 𝑗
2𝑛
< 𝑓(𝑥) ≤ 𝑗+1

2𝑛
} = 𝑓−1 (( 𝑗

2𝑛
, 𝑗+1
2𝑛
]) ∈ ℰ if 𝑗 ≠ 𝑛2𝑛

{𝑥 ∈ 𝐸 ∣ 𝑛 < 𝑓(𝑥)} = 𝑓−1((𝑛,∞)) if 𝑗 = 𝑛2𝑛

Since 𝑓 is bounded, for 𝑛 > ‖𝑓‖∞, we have 𝑓𝑛 ≤ 𝑓 ≤ 𝑓𝑛 + 2−𝑛. Hence |𝑓𝑛 − 𝑓| ≤ 2−𝑛 → 0.
By assumption, the limit of the 𝑓𝑛, which is exactly 𝑓, also lies in 𝒱.
Now, by separating any bounded measurable function 𝑓 into its positive and negative parts,
we find that these two parts lie in 𝒱, and so 𝑓 ∈ 𝒱 as required.

2.3. Image measures
Definition. Let 𝑓∶ (𝐸, ℰ) → (𝐺, 𝒢) be a measurable function, and 𝜇 is a measure on (𝐸, ℰ).
Then the image measure 𝜈 = 𝜇 ∘ 𝑓−1 is obtained from assigning 𝜈(𝐴) = 𝜇(𝑓−1(𝐴)) for all
𝐴 ∈ 𝒢.
Lemma. Let 𝑔∶ ℝ → ℝ be an increasing, right-continuous function, and set 𝑔(±∞) =
lim𝑧→±∞ 𝑔(𝑧). On 𝐼 = (𝑔(−∞), 𝑔(+∞)) we define the generalised inverse

𝑓(𝑥) = inf {𝑦 ∈ ℝ ∣ 𝑥 ≤ 𝑔(𝑦)}

for 𝑥 ∈ 𝐼. Then 𝑓 is increasing, left-continuous, and 𝑓(𝑥) ≤ 𝑦 if and only if 𝑥 ≤ 𝑔(𝑦) for all
𝑥 ∈ 𝐼, 𝑦 ∈ ℝ.
Remark. 𝑓 and 𝑔 form a Galois connection.

Proof. Let 𝐽𝑥 = {𝑦 ∈ ℝ ∣ 𝑥 ≤ 𝑔(𝑦)}. Since 𝑥 > 𝑔(−∞), 𝐽𝑥 is nonempty and bounded below.
Hence 𝑓(𝑥) is a well-defined real number. If 𝑦 ∈ 𝐽𝑥, then 𝑦′ ≥ 𝑦 implies 𝑦′ ∈ 𝐽𝑥 since 𝑔 is
increasing. Further, if 𝑦𝑛 converges from the right to 𝑦, and all 𝑦𝑛 ∈ 𝐽𝑥, we can take limits
in 𝑥 ≤ 𝑔(𝑦𝑛) to find 𝑥 ≤ lim𝑛 𝑔(𝑦𝑛) = 𝑔(𝑦) since 𝑔 is right-continuous. Hence 𝑦 ∈ 𝐽𝑥. So
𝐽𝑥 = [𝑓(𝑥),∞). Hence 𝑓(𝑥) ≤ 𝑦 ⟺ 𝑥 ≤ 𝑔(𝑦) as required.
If 𝑥 ≤ 𝑥′, we have 𝐽𝑥 ⊇ 𝐽𝑥′ by definition, so 𝑓(𝑥) ≤ 𝑓(𝑥′). Similarly, if 𝑥𝑛 converges from the
left to 𝑥, we have 𝐽𝑥 = ⋂𝑛 𝐽𝑥𝑛 , so 𝑓(𝑥𝑛) → 𝑓(𝑥) as 𝑥𝑛 → 𝑥.

Theorem. Let 𝑔∶ ℝ → ℝ be an increasing, right-continuous function, and set 𝑔(±∞) =
lim𝑧→±∞ 𝑔(𝑧). Then there exists a unique Radon measure 𝜇𝑔 on ℝ such that 𝜇𝑔((𝑎, 𝑏]) =
𝑔(𝑏) − 𝑔(𝑎) for all 𝑎 < 𝑏. Further, all Radon measures can be obtained in this way.
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Proof. We will show that the generalised inverse 𝑓 as defined above is measurable. For all
𝑧 ∈ ℝ, we find 𝑓−1((−∞, 𝑧]) = {𝑥∶ 𝑓(𝑥) ≤ 𝑧} = {𝑥∶ 𝑥 ≤ 𝑔(𝑧)} = [−𝑔(∞), 𝑔(𝑧)] which is
measurable. Since ℬ is generated by these such sets, 𝑓 is ℬ(𝐼)-ℬ measurable as required.
Therefore, the image measure 𝜇𝑔 = 𝜇 ∘ 𝑓−1, where 𝜇 is the Lebesgue measure on 𝐼, exists.
Then for any −∞ < 𝑎 < 𝑏 < ∞, we have

𝜇𝑔((𝑎, 𝑏]) = 𝜇(𝑓−1((𝑎, 𝑏]))
= 𝜇({𝑥∶ 𝑎 < 𝑓(𝑥) ≤ 𝑓(𝑏)})
= 𝜇({𝑥∶ 𝑔(𝑎) < 𝑥 ≤ 𝑔(𝑏)})
= 𝑔(𝑏) − 𝑔(𝑎)

This uniquely determines 𝜇𝑔 by the same argument as shown previously for the Lebesgue
measure 𝜇 onℝ. Since 𝑔maps intoℝ, 𝑔(𝑏)−𝑔(𝑎) ∈ ℝ so any compact set has finite measure
as it is a subset of a closed bounded interval.

Conversely, let 𝜈 be a Radon measure on ℝ. Define

𝑔(𝑦) = {𝜈((0, 𝑦]) if 𝑦 ≥ 0
−𝜈((𝑦, 0]) if 𝑦 < 0

This is an increasing function in 𝑦, since 𝜈 is a measure. Since we are using right-closed
intervals, 𝑔 is right-continuous. Finally, 𝜈((𝑎, 𝑏]) = 𝑔(𝑏) − 𝑔(𝑎) which can be seen by case
analysis and additivity of the measure 𝜈. By uniqueness as before, this characterises 𝜈 in its
entirety.

Remark. Such image measures 𝜇𝑔 are called Lebesgue–Stieltjes measures, where 𝑔 is the
Stieltjes distribution.

Example. The Dirac measure at 𝑥, written 𝛿𝑥, is defined by

𝛿𝑥(𝐴) = {1 if 𝑥 ∈ 𝐴
0 otherwise

This has Stieltjes distribution 𝑔(𝑥) = 𝟙[𝑥,∞).

2.4. Random variables
Definition. Let (Ω,ℱ, ℙ) be a probability space, and (𝐸, ℰ) be a measurable space. An 𝐸-
valued random variable 𝑋 is an ℱ-ℰ measurable map 𝑋 ∶ Ω → 𝐸. When 𝐸 = ℝ or ℝ𝑑 with
the Borel 𝜎-algebra, we simply call 𝑋 a random variable or random vector.

The law ordistribution𝜇𝑋 of a randomvariable𝑋 is given by the imagemeasure𝜇𝑋 = ℙ∘𝑋−1.
When 𝐸 is the real line, this measure has a distribution function

𝐹𝑋(𝑧) = 𝜇𝑋((−∞, 𝑧]) = ℙ(𝑋−1(−∞, 𝑧]) = ℙ ({𝜔 ∈ Ω ∣ 𝑋(𝜔) ≤ 𝑧}) = ℙ (𝑋 ≤ 𝑧)

This uniquely determines 𝜇𝑋 by the 𝜋-system argument given above.
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Using the properties ofmeasures, we can show that any distribution function satisfies:

(i) 𝐹𝑋 is increasing;

(ii) 𝐹𝑋 is right-continuous;

(iii) lim𝑧→−∞ 𝐹𝑋(𝑧) = 𝜇𝑋(∅) = 0;
(iv) lim𝑧→∞ 𝐹𝑋(𝑧) = 𝜇𝑋(ℝ) = ℙ (Ω) = 1.
Given any function 𝐹𝑋 satisfying each property, we can obtain a random variable 𝑋 on
(Ω,ℱ, ℙ) = ((0, 1), ℬ((0, 1)), 𝜇) by 𝑋(𝜔) = inf {𝑥 ∣ 𝜔 ≤ 𝑓(𝑥)}, and then 𝐹𝑋 is the distribu-
tion function of 𝑋 .
Definition. Consider a countable collection (𝑋𝑖 ∶ (Ω,ℱ, ℙ) → (𝐸, ℰ)) for 𝑖 ∈ 𝐼. This col-
lection of random variables is called independent if the 𝜎-algebras 𝜎({𝑋−1

𝑖 (𝐴)∶ 𝐴 ∈ ℰ}) are
independent.

For (𝐸, ℰ) = (ℝ,ℬ)we showonan example sheet that this is equivalent to the condition
ℙ (𝑋1 ≤ 𝑥1,… , 𝑋𝑛 ≤ 𝑥𝑛) = ℙ (𝑋1 ≤ 𝑥1)…ℙ (𝑋𝑛 ≤ 𝑥𝑛)

for all finite subsets {𝑋1,… , 𝑋𝑛} of the 𝑋𝑖.

2.5. Constructing independent random variables
We now construct an infinite sequence of independent random variables with prescribed
distribution functions on (Ω,ℱ, ℙ) = ((0, 1), ℬ, 𝜇) with 𝜇 the Lebesgue measure on (0, 1).
We start with Bernoulli random variables.

Any 𝜔 ∈ (0, 1) has a binary representation given by (𝜔𝑖) ∈ {0, 1}ℕ, which is unique if we
exclude infinitely long tails of zeroes from the binary representation. We can then define the
𝑛th Rademacher function 𝑅𝑛(𝜔) = 𝜔𝑛 which extracts the 𝑛th bit from the binary expansion.
Since each 𝑅𝑛 can be given as the sum of 2𝑛−1 indicator functions on measurable sets, they
are measurable functions and are hence random variables. Their distribution is given by
ℙ (𝑅𝑛 = 1) = 1

2
= ℙ (𝑅𝑛 = 0), so we have constructed Bernoulli random variables with

parameter 1
2
. We show they are independent. For a finite set (𝑥𝑖)𝑛𝑖=1,

ℙ (𝑅1 = 𝑥1,… , 𝑅𝑛 = 𝑥𝑛) = 2−𝑛 = ℙ (𝑅1 = 𝑥1)…ℙ (𝑅𝑛 = 𝑥𝑛)
Therefore, the 𝑅𝑛 are all independent, so countable sequences of independent random vari-
ables indeed exist. Now, take a bijection 𝑚∶ ℕ2 → ℕ and define 𝑌𝑛𝑘 = 𝑅𝑚(𝑛,𝑘), which are
independent random variables. We can now define 𝑌𝑛 = ∑𝑘 2−𝑘𝑌𝑛𝑘. This converges for
all 𝜔 ∈ Ω since |𝑌𝑛𝑘| ≤ 1, and these are still independent. We show the 𝑌𝑛 are uniform
random variables, by showing the distribution coincides with the uniform distribution on
the 𝜋-system of intervals ( 𝑖

2𝑚
, 𝑖+1
2𝑚+1 ] for 𝑖 = 0,… , 2𝑚 − 1, which generates ℬ.

ℙ(𝑌𝑛 ∈ ( 𝑖
2𝑚 ,

𝑖 + 1
2𝑚 ]) = ℙ( 𝑖

2𝑚 < ∑
𝑘
2−𝑘𝑌𝑛𝑘 ≤

𝑖 + 1
2𝑛 ) = 2−𝑚 = 𝜇 ( 𝑖

2𝑚 ,
𝑖 + 1
2𝑚+1 ]
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Hence 𝜇𝑌𝑛 = 𝜇|(0,1) by the uniqueness theorem, and so we have constructed an infinite
sequence of independent uniform random variables 𝑌𝑛. If 𝐹𝑛 are probability distribution
functions, taking the generalised inverse, we see that the 𝐹−1𝑛 (𝑌𝑛) are independent and have
distribution function 𝐹𝑛.

2.6. Convergence of measurable functions
Definition. Wesay that a property defining a set𝐴 ∈ ℰ holds𝜇-almost everywhere if𝜇(𝐴𝑐) =
0 for a measure 𝜇 on ℰ. If 𝜇 = ℙ, we say a property holds ℙ-almost surely or with probability
one, if ℙ(𝐴) = 1.
Definition. If 𝑓𝑛 and 𝑓 are measurable functions on (𝐸, ℰ, 𝜇), we say 𝑓𝑛 converges to 𝑓 𝜇-
almost everywhere if 𝜇({𝑥 ∈ 𝐸 ∣ 𝑓𝑛(𝑥) ↛ 𝑓(𝑥)}) = 0. We say 𝑓𝑛 converges to 𝑓 in 𝜇-measure
if for all 𝜀 > 0, 𝜇({𝑥 ∈ 𝐸 ∣ |𝑓𝑛(𝑥) − 𝑓(𝑥)| > 𝜀}) → 0 as 𝑛 → ∞. For random variables, we
say 𝑋𝑛 → 𝑋 ℙ-almost surely or in ℙ-probability, written 𝑋𝑛 →𝑝 𝑋 , respectively. If 𝑋𝑛, 𝑋 take
values in ℝ, we say 𝑋𝑛 → 𝑋 in distribution, written 𝑋𝑛 →𝑑 𝑋 if ℙ (𝑋𝑛 ≤ 𝑥) → ℙ (𝑋 ≤ 𝑥) at
all points 𝑥 for which the limit 𝑥 ↦ ℙ (𝑋 ≤ 𝑥) is continuous.
We can show that 𝑋𝑛 →𝑝 𝑋 ⟹ 𝑋𝑛 →𝑑 𝑋 .
Theorem. Let 𝑓𝑛∶ (𝐸, ℰ, 𝜇) → ℝ be measurable functions. Then,

(i) if 𝜇(𝐸) < ∞, then 𝑓𝑛 → 0 almost everywhere implies that 𝑓𝑛 → 0 in measure;
(ii) if 𝑓𝑛 → 0 in measure, 𝑓𝑛𝑘 → 0 almost everywhere on some subsequence.

Proof. Let 𝜀 > 0.

𝜇(|𝑓𝑛| < 𝜀) ≥ 𝜇(⋂
𝑚≥𝑛

{|𝑓𝑚| ≤ 𝜀})

The sequence (⋂𝑚≥𝑛 {|𝑓𝑚| ≤ 𝜀})
𝑛
increases to⋃𝑛⋂𝑚≥𝑛 {|𝑓𝑚| ≤ 𝜀}. So by countable additiv-

ity,

𝜇(⋂
𝑚≥𝑛

{|𝑓𝑚| ≤ 𝜀}) → 𝜇(⋃
𝑛

⋂
𝑚≥𝑛

{|𝑓𝑚| ≤ 𝜀})

= 𝜇(|𝑓𝑛| ≤ 𝜀 eventually)
≥ 𝜇(|𝑓𝑛| → 0) = 𝜇(𝐸)

Hence,

lim inf
𝑛

𝜇(|𝑓𝑛| ≤ 𝜀) ≥ 𝜇(𝐸) ⟹ lim sup
𝑛

𝜇(|𝑓𝑛| > 𝜀) ≤ 0 ⟹ 𝜇(|𝑓𝑛| > 𝜀) → 0

For the second part, by hypothesis, we have

𝜇(|𝑓𝑛| >
1
𝑘) < 𝜀
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for sufficiently large 𝑛. So choosing 𝜀 = 1
𝑘2
, we see that along some subsequence 𝑛𝑘 we have

𝜇(||𝑓𝑛𝑘 || >
1
𝑘) ≤

1
𝑘2

Hence,
∑
𝑘
𝜇(||𝑓𝑛𝑘 || >

1
𝑛) < ∞

So by the first Borel–Cantelli lemma, we have

𝜇(||𝑓𝑛𝑘 || >
1
𝑘 infinitely often) = 0

so 𝑓𝑛𝑘 → 0 almost everywhere.

Remark. Condition (i) is false if 𝜇(𝐸) is infinite: consider 𝑓𝑛 = 𝟙(𝑛,∞) on (ℝ,ℬ, 𝜇), since
𝑓𝑛 → 0 almost everywhere but 𝜇(𝑓𝑛) = ∞. Condition (ii) is false if we do not restrict to
subsequences: consider independent events 𝐴𝑛 such that ℙ (𝐴𝑛) =

1
𝑛
, then 𝟙𝐴𝑛 → 0 in

probability since ℙ (𝟙𝐴𝑛 > 𝜀) = ℙ (𝐴𝑛) =
1
𝑛
→ 0, but ∑𝑛 ℙ (𝐴𝑛) = ∞, and by the second

Borel–Cantelli lemma, ℙ (𝟙𝐴𝑛 > 𝜀 infinitely often) = 1, so 𝟙𝐴𝑛 ↛ 0 almost surely.
Example. Let (𝑋𝑛)𝑛∈ℕ be a sequence of independent exponential random variables distrib-
uted by ℙ (𝑋1 ≤ 𝑥) = 1 − 𝑒−𝑥 for 𝑥 ≥ 0. Define 𝐴𝑛 = {𝑋𝑛 ≥ 𝛼 log𝑛} where 𝛼 > 0, so
ℙ (𝐴𝑛) = 𝑛−𝛼, and in particular,∑𝑛 ℙ (𝐴𝑛) < ∞ if and only if 𝛼 > 1. By the Borel–Cantelli
lemmas, we have for all 𝜀 > 0,

ℙ( 𝑋𝑛
log𝑛 ≥ 1 infinitely often) = 1; ℙ ( 𝑋𝑛

log𝑛 ≥ 1 + 𝜀 infinitely often) = 0

In other words, lim sup𝑛
𝑋𝑛
log𝑛

= 1 almost surely.

2.7. Kolmogorov’s zero-one law
Let (𝑋𝑛)𝑛∈ℕ be a sequence of random variables. We can define 𝒯𝑛 = 𝜎(𝑋𝑛+1, 𝑋𝑛+2,… ). Let
𝒯 = ⋂𝑛∈ℕ𝒯𝑛 be the tail 𝜎-algebra, which contains all events in ℱ that depend only on the
limiting behaviour of (𝑋𝑛).
Theorem. Let (𝑋𝑛)𝑛∈ℕ be a sequence of independent random variables. Let 𝐴 ∈ 𝒯 be
an event in the tail 𝜎-algebra. Then ℙ (𝐴) = 1 or ℙ (𝐴) = 0. If 𝑌 ∶ (Ω,𝒯) → (ℝ,ℬ) is
measurable, it is constant almost surely.

Proof. Define ℱ𝑛 = 𝜎(𝑋1,… , 𝑋𝑛) to be the 𝜎-algebra generated by the first 𝑛 elements of
(𝑋𝑛). This is also generated by the 𝜋-system of sets 𝐴 = (𝑋1 ≤ 𝑥1,… , 𝑋𝑛 ≤ 𝑥𝑛) for any 𝑥𝑖 ∈
ℝ. Note that the 𝜋-system of sets 𝐵 = (𝑋𝑛+1 ≤ 𝑥𝑛+1,… , 𝑋𝑛+𝑘 ≤ 𝑥𝑛+𝑘), for arbitrary 𝑘 ∈
ℕ and 𝑥𝑖 ∈ ℝ, generates 𝒯𝑛. By independence of the sequence, we see that ℙ (𝐴 ∩ 𝐵) =

82



2. Measurable functions

ℙ (𝐴)ℙ (𝐵) for all such sets 𝐴, 𝐵, and so the 𝜎-algebras 𝒯𝑛, ℱ𝑛 generated by these 𝜋-systems
are independent.

Letℱ∞ = 𝜎(𝑋1, 𝑋2,… ). Then,⋃𝑛ℱ𝑛 is a𝜋-system that generatesℱ∞. If𝐴 ∈ ⋃𝑛ℱ𝑛, we have
𝐴 ∈ ℱ𝑛 for some 𝑛, so there exists 𝑛 such that 𝐵 ∈ 𝒯𝑛 is independent of 𝐴. In particular,
𝐵 ∈ ⋂𝑛𝒯𝑛 = 𝒯. By uniqueness, ℱ∞ is independent of 𝒯.
Since 𝒯 ⊆ ℱ∞, if 𝐴 ∈ 𝒯, 𝐴 is independent from 𝐴. So ℙ (𝐴) = ℙ (𝐴 ∩ 𝐴) = ℙ (𝐴)ℙ (𝐴), so
ℙ (𝐴)2 − ℙ (𝐴) = 0 as required.
Finally, if 𝑌 ∶ (Ω,𝒯) → (ℝ,ℬ), the preimages of {𝑌 ≤ 𝑦} lie in𝒯, which give probability one
or zero. Let 𝑐 = inf {𝑦 ∣ 𝐹𝑌 (𝑦) = 1}, so 𝑌 = 𝑐 almost surely.
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3. Integration
3.1. Notation
Let 𝑓∶ (𝐸, ℰ, 𝜇) → ℝ be an ‘integrable’ function, a notion we will define. We will then
define the integral with respect to 𝜇, either written 𝜇(𝑓) or ∫𝐸 𝑓 d𝜇 = ∫𝐸 𝑓(𝑥) d𝜇(𝑥). If 𝑋 is
a random variable, we will define its expectation 𝔼 [𝑋] = ∫Ω 𝑋 dℙ = ∫Ω 𝑋(𝜔) dℙ(𝜔).

3.2. Definition
We say that a function 𝑓∶ (𝐸, ℰ, 𝜇) → ℝ is simple if it is of the form

𝑓 =
𝑚
∑
𝑘=1

𝑎𝑘𝟙𝐴𝑘 ; 𝑎𝑘 ≥ 0; 𝐴𝑘 ∈ ℰ; 𝑚 ∈ ℕ

Definition. The 𝜇-integral of a simple function 𝑓 defined as above is

𝜇(𝑓) =
𝑚
∑
𝑘=1

𝑎𝑘𝜇(𝐴𝑘)

which is independent of the choice of representation of the simple function.

Remark. We have 𝜇(𝛼𝑓 + 𝛽𝑔) = 𝛼𝜇(𝑓) + 𝛽𝜇(𝑔) for all nonnegative coefficients 𝛼, 𝛽 and
simple functions 𝑓, 𝑔. If 𝑔 ≤ 𝑓, 𝜇(𝑔) ≤ 𝜇(𝑓), so 𝜇 is increasing. If 𝑓 = 0 almost everywhere,
𝜇(𝑓) = 0.
For a general non-negative function 𝑓∶ (𝐸, ℰ, 𝜇) → ℝ, we define its 𝜇-integral to be

𝜇(𝑓) = sup {𝜇(𝑔) ∣ 𝑔 ≤ 𝑓, 𝑔 simple}

which agrees with the above definition for simple functions. This operator takes values in
the extended non-negative real line [0,∞]. Now, for 𝑓∶ (𝐸, ℰ, 𝜇) → ℝ measurable but not
necessarily non-negative, we define 𝑓+ = max(𝑓, 0) and 𝑓− = max(−𝑓, 0), so that 𝑓 =
𝑓+ − 𝑓− and |𝑓| = 𝑓+ + 𝑓−.
Definition. A measurable function 𝑓∶ (𝐸, ℰ, 𝜇) → ℝ is 𝜇-integrable if 𝜇(|𝑓|) < ∞. In this
case, we define its integral to be

𝜇(𝑓) = 𝜇(𝑓+) − 𝜇(𝑓−)

which is a well-defined real number.

3.3. Monotone convergence theorem
Theorem. Let 𝑓𝑛, 𝑓∶ (𝐸, ℰ, 𝜇) → ℝ be measurable and non-negative such that 𝑓𝑛 increases
pointwise to 𝑓, so 𝑓𝑛(𝑥) ≤ 𝑓𝑛+1(𝑥) ≤ 𝑓(𝑥) and 𝑓𝑛(𝑥) → 𝑓(𝑥) as 𝑛 → ∞. Then, 𝜇(𝑓𝑛) → 𝜇(𝑓)
as 𝑛 → ∞.
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Remark. This is a theorem that allows us to interchange a pair of limits, 𝜇(𝑓) = 𝜇(lim𝑛 𝑓𝑛) =
lim𝑛 𝜇(𝑓𝑛). Also, 𝑔𝑛 ≥ 0, 𝜇(∑𝑛 𝑔𝑛) = ∑𝑛 𝜇(𝑔𝑛).

If we consider the approximating sequence 𝑓𝑛 = 2−𝑛⌊2𝑛𝑓⌋, as defined in the monotone class
theorem, then this is a non-negative sequence converging to 𝑓. So in particular, 𝜇(𝑓) is equal
to the limit of the integrals of these simple functions.

It suffices to require convergence of 𝑓𝑛 → 𝑓 almost everywhere, the general argument does
not need to change. The non-negativity constraint is not required if the first term in the
sequence 𝑓0 is integrable, by subtracting 𝑓0 from every term.

Proof. Recall that 𝜇(𝑓) = sup {𝜇(𝑔) ∣ 𝑔 ≤ 𝑓, 𝑔 simple}. Since 𝑓𝑛 is an increasing sequence
of nonnegative functions, 𝜇(𝑓𝑛) is an increasing sequence of nonnegative functions. So it
converges to its (extended non-negative real) supremum 𝑀 = sup𝑛 𝜇(𝑓𝑛). Since 𝑓𝑛 ≤ 𝑓,
𝜇(𝑓𝑛) ≤ 𝜇(𝑓), so taking suprema, 𝑀 ≤ 𝜇(𝑓). If𝑀 is finite, sup𝑛 𝜇(𝑓𝑛) = lim𝑛 𝜇(𝑓𝑛) ≤ 𝜇(𝑓).
If𝑀 is infinite, we are already done.

Now, we need to show 𝜇(𝑓) ≤ 𝑀, or equivalently, 𝜇(𝑔) ≤ 𝑀 for all simple 𝑔 such that 𝑔 ≤ 𝑓,
so that taking suprema, 𝜇(𝑓) = sup𝑔 𝜇(𝑔) ≤ 𝑀. We define 𝑔𝑛 = min(𝑓𝑛, 𝑔), where 𝑓𝑛 is the
𝑛th approximation of 𝑓𝑛 by simple functions from the monotone class theorem. Now, since
𝑓𝑛 increases to 𝑓, 𝑓𝑛 increases to 𝑓. In particular, 𝑔𝑛 = min(𝑓𝑛, 𝑔) increases to min(𝑓, 𝑔) = 𝑔.
Since 𝑓𝑛 ≤ 𝑓𝑛 by definition, we have 𝑔𝑛 ≤ 𝑓𝑛 for all 𝑛.

Now let 𝑔 be an arbitrary simple function of the form 𝑔 = ∑𝑚
𝑘=1 𝑎𝑘𝟙𝐴𝑘 where 𝑎𝑘 ≥ 0 and the

𝐴𝑘 ∈ ℰ are disjoint. For 𝜀 > 0, we define sets 𝐴𝑘(𝑛) = {𝑥 ∈ 𝐴𝑘 ∣ 𝑔𝑛(𝑥) ≥ (1 − 𝜀)𝑎𝑘}. Since
𝑔 = 𝑎𝑘 on𝐴𝑘, and since 𝑔𝑛 increases to 𝑔, wemust have𝐴𝑘(𝑛) increases to𝐴𝑘 for all 𝑘. Since
𝜇 is a measure, 𝜇(𝐴𝑘(𝑛)) increases to 𝜇(𝐴𝑘) by countable additivity.

We have 𝑔𝑛𝟙𝐴𝑘 ≥ 𝑔𝑛𝟙𝐴𝑘(𝑛) ≥ (1 − 𝜀)𝑎𝑘𝟙𝐴𝑘(𝑛) on 𝐸. Moreover, 𝑔𝑛 = ∑𝑚
𝑘=1 𝑔𝑛𝟙𝐴𝑘 since the 𝐴𝑘

are disjoint and support 𝑔𝑛. Hence, 𝑔𝑛 ≥ ∑𝑚
𝑘=1(1 − 𝜀)𝑎𝑘𝟙𝐴𝑘(𝑛), and in particular, 𝜇(𝑔𝑛) ≥

(1−𝜀)∑𝑚
𝑘=1 𝑎𝑘𝜇(𝐴𝑘(𝑛)). The right hand side increases to (1−𝜀)∑

𝑚
𝑘=1 𝑎𝑘𝜇(𝐴𝑘) = (1−𝜀)𝜇(𝑔).

Hence
𝜇(𝑔) ≤ 1

1 − 𝜀 lim sup
𝑛

𝜇(𝑔𝑛) ≤
1

1 − 𝜀 lim sup
𝑛

𝜇(𝑓𝑛) ≤
𝑀
1 − 𝜀

Since 𝜀 was arbitrary, this completes the proof.

3.4. Linearity of integral
Theorem. Let 𝑓, 𝑔∶ (𝐸, ℰ, 𝜇) → ℝ be nonnegative measurable functions. Then 𝜇(𝛼𝑓 +
𝛽𝑔) = 𝛼𝜇(𝑓) + 𝛽𝜇(𝑔) for all 𝛼, 𝛽 ≥ 0. Further, if 𝑔 ≤ 𝑓, then 𝜇(𝑔) ≤ 𝜇(𝑓). Finally, 𝑓 = 0
almost everywhere if and only if 𝜇(𝑓) = 0.

Proof. If 𝑓𝑛, ̃𝑔𝑛 are the approximations of 𝑓 and 𝑔 by simple funtions from the monotone
class theorem, 𝛼𝑓𝑛 increases to 𝛼𝑓 and 𝛽 ̃𝑔𝑛 increases to 𝛽𝑔, so 𝛼𝑓𝑛 + 𝛽 ̃𝑔𝑛 increases to 𝛼𝑓 +
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𝛽𝑔. Integrating both sides and using the monotone convergence theorem, the result follows,
since linearity of simple functions is simple to prove.

The second part 𝑔 ≤ 𝑓 ⟹ 𝜇(𝑔) ≤ 𝜇(𝑓) has already been proven. Now, if 𝑓 = 0 almost
everywhere, its approximation 0 ≤ 𝑓𝑛 increases to 𝑓 almost everywhere, so must be exactly
zero for all 𝑛. So 𝜇(𝑓𝑛) = 0 so 𝜇(𝑓) = 0. Conversely, if 𝜇(𝑓) = 0, then 0 ≤ 𝜇(𝑓𝑛) → 0 gives
𝜇(𝑓𝑛) = 0 so 𝑓𝑛 = 0 almost everywhere. Since 0 = 𝑓𝑛 increases almost everywhere to 𝑓, 𝑓 is
zero almost everywhere.

Remark. Functions such as 𝟙ℚ are integrable and have integral zero. They are ‘identified’
with the zero element in the theory of integration.

Theorem. Let𝑓, 𝑔∶ (𝐸, ℰ, 𝜇) → ℝ be integrable functions. Then𝜇(𝛼𝑓+𝛽𝑔) = 𝛼𝜇(𝑓)+𝛽𝜇(𝑔)
for all 𝛼, 𝛽 ∈ ℝ; if 𝑔 ≤ 𝑓, then 𝜇(𝑔) ≤ 𝜇(𝑓); and if 𝑓 = 0 almost everywhere, we have
𝜇(𝑓) = 0.

Proof. Clearly, if 𝑓 is integrable, so is 𝛼𝑓, and 𝜇(−𝑓) = −𝜇(𝑓), by definition of the integral
for a general function. We can explicitly check that for 𝛼 ≥ 0, we have 𝜇(𝛼𝑓) = 𝜇((𝛼𝑓)+) −
𝜇((𝛼𝑓)−) = 𝛼𝜇(𝑓+)−𝛼𝜇(𝑓−) = 𝛼𝜇(𝑓). Define ℎ = 𝑓+𝑔. Then ℎ++𝑓−+𝑔− = ℎ−+𝑓++𝑔+,
so by the previous theorem, 𝜇(ℎ+) + 𝜇(𝑓−) + 𝜇(𝑔−) = 𝜇(ℎ−) + 𝜇(𝑓+) + 𝜇(𝑔+) and the result
holds.

Finally, if 0 ≤ 𝑓 − 𝑔, we have 0 ≤ 𝜇(0) ≤ 𝜇(𝑓 − 𝑔) = 𝜇(𝑓) − 𝜇(𝑔) so the result follows. If
𝑓 = 0 almost everywhere, 𝑓+ = 0 and 𝑓− = 0 almost everywhere, so 𝜇(𝑓) = 0.

3.5. Fatou’s lemma
Lemma. Let𝑓𝑛∶ (𝐸, ℰ, 𝜇) → ℝ benonnegativemeasurable functions. Then𝜇(lim inf𝑛 𝑓𝑛) ≤
lim inf𝑛 𝜇(𝑓𝑛).

Remark. Recall that lim inf𝑛 𝑥𝑛 = sup𝑛 inf𝑚≥𝑛 𝑥𝑚 and lim sup𝑛 𝑥𝑛 = inf𝑛 sup𝑚≥𝑛 𝑥𝑚. In
particular, lim sup𝑛 𝑥𝑛 = lim inf𝑛 𝑥𝑛 implies that lim𝑛 𝑥𝑛 exists and is equal to lim sup𝑛 𝑥𝑛
and lim inf𝑛 𝑥𝑛. Hence, if the 𝑓𝑛 converge to some measurable function 𝑓, we must have
𝜇(𝑓) ≤ lim inf𝑛 𝜇(𝑓𝑛).

Proof. We have inf𝑚≥𝑛 𝑓𝑚 ≤ 𝑓𝑘 for all 𝑘 ≥ 𝑛, so by taking integrals, 𝜇(inf𝑚≥𝑛 𝑓𝑚) ≤ 𝜇(𝑓𝑘).
Thus,

𝜇( inf
𝑚≥𝑛

𝑓𝑚) ≤ inf
𝑘≥𝑛

𝜇(𝑓𝑘) ≤ sup
𝑛

inf
𝑘≥𝑛

𝜇(𝑓𝑘) = lim inf
𝑛

𝜇(𝑓𝑛)

Note that inf𝑚≥𝑛 𝑓𝑚 increases to sup𝑛 inf𝑚≥𝑛 𝑓𝑚 = lim inf𝑛 𝑓𝑛. By the monotone conver-
gence theorem,

𝜇(lim inf
𝑛

𝑓𝑛) = lim
𝑛
𝜇( inf

𝑚≥𝑛
𝑓𝑚) ≤ lim inf

𝑛
𝜇(𝑓𝑛)

as required.
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3.6. Dominated convergence theorem
Theorem. Let 𝑓𝑛, 𝑓∶ (𝐸, ℰ, 𝜇) be measurable functions such that |𝑓𝑛| ≤ 𝑔 almost every-
where on 𝐸, and the dominating function 𝑔 is 𝜇-integrable, so 𝜇(𝑔) < ∞. Suppose 𝑓𝑛 → 𝑓
pointwise (or almost everywhere) on 𝐸. Then 𝑓𝑛 and 𝑓 are also integrable, and 𝜇(𝑓𝑛) → 𝜇(𝑓)
as 𝑛 → ∞.

Proof. Clearly 𝜇(|𝑓𝑛|) ≤ 𝜇(𝑔) < ∞, so the 𝑓𝑛 are integrable. Taking limits in |𝑓𝑛| ≤ 𝑔, we
have |𝑓| ≤ 𝑔, so 𝑓 is also integrable by the same argument. Now, 𝑔 ± 𝑓𝑛 is a nonnegative
function, and converges pointwise to 𝑔±𝑓. Since limits are equal to the limit inferior when
they exist, by Fatou’s lemma, we have

𝜇(𝑔) + 𝜇(𝑓) = 𝜇(𝑔 + 𝑓) = 𝜇(lim inf
𝑛

(𝑔 + 𝑓𝑛)) ≤ lim inf
𝑛

𝜇(𝑔 + 𝑓𝑛) = 𝜇(𝑔) + lim inf
𝑛

𝜇(𝑓𝑛)

Hence 𝜇(𝑓) ≤ lim inf𝑛 𝜇(𝑓𝑛). Likewise, 𝜇(𝑔) − 𝜇(𝑓) ≤ 𝜇(𝑔) − lim inf𝑛 𝜇(𝑓𝑛), so 𝜇(𝑓) ≥
lim sup𝑛 𝜇(𝑓𝑛), so

lim sup
𝑛

𝜇(𝑓𝑛) ≤ 𝜇(𝑓) ≤ lim inf
𝑛

𝜇(𝑓𝑛)

But since lim inf𝑛 𝜇(𝑓𝑛) ≤ lim sup𝑛 𝜇(𝑓𝑛), the result follows.

Example. Let 𝐸 = [0, 1] with the Lebesgue measure. Let 𝑓𝑛 → 𝑓 pointwise and the 𝑓𝑛
are uniformly bounded, so sup𝑛 ‖𝑓𝑛‖∞ ≤ 𝑔 for some 𝑔 ∈ ℝ. Then since 𝜇(𝑔) = 𝑔 < ∞,
the dominated convergence theorem implies that 𝑓𝑛, 𝑓 are integrable and 𝜇(𝑓𝑛) → 𝜇(𝑓) as
𝑛 → ∞. In particular, no notion of uniform convergence of the 𝑓𝑛 is required.
Remark. The proof of the fundamental theorem of calculus requires only the fact that

∫
𝑥+ℎ

𝑥
d𝑡 = ℎ

This is a fact which is obviously true of the Riemann integral and also of the Lebesgue integ-
ral. Therefore, for any continuous function 𝑓∶ [0, 1] → ℝ, we have

∫
𝑥

0
𝑓(𝑡) d𝑡

⏟⎵⎵⏟⎵⎵⏟
Riemann integral

= 𝐹(𝑥) = ∫
𝑥

0
𝑓(𝑡) d𝜇(𝑡)

⏟⎵⎵⎵⏟⎵⎵⎵⏟
Lebesgue integral

So these integrals coincide for continuous functions. We can show that all Riemann integ-
rable functions are 𝜇⋆-measurable, where 𝜇⋆ is the outer measure of the Lebesgue measure,
as defined in the proof of Carathéodory’s theorem. However, there exist certain Riemann in-
tegrable functions that are not Borelmeasurable. We can find that a bounded𝜇⋆-measurable
function is Riemann integrable if and only if

𝜇({𝑥 ∈ [0, 1] ∣ 𝑓 is discontinuous at 𝑥}) = 0

The standard techniques of Riemann integration, such as substitution and integration by
parts, extend to all bounded measurable functions by the monotone class theorem.
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Theorem. Let𝑈 ⊆ ℝ be an open set and (𝐸, ℰ, 𝜇) be ameasure space. Let 𝑓∶ 𝑈×𝐸 → ℝ be
amap such that𝑥 ↦ 𝑓(𝑡, 𝑥) ismeasurable, and 𝑡 ↦ 𝑓(𝑡, 𝑥) is differentiablewhere ||

𝜕𝑓
𝜕𝑡
|| < 𝑔(𝑥)

for all 𝑡 ∈ 𝑈 , and 𝑔 is 𝜇-integrable. Then

𝐹(𝑡) = ∫
𝐸
𝑓(𝑡, 𝑥) d𝜇(𝑥) ⟹ 𝐹′(𝑡) = ∫

𝐸

𝜕𝑓
𝜕𝑡 (𝑡, 𝑥) d𝜇(𝑥)

Proof. By the mean value theorem,

𝑔ℎ(𝑥) =
𝑓(𝑡 + ℎ, 𝑥) − 𝑓(𝑡, 𝑥)

ℎ − 𝜕𝑓
𝜕𝑡 (𝑡, 𝑥) ⟹ |𝑔ℎ(𝑥)| =

|||
𝜕𝑓
𝜕𝑡 ( ̃𝑡, 𝑥) −

𝜕𝑓
𝜕𝑡 (𝑡, 𝑥)

||| ≤ 2𝑔(𝑥)

Note that 𝑔 is 𝜇-integrable. By differentiability of 𝑓, we have 𝑔ℎ → 0 as ℎ → 0, so applying
the dominated convergence theorem, 𝜇(𝑔ℎ) → 𝜇(0) = 0. By linearity of the integral,

𝜇(𝑔ℎ) =
∫𝐸 𝑓(𝑡 + ℎ, 𝑥) − 𝑓(𝑡, 𝑥) d𝜇(𝑥)

ℎ −∫
𝐸

𝜕𝑓
𝜕𝑡 (𝑡, 𝑥) d𝜇(𝑥)

Hence, 𝐹(𝑡+ℎ)−𝐹(𝑡)
ℎ

− 𝐹′(𝑡) → 0.

Example. For a measurable function 𝑓∶ (𝐸, ℰ, 𝜇) → (𝐺, 𝒢), if 𝑔∶ 𝐺 → ℝ is a nonnegative
function, we show on an example sheet that

𝜇 ∘ 𝑓−1(𝑔) = ∫
𝐺
𝑔 d𝜇 ∘ 𝑓−1 = ∫

𝐸
𝑔(𝑓(𝑥)) d𝜇(𝑥) = 𝜇(𝑔 ∘ 𝑓)

On a probability space (Ω,ℱ, ℙ) and a 𝐺-valued random variable 𝑋 , we then compute

𝔼 [𝑔(𝑋)] = 𝜇𝑋(𝑔) = ∫
Ω
𝑔(𝑋(𝜔)) dℙ(𝜔) = ∫

Ω
𝑔 dℙ

Example (measures with densities). If 𝑓∶ (𝐸, ℰ, 𝜇) → ℝ is a nonnegative measurable func-
tion, we can define 𝜈𝑓(𝐴) = 𝜇(𝑓𝟙𝐴) for any measurable set 𝐴, which is again a measure on
(𝐸, ℰ) by the monotone convergence theorem. In particular, if 𝑔∶ (𝐸, ℰ) → ℝ is measurable,
𝜈𝑓(𝑔) = ∫𝐸 𝑔(𝑥)𝑓(𝑥) d𝜇(𝑥) = ∫𝐸 𝑔 d𝜈(𝑓). We call 𝑓 the density of 𝜈𝑓 with respect to 𝜇. If its
integral is one, it is called a probability density function.
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4. Product measures
4.1. Integration in product spaces
Let (𝐸1, ℰ1, 𝜇1), (𝐸2, ℰ2, 𝜇2) be finite measure spaces. On 𝐸 = 𝐸1 × 𝐸2, we can consider the
𝜋-system of ‘rectangles’ 𝒜 = {𝐴1 × 𝐴2 ∣ 𝐴1 ∈ ℰ1, 𝐴2 ∈ ℰ2}. Then we define the 𝜎-algebra
ℰ1⊗ℰ2 = 𝜎(𝒜) on the product space. If the 𝐸𝑖 are topological spaces with a countable base,
then ℬ(𝐸1 × 𝐸2) = ℬ(𝐸1) ⊗ ℬ(𝐸2).
Lemma. Let 𝐸 = 𝐸1 × 𝐸2, ℰ = ℰ1 ⊗ ℰ2. Let 𝑓∶ (𝐸, ℰ) → ℝ be measurable. Then for all
𝑥1 ∈ 𝐸1, the map (𝑥2 ↦ 𝑓(𝑥1, 𝑥2))∶ (𝐸2, ℰ2) → ℝ is ℰ2-measurable.

Proof. Let

𝒱 = {𝑓∶ (𝐸, ℰ) → ℝ ∣ 𝑓 bounded, measurable, conclusion of the lemma holds}

This is a ℝ-vector space, and it contains 𝟙𝐸, 𝟙𝐴 for all 𝐴 ∈ 𝒜, since 𝟙𝐴 = 𝟙𝐴1(𝑥1)𝟙𝐴2(𝑥2). Now,
let 0 ≤ 𝑓𝑛 increase to 𝑓, 𝑓𝑛 ∈ 𝒱. Then (𝑥2 ↦ 𝑓(𝑥1, 𝑥2)) = lim𝑛(𝑥2 ↦ 𝑓𝑛(𝑥1, 𝑥2)), so it
is ℰ2-measurable as a limit of a sequence of measurable functions. Then by the monotone
class theorem,𝒱 contains all boundedmeasurable functions. This extends to all measurable
functions by truncating the absolute value of 𝑓 to 𝑛 ∈ ℕ, then the sequence of such bounded
truncations converges pointwise to 𝑓.

Lemma. Let 𝐸 = 𝐸1 × 𝐸2, ℰ = ℰ1 ⊗ ℰ2. Let 𝑓∶ (𝐸, ℰ) → ℝ be measurable such that

(i) 𝑓 is bounded; or
(ii) 𝑓 is nonnegative.

Then the map 𝑥1 ↦ ∫𝐸2 𝑓(𝑥1, 𝑥2) d𝜇2(𝑥2) is 𝜇1-measurable and is bounded or nonnegative
respectively.

Remark. In case (ii), the map on 𝑥1 may evaluate to infinity, but the set of values

{𝑥1 ∈ 𝐸1
|
|
|
∫
𝐸2
𝑓(𝑥1, 𝑥2) d𝜇2(𝑥2) = ∞}

lies in ℰ1.

Proof. Let

𝒱 = {𝑓∶ (𝐸, ℰ) → ℝ ∣ 𝑓 bounded, measurable, conclusion of the lemma holds}

This is a vector space by linearity of the integral. 𝟙𝐸 ∈ 𝒱, since 𝟙𝐸1𝜇2(𝐸2) is nonnegative and
bounded. 𝟙𝐴 ∈ 𝒱 for all 𝐴 ∈ 𝒜, because 𝟙𝐴1(𝑥1)𝜇2(𝐴2) is ℰ1-measurable, nonnegative, and
bounded since it is at most 𝜇2(𝐸2) < ∞. Now let 𝑓𝑛 be a sequence of nonnegative functions
that increase to 𝑓, where 𝑓𝑛 ∈ 𝒱. Then by the monotone convergence theorem,

∫
𝐸2

lim
𝑛→∞

𝑓𝑛(𝑥1, 𝑥2) d𝜇2(𝑥2) = lim
𝑛→∞

∫
𝐸2
𝑓𝑛(𝑥1, 𝑥2) d𝜇2(𝑥2)

89



II. Probability and Measure

is an increasing limit of ℰ1-measurable functions, so is ℰ1-measurable. It is bounded by
𝜇2(𝐸2)‖𝑓‖∞, or nonnegative as required. So 𝑓 ∈ 𝒱. By the monotone class theorem, the
result for bounded functions holds. In case (ii), we can take a bounded approximation in 𝒱
of an arbitrary measurable function 𝑓 to conclude the proof.

Theorem (product measure). Let (𝐸1, ℰ1, 𝜇1), (𝐸2, ℰ2, 𝜇2) be finite measure spaces. There
exists a uniquemeasure𝜇 = 𝜇1⊗𝜇2 on (𝐸1×𝐸2, ℰ1⊗ℰ2) such that𝜇(𝐴1×𝐴2) = 𝜇1(𝐴1)𝜇2(𝐴2)
for all 𝐴1 ∈ ℰ1, 𝐴2 ∈ ℰ2.

Proof. 𝒜 generates ℰ⊗ℰ2, so by the uniqueness theorem, there can only be one such meas-
ure. We define

𝜇(𝐴) = ∫
𝐸1
(∫

𝐸2
𝟙𝐴(𝑥1, 𝑥2) d𝜇2(𝑥2)) d𝜇1(𝑥1)

We have

𝜇(𝐴1 × 𝐴2) = ∫
𝐸1
(∫

𝐸2
𝟙𝐴1(𝑥1)𝟙𝐴2(𝑥2) d𝜇2(𝑥2)) d𝜇1(𝑥1)

= ∫
𝐸1
𝟙𝐴1(𝑥1)𝜇2(𝐴2) d𝜇1(𝑥1)

= 𝜇1(𝐴1)𝜇2(𝐴2)
Clearly 𝜇(∅) = 0, so it suffices to show countable additivity. Let𝐴𝑛 be disjoint sets in ℰ1⊗ℰ2.
Then

𝟙(⋃𝑛𝐴𝑛) = ∑
𝑛
𝟙𝐴𝑛 = lim

𝑛→∞

𝑛
∑
𝑖=1

𝟙𝐴𝑛

Then by the monotone convergence theorem and the previous lemmas,

𝜇(⋃
𝑛
𝐴𝑛) = ∫

𝐸1
(∫

𝐸2
lim
𝑛→∞

𝑛
∑
𝑖=1

𝟙𝐴𝑖 d𝜇2(𝑥2)) d𝜇1(𝑥1)

= ∫
𝐸1
( lim
𝑛→∞

∫
𝐸2

𝑛
∑
𝑖=1

𝟙𝐴𝑖 d𝜇2(𝑥2)) d𝜇1(𝑥1)

= lim
𝑛→∞

∫
𝐸1
(∫

𝐸2

𝑛
∑
𝑖=1

𝟙𝐴𝑖 d𝜇2(𝑥2)) d𝜇1(𝑥1)

= lim
𝑛→∞

𝑛
∑
𝑖=1

∫
𝐸1
(∫

𝐸2
𝟙𝐴𝑖 d𝜇2(𝑥2)) d𝜇1(𝑥1)

= lim
𝑛→∞

𝑛
∑
𝑖=1

𝜇(𝐴𝑖)

=
∞
∑
𝑛=1

𝜇(𝐴𝑛)
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4.2. Fubini’s theorem
Theorem. Let (𝐸, ℰ, 𝜇) = (𝐸1×𝐸2, ℰ1⊗ℰ2, 𝜇1⊗𝜇2) be a finitemeasure space. Let𝑓∶ 𝐸 → ℝ
be a nonnegative measurable function. Then

𝜇(𝑓) = ∫
𝐸
𝑓 d𝜇

= ∫
𝐸1
(∫

𝐸2
𝑓(𝑥1, 𝑥2) d𝜇2(𝑥2)) d𝜇1(𝑥1)

= ∫
𝐸2
(∫

𝐸1
𝑓(𝑥1, 𝑥2) d𝜇1(𝑥1)) d𝜇2(𝑥2)

Now, let 𝑓∶ 𝐸 → ℝ be a 𝜇-integrable function (on the product measure). Let

𝐴1 = {𝑥1 ∈ 𝐸1
|
|
|
∫
𝐸2
|𝑓(𝑥1, 𝑥2)| d𝜇2(𝑥2) < ∞}

Define 𝑓1 by 𝑓1(𝑥1) = ∫𝐸2 𝑓(𝑥1, 𝑥2) d𝜇2(𝑥2) on 𝐴1 and zero elsewhere. Then 𝜇1(𝐴𝑐
1) = 0 and

𝜇(𝑓) = 𝜇1(𝑓1) = 𝜇1(𝑓1𝟙𝐴1), and defining 𝐴2 symmetrically, 𝜇(𝑓) = 𝜇2(𝑓2) = 𝜇2(𝑓2𝟙𝐴2).

Remark. If 𝑓 is bounded, 𝐴1 = 𝐸1. Note, for 𝑓(𝑥1, 𝑥2) =
𝑥21−𝑥22

(𝑥21+𝑥22)2
on (0, 1)2, we have 𝜇1(𝑓1) ≠

𝜇2(𝑓2), but 𝑓 is not Lebesgue integrable on (0, 1)2.

Proof. By the construction of the product measure 𝜇(𝐴) for rectangles 𝐴 = 𝐴1×𝐴2 in the 𝜋-
system𝒜 generating ℰ, the identities in the first part of the theorem clearly hold for 𝑓 = 𝟙𝐴.
By uniqueness, this extends to 𝟙𝐴 for all𝐴 ∈ ℰ. Then, by linearity of the integral, this extends
to simple functions. By the monotone convergence theorem, the first part of the theorem
follows.

Now let𝑓 be𝜇-integrable. Letℎ(𝑥1) = ∫𝐸2 |𝑓(𝑥1, 𝑥2)| d𝜇2(𝑥2). Thenby the first part,𝜇1(|ℎ|) ≤
𝜇(|𝑓|) < ∞. So𝑓1 is𝜇1-integrable. Wehave𝜇1(𝐴𝑐

1) = 0, otherwise, we could compute a lower
bound𝜇1(|ℎ|) ≥ 𝜇1(|ℎ|𝟙𝐴𝑐

1
) = ∞, but itmust be finite. Note that𝑓±1 = ∫𝐸2 𝑓

±(𝑥1, 𝑥2) d𝜇2(𝑥2),
and 𝜇(𝑓1) = 𝜇1(𝑓+1 ) − 𝜇1(𝑓−1 ). Hence, by the first part, 𝜇(𝑓) = 𝜇(𝑓+) − 𝜇(𝑓−) = 𝜇1(𝑓+1 ) −
𝜇1(𝑓−1 ) = 𝜇1(𝑓1) as required.

Remark. The proofs above extend to 𝜎-finite measures 𝜇.
Let (𝐸𝑖, ℰ𝑖, 𝜇𝑖) be measure spaces with 𝜎-finite measures. Note that (ℰ1 ⊗ ℰ2) ⊗ ℰ3 = ℰ1 ⊗
(ℰ2 ⊗ ℰ3), by a 𝜋-system argument using Dynkin’s lemma. So we can iterate the construc-
tion of the product measure to obtain a measure 𝜇1 ⊗ …𝜇𝑛, which is a unique measure
on (∏𝑛

𝑖=1 𝐸𝑖⨂
𝑛
𝑖=1 ℰ𝑖) with the property that the measure of a hypercube 𝜇(𝐴1 × 𝐴𝑛) is the

product of the measures of its sides 𝜇𝑖(𝐴𝑖).
In particular, we have constructed the Lebesgue measure 𝜇𝑛 =⨂𝑛

𝑖=1 𝜇 onℝ𝑛. Applying Fu-
bini’s theorem, for functions 𝑓 that are either nonnegative and measurable or 𝜇𝑛-integrable,
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we have
∫
ℝ𝑛

𝑓 d𝜇𝑛 = ∫⋯∫
ℝ…ℝ

𝑓(𝑥1,… , 𝑥𝑛) d𝜇(𝑥1)… d𝜇(𝑥𝑛)

4.3. Product probability spaces and independence
Proposition. Let (Ω,ℱ, ℙ), and (𝐸, ℰ) = (∏𝑛

𝑖=1 𝐸𝑖,⨂
𝑛
𝑖=1 ℰ𝑖). Let 𝑋 ∶ (Ω,ℱ) → (𝐸, ℰ) be a

measurable function, and define 𝑋(𝜔) = (𝑋1(𝜔), 𝑋2(𝜔),… , 𝑋𝑛(𝜔)). Then the following are
equivalent.

(i) 𝑋1,… , 𝑋𝑛 are independent random variables;

(ii) 𝜇𝑋 =⨂𝑛
𝑖=1 𝜇𝑋𝑖 ;

(iii) for all bounded and measurable 𝑓𝑖 ∶ 𝐸𝑖 → ℝ, 𝔼 [∏𝑛
𝑖=1 𝑓𝑖(𝑋𝑖)] = ∏𝑛

𝑖=1 𝔼 [𝑓𝑖(𝑋𝑖)].

Proof. (i) implies (ii). Consider the 𝜋-system𝒜 of rectangles 𝐴 = ∏𝑛
𝑖=1 𝐴𝑖 for 𝐴𝑖 ∈ ℰ𝑖. Since

𝜇𝑋 is an image measure, Then

𝜇𝑋(𝐴1 ×⋯× 𝐴𝑛) = ℙ (𝑋1 ∈ 𝐴1,… , 𝑋𝑛 ∈ 𝐴𝑛) = ℙ (𝑋1)…ℙ (𝐴𝑛) =
𝑛
∏
𝑖=1

𝜇𝑋𝑖 (𝐴𝑖)

So by uniqueness, the result follows.

(ii) implies (iii). By Fubini’s theorem,

𝔼 [
𝑛
∏
𝑖=1

𝑓𝑖(𝑋𝑖)] = 𝜇𝑋(
𝑛
∏
𝑖=1

𝑓𝑖(𝑥𝑖))

= ∫
𝐸
𝑓(𝑥) d𝜇(𝑥)

= ∫⋯∫
𝐸𝑖
(

𝑛
∏
𝑖=1

𝑓𝑖(𝑥𝑖)) d𝜇𝑋1(𝑥1)… d𝜇𝑋2(𝑥2)

=
𝑛
∏
𝑖=1

∫
𝐸𝑖
𝑓𝑖(𝑥𝑖) d𝜇𝑋𝑖 (𝑥𝑖)

=
𝑛
∏
𝑖=1

𝔼 [𝑓𝑖(𝑋𝑖)]

(iii) implies (i). Let 𝑓𝑖 = 𝟙𝐴𝑖 for any 𝐴𝑖 ∈ ℰ𝑖. These are bounded and measurable functions.
Then

ℙ (𝑋1 ∈ 𝐴1,… , 𝑋𝑛 ∈ 𝐴𝑛) = 𝔼 [
𝑛
∏
𝑖=1

𝟙𝐴𝑖 (𝑋𝑖)] =
𝑛
∏
𝑖=1

𝔼 [𝟙𝐴𝑖 (𝑋𝑖)] =
𝑛
∏
𝑖=1

ℙ (𝑋𝑖 ∈ 𝐴𝑖)

So the 𝜎-algebras generated by the 𝑋𝑖 are independent as required.
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5. Function spaces and norms
5.1. Norms
Definition. A norm on a real vector space is a map ‖ ⋅ ‖𝑉 ∶ 𝑉 → ℝ such that

(i) ‖𝜆𝑣‖ = |𝜆| ⋅ ‖𝑣‖;
(ii) ‖𝑢 + 𝑣‖ ≤ ‖𝑢‖ + ‖𝑣‖;
(iii) ‖𝑣‖ = 0 if and only if 𝑣 = 0.
Definition. Let (𝐸, ℰ, 𝜇) be a measure space. We define 𝐿𝑝(𝐸, ℰ, 𝜇) = 𝐿𝑝(𝜇) = 𝐿𝑝 for the
space of measurable functions 𝑓∶ 𝐸 → ℝ such that ‖𝑓‖𝑝 is finite, where

‖𝑓‖𝑝 = {(∫𝐸 |𝑓(𝑥)|
𝑝 d𝜇(𝑥))

1
𝑝 1 ≤ 𝑝 < ∞

ess sup |𝑓| = inf {𝜆 > 0 ∣ |𝑓| ≤ 𝜆 almost everywhere} 𝑝 = ∞

Wemust check that ‖ ⋅ ‖𝑝 as defined is a norm. Clearly (i) holds for all 1 ≤ 𝑝 ≤ ∞. Property
(ii) holds for 𝑝 = 1 and 𝑝 = ∞, and we will prove later that this holds for other values
of 𝑝. The last property does not hold: 𝑓 = 0 implies ‖𝑓‖𝑝 = 0, but ‖𝑓‖𝑝 = 0 implies
only that |𝑓|𝑝 = 0 almost everywhere, so 𝑓 is zero almost everywhere on 𝐸. Therefore,
to rigorously define the norm, we must construct the quotient space ℒ𝑝 of functions that
coincide almost everywhere. We write [𝑓] for the equivalence class of functions that are
equal almost everywhere. The functional ‖ ⋅ ‖𝑝 is then a norm on ℒ𝑝.

Proposition (Chebyshev’s inequality, Markov’s inequality). Let 𝑓∶ 𝐸 → ℝ be nonnegative
and measurable. Then for all 𝜆 > 0,

𝜇({𝑥 ∈ 𝐸 ∣ 𝑓(𝑥) ≥ 𝜆}) = 𝜇(𝑓 ≥ 𝜆) ≤ 𝜇(𝑓)
𝜆

Proof. Integrate the inequality 𝜆𝟙{𝑓≥𝜆} ≤ 𝑓, which holds on 𝐸.

Definition. Let 𝐼 ⊆ 𝑅 be an interval. Then we say a map 𝑐∶ 𝐼 → ℝ is convex if for all
𝑥, 𝑦 ∈ 𝐼 and 𝑡 ∈ [0, 1], we have 𝑐(𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑡𝑐(𝑥) + (1 − 𝑡)𝑐(𝑦). Equivalently, for all
𝑥 < 𝑡 < 𝑦 and 𝑥, 𝑦 ∈ 𝐼, we have 𝑐(𝑡)−𝑐(𝑥)

𝑡−𝑥
≤ 𝑐(𝑦)−𝑐(𝑡)

𝑦−𝑡
.

Since a convex function is continuous on the interior of the interval, it is Borel measur-
able.

Lemma. Let 𝐼 ⊆ 𝑅 be an interval, and let 𝑚 ∈ 𝐼∘. If 𝑐 is convex on 𝐼, there exist 𝑎, 𝑏 such
that 𝑐(𝑥) ≥ 𝑎𝑥 + 𝑏, and 𝑐(𝑚) = 𝑎𝑚 + 𝑏.

Proof. Define 𝑎 = sup { 𝑐(𝑚)−𝑐(𝑥)
𝑚−𝑥

∣ 𝑥 < 𝑚, 𝑥 ∈ 𝐼}. This exists in ℝ by the second definition

of convexity. Let 𝑦 ∈ 𝐼, and 𝑦 > 𝑚. Then 𝑎 ≤ 𝑐(𝑦)−𝑐(𝑚)
𝑦−𝑚

, so 𝑐(𝑦) ≥ 𝑎𝑦 − 𝑎𝑚 + 𝑐(𝑚) = 𝑎𝑦 + 𝑏
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where we define 𝑏 = 𝑐(𝑚) − 𝑎𝑚. Similarly, for 𝑦 < 𝑚, by definition of the supremum,
𝑐(𝑚)−𝑐(𝑦)

𝑚−𝑦
≤ 𝑎, we have 𝑐(𝑦) ≥ 𝑎𝑦 + 𝑏.

Theorem (Jensen’s inequality). Let 𝑋 be a random variable taking values in an interval
𝐼 ⊆ ℝ, such that 𝔼 [|𝑋|] < ∞. Let 𝑐∶ 𝐼 → ℝ be a convex function. Then 𝑐(𝔼 [𝑋]) ≤ 𝔼 [𝑐(𝑋)].

Note that the integral 𝔼 [𝑐(𝑋)] is defined as 𝔼 [𝑐+(𝑋)] − 𝔼 [𝑐−(𝑋)], and this is well-defined
and takes values in (−∞,∞].

Proof. Define 𝑚 = 𝔼 [𝑋] = ∫𝐼 𝑧 d𝜇𝑋(𝑧). If 𝑚 ∉ 𝐼∘, 𝑋 must equal 𝑚 almost surely, and
then the result follows. Now let 𝑚 ∈ 𝐼∘. Applying the previous lemma, we find 𝑎, 𝑏 such
that 𝑐−(𝑋) ≤ |𝑎| ⋅ |𝑋| + |𝑏|. Hence, 𝔼 [𝑐−(𝑋)] ≤ |𝑎|𝔼 [|𝑋|] + |𝑏| < ∞, and 𝔼 [𝑐(𝑋)] =
𝔼 [𝑐+(𝑋)]−𝔼 [𝑐−(𝑋)] is well-defined in (−∞,∞]. Integrating the inequality from the lemma,
and using linearity of the integral,

𝔼 [𝑐(𝑋)] ≥ 𝑎𝔼 [𝑋] + 𝑏 = 𝑎𝑚 + 𝑏 = 𝑐(𝑚) = 𝑐(𝔼 [𝑋])

Remark. If 1 ≤ 𝑝 < 𝑞 < ∞, 𝑐(𝑥) = |𝑥|
𝑞
𝑝 is a convex function. If 𝑋 is a bounded random

variable (so lies in 𝐿∞(ℙ)), we then have

‖𝑋‖𝑝 = 𝔼 [|𝑋𝑝|]
1
𝑝 = 𝑐(𝔼 [|𝑋|𝑝])

1
𝑞 ≤ 𝔼 [𝑐(|𝑋|𝑝)]

1
𝑞 = ‖𝑋‖𝑞

Using themonotone convergence theorem, this extends to all 𝑋 ∈ 𝐿𝑞(ℙ)when ‖𝑋‖𝑞 is finite.
In particular, 𝐿𝑞(ℙ) ⊆ 𝐿𝑝(ℙ) for all 1 ≤ 𝑝 ≤ 𝑞 ≤ ∞.

Theorem (Hölder’s inequality). Let 𝑓, 𝑔 be measurable functions on (𝐸, ℰ, 𝜇). If 𝑝, 𝑞 are
conjugate, so 1

𝑝
+ 1

𝑞
= 1 and 1 ≤ 𝑝, 𝑞 ≤ ∞, we have

𝜇(|𝑓𝑔|) = ∫
𝐸
|𝑓(𝑥)𝑔(𝑥)| d𝜇 ≤ ‖𝑓‖𝑝 ⋅ ‖𝑔‖𝑞

Remark. For 𝑝 = 𝑞 = 2, this is exactly the Cauchy–Schwarz inequality on 𝐿2.

Proof. The cases 𝑝 = 1 or 𝑝 = ∞ are obvious. We can assume 𝑓 ∈ 𝐿𝑝 and 𝑔 ∈ 𝐿𝑞 without
loss of generality since the right hand side would otherwise be infinite. We can also assume
𝑓 is not equal to zero almost everywhere, otherwise this reduces to 0 ≤ 0. Hence, ‖𝑓‖𝑝 > 0.
Then, we can divide both sides by ‖𝑓‖𝑝 and then assume ‖𝑓‖𝑝 = 1.

𝜇(|𝑓𝑔|) = ∫
𝐸
|𝑔| 1
|𝑓|𝑝−1

|𝑓|𝑝𝟙{|𝑓|>0} d𝜇
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Note that we can set |𝑓|𝑝 d𝜇 = dℙ, and since 𝐿𝑞(ℙ) ⊆ 𝐿1(ℙ),

∫
𝐸
|𝑔| 1
|𝑓|𝑝−1

|𝑓|𝑝𝟙{|𝑓|>0} d𝜇 ≤ (∫ |𝑔|𝑞 1
|𝑓|𝑞(𝑝−1)

|𝑓|𝑝 d𝜇⏟⎵⏟⎵⏟
dℙ

)

1
𝑞

= (∫
𝐸
|𝑔|𝑞 d𝜇)

1
𝑞

Theorem (Minkowski’s inequality). Let𝑓, 𝑔∶ (𝐸, ℰ, 𝜇) → ℝ bemeasurable functions. Then
for all 1 ≤ 𝑝 ≤ ∞, we have ‖𝑓 + 𝑔‖𝑝 ≤ ‖𝑓‖𝑝 + ‖𝑔‖𝑝.

Proof. The results for 𝑝 = 1,∞ are clear. Suppose 1 < 𝑝 < ∞. We can assume without loss
of generality that 𝑓, 𝑔 ∈ 𝐿𝑝. We can integrate the pointwise inequality |𝑓 + 𝑔|𝑝 ≤ 2𝑝(|𝑓|𝑝 +
|𝑔|𝑝) to deduce that ‖𝑓 + 𝑔‖𝑝𝑝 ≤ 2𝑝(‖𝑓‖𝑝𝑝 + ‖𝑔‖𝑝𝑝) < ∞ so 𝑓 + 𝑔 ∈ 𝐿𝑝. We assume that
0 < ‖𝑓 + 𝑔‖𝑝, otherwise the result is trivial. Now, using Hölder’s inequality with 𝑞 conjugate
to 𝑝,

‖𝑓 + 𝑔‖𝑝𝑝 = ∫
𝐸
|𝑓 + 𝑔|𝑝−1|𝑓 + 𝑔| d𝜇

≤ ∫
𝐸
|𝑓 + 𝑔|𝑝−1|𝑓| d𝜇 +∫

𝐸
|𝑓 + 𝑔|𝑝−1|𝑔| d𝜇

≤ (∫
𝐸
|𝑓 + 𝑔|𝑞(𝑝−1) d𝜇)

1
𝑞
(‖𝑓‖𝑝 + ‖𝑔‖𝑝)

≤ (∫
𝐸
|𝑓 + 𝑔|𝑝 d𝜇)

1
𝑞
(‖𝑓‖𝑝 + ‖𝑔‖𝑝)

≤ ‖𝑓 + 𝑔‖
𝑝
𝑞
𝑝 (‖𝑓‖𝑝 + ‖𝑔‖𝑝)

Dividing both sides by ‖𝑓 + 𝑔‖
𝑝
𝑞
𝑝 , we obtain ‖𝑓 + 𝑔‖𝑝 ≤ ‖𝑓‖𝑝 + ‖𝑔‖𝑝.

So the 𝐿𝑝 spaces are indeed normed spaces.

5.2. Banach spaces

Definition. A Banach space is a complete normed vector space.

Theorem (ℒ𝑝 is a Banach space). Let 1 ≤ 𝑝 ≤ ∞, and let 𝑓𝑛 ∈ 𝐿𝑝 be a Cauchy sequence,
so for all 𝜀 > 0 there exists 𝑁 such that for all𝑚, 𝑛 ≥ 𝑁, we have ‖𝑓𝑚 − 𝑓𝑛‖𝑝 < 𝜀. Then there
exists a function 𝑓 ∈ 𝐿𝑝 such that 𝑓𝑛 → 𝑓 in 𝐿𝑝, so ‖𝑓𝑛 − 𝑓‖𝑝 → 0 as 𝑛 → ∞.
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II. Probability and Measure

Proof. For this proof, we assume 𝑝 < ∞; the other case is already proven in IB Analysis and
Topology. Since 𝑓𝑛 is Cauchy, using 𝜀 = 2−𝑘 we extract a subsequence 𝑓𝑁𝑘 of 𝐿𝑝 functions
such that

𝑆 =
∞
∑
𝑘=1

‖
‖𝑓𝑁𝑘+1 − 𝑓𝑁𝑘

‖
‖𝑝 ≤

∞
∑
𝑘=1

2−𝑘 < ∞

By Minkowski’s inequality, for any 𝐾, we have

‖
‖‖‖

𝐾
∑
𝑘=1

||𝑓𝑁𝑘+1 − 𝑓𝑁𝑘
||
‖
‖‖‖𝑝
≤

𝐾
∑
𝑘=1

‖
‖𝑓𝑁𝑘+1 − 𝑓𝑁𝑘

‖
‖𝑝 ≤ 𝑆 < ∞

By the monotone convergence theorem applied to ||∑
𝐾
𝑘=1 ||𝑓𝑁𝑘+1 − 𝑓𝑁𝑘

||||
𝑝
which increases to

||∑∞
𝑘=1 ||𝑓𝑁𝑘+1 − 𝑓𝑁𝑘

||||
𝑝
, we find

‖
‖‖‖

∞
∑
𝑘=1

||𝑓𝑁𝑘+1 − 𝑓𝑁𝑘
||
‖
‖‖‖𝑝
≤ 𝑆 < ∞

Since the integral is finite, we see that∑∞
𝑘=1 ||𝑓𝑁𝑘+1 − 𝑓𝑁𝑘

|| is finite almost everywhere. Then
∑𝐾

𝑘=1(𝑓𝑁𝑘+1(𝑥) − 𝑓𝑁𝑘(𝑥)) = 𝑓𝑁𝑘+1(𝑥) − 𝑓𝑁1(𝑥) converges in the real line for all 𝑥 in a set 𝐴
that has full measure, so 𝜇(𝐴𝑐) = 0. In particular, 𝑓𝑁𝑘(𝑥) is a Cauchy sequence of reals, so
by completeness of the real line, we can define the limit

𝑓(𝑥) = {lim𝑘→∞ 𝑓𝑁𝑘(𝑥) 𝑥 ∈ 𝐴
0 𝑥 ∈ 𝐴𝑐

so 𝑓𝑁𝑘 → 𝑓 as 𝑘 → ∞ almost everywhere. Now, by Fatou’s lemma,

‖𝑓𝑛 − 𝑓‖𝑝𝑝 = 𝜇(|𝑓𝑛 − 𝑓|𝑝) = 𝜇(lim
𝑘
||𝑓𝑛 − 𝑓𝑁𝑘

||
𝑝) ≤ lim inf

𝑘
𝜇(||𝑓𝑛 − 𝑓𝑁𝑘

||
𝑝)

Since the 𝑓𝑛 are Cauchy,
‖𝑓‖𝑝 ≤ ‖𝑓 − 𝑓𝑁‖𝑝⏟⎵⎵⏟⎵⎵⏟

≤𝜀

+‖𝑓𝑁‖𝑝⏟
<∞

< ∞

so 𝑓 ∈ 𝐿𝑝, and ‖𝑓𝑛 − 𝑓‖𝑝𝑝 ≤ 𝜀𝑝 for 𝑛,𝑁𝑘 ≥ 𝑁, so 𝑓𝑛 → 𝑓 in 𝐿𝑝.

Remark. If 𝑉 is any of the spaces

𝐶([𝑎, 𝑏]); {𝑓 simple}; {𝑓 a linear combination of indicators of intervals}

then 𝑉 is dense in 𝐿1(𝜇) where 𝜇 is the Lebesgue measure on ℬ([𝑎, 𝑏]). So the completion
(𝑉, ‖ ⋅ ‖) is exactly 𝐿1(𝜇).
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5.3. Hilbert spaces
Definition. A symmetric bilinear form ⟨ ⋅ , ⋅ ⟩ ∶ 𝑉 × 𝑉 → ℝ on a real vector space 𝑉 is
called an inner product if ⟨𝑣, 𝑣⟩ ≥ 0 and ⟨𝑣, 𝑣⟩ = 0 implies 𝑣 = 0. In this case, we can define
a norm ‖𝑣‖ = √⟨𝑣, 𝑣⟩. If (𝑉, ⟨ ⋅ , ⋅ ⟩) is complete, we say that it is a Hilbert space.

Corollary. The space ℒ2 is a Hilbert space for the inner product ⟨𝑓, 𝑔⟩ = ∫𝐸 𝑓𝑔 d𝜇.

Example. An analog of the Pythagorean theorem holds. Let 𝑓, 𝑔 ∈ 𝐿2, then ‖𝑓 + 𝑔‖22 =
‖𝑓‖22 + 2 ⟨𝑓, 𝑔⟩ + ‖𝑔‖22. We say 𝑓 is orthogonal to 𝑔 if ⟨𝑓, 𝑔⟩ = 0. 𝑓 and 𝑔 are orthogonal if
and only if ‖𝑓 + 𝑔‖22 = ‖𝑓‖22+‖𝑔‖

2
2. For centred (mean zero) random variables 𝑋, 𝑌 , we have

⟨𝑋, 𝑌⟩ = 𝔼 [𝑋𝑌] = 𝔼 [(𝑋 − 𝔼 [𝑋])(𝑌 − 𝔼 [𝑌])] = Cov (𝑋, 𝑌) which vanishes when 𝑋 and 𝑌
are orthogonal.

Example. The parallelogram identity holds: ‖𝑓 + 𝑔‖22 + ‖𝑓 − 𝑔‖22 = 2(‖𝑓‖22 + ‖𝑔‖22)

Definition. Let 𝑉 ⊆ 𝐿2(𝜇). We define its orthogonal complement to be

𝑉⟂ = {𝑓 ∈ 𝐿2(𝜇) ∣ ∀𝑔 ∈ 𝑉, ⟨𝑓, 𝑔⟩ = 0}

We say that a subset 𝑉 of ℒ2 is closed if any sequence 𝑓𝑛 ∈ 𝑉 that converges in ℒ2, its limit
𝑓 coincides almost everywhere with some 𝑣 ∈ 𝑉 .

Theorem. Let 𝑉 be a closed linear subspace of ℒ2(𝜇). Then for all 𝑓 ∈ ℒ2, there exists an
orthogonal decomposition 𝑓 = 𝑣+𝑢where 𝑣 ∈ 𝑉 and 𝑢 ∈ 𝑉⟂ such that ‖𝑓 − 𝑣‖2 ≤ ‖𝑓 − 𝑔‖2
for all 𝑔 ∈ 𝑉 with equality only if 𝑣 = 𝑔 almost everywhere. We call 𝑣 the projection of 𝑓
onto 𝑉 .

Proof. In this proof, we set 𝑝 = 2 for all norms. We define 𝑑(𝑓, 𝑉) = inf𝑔∈𝑉 ‖𝑔 − 𝑓‖, and let
𝑔𝑛 ∈ 𝑉 be a sequence of functions such that ‖𝑔𝑛 − 𝑓‖ converges to 𝑑(𝑓, 𝑉). By the parallel-
ogram law,

2‖𝑓 − 𝑔𝑛‖
2 + 2‖𝑓 − 𝑔𝑚‖

2 = ‖2𝑓 − (𝑔𝑛 + 𝑔𝑚)‖
2 + ‖𝑔𝑛 − 𝑔𝑚‖

2

= 4
‖
‖‖‖‖
𝑓 − 𝑔𝑛 + 𝑔𝑚

2⏟⎵⏟⎵⏟
∈𝑉

‖
‖‖‖‖

2

+ ‖𝑔𝑛 − 𝑔𝑚‖
2

≥ 4𝑑(𝑓, 𝑉)2 + ‖𝑔𝑛 − 𝑔𝑚‖
2

Taking the limit superior as 𝑛,𝑚 → ∞, lim sup𝑚,𝑛 ‖𝑔𝑛 − 𝑔𝑚‖
2 ≤ 4𝑑(𝑓, 𝑉) − 4𝑑(𝑓, 𝑉) = 0.

So the sequence 𝑔𝑛 is Cauchy in 𝐿2, so by completeness, it converges to some 𝑣 ∈ 𝐿2. Since
𝑉 is closed, 𝑣 ∈ 𝑉 . In particular, 𝑑(𝑓, 𝑉) = inf𝑔∈𝑉 ‖𝑔 − 𝑓‖ = ‖𝑣 − 𝑓‖.

Note that 𝑑(𝑓, 𝑉)2 ≤ 𝐹(𝑡) = ‖𝑓 − (𝑣 + 𝑡ℎ)‖2 where 𝑡 ∈ ℝ and ℎ ∈ 𝑉 . So we obtain the
first-order condition 𝐹′(0) = 2 ⟨𝑓 − 𝑣, ℎ⟩ = 0 for all ℎ. Defining 𝑓−𝑣 = 𝑢, we have 𝑓 = 𝑢+𝑣
and 𝑢 ∈ 𝑉⟂ since ℎ was arbitrary.
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For uniqueness, suppose 𝑓 = 𝑤+𝑧with𝑤 ∈ 𝑉 and 𝑧 ∈ 𝑉⟂. Then 𝑣−𝑤+𝑢−𝑧 = 𝑓−𝑓 = 0,
so taking norms, 0 = ‖𝑣 − 𝑤 + 𝑢 − 𝑧‖2 = ‖𝑣 − 𝑤‖2 + ‖𝑢 − 𝑧‖2 so 𝑣 = 𝑤 and 𝑢 = 𝑧 (almost
everywhere) by orthogonality.

5.4. Convergence in probability and uniform integrability
Theorem (bounded convergence). Let𝑋𝑛 be randomvariables on (Ω,ℱ, ℙ) such that |𝑋𝑛| ≤
𝐶 < ∞ and they converge in probability to 𝑋 . Then 𝑋𝑛 → 𝑋 in 𝐿1(ℙ).

Proof. We know that 𝑋𝑛𝑘 → 𝑋 almost surely along a subsequence 𝑛𝑘. So |𝑋| = lim𝑘 ||𝑋𝑛𝑘 || ≤
𝐶 < ∞ almost surely. Then

𝔼 [|𝑋𝑛 − 𝑋|] = 𝔼 [|𝑋𝑛 − 𝑋|(𝟙{|𝑋𝑛−𝑋|>
𝜀
2 }
+ 𝟙{|𝑋𝑛−𝑥|≤

𝜀
2 }
)]

≤ 2𝐶ℙ (|𝑋𝑛 − 𝑋| ≥ 𝜀
2) +

𝜀
2

< 𝜀

for sufficiently large 𝑛.

If 𝑋 ∈ 𝐿1(ℙ), then as 𝛿 → 0,

𝐼𝑋(𝛿) = sup {𝔼 [|𝑋|𝟙𝐴] ∣ ℙ (𝐴) ≤ 𝛿} ↓ 0

Suppose this does not hold. Then there exists 𝜀 > 0 and a sequence of events 𝐴𝑛 ∈ ℱ
such that ℙ (𝐴𝑛) ≤ 2−𝑛 but 𝔼 [|𝑋|𝟙𝐴𝑛] ≥ 𝜀. Since ∑𝑛 ℙ (𝐴𝑛) < ∞, by the first Borel–
Cantelli lemma, we have ℙ (⋂𝑛⋃𝑚≥𝑛 𝐴𝑚) = 0. But 𝔼 [|𝑋|𝟙𝐴𝑛] ≤ 𝔼 [|𝑋|𝟙⋃𝑚≥𝑛𝐴𝑚]. Note
that 𝟙⋃𝑚≥𝑛𝐴𝑚 → 𝟙⋂𝑛⋃𝑚≥𝑛𝐴𝑛 , so 𝔼 [|𝑋|𝟙⋃𝑚≥𝑛𝐴𝑚] → 𝔼 [|𝑋|𝟙⋂𝑛⋃𝑚≥𝑛

] by the dominated con-
vergence theorem, but this is equal to zero, giving a contradiction.

Definition. For a collection𝒳 ⊆ 𝐿1(ℙ) of randomvariables, we say𝒳 isuniformly integrable
if it is bounded in 𝐿1(ℙ), and

𝐼𝒳(𝛿) = sup {𝔼 [|𝑋|𝟙𝐴] ∣ ℙ (𝐴) ≤ 𝛿, 𝑋 ∈ 𝒳} ↓ 0

Remark. Note that𝑋𝑛 = 𝑛𝟙[0, 1𝑛 ]
for the Lebesguemeasure 𝜇 on [0, 1] is bounded in 𝐿1(ℙ) but

not uniformly integrable. If 𝒳 is bounded in 𝐿𝑝(ℙ) for 𝑝 > 1, then by Hölder’s inequality,

𝔼 [|𝑋|𝟙𝐴] ≤ ‖𝑋‖𝑝⏟
bounded

⋅ ℙ (𝐴)
1
𝑞⏟⎵⏟⎵⏟

≤𝛿
1
𝑞→0

Lemma. 𝒳 ⊆ 𝐿1(ℙ) is uniformly integrable if and only if sup𝑋∈𝒳 𝔼 [|𝑋|𝟙{|𝑋|>𝐾}] → 0 as
𝐾 → ∞.
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Proof. Let 𝒳 be uniformly integrable. Applying Markov’s inequality, as 𝐾 → ∞,

ℙ (|𝑋| > 𝐾) ≤ 𝔼 [|𝑋|]
𝐾 = 𝔼 [|𝑋|𝟙Ω]

𝐾 ≤ 𝐼𝒳(1)
𝐾 → 0

Using the uniform integrability property using 𝐴 = {|𝑋| > 𝐾}, we obtain the required limit.
Conversely, we have

𝔼 [|𝑋|] = 𝔼 [|𝑋|(𝟙{|𝑋|≤𝐾} + 𝟙{|𝑋|>𝐾})] ≤ 𝐾 + 𝜀
2

for sufficiently large𝐾. So𝒳 is bounded in 𝐿1(ℙ) as required. Then for𝐴 such thatℙ (𝐴) ≤ 𝛿,

𝔼 [|𝑋|𝟙𝐴(𝟙{|𝑋|≤𝐾} + 𝟙{|𝑋|>𝐾})] ≤ 𝐾ℙ (𝐴) + 𝔼 [|𝑋|𝟙{|𝑋|>𝐾}] ≤ 𝐾𝛿 + 𝜀
2 < 𝜀

for sufficiently small 𝛿.

Theorem. Let 𝑋𝑛, 𝑋 be random variables on (Ω,ℱ, ℙ). Then the following are equivalent.
(i) 𝑋𝑛, 𝑋 ∈ 𝐿1(ℙ) and 𝑋𝑛 → 𝑋 in 𝐿1(ℙ).
(ii) {𝑋𝑛 ∣ 𝑛 ∈ ℕ} is uniformly integrable, and 𝑋𝑛 → 𝑋 in probability.

Proof. (i) implies (ii). Using Markov’s inequality,

ℙ (|𝑋𝑛 − 𝑋| > 𝜀) ≤ 𝔼 [|𝑋𝑛 − 𝑋|]
𝜀 → 0

so 𝑋𝑛 → 𝑋 in probability. Since any finite collection is uniformly integrable, so are 𝑋 along
with 𝑋1,… , 𝑋𝑁 for each 𝑁. For the indices larger than 𝑁, we have

𝔼 [|𝑋𝑛|𝟙𝐴] ≤ 𝔼 [|𝑋𝑛 − 𝑋|𝟙𝐴] + 𝔼 [|𝑋|𝟙𝐴] ≤
𝜀
2 +

𝜀
2

for sufficiently large 𝑁 and sufficiently small 𝛿, so all 𝑋𝑛 are uniformly integrable.
(ii) implies (i). Along a subsequence, 𝑋𝑛 → 𝑋 almost surely. So

𝔼 [|𝑋|] = 𝔼 [lim inf
𝑘

||𝑋𝑛𝑘 ||] ≤ lim inf
𝑘

𝔼 [||𝑋𝑛𝑘 ||] ≤ 𝐼𝒳(1) < ∞

almost surely, so𝑋 ∈ 𝐿1(ℙ). Next, we define randomvariables 𝑔(𝑋𝑛) = 𝑋𝐾
𝑛 = max(−𝐾,min(𝐾, 𝑋𝑛))

and 𝑔(𝑋) = 𝑋𝐾 = max(−𝐾,min(𝐾, 𝑋)), where 𝑔 is continuous. Then for some 𝜀′ > 0,

ℙ (|𝑔(𝑋𝑛) − 𝑔(𝑋)| > 𝜀) ≤ ℙ (|𝑋𝑛 − 𝑋| > 𝜀′) → 0

as 𝑛 → ∞, since 𝑋𝑛 → 𝑋 in probability and 𝑔 is continuous. Then by bounded convergence,
𝑋𝐾
𝑛 → 𝑋𝐾 in 𝐿1, and so

𝔼 [|𝑋𝑛 − 𝑋|] ≤ 𝔼 [||𝑋𝑛 − 𝑋𝐾
𝑛 ||] + 𝔼 [||𝑋𝐾

𝑛 − 𝑋𝐾 ||] + 𝔼 [||𝑋𝐾 − 𝑋||]
= 𝔼 [|𝑋𝑛|𝟙{|𝑋𝑛|>𝑘}] + 𝔼 [||𝑋𝐾

𝑛 − 𝑋𝐾 ||] + 𝔼 [|𝑋|𝟙{|𝑋|>𝐾}]
< 𝜀

by choosing sufficiently large 𝐾 and 𝑛.
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6. Fourier analysis
6.1. Fourier transforms
In this section, we will write 𝐿𝑝(ℝ𝑑) for the set of measurable functions 𝑓∶ ℝ𝑑 → ℂ such

that ‖𝑓‖𝑝 = (∫ℝ𝑑 |𝑓(𝑥)|𝑝 d𝑥)
1
𝑝 < ∞. We can extend the integral as a complex linear map

𝐿1(ℝ) → ℂ by defining

∫
ℝ
(𝑢 + 𝑖𝑣)(𝑥) d𝑥 = ∫

ℝ
𝑢(𝑥) d𝑥 + 𝑖∫

ℝ
𝑣(𝑥) d𝑥

Note that for some 𝑢 + 𝑖𝑣 = 𝛼 ∈ ℂ with |𝛼| = 1,

|||∫ℝ𝑑
𝑓(𝑥) d𝑥||| = ∫

ℝ𝑑
𝛼𝑓(𝑥) d𝑥 = ∫

ℝ𝑑
𝑢(𝑥) d𝑥 + 𝑖∫

ℝ𝑑
𝑣(𝑥) d𝑥

But since the left hand side is real-valued, the 𝑖 ∫ℝ𝑑 𝑣(𝑥) d𝑥 term vanishes. So

|||∫ℝ𝑑
𝑓(𝑥) d𝑥||| = ∫

ℝ𝑑
𝑢(𝑥) d𝑥 ≤ ∫

ℝ𝑑
|𝑓(𝑥)| d𝑥

Definition. Let 𝑓 ∈ 𝐿1(ℝ𝑑). We define the Fourier transform ̂𝑓 by

̂𝑓(𝑢) = ∫
ℝ𝑑

𝑓(𝑥)𝑒𝑖⟨𝑢,𝑥⟩ d𝑥

where ⟨𝑢, 𝑥⟩ = ∑𝑑
𝑖=1 𝑢𝑖𝑥𝑖.

Remark. Note that || ̂𝑓(𝑢)|| ≤ ‖𝑓‖1. Also, if 𝑢𝑛 → 𝑢, then 𝑒𝑖⟨𝑢𝑛,𝑥⟩ → 𝑒𝑖⟨𝑢,𝑥⟩. By the domin-
ated convergence theorem with dominating function |𝑓|, we have ̂𝑓(𝑢𝑛) → ̂𝑓(𝑢), so ̂𝑓 is a
continuous bounded function.

Definition. Let 𝑓 ∈ 𝐿1(ℝ𝑑) such that ̂𝑓 ∈ 𝐿1(ℝ𝑑). Then we say that the Fourier inversion
formula holds for 𝑓 if

𝑓(𝑥) = 1
(2𝜋)𝑑 ∫ℝ𝑑

̂𝑓(𝑢)𝑒−𝑖⟨𝑢,𝑥⟩ d𝑢

almost everywhere in ℝ𝑑.

Definition. Let 𝑓 ∈ 𝐿1(ℝ𝑑) ∩ 𝐿2(ℝ𝑑). Then the Plancherel identity holds for 𝑓 if

‖
‖ ̂𝑓‖‖2 = (2𝜋)

𝑑
2 ‖𝑓‖2

We will show that the Fourier inversion formula holds whenever ̂𝑓 ∈ 𝐿1(ℝ𝑑), and the
Plancherel identity holds for all 𝑓 ∈ 𝐿1(ℝ𝑑) ∩ 𝐿2(ℝ𝑑).
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Remark. Given the Plancherel identity, the Fourier transform is a linear isometry of 𝐿2(ℝ𝑑),
by approximating any function in 𝐿2(ℝ𝑑) by integrable functions.
Definition. Let 𝜇 be a finite Borel measure on ℝ𝑑. We define the Fourier transform of the
measure by

�̂�(𝑢) = ∫
ℝ𝑑

𝑒𝑖⟨𝑢,𝑥⟩ d𝜇(𝑥)

Note that |�̂�(𝑢)| ≤ 𝜇(ℝ𝑑), and �̂� is continuous by the dominated convergence theorem. If 𝜇
has a density 𝑓 with respect to the Lebesgue measure, �̂� = ̂𝑓.
Definition. Let 𝑋 be anℝ𝑑-valued random variable. The characteristic function 𝜑𝑋 is given
by

𝜑𝑋(𝑢) = 𝔼 [𝑒𝑖⟨𝑢,𝑋⟩] = �̂�𝑋(𝑢)
where 𝜇𝑋 is the law of 𝑋 .

6.2. Convolutions
Definition. Let 𝑓 ∈ 𝐿1(ℝ𝑑) and 𝜈 be a probability measure on ℝ𝑑. We define their convolu-
tion 𝑓 ∗ 𝜈 by

(𝑓 ∗ 𝜈)(𝑥) = {∫ℝ𝑑 𝑓(𝑥 − 𝑦) d𝜈(𝑦) if (𝑦 ↦ 𝑓(𝑥 − 𝑦)) ∈ 𝐿1(𝜈)
0 else

Remark. If 1 ≤ 𝑝 < ∞, by Jensen’s inequality,

∫
ℝ𝑑

(∫
ℝ𝑑

|𝑓(𝑥 − 𝑦)| d𝜈(𝑦))
𝑝
d𝑥 ≤ ∫

ℝ𝑑
∫
ℝ𝑑

|𝑓(𝑥 − 𝑦)|𝑝 d𝜈(𝑦) d𝑥

= ∫
ℝ𝑑

∫
ℝ𝑑

|𝑓(𝑥 − 𝑦)|𝑝 d𝑥 d𝜈(𝑦)

= ∫
ℝ𝑑

∫
ℝ𝑑

|𝑓(𝑥)| d𝜈(𝑦) d𝑥

= ∫
ℝ𝑑

|𝑓(𝑥)| d𝑥

= ‖𝑓‖𝑝𝑝

So 𝑓 ∈ 𝐿𝑝(ℝ𝑑), we have (𝑦 ↦ 𝑓(𝑥 − 𝑦)) ∈ 𝐿𝑝(𝜈) almost everywhere, and again by Jensen’s
inequality,

‖𝑓 ∗ 𝜈‖𝑝𝑝 = ∫
ℝ𝑑

|||∫ℝ𝑑
𝑓(𝑥 − 𝑦) d𝜈(𝑦)|||

𝑝
d𝑥 ≤ ∫

ℝ𝑑
(∫

ℝ𝑑
|𝑓(𝑥 − 𝑦)| d𝜈(𝑦))

𝑝
d𝑥 ≤ ‖𝑓‖𝑝𝑝

Hence 𝑓 ↦ 𝑓 ∗ 𝜈 is a contraction on 𝐿𝑝(ℝ𝑑).
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In the case where 𝜈 has a density 𝑔 with respect to the Lebesgue measure, we write 𝑓 ∗ 𝑔 =
𝑓 ∗ 𝜈.

Definition. For probability measures 𝜇, 𝜈 on ℝ𝑑, their convolution 𝜇 ∗ 𝜈 is a probability
measure on ℝ𝑑 given by the law of 𝑋 + 𝑌 where 𝑋, 𝑌 are independent random variables
with laws 𝜇 and 𝜈, so

(𝜇 ∗ 𝜈)(𝐴) = ℙ (𝑋 + 𝑌 ∈ 𝐴)

= ∫
ℝ𝑑×ℝ𝑑

𝟙𝐴(𝑥 + 𝑦) d(𝜇 ⊗ 𝜈)(𝑥, 𝑦)

= ∫
ℝ𝑑

∫
ℝ𝑑

𝟙𝐴(𝑥 + 𝑦) d𝜈(𝑦) d𝜇(𝑥)

If 𝜇 has density 𝑓 with respect to the Lebesgue measure, 𝜇 ∗ 𝜈 has density 𝑓 ∗ 𝜈with respect
to the Lebesgue measure. Indeed,

(𝜇 ∗ 𝜈)(𝐴) = ∫
ℝ𝑑

∫
ℝ𝑑

𝟙𝐴(𝑥 + 𝑦)𝑓(𝑥) d𝑥 d𝜈(𝑦)

= ∫
ℝ𝑑

∫
ℝ𝑑

𝟙𝐴(𝑣)𝑓(𝑣 − 𝑦) d𝑣 d𝜈(𝑦)

= ∫
ℝ𝑑

𝟙𝐴(𝑣)∫
ℝ𝑑

𝑓(𝑣 − 𝑦) d𝜈(𝑦) d𝑣

= ∫
ℝ𝑑

𝟙𝐴(𝑣)(𝑓 ∗ 𝜈)(𝑣) d𝑣

Proposition. 𝑓 ∗ 𝜈(𝑢) = ̂𝑓(𝑢) ̂𝜈(𝑢).

Proposition. 𝜇 ∗ 𝜈(𝑢) = 𝔼 [𝑒𝑖⟨𝑢,𝑋+𝑌⟩] = 𝔼 [𝑒𝑖⟨𝑢,𝑋⟩𝑒𝑖⟨𝑢,𝑌⟩] = �̂�(𝑢) ̂𝜈(𝑢).

6.3. Fourier transforms of Gaussians

Definition. The normal distribution 𝑁(0, 𝑡) is given by the probability density function

𝑔𝑡(𝑥) =
1

√2𝜋𝑡
𝑒−

𝑥2
2𝑡

If 𝜑𝑋 is the characteristic function of a standard normal random variable, by integration by
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parts,

d
d𝑢𝜑𝑋(𝑢) =

d
d𝑢 ∫ℝ

𝑒𝑖𝑢𝑥𝑔1(𝑥) d𝑥

= ∫
ℝ
𝑔1(𝑥)

d
d𝑢𝑒

𝑖𝑢𝑥 d𝑥

= 𝑖
√2𝜋

∫
ℝ
𝑒𝑖𝑢𝑥⏟
𝑣
𝑥𝑒−

𝑥2
2⏟

𝑤′
d𝑥

= 𝑖2

√2𝜋
∫
ℝ
𝑢𝑒𝑖𝑢𝑥𝑒−

𝑥2
2 d𝑥

= −𝑢𝜑𝑋(𝑢)

Hence,
d
d𝑢(𝑒

𝑢2
2 𝜑𝑋(𝑢)) = 𝑢𝑒

𝑢2
2 𝜑𝑋(𝑢) − 𝑒

𝑢2
2 𝑢𝜑𝑋(𝑢) = 0

In particular, 𝜑𝑋(𝑢) = 𝜑𝑋(0)𝑒−
𝑢2
2 = 𝑒−

𝑢2
2 . In other words, ̂𝑔1(𝑢) = √2𝜋𝑔1(𝑢).

Inℝ𝑑, consider a Gaussian random vector 𝑍 = (𝑍1,… , 𝑍𝑑)with independent and identically
distributed entries 𝑍𝑖 ∼ 𝑁(0, 1). Then, the joint probability density function of√𝑡𝑍 is

𝑔𝑡(𝑥) =
𝑑
∏
𝑗=1

1
√2𝜋𝑡

𝑒−
𝑥2𝑗
2𝑡 = (2𝜋𝑡)−

𝑑
2 𝑒−

‖𝑥‖2

2𝑡

The Fourier transform of 𝑔𝑡 is

̂𝑔𝑡(𝑢) = 𝔼 [𝑒𝑖⟨𝑢,√𝑡𝑍⟩] = 𝔼 [
𝑑
∏
𝑗=1

𝑒𝑖𝑢𝑗√𝑡𝑧𝑗] =
𝑑
∏
𝑗=1

𝔼 [𝑒𝑖𝑢𝑗√𝑡𝑧𝑗] =
𝑑
∏
𝑗=1

𝑒−𝑢
2
𝑗
𝑡
2 = 𝑒−

‖𝑢‖2𝑡
2

which implies that in general, ̂𝑔𝑡(𝑢) = (2𝜋)
𝑑
2 𝑡

𝑑
2 𝑔 1

𝑡
(𝑢). Taking the Fourier transform with

respect to 𝑢, ̂̂𝑔𝑡 = (2𝜋)𝑑𝑔𝑡, and since 𝑔𝑡(−𝑥) = 𝑔𝑡(𝑥) and the Lebesguemeasure is translation
invariant, we have

𝑔𝑡(𝑥) =
1

(2𝜋)𝑑
̂̂𝑔𝑡(𝑥) =

1
(2𝜋)𝑑 ∫ℝ𝑑

𝑒−𝑖⟨𝑢,𝑥⟩ ̂𝑔𝑡(𝑢) d𝑢

so the Fourier inversion theorem holds for such Gaussian random vectors.

Definition. We say that a function on ℝ𝑑 is a Gaussian convolution if it is of the form

𝑓 ∗ 𝑔𝑡(𝑥) = ∫
ℝ𝑑

𝑓(𝑥 − 𝑦)𝑔𝑡(𝑦) d𝑦

where 𝑥 ∈ ℝ𝑑, 𝑡 > 0, 𝑓 ∈ 𝐿1(ℝ𝑑).
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We can show that 𝑓 ∗ 𝑔𝑡 is continuous on ℝ𝑑, and ‖𝑓 ∗ 𝑔𝑡‖1 ≤ ‖𝑓‖1. Note that 𝑓 ∗ 𝑔𝑡(𝑢) =
̂𝑓(𝑢)𝑒−

‖𝑢‖2𝑡
2 , so ‖‖𝑓 ∗ 𝑔𝑡

‖
‖∞ ≤ ‖𝑓‖1, giving

‖
‖𝑓 ∗ 𝑔𝑡

‖
‖1 ≤ ‖𝑓‖1(2𝜋)

𝑑
2 𝑡−

𝑑
2 < ∞.

Lemma. The Fourier inversion theorem holds for all Gaussian convolutions.

Proof. We can use the Fourier inversion theorem for 𝑔𝑡(𝑦) to see that

(2𝜋)𝑑𝑓 ∗ 𝑔𝑡(𝑥) = (2𝜋)𝑑∫
ℝ𝑑

𝑓(𝑥 − 𝑦)𝑔𝑡(𝑦) d𝑦

= ∫
ℝ𝑑

𝑓(𝑥 − 𝑦)∫
ℝ𝑑

𝑒−𝑖⟨𝑢,𝑦⟩ ̂𝑔𝑡(𝑢) d𝑢 d𝑦

= ∫
ℝ𝑑

𝑒−𝑖⟨𝑢,𝑥⟩∫
ℝ𝑑

𝑓(𝑥 − 𝑦)𝑒𝑖⟨𝑢,𝑥−𝑦⟩ d𝑦 ̂𝑔𝑡(𝑢) d𝑢

= ∫
ℝ𝑑

𝑒−𝑖⟨𝑢,𝑥⟩∫
ℝ𝑑

𝑓(𝑧)𝑒𝑖⟨𝑢,𝑧⟩ d𝑧 ̂𝑔𝑡(𝑢) d𝑢

= ∫
ℝ𝑑

𝑒−𝑖⟨𝑢,𝑥⟩ ̂𝑓(𝑢) ̂𝑔𝑡(𝑢) d𝑢

= ∫
ℝ𝑑

𝑒−𝑖⟨𝑢,𝑥⟩𝑓 ∗ 𝑔𝑡(𝑢) d𝑢

Remark. If 𝜇 is a finite measure, then 𝜇 ∗ 𝑔𝑡 = 𝜇 ∗ 𝑔 𝑡
2
∗ 𝑔 𝑡

2
with 𝜇 ∗ 𝑔 𝑡

2
∈ 𝐿1, so is also a

Gaussian convolution.

Lemma (Gaussian convolutions are dense in 𝐿𝑝). Let 𝑓 ∈ 𝐿𝑝 where 1 ≤ 𝑝 < ∞. Then
‖𝑓 ∗ 𝑔𝑡 − 𝑓‖𝑝 → 0 as 𝑡 → 0.

Proof. One can easily show that the space 𝐶𝑐(ℝ𝑑) of continuous functions of compact sup-
port is dense in 𝐿𝑝. Hence, for all 𝜀 > 0, there exists ℎ ∈ 𝐶𝑐(ℝ𝑑) such that ‖𝑓 − ℎ‖𝑝 <

𝜀
3
, and

by properties of the convolution, we also obtain

‖𝑓 ∗ 𝑔𝑡 − ℎ ∗ 𝑔𝑡‖𝑝 = ‖(𝑓 − ℎ) ∗ 𝑔𝑡‖𝑝 ≤ ‖𝑓 − ℎ‖𝑝 <
𝜀
3

So

‖𝑓 ∗ 𝑔𝑡 − 𝑓‖𝑝 ≤ ‖𝑓 ∗ 𝑔𝑡 − ℎ ∗ 𝑔𝑡‖𝑝 + ‖ℎ ∗ 𝑔𝑡 + ℎ‖𝑝 + ‖ℎ − 𝑓‖𝑝 <
𝜀
2 + ‖ℎ ∗ 𝑔𝑡 − ℎ‖𝑝

so it suffices to prove the result for 𝑓 = ℎ ∈ 𝐶𝑐(ℝ𝑑). We define a new map

𝑒(𝑦) = ∫
ℝ𝑑

|ℎ(𝑥 − 𝑦) − ℎ(𝑥)|𝑝 d𝑥
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Since ℎ is bounded on its bounded support, the dominated convergence theorem implies
that 𝑒 is continuous at 𝑦 = 0. Note that 𝑒(𝑦) ≤ 2𝑝+1‖ℎ‖𝑝𝑝. Hence, by Jensen’s inequality,

‖ℎ ∗ 𝑔𝑡 − ℎ‖𝑝𝑝 = ∫
ℝ𝑑

|||∫ℝ𝑑
(ℎ(𝑥 − 𝑦) − ℎ(𝑥))𝑔𝑡(𝑦) d𝑦

|||

𝑝
d𝑥

≤ ∫
ℝ𝑑

∫
ℝ𝑑

|ℎ(𝑥 − 𝑦) − ℎ(𝑥)|𝑝 d𝑥 𝑔𝑡(𝑦) d𝑦

= ∫
ℝ𝑑

𝑒(𝑦)𝑔𝑡(𝑦) d𝑦

= ∫
ℝ𝑑

𝑒(√𝑡𝑧)⏟⎵⏟⎵⏟
→𝑒(0)=0 as 𝑡→0

𝑔1(𝑧) d𝑧

→ 0

Theorem (Fourier inversion). Let 𝑓 ∈ 𝐿1(ℝ𝑑) be such that ̂𝑓 ∈ 𝐿1(ℝ𝑑). Then for almost all
𝑥 ∈ ℝ𝑑,

𝑓(𝑥) = 1
(2𝜋)𝑑 ∫ℝ𝑑

𝑒−𝑖⟨𝑢,𝑥⟩ ̂𝑓(𝑢) d𝑢

Remark. This proves that the Fourier transform is injective; ̂𝑓 = ̂𝑔 implies 𝑓 − 𝑔 = 0 so by
Fourier inversion, 𝑓 = 𝑔 almost everywhere. The identity holds everywhere on ℝ𝑑 for the
(unique) continuous representative 𝑓 in its equivalence class.

Proof. The Fourier inversion theorem holds for the following Gaussian convolution for all
𝑡.

𝑓 ∗ 𝑔𝑡(𝑥) =
1

(2𝜋)𝑑 ∫ℝ𝑑
𝑒−𝑖⟨𝑢,𝑥⟩ ̂𝑓(𝑢)𝑒

−|𝑢|2𝑡
2 d𝑢 = 𝑓𝑡(𝑥)

Now, since Gaussian convolutions are dense, 𝑓 ∗ 𝑔𝑡 → 𝑓 in 𝐿1, so 𝑓 ∗ 𝑔𝑡 → 𝑓 in measure
by Markov’s inequality. Hence, along a subsequence, 𝑓 ∗ 𝑔𝑡𝑘 → 𝑓 almost everywhere. On
the other hand, by the dominated convergence theorem with dominating function || ̂𝑓||, the
right hand side converges to 1

(2𝜋)𝑑
∫ℝ𝑑 𝑒−𝑖⟨𝑢,𝑥⟩ ̂𝑓(𝑢) d𝑢. So this is equal to lim𝑡𝑘→0 𝑓𝑡𝑘 almost

everywhere by uniqueness of limits.

Theorem (Plancherel). Let 𝑓 ∈ 𝐿1(ℝ𝑑) ∩ 𝐿2(ℝ𝑑). Then ‖𝑓‖2 = (2𝜋)−
𝑑
2 ‖‖ ̂𝑓‖‖2.

Remark. By the Pythagorean identity, ⟨𝑓, 𝑔⟩ = (2𝜋)−𝑑 ⟨ ̂𝑓, ̂𝑔⟩.

Proof. Initially, we assume ̂𝑓 ∈ 𝐿1. In this case, 𝑓, ̂𝑓 ∈ 𝐿∞, and (𝑥, 𝑢) ↦ 𝑓(𝑥) ̂𝑓(𝑢) is in-
tegrable for the product Lebesgue measure d𝑥 ⊗ d𝑢 on ℝ𝑑 × ℝ𝑑, so Fubini’s theorem for
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bounded functions applies.

(2𝜋)𝑑‖𝑓‖22 = (2𝜋)𝑑∫
ℝ𝑑

𝑓(𝑥)𝑓(𝑥) d𝑥

= ∫
ℝ𝑑

(∫
ℝ𝑑

𝑒−𝑖⟨𝑢,𝑥⟩ ̂𝑓(𝑢) d𝑢)𝑓(𝑥) d𝑥

= ∫
ℝ𝑑

̂𝑓(𝑢)∫
ℝ𝑑

𝑒𝑖⟨𝑢,𝑥⟩𝑓(𝑥) d𝑥 d𝑢

= ∫
ℝ𝑑

̂𝑓(𝑢) ̂𝑓(𝑢) d𝑢

= ‖
‖ ̂𝑓‖‖

2

2

To extend this result to general 𝑓, we take the Gaussian convolutions 𝑓 ∗ 𝑔𝑡 = 𝑓𝑡 such that

𝑓𝑡 → 𝑓 in 𝐿2. By the continuity of the norm, ‖𝑓𝑡‖2 → ‖𝑓‖2. Since
|||
̂𝑓(𝑢)𝑒−

|𝑢|2𝑡
2
|||

2

increases to

|| ̂𝑓(𝑢)||
2
, we have bymonotone convergence that ‖‖ ̂𝑓𝑡‖‖

2

2
↑ ‖‖ ̂𝑓‖‖

2

2
. Therefore, since the Plancherel

identity holds for the 𝑓𝑡,

‖𝑓‖22 = lim
𝑡→0

‖𝑓𝑡‖
2
2 = lim

𝑡→0
(2𝜋)−𝑑‖‖ ̂𝑓𝑡‖‖

2

2
= (2𝜋)−𝑑‖‖ ̂𝑓‖‖

2

2

Remark. Since 𝐿1 ∩ 𝐿2 is dense in 𝐿2, we can extend the linear operator 𝐹0(𝑓) = (2𝜋)−
𝑑
2 ̂𝑓 to

𝐿2 by continuity to a linear isometry 𝐹 ∶ 𝐿2 → 𝐿2 known as the Fourier–Plancherel transform.
One can show that 𝐹 is surjective with inverse 𝐹−1∶ 𝐿2 → 𝐿2.

Example. Consider the Dirac measure 𝛿0 on ℝ, so ̂𝛿0(𝑢) = ∫ℝ 𝑒𝑖𝑢𝑥 d𝛿0(𝑥) = 1. But the in-
verse Fourier transform would be 1

2𝜋
∫ℝ 𝑒𝑖𝑢𝑥 d𝑢which is not a Lebesgue integrable function.

Theorem. Let 𝑋 be a random vector in ℝ𝑑 with law 𝜇𝑋 . Then the characteristic function
𝜑𝑋 = �̂�𝑋 uniquely determines 𝜇𝑋 . In addition, if 𝜑𝑋 ∈ 𝐿1, then 𝜇𝑋 has a probability density
function 𝑓𝑋 which can be computed almost everywhere by 1

(2𝜋)𝑑
∫ℝ𝑑 𝑒−𝑖⟨𝑢,𝑥⟩𝜑𝑋(𝑢) d𝑢.

Proof. Let 𝑍 = (𝑍1,… , 𝑍𝑑) be a vector of independent and identically distributed random
variables, independent of𝑋 , with𝑍𝑗 ∼ 𝑁(0, 1). Then√𝑡𝑍 has probability density function 𝑔𝑡.
Then 𝑋 +√𝑡𝑍 has probability density function 𝑓𝑡 = 𝜇𝑋 ∗ 𝑔𝑡. This is a Gaussian convolution
since 𝜇𝑋 ∗ 𝑔𝑡 = 𝜇𝑋 ∗ 𝑔 𝑡

2
∗ 𝑔 𝑡

2
. Hence,

𝑓𝑡(𝑥) =
1

(2𝜋)𝑑 ∫ℝ𝑑
𝑒𝑖⟨𝑢,𝑥⟩𝜑𝑋(𝑢)𝑒−

|𝑢|2𝑡
2 d𝑢
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6. Fourier analysis

which is uniquely determined by 𝜑𝑋 . We show on an example sheet that two Borel prob-
ability measures 𝜇, 𝜈 on ℝ𝑑 coincide if and only if 𝜇(𝑔) = 𝜈(𝑔) for all 𝑔∶ ℝ𝑑 → ℝ that are
bounded, continuous, and have compact support. Now,

∫
ℝ𝑑

𝑔(𝑥)𝑓𝑡(𝑥) d𝑥 = 𝔼[𝑔(𝑋 + √𝑡𝑍)⏟⎵⎵⏟⎵⎵⏟
→𝑋 a.s.

]

Since ||𝑔(𝑋 + √𝑡𝑍)|| ≤ ‖𝑔‖∞ < ∞, by the bounded convergence theorem, this converges to
𝔼 [𝑔(𝑋)] = ∫ℝ𝑑 𝑔(𝑥) d𝜇𝑋(𝑥). So by uniqueness of limits, 𝜑𝑋 determines 𝜇𝑋 .

If 𝜑𝑋 ∈ 𝐿1, by dominated convergence, 𝑓𝑡(𝑥) converges everywhere to some function 𝑓𝑋 . In
particular, since 𝜇𝑋 ∗ 𝑔𝑡 ≥ 0, the limit 𝑓𝑋 is also nonnegative on ℝ𝑑. Then, for any bounded
continuous function on compact support 𝑔 ∈ 𝐶𝑏

𝑐 (ℝ𝑑),

∫
ℝ𝑑

𝑔(𝑥)𝑓𝑋(𝑥) d𝑥 = ∫
ℝ𝑑

𝑔(𝑥) lim
𝑡→0

𝑓𝑡(𝑥)⏟
‖𝜑𝑋 ‖1

d𝑥 = lim
𝑡→0

∫
ℝ𝑑

𝑔(𝑥)𝑓𝑡(𝑥) d𝑥 = ∫
ℝ𝑑

𝑔(𝑥) d𝜇𝑋(𝑥)

by the dominated convergence theorem, since 𝑔 has compact support.

Definition. A sequence (𝜇𝑛)𝑛∈ℕ of Borel probability measures on ℝ𝑑 converges weakly to
a Borel probability measure 𝜇 if 𝜇𝑛(𝑔) → 𝜇(𝑔) for all 𝑔∶ ℝ𝑑 → ℝ bounded and continuous.
If (𝑋𝑛)𝑛∈ℕ, 𝑋 are random vectors with laws (𝜇𝑋𝑛), 𝜇𝑋 such that 𝜇𝑋𝑛 converges weakly to 𝜇𝑋 ,
we say (𝑋𝑛) converges weakly to 𝑋 .

Remark. If 𝑑 = 1, weak convergence is equivalent to convergence in distribution; this is
proven on an example sheet. One can also show that convergence of 𝜇𝑛(𝑔) to 𝜇(𝑔) for all
𝑔 ∈ 𝐶∞

𝑐 (ℝ𝑑) suffices to show weak convergence, where 𝐶∞
𝑐 (ℝ𝑑) is the space of smooth

functions of compact support. This is equivalent to the notion of weak-⋆ convergence on the
function space 𝐶𝑏(ℝ𝑑).

Theorem (Lévy’s continuity theorem). Let𝑋𝑛, 𝑋 be randomvectors inℝ𝑑, such that𝜑𝑋𝑛(𝑢) →
𝜑𝑋(𝑢) for all 𝑢, as 𝑛 → ∞. Then 𝜇𝑋𝑛 → 𝜇𝑋 weakly.

Remark. The converse holds by definition of weak convergence, testing against the complex
exponentials in the Fourier transform.

Proof. Let 𝑍 = (𝑍1,… , 𝑍𝑑) be a vector of standard normal random variables, independent
from each other, 𝑋𝑛, and𝑋 . Let 𝑔 ∈ 𝐶∞

𝑐 (ℝ𝑑). Then 𝑔 ∈ 𝐿1(ℝ𝑑), and is Lipschitz by themean
value theorem, as its first derivative is bounded. Let |𝑔(𝑥) − 𝑔(𝑦)| ≤ ‖𝑔‖Lip|𝑥 − 𝑦|. Let 𝜀 > 0.
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II. Probability and Measure

Let 𝑡 > 0 be sufficiently small such that√𝑡‖𝑔‖Lip𝔼 [|𝑍|] <
𝜀
3
. Then,

||𝜇𝑋𝑛(𝑔) − 𝜇𝑋(𝑔)|| = |𝔼 [𝑔(𝑋𝑛)] − 𝔼 [𝑔(𝑋)]|
≤ 𝔼 [||𝑔(𝑋𝑛) − 𝑔(𝑋𝑛 +√𝑡𝑍)||] + 𝔼 [||𝑔(𝑋) − 𝑔(𝑋 + √𝑡𝑍)||]

+ ||𝔼 [𝑔(𝑋𝑛 +√𝑡𝑍) − 𝑔(𝑋 + √𝑡𝑍)]||
≤ 2‖𝑔‖Lip√𝑡𝔼 [|𝑍|] + ||𝔼 [𝑔(𝑋𝑛 +√𝑡𝑍) − 𝑔(𝑋 + √𝑡𝑍)]||

≤ 2𝜀
3 + ||𝔼 [𝑔(𝑋𝑛 +√𝑡𝑍) − 𝑔(𝑋 + √𝑡𝑍)]||

We show that the remaining term can be made less than 𝜀
3
as 𝑛 → ∞. Let 𝑓𝑡,𝑛(𝑥) = 𝑔𝑡 ∗ 𝜇𝑋𝑛 .

Then, by Fourier inversion for Gaussian convolutions,

𝔼 [𝑔(𝑋𝑛 +√𝑡𝑍)] = ∫
ℝ𝑑

𝑔(𝑥)𝑓𝑡,𝑛(𝑥) d𝑥

= 1
(2𝜋)𝑑 ∫ℝ𝑑

𝑔(𝑥)∫
ℝ𝑑

𝑒−𝑖⟨𝑢,𝑥⟩𝜑𝑋𝑛(𝑢)𝑒
− |𝑢|2𝑡

2 d𝑢 d𝑥

Since characteristic functions are bounded by 1, we can apply the dominated convergence

theorem with dominating function |𝑔(𝑥)|𝑒−
|𝑢|2𝑡
2 to find

𝔼 [𝑔(𝑋𝑛 +√𝑡𝑍)] → 1
(2𝜋)𝑑 ∫ℝ𝑑

𝑔(𝑥)∫
ℝ𝑑

𝑒−𝑖⟨𝑢,𝑥⟩𝜑𝑋(𝑢)𝑒−
|𝑢|2𝑡
2 d𝑢 d𝑥

= ∫
ℝ𝑑

𝑔(𝑥)𝑓𝑡(𝑥) d𝑥

= 𝔼 [𝑔(𝑋 + √𝑡𝑍)]

where 𝑓𝑡 = 𝑔𝑡 ∗ 𝜇𝑋 . So as 𝑛 → ∞, the difference between these two terms can be made less
than 𝜀

3
as required.

Theorem (central limit theorem). Let𝑋1,… , 𝑋𝑛 be independent and identically distributed
random variables with 𝔼 [𝑋𝑖] = 0 and Var (𝑋𝑖) = 1. Let 𝑆𝑛 = ∑𝑛

𝑖=1 𝑋𝑛. Then

1
√𝑛

𝑆𝑛
weakly−−−−→ 𝑍 ∼ 𝑁(0, 1)

In particular,

ℙ( 1
√𝑛

𝑆𝑛 ≤ 𝑥) → ℙ (𝑍 ≤ 𝑥)

Proof. Let 𝑋 = 𝑋1. The characteristic function 𝜑(𝑢) = 𝜑𝑋(𝑢) = 𝔼 [𝑒𝑖𝑢𝑋] satisfies 𝜑(0) = 1,
𝜑′(𝑢) = 𝑖𝔼 [𝑋𝑒𝑖𝑢𝑋], 𝜑″(𝑢) = 𝑖2𝔼 [𝑋2𝑒𝑖𝑢𝑋]. We can find 𝜑′(0) = 𝑖𝔼 [𝑋] = 0 and 𝜑″(0) =
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6. Fourier analysis

−𝔼 [𝑋2] = −Var (𝑋) = −1. By Taylor’s theorem, 𝜑(𝑣) = 1 − 𝑣2

2
+ 𝑜(𝑣2) as 𝑣 → 0. Now,

denoting 𝜑𝑛(𝑢) = 𝜑 1
√𝑛

𝑆𝑛
(𝑢), we can write

𝜑𝑛(𝑢) = 𝔼 [𝑒𝑖
𝑢
√𝑛

(𝑋1+⋯+𝑋𝑛)]

=
𝑛
∏
𝑗=1

𝔼 [𝑒𝑖
𝑢
√𝑛

𝑋𝑗]

= [𝜑( 𝑢
√𝑛

)]
𝑛

= [1 − 𝑢2
2𝑛 + 𝑜(1𝑛)]

𝑛

The complex logarithm satisfies log(1 + 𝑧) = 𝑧 + 𝑜(𝑧), so by taking logarithms, we find

log𝜑𝑛(𝑢) = 𝑛 log (1 − 𝑢2
2𝑛 + 𝑜(1𝑛)) = −𝑢

2

2

Hence, 𝜑𝑛(𝑢) → 𝑒−
|𝑢|2

2 = 𝜑𝑍(𝑢). So by Lévy’s continuity theorem, the result follows.

Remark. This theorem extends toℝ𝑑 by using the next proposition, using the fact that 𝑋𝑛 →
𝑋 weakly in ℝ𝑑 if and only if ⟨𝑋𝑛, 𝑣⟩ → ⟨𝑋, 𝑣⟩ weakly in ℝ for all 𝑣 ∈ ℝ𝑑.

Definition. A random variable 𝑋 in ℝ𝑑 is called a Gaussian vector if ⟨𝑋𝑛, 𝑣⟩ are Gaussian
for each 𝑣 ∈ ℝ𝑑.

Proposition. Let 𝑋 be a Gaussian vector in ℝ𝑑. Then 𝑍 = 𝐴𝑋 + 𝑏 is a Gaussian vector
in ℝ𝑚 where 𝐴 is an 𝑚 × 𝑑 matrix and 𝑏 ∈ ℝ𝑚. Also, 𝑋 ∈ 𝐿2(ℝ𝑑), and 𝜇 = 𝔼 [𝑋] and
𝑉 = Cov (𝑋𝑖, 𝑋𝑗) exist and determine 𝜇𝑋 . The characteristic function is

𝜑𝑋(𝑢) = 𝑒𝑖⟨𝜇,𝑢⟩−
⟨𝑢,𝑉𝑢⟩

2

If 𝑉 is invertible, then 𝜇𝑋 has a probability density function

𝑓𝑋(𝑥) = (2𝜋)−
𝑑
2 (det𝑉)−

1
2 exp{− ⟨𝑥 − 𝜇, 𝑉−1(𝑥 − 𝜇)⟩}

Subvectors 𝑋(1), 𝑋(2) of 𝑋 are independent if and only if Cov (𝑋(1), 𝑋(2)) = 0.
Proposition. Let 𝑋𝑛 → 𝑋 weakly in ℝ𝑑 as 𝑛 → ∞. Then,

(i) if ℎ∶ ℝ𝑑 → ℝ𝑘 is continuous, then ℎ(𝑋𝑛) → ℎ(𝑋) weakly;
(ii) if |𝑋𝑛 − 𝑌𝑛| → 0 in probability, then 𝑌𝑛 → 𝑋 weakly;

(iii) if 𝑌𝑛 → 𝑐 in probability where 𝑐 is constant on Ω, then (𝑋𝑛, 𝑌𝑛) → (𝑋, 𝑐) weakly in
ℝ𝑑 × ℝ𝑑.
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II. Probability and Measure

Remark. Combining parts (iii) and (i), 𝑋𝑛 + 𝑌𝑛 → 𝑋 + 𝑐 weakly if 𝑌𝑛 → 𝑐 in probability. If
𝑑 = 1, then in addition 𝑋𝑛𝑌𝑛 → 𝑐𝑋 weakly.

Proof. Part (i). This follows from the fact that 𝑔ℎ is continuous for any test function 𝑔.
Part (ii). Let 𝑔∶ ℝ𝑑 → ℝ be bounded and Lipschitz continuous. Then

|𝔼 [𝑔(𝑌𝑛)] − 𝔼 [𝑔(𝑋)]| ≤ |𝔼 [𝑔(𝑋𝑛)] − 𝔼 [𝑔(𝑋)]|⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
< 𝜀
3

+𝔼 [|𝑔(𝑋𝑛) − 𝑔(𝑌𝑛)|]

where the bound on 𝔼 [𝑔(𝑋𝑛)] − 𝔼 [𝑔(𝑋)] holds for sufficiently large 𝑛. Then the remaining
term is upper bounded by

𝔼 [|𝑔(𝑋𝑛) − 𝑔(𝑌𝑛)|] (𝟙{|𝑋𝑛−𝑌𝑛|≤
𝜀

3‖𝑔‖Lip
}
+ 𝟙

{|𝑋𝑛−𝑌𝑛|>
𝜀

3‖𝑔‖Lip
}
)

≤ ‖𝑔‖Lip
𝜀

3‖𝑔‖Lip
+ 2‖𝑔‖∞ℙ(|𝑋𝑛 − 𝑌𝑛| >

𝜀
3‖𝑔‖Lip

) < 2𝜀
3

for sufficiently large 𝑛.
Part (iii). |(𝑋𝑛, 𝑐) − (𝑋𝑛, 𝑌𝑛)| = |𝑌𝑛 − 𝑐| → 0 in probability. Also, 𝔼 [𝑔(𝑋𝑛, 𝑐)] → 𝔼 [𝑔(𝑋, 𝑐)]
for all bounded continuous maps 𝑔∶ ℝ𝑑 × ℝ𝑑 → ℝ, so (𝑋𝑛, 𝑐) → (𝑋, 𝑐) weakly. Hence, by
(ii), (𝑋𝑛, 𝑌𝑛) → (𝑋, 𝑐) weakly.
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7. Ergodic theory

7. Ergodic theory

7.1. Laws of large numbers

Proposition. Let (𝑋𝑛)𝑛∈ℕ be independent and identically distributed randomvariables such
that 𝔼 [𝑋𝑛] = 0 and Var (𝑋𝑛) = 𝜎2 < ∞. Then 1

𝑛
∑𝑛

𝑖=1 𝑋𝑖 → 0 in probability as 𝑛 → ∞.

Proof. By Chebyshev’s inequality,

ℙ(
||||
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖
||||
> 𝜀) ≤ 1

𝑛2𝜀2 Var (
𝑛
∑
𝑖=1

𝑋𝑖) ≤
𝜎2
𝑛𝜀2 → 0

So 1
𝑛
∑𝑛

𝑖=1 𝑋𝑖 → 𝔼[𝑋1] in probability.

This is known as the weak law of large numbers. However, this result has several weak-
nesses, and we can provide stronger results.

Proposition. Let (𝑋𝑛)𝑛∈ℕ be independent random variables such that 𝔼 [𝑋𝑛] = 𝜇 and
𝔼 [𝑋4

𝑛] ≤ 𝑀 for all 𝑛. Then 1
𝑛
∑𝑛

𝑖=1 𝑋𝑖 → 𝜇 almost surely as 𝑛 → ∞.

Proof. Let 𝑌𝑛 = 𝑋𝑛 − 𝜇. Then 𝔼 [𝑌𝑛] = 0, and 𝔼 [𝑌4
𝑛 ] ≤ 24(𝔼 [𝑋4

𝑛] + 𝜇4) < ∞. So we
can assume 𝜇 = 0. For distinct indices 𝑖, 𝑗, 𝑘, ℓ, by independence and the Cauchy–Schwarz
inequality, we have

0 = 𝔼 [𝑋𝑖𝑋𝑗𝑋𝑘𝑋ℓ] = 𝔼 [𝑋2
𝑖 𝑋𝑗𝑋𝑗] = 𝔼 [𝑋3

𝑖 𝑋𝑗] ; 𝔼 [𝑋2
𝑖 𝑋2

𝑗 ] ≤ √𝔼 [𝑋4
𝑖 ]√𝔼 [𝑋4

𝑗 ] ≤ 𝑀

So we can compute

𝔼[(
𝑛
∑
𝑖=1

𝑋𝑖)
4

] = 𝔼[
𝑛
∑
𝑖=1

𝑋4
𝑖 ] + 6𝔼 [∑

𝑖<𝑗
𝑋2
𝑖 𝑋2

𝑗 ] ≤ 𝑛𝑀 + 3𝑛(𝑛 − 1)𝑀 ≤ 3𝑛2𝑀

Let 𝑆𝑛 = ∑𝑛
𝑖=1 𝑋𝑖. Then,

𝔼 [
∞
∑
𝑛=1

(𝑆𝑛𝑛 )
4
] ≤

∞
∑
𝑛=1

1
𝑛4 3𝑛

2𝑀 < ∞

Hence∑∞
𝑛=1 (

𝑆𝑛
𝑛
)
4
< ∞ almost surely. But then (𝑆𝑛

𝑛
)
4
→ 0 almost surely, so 𝑆𝑛

𝑛
→ 0 almost

surely.
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7.2. Invariants
Let (𝐸, ℰ, 𝜇) be a 𝜎-finite measure space.
Definition. Ameasurable transformationΘ∶ 𝐸 → 𝐸 ismeasure-preserving if 𝜇(Θ−1(𝐴)) =
𝜇(𝐴) for all 𝐴 ∈ ℰ.
In this case, for any integrable function 𝑓 ∈ 𝐿1(𝜇), we have ∫𝐸 𝑓 d𝜇 = ∫𝐸 𝑓 ∘ Θ d𝜇.
Definition. A measurable map 𝑓∶ 𝐸 → ℝ is called Θ-invariant if 𝑓 ∘ Θ = 𝑓. A set 𝐴 ∈ ℰ
is Θ-invariant if Θ−1(𝐴) = 𝐴, or equivalently, 𝟙𝐴 is Θ-invariant.
The collection ℰΘ of Θ-invariant sets forms a 𝜎-algebra over 𝐸. A function 𝑓∶ 𝐸 → ℝ is
invariant if and only if 𝑓 is ℰΘ-measurable; this is a question on an example sheet.
Definition. Θ is called ergodic if theΘ-invariant sets𝐴 satisfy either 𝜇(𝐴) = 0 or 𝜇(𝐸∖𝐴) =
0.
If 𝑓 isΘ-invariant andΘ is ergodic, then one can show that 𝑓 is constant almost everywhere
on 𝐸.
Example. Consider (𝐸, ℰ) = ((0, 1], ℬ) with the Lebesgue measure 𝜇. The maps Θ𝑎(𝑥) =
𝑥 + 𝑎modulo 1 and Θ(𝑥) = 2𝑥 modulo 1 are both measure-preserving, and ergodic unless
𝑎 ∈ ℚ. This is a question on an example sheet.
Lemma (maximal ergodic lemma). Let (𝐸, ℰ, 𝜇) be a 𝜎-finitemeasure space. LetΘ∶ 𝐸 → 𝐸
be measure-preserving. For 𝑓 ∈ 𝐿1(𝜇), we define 𝑆0(𝑓) = 0 and 𝑆𝑛(𝑓) = ∑𝑛−1

𝑘=0 𝑓 ∘ Θ𝑘. Let
𝑆⋆ = 𝑆⋆(𝑓) = sup𝑛≥0 𝑆𝑛(𝑓). Then ∫{𝑆⋆>0} 𝑓 d𝜇 ≥ 0.

Proof. Define 𝑆⋆
𝑛 = max𝑘≤𝑛 𝑆𝑘. Then clearly 𝑆⋆

𝑛 ↑ 𝑆⋆, and 𝑆𝑘 ≤ 𝑆⋆
𝑛 for all 𝑘 ≤ 𝑛. Note that

𝑆𝑘+1 = 𝑆𝑘 ∘ Θ + 𝑓 ≤ 𝑆⋆
𝑛 ∘ Θ + 𝑓.

Define 𝐴𝑛 = {𝑆⋆
𝑛 > 0}, so 𝐴𝑛 ↑ {𝑆⋆ > 0}. On 𝐴𝑛, we have

𝑆⋆
𝑛 = max

1≤𝑘≤𝑛
𝑆𝑘 ≤ max

0≤𝑘≤𝑛
𝑆𝑘+1 ≤ 𝑆⋆

𝑛 ∘ Θ + 𝑓

since 𝑆0 = 0. We can integrate this inequality to find

∫
𝐴𝑛

𝑆⋆
𝑛 d𝜇 ≤ ∫

𝐴𝑛

𝑆⋆
𝑛 ∘ Θ d𝜇 +∫

𝐴𝑛

𝑓 d𝜇

On the complement 𝐴𝑐
𝑛, we must have 𝑆⋆

𝑛 = 0 ≤ 𝑆⋆
𝑛 ∘ Θ. Hence,

∫
𝐸
𝑆⋆
𝑛 d𝜇 ≤ ∫

𝐸
𝑆⋆
𝑛 ∘ Θ d𝜇 +∫

𝐴𝑛

𝑓 d𝜇

Since Θ is measure-preserving,

∫
𝐸
𝑆⋆
𝑛 d𝜇 ≤ ∫

𝐸
𝑆⋆
𝑛 d𝜇 +∫

𝐴𝑛

𝑓 d𝜇
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so we obtain
∫
𝐴𝑛

𝑓 d𝜇 ≥ 0

Since 𝑓𝟙𝐴𝑛 → 𝑓𝟙{𝑆⋆>0} pointwise, and ||𝑓𝟙𝐴𝑛
|| ≤ |𝑓| ∈ 𝐿1(𝜇), we can apply the dominated

convergence theorem to show that

∫
{𝑆⋆>0}

𝑓 d𝜇 = lim
𝑛→∞

∫
𝐴𝑛

𝑓 d𝜇 ≥ 0

as required.

7.3. Ergodic theorems
Theorem (Birkhoff). Let (𝐸, ℰ, 𝜇) be a 𝜎-finite measure space. Let Θ∶ 𝐸 → 𝐸 be measure-
preserving. For 𝑓 ∈ 𝐿1(𝜇), we define 𝑆0(𝑓) = 0 and 𝑆𝑛(𝑓) = ∑𝑛−1

𝑘=0 𝑓 ∘ Θ𝑘. Then there exists
aΘ-invariant integrable function 𝑓 ∈ 𝐿1(𝜇)with 𝜇(||𝑓||) ≤ 𝜇(|𝑓|) such that 𝑆𝑛(𝑓)

𝑛
→ 𝑓 almost

everywhere.

The proof of Birkhoff’s ergodic theorem is non-examinable.

Proof (non-examinable). Note that

lim sup
𝑛

𝑆𝑛(𝑓)
𝑛 = lim sup

𝑛

𝑆𝑛(𝑓) ∘ Θ
𝑛

and the same holds for lim inf𝑛. Hence lim sup𝑛
𝑆𝑛(𝑓)
𝑛

and lim inf𝑛
𝑆𝑛(𝑓)
𝑛

are invariant func-
tions. So they are ℰΘ-measurable. Hence

𝐷 = 𝐷𝑎,𝑏 = {lim inf
𝑛

𝑆𝑛(𝑓)
𝑛 < 𝑎 < 𝑏 < lim sup

𝑛

𝑆𝑛(𝑓)
𝑛 }

are measurable and invariant sets. Without loss of generality, let 𝑏 > 0. Let 𝐵 ∈ ℰ, where
𝐵 ⊆ 𝐷 such that 𝜇(𝐵) < ∞. Let 𝑔 = 𝑓 − 𝑏𝟙𝐵 ∈ 𝐿1(𝜇). Then,

𝑆𝑛(𝑔) = 𝑆𝑛(𝑓) − 𝑏𝑆𝑛(𝟙𝐵) ≥ 𝑆𝑛(𝑓) − 𝑏𝑛

which is positive on 𝐷 for some 𝑛 by the definition of lim sup𝑛. We will apply the maximal
ergodic lemma with 𝐸 = 𝐷 and 𝜇 = 𝜇|𝐷; Θ is still measure-preserving on this new measure
since

𝜇|||𝐷
(𝐴) = 𝜇(𝐴∩𝐷) = 𝜇(Θ−1(𝐴∩𝐷)) = 𝜇(Θ−1(𝐴)∩Θ−1(𝐷)) = 𝜇(Θ−1(𝐴)∩𝐷) = 𝜇|||𝐷

(Θ−1(𝐴))

Note that {𝑆⋆ > 0} ⊆ 𝐷 as we restrict our measure space to𝐷, but by the previous inequality,
𝑆⋆ > 0 on 𝐷. So 𝐷 = {𝑆⋆ > 0}. Then the maximal ergodic lemma gives

0 ≤ ∫
𝑆⋆>0

𝑔 d𝜇 = ∫
𝐷
𝑔 d𝜇 = ∫

𝐷
𝑓 d𝜇 − 𝑏𝜇(𝐵)
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Hence, 𝑏𝜇(𝐵) ≤ ∫𝐷 𝑓 d𝜇. By 𝜎-finiteness, this inequality extends to 𝐷; one can choose
an approximating sequence 𝐵𝑛 ↑ 𝐷 where 𝜇(𝐵𝑛) < ∞, then take limits to show 𝑏𝜇(𝐷) =
𝑏 lim𝑛 𝜇(𝐵𝑛) ≤ ∫𝐷 𝑓 d𝜇. Repeating the above argument for−𝑓 and−𝑎, we obtain−𝑎𝜇(𝐷) ≤
∫𝐷 −𝑓 d𝜇. Combining these two inequalities gives

𝑏𝜇(𝐷) ≤ ∫
𝐷
𝑓 d𝜇 ≤ 𝑎𝜇(𝐷)

But 𝑎 < 𝑏, so 𝜇(𝐷) = 0 or∞, but 𝑓 is integrable, so 𝜇(𝐷) = 0. Now, define

Δ = {lim inf
𝑛

𝑆𝑛(𝑓)
𝑛 < lim sup

𝑛

𝑆𝑛(𝑓)
𝑛 } = ⋃

𝑎<𝑏∈ℚ
𝐷𝑎,𝑏

By countable additivity,

𝜇(Δ) = 𝜇( ⋃
𝑎<𝑏∈ℚ

𝐷𝑎,𝑏) = ∑
𝑎<𝑏∈ℚ

𝜇(𝐷𝑎,𝑏) = 0

On Δ𝑐, 𝑆𝑛
𝑛
converges in [−∞,∞]. We define the invariant function 𝑓 by

𝑓 = {
lim𝑛

𝑆𝑛
𝑛

𝑥 ∈ Δ𝑐

0 𝑥 ∈ Δ

so 𝑆𝑛
𝑓
→ 𝑓 almost everywhere as 𝑛 → ∞. Since 𝜇(||𝑓 ∘ Θ𝑛−1||) = 𝜇(|𝑓|), we have 𝜇(|𝑆𝑛|) ≤

𝑛𝜇(|𝑓|) and thus

𝜇(||𝑓||) = 𝜇(lim inf
𝑛

|||
𝑆𝑛
𝑛
|||) ≤ lim inf

𝑛
𝜇(|||

𝑆𝑛
𝑛
|||) ≤ 𝜇(|𝑓|)

which is one of the results required by the theorem. In particular, 𝜇(||𝑓||) < ∞ so ||𝑓|| < ∞
almost everywhere.

Theorem (vonNeumann). Let (𝐸, ℰ, 𝜇) be a finitemeasure space (not𝜎-finite). LetΘ∶ 𝐸 →
𝐸 be measure-preserving. Let 𝑓 ∈ 𝐿𝑝(𝐸) with 1 ≤ 𝑝 < ∞. Then 𝑆𝑛(𝑓)

𝑛
→ 𝑓 in 𝐿𝑝.

Proof. Since Θ is measure-preserving, we have

‖
‖𝑓 ∘ Θ𝑖‖‖

𝑝

𝑝
= ∫

𝐸
|𝑓|𝑝 ∘ Θ𝑖 d𝜇 = ∫

𝐸
|𝑓|𝑝 d𝜇 = ∫

𝐸
|𝑓|𝑝 d𝜇 = ‖𝑓‖𝑝𝑝

Thus, by Minkowski’s inequality, for all 𝑓 ∈ 𝐿𝑝 we have

‖
‖‖
𝑆𝑛(𝑓)
𝑛

‖
‖‖𝑝
≤ 1
𝑛
𝑛−1
∑
𝑖=0

‖
‖𝑓 ∘ Θ𝑖‖‖𝑝 = ‖𝑓‖𝑝
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So 𝑆𝑛(𝑓)
𝑛

is a contraction in 𝐿𝑝. For each 𝐾 > 0, we define 𝑓𝐾 = max(min(𝑓, 𝐾), −𝐾). Then

‖𝑓 − 𝑓𝐾‖
𝑝
𝑝 = ∫

𝐸
|𝑓 − 𝑓𝐾 |

𝑝𝟙|𝑓|>𝐾 d𝜇

Since 𝟙|𝑓|>𝐾 converges to zero pointwise, and |𝑓 − 𝑓𝐾 | ≤ 2|𝑓|𝑝 ∈ 𝐿1, we find ‖𝑓 − 𝑓𝐾‖𝑝 <
𝜀
3

by dominated convergence, for sufficiently large 𝐾 = 𝐾𝜀. As |𝑓𝐾 | ≤ 𝐾, we have ||
𝑆𝑛(𝑓𝐾)

𝑛
|| ≤ 𝐾.

Since 𝜇 is finite, 𝑓𝐾 ∈ 𝐿1(𝜇), so by Birkhoff’s ergodic theorem, 𝑆𝑛(𝑓𝐾)
𝑛

→ 𝑓𝐾 almost every-

where for some invariant function 𝑓𝐾 . Note that 𝑓𝑘 is bounded by 𝐾 as 𝑆𝑛(𝑓𝐾)
𝑛

is bounded

by 𝐾. By the bounded convergence theorem, we deduce that ‖‖
𝑆𝑛(𝑓𝐾)

𝑛
− 𝑓𝐾

‖
‖ → 0 as 𝑛 → ∞.

Further, this holds in 𝐿𝑝 since

‖
‖‖
𝑆𝑛(𝑓𝐾)
𝑛 − 𝑓𝐾

‖
‖‖𝑝
≤ (2𝐾)

𝑝−1
𝑝 ‖
‖‖
𝑆𝑛(𝑓𝐾)
𝑛 − 𝑓𝐾

‖
‖‖1
< 𝜀
3

where the last inequality holds for sufficiently large 𝑛. Since 𝜇 is a finite measure, 𝐿𝑝(𝜇) ⊆
𝐿1(𝜇), hence by Birkhoff’s ergodic theorem, 𝑆𝑛(𝑓)

𝑛
→ 𝑓 almost everywhere as 𝑓 → ∞. Then,

by the contraction property applied to 𝑓 − 𝑓𝐾 ,

‖
‖𝑓 − 𝑓𝐾

‖
‖
𝑝

𝑝
= ∫

𝐸
||𝑓 − 𝑓𝐾 ||

𝑝
d𝜇

= ∫
𝐸
lim inf

𝑛
|||
𝑆𝑛(𝑓) − 𝑆𝑛(𝑓𝐾)

𝑛
|||
𝑝
d𝜇

≤ lim inf
𝑛

∫
𝐸

|||
𝑆𝑛(𝑓) − 𝑆𝑛(𝑓𝐾)

𝑛
|||
𝑝
d𝜇

= lim inf
𝑛

∫
𝐸

|||
𝑆𝑛(𝑓 − 𝑓𝐾)

𝑛
|||
𝑝
d𝜇

≤ lim inf
𝑛

‖𝑓 − 𝑓𝐾‖
𝑝
𝑝

= ‖𝑓 − 𝑓𝐾‖
𝑝
𝑝 < ( 𝜀3)

𝑝

So in particular, 𝑓 ∈ 𝐿𝑝. Then by the triangle inequality,

‖
‖‖
𝑆𝑛(𝑓)
𝑛 − 𝑓‖‖‖𝑝

≤ ‖
‖‖
𝑆𝑛(𝑓) − 𝑆𝑛(𝑓𝐾)

𝑛
‖
‖‖𝑝
+ ‖
‖‖
𝑆𝑛(𝑓𝐾)
𝑛 − 𝑓𝐾

‖
‖‖𝑝
+ ‖
‖𝑓 − 𝑓𝐾

‖
‖𝑝

< ‖
‖‖
𝑆𝑛(𝑓) − 𝑆𝑛(𝑓𝐾)

𝑛
‖
‖‖𝑝
+ 2𝜀

3

≤ ‖𝑓 − 𝑓𝐾‖𝑝 +
2𝜀
3 = 𝜀

for sufficiently large 𝑛.
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7.4. Infinite product spaces
Let 𝐸 = ℝℕ = {𝑥 = (𝑥𝑛)𝑛∈ℕ} be the space of real sequences. Consider

𝒞 = {𝐴 =
∞
∏
𝑛=1

𝐴𝑛
||||
𝐴𝑛 ∈ ℬ, ∃𝑁 ∈ ℕ, ∀𝑛 > 𝑁,𝐴𝑛 = ℝ}

This forms a 𝜋-system, which generates the cylindrical 𝜎-algebra 𝜎(𝒞). One shows that
𝜎(𝒞) = 𝜎({𝑓𝑛 ∣ 𝑛 ∈ ℕ}) where 𝑓𝑛(𝑥) = 𝑥𝑛 are the coordinate projection functions on 𝐸. We
can also show 𝜎(𝒞) = ℬ(ℝℕ) for the product topology. Let (𝑋𝑛)𝑛∈ℕ be a sequence of in-
dependent and identically distributed random variables defined on (Ω,ℱ, ℙ)with marginal
distributions𝜇𝑋𝑛 = 𝑚 for all𝑛; this exists by an earlier theorem. Wedefine amap𝑋 ∶ Ω → 𝐸
by 𝑋(𝜔)𝑛 = 𝑋𝑛(𝜔). This is ℱ–𝜎(𝒞)measurable, since for all 𝐴 ∈ 𝒞, we have

𝑋−1(𝐴) = {𝜔 ∣ 𝑋1(𝜔) ∈ 𝐴1,… , 𝑋𝑁(𝜔) ∈ 𝐴𝑛} =
𝑁

⋂
𝑛=1

𝑋−1
𝑛 (𝐴𝑛) ∈ ℱ

We denote 𝜇 = ℙ ∘ 𝑋−1, which is the unique product probability measure in ℝℕ satisfy-
ing

𝜇(
∞
∏
𝑛=1

𝐴𝑛) = lim
𝑁→∞

𝜇(
𝑁
∏
𝑛=1

𝐴𝑛)

= lim
𝑁→∞

ℙ (𝑋1 ∈ 𝐴1,… , 𝑋𝑁 ∈ 𝐴𝑁)

= lim
𝑁→∞

ℙ (𝑋1 ∈ 𝐴1)⋯ℙ (𝑋𝑁 ∈ 𝐴𝑁)

=
∞
∏
𝑛=1

ℙ (𝑋𝑛 ∈ 𝐴𝑛)

=
∞
∏
𝑛=1

𝑚(𝐴𝑛)

Note that we need to use finiteness of𝑁 to exploit independence of the𝑋𝑖. We call (𝐸, ℰ, 𝜇) =
(ℝℕ, 𝜎(𝒞),𝑚ℕ) the canonicalmodel for an infinite sequence of randomvariables of law𝑚.
Theorem. The shift map Θ∶ 𝐸 → 𝐸 defined by Θ(𝑥)𝑛 = 𝑥𝑛+1 is measure preserving and
ergodic.

Proof. For 𝐴 ∈ 𝒞,
𝜇(𝐴) = ℙ (𝑋1 ∈ 𝐴1,… , 𝑋𝑁 ∈ 𝐴𝑁)

= ℙ (𝑋1 ∈ 𝐴1)⋯ℙ (𝑋𝑁 ∈ 𝐴𝑁)

=
𝑁
∏
𝑛=1

𝑚(𝐴𝑛)

= ℙ (𝑋2 ∈ 𝐴1)⋯ℙ (𝑋𝑁+1 ∈ 𝐴𝑁)
= 𝜇(Θ−1(𝐴))
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so Θ is measure-preserving. Recall that the tail 𝜎-algebra is defined by 𝒯 = ⋂𝑛𝒯𝑛 where
𝒯𝑛 = 𝜎({𝑋𝑘 ∣ 𝑘 ≥ 𝑛 + 1}). Note that for all 𝐴 ∈ 𝒞, we have

Θ−𝑛(𝐴) = {𝑥 ∈ ℝℕ ∣ (𝑥𝑛+1, 𝑥𝑛+2,… ) ∈ 𝐴} ∈ 𝒯𝑛

Now, if 𝐴 is invariant, 𝐴 = Θ−𝑛(𝐴) ∈ 𝒯𝑛 for all 𝑛, so 𝐴 ∈ 𝒯. By Kolmogorov’s zero-one law,
𝜇(𝐴) = 0 or 𝜇(𝐴) = 1 as required for ergodicity.

We can apply Birkhoff’s ergodic theorem to Θ. If 𝑓 ∈ 𝐿1(𝜇), then 𝑆𝑛(𝑓)
𝑛

→ 𝑓 ∈ 𝐿1(𝜇) almost
surely. Since 𝑓 is invariant andΘ is ergodic, 𝑓 is almost surely constant. By von Neumann’s
𝐿𝑝-ergodic theorem, convergence holds in fact in 𝐿1.

7.5. Strong law of large numbers
Theorem. Let ∫ℝ |𝑥| d𝑚(𝑥) < ∞, and let ∫ℝ 𝑥 d𝑚(𝑥) = 𝜈. Then

𝜇({𝑥 ∈ ℝℕ ||
𝑥1 + 𝑥2 +⋯+ 𝑥𝑛

𝑛 → 𝜈}) = 1

Proof. Let 𝑓(𝑥) = 𝑥1. Then 𝑓 ∈ 𝐿1(𝜇), since ∫𝐸 |𝑓| d𝜇 = ∫ℝ |𝑥| d𝑚(𝑥) < ∞. So by Birkhoff’s
ergodic theorem,

𝜇({𝑥1 +⋯+ 𝑥𝑛
𝑛 → 𝜈}) = 𝜇({𝑆𝑛(𝑓)𝑛 → 𝑓}) = 1

where we also use von Neumann’s ergodic theorem to deduce that

𝑓 = 𝜇(𝑓) = lim
𝑛
𝜇(𝑆𝑛(𝑓)𝑛 ) = 𝑛

𝑛𝜈 = 𝜈

Theorem (strong law of large numbers). Let (𝑋𝑛)𝑛∈ℕ be independent and identically dis-
tributed random variables such that 𝔼 [|𝑋1|] < ∞. Then 1

𝑛
∑𝑛

𝑖=1 𝑋𝑖 → 𝔼[𝑋] almost surely.

Proof. Inject 𝑋 from Ω to 𝐸 = ℝℕ as before, and notice that

ℙ(1𝑛
𝑛
∑
𝑖=1

𝑋𝑖 → 𝔼[𝑋]) = 𝜇({𝑥 ||
𝑥1 +⋯+ 𝑥𝑛

𝑛 → 𝜈}) = 1

Remark. The hypothesis 𝔼 [|𝑋|] < ∞ cannot be weakened; we see on an example sheet that
1
𝑛
∑𝑛

𝑖=1 𝑋𝑖 can exhibit various behaviours. Note that this notion of convergence is stronger
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than the weak convergence seen in the central limit theorem. The law of the iterated logar-
ithm is that

lim sup
𝑛

𝑋1 +⋯+ 𝑋𝑛
√2𝑛 log log𝑛

= 1

almost surely, and −1 for the limit inferior. In particular, the central limit theorem does not
hold almost surely.

Corollary. By vonNeumann’s ergodic theorem, in the strong law of large numbers, we have
𝔼 [||

1
𝑛
∑𝑛

𝑖=1 𝑋𝑖 − 𝔼 [𝑋]||] → 0 as 𝑛 → ∞.
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Lectured in Michaelmas 2022 by Dr. J. Sahasrabudhe
A graph is a set of vertices, each pair of which may be joined with an edge. The fact that
graphs can beused tomodel any symmetric relationmakes themwidely applicable to various
areas of mathematics such as knot theory.

We begin by studying various notions of connectivity of graphs, and then discuss planarity.
The famous four-colour theorem states that a planar graph can be drawn using only four
colours for the vertices, such that no two joined vertices share the same colour. While the
proof of this theorem is extremely long, we prove the five-colour theorem and related results
about graphs on other surfaces.

As graphs grow, we are interested in their asymptotic behaviour. For example, how many
edges must there be in a graph before we can guarantee that there is a triangle? We study
various properties of this form, and prove sufficient conditions to see certain behaviour in
any given graph. We also use probability theory to provide bounds on how likely certain
events in a random graph are to occur.
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1. Introduction

1. Introduction
1.1. Definitions
Weuse thenotation [𝑛] for {1,… , 𝑛}. For a set𝑋 and𝑘 ∈ ℕ, we define𝑋(𝑘) = {𝑌 ⊆ 𝑋 ∣ |𝑌| = 𝑘}.
Definition. A graph is a pair (𝑉, 𝐸), where 𝑉 is a set of vertices and 𝐸 is a set of edgeswhere
𝐸 ⊆ 𝑉 (2). We use the notation 𝑉(𝐺) to denote the set of vertices and 𝐸(𝐺) to denote the set
of edges, where 𝐺 = (𝑉, 𝐸) is a graph. We define |𝐺| = |𝑉(𝐺)|, and 𝑒(𝐺) = |𝐸(𝐺)|.
Example. The complete graph on 𝑛 vertices, denoted 𝐾𝑛, is the graph with 𝑉 = [𝑛] and
𝐸 = 𝑉 (2).

Note that we sometimes use juxtaposition of names of vertices to denote an edge between
them, so 13 represents the edge {1, 3}.
Remark. Edges are undirected. There are no edges from a vertex to itself. Edges between
vertices are unique if they exist. Most of the graphs covered in this course are finite.

Example. The empty graph on 𝑛 vertices, denoted 𝐾𝑛, is the graph with vertex set 𝑉 = [𝑛]
and 𝐸 = ∅.
Example. The path of length 𝑛, denoted 𝑃𝑛, is the graph with vertex set 𝑉 = [𝑛 + 1] and
edge set 𝐸 = {{1, 2},… , {𝑛, 𝑛 + 1}}.
Example. The cycle of length 𝑛, denoted 𝐶𝑛, is the graph with vertex set 𝑉 = [𝑛] and edge
set 𝐸 = {{1, 2},… , {𝑛 − 1, 𝑛}, {𝑛, 1}}.
Definition. Let 𝐺 be a graph, 𝑥 ∈ 𝑉(𝐺). The neighbourhood of 𝑥 in 𝐺 is

𝑁𝐺(𝑥) = {𝑦 ∈ 𝑉(𝐺) ∣ {𝑥, 𝑦} ∈ 𝐸(𝐺)}

If 𝑦 is a neighbour of 𝑥, we write 𝑥 ∼ 𝑦.
Note that ∼ is irreflexive and not transitive in general.

Definition. The degree of a vertex 𝑥 ∈ 𝑉(𝐺) is defined as deg𝑥 = |𝑁(𝑥)|.
Definition. Let 𝐺,𝐻 be graphs. A graph isomorphism is a bijection 𝜑∶ 𝑉(𝐺) → 𝑉(𝐻) such
that {𝑢, 𝑣} ∈ 𝐸(𝐺) ⟺ {𝜑(𝑢), 𝜑(𝑣)} ∈ 𝐸(𝐻).
Definition. We say 𝐻 is a subgraph of 𝐺 if 𝑉(𝐻) ⊆ 𝑉(𝐺) and 𝐸(𝐻) ⊆ 𝐸(𝐺).
If𝐺 is a graph, and 𝑥𝑦 ∈ 𝐸(𝐺), we define𝐺−𝑥𝑦 to be the graph (𝑉(𝐺), 𝐸(𝐺)∖{𝑥𝑦}). Similarly,
for 𝑥, 𝑦 ∈ 𝑉(𝐺), we define 𝐺 + 𝑥𝑦 to be the graph (𝑉(𝐺), 𝐸(𝐺) ∪ {𝑥𝑦}).
Definition. Let 𝑥, 𝑦 ∈ 𝑉(𝐺). A walk from 𝑥 to 𝑦 in 𝐺 is a sequence of vertices (𝑥,… , 𝑦)
such that each consecutive pair of elements of the sequence is connected by an edge in 𝐺. A
path from 𝑥 to 𝑦 in 𝐺 is a walk where all the vertices are disjoint.

Definition. A graph is connected if every pair of vertices is connected with a path.

The concatenation of two paths or walks 𝑃 and 𝑃′ is written 𝑃𝑃′.
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Remark. The concatenation of two walks is a walk. The concatenation of two paths is not
necessarily a path, if the two paths share a vertex.

Proposition. If𝑊 is a 𝑥–𝑦walk for 𝑥 ≠ 𝑦,𝑊 contains a 𝑥–𝑦 path, where ‘contains’ denotes
a subsequence.

Proof. Let𝑊 ′ be theminimal 𝑥–𝑦walk in𝑊 . This is a path, because if there were a repeated
vertex, we could find a shorter path by eliminating the detour.

Definition. We define the distance between two vertices, denoted 𝑑(𝑥, 𝑦), to be the shortest
length of a path between 𝑥 and 𝑦. If 𝐺 is connected, this turns 𝐺 into a metric space on its
vertices.

1.2. Trees
Definition. A graph 𝐺 is a acyclic if it does not contain a cycle 𝐶𝑘 as a subgraph. A graph
𝐺 is a tree if it is acyclic and connected.

Proposition. The following are equivalent.

(i) 𝐺 is a tree (acyclic and connected).

(ii) 𝐺 isminimally connected: 𝐺 is connected and for all 𝑥𝑦 ∈ 𝐸(𝐺), 𝐺 − 𝑥𝑦 is not connec-
ted.

(iii) 𝐺 ismaximally acyclic: 𝐺 is acyclic and for all 𝑥𝑦 ∉ 𝐸(𝐺), 𝐺 + 𝑥𝑦 contains a cycle.

Proof. (i) implies (ii). Let 𝑥𝑦 ∈ 𝐸(𝐺). Suppose 𝐺 − 𝑥𝑦 were connected. Then there exists an
𝑥–𝑦 path 𝑃 in 𝐺 − 𝑥𝑦. We can then close up the path 𝑃 into a cycle in 𝐺 by adding the edge
𝑥𝑦. This contradicts the fact that 𝐺 is acyclic.

(ii) implies (i). Suppose 𝐺 has a cycle 𝐶. Let 𝑥𝑦 ∈ 𝐸(𝐶) be an edge in the cycle. We claim
that𝐺−𝑥𝑦 is connected. Let 𝑃 be a 𝑢–𝑣 path in𝐺. If 𝑃 contains the edge 𝑥𝑦, replace the use
of this edge with the remainder of the cycle, traversed in the opposite direction. This yields
a 𝑢–𝑣 walk in 𝐺 − 𝑥𝑦 which contains a 𝑢–𝑣 path.

(i) implies (iii). Let 𝑥𝑦 ∉ 𝐸(𝐺). By connectedness, there exists an 𝑥–𝑦 path 𝑃 in 𝐺. Hence,
adding 𝑥𝑦 to 𝐸(𝐺), we obtain a cycle by concatenating 𝑃 with 𝑥𝑦.

(iii) implies (i). Suppose𝐺 is not connected. Then there exist 𝑥 ≠ 𝑦 such that there is no 𝑥–𝑦
path in 𝐺. Hence, adding 𝑥𝑦 to 𝐸(𝐺) cannot yield a cycle.

Definition. Let 𝑇 be a tree. A leaf of 𝑇 is a vertex 𝑣 ∈ 𝑉(𝑇) where deg(𝑣) = 1.

Definition. Let 𝐺 be a graph, and 𝑋 ⊆ 𝑉(𝐺). Then the graph induced on 𝑋 , denoted 𝐺[𝑋]
is the graph (𝑋, {𝑥𝑦 ∈ 𝐸(𝐺) ∣ 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋}). If 𝑥 ∈ 𝐺, we define 𝐺 − 𝑥 to be the graph
𝐺[𝑉(𝐺) ∖ {𝑥}].
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Proposition. Let 𝑇 be a tree where |𝑇| ≥ 2. Then 𝑇 has a leaf.

Proof. Let 𝑃 = 𝑥1,… , 𝑥𝑘 be a longest possible path in 𝑇. 𝑁(𝑥𝑘) ⊆ {𝑥1,… , 𝑥𝑘−1} by maxim-
ality of 𝑃. If 𝑥𝑖 ∼ 𝑥𝑘 for any 1 ≤ 𝑖 ≤ 𝑘 − 2, we have a cycle, which is a contradiction. Hence
𝑁(𝑥𝑘) = {𝑥𝑘−1}, so 𝑥𝑘 is a leaf.

Remark. This proof actually demonstrates that any tree has at least two leaves, by consider-
ing 𝑥1. We could alternatively have proven the lemma by taking a non-backtracking walk in
𝐺, which exists assuming no leaf exists; then, since 𝑉(𝐺) is finite, we must return to a point
somewhere on the graph.

Proposition. Let 𝑇 be a tree with 𝑛 ≥ 1 vertices. Then |𝐸(𝑇)| = 𝑒(𝑡) = 𝑛 − 1.

Proof. We prove this by induction on 𝑛. The 𝑛 = 1 case is trivial. Now, assume that all trees
with 𝑛 vertices have 𝑛−1 edges, and suppose 𝑇 has 𝑛+1 vertices. 𝑇 has a leaf 𝑥. Then 𝑇−𝑥
is a tree with 𝑛 vertices since it is still connected, and hence has 𝑛 − 1 edges. Since 𝑇 has
one more edge than 𝑇 − 𝑥, namely the edge connecting the leaf 𝑥 to 𝑇 − 𝑥, 𝑇 has 𝑛 edges as
required.

Definition. Let𝐺 be a connected graph. Then a subgraph𝑇 of𝐺 is a spanning tree if𝑉(𝑇) =
𝑉(𝐺) and 𝑇 is a tree.

Proposition. Every connected graph has a spanning tree.

Proof. Begin with 𝐺 and remove edges of 𝐸(𝐺) such that the graph stays connected. When
we can no longer remove edges, we must have a minimally connected subgraph of 𝐺, and
hence a tree.

1.3. Bipartite graphs
Definition. Let 𝐺 = (𝑉, 𝐸) be a graph. 𝐺 is bipartite if 𝑉 = 𝐴 ∪ 𝐵 where 𝐴 ∩ 𝐵 = ∅, such
that all edges (𝑥, 𝑦) ∈ 𝐸 satisfy 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 or 𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴.
The complete bipartite graph on 𝑛 and 𝑚 vertices, denoted 𝐾𝑛,𝑚, is the bipartite graph with
|𝐴| = 𝑛, |𝐵| = 𝑚 and with all possible edges.

Remark. Even cycles 𝐶2𝑛 are bipartite, and odd cycles 𝐶2𝑛+1 are not bipartite.
Definition. A circuit is a sequence 𝑥1, 𝑥2,… , 𝑥ℓ, 𝑥ℓ+1 where 𝑥𝑖𝑥𝑖+1 ∈ 𝐸 and 𝑥ℓ+1 = 𝑥1. In
other words, a circuit is a closed walk. The length of this circuit is ℓ. A circuit is odd if its
length is odd; a circuit is even if its length is even.

Proposition. Let 𝐶 be an odd circuit in a graph 𝐺. Then 𝐶 contains an odd cycle.

Proof. Let 𝑥1,… , 𝑥ℓ, 𝑥1 be an odd circuit. Either this is an odd cycle, or 𝑥𝑖 = 𝑥𝑗 for 𝑖 < 𝑗.
Then 𝑥𝑖,… , 𝑥𝑗 is a circuit and 𝑥𝑗 ,… , 𝑥ℓ, 𝑥1,… , 𝑥𝑖 is a circuit. Their lengths sum to ℓ, so
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III. Graph Theory

one of them is odd. By induction, we can assume the odd circuit contains an odd cycle as
required.

Theorem. Let 𝐺 be a graph. Then 𝐺 is bipartite if and only if 𝐺 does not contain an odd
cycle.

Proof. If 𝐺 contains an odd cycle, 𝐺 is not bipartite because there exists a subgraph that is
not bipartite. Suppose now that 𝐺 contains no odd cycles. We may assume 𝐺 is connected,
because unions of disconnected bipartite graphs are bipartite. Let 𝑥0 ∈ 𝑉(𝐺). Let 𝑉0 =
{𝑥 ∈ 𝑉(𝐺) ∣ 𝑑(𝑥, 𝑥0) ≡ 0mod 2} and 𝑉1 = {𝑥 ∈ 𝑉(𝐺) ∣ 𝑑(𝑥, 𝑥0) ≡ 1mod 2}. We show that
this is a bipartition as required. Suppose 𝑢, 𝑣 ∈ 𝑉 𝑖 are connected. Then, 𝑢 and 𝑣 admit even
(resp. odd) paths to 𝑥0, so the circuit defined by the concatenation of these paths with the
edge 𝑢𝑣 is an odd circuit, and hence contains an odd cycle. This contradicts our assumption.

1.4. Planar graphs
Definition. A plane graph is a drawing of a graph in the plane, representing edges as piece-
wise linear functions, without edge crossings.

Definition. A graph 𝐺 is planar if it can be drawn in the plane ℝ2 with no edges crossing,
so a graph is planar if it admits a plane graph representation.

Example. 𝐾1, 𝐾2, 𝐾3, 𝐾4 are planar. 𝑃𝑛 is planar for 𝑛 ∈ ℕ. 𝐾𝑛,2 is planar, by placing the
vertices in the two-vertex set on either side of the other set.

Definition. Let 𝐺 be a plane graph. One of the finitely many connected components of
ℝ2 ∖ 𝐺 is called a face. The boundary of a face 𝐹 is the collection of vertices and edges in 𝜕𝑓.
Therefore, the boundary of any face in 𝐺 is a subgraph of 𝐺.

Remark. The boundary of a face need not be (or contain) a cycle, and need not be connected.
Two drawings of a graph can be fundamentally different.

Theorem (Euler). Let𝐺 be a connected plane graphwith𝐹 faces. Then |𝑉(𝐺)|−|𝐸(𝐺)|+𝐹 =
2.

Remark. The number of faces is uniquely determined by intrinsic properties of a graph, its
number of vertices and edges.

Proof. We work by induction on the number of edges 𝐸(𝐺). In the case where 𝐸(𝐺) = 0,
we must have 𝑉(𝐺) = 1 and 𝐹 = 1 by connectedness. Suppose 𝐺 is acyclic. Then by
connectedness, 𝐺 is a tree, so 𝑉(𝐺) = 𝐸(𝐺) + 1 and 𝐹 = 1, satisfying Euler’s formula. Now
suppose 𝐺 contains a cycle, and 𝐸 be an edge in the cycle. Removing this edge, 𝐺 − 𝐸 is
connected, and has |𝑉(𝐺)| vertices, |𝐸(𝐺)| − 1 edges, and 𝐹 − 1 faces. By induction, Euler’s
formula holds in this case.
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Corollary. Let 𝐺 be a planar graph where |𝐺| ≥ 3. Then 𝑒(𝐺) ≤ 3|𝐺| − 6.

Proof. Consider a planar drawing of 𝐺. We may assume 𝐺 is connected without loss of
generality. Let 𝐹 be a face, and let deg𝐹 be the number of edges that meet at 𝐹. Note that
the degree of any face is at least 3, since |𝐺| ≥ 3. Since each edge occurs in at most two
faces,∑𝐹 deg𝐹 ≤ 2𝑒(𝐺). Hence, 3𝑓 ≤ 2𝑒(𝐺), where 𝑓 is the amount of faces. Using Euler’s
formula, |𝐺| − 𝑒(𝐺) + 𝑓 = 2 ⟹ 2(|𝐺| − 2) ≥ 𝑒(𝐺).

Remark. 𝐾5 is not planar, because 𝑒(𝐾5) = 10 and 3|𝐾5| − 6 = 9. 𝐾3,3 does not violate this
bound, but is not planar.

Corollary. Let 𝐺 be a planar graph, |𝐺| ≥ 4 and there is no cycle of length 3. Then 𝑒(𝐺) ≤
2(|𝐺| − 2).

Proof. Theminimal degree of a face is 4, because a degree of 3would imply there is a triangle
since there are at least four vertices in the graph. Running the same argument, our bound
becomes 𝑒(𝐺) ≤ 2(|𝐺| − 2),

This shows that 𝐾3,3 is not planar.
Definition. A subdivision of a graph𝐺 is a new graph where some of the edges are replaced
by (disjoint) paths.

Remark. A subdivision of a non-planar graph is non-planar. In particular, if 𝐺 contains a
subdivision of 𝐾3,3 or 𝐾5, 𝐺 is non-planar.

Theorem (Kuratowski). 𝐺 is planar if and only if it contains no subdivision of 𝐾3,3 or 𝐾5.
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2. Connectivity and matching
2.1. Matching in bipartite graphs
Definition. Let𝐺 = (𝑋 ⊔𝑌, 𝐸) be a bipartite graph. Amatching from𝑋 to 𝑌 is a set of edges
𝐸′ ⊆ {𝑥𝑦𝑥 ∣ 𝑥 ∈ 𝑋, 𝑦𝑥 ∈ 𝑌} = 𝐸 such that the map 𝑥 ↦ 𝑦𝑥 is injective.

Definition. Let 𝐺 be a graph, 𝐴 ⊆ 𝑉(𝐺). We define 𝑁𝐺(𝐴) = {⋃𝑥∈𝐴𝑁(𝑥)}.

Theorem (Hall). Let 𝐺 = (𝑋 ⊔ 𝑌, 𝐸) be a bipartite graph. There exists a matching from 𝑋
to 𝑌 if and only if Hall’s criterion holds: that |𝐴| ≤ |𝑁(𝐴)| for all 𝐴 ⊆ 𝑋 .

Proof. The forward direction is simple, by considering the image of the injective map 𝑥 ↦
𝑦𝑥 ∶ 𝐴 → 𝑁(𝐴) for each subset 𝐴 ⊆ 𝑋 . Conversely, suppose Hall’s criterion is satisfied. We
apply induction on |𝑋|. If |𝑋| = 1, 𝑁(𝑋) is nonempty and so the proof is complete.

If there does not exist ∅ ≠ 𝐴 ⊊ 𝑋 such that |𝑁(𝐴)| = |𝐴|, we have |𝐴| < |𝑁(𝐴)| for all
∅ ≠ 𝐴 ≠ 𝑋 . Let 𝑥𝑦 ∈ 𝐸, and let 𝐺′ = 𝐺[𝑋 ∖ {𝑥} ⊔ 𝑌 ∖ {𝑦}]. By induction, it suffices to show
Hall’s criterion holds for 𝐺′. If 𝐵 ⊆ 𝑋 ∖ {𝑥}, we have

|𝑁𝐺′(𝐵)| ≥ |𝑁𝐺(𝐵)| − 1 ≥ |𝐵|

as required.

However, suppose there exists such a set ∅ ≠ 𝐴 ⊊ 𝑋 with |𝐴| = |𝑁(𝐴)|. Let 𝐺1 = 𝐺[𝐴 ⊔
𝑁(𝐴)] and 𝐺2 = 𝐺[𝑋 ∖ 𝐴 ⊔ 𝑌 ∖ 𝑁(𝐴)]. 𝐺1 satisfies Hall’s criterion. Indeed, for 𝐵 ⊆ 𝐴,
𝑁𝐺1(𝐵) = 𝑁𝐺(𝐵) as required. 𝐺2 also satisfies Hall’s criterion. Suppose 𝐵 ⊆ 𝑋 ∖ 𝐴, and
consider 𝑁𝐺(𝐴 ∪ 𝐵). We have

|𝐴| + |𝐵| ≤ |𝑁𝐺(𝐴 ∪ 𝐵)| = |𝑁𝐺(𝐴)| + ||𝑁𝐺2(𝐵)|| ⟹ |𝐵| ≤ ||𝑁𝐺2(𝐵)||

Hence Hall’s criterion is satisfied.

Then by induction on 𝐺1 and 𝐺2, the proof is complete.

Definition. A matching of deficiency 𝑑 from 𝑋 to 𝑌 is a matching from 𝑋 ′ ⊆ 𝑋 to 𝑌 where
|𝑋 ′| + 𝑑 = |𝑋|.

Theorem (defect Hall). Let 𝐺 = (𝑋 ⊔ 𝑌, 𝐸) be a bipartite graph. 𝐺 contains a matching of
deficiency 𝑑 ≤ |𝑋| if and only if |𝐴| ≤ |𝑁(𝐴)| + 𝑑 for all 𝐴 ⊆ 𝑋 .

Proof. The forward direction is again a simple proof. Let 𝐺 = (𝑋 ⊔ 𝑌, 𝐸) be a graph such
that |𝐴| ≤ |𝑁(𝐴)| + 𝑑 for all 𝐴 ⊆ 𝑋 . Let 𝐺′ = (𝑋 ⊔ (𝑌 ∪ {𝑧1,… , 𝑧𝑑}), 𝐸 ∪ 𝐸′) where
𝐸′ = {𝑥𝑧𝑖 ∣ 𝑥 ∈ 𝑋, 𝑖 ∈ {1,… , 𝑑}}. Hall’s criterion on𝐺′ is satisfied, so there exists a matching.
Deleting these new vertices {𝑧1,… , 𝑧𝑑} and the edge set 𝐸′, we construct a matching from 𝑋
to 𝑌 of deficiency at most 𝑑. To construct a matching of deficiency precisely 𝑑, we can delete
extra edges as required.
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Definition. The maximum degree Δ(𝐺) (resp. minimum degree 𝛿(𝐺)) of a graph 𝐺 is the
maximum (resp. minimum) degree of a vertex in 𝐺.
Definition. A graph is regular if all vertices have the same degree, or equivalently, 𝛿(𝐺) =
Δ(𝐺). A graph is 𝑘-regular if 𝛿(𝐺) = Δ(𝐺) = 𝑘.
Corollary. Let 𝐺 = (𝑋 ⊔ 𝑌, 𝐸) be a 𝑘-regular bipartite graph and 𝑘 ≥ 1. Then there exists a
matching from 𝑋 to 𝑌 .

Proof. It suffices to show Hall’s criterion holds. Let 𝐴 ⊆ 𝑋 . Then

𝑒(𝐺[𝐴 ∪ 𝑁(𝐴)]) = ∑
𝑥∈𝐴

deg𝑥 = 𝑘|𝐴|; 𝑒(𝐺[𝐴 ∪ 𝑁(𝐴)]) = ∑
𝑥∈𝑁(𝐴)

deg 𝑣 ≤ 𝑘|𝑁(𝐴)|

Hence |𝐴| ≤ |𝑁(𝐴)|.

Example. Let Γ be a finite group, and let 𝐻 ≤ Γ. Let 𝐿1,… , 𝐿𝑛 be the left cosets, and
𝑅1,… , 𝑅𝑛 be the right cosets. We want to find 𝑔1,… , 𝑔𝑛 such that 𝑔1𝐻,… , 𝑔𝑛𝐻 are the left
cosets and 𝐻𝑔1,… ,𝐻𝑔𝑛 are the right cosets.
Consider the graph 𝐺 = ({𝐿1,… , 𝐿𝑛} ⊔ {𝑅1,… , 𝑅𝑛}, 𝐸)where an edge lies between 𝐿𝑖 and 𝑅𝑗
if 𝐿𝑖 ∩ 𝑅𝑗 ≠ ∅. It suffices to find a matching in this graph, because then each edge in the
matching implies the existence of a representative for both cosets. Let 𝐴 ⊆ {𝐿1,… , 𝐿𝑛}, so
𝐴 = {𝐿𝑖1 ,… , 𝐿𝑖,𝑘}. Consider ||⋃

𝑘
𝑗=1 𝐿𝑖𝑗 || = 𝑘|𝐻|, but since 𝑅1,… , 𝑅𝑛 partition Γ and have size

|𝐻|, at least 𝑘 right cosets of 𝐻 must intersect⋃𝑅𝑖𝑗 . Hence Hall’s criterion is satisfied.

2.2. Connectivity
Let 𝑆 ⊆ 𝑉(𝐺). Then we define 𝐺 − 𝑆 = 𝐺[𝑉(𝐺) ∖ 𝑆].
Definition. Let 𝐺 be a graph, and |𝐺| ≥ 1. Then we define the connectivity parameter 𝜅 of
𝐺 by

𝜅 = min {|𝑆| ∣ 𝑆 ⊆ 𝑉(𝐺), 𝐺 − 𝑆 is disconnected or a single vertex}
We say that 𝐺 is 𝑘-connected if 𝑘 ≤ 𝜅. Hence 𝐺 is 𝑘-connected if and only if for all sets 𝑆 of
at most 𝑘 − 1 vertices, 𝐺 − 𝑆 is connected and not a single vertex.
Example. 𝜅(Petersen graph) = 3, because deleting any two vertices leaves the graph con-
nected, but deleting the neighbourhood of any vertex disconnects the graph. 𝜅(𝐺) = 1 if 𝐺
is a tree. 𝜅(𝐶𝑛) = 2 for 𝑛 ≥ 3. 𝜅(𝐾𝑛) = 𝑛 − 1.
Definition. Let 𝐺 be a graph, and 𝑎, 𝑏 ∈ 𝑉(𝐺). We say that the 𝑎–𝑏 paths 𝑃1,… , 𝑃𝑘 are
disjoint if 𝑃𝑖 ∩ 𝑃𝑗 = {𝑎, 𝑏} for 𝑖 ≠ 𝑗.
Note that 𝛿(𝐺) ≥ 𝜅(𝐺). This follows because removing the neighbours of the vertex of
minimum degree disconnects the graph or leaves it a single vertex. Also, we can easily see
that 𝜅(𝐺−𝑥) ≥ 𝜅(𝐺)−1. Note thatwe can have 𝜅(𝐺−𝑥) > 𝜅(𝐺) by considering a 2-connected
graph with an additional leaf.
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Definition. Let𝐺 be a graph and 𝑎 ≠ 𝑏 ∈ 𝑉(𝐺), where 𝑎 ≁ 𝑏. We say that 𝑆 ⊆ 𝑉(𝐺)∖{𝑎, 𝑏}
is a 𝑎–𝑏 separator if 𝐺 − 𝑆 disconnects 𝑎 and 𝑏.
Theorem (Menger, form 1). Let 𝐺 be a connected graph and 𝑎 ≠ 𝑏 ∈ 𝑉(𝐺), where 𝑎 ≁ 𝑏.
The minimum size of an 𝑎–𝑏 separator is the maximum number of disjoint paths from 𝑎 to
𝑏. Equivalently, if all 𝑎–𝑏 separators have size at least 𝑘, then there exist 𝑘 disjoint 𝑎–𝑏 paths.

Proof. We write 𝜅𝑎,𝑏(𝐺) for the minimum size of an 𝑎–𝑏 separator. Note that 𝜅(𝐺 − 𝑥) ≥
𝜅(𝐺) − 1, and 𝜅(𝐺 − 𝑥𝑦) ≥ 𝜅(𝐺) − 1. We also have the same properties for 𝜅𝑎,𝑏.
Suppose the theorem does not hold, then there is a nonempty set of counterexamples. Let 𝒢
be the set of counterexamples of smallest possible 𝑘, and let 𝐺 be an element of 𝒢 with the
smallest possible amount of edges. Let 𝑆 be a minimal 𝑎–𝑏 separator in 𝐺, so |𝑆| = 𝑘. Note
that the theorem is true for 𝑘 = 1, so we may assume 𝑘 ≥ 2.
If 𝑆 ≠ 𝑁(𝑎) and 𝑆 ≠ 𝑁(𝑏), consider 𝐺 − 𝑆. Then 𝑎, 𝑏 lie in different connected components.
Let 𝐴 be the component containing 𝑎, and 𝐵 be the component containing 𝑏. Define 𝐺𝑎 to
be the graph 𝐺[𝐴∪𝑆] together with a vertex 𝑐with edges to each 𝑠 ∈ 𝑆. Similarly, define 𝐺𝑏
to be the graph 𝐺[𝐵 ∪ 𝑆] together with a vertex 𝑐 with edges to each 𝑠 ∈ 𝑆.
Note that 𝜅𝑎,𝑐(𝐺𝑎) ≥ 𝑘, because any 𝑎–𝑐 separator in 𝐺𝑎 is an 𝑎–𝑏 separator in 𝐺, and
𝜅𝑏,𝑐(𝐺𝑏) ≥ 𝑘 by symmetry. Note further that 𝑒(𝐺𝑎), 𝑒(𝐺𝑏) < 𝑒(𝐺); because 𝑆 ≠ 𝑁(𝑎) and
𝑆 ≠ 𝑁(𝑏), the amount of newly added edges is smaller than the amount of edges that must
have been removed in each induced graph. Then by minimality of 𝐺, the 𝐺𝑎 and 𝐺𝑏 are not
counterexamples to the theorem. Hence there exist disjoint 𝑎–𝑐 paths 𝑃1,… , 𝑃𝑘 in 𝐺𝑎 and
disjoint 𝑐–𝑏 paths𝑄1,… , 𝑄𝑘 in𝐺𝑏. Concatenating 𝑃𝑖 with𝑄𝑖, we obtain 𝑘 disjoint 𝑎–𝑏 paths
in 𝐺. Then 𝐺 is not a counterexample.

Now, suppose 𝑆 = 𝑁(𝑎) without loss of generality. We claim that 𝑁(𝑎) ∩ 𝑁(𝑏) = ∅. If there
exists 𝑥 ∈ 𝑁(𝑎) ∩ 𝑁(𝑏), then consider the graph 𝐺 − 𝑥. We have 𝜅𝑎,𝑏(𝐺 − 𝑥) ≥ 𝑘 − 1, so by
minimality, there exist disjoint 𝑎–𝑏 paths 𝑃1,… , 𝑃𝑘−1 in𝐺−𝑥. Adding the path 𝑎, 𝑥, 𝑏, which
is disjoint from all others, we obtain 𝑘 disjoint 𝑎–𝑏 paths, contradicting the assumption.
Let 𝑎, 𝑥1,… , 𝑥ℓ, 𝑏 be a shortest 𝑎–𝑏 path. Note that ℓ ≥ 2 since 𝑁(𝑎) ∩ 𝑁(𝑏) = ∅, and in
particular, 𝑥2 ≠ 𝑏. Consider 𝐺−𝑥1𝑥2. We must have that 𝜅𝑎,𝑏(𝐺 −𝑥1𝑥2) ≤ 𝑘− 1, otherwise
we have a smaller counterexample. Hence 𝜅𝑎,𝑏(𝐺 − 𝑥1𝑥2) = 𝑘 − 1. Therefore there is an
𝑎–𝑏 separator ̃𝑆 with || ̃𝑆|| = 𝑘 − 1 in 𝐺 − 𝑥1𝑥2. We see that either ̃𝑆 ∪ {𝑥1} or ̃𝑆 ∪ {𝑥2} is a
separator of size 𝑘 in 𝐺, which is not equal to either 𝑁(𝑎) or 𝑁(𝑏). Then we can use the
above construction to find the relevant contradiction.

Corollary (Menger, form 2). Let 𝐺 be a connected graph with |𝐺| ≥ 2. Then 𝐺 is 𝑘-
connected if and only if all pairs of distinct vertices 𝑎, 𝑏 admit 𝑘 disjoint 𝑎–𝑏 paths.

Proof. Suppose all pairs of vertices 𝑎, 𝑏 have 𝑘 such paths. Suppose 𝐺 − 𝑆 is disconnected,
and 𝑎, 𝑏 lie in different components of𝐺−𝑆. Note that 𝑎 ≁ 𝑏, because there exists a separator
for 𝑎 and 𝑏. Then by assumption, there are 𝑘 disjoint 𝑎–𝑏 paths, and so 𝑆must intersect each
path. Therefore, |𝑆| ≥ 𝑘.
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Now suppose 𝐺 is 𝑘-connected. Let 𝑎, 𝑏 be vertices in 𝐺. If 𝑎 ≁ 𝑏, apply the first form of
Menger’s theorem. Conversely, consider 𝐺−𝑎𝑏. This graph is 𝑘−1-connected, so there are
𝑘−1 disjoint 𝑎–𝑏 byMenger’s theorem. Adding the additional path 𝑎, 𝑏, we obtain 𝑘 disjoint
paths as required.

2.3. Edge connectivity
Definition. Let 𝐺 be a graph. Then 𝜆(𝐺) = min {|𝑊| ∣ 𝑊 ⊆ 𝐸(𝐺), 𝐺 −𝑊 disconnected} is
the smallest amount of edges that can be deleted to disconnect 𝐺. We say that 𝐺 is 𝑘-edge
connected if 𝑘 ≤ 𝜆(𝐺).
Example. Let𝐶𝑛 be the cycle on 𝑛 vertices. The vertex connectivity 𝜅 and edge connectivity
𝜆 of this graph are both two.
Example. Consider a graph with two connected subgraphs 𝐾𝑛, but with one vertex in the
intersection between the two. Then 𝜅 = 1 by deleting the intersection vertex, but 𝜆(𝐺) =
𝑛 − 1.
Definition. Paths 𝑃1,… , 𝑃𝑘 are edge-disjoint if the edge sets are disjoint.
Theorem (Menger, edge version, form 1). Let𝐺 be a connected graph, and 𝑎 ≠ 𝑏 be vertices.
Then, if every𝑊 ⊆ 𝐸(𝐺) that separates 𝑎 from 𝑏 has size at least 𝑘, then there exist 𝑘 edge-
disjoint 𝑎–𝑏 paths.
Definition. Let 𝐺 be a graph. The line graph of 𝐺, denoted 𝐿(𝐺), is the graph where
𝑉(𝐿(𝐺)) = 𝐸(𝐺) and 𝑒, 𝑓 ∈ 𝐸(𝐺) are adjacent if they share an endpoint.

Proof. Let 𝐺′ be the line graph of 𝐺, together with distinguished vertices 𝑎′, 𝑏′ that are con-
nected to the edges incident to 𝑎 and 𝑏 respectively. Note that there is an 𝑎–𝑏 path in 𝐺 if
and only if there is an 𝑎′–𝑏′ path in 𝐺′. Thus, 𝑊 ⊆ 𝑉(𝐺′) ∖ {𝑎′, 𝑏′} is an 𝑎′, 𝑏′ separator
if and only if 𝑊 ⊆ 𝐸(𝐺) separates 𝑎 from 𝑏. Therefore, 𝜅𝑎′,𝑏′(𝐺′) ≥ 𝑘. By the first form
of Menger’s theorem on 𝐺′, we can find 𝑘 disjoint 𝑎′–𝑏′ paths 𝑃1,… , 𝑃𝑘 in 𝐺′. These paths
describe edge-disjoint 𝑎–𝑏 walks in 𝐺, which yield edge-disjoint 𝑎–𝑏 paths.

Theorem (Menger, edge version, form 2). Let 𝐺 be a connected graph. Then 𝜆(𝐺) ≥ 𝑘 if
and only if all all pairs of vertices 𝑎 ≠ 𝑏 admit 𝑘 edge-disjoint 𝑎–𝑏 paths.

Proof. If there exist 𝑘 edge-disjoint paths between each pair of vertices, to separate any two
vertices we must remove at least one edge from each of these 𝑘 paths, so we must remove at
least 𝑘 edges. Conversely, if 𝜆(𝐺) ≥ 𝑘, apply the above form of Menger’s theorem.
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3. Colouring
3.1. Definition
Definition. A function 𝑐∶ 𝑉(𝐺) → {1,… , 𝑘} is a (proper) 𝑘-colouring of a graph if 𝑥 ∼
𝑦 ⟹ 𝑐(𝑥) ≠ 𝑐(𝑦). The chromatic number of 𝐺, denoted 𝜒(𝐺), is the minimum 𝑘 such that
there exists a 𝑘-colouring of 𝐺.
Example. A path 𝑃𝑛 has a 2-colouring. More generally, a graph is bipartite if and only if it
has a 2-colouring. An even cycle has chromatic number 2, and an odd cycle has chromatic
number 3. A tree has chromatic number 2. The complete graph on 𝑛 vertices has chromatic
number 𝑛.
Proposition. Let 𝐺 be a graph. Then 𝜒(𝐺) ≤ Δ(𝐺) + 1.

Proof. Let 𝑥1,… , 𝑥𝑛 be an ordering of the vertices of𝐺. We create a colouring of the vertices
by induction. Suppose 𝑥1,… , 𝑥𝑖 have already been coloured, and we want to colour 𝑥𝑖+1.
Since𝑥𝑖+1 has atmostΔ(𝐺)neighbours that have already been coloured, butwehaveΔ(𝐺)+1
available colours, there is a free colour that does notmatch any previous neighbours. Choose
the smallest available colour. By induction we can colour the entire graph.

Remark. This is sometimes known as a greedy colouring. The greedy colouringmay produce
a colouring which is suboptimal for a given graph; consider the path 𝑃4 on the vertex set
{1, 2, 3, 4} but with the ordering 1, 4, 2, 3: this gives a 3-colouring. The proposition above is
sharp: the chromatic number of the complete graph is 𝑛, and its maximum degree is 𝑛 − 1.

3.2. Colouring planar graphs
Proposition. Let 𝐺 be planar. Then 𝛿(𝐺) ≤ 5.

Proof. The average degree of 𝐺, given by 𝑛−1∑𝑣∈𝑉(𝐺) deg 𝑣, is exactly 2𝑛−1𝑒(𝐺). Since
𝑒(𝐺) ≤ 3𝑛 − 6, the average degree at most 6 − 12

𝑛
< 6, so 𝛿(𝐺) ≤ 5.

Proposition (six-colour theorem). Let 𝐺 be planar. Then 𝐺 admits a 6-colouring.

Proof. Apply induction on |𝐺|. If |𝐺| ≤ 6, there admits a trivial 6-colouring. Let𝐺 be planar,
and let 𝑥 ∈ 𝑉(𝐺) have degree at most 5. By the inductive hypothesis, 𝐺 − 𝑥 admits a 6-
colouring. Since 𝑥 has at most five neighbours, there is a free colour to use for 𝑥.

Theorem (five-colour theorem). Let 𝐺 be planar. Then 𝐺 admits a 5-colouring.

Proof. We apply induction on |𝐺|. Clearly the theorem holds for |𝐺| ≤ 5. Suppose |𝐺| > 5.
Let 𝑥 ∈ 𝑉(𝐺) be a vertex with degree at most five. Applying induction, there exists a 5-
colouring of 𝐺 − 𝑥. If the degree is four or lower, we can use the free colour to colour 𝑥,
so suppose 𝑥 has degree five. Let 𝑁(𝑥) = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} arranged cyclically in the plane,
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and let the colour of 𝑥𝑖 be 𝑖. Then without loss of generality, all the 𝑥𝑖 must have different
colours, since otherwise, we are done.

Suppose there exists no path from 𝑥1 to 𝑥3 in 𝐺 − 𝑥 only along vertices coloured 1 and 3. In
this case, let 𝐶 be the component of 𝐺 of vertices coloured 1 or 3 that contains 𝑥1. This is
the connected component of the subgraph of 𝐺−𝑥 induced by the vertices coloured 1 and 3
that contains 𝑥1. By assumption, 𝑥3 is not in this component. Now, swap the colours 1 and
3 on 𝐶; this yields another 5-colouring of 𝐺 − 𝑥. We can then extend this 5-colouring to 𝑥
by colouring 𝑥 with 1.
Now, suppose there exists no path from 𝑥2 to 𝑥4 in 𝐺 − 𝑥 along vertices coloured 2 and 4. If
so, we are done as above.

Suppose that there exists an 𝑥1–𝑥3 path using only colours 1 and 3, and an 𝑥2–𝑥4 path using
only colours 2 and 4. Then since both paths lie in the plane and the vertices are arranged
cyclically as above, they must cross. The intersection vertex is coloured either 1 or 3, and
also either 2 or 4. This is a contradiction.

Remark. Any planar graph admits a 4-colouring; this result is known as the four-colour the-
orem. The above method does not work, because when swapping the colours of a compon-
ent, there is not a free colour to use for the newly added vertex. The four-colour theoremwas
eventually proven using a computer-aided search after reducing the problem to thousands
of specific local configurations. The four-colour theorem is sharp; 𝐾4 is planar.

3.3. Colouring non-planar graphs
Proposition. Let 𝐺 be a connected graph, and 𝛿(𝐺) < Δ(𝐺). Then 𝜒(𝐺) ≤ Δ(𝐺).

Proof. Order the vertices in 𝐺 into 𝑥1,… , 𝑥𝑛 such that deg𝑥𝑛 < Δ(𝐺), and 𝑥𝑛−1 is adjacent
to 𝑥𝑛, and also 𝑥𝑛−2 is adjacent to one of 𝑥𝑛 and 𝑥𝑛−1 and so on. This is always possible since
𝐺 is connected. This ordering has the property that all vertices have less than Δ(𝐺) edges
facing forward. So the greedy colouring gives a Δ(𝐺)-colouring.

Theorem (Brooks). Let 𝐺 be a connected graph. If 𝐺 is not an odd cycle or complete graph,
𝜒(𝐺) ≤ Δ(𝐺).
Remark. We have shown above that 𝜒(𝐺) ≤ Δ(𝐺) + 1. This theorem then says that 𝜒(𝐺) =
Δ(𝐺) + 1 if and only if 𝐺 is an odd cycle or a complete graph.

Proof. We apply induction on |𝐺|. We can check that the theorem holds for |𝐺| ≤ 3. Note
that we may assume that Δ(𝐺) ≥ 3; otherwise, the graph is bipartite or an odd cycle.
We will show first that if 𝐺 is 3-connected, the theorem holds. We give an ordering of 𝑉(𝐺).
Let 𝑥𝑛 be a vertex of degree Δ(𝐺), and let 𝑥1, 𝑥2 ∈ 𝑁(𝑥) be non-adjacent vertices. This is
possible; indeed, suppose we could not find such vertices. Then {𝑥} ∪ 𝑁(𝑥) is a complete
graph, so 𝐺 = 𝐾Δ(𝐺)+1 by connectedness, contradicting our assumption. Now, consider
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𝐺 − {𝑥1, 𝑥2}. Since 𝐺 is 3-connected, 𝐺 − {𝑥1, 𝑥2} is connected. We can order the vertices in
the same way as above, choosing 𝑥𝑛−1 ∼ 𝑥𝑛 and 𝑥𝑛−2 a neighbour of 𝑥𝑛−1 or 𝑥𝑛, and so on.
Then the greedy algorithm produces the required colouring.

Now, we show that if 𝜅(𝐺) = 1, the theorem holds. In this case, we have a separator of size
one, so let {𝑥} be such a separator (we call 𝑥 a cut vertex). Let 𝐶1,… , 𝐶𝑛 be the connected
components of𝐺−𝑥. By induction, we can colour𝐶𝑖∪{𝑥} for each 𝑖; they cannot be complete,
by counting the number of edges of 𝑥 in this graph. We can then permute the colours in each
such colouring to make 𝑥 the same colour. Then we can combine each colouring to produce
a colouring of the entire graph.

Finally, we will consider the case when 𝜅(𝐺) = 2. Let 𝑆 = {𝑥, 𝑦} be a separator for 𝐺. Let
𝐶1,… , 𝐶𝑘 be the components of𝐺−𝑆. Define the graphs𝐺𝑖 = 𝐺[𝐶𝑖 ∪𝑆]+𝑥𝑦 for 𝑖 = 1,… , 𝑘.

Suppose 𝛿(𝐺𝑖) < Δ(𝐺) for all 𝑖. In this case, the 𝐺𝑖 can be coloured by induction as they
are not complete graphs. Note that 𝑥, 𝑦 get different colours since we have added the edge
𝑥𝑦. Therefore, we can permute the colours, such that the colouring agrees on 𝑥, 𝑦 for all 𝐺𝑖.
These colourings can be combined into a Δ(𝐺)-colouring of 𝐺.

Now suppose without loss of generality that 𝛿(𝐺1) = Δ(𝐺). In this case, 𝑘 = 2, and

|𝑁(𝑥) ∩ 𝐶1| = Δ(𝐺) − 1 = |𝑁(𝑥) ∩ 𝐶1|; |𝑁(𝑥) ∩ 𝐶2| = 1 = |𝑁(𝑦) ∩ 𝐶2|

Let 𝑥′, 𝑦′ be the neighbours of 𝑥, 𝑦 in 𝐶2. Now, note that ̃𝑆 = {𝑥, 𝑦′} is a separator, and now
𝛿(𝐺𝑖) < Δ(𝐺) for all connected components, and we can use the proof from above.

3.4. Chromatic polynomial
Definition. Let 𝐺 be a graph. The chromatic polynomial of 𝐺 is 𝑃𝐺 ∶ ℤ≥0 → ℤ≥0 where
𝑃𝐺(𝑡) is the number of 𝑡-colourings of 𝐺.

Remark. The minimum 𝑡 for which 𝑃𝐺(𝑡) > 0 the chromatic number.

Example. The chromatic polynomial on the empty graph on 𝑛 vertices is given by 𝑃𝐺(𝑡) =
𝑡𝑛.

The chromatic polynomial on the complete graph on 𝑛 vertices is 𝑃𝐺(𝑡) = 𝑡(𝑡−1)… (𝑡−(𝑛−
1)) = 𝑛!(𝑡

𝑛
).

For a path on 𝑛 vertices, 𝑃𝐺(𝑡) = 𝑡(𝑡 − 1)𝑛−1. For any tree, colouring each leaf, removing it,
then colouring the remainder inductively, 𝑃𝐺(𝑡) = 𝑡(𝑡 − 1)|𝐺|−1.

Definition. Let 𝐺 be a graph, and 𝑒 = 𝑥𝑦 ∈ 𝐸(𝐺). The contraction of 𝐺 along 𝑒, denoted
𝐺/𝑒, is the graph with vertices 𝑉(𝐺) ∖ {𝑥, 𝑦} ∪ {𝑎} for a new variable 𝑎, and edges 𝐸(𝐺[𝑉 ∖
{𝑥, 𝑦}]) ∪ {𝑎𝑧 ∣ 𝑥 ∼ 𝑧} ∪ {𝑎𝑧 ∣ 𝑦 ∼ 𝑧}.

Proposition. Let 𝐺 be a graph and 𝑒 ∈ 𝐸(𝐺). Then 𝑃𝐺(𝑡) = 𝑃𝐺−𝑒(𝑡) − 𝑃𝐺/𝑒(𝑡).
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Proof. Let 𝑒 = 𝑥𝑦. A 𝑡-colouring of 𝐺 − 𝑒 where 𝑥, 𝑦 are assigned different colours corres-
ponds to a 𝑡-colouring of 𝐺, by simply adding the edge back. A 𝑡-colouring of 𝐺 − 𝑒 where
𝑥, 𝑦 are assigned the same colour corresponds to a 𝑡-colouring of 𝐺/𝑒, by contracting the
edge.

Remark. The above proposition is known as a ‘cut-fuse’ relation.

Proposition. Let 𝐺 be a graph. Then 𝑃𝐺(𝑡) is indeed a polynomial with degree |𝐺|.

Proof. We apply induction on 𝑒(𝐺). If there are no edges in the graph, the graph is empty,
and has chromatic polynomial 𝑃𝐺(𝑡) = 𝑡|𝐺|. Otherwise, let 𝑒 ∈ 𝐸(𝐺). By induction, 𝑃𝐺−𝑒(𝑡)
is a polynomial of degree |𝐺 − 𝑒| = |𝐺|, and 𝑃𝐺/𝑒(𝑡) is a polynomial of degree |𝐺/𝑒| = |𝐺|− 1.
Hence 𝑃𝐺(𝑡) = 𝑃𝐺−𝑒(𝑡) − 𝑃𝐺/𝑒(𝑡) is indeed a polynomial of the required degree.

Proposition. Let𝐺 be a graph with 𝑛 vertices and𝑚 edges. Then 𝑃𝐺(𝑡) = 𝑡𝑛−𝑚𝑡𝑛−1+𝑝(𝑡)
where 𝑝 is a polynomial of degree at most 𝑛 − 2.

Proof. We apply induction on 𝑒(𝐺). If there are no edges, we have the empty graph, which
has the required form. Otherwise, let 𝑒 ∈ 𝐸(𝐺). Then

𝑃𝐺(𝑡) = 𝑃𝐺−𝑒(𝑡) − 𝑃𝐺/𝑒(𝑡) = (𝑡𝑛 − (𝑚 − 1)𝑡𝑛−1 +…) + (𝑡𝑛−1 +…) = 𝑡𝑛 −𝑚𝑡𝑛−1 +…

as required.

Remark. Other coefficients of the chromatic polynomial contain other information about
the graph. For example, the 𝑡𝑛−2 coefficient is exactly (𝑒(𝐺)

2
) − number of triangles in 𝐺.

If 𝐺 is planar, 𝑃𝐺(2 +
1+√5
2
) ≠ 0.

A result due to June Huh is that the coefficients 𝑐0,… , 𝑐𝑛 of 𝑃𝐺 are log-concave, so 𝑐2𝑖 >
𝑐𝑖−1𝑐𝑖+1.

3.5. Edge colouring
Definition. Let 𝐺 be a graph. A 𝑘-edge colouring is a function 𝑐∶ 𝐸(𝐺) → {1,… , 𝑘} such
that if 𝑐(𝑒) ≠ 𝑐(𝑓) if 𝑒, 𝑓 share an endpoint. The edge chromatic number, or the chromatic
index, denoted 𝜒′(𝐺), is the minimum 𝑘 such that there exists a 𝑘-edge colouring.

Remark. An edge colouring of 𝐺 corresponds exactly to a vertex colouring of the line graph
of 𝐺. In particular, 𝜒′(𝐺) = 𝜒(𝐿(𝐺)). Note that not every graph can be realised as the line
graph of some other graph.

Example. The edge chromatic number of an even cycle is 2. The edge chromatic number
of an odd cycle is 3. This is because a cycle is its own line graph.
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Example. We have Δ(𝐺) ≤ 𝜒′(𝐺). If 𝑥 ∈ 𝑉(𝐺) has degree Δ(𝐺), all edges indicent to 𝑥
must be given different colours. We may have Δ(𝐺) < 𝜒′(𝐺) for some graphs, such as 𝐶3.
The edge chromatic number of the Petersen graph is 4, but it is 3-regular.

We can show that 𝜒′(𝐺) ≤ 2Δ(𝐺) − 1 by the greedy colouring, considering how many ver-
tices each edge can be connected to. 𝜒′ and 𝜒 can be very different, for instance, consider
𝜒(𝐾𝑡,1) = 2 but 𝜒′(𝐾𝑡,1) = 𝑡.

Given an edge colouring 𝑐∶ 𝐸(𝐺) → {1,… , 𝑘}, we define the colour classes as equivalence
classes of colours: 𝐶𝑖 = {𝑒 ∈ 𝐸(𝐺) ∣ 𝑐(𝑒) = 𝑖}. Note that (𝑉(𝐺), 𝐶𝑖∪𝐶𝑗) is the union of disjoint
paths, even cycles, and isolated vertices. We say that the components of this graph are {𝑖, 𝑗}-
components.

Theorem (Vizing). Let 𝐺 be a graph. Then 𝜒′(𝐺) = Δ(𝐺) or 𝜒′(𝐺) = Δ(𝐺) + 1.

Proof. We prove this by induction on |𝐸(𝐺)|. It suffices to show there is a Δ(𝐺)+1 colouring
of any graph. If there are no edges, the graph can be 0-coloured, so 𝜒′(𝐺) = Δ(𝐺) = 0 and
so there is clearly a 1-colouring. For the inductive step, let 𝐺 be a graph with 𝑒(𝐺) > 0, and
𝑥𝑣 ∈ 𝐸(𝐺). Apply induction to 𝐺 − 𝑥𝑣 to obtain a Δ(𝐺) + 1 edge colouring.

Let 𝑦 ∈ 𝑉(𝐺) and 𝑐 ∈ {1,… , Δ(𝐺) + 1}. We say 𝑐 is missing at 𝑦 if no edge incident to 𝑦
are coloured 𝑐. Note that there is a colour missing at every vertex since we have Δ(𝐺) + 1
different colours available.

Let 𝑐0 be a colour missing at 𝑥. We define a sequence of vertices 𝑣1,… , 𝑣𝑘 ∈ 𝑁(𝑥) and
corresponding colours 𝑐1,… , 𝑐𝑘 such that 𝑐𝑖 is missing at 𝑣𝑖. First, we set 𝑣1 = 𝑣 and let 𝑐1
be any colour missing at 𝑣. Then if 𝑣𝑖 and 𝑐𝑖 are defined, define 𝑣𝑖+1 such that 𝑐(𝑥𝑣𝑖+1) = 𝑐𝑖,
and define 𝑐𝑖+1 to be any colour missing at 𝑣𝑖+1. This induction continues until either we
find a colour missing at 𝑥 or we repeat a colour.

Suppose 𝑣1,… , 𝑣𝑘 are defined and 𝑐𝑘 is missing at 𝑥. Then we can recolour 𝑥𝑣𝑘 with 𝑐𝑘.
Now 𝑐𝑘−1 is missing at 𝑥, so inductively, recolour 𝑥𝑣𝑖 with 𝑐𝑖. In particular, 𝑐1 is missing at
𝑥, so we can colour 𝑥𝑣1 with 𝑐1.

In the other case, suppose 𝑐𝑘 = 𝑐𝑖 for 𝑖 < 𝑘. Note that we may assume 𝑖 = 1: uncolour 𝑥𝑣𝑖−1
and recolour 𝑥𝑣𝑗 with 𝑐𝑗 for all 𝑗 < 𝑖 as above. So 𝑐𝑘 = 𝑐1. If 𝑣1 is not in the same {𝑐0, 𝑐1}
component as 𝑥, we can swap the colours on the {𝑐0, 𝑐1} component containing 𝑣1. Then 𝑐0
is missing at 𝑣1, and the colours of 𝑥𝑣2,… , 𝑥𝑣𝑘 are unchanged. So we can colour 𝑥𝑣1 with
𝑐0.

Now suppose 𝑥, 𝑣1 are in the same {𝑐0, 𝑐1} component. If 𝑣𝑘 is not in the same {𝑐0, 𝑐1} com-
ponent as 𝑥, we can similarly swap the colours on the {𝑐0, 𝑐1} component containing 𝑣𝑘. So
𝑐0 is missing at 𝑣𝑘 and 𝑥, and so we can recolour 𝑥𝑣𝑘 to 𝑐0, and inductively 𝑥𝑣𝑖 with 𝑐𝑖.

Now finally suppose 𝑥, 𝑣1, 𝑣𝑘 are all in the same {𝑐0, 𝑐1} component. So one of 𝑐0, 𝑐1 are
missing at each of 𝑥, 𝑣1, 𝑣𝑘. Since all {𝑐0, 𝑐1}-components of the graph are disjoint paths,
even cycles, or isolated vertices. So 𝑥, 𝑣1, 𝑣𝑘 are each endpoints of a path. But since paths
only have two endpoints, this is a contradiction.

134



3. Colouring

3.6. Graphs on surfaces
We have seen that a planar graph has chromatic number 𝜒(𝐺) ≤ 5. Drawing graphs on
other surfaces give different possible chromatic numbers. For instance, the complete graph
on seven vertices 𝐾7 can be drawn on a torus with no edge crossings.

Recall from IB Geometry that for any 𝑔 ∈ ℕ, there is a compact orientable surface of genus 𝑔
which is homeomorphic to a sphere with 𝑔 ‘handles’ attached. The 2-sphere 𝑆2 is a compact
orientable surface of genus 0. The torus 𝑇2 is a compact orientable surface of genus 1.

We have already seen that for a connected planar graph 𝐺 with 𝑓 faces, we have |𝐺|− 𝑒(𝐺)+
𝑓 = 2. For a disconnected planar graph, we can add edges tomake𝐺 into a connected graph.
Hence, any planar graph with 𝑓 faces satisfies |𝐺|−𝑒(𝐺)+𝑓 ≤ 2. In general, on the compact
orientable surface of genus 𝑔, |𝐺|−𝑒(𝐺)+𝑓 ≤ 𝐸, where 𝐸 = 2−2𝑔 is the Euler characteristic
of the surface. Due to results from IBGeometry, the equality holds for connected graphs, and
then for any other graph, we can add edges to make it connected.

In particular, if 𝑒(𝐺) ≥ 3, then 3𝑓 ≤ 2𝑒(𝐺) as usual. Therefore, |𝐺| − 𝑒(𝐺) + 2𝑒(𝐺)
3

≥ 𝐸, and
so 𝑒(𝐺) ≤ 3(|𝐺| − 𝐸).

Theorem (Heawood). Let 𝐺 be a graph drawn on a surface of Euler characteristic 𝐸 ≤ 0.
Then

𝜒(𝐺) ≤ 𝐻(𝐸) = ⌊7 + √49 − 24𝐸
2 ⌋

Remark. Note that 𝐻(2) = 4, which would prove the four-colour theorem if not for the
requirement that 𝐸 ≤ 0.

Proof. Let 𝐺 be a graph drawn on a given surface with Euler characteristic 𝐸. Suppose its
chromatic number is 𝜒(𝐺) = 𝑘. Without loss of generality, we can choose a minimal such
graph 𝐺 with 𝜒(𝐺) = 𝑘.

Each vertex has degree at least 𝑘 − 1. Indeed, suppose there was a vertex of degree less than
𝑘 − 1. Then we could remove this vertex and all associated edges, and we would obtain a
strictly smaller graph with chromatic number exactly 𝑘, contradicting minimality. Further,
we have |𝐺| ≥ 𝑘, otherwise we could colour the graph with only |𝐺| colours contradicting
the definition of the chromatic number.
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Since 𝑒(𝐺) ≤ 3(|𝐺| − 𝐸), the sum of the degrees of the vertices is 2𝑒(𝐺) ≤ 6(|𝐺| − 𝐸). Hence,
𝛿(𝐺) ≤ 1

|𝐺|
6(|𝐺| − 𝐸) = 6 − 6 𝐸

|𝐺|
. In particular,

𝑘 − 1 ≤ 𝛿(𝐺) ≤ 6 − 6 𝐸
|𝐺| ≤ 6 − 6𝐸𝑘

Note that this step requires the fact that 𝐸 ≤ 0. This gives the quadratic equation 𝑘2 − 7𝑘 +
6𝐸 ≤ 0. Then,

(𝑘 − 7
2)

2
− 49

4 + 6𝐸 ≤ 0 ⟹ 𝑘 ≤ 7 + √49 − 24𝐸
2

Remark. The inequality is sharp, since the complete graph 𝐾𝐻(𝐸) can be drawn on a surface
of characteristic 𝐸. An example of this is drawing 𝐾7 on the torus, as demonstrated above.
However, this is a very difficult result to prove.
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4. Extremal graph theory
4.1. Hamiltonian graphs
Definition. A graph is said to beHamiltonian if it contains a cycle that contains all vertices.
Such a cycle is called a Hamilton cycle.

Theorem. Let 𝐺 be a graph on 𝑛 ≥ 3 vertices. Then if 𝛿(𝐺) ≥ 𝑛
2
, 𝐺 is Hamiltonian.

Remark. This theorem is sharp. If 𝑛 is even, two disjoint 𝐾𝑛
2
cliques suffices for a counter-

example, since 𝛿(𝐺) = 𝑛
2
− 1. If 𝑛 is odd, we can take two 𝐾𝑛+1

2
cliques which intersect in a

single vertex, giving 𝛿(𝐺) = 𝑛−1
2
.

Proof. First, note that 𝐺 is connected. Indeed, if 𝑥 ≁ 𝑦, |𝑁(𝑥)|, |𝑁(𝑦)| ≥ 𝑛
2
, but there are

only 𝑛−2 remaining vertices in the graph. So by the pigeonhole principle, there is a path of
length 2 between 𝑥 and 𝑦.
Consider a path 𝑥1,… , 𝑥ℓ of maximum length, and suppose for a contradiction that there is
no cycle in 𝐺 of length ℓ. Observe that 𝑁(𝑥1) ⊆ {𝑥2,… , 𝑥ℓ−1} by maximality, and 𝑁(𝑥ℓ) ⊆
{𝑥2,… , 𝑥ℓ−1} by symmetry. Define𝑁−(𝑥1) = {𝑥𝑖 ∣ 𝑥𝑖+1 ∈ 𝑁(𝑥1)}. Note that |𝑁−(𝑥1) ∪ 𝑁(𝑥ℓ)| ≤
ℓ − 1 ≤ 𝑛 − 1, but |𝑁−(𝑥1)|, |𝑁(𝑥ℓ)| ≥

𝑛
2
. So there exists 𝑥𝑖 ∈ 𝑁−(𝑥1) ∩ 𝑁(𝑥ℓ). So we can

find a cycle 𝑥𝑖, 𝑥ℓ, 𝑥ℓ−1,… , 𝑥𝑖+1, 𝑥1, 𝑥2,… , 𝑥𝑖 of length ℓ.

Remark. Note that there is not an interesting theorem of the form ‘𝑒(𝐺) ≥ 𝑘 implies 𝐺 is
Hamiltonian’, because 𝐾𝑛−1 adjoined to a single vertex by one edge is not Hamiltonian.

4.2. Paths of a given length
Lemma. Let 𝐺 be a graph on 𝑛 vertices, and 𝑛 ≥ 3. Let 𝑘 < 𝑛. If 𝐺 is connected and
𝛿(𝐺) ≥ 𝑘

2
, then 𝐺 contains a path of length 𝑘.

Remark. We need the assumption 𝑘 < 𝑛, otherwise 𝐾𝑛 is a counterexample. We need the
assumption that 𝐺 is connected, otherwise a collection of 𝑛

𝑘
disjoint graphs give a counter-

example if 𝑛 ∣ 𝑘. The requirement that 𝛿(𝐺) ≥ 𝑘
2
is sharp, by considering collections of 𝐾𝑘+1

2
that all intersect in a single vertex.

Proof. Let𝑥1,… , 𝑥ℓ be a path ofmaximum length in𝐺. There is no cycle of length ℓ, because
if ℓ = 𝑛 we are done as 𝑘 < 𝑛, and if ℓ < 𝑛 we can use a cycle of length ℓ to build a path
of length ℓ + 1 by the same argument from the previous theorem: 𝑁−(𝑥1) and 𝑁(𝑥ℓ)must
intersect and so we can build a longer path.

Theorem. Let𝐺 be a graph on 𝑛 vertices. Then if 𝑒(𝐺) > 𝑛(𝑘−1)
2

,𝐺 contains a path of length
𝑘.
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Remark. If 𝑘 ∣ 𝑛, a collection of 𝑛
𝑘
disjoint 𝐾𝑘 graphs shows that the theorem is sharp.

Proof. Note that if 𝑘 = 1, the theorem clearly holds. Suppose 𝑘 ≥ 2, and apply induction on
𝑛. The case 𝑛 = 2 holds vacuously. Suppose now we have a graph 𝐺 on 𝑛 ≥ 3 vertices. First
note that 𝑛(𝑘−1)

2
< 𝑒(𝐺) ≤ 𝑛(𝑛−1)

2
, so 𝑘 < 𝑛.

We may assume 𝐺 is connected without loss of generality, because if it is disconnected, we
can apply induction to one of its connected components. Let 𝐶1,… , 𝐶𝑟 be the components,
and |𝐶𝑖| = 𝑛𝑖. Since∑

𝑟
𝑖=1 𝑒(𝐺[𝐶𝑖]) = 𝑒(𝐺) > 𝑛(𝑘−1)

2
, we have∑𝑟

𝑖=1 (𝑒(𝐺[𝐶𝑖]) −
𝑛𝑖(𝑘−1)

2
) > 0,

so one of the summands is positive. So there exists a connected component 𝐶𝑖 such that
𝑒(𝐺[𝐶𝑖]) >

𝑛𝑖(𝑘−1)
2

, so we can apply induction to this graph to obtain a path of length 𝑘 as
required.

If 𝛿(𝐺) ≥ 𝑘
2
, the proof is complete by the previous lemma. Otherwise, there exists a vertex

𝑥 of degree less than 𝑘
2
, so deg(𝑥) ≤ 𝑘−1

2
. Note that 𝑒(𝐺 − 𝑥) > 𝑛(𝑘−1)

2
− 𝑘−1

2
= (𝑛−1)(𝑘−1)

2
, so

we can apply induction to 𝐺 − 𝑥 to obtain a path of length 𝑘, completing the proof.

4.3. Forcing triangles

Proposition (Jensen). Let 𝑎 < 𝑏 be real numbers, and 𝑓∶ [𝑎, 𝑏] → ℝ be a convex function.
Let 𝑥1,… , 𝑥𝑛 ∈ [𝑎, 𝑏]. Then, 𝑓( 1

𝑛
∑𝑛

𝑖=1 𝑥𝑖) ≤
1
𝑛
∑𝑛

𝑖=1 𝑓(𝑥𝑖).

Theorem (Mantel). Let 𝐺 be a graph on 𝑛 vertices, and 𝑛2

4
< 𝑒(𝐺). Then 𝐺 contains a

triangle.

Remark. The bipartite graph 𝐾𝑛
2 ,

𝑛
2
contains no triangles, and has 𝑛2

4
edges, so the above

theorem is sharp.

Proof. Suppose the graph contains no triangle. Wemay assume that𝑛 ≥ 3, otherwise there is
nothing to prove. Let 𝑥, 𝑦 ∈ 𝑉(𝐺) such that 𝑥 ∼ 𝑦. In particular, deg𝑥+deg 𝑦 ≤ 𝑛−2+2 = 𝑛.
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Then, since 𝑥 ↦ 𝑥2 is convex,

𝑛 ⋅ 𝑒(𝐺) ≥ ∑
𝑥∼𝑦

(deg𝑥 + deg 𝑦)

= 1
2 ∑𝑥

∑
𝑦
(deg𝑥 + deg 𝑦)𝟙𝑥∼𝑦

= ∑
𝑥
∑
𝑦
deg𝑥𝟙𝑥∼𝑦

= ∑
𝑥
deg𝑥∑

𝑦
𝟙𝑥∼𝑦

= ∑
𝑥
(deg𝑥)2

= 𝑛(1𝑛 ∑𝑥
(deg𝑥)2)

≥ 𝑛(1𝑛 ∑𝑥
(deg𝑥))

2

= 𝑛(2𝑒(𝐺)𝑛 )
2

So 𝑒(𝐺) ≤ 𝑛2

4
as required.

4.4. Forcing cliques
Definition. We say that a graph 𝐺 is 𝑟-partite if there is a partition of 𝑉 into 𝑟 subsets such
that no part contains an edge. Equivalently, 𝐺 is 𝑟-colourable, so 𝜒(𝐺) ≤ 𝑟.

Definition. Given natural numbers 𝑛1,… , 𝑛𝑟, define 𝐾𝑛1,…,𝑛𝑟 to be the complete 𝑟-partite
graph with partitions of size 𝑛1,… , 𝑛𝑟.

Observe that if 𝑟 ∣ 𝑛, the graph𝐾𝑛
𝑟 ,…,𝑛𝑟

is an 𝑟-partite graphwith (𝑟
2
)𝑛

2

𝑟2
= (1 − 1

𝑟
)𝑛

2

2
edges.

Theorem (Turán, form 1). Let 𝐺 be a graph on 𝑛 vertices, and (1 − 1
𝑟
)𝑛

2

2
< 𝑒(𝐺) for 𝑟 ≥ 1.

Then 𝐺 contains a subgraph of the form 𝐾𝑟+1, so it has an (𝑟 + 1)-clique.

Proof. Suppose that 𝐺 has an (𝑟 + 1)-clique. For a given 𝑟, we prove the result by induction
on 𝑛, assuming the theorem holds for all lower values of 𝑟, then we can complete the proof
by induction.

If 𝑛 ≤ 𝑟, the result clearly holds. Let 𝐺 be a graph that contains no (𝑟 + 1)-clique. Suppose
𝑟 ≥ 2, otherwise the result is trivial. Then we can find an 𝑟-clique by induction on 𝑟. Let 𝐾
be such a clique. Then each vertex in𝑉(𝐺)∖𝐾 have at most 𝑟−1 neighbours in𝐾, otherwise,
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this would be an (𝑟 + 1)-clique. So

𝑒(𝐺) ≤ (𝑟2)+ (𝑟−1)(𝑛−𝑟)+𝑒(𝐺 ∖𝐾) ≤ (𝑟2)+ (𝑟−1)(𝑛−𝑟)+(1 −
1
𝑟 )
(𝑛 − 1)2

2 = (1 − 1
𝑟 )
𝑛2
2

Remark. This is a generalisation of Mantel’s theorem. If 𝑟 ∣ 𝑛, the theorem is sharp by
considering the complete 𝑟-partite graph.
Definition. The Turán graph 𝑇𝑟,𝑛 is the complete 𝑟-partite graph 𝐾𝑛1,…,𝑛𝑟 where∑

𝑟
𝑖=1 𝑛𝑖 =

𝑛 and 𝑛1,… , 𝑛𝑟 differ by at most one.
Proposition. Let 𝐺 be a 𝑟-partite graph on 𝑛 vertices. Then 𝑒(𝐺) ≤ 𝑒(𝑇𝑟,𝑛).
Remark. Turán graphs maximise the number of edges among all 𝑟-partite graphs on 𝑛 ver-
tices.

Proof. Let 𝐺 be an 𝑟-partite graph on 𝑛 vertices with the maximum number of edges. This
graph is complete, since if there is a missing edge, there is a graph with more edges. Let
𝐺 = 𝐾𝑛1,…,𝑛𝑟 . Suppose that 𝑛𝑖 − 𝑛𝑗 ≥ 2, so 𝐺 is not a Turán graph. Then consider the
graph obtained by moving an edge from the part with 𝑛𝑖 vertices to the part with 𝑛𝑗 vertices.
Then we gain a total of (𝑛𝑖 −1) edges, and remove 𝑛𝑗 edges. But this is at least 1, so we have
obtained a graph with more edges.

Theorem (Turán, form 2). Let 𝐺 be a graph on 𝑛 vertices and 𝑟 ≥ 2. Then if 𝐺 does not
contain an (𝑟 + 1)-clique, 𝑒(𝐺) ≤ 𝑒(𝑇𝑟,𝑛).

Proof. We will transform a graph 𝐺 into a complete 𝑟-partite graph without decreasing the
number of edges. Then, since the Turán graph maximises the amount of edges for such a
graph, the result follows.

Let 𝑉(𝐺) = {1,… , 𝑛}. Let 𝛼1,… , 𝛼𝑟 > 0 be numbers that are linearly independent over ℚ.
For 𝑆 ⊆ 𝑉(𝐺), define 𝜇(𝑆) = ∑𝑖∈𝑆 𝛼𝑖.
If 𝐻 is a graph on 𝑛 vertices, we define the transformation of 𝐻, denoted 𝑇(𝐻), as follows.
Let 𝑥, 𝑦 be a pair of vertices maximising 𝜇({𝑥, 𝑦}) (to break any ties) such that 𝑁(𝑥) ≠ 𝑁(𝑦)
and 𝑥 ≁ 𝑦, and also either deg𝑥 > deg 𝑦 or both deg𝑥 = deg 𝑦 and 𝜇(𝑁(𝑥)) > 𝜇(𝑁(𝑦)). Now
define 𝑇(𝐻) to be 𝐻 − 𝑦 along with a new vertex 𝑥′ with 𝑁(𝑥′) = 𝑁(𝑥).
We first show that if 𝐻 does not contain a 𝐾𝑟+1, then 𝑇(𝐻) also does not contain a 𝐾𝑟+1.
Suppose that our new graph 𝐻′ contains a clique 𝐾 isomorphic to 𝐾𝑟+1. We must have that
𝑥′ lies inside this clique, because all other vertices remain the same. We know 𝑥 ∉ 𝐾 since
𝑥 ≁ 𝑥′. Then 𝐾 ∖ {𝑥′} ∪ {𝑥}must be an (𝑟 + 1)-clique in 𝐻, which is a contradiction.
Now, consider the sequence 𝐺, 𝑇(𝐺), 𝑇(𝑇(𝐺)),…, iteratively applying the transformation
𝑇. We will now show that this sequence (𝑇 (𝑛)(𝐺))𝑛 eventually stabilises. This is because
𝑒(𝑇(𝐻)) ≥ 𝑒(𝐻), so (𝑒(𝑇 (𝑛)(𝐺)))𝑛 is an increasing sequence of integers which is bounded
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above by (𝑛
2
). Note that∑1≤𝑥≤𝑛 𝜇(𝑁𝑇(𝑖)(𝐺)(𝑥)) is also an increasing sequence, but since there

are only finitely many possible values for this sum, it must also stabilise. Therefore, at some
point, the transformation 𝑇 will do nothingmore to our graph. Let𝐺∞ be the limiting graph
in the sequence (𝑇 (𝑛)(𝐺))𝑛.

We will show that 𝐺∞ is a complete 𝑘-partite graph for some 𝑘. Let 𝑘 = 𝜒(𝐺∞), and 𝑐 be a 𝑘-
colouring of𝐺∞. We write 𝑉(𝐺∞) = 𝐶1∪⋯∪𝐶𝑘 where 𝐶𝑖 is the colour class of vertices with
colour 𝑖. Note that if 𝑥, 𝑦 ∈ 𝐶𝑖, we have 𝑥 ≁ 𝑦, so𝑁(𝑥) = 𝑁(𝑦), otherwise the transformation
𝑇 would have manipulated the neighbourhoods to be equal. Now let 𝑥 ∈ 𝐶𝑖, 𝑦 ∈ 𝐶𝑗 for
𝑖 ≠ 𝑗. Suppose 𝑥 ≁ 𝑦. Then 𝑥′ ≁ 𝑦′ for all other 𝑥′ ∈ 𝐶𝑖 and 𝑦′ ∈ 𝐶𝑗 , so 𝐶𝑖 and 𝐶𝑗 have no
edges between them. But then by merging 𝐶𝑖 and 𝐶𝑗 , we obtain a more optimal colouring,
contradicting our assumption that 𝑘 = 𝜒(𝐺∞). So𝐺∞ is a complete 𝑘-partite graph for some
𝑘.

Since 𝐺∞ does not contain a 𝐾𝑟+1, we have 𝑘 ≤ 𝑟. By the previous proposition, 𝑒(𝐺∞) ≤
𝑒(𝑇𝑟,𝑛), and 𝑒(𝐺) ≤ 𝑒(𝐺∞) since 𝑒(𝐻) ≤ 𝑒(𝑇(𝐻)) for all 𝐻.

4.5. The Zarankiewicz problem

Definition. The Zarankiewicz number 𝑍(𝑛, 𝑡) is the maximum number of edges in a bipart-
ite graph 𝐺 = (𝑋 ⊔ 𝑌, 𝐸) with |𝑋| = |𝑌| = 𝑛 such that 𝐺 does not contain 𝐾𝑡,𝑡.

Lemma. Let 𝑡 ∈ ℕ, and 𝑡 ≥ 2. Define the function 𝑓𝑡(𝑥) =
𝑥(𝑥−1)…(𝑥−𝑡+1)

𝑡!
. Then 𝑓𝑡(𝑥) is

convex for 𝑥 ≥ 𝑡 − 1.

Proof. Let 𝑠 = 𝑥 − 𝑡 + 1, so 𝑓𝑡(𝑥) =
(𝑠+𝑡−1)(𝑠+𝑡−2)…𝑠

𝑡!
. This is a polynomial with nonnegative

coefficients. Hence it is convex for 𝑠 ≥ 0, since 𝑓″(𝑠) ≥ 0.

Theorem. Let 𝑡 ≥ 2. Then 𝑍(𝑛, 𝑡) ≤ 𝑡
1
𝑡 𝑛2−

1
𝑡 + 𝑡𝑛.

Remark. In particular, as 𝑛 increases, 𝑍(𝑛, 𝑡) is eventually lower bounded by 2𝑛2−
1
𝑡 .

Proof. Note that we may assume that deg 𝑦 ≥ 𝑡 − 1 for all 𝑦 ∈ 𝑌 . If deg 𝑦 < 𝑡 − 1, we can
add an edge and preserve the property that 𝐺 contains no 𝐾𝑡,𝑡.

Let 𝑥1,… , 𝑥𝑡 ∈ 𝑋 be distinct vertices. Then |𝑁(𝑥1) ∩ ⋯ ∩ 𝑁(𝑥𝑡)| ≤ 𝑡 − 1, otherwise we have
a 𝐾𝑡,𝑡. Now, applying Jensen’s inequality,
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(𝑡 − 1)(𝑛𝑡) ≥ ∑
𝑥1,…,𝑥𝑡 distinct

|𝑁(𝑥1) ∩ ⋯ ∩ 𝑁(𝑥𝑡)|

= ∑
𝑥1,…,𝑥𝑡 distinct

∑
𝑦
𝟙𝑦∼𝑥1 …𝟙𝑦∼𝑥𝑡

= ∑
𝑦

∑
𝑥1,…,𝑥𝑡 distinct

𝟙𝑦∼𝑥1 …𝟙𝑦∼𝑥𝑡

= ∑
𝑦
(deg 𝑦𝑡 )

= 𝑛(1𝑛 ∑𝑦
(deg 𝑦𝑡 ))

≥ 𝑛(𝑑𝑡)

where 𝑑 = 𝑒(𝐺)
𝑛

(since we are in a bipartite graph), using the fact that deg 𝑦 ≥ 𝑡 − 1, so
𝑥 ↦ (𝑥

𝑡
) is convex. So

(𝑡 − 1)(𝑛𝑡) ≥ 𝑛(𝑑𝑡)

𝑡𝑛𝑡
𝑡! ≥ 𝑛(𝑑 − 𝑡)𝑡

𝑡!
𝑡𝑛𝑡 ≥ 𝑛(𝑑 − 𝑡)𝑡

𝑡
1
𝑡 𝑛1−

1
𝑡 ≥ 𝑑 − 𝑡

𝑡
1
𝑡 𝑛1−

1
𝑡 ≥ 𝑒(𝐺)

𝑛 − 𝑡

𝑒(𝐺) ≤ 𝑡
1
𝑡 𝑛2−

1
𝑡 + 𝑡𝑛

Remark. If 𝑡 = 2, then it is known that 𝑍(𝑛, 𝑡) ≥ 𝑐𝑛
3
2 for some contant 𝑐 > 0. If 𝑡 = 3,

𝑍(𝑛, 𝑡) ≥ 𝑐𝑛
5
3 . This is an open problem for 𝑡 = 4.

4.6. Erdős–Stone theorem
Definition. Let 𝐻 be a fixed graph, and 𝑛 ∈ ℕ. Then we define the extremal number
ex(𝑛,𝐻) = max {𝑒(𝐺) ∣ |𝐺| = 𝑛, 𝐺 contains no copy of 𝐻}.

Example. ex(𝑛, 𝐾𝑟+1) = 𝑒(𝑇𝑟,𝑛) ≤ (1 − 1
𝑟
)𝑛

2

2
. ex(𝑛, 𝑃𝑘) =

𝑛(𝑘−1)
2

. ex(𝑛, 𝐾𝑡,𝑡) ≤ 2𝑛2−
1
𝑡 + 𝑡𝑛.
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Theorem. Let 𝐻 be a fixed nonempty graph. Then

lim
𝑛→∞

ex(𝑛,𝐻)
(𝑛
2
) = 1 − 1

𝜒(𝐻) − 1

Remark. If 𝜒(𝐻) ≥ 3, this determines the leading order term in the function ex(𝑛,𝐻) for
large 𝑛. If 𝜒(𝐻) = 2, this theorem implies that ex(𝑛,𝐻)

𝑛2
→ 0. But in this case, 𝐻 ⊆ 𝐾𝑡,𝑡, and

we already know (almost) that ex(𝑛,𝐻) ≤ 𝑐𝑛2−
1
𝑡 , which implies the result from the Erdős–

Stone theorem. It is easy to see that ex(𝑛,𝐻) ≥ (1 − 1
𝜒(𝐻)−1

)𝑛
2

2
, since 𝐻 is not contained in

any 𝑇 (𝜒(𝐻)−1),𝑛.
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5. Ramsey theory
5.1. Ramsey’s theorem
Macroscopically, theorems in Ramsey theory are of the form ‘complete disorder in suffi-
ciently large systems is impossible’.

Proposition. Let 𝑐 be a 2-edge (not proper) colouring of 𝐾6. Then there exists a monochro-
matic triangle 𝐾3; there exists a subgraph induced on three vertices where all edges have the
same colour.

Proof. Suppose our colours are red and blue. Let 𝑥 ∈ 𝑉(𝐾6). Without loss of generality,
𝑥 has three neighbours 𝑦1, 𝑦2, 𝑦3 coloured red. Then the edges between the 𝑦𝑖 cannot be
coloured red. So they must all be coloured blue, but then this forms a blue triangle.

Definition. Let 𝑠 ≥ 2. Then the 𝑠th Ramsey number, denoted 𝑅(𝑠), is the minimal 𝑛 such
that every 2-edge colouring of 𝐾𝑛 contains a monochromatic 𝐾𝑠.

It is not clear a priori that such numbers indeed exist.

Definition. Let 𝑠, 𝑡 ≥ 2. We define𝑅(𝑠, 𝑡) be theminimal 𝑛 such that every 2-edge colouring
of 𝐾𝑛 contains either a red 𝐾𝑠 or a blue 𝐾𝑡.

Remark. 𝑅(𝑠, 𝑡) is symmetric, and 𝑅(𝑠) = 𝑅(𝑠, 𝑠). Note that 𝑅(2, 𝑡) is the minimal 𝑛 that
contains a red edge or𝐾𝑡, so𝑅(2, 𝑡) = 𝑡. We showed above that𝑅(3, 3) = 𝑅(3) ≤ 6, and in fact
this is an equality by demonstrating a 2-edge colouring of 𝐾5 containing no monochromatic
triangle.

Theorem (Ramsey). For all 𝑠, 𝑡, the Ramsey number 𝑅(𝑠, 𝑡) exists, and 𝑅(𝑠, 𝑡) ≤ 𝑅(𝑠−1, 𝑡)+
𝑅(𝑠, 𝑡 − 1).

Proof. Apply induction on 𝑠 + 𝑡. For 𝑠, 𝑡 ≤ 2, the result holds. Now suppose 𝑠, 𝑡 > 2, and let
𝑎 = 𝑅(𝑠 − 1, 𝑡), 𝑏 = 𝑅(𝑠, 𝑡 − 1). Let 𝑛 = 𝑎 + 𝑏 = 𝑅(𝑠 − 1, 𝑡) + 𝑅(𝑠, 𝑡 − 1), and consider the
complete graph 𝐾𝑛. Let 𝑐∶ 𝐸(𝐾𝑛) → {red, blue} be a given colouring.

Let 𝑥 ∈ 𝐾𝑛, and let 𝑁𝑟(𝑥) be the red neighbourhood and 𝑁𝑏(𝑥) be the blue neighbourhood.
Suppose that |𝑁𝑟(𝑥)| ≥ 𝑎. In this case, 𝑁𝑟(𝑥) contains either a red 𝐾𝑠−1, in which case
𝑁𝑟(𝑥) ∪ {𝑥} is a red 𝐾𝑠 in 𝐾𝑛; or a blue 𝐾𝑡, in which case we are already done. Now suppose
|𝑁𝑏(𝑥)| ≥ 𝑏. Then 𝑁𝑏(𝑥) contains either a red 𝐾𝑠 in which case we are done; or it contains
a blue 𝐾𝑡−1, in which case 𝑁𝑏(𝑥) ∪ {𝑥} is a blue 𝐾𝑡 in 𝐾𝑛 as required. Suppose that neither
of these cases occur, so |𝑁𝑟(𝑥)| ≤ 𝑎 − 1 and |𝑁𝑏(𝑥)| ≤ 𝑏 − 1, so |𝑁(𝑥)| ≤ 𝑎 + 𝑏 − 2, which is
a contradiction since the graph is complete.

Corollary. For all 𝑠, the Ramsey number 𝑅(𝑠) exists.

Definition. 𝑅𝑘(𝑠1,… , 𝑠𝑘) is the minimal 𝑛 such that every 𝑘-edge colouring of 𝐾𝑛 contains
a 𝐾𝑠𝑖 coloured 𝑖 for some 𝑖.
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Theorem (multicoloured Ramsey’s theorem). For 𝑠1,… , 𝑠𝑘 for 𝑘 ≥ 2, then 𝑅𝑘(𝑠1,… , 𝑠𝑘)
exists.

Proof. We will show by induction on 𝑘 that 𝑅𝑘(𝑠1,… , 𝑠𝑘) ≤ 𝑅(𝑠1, 𝑅𝑘−1(𝑠2,… , 𝑠𝑘)) = 𝑛. Let 𝑐
be a 𝑘-colouring of 𝐾𝑛. Apply the two-colour version of Ramsey’s theorem to obtain either
a 𝐾𝑠1 coloured 1, or a 𝐾𝑅𝑘−1(𝑠2,…,𝑠𝑘) coloured in any combination of 2,… , 𝑘. If we have a
𝐾𝑠1 coloured 1, we are done. Otherwise, apply induction to obtain an edge colouring of
𝐾𝑅𝑘−1(𝑠2,…,𝑠𝑘) to obtain a 𝐾𝑠𝑖 coloured 𝑖 for some 𝑖 ≥ 2.

Remark. We have seen 𝑅(3) = 6. There are very few known Ramsey numbers. 𝑅(4) = 18,
but 𝑅(5) is unknown.

5.2. Infinite graphs and larger sets
Theorem. Let 𝑐 be a 2-colouring of the countably infinite complete graph, so 𝑐∶ ℕ(2) →
{red, blue}. Then there exists an infinite set 𝑋 ⊆ ℕ which is monochromatic, so 𝑋(2) is
coloured either entirely red or entirely blue.

Remark. The finite version of Ramsey’s theorem cannot be applied here; we can create ar-
bitrarily large cliques, but we do not know if such cliques connect into an infinite set.

Proof. We construct a sequence 𝑥1, 𝑥2,… inductively as follows. Let 𝑥1 ∈ ℕ be arbitrary. 𝑥1
has either an infinite red neighbourhood or an infinite blue neighbourhood. We define 𝑆1
to be the red neighbourhood of 𝑥1 if it is infinite, or the blue neighbourhood otherwise, so
𝑆1 is infinite. Now let 𝑥2 ∈ 𝑆1. Now, 𝑥2 has either an infinite red neighbourhood in 𝑆1 or
an infinite blue neighbourhood in 𝑆1, so we can define 𝑆2 to be one of these that is infinite,
and proceed inductively.

For each 𝑖, all edges 𝑥𝑖 ∼ 𝑥𝑗 where 𝑖 < 𝑗 have the same colour by construction. Label a vertex
red if all its forward-facing edges are red, and label an edge blue if all its forward-facing edges
are blue. Then there are either infinitely many red vertices or infinitely many blue vertices.
Without loss of generality, suppose the set of red vertices 𝑋 is infinite. Then all edges in 𝑋
are coloured red, so 𝑋 is the infinite monochromatic set as required.

Remark. Wecan easily construct a version of the above theorem for an arbitrary finite amount
of colours, using the same idea as from the multiple-colour version of Ramsey’s theorem in
the finite case.

Example. It can be difficult to determine which colour has an infinite monochromatic
clique. Suppose we colour 𝑖𝑗 with the maximal 𝑛 such that 2𝑛 ∣ 𝑖 + 𝑗, modulo 2. The set
{22, 24, 26,… } is an example of an infinite monochromatic clique.
Suppose 𝑖𝑗 is coloured with the number of distinct prime factors of 𝑖 + 𝑗, modulo 2. The
colour of the infinite clique is not known.

Remark. It is possible to deduce the existence of 𝑅(𝑠, 𝑡) from the infinite version.
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Theorem. Let 𝑐 be a 2-colouring of the set of 𝑟-sets of ℕ, so 𝑐∶ ℕ(𝑟) → {red, blue}. Then
there exists an infinite set 𝑋 ⊆ ℕ such that 𝑋(𝑟) is monochromatic.

Proof. Apply induction on 𝑟. If 𝑟 = 2, we fall back to the previous theorem. We define
a sequence 𝑥1, 𝑥2,… and a sequence of infinite sets 𝑆1, 𝑆2,… by the following procedure.
We start by choosing 𝑥1 arbitrarily. Now, consider the colouring 𝑐𝑥1(𝐹) = 𝑐({𝑥1} ∪ 𝐹) for
𝐹 ∈ (ℕ ∖ {𝑥1})(𝑟−1). By induction, there exists a set 𝑆1 ⊆ ℕ ∖ {𝑥1} that is infinite and 𝑆(𝑟−1)1
is monochromatic with respect to the colouring 𝑐𝑥1 . Now we choose 𝑥2 ∈ 𝑆1, and proceed
inductively.

The sequence 𝑥1, 𝑥2,… has the property that 𝐹𝑖 = {{𝑥𝑖1 ,… , 𝑥𝑖𝑟} ∣ 𝑖1 < ⋯ < 𝑖𝑟} are mono-
chromatic for each 𝑖. But there are either infinitely many red-coloured 𝑥𝑖 or infinitely many
blue-coloured 𝑥𝑖. Let 𝑋 be one of these infinite sets, then 𝑋(𝑟) is monochromatic.

We can produce a similar version of this theorem for the finite case, along with an explicit
inductively-defined bound.

Definition. Let 𝑟 ∈ ℕ, and 𝑠, 𝑡 ≥ 1. We define the 𝑟-set Ramsey number 𝑅(𝑟)(𝑠, 𝑡) to be
the minimal 𝑛 such that for every 2-colouring of {1,… , 𝑛}(𝑟), it contains either a set 𝑆 with
|𝑆| = 𝑠 and 𝑆(𝑟) are coloured red, or a set 𝑇 with |𝑇| = 𝑡 and 𝑇 (𝑟) are coloured blue.

Remark. 𝑅(1)(𝑠, 𝑡) = 𝑠 + 𝑡 − 1. 𝑅(2)(𝑠, 𝑡) = 𝑅(𝑠, 𝑡). 𝑅(𝑟)(𝑟, 𝑡) = 𝑡 = 𝑅(𝑟)(𝑡, 𝑟).

Theorem. For all 𝑟, 𝑠, 𝑡 ≥ 1, the number 𝑅(𝑟)(𝑠, 𝑡) exists.

Proof. Apply induction on 𝑟, and then induction on 𝑠+𝑡. If 𝑠 ≤ 𝑟 or 𝑡 ≤ 𝑟, we are done, since
𝑅(𝑟)(𝑟, 𝑡) = 𝑡. We claim that 𝑅(𝑟)(𝑠, 𝑡) ≤ 𝑅(𝑟−1)(𝑅(𝑟)(𝑠 − 1, 𝑡) + 𝑅(𝑟)(𝑠, 𝑡 − 1)) + 1 = 𝑁.

Consider a 2-coloured set {1,… , 𝑛}(𝑟) where 𝑛 ≥ 𝑁. Choose a vertex 𝑥 ∈ {1,… , 𝑛}. Consider
the colouring 𝑐𝑥(𝐹) = 𝑐({𝑥} ∪ 𝐹) where 𝐹 ∈ ({1,… , 𝑛} ∖ {𝑥})(𝑟−1). Applying induction on
𝑟, we have a set 𝑆1 such that |𝑆1| = 𝑅(𝑟)(𝑠 − 1, 𝑡) and 𝑆(𝑟−1)1 is red, or there is a set 𝑆2 with
|𝑆2| = 𝑅(𝑟)(𝑠, 𝑡 − 1) and 𝑆(𝑟−1)2 is blue. We consider the first case; the other is similar.

Apply the 𝑟-set version of Ramsey’s theorem by induction to 𝑆1 to find either a set 𝐴 ⊆ 𝑆1
with |𝐴| = 𝑠 − 1 and 𝐴(𝑟) is coloured red (with respect to 𝑐), or a set 𝐵 ⊆ 𝑆2 with |𝐵| = 𝑡 and
𝐵(𝑟) is coloured blue. If 𝐵 exists, we are done. If 𝐴 exists, 𝐴∪ {𝑥} is coloured red and has size
𝑠 as required.

5.3. Upper bounds
Proposition. Let 𝑠, 𝑡 ≥ 2, we have 𝑅(𝑠, 𝑡) ≤ (𝑠+𝑡−2

𝑡−1
). In particular, 𝑅(𝑠) = 𝑅(𝑠, 𝑠) ≤ 4𝑠.

Proof. Apply induction on 𝑠 + 𝑡. We know 𝑅(𝑠, 2) = 𝑠 = (𝑠+2−2
2−1

) as required. Suppose this
holds for𝑅(𝑠−1, 𝑡) and𝑅(𝑠, 𝑡−1). We have already shown that𝑅(𝑠, 𝑡) ≤ 𝑅(𝑠−1, 𝑡)+𝑅(𝑠, 𝑡−1).
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So

𝑅(𝑠, 𝑡) ≤ 𝑅(𝑠 − 1, 𝑡) + 𝑅(𝑠, 𝑡 − 1) ≤ (𝑠 + 𝑡 − 2
𝑠 − 2 ) + (𝑠 + 𝑡 − 3

𝑠 − 1 ) = (𝑠 + 𝑡 − 2
𝑠 − 1 )

Weare interested in bounding𝑅(𝑟)(𝑠, 𝑡). Note thatwehave the bound𝑅(𝑟)(𝑠, 𝑡) ≤ 𝑅(𝑟−1)(𝑅(𝑟)(𝑠, 𝑡−
1), 𝑅(𝑟)(𝑠 − 1, 𝑡)) + 1. Define 𝑓1(𝑥) = 2𝑥, and recursively, 𝑓𝑛(𝑥) = 𝑓𝑥𝑛−1(𝑥). Then 𝑓2(𝑥) ∼ 2𝑥,
and as 𝑛 increases, 𝑓𝑛 increases very rapidly. So our bound on 𝑅(𝑟)(𝑠, 𝑡) grows asymptotically
on the order of 𝑓𝑟(𝑠 + 𝑡).

5.4. Lower bounds

We can explicitly construct some lower bounds for 𝑅(𝑠).

Proposition. 𝑅(𝑠) > (𝑠 − 1)2.

Proof. Consider the graph defined by (𝑠 − 1) disjoint 𝐾𝑠−1 cliques, all of which are coloured
blue, but all lines between cliques are coloured red. This graph has no monochromatic
𝐾𝑠.

Theorem (Erdős). Let 𝑠 ≥ 3. Then 𝑅(𝑠) ≥ 2
𝑠
2 .

Proof. Consider 𝐺 = 𝐾𝑛 for 𝑛 ≤ 2
𝑠
2 . For each edge 𝑒 in 𝐺, we construct an independent

Bernoulli random variable 𝑋𝑒 with parameter
1
2
. If 𝑋𝑒 = 0, we colour 𝑒 red, and if 𝑋𝑒 = 1,

we colour 𝑒 blue. Then
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ℙ (colouring has a monochromatic 𝐾𝑠) = ℙ( ⋃
𝐾∈{1,…,𝑛}(𝑠)

{𝐾 monochromatic})

≤ ∑
𝐾∈{1,…,𝑛}(𝑠)

ℙ (𝐾 monochromatic)

= ∑
𝐾∈{1,…,𝑛}(𝑠)

2 ⋅ 2−(
𝑠
2)

= (𝑛𝑠)2 ⋅ 2
−(𝑠2)

< 𝑛𝑠
𝑠! 2 ⋅ 2

− 𝑠(𝑠−1)
2

= 2( 𝑛
(𝑠!)

1
𝑠

2−
𝑠−1
2 )

𝑠

≤ 2( 2
1
2

(𝑠!)
1
𝑠

)
𝑠

Note that 𝑠! ≥ 2
𝑠
2+1, so (𝑠!)

1
𝑠 ≥ 2

1
2+

1
𝑠 .

ℙ (colouring has a monochromatic 𝐾𝑠) < 2( 1
2
1
𝑠

)
𝑠

≤ 1

Since the probability is less than 1, there must exist a colouring that has no monochromatic
𝐾𝑠.

Remark. We can think about this proof as follows. Consider the collection of 2(
𝑛
2) colourings

of 𝐾𝑛. Then for each clique, there are at most 2(
𝑛
2) ⋅ 2 ⋅ 2−(

𝑠
2) colourings where that clique is

monochromatic. So the collection of all colourings where none of these cliques are mono-
chromatic has at least as many elements as 2(

𝑛
2) − (𝑛

2
)2(

𝑛
2) ⋅ 2 ⋅ 2−(

𝑠
2). In general, however, a

probabilistic interpretation is more powerful.

Remark. This proof is nonconstructive. It is a major open problem to explicitly construct
colourings to show that 𝑅(𝑠) > (1 + 𝜀)𝑠.
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6. Random graphs
6.1. Lower bounds for Zarankiewicz numbers
Recall the Zarankiewicz numbers𝑍(𝑛, 𝑡), themaximumnumber of edges between a bipartite
graph on (𝑛, 𝑛) vertices, before a 𝐾𝑡,𝑡 is forced. We have shown that 𝑍(𝑛, 𝑡) ≤ 2𝑛2−

1
𝑡 , but we

have found no lower bound.

Theorem. Let 𝑡 ≥ 2. Then 𝑍(𝑛, 𝑡) ≥ 1
2
𝑛2−

2
𝑡+1 .

Proof excluding the 𝑡 + 1 term. Suppose we include each edge in the graph with probability
𝑝. Let 𝑍 be a random variable that counts the number of 𝐾𝑡,𝑡 in the bipartite graph 𝐺 on
(𝑛, 𝑛) vertices. Then

𝑍 = ∑
𝐴∈𝑋(𝑡),𝐵∈𝑌 (𝑡)

𝟙(all edges between 𝐴 and 𝐵 lie in 𝐺)

We find

𝔼 [𝑍] = ∑
𝐴∈𝑋(𝑡),𝐵∈𝑌 (𝑡)

ℙ (all edges between 𝐴 and 𝐵 lie in 𝐺) = (𝑛𝑡)
2

𝑝𝑡2 ≤ 𝑛2𝑡
4 𝑝𝑡2 = 1

4(𝑛
2𝑝𝑡)𝑡

So if 𝑝 = 𝑛−
2
𝑡 , then our upper bound is at most 1

4
. Then ℙ (𝑋 ≥ 1) ≤ 1

4
by Markov’s inequal-

ity. Note that 𝔼 [𝑒(𝐺)] = 𝑝𝑎2 = 𝑛2−
2
𝑡 . So ℙ(𝑒(𝐺) ≤ 𝑝𝑛2

2
) ≤ 1

2
. So with probability greater

than 1
4
, we have 𝑒(𝐺) > 1

2
𝑝𝑛2 = 1

2
𝑛2−

2
𝑡 and 𝐺 does not contain a 𝐾𝑡,𝑡.

Proof. Let 𝐺 = (𝑋 ⊔𝑌, 𝐸) be a random bipartite graph with |𝑋| = |𝑌| = 𝑛, such that 𝑥𝑦 ∈ 𝐸
with probability 𝑝 = 𝑛−

2
𝑡+1 . Let 𝐺 be the graph 𝐺 with an edge removed from each 𝐾𝑡,𝑡. By

definition,𝐺 has no𝐾𝑡,𝑡. Note that 𝑒(𝐺) ≥ 𝑒(𝐺)−(amount of 𝐾𝑡,𝑡 in 𝐺). Taking expectations,
𝔼 [𝑒(𝐺)] ≥ 𝔼 [𝑒(𝐺)] −𝔼 [amount of 𝐾𝑡,𝑡]. We have 𝔼 [𝑒(𝐺)] = 𝑝𝑛2, and the expected amount
of 𝐾𝑡,𝑡 subgraphs of 𝐺 is (𝑛

𝑡
)2𝑝𝑡2 . Substituting in for 𝑝 and approximating,

𝔼 [𝑒(𝐺)] ≥ 𝑛2−
2

𝑡+1 − 𝑛2𝑡
2 𝑝𝑡2

Note that
𝑛2𝑡𝑝𝑡2 = (𝑛2𝑝𝑡)𝑡 = (𝑛2𝑛

−2𝑡
𝑡+1 )𝑡 = (𝑛

2(𝑡+1)−2𝑡
𝑡+1 )𝑡 = 𝑛

2𝑡
𝑡+1 = 𝑛2−

2
𝑡+1

Hence
𝔼 [𝑒(𝐺)] ≥ 1

2𝑛
2− 2

𝑡+1

So there must exist a graph 𝐺 with no 𝐾𝑡,𝑡 and that has at least
1
2
𝑛2−

2
𝑡+1 edges.

149



III. Graph Theory

6.2. Girth

Definition. The girth of a graph is the length of the shortest cycle.

Proposition (Markov). Let 𝑋 be a nonnegative random variable. Then for all 𝑡 > 0,

ℙ (𝑋 ≥ 𝑡) ≤ 𝔼 [𝑋]
𝑡

Proposition. Let 𝐺 be a graph. Then 𝜒(𝐺) ≥ |𝐺|
𝛼(𝐺)

, where 𝛼(𝐺) is the size of the largest
independent set (non-adjacent vertices) in 𝐺.

Proof. Let 𝑐 be a colouring of 𝐺 with 𝑘 = 𝜒(𝐺) colours. Let 𝐶𝑖 be the set of vertices coloured
𝑖. Then the 𝐶𝑖 are each independent sets. We have |𝐺| = |𝐶1| + ⋯ + |𝐶𝑘| ≤ 𝑘𝛼(𝐺) =
𝜒(𝐺)𝛼(𝐺).

Theorem (Erdős). For all 𝑘, 𝑔 ≥ 3, there exists a graph 𝐺 with 𝜒(𝐺) ≥ 𝑘 and girth at least
𝑔.

Proof. Let𝐺 be a random graph on {1,… , 𝑛}where each edge 𝑖𝑗 is included with probability
𝑝 = 𝑛−1+

1
𝑔 . Let 𝑋𝑖 be the random variable that counts the number of cycles in 𝐺 of length 𝑖.

Let 𝑋 = 𝑋3 +⋯+ 𝑋𝑔−1. Now, note that ℙ (𝑋 ≥ 𝑛
2
) ≤ 2

𝑛
𝔼 [𝑋].

𝔼 [𝑋] =
𝑔−1
∑
𝑖=3

𝔼 [𝑋𝑖]

≤
𝑔−1
∑
𝑖=3

𝑛(𝑛 − 1)… (𝑛 − 𝑖 + 1)
𝑖 𝑝𝑖

≤
𝑔−1
∑
𝑖=3

(𝑛𝑝)𝑖

=
𝑔−1
∑
𝑖=3

𝑛
𝑖
𝑔

≤ 𝑐𝑛−
1
𝑔 < 1

2

for a constant 𝑐. Now, let 𝑌 be the random variable counting the number of independent
sets of 𝑠 = 𝑛

2𝑘
vertices (up to rounding).
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ℙ (𝑌 ≥ 1) ≤ 𝔼 [𝑌]

= (𝑛𝑠)(1 − 𝑝)(
𝑠
2)

≤ 𝑛𝑠𝑒−𝑝(
𝑠
2)

= (𝑛2𝑒−𝑝(𝑠−1))
𝑠
2

≤ (2𝑛2𝑒−
𝑛
1
𝑔

2𝑘 )

𝑠
2

< 1
2

for 𝑛 sufficiently large. We have shown that 𝐺 has at most 𝑛
2
cycles of length at most 𝑔 − 1

with probability at least 1
2
, and 𝐺 has 𝛼(𝐺) ≤ 𝑛

2𝑘
with probability at least 1

2
. Hence there is

a graph 𝐺 with both properties. Let 𝐺 be 𝐺 with a vertex deleted from each cycle of length
less than 𝑔. Then 𝐺 has girth at least 𝑔. Further,

𝜒(𝐺) ≥
||𝐺||
𝛼(𝐺)

≥
𝑛
2

𝛼(𝐺) ≥
𝑛
2
𝑛
2𝑘

= 𝑘

as required.

6.3. Binomial random graphs
Definition. The binomial random graph on 𝑛 vertices with parameter 𝑝 ∈ [0, 1] is the
probability space 𝐺(𝑛, 𝑝) on the graphs on 𝑛 vertices, where each potential edge is included
in the graph independently with probability 𝑝.
Let (𝑎𝑛), (𝑏𝑛) be sequences of nonnegative numbers, and 𝑏𝑛 ≠ 0 for sufficiently large 𝑛.
Then we write 𝑎𝑛 ≪ 𝑏𝑛 if lim𝑛→∞

𝑎𝑛
𝑏𝑛

= 0. Let 𝑋 be the random variable that counts the
number of triangles 𝐾3 in some random graph 𝐺 ∼ 𝐺(𝑛, 𝑝). Then 𝔼 [𝑋] = (𝑛

3
)𝑝3.

Note that if 𝑝 ≪ 1
𝑛
, so 𝑝𝑛 → 0, we have 𝔼 [𝑋] ≤ 𝑛3𝑝3 → 0. By Markov’s inequality,

ℙ (𝐾3 ⊂ 𝐺) = ℙ (𝑋 ≥ 1) ≤ 𝔼 [𝑋] → 0.

If 𝑝 ≫ 1
𝑛
, so 𝑝𝑛 → ∞, then we have 𝔼 [𝑋] ≥ (𝑛−3)3

6
𝑝3 → ∞. So asymptotically we have

infinitely many triangles. We can also show that ℙ (𝑋 ≥ 1) → 1, but this does not follow
immediately from the previous result.

Proposition (Chebyshev). Let 𝑋 be a random variable, and let 𝑡 > 0. Then

ℙ (|𝑋 − 𝔼 [𝑋]| ≥ 𝑡) ≤ Var (𝑋)
𝑡2
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Proposition (second moment method). Let 𝑋 be a random variable taking values in ℕ.
Then

ℙ (𝑋 = 0) ≤ Var (𝑋)
(𝔼 [𝑋])2

Proof.
ℙ (𝑋 = 0) ≤ ℙ (|𝑋 − 𝔼 [𝑋]| ≥ 𝔼 [𝑋]) ≤ Var (𝑋)

(𝔼 [𝑋])2

Theorem. Let 𝐺 ∼ 𝐺(𝑛, 𝑝) be a binomial random graph. Then

lim
𝑛→∞

ℙ (𝐾3 ⊂ 𝐺) = {
0 𝑝 ≪ 1

𝑛
1 𝑝 ≫ 1

𝑛

Proof. Let 𝑋 be the random variable counting the triangles in 𝐺. If 𝑝 ≪ 1
𝑛
, then 𝔼 [𝑋] → 0

so ℙ (𝑋 ≥ 1) → 0. Now suppose 𝑝 ≫ 1
𝑛
. Let 𝑝 ≫ 1

𝑛
. Now, ℙ (𝑋 = 0) ≤ Var(𝑋)

(𝔼[𝑋])2
. So it suffices

to show that Var(𝑋)
(𝔼[𝑋])2

→ 0. We have

𝑋 = ∑
𝐾∈{0,…,𝑛}(3)

𝟙(𝐾 is a triangle in 𝐺)

𝑋2 = ∑
𝐾∈{0,…,𝑛}(3)

∑
𝐿∈{0,…,𝑛}(3)

𝟙(𝐾, 𝐿 are triangles in 𝐺)

𝔼 [𝑋2] = ∑
𝐾∈{0,…,𝑛}(3)

∑
𝐿∈{0,…,𝑛}(3)

ℙ (𝐾, 𝐿 are triangles in 𝐺)

and

(𝔼 [𝑋])2 = ∑
𝐾∈{0,…,𝑛}(3)

∑
𝐿∈{0,…,𝑛}(3)

ℙ (𝐾 is a triangle in 𝐺)ℙ (𝐿 is a triangle in 𝐺)

When computing 𝔼 [𝑋2] − (𝔼 [𝑋])2, the only terms that do not cancel are those terms which
share edges.

𝔼 [𝑋2] − (𝔼 [𝑋])2 ≤ ∑
𝐾∈{0,…,𝑛}(3)

∑
𝐿 that shares a single edge with𝐾

ℙ (𝐾, 𝐿 are triangles in 𝐺)

+ ∑
𝐾∈{0,…,𝑛}(3)

ℙ (𝐾 is a triangle in 𝐺)

≤ ∑
𝐾∈{0,…,𝑛}(3)

∑
𝐿 that shares a single edge with𝐾

ℙ (𝐾, 𝐿 are triangles in 𝐺) + 𝔼 [𝑋]

≤ 𝑛4𝑝5⏟
𝑓𝑜𝑢𝑟𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠,𝑓𝑖𝑣𝑒𝑒𝑑𝑔𝑒𝑠

+𝔼 [𝑋]
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Hence,
Var (𝑋)
(𝔼 [𝑋])2 ≤

𝑛4𝑝5 + 𝔼 [𝑋]
(𝔼 [𝑋])2 ≤ 𝑋 𝑛4𝑝5

(𝑝3𝑛3)2 +
1

𝔼 [𝑋] ≤
1
𝑝𝑛2 +

1
𝔼 [𝑋] → 0

Remark. We see a ‘phase transition’ from in ℙ (𝐾3 ⊂ 𝐺) as 𝑝moves from below 1
𝑛
to above

1
𝑛
. Suppose 𝑝 = 𝜆

𝑛
for some fixed 𝜆 > 0. Here, lim𝑛→∞ ℙ (𝐾3 ⊂ 𝐺) = 1−𝑒−

𝜆3
6 , but this result

will not be proven.

Remark. We have seen that if the expected number of triangles increases to infinity, then
the probability that 𝐺 ∼ 𝐺(𝑛, 𝑝) contains a triangle converges to 1. However, this is not
true in general, replacing ‘triangle’ with another graph. Consider the graph 𝐻 defined by
a triangle with 1000 extra disjoint vertices. Here, the expected amount of copies of 𝐻 is
( 𝑛
1003

)𝑝3 ≈ 𝑛1003

1003!
𝑝3, which becomes largewhen𝑝 = 𝑛−

1003
3 < 1

𝑛
. If𝐾 is the ‘densest’ subgraph

of 𝐻, then if the expected amount of copies of 𝐾 tends to infinity, the probability that 𝐺
contains a copy of 𝐻 tends to 1.

6.4. Connectedness
Throughout this section, we will use the inequality 1 − 𝑥 ≤ 𝑒−𝑥.
Proposition. Let 𝐺 ∼ 𝐺(𝑛, 𝑝). Then, for all 𝜀 > 0, we have

lim
𝑛→∞

ℙ (𝐺 has an isolated vertex) = {
0 𝑝 ≥ (1 + 𝜀) log𝑛

𝑛
1 𝑝 ≤ (1 − 𝜀) log𝑛

𝑛

where a vertex is isolated if its degree is zero.

Proof. Let 𝐼 be the number of isolated vertices in 𝐺. Then,

𝔼 [𝐼] =
𝑛
∑
𝑖=1

ℙ (𝑣𝑖 is isolated) =
𝑛
∑
𝑖=1
(1 − 𝑝)𝑛−1 = 𝑛(1 − 𝑝)𝑛−1

If 𝑝 ≥ (1 + 𝜀) log𝑛
𝑛
, then

𝔼 [𝐼] = 𝑛(1 − 𝑝)𝑛
1 − 𝑝 ≤ 𝑛𝑒−𝑝𝑛 ≤ 𝑛𝑒−(1+𝜀)

log𝑛
𝑛 𝑛 = 𝑛𝑒−(1+𝜀) log𝑛 = 𝑛𝑛−(1+𝜀) = 𝑛−𝜀 → 0

Hence, by Markov’s inequality, the probability that 𝐺 has an isolated vertex is ℙ (𝐼 ≥ 1) ≤
𝔼 [𝐼] → 0. If 𝑝 ≤ (1 − 𝜀) log𝑛

𝑛
, then

𝔼 [𝐼] = 𝑛(1 − 𝑝)𝑛
1 − 𝑝 ≥ 𝑛(1 − 𝑝)𝑛 ≥ 𝑛𝑒−(1+

𝜀
4 )𝑝𝑛
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for sufficiently large𝑛, and sufficiently small 𝜀. This statement holds because 1−𝑝 = 𝑒log(1−𝑝)
and Taylor’s theorem implies log(1 − 𝑝) = −𝑝 + 𝑝2

2
+ 𝑜(𝑝2). Then

𝔼 [𝐼] ≥ 𝑛𝑒−(1+
𝜀
4 )(1−𝜀) log𝑛 = 𝑛𝑛−(1+

𝜀
4 )(1−𝜀) = 𝑛𝑛−1+

3𝜀
4 +

𝜀2
4 = 𝑛

3𝜀
4 +

𝜀2
4 →∞

We will apply the second moment method on 𝐼. We have ℙ (𝐼 = 0) ≤ Var(𝐼)
(𝔼[𝐼])2

.

Var (𝐼) = 𝔼 [𝐼2] − (𝔼 [𝐼])2

= ∑
𝑢,𝑣∈𝑉(𝐺)

ℙ (𝑑(𝑢) = 0, 𝑑(𝑣) = 0) − ∑
𝑢,𝑣∈𝑉(𝐺)

ℙ (𝑑(𝑢) = 0) ℙ (𝑑(𝑣) = 0)

≤ 𝔼 [𝐼] + ∑
𝑢≠𝑣

(ℙ (𝑑(𝑢) = 0, 𝑑(𝑣) = 0) − ℙ (𝑑(𝑢) = 0) ℙ (𝑑(𝑣) = 0))

= 𝔼 [𝐼] + ∑
𝑢≠𝑣

((1 − 𝑝)2(𝑛−1) − (1 − 𝑝)2(𝑛−1))

≤ 𝔼 [𝐼] + 𝑛2(1 − 𝑝)2(𝑛−1)( 1
1 − 𝑝 − 1)

Var (𝐼)
(𝔼 [𝐼])2 ≤

1
𝔼 [𝐼]

1
𝑛2(1 − 𝑝)2(𝑛−1)𝑛

2(1 − 𝑝)2(𝑛−1)( 1
1 − 𝑝 − 1)

≤ 1
𝔼 [𝐼] +

1
1 − 𝑝 − 1 → 0

since 𝑝 → 0 and 𝔼 [𝐼] → ∞ for 𝑝 < (1 − 𝜀) log𝑛
𝑛
, as required.

Theorem. Let 𝐺 ∼ 𝐺(𝑛, 𝑝). Then for all 𝜀 > 0, we have

lim
𝑛→∞

ℙ (𝐺 connected) = {
1 𝑝 ≥ (1 + 𝜀) log𝑛

𝑛
0 𝑝 ≤ (1 − 𝜀) log𝑛

𝑛

Remark. This is an example of a sharp threshold. Above, we saw the coarse threshold 𝑝 ≫ 1
𝑛

and 𝑝 ≪ 1
𝑛
. Often, sharp thresholds are seen in relation to global properties, and coarse

thresholds are seen when analysing local properties.

Proof. Suppose 𝑝 ≤ (1 − 𝜀) log𝑛
𝑛
. We want to show that lim𝑛→∞ ℙ (𝐺 connected) converges

to zero. This follows from the fact that ℙ (𝐺 connected) ≥ ℙ (𝐺 has no isolated vertex) → 0.

Now suppose 𝑝 ≥ (1+𝜀) log𝑛
𝑛
. We nowwant to show that lim𝑛→∞ ℙ (𝐺 connected) converges

to one. If 𝐺 is not connected, we can find 𝐴 ⊂ 𝑉(𝐺) where 1 ≤ |𝐴| ≤ 𝑛
2
, and there are no

edges between 𝐴 and 𝑉(𝐺) ∖ 𝐴. Consider
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ℙ (𝐺 not connected) = ℙ (∃𝐴 ⊂ 𝑉(𝐺), 0 < |𝐴| ≤ 𝑛
2 , 𝑒(𝐴, 𝑉(𝐺) ∖ 𝐴) = 0)

= ℙ
⎛
⎜⎜
⎝

⋃
𝐴⊂𝑉(𝐺),0<|𝐴|≤𝑛

2

{𝑒(𝐴, 𝑉(𝐺) ∖ 𝐴) = 0}
⎞
⎟⎟
⎠

≤ ∑
𝐴⊂𝑉(𝐺), 0<|𝐴|≤𝑛

2

ℙ (𝑒(𝐴, 𝑉(𝐺) ∖ 𝐴) = 0)

= ∑
𝐴⊂𝑉(𝐺), 0<|𝐴|≤𝑛

2

(1 − 𝑝)|𝐴|(𝑛−|𝐴|)

=
⌊𝑛2 ⌋

∑
𝑘=1

(𝑛𝑘)(1 − 𝑝)𝑘(𝑛−𝑘)

≤
𝜀𝑛
4

∑
𝑘=1

(𝑛𝑘)(1 − 𝑝)𝑘(𝑛−𝑘) + ∑
𝑘= 𝜀𝑛

4

(𝑛𝑘)(1 − 𝑝)𝑘(𝑛−𝑘)

≤
𝜀𝑛
4

∑
𝑘=1

𝑛𝑘𝑒−𝑝𝑘(𝑛−𝑘) + ∑
𝑘= 𝜀𝑛

4

(𝑛𝑘)(1 − 𝑝)𝑘(𝑛−𝑘)

≤
𝜀𝑛
4

∑
𝑘=1

(𝑛𝑒−(1+𝜀)
log𝑛
𝑛 (𝑛−𝑘))

𝑘
+ ∑

𝑘= 𝜀𝑛
4

(𝑛𝑘)(1 − 𝑝)𝑘(𝑛−𝑘)

≤
𝜀𝑛
4

∑
𝑘=1

(𝑛𝑒−(1+𝜀)
log𝑛
𝑛 𝑛(1− 𝜀

4 ))
𝑘
+ ∑

𝑘= 𝜀𝑛
4

(𝑛𝑘)(1 − 𝑝)𝑘(𝑛−𝑘)

≤
𝜀𝑛
4

∑
𝑘=1

(𝑛𝑒−(1+𝜀) log𝑛(1−
𝜀
4 ))

𝑘
+ ∑

𝑘= 𝜀𝑛
4

(𝑛𝑘)(1 − 𝑝)𝑘(𝑛−𝑘)

≤
𝜀𝑛
4

∑
𝑘=1

(𝑛𝑒− log𝑛(1+ 3𝜀
4 ))

𝑘
+ ∑

𝑘= 𝜀𝑛
4

(𝑛𝑘)(1 − 𝑝)𝑘(𝑛−𝑘)

≤
𝜀𝑛
4

∑
𝑘=1

(𝑛−(1+
3𝜀
4 ))

𝑘

⏟⎵⎵⏟⎵⎵⏟
→0

+ ∑
𝑘= 𝜀𝑛

4

(𝑛𝑘)(1 − 𝑝)𝑘(𝑛−𝑘)

≤
𝜀𝑛
4

∑
𝑘=1

(𝑛−(1+
3𝜀
4 ))

𝑘
+ ∑

𝑘= 𝜀𝑛
4

2𝑛𝑒−(1+𝜀)
log𝑛
𝑛 𝑘(𝑛−𝑘)

≤
𝜀𝑛
4

∑
𝑘=1

(𝑛−(1+
3𝜀
4 ))

𝑘
+ ∑

𝑘= 𝜀𝑛
4

2𝑛𝑒−(1+𝜀)
log𝑛
𝑛

𝜀𝑛
4

𝑛
2⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
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as required.
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7. Algebraic graph theory
7.1. Graphs of a given diameter
Definition. Let 𝐺 be a connected graph. The diameter of 𝐺 is

diam𝐺 = max {𝑑(𝑥, 𝑦) ∣ 𝑥, 𝑦 ∈ 𝑉(𝐺)}

Remark. The diameter of 𝐺 is 1 if and only if 𝐺 is complete, so there are (𝑛
2
) edges.

Proposition. Let 𝐺 be a graph with diameter at most 2. Then |𝐺| ≤ Δ(𝐺)2 + 1.

Proof. Let 𝑥 ∈ 𝐺. Then 𝑉(𝐺) = {𝑥} ∪ 𝑁(𝑥) ∪ 𝑁(𝑁(𝑥)) ∖ 𝑁(𝑥). Hence |𝐺| ≤ 1 + Δ(𝐺) +
Δ(𝐺)(Δ(𝐺) − 1) ≤ Δ(𝐺)2 + 1.

Definition. AMoore graph is a graph for which |𝐺| = Δ(𝐺)2 + 1.
Remark. Any Moore graph is regular. Such a graph does not contain a triangle. A graph 𝐺
is a Moore graph if and only if every distinct 𝑥, 𝑦 ∈ 𝑉(𝐺) have a unique path of length at
most 2 between them.

Example. 𝐶5 is a Moore graph with Δ(𝐶5) = 2. The Petersen graph is a Moore graph with
degree 3.

7.2. Adjacency matrices
Definition. The adjacency matrix of a graph 𝐺 on vertex set {1,… , 𝑛} is the 𝑛 × 𝑛 matrix
𝐴𝐺 with entries 𝑎𝑥𝑦 = 𝟙𝑥𝑦∈𝐸(𝐺).
Remark. Adjacency matrices are symmetric and have zero diagonal, hence tr𝐴𝐺 = 0.
Proposition. Let 𝐺 be a graph, and 𝐴𝐺 be its adjacency matrix. Let 𝑘 ∈ ℕ. Then (𝐴𝑘

𝐺)𝑥𝑦 is
the number of walks of length 𝑘 from 𝑥 to 𝑦 in 𝐺.

Proof. If 𝑘 = 1, then the theorem clearly holds. If 𝑘 = 2, then (𝐴2
𝐺)𝑥𝑦 = ∑𝑧(𝐴𝐺)𝑥𝑧(𝐴𝐺)𝑧𝑦 =

∑𝑧 𝟙𝑥∼𝑧∈𝐸𝟙𝑧∈𝑦 counts the amount of walks of length 2. For 𝑘 > 2, we can proceed by induc-
tion.

𝐴𝐺 acts on ℝ𝑛 as it is a linear map.

Example. Consider the graph 𝐶4 on vertex set {1, 2, 3, 4}. This has adjacency matrix

𝐴𝐶4 =
⎛
⎜
⎜
⎝

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎞
⎟
⎟
⎠

Let 𝑥 = (1, 2, −2, 3)⊺. Then 𝐴𝐺𝑥 = (5, −1, 5, −1)⊺. Note that (𝐴𝐺𝑥)𝑦 is the sum of 𝑥𝑧 for
𝑧 ∼ 𝑦.
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Proposition. Let𝐴 be an 𝑛×𝑛 symmetricmatrix. Then𝐴 has real eigenvalues 𝜆𝑖, and there
exists an orthonormal basis 𝑢𝑖 where 𝐴𝑢𝑖 = 𝜆𝑖𝑢𝑖.

Given a graph𝐺 on 𝑛 vertices, we can now consider its eigenvalues and eigenvectors, which
are the eigenvalues and eigenvectors of 𝐴𝐺. Let 𝜆max = 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 = 𝜆min without
loss of generality. Since ∑𝑛

𝑖=1 𝜆𝑖 = tr𝐴𝐺 = 0, if 𝐺 is a nonempty graph, 𝜆max > 0 and
𝜆min < 0.

Example. (1, 1, 1, 1)⊺ is an eigenvector of 𝐶4 with eigenvalue 2. Note that the rank of 𝐴𝐺
is 2, so there are two zero eigenvalues. Since the eigenvalues sum to zero, 𝜆min = −2. One
example of a corresponding eigenvector is (1, −1, 1, −1)⊺.

Proposition. Let 𝐴 be a symmetric 𝑛 × 𝑛matrix. Then

𝜆max = max
𝑥∈ℝ𝑛∖{0}

(⟨𝑥, 𝐴𝑥⟩⟨𝑥, 𝑥⟩ ); 𝜆min = min
𝑥∈ℝ𝑛∖{0}

(⟨𝑥, 𝐴𝑥⟩⟨𝑥, 𝑥⟩ )

Proposition. Let 𝐺 be a graph.

(i) If 𝜆 is an eigenvalue, then |𝜆| ≤ Δ(𝐺).

(ii) If 𝐺 is connected, then Δ(𝐺) is an eigenvalue if and only if 𝐺 is regular. In this case,
𝟙 = (1,… , 1) is the corresponding eigenvector, and Δ(𝐺) has multiplicity 1.

(iii) If 𝐺 is connected, then −Δ(𝐺) is an eigenvalue if and only if 𝐺 is regular and bipartite.

(iv) 𝜆max ≥ 𝛿(𝐺).

Proof. Part (i). Let 𝜆 be an eigenvalue for 𝐺. Let 𝑥 = (𝑥1,… , 𝑥𝑛) be a corresponding eigen-
vector. Let 𝑥𝑖 be the entry with largest absolute value. We may assume that 𝑥𝑖 = 1. Then,
𝜆𝑥 = 𝐴𝑥 gives

𝜆 = 𝜆𝑥𝑖 = (𝜆𝑥)𝑖 = (𝐴𝑥)𝑖 = ∑
𝑗∼𝑖

𝑥𝑗 ⟹ |𝜆| ≤
||||
∑
𝑗∼𝑖

𝑥𝑗
||||
≤ Δ(𝐺)

Part (ii). Suppose 𝐺 is regular. Then observe that 𝟙 = (1,… , 1) is an eigenvector of 𝐺 with
eigenvalue 𝛿(𝐺) = Δ(𝐺). Now suppose Δ(𝐺) is an eigenvalue. Let 𝑥 = (𝑥1,… , 𝑥𝑛) be a
corresponding eigenvector and let 𝑥𝑖 be the entry with largest absolute value. Without loss
of generality let 𝑥𝑖 = 1. We have Δ(𝐺) = Δ(𝐺)𝑥𝑖 = ∑𝑗∼𝑖 𝑥𝑗 , so deg 𝑖 = Δ(𝐺), and if 𝑗 ∼ 𝑖,
then 𝑥𝑗 = 1. Proceeding inductively, since the graph is connected, all 𝑥𝑗 are equal to 1, and
all vertices have degreeΔ(𝐺). So 𝑥 = 𝟙 as required. Since this is the only possible eigenvector
with eigenvalue Δ(𝐺), and 𝐴𝐺 is symmetric, the multiplicity of the eigenvalue Δ(𝐺) is 1.

Part (iii). Suppose 𝐺 is bipartite and regular. Let 𝑉(𝐺) = 𝑋 ⊔ 𝑌 , and consider the vector
given by 𝑥𝑖 = 1 if 𝑖 ∈ 𝑋 and 𝑥𝑖 = −1 if 𝑖 ∈ 𝑌 . Then 𝐴𝑥 = −Δ(𝐺)𝑥 as required. Now suppose
−Δ(𝐺) is an eigenvalue. As before, let 𝑥 be an eigenvector with 𝑥𝑖 = 1 of maximal absolute
value. We have −Δ(𝐺) = −Δ(𝐺)𝑥𝑖 = ∑𝑗∼𝑖 𝑥𝑗 , hence deg 𝑖 = Δ(𝐺), and if 𝑗 ∼ 𝑖, we have
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𝑥𝑗 = −1. Since 𝐺 is connected, we repeat the process to show that 𝐺 is Δ(𝐺)-regular, and 𝑥𝑗
is either +1 or −1 giving a natural bipartition of the graph.

Part (iv). Note that

𝜆max = max
𝑥∈ℝ𝑛∖{0}

⟨𝑥, 𝐴𝑥⟩
⟨𝑥, 𝑥⟩

Consider 𝑥 = 𝟙 = (1,… , 1). Then

𝜆max ≥
⟨𝟙, 𝐴𝟙⟩
⟨𝟙, 𝟙⟩ = 1

𝑛
𝑛
∑
𝑖=1

deg(𝑖) ≥ 𝛿(𝐺)

7.3. Strongly regular graphs
Definition. A graph 𝐺 is (𝑘, 𝑎, 𝑏)-strongly regular if

(i) 𝐺 is 𝑘-regular;

(ii) for every pair of adjacent vertices 𝑥 ∼ 𝑦, they have exactly 𝑎 common neighbours, so
|𝑁(𝑥) ∩ 𝑁(𝑦)| = 𝑎;

(iii) for every pair of not equal and non-adjacent vertices 𝑥 ≁ 𝑦, they have exactly 𝑏 com-
mon neighbours, so |𝑁(𝑥) ∩ 𝑁(𝑦)| = 𝑏.

Example. 𝐶4 is (2, 0, 2)-strongly regular. 𝐶5 is (2, 0, 1)-strongly regular. Any Moore graph
is (Δ(𝐾), 0, 1)-strongly regular.

Theorem (strongly regular graphs are rare). Let 𝐺 be a (𝑘, 𝑎, 𝑏)-strongly regular graph on
𝑛 vertices. Then,

1
2((𝑛 − 1) ± (𝑛 − 1)(𝑏 − 𝑎) − 2𝑘

√(𝑎 − 𝑏)2 + 4(𝑘 − 𝑏)
)

are integers.

Proof. Let 𝐴 be the adjacency matrix of 𝐺. Then

(𝐴2)𝑥𝑦 =
⎧
⎨
⎩

𝑎 𝑥 ∼ 𝑦
𝑏 𝑥 ≠ 𝑦, 𝑥 ≁ 𝑦
𝑘 𝑥 = 𝑦

⟹ 𝐴2 = 𝑎𝐴 + 𝑏(𝐽 − 𝐼 − 𝐴) + 𝑘𝐼

where 𝐽 is the matrix with 𝐽𝑥𝑦 = 1 for all 𝑥, 𝑦. Hence, 𝐴2 + (𝑏 − 𝑎)𝐴 + (𝑏 − 𝑘)𝐼 − 𝑏𝐽 = 0.
We know that 𝑘 is an eigenvalue of 𝐴, and the corresponding eigenvector is 𝟙. Since 𝐺 is
connected, 𝑘 has multiplicity 1.
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Let 𝜆 be an eigenvalue of 𝐴 such that 𝜆 ≠ 𝑘. Let 𝑥 be the corresponding eigenvector. Apply-
ing the matrix equation to 𝑥, we obtain 𝜆2𝑥 + (𝑏 − 𝑎)𝜆𝑥 + (𝑏 − 𝑘)𝑥 = 0 as 𝐽𝑥 = 0, as 𝑥 is
orthogonal to 𝟙. Then 𝜆2 + (𝑏 − 𝑎)𝜆 + (𝑏 − 𝑘) as 𝑥 ≠ 0. Hence,

𝜆 = (𝑎 − 𝑏) ± √(𝑎 − 𝑏)2 + 4(𝑘 − 𝑏)
2

In particular, there are only three possible eigenvalues for𝐴, which are𝑘 and the twopossible
solutions to the quadratic equation for 𝜆. Let 𝜆, 𝜇 be the solutions to the above equation. Let
𝜆 have multiplicity 𝑠 and 𝜇 have multiplicity 𝑡. Then,

0 = tr𝐴 =
𝑛
∑
𝑖=1

𝜆𝑖 = 𝑠𝜆 + 𝑡𝜇 + 𝑘

We also have 𝑠 + 𝑡 + 1 = 𝑛, since there are 𝑛 eigenvalues. Solving both equations simultan-
eously, we obtain the result as desired.

Corollary. Let 𝐺 be a Moore graph with Δ(𝐺) = 𝑘. Then 𝑘 ∈ {2, 3, 7, 57}.

Proof. If 𝐺 is a Moore graph, it is (𝑘, 0, 1)-strongly regular on 𝑘2 + 1 vertices. Then, one can
check the condition in the previous theorem.

1
2(𝑘

2 ± 𝑘2 − 2𝑘
√4𝑘 − 3

) ∈ ℤ

Remark. It is not known if such a graph 𝐺 with 𝑘 = 57 exists.
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Lectured in Michaelmas 2022 by Prof. B. Löwe
Computation, or computability, is central to modern mathematics. However, we very rarely
think about the precise definition of what it means for something to be ‘computable’. There
is an important difference between existence and algorithmic access to a witness. In this
course, we discuss the precise definition of computability, and use it to prove that there is
no algorithm to solve certain problems.

There are many possible ways to define computation and computability, and it is a remark-
able fact that most ‘reasonable’ definitions of computable functions coincide. This is known
as the Church–Turing thesis, and it allows us to reason about computation without being
tied to a specific model, such as register machines, the Turing machine, or Church’s recurs-
ive functions.

A language is a set of strings called words. Languages can be used to model countable sets,
such as the set of powers of two, the set of primes, or the set of numbers which describe
a register machine that determine if a given computation will halt or not. We will explore
different types of language, and use computation theory to study which properties of lan-
guages can be determined algorithmically. We prove that there is a large class of languages
for which there is an algorithm to determine if a given word lies in the language, but a much
smaller class of languages for which we can determine algorithmically if they contain any
words at all.
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IV. Automata and Formal Languages

1. Introduction
1.1. Exposition
Computation, or computability, is central to modern mathematics. However, we very rarely
think about the precise definition of what it means for something to be ‘computable’. There
is an important difference between existence and algorithmic access to a witness. Contrast
the statements ‘every polynomial of order 𝑛 has a root’, and ‘there is an algorithm that, given
a polynomial of order 𝑛, we can find a root’. In many cases, there is an existence proof but
no algorithm to construct the relevant object.

In 1900, Hilbert gave a talk in Paris known asMathematical Problems, in which he described
a list of 100 problems to be worked on in the coming 100 years. One of these problems,
the tenth, relates to an algorithm to determine whether solutions of Diophantine equations,
those in ℤ[𝑋], exist. In 1928, Ackermann wrote the book Grundzüge der theoretischen Lo-
gik, in which he described the famous Entscheidungsproblem: given a formula 𝜑, determine
whether 𝜑 is a tautology (true regardless of how the variables are interpreted).

In both cases, Hilbert expected that solutions to these questions exist. Positive solutions to
such problems do not require a definition of words like ‘algorithm’ or ‘procedure’, because
we can agree on what an algorithm is when we see an example. However, to disprove such
statements, we need to rigorously define what an algorithm is, in order to rule all possible
algorithms out.

1.2. Basic definitions
To talk about computation, we must first define the objects on which computation takes
place. Naturally, one would assume the objects to be some kind of number, but even the
above two examples do not have inputs as numbers; instead, we see polynomials and for-
mulas. Modern computation relies on encodings of complicated objects as strings of a finite
set of symbols, such as the bits 0 and 1. We use a similar approach, using a set Ω, which is
usually assumed to be finite, called the set of symbols, and then we defineΩ⋆ to be the set of
finite sequences of objects of Ω, called the set of Ω-strings.

1.3. Revisiting Numbers and Sets
Recall that a set 𝑋 is called countable if there is a surjection ℕ → 𝑋 , and that 𝑋 is called
infinite if there is an injection ℕ → 𝑋 .
Proposition. If 𝑋 is nonempty and countable, then 𝑋⋆ is infinite and countable.

Proof. Since 𝑋 ≠ ∅, there exists 𝑥 ∈ 𝑋 . 𝑋⋆ is infinite, as the function mapping 𝑛 ∈ ℕ
to 𝑥𝑥…𝑥⏟⎵⏟⎵⏟

𝑛 times
is injective. Because 𝑋 is countable, there exists a surjection 𝜋 ∶ ℕ → 𝑋 . Each

natural 𝑘 ∈ ℕ has a unique prime number decomposition∏𝑖∈ℕ 𝑝
𝑘𝑖
𝑖 where 𝑝0 = 2, 𝑝1 =
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3, 𝑝2 = 5,… are the primes indexed by the naturals. We will interpret the 𝑘𝑖 as encoding a
sequence of elements of 𝑋 , taking care to preserve the relevance of zero. Reading 𝑘0 as the
length of a sequence, the sequence (𝑘1,… , 𝑘𝑘0) is a sequence of naturals. We then obtain
the sequence (𝜋(𝑘1),… , 𝜋(𝑘𝑘0)) in𝑋⋆. By surjectivity of𝜋, the functionwe have constructed
𝑘 ↦ (𝜋(𝑘1),… , 𝜋(𝑘𝑘0)) is also surjective.

Theorem (Cantor’s theorem). Let 𝑋 be infinite. Then its power set 𝒫(𝑋) is uncountable.

Proof. A simple diagonalisation argument shows there is no surjection from the naturals to
the power set 𝒫(𝑋).

Proposition. If 𝑋 is countable, then the set Fin(𝑋) ⊆ 𝒫(𝑋) of all finite subsets of 𝑋 is
countable.

Proof. We construct a surjection from 𝑋⋆ to Fin(𝑋); then by composition with the surjec-
tion obtained in the first proposition we construct a surjection ℕ → Fin(𝑋). Consider the
forgetful function 𝑓∶ 𝑋⋆ → Fin(𝑋), mapping (𝑥1,… , 𝑥𝑛) to {𝑥1,… , 𝑥𝑛}. Since 𝑋 is count-
able, 𝜋∶ ℕ → 𝑋 is surjective, hence for 𝑥 ∈ 𝑋 , 𝜋−1(𝑥) ⊆ ℕ is a nonempty set of naturals.
Therefore, let 𝑛𝑥 be the least element of 𝜋−1(𝑥). Then, given 𝐹 ∈ Fin(𝑋), consider the set
{𝑛𝑥 ∣ 𝑥 ∈ 𝐹}, order it in the usual way, and represent this as a sequence. This is a sequence
of naturals with |𝐹| elements, and its 𝜋-image is exactly 𝐹.

1.4. Notation
We will use the following notational conventions.

• The natural numbers ℕ are defined as {0, 1, 2,… }.

• We use the standard set-theoretic construction of naturals as Von Neumann ordinals,
𝑛 = {0, 1,… , 𝑛 − 1}. Therefore, a natural is the set of all lower naturals.

• 𝑋𝑛 is the set of sequence of 𝑋-strings of length 𝑛, defined as 𝑋𝑛 = 𝑛 → 𝑋 , treating 𝑛
as a set as above.

• We write |𝛼| = domain(𝛼) for the length of a sequence.

• 𝑋0 = 0 → 𝑋 is a type with only one element 𝜀, which is the empty sequence.

• We can write 𝑋⋆ = ⋃𝑛∈ℕ 𝑋𝑛.

• Truncation of a sequence 𝛼 ∈ 𝑋𝑛 to the length 𝑘 ≤ 𝑛 is exactly 𝛼|𝑘: the unique
sequence of length 𝑘 such that 𝛼|𝑘 ⊆ 𝛼.

• Concatenation of sequences 𝛼, 𝛽 ∈ 𝑋⋆ where |𝛼| = 𝑚, |𝛽| = 𝑛, is denoted 𝛼𝛽 ∈ 𝑋𝑚+𝑛,
defined piecewise in the natural way.

• By recursion, we define 𝛼0 = 𝜀 and 𝛼𝑛+1 = 𝛼𝛼𝑛.
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• We identify the sequence of length one with its entry: 𝑥 ∈ 𝑋 can represent the se-
quence (𝑥) ∈ 𝑋1.

• If 𝑌, 𝑍 ⊆ 𝑋⋆, we write 𝑌𝑍 = {𝛼𝛽 ∣ 𝛼 ∈ 𝑌, 𝛽 ∈ 𝑍}.
• Similarly, if 𝑌 = {𝛼}, we can write 𝛼𝑍 = {𝛼𝛽 ∣ 𝛽 ∈ 𝑍}.
• If 𝑓∶ 𝑋 → 𝑌 , we can lift this function to the space 𝑋⋆ → 𝑌⋆ functorially to the
function ̂𝑓. Often, the hat is omitted.
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2. Rewrite systems
2.1. Definitions
Definition. Let Ω be a finite set of symbols, and let Ω⋆ be the set of Ω-strings. We call
elements ofΩ⋆×Ω⋆ rewrite rules or production rules. Such elements (𝛼, 𝛽) arewritten 𝛼 → 𝛽.
Informally, we interpret a rewrite rule 𝛼 → 𝛽 as a procedure that replaces an occurrence of
𝛼 in a string with 𝛽.
Definition. A pair 𝑅 = (Ω, 𝑃) is called a rewrite system if 𝑃 is a finite set of rewrite rules.
Proposition. If Ω is finite, there are only countably many rewrite systems on Ω.

Proof. Ω⋆ is countable, so Ω⋆ × Ω⋆ is countable. Every 𝑃 is an element of Fin(Ω⋆ × Ω⋆),
hence this is countable.

Definition. If 𝑅 = (Ω, 𝑃) is a rewrite system, and 𝜎, 𝜏 ∈ Ω⋆, we write 𝜎 𝑅−→1 𝜏, pronounced
‘𝜎 is rewritten to 𝜏 in one step’ or ‘𝑅 produces 𝜏 from𝜎 in one step’, if there exist𝛼, 𝛽, 𝛾, 𝛿 ∈ Ω⋆

such that 𝜎 = 𝛼𝛾𝛽, 𝜏 = 𝛼𝛿𝛽, and 𝛾 → 𝛿 ∈ 𝑃.

The relation
𝑅−→ is the reflexive and transitive closure of

𝑅−→1. The sequence 𝜎0
𝑅−→1 𝜎1

𝑅−→1

… 𝑅−→1 𝜎𝑛 is called a 𝑅-derivation of length 𝑛 of 𝜎𝑛 from 𝜎0. We write

𝒟(𝑅, 𝜎) = {𝜏 ∈ Ω⋆ ∣ 𝜎 𝑅−→ 𝜏}

for the set of strings that can be rewritten, produced, or derived from 𝜎.

2.2. Relation to languages
In language, we can think ofΩ as representing letters, andΩ⋆ representing words. We could
alternatively considerΩ to represent words, andΩ⋆ to represent sentences. Further,Ω could
represent sentences, and then Ω⋆ would represent texts.

However, not all elements ofΩ⋆ in each level is a valid word, sentence, or text. We therefore
would like to describe which elements of Ω⋆ are well-formed. Natural languages spoken
by humans are finite, and normally the way we determine whether a string is a word is by
consulting a dictionary, which at its core is a lookup table that determineswhether any given
string is or is not a word.

Even though in practice languages are finite, Chomsky realised that it makes more sense to
model them as infinite sets, due to a property known as linguistic recursion that seems to
be an important feature of human language. Linguistic recursion can be seen through the
following example: when𝑋 is a sentence in English, ‘𝐸 observes that𝑋 ’ is also a grammatical
sentence in English. If we define an upper sentence length in English, we have to arbitrarily
define an upper limit on this form of recursion.
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There is a difference between a sentence being grammatical and being meaningful. One
notable example is the grammatically correct ‘colourless green ideas sleep furiously’ that
does not have meaning, to contrast with ‘furiously sleep ideas green colourless’ which is
neither grammatically correct or meaningful. We can use grammar to distinguish these two
sentences, but we cannot distinguish algebraically whether a sentence has meaning.

Example. Consider the following generative grammar of rewrite rules for English.

𝑆 → NP VP
NP→ Adj NP
NP→ Noun
VP→ Verb
VP→ Verb Adv

This rewrite system allows us to derive the sentence ‘colourless green ideas sleep furiously’
from 𝑆.

2.3. Grammars
Definition. Let Σ be an alphabet of letters or terminal symbols, and let𝑉 be a set of variables
or nonterminal symbols, such that Σ, 𝑉 are nonempty and disjoint. LetΩ = Σ ∪ 𝑉 . 𝑎, 𝑏, 𝑐,…
refer to letters and 𝐴, 𝐵, 𝐶,… refer to variables. Elements of𝕎 = Σ⋆ ⊆ Ω⋆ are called words.
𝑢, 𝑣, 𝑤,… refer to words. We denote𝕎+ = Σ⋆ ∖ {𝜀} for the set of nonempty words. A subset
of𝕎 is called a language.

Note that there are uncountably many languages over any nonempty alphabet.

Definition. A tuple 𝐺 = (Σ, 𝑉, 𝑃, 𝑆) is called a grammar if Σ, 𝑉 are nonempty and disjoint
denoting Ω = Σ ∪ 𝑉 , such that 𝑅 = (Ω, 𝑃) is a rewrite system, and 𝑆 ∈ 𝑉 is the start symbol.
Since grammars give rise to a natural rewrite system, our notation for rewrite systems may
also be used for grammars. For example,

𝒟(𝐺, 𝜎) = 𝒟(𝑅, 𝜎); 𝜎 𝐺−→(1) 𝜏 ⟺ 𝜎 𝑅−→(1) 𝜏

We define the language generated by the grammar to be

ℒ(𝐺) = 𝒟(𝐺, 𝑆) ∩𝕎

Example. If there is no rule of the form 𝑆 → 𝛼 in 𝑃, then𝒟(𝐺, 𝑆) = {𝑆} and thusℒ(𝐺) = ∅
because the start symbol is not a word. Likewise, if there is no rule of the form 𝛼 → 𝑤 for
𝑤 ∈ 𝕎 in 𝑃, then𝒟(𝐺, 𝑆) contains no words, so ℒ(𝐺) = ∅.
Example. Let Σ = {𝑎}, 𝑉 = {𝑆}, 𝑃0 = {𝑆 → 𝑎𝑎𝑆, 𝑆 → 𝑎}, 𝐺0 = (Σ, 𝑉, 𝑃, 𝑆). We will show
ℒ(𝐺0) = {𝑎2𝑛+1 ∣ 𝑛 ∈ ℕ}. First, every element of 𝒟(𝐺, 𝑆) that is produced by 𝐺0 is of odd
length, which can be seen by induction on the length of the derivation, since each production
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rule preserves parity of length. Conversely, each 𝑎2𝑛+1 can be produced by the rewrite rules,
by applying 𝑆 → 𝑎𝑎𝑆 a total of 𝑛 times, and then applying 𝑆 → 𝑎.
Note that the only requirement of the proof was that odd length is preserved. Thus, the
following sets of production rules also produce the same language.

• 𝑃1 = {𝑆 → 𝑎𝑆𝑎, 𝑆 → 𝑎}
• 𝑃2 = {𝑆 → 𝑆𝑎𝑎, 𝑆 → 𝑎}
• 𝑃3 = {𝑆 → 𝑎𝑎𝑆, 𝑆 → 𝑎𝑎𝑆𝑎𝑎, 𝑆 → 𝑎}

This notion is called equivalence of grammars.

2.4. Equivalent grammars
Definition. Grammars 𝐺,𝐺′ are equivalent if ℒ(𝐺) = ℒ(𝐺′).
We intend to show that for a fixed finite set Σ, there are only countably many languages of
the form ℒ(𝐺) for a grammar 𝐺 (which may have arbitrary variable sets 𝑉).
Definition. Let 𝐺 = (Σ, 𝑉, 𝑃, 𝑆), 𝐺′ = (Σ, 𝑉 ′, 𝑃′, 𝑆′) be grammars on the same alphabet Σ.
A function 𝑓∶ Ω → Ω′ = Σ ∪ 𝑉 → Σ ∪ 𝑉 ′ is called an isomorphism if

(i) 𝑓|Σ = id;

(ii) 𝑓(𝑆) = 𝑆′;
(iii) 𝑓|𝑉 is a bijection from 𝑉 to 𝑉 ′;

(iv) 𝛼 → 𝛽 ∈ 𝑃 ⟺ 𝑓(𝛼) → 𝑓(𝛽) ∈ 𝑃′.
Note that here, since 𝛼, 𝛽 ∈ Ω⋆, 𝑓(𝛼) = ̂𝑓(𝛼) is the extension of 𝑓 to Ω⋆.

Proposition. Isomorphic grammars are equivalent.

Proof. If 𝑓 is an isomorphism from 𝐺 to 𝐺′, 𝑓−1 is an isomorphism from 𝐺′ to 𝐺. Thus, by
antisymmetry of ⊆, it suffices to show that ℒ(𝐺) ⊆ ℒ(𝐺′). Let 𝑤 ∈ ℒ(𝐺). Then there is a
derivation in 𝐺 of 𝑤 from 𝑆:

𝑆 = 𝜎0
𝐺−→1 𝜎1

𝐺−→1 …
𝐺−→1 𝜎𝑛 = 𝑤

Applying 𝑓 to each element of this sequence,

𝑆′ = 𝑓(𝜎0)
𝐺′
−−→1 𝑓(𝜎1)

𝐺′
−−→1 …

𝐺′
−−→1 𝑓(𝜎𝑛) = 𝑤

The start and end symbols take these values due to property (i) and (ii). Each arrow holds
by property (iv). This is a derivation of 𝑤 from 𝑆′ in 𝐺. Hence 𝑤 ∈ ℒ(𝐺′).

Proposition. If 𝐺 = (Σ, 𝑉, 𝑃, 𝑆) and 𝑉 ′ is such that |𝑉| = |𝑉 ′|, then there exist 𝑃′, 𝑆′ such
that ℒ(𝐺) = ℒ(𝐺′) with 𝐺′ = (Σ, 𝑉 ′, 𝑃′, 𝑆′).
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Proof. Since |𝑉| = |𝑉 ′|, there exists a bijection 𝑓∶ 𝑉 → 𝑉 ′. Then, extending this to Ω =
Σ∪𝑉 by letting 𝑓(𝑎) = 𝑎 for all 𝑎 ∈ Σ, this satisfies properties (i) and (iii) of the definition of
an isomorphism. Define 𝑆′ = 𝑓(𝑆) and 𝑃′ = {𝑓(𝛼) → 𝑓(𝛽) ∣ 𝛼 → 𝛽 ∈ 𝑃}, so that properties
(ii) and (iv) are satisfied. Then (Σ, 𝑉, 𝑃, 𝑆) is isomorphic to (Σ, 𝑉 ′, 𝑃′, 𝑆′) and thus they have
the same language.

Proposition. There are only countablymany languages of the formℒ(𝐺) for some grammar
𝐺 on a fixed alphabet Σ.

Proof. Let ℒ be the set of all such languages. For a fixed 𝑉 , there are only countably many
rewrite systems with this choice of Σ and 𝑉 . Hence, the set 𝒢𝑉 of all grammars with fixed 𝑉
is a finite union (over all start symbols) of countable sets. Therefore ℒ𝑉 = {ℒ(𝐺) ∣ 𝐺 ∈ 𝒢𝑉 }
is also countable.

By the previous result, we can defineℒ𝑛 = ℒ𝑉 for some𝑛-element set𝑉 . Now,ℒ = ⋃𝑛>0 ℒ𝑛,
which is a countable union of countable sets and is thus countable.

Remark. The set of languages produced by grammars is countable, but the set of all lan-
guages 𝒫(𝕎) is uncountable.

2.5. The Chomsky hierarchy
Production rules may have certain properties.

Definition. Let 𝛼 → 𝛽 be a production rule. We call this rule:

(i) noncontracting, if |𝛼| ≤ |𝛽|;

(ii) context-sensitive, if ∃𝐴 ∈ 𝑉, ∃𝛾, 𝛿 ∈ Ω⋆, ∃𝜂 ∈ Ω+, 𝛼 = 𝛾𝐴𝛿, 𝛽 = 𝛾𝜂𝛿;

(iii) context-free, if 𝛼 = 𝐴 ∈ 𝑉 and |𝛽| > 0;

(iv) regular, if 𝛼 = 𝐴 ∈ 𝑉 and 𝛽 is either 𝑎 ∈ Σ or 𝑎𝐵 ∈ Σ𝑉 .

Regular implies context-free, context-free implies context-sensitive, context-sensitive implies
noncontracting. Letℚ be any of the above four properties. We say that a grammar isℚ if all
its production rules are ℚ. A language is ℚ if it admits a grammar which is ℚ.

Theorem (Chomsky). A language is noncontracting if and only if it is context-sensitive.

Chomsky used the following notation: a language ℒ is

• type 0, if it is of the form ℒ(𝐺) for some 𝐺;

• type 1, if it is of the form ℒ(𝐺) for some 𝐺 context-sensitive;

• type 2, if it is of the form ℒ(𝐺) for some 𝐺 context-free;

• type 3, if it is of the form ℒ(𝐺) for some 𝐺 regular.
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We can easily find production rules that are context-sensitive but not context-free, for ex-
ample. However, it is less obvious to show that there is a language that can be defined using
a context-sensitive grammar but no context-free grammar. One thing motivating our work
will be the development of techniques to distinguish the different classes of languages in the
Chomsky hierarchy.

2.6. Decision problems
We present three important decision problems.

(i) Consider the word problem. The input to this problem is a grammar and a word; the
question is to determine whether the word lies in the language generated by the gram-
mar.

(ii) The emptiness problem considers a grammar 𝐺. The question is whether ℒ(𝐺) = ∅.
(iii) The equivalence problem asks whether two grammars 𝐺,𝐺′ are equivalent.

Definition. We call a problem solvable if there is an algorithm that gives the correct answer.
Otherwise, we call such a problem unsolvable.

Posed for all grammars, all three problems above are unsolvable. However, when restricted
to certain classes of the Chomsky hierarchy, the problems are more approachable.

Lemma. If 𝐺 is a noncontracting grammar and 𝑤 ∈ 𝕎, there exists a bound 𝑁 ∈ ℕ de-
pending only on |𝑤| and |Ω| such that𝑤 ∈ ℒ(𝐺) if and only if𝑤 has a𝐺-derivation of length
at most 𝑁.

Proof. Consider a 𝐺-derivation 𝑆 = 𝜎0,… , 𝜎𝑛 = 𝑤 of 𝑤, and consider the length of each ele-
ment of the sequence. As the grammar is noncontracting, the sequence 1 = |𝜎0|,… , |𝜎𝑛| =
|𝑤| is nondecreasing. Consider a part of the derivation 𝜎𝑖,… , 𝜎𝑖+𝑘 for which the length of
the |𝜎𝑖| does not change, so |𝜎𝑖| = |𝜎𝑖+𝑘|. If 𝜎𝑟 = 𝜎𝑠 for some 𝑟 ≠ 𝑠 ∈ {𝑖,… , 𝑖 + 𝑘}, we can
shrink the derivation to 𝜎𝑖,… , 𝜎𝑟, 𝜎𝑠+1,… , 𝜎𝑖+𝑘.
Therefore, without loss of generality, we can assume 𝜎0,… , 𝜎𝑛 is a derivation of minimal
length, so all 𝜎𝑖 are distinct. Then by the pigeonhole principle,

𝑛 ≤
|𝑤|
∑
ℓ=1

|Ω|ℓ = 𝑁

Corollary. The word problem is solvable on noncontracting, context-sensitive, context-free,
and regular grammars.

Proof. Let 𝑤 ∈ 𝕎. There is a finite, enumerable collection of possible derivations for 𝑤 by
the above lemma. Check each derivation manually.
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2.7. Closure problems
Closure problems are concerned with operations on languages to produce new languages.
Let 𝐿,𝑀 be languages. Commonly used operations include 𝐿𝑀, 𝐿∪𝑀, 𝐿∩𝑀, 𝐿∖𝑀,𝕎+ ∖𝐿.
Note that we use𝕎+ ∖𝐿 instead of 𝐿𝑐 because noncontracting languages cannot contain the
empty word. If 𝒞 is a class of languages, such as the class of all regular languages, we say
that 𝒞 is closed under an operation if applying that operation to elements of 𝒞 yields a result
which also lies in 𝒞. We would like to see which classes are closed under which operations.
Note that some closure properties imply others; for instance, closure under complement and
intersection implies closure under union by De Morgan’s laws.

Definition. Let 𝐺 = (Σ, 𝑉, 𝑃, 𝑆), 𝐺′ = (Σ, 𝑉 ′, 𝑃′, 𝑆′) be grammars. Then 𝐻 = (Σ, 𝑉 ∪ 𝑉 ′ ∪
{𝑇}, 𝑃⋆, 𝑇) is called the concatenation grammar, where 𝑇 is a new variable, and

𝑃⋆ = 𝑃 ∪ 𝑃′ ∪ {𝑇 → 𝑆𝑆′}

𝐻′ = (Σ, 𝑉 ∪ 𝑉 ′ ∪ {𝑇}, 𝑃⋆⋆, 𝑇) is called the union grammar, where 𝑇 is a new variable, and

𝑃⋆⋆ = 𝑃 ∪ 𝑃′ ∪ {𝑇 → 𝑆, 𝑇 → 𝑆′}

Remark. ℒ(𝐺)ℒ(𝐺′) ⊆ ℒ(𝐻) by construction, and ℒ(𝐺) ∪ ℒ(𝐺′) ⊆ ℒ(𝐻′), but it is not
true a priori that the converse holds, because 𝑃 and 𝑃′ could share some variables. We can
assume that𝑉, 𝑉 ′ are disjoint by relabelling, but that is insufficient for the converses to hold,
because theremay be interaction on the level of letters in Σ, which cannot be relabelled. The
concatenation grammar on context-free grammars is context-free, and the union grammar
on regular languages is regular.

Definition. A production rule 𝛼 → 𝛽 is variable-based if all symbols occurring in 𝛼 are
variables. A grammar is called variable-based if all its rules are variable-based.

Remark. Regular and context-free languages are variable-based. Context-sensitive languages
are not all variable-based.

Lemma. Every grammar is equivalent to a variable-based grammar.

Proof. Let 𝐺 = (Σ, 𝑉, 𝑃, 𝑆). For each letter 𝑎 ∈ Σ, we allocate a new variable 𝑋𝑎. We define
the map 𝑋 ∶ Ω → Ω by 𝑋(𝑎) = 𝑋𝑎 for 𝑎 ∈ Σ, and 𝑋(𝐴) = 𝐴 for 𝐴 ∈ 𝑉 . Then 𝑋 extends
in the natural way to a map 𝑋 ∶ Ω⋆ → Ω⋆. We can map each production rule in 𝐺 to a
version that uses only variables and no letters by applying 𝑋 to both sides. Hence, we define
𝑃′ = {𝑋(𝛼) → 𝑋(𝛽) ∣ 𝛼 → 𝛽 ∈ 𝑃}. Then, defining 𝑃″ = {𝑋𝑎 → 𝑎 ∣ 𝑎 ∈ Σ}, let 𝐺′ = (Σ, 𝑉 ∪
{𝑋𝑎 ∣ 𝑎 ∈ Σ}, 𝑃′ ∪ 𝑃″, 𝑆). This grammar is variable-based and so it suffices to show that it
defines the same language as 𝐺.
Any𝐺-derivation of𝑤 is transformed into a𝐺′-derivation of𝑋(𝑤) by the operation𝛼 → 𝑋(𝛼).
Similarly, if we have a 𝐺′-derivation that contains no letters anywhere, all strings occurring
are of the form 𝑋(𝛼) for some 𝛼 ∈ Ω⋆, and the operation of replacing all occurrences of
𝑋𝑎 with 𝑎 transforms that derivation into a 𝐺-derivation. Thus, 𝑤 ∈ ℒ(𝐺) if and only if
𝑋(𝑤) ∈ 𝒟(𝐺′, 𝑆).
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2. Rewrite systems

If 𝑋(𝑤) ∈ 𝒟(𝐺′, 𝑆) then, by applying rules of the form 𝑋𝑎 → 𝑎 as needed, we have 𝑤 ∈
ℒ(𝐺′).
Conversely, suppose𝑤 ∈ ℒ(𝐺′) and let 𝑆 = 𝜎0,… , 𝜎𝑚 = 𝑤 be a𝐺′-derivation of𝑤. Applying
the operation 𝑋 to this derivation, we obtain a sequence 𝑆 = 𝜏0,… , 𝜏𝑚. This sequence is
not necessarily a 𝐺′-derivation. If 𝜎𝑖

𝐺′
−−→1 𝜎𝑖+1 was an application of a rule of the form

𝑋(𝛼) → 𝑋(𝛽), then the same rule gives 𝑋(𝜎𝑖)
𝐺′
−−→1 𝑋(𝜎𝑖+1). In the other case, 𝜎𝑖

𝐺′
−−→1 𝜎𝑖+1

was an application of a rule of the form 𝑋𝑎 → 𝑎, so applying 𝑋 gives 𝑋(𝜎𝑖) = 𝑋(𝜎𝑖+1).
Since for each letter 𝑎 there is only one production rule that produces 𝑎, we know that |𝑤|-
many steps of the derivation must be of this form. Thus, removing these steps will make
the remainder of the sequence 𝜏0,… , 𝜏𝑚 a 𝐺′-derivation of length 𝑚 − |𝑤| of 𝑋(𝑤). Then
𝑤 ∈ ℒ(𝐺) as required.

Remark. The classes of context-free, context-sensitive, and noncontracting grammars are
stable under the action of turning a grammar into its equivalent variable-based grammar;
all added rules are regular. Regularity is not necessarily preserved.

Theorem. Let 𝐺 = (Σ, 𝑉, 𝑃, 𝑆), 𝐺′ = (Σ, 𝑉 ′, 𝑃′, 𝑆′) be variable-based grammars with 𝑉 ∩
𝑉 ′ = ∅. Then ℒ(𝐻) = ℒ(𝐺)ℒ(𝐺′), and ℒ(𝐻′) = ℒ(𝐺) ∪ ℒ(𝐺′). The classes of regu-
lar, context-free, context-sensitive, and noncontracting languages are closed under union.
The classes of context-free, context-sensitive, and noncontracting languages are closed un-
der concatenation.

Proof. First, convert 𝐺,𝐺′ into variable-based grammars with disjoint variable sets. Then,
the concatenation grammar and union grammar for 𝐺,𝐺′ must produce the required lan-
guage by disjointness.

2.8. The empty word
Remark. By induction, we can easily show that noncontracting grammars cannot produce
the empty word, so we usually work with 𝕎+ in place of 𝕎. In general, adding the rule
𝑆 → 𝜀 to a grammar in order to allow the empty word may introduce side-effects due to
reuse of 𝑆.
Definition. A rule 𝛼 → 𝛽 is 𝑆-safe if it does not contain 𝑆 in 𝛽. A grammar is 𝜀-adequate if
all rules are 𝑆-safe.
An 𝜀-adequate grammar admits the addition of the rule 𝑆 → 𝜀 converting the languageℒ(𝐺)
intoℒ(𝐺)∪ {𝜀}. We can easily convert a grammar into an equivalent 𝜀-adequate grammar by
mapping𝐺 = (Σ, 𝑉, 𝑃, 𝑆) to𝐺′ = (Σ, 𝑉∪{𝑇}, 𝑃∪{𝑇 → 𝑆}, 𝑇)where𝑇 is a newvariable.

173



IV. Automata and Formal Languages

3. Regular languages
3.1. Regular derivations
Definition. A rule of the form 𝐴 → 𝑎 is called a terminal rule. A rule of the form 𝐴 → 𝑎𝐵
is called a nonterminal rule.

Lemma. Let 𝐺 be a regular grammar. If 𝑆 𝐺−→ 𝛼, then 𝛼 ∈ 𝕎 ∪𝕎𝑉 .

Proof. This is shownby induction on the length of the derivation. The length-zero derivation
gives 𝛼 = 𝑆 = 𝜀𝑆 ∈ 𝕎𝑉 . Suppose 𝑆 𝐺−→ 𝛽 𝐺−→1 𝛼where 𝛽 ∈ 𝕎∪𝕎𝑉 . If 𝛽 ∈ 𝕎, 𝛽 contains no
variables, but all rules rewrite a variable. This contradicts that 𝛽 𝐺−→1 𝛼. So suppose 𝛽 = 𝑤𝐴
for 𝑤 ∈ 𝕎, 𝐴 ∈ 𝑉 . Then the rule must be of the form 𝐴 → 𝑎 or 𝐴 → 𝑎𝐵. Hence 𝛽 = 𝑤𝑎 or
𝛽 = 𝑤𝑎𝐵. In either case, the required invariant holds.

Lemma. If 𝑆 𝐺−→ 𝑤 for 𝑤 ∈ 𝕎, then the derivation has length |𝑤| and consists of precisely
|𝑤| − 1 nonterminal rules and one final terminal rule.

Proof. Terminal rules preserve the length of a string, and decrement the amount of variables.
Nonterminal rules increment the length of a string, and preserve the amount of variables.
Given that 𝑆 is a string of length one with one variable, we must apply |𝑤| − 1 nonterminal
rules to increment the length of the string |𝑤|−1 times. By the previous lemma, the number
of variables in each derived string is always 0 or 1. If the number ever reaches zero, nothing
can be rewritten. Given𝑤 ∈ 𝕎, the number must reach zero, so a single terminal rule must
be applied at the end.

Note that the derivation is not uniquely determined.

Lemma. Regular languages are closed under concatenation.

Proof. Let 𝐺 = (Σ, 𝑉, 𝑃, 𝑆), 𝐺′ = (Σ, 𝑉 ′, 𝑃′, 𝑆′), where without loss of generality 𝑉 ∩ 𝑉 ′ = ∅.
Let 𝑃⋆ be the set of production rules given by 𝑃, but for each terminal rule 𝐴 → 𝑎 in 𝑃,
replace it with a nonterminal rule 𝐴 → 𝑎𝑆′. Then let 𝐻 = (Σ, 𝑉 ∪ 𝑉 ′, 𝑃⋆ ∪ 𝑃′, 𝑆). We claim
ℒ(𝐻) = ℒ(𝐺)ℒ(𝐺′).

Suppose 𝑆 𝐺−→ 𝑣 and 𝑆′ 𝐺′
−−→ 𝑤. Then 𝑆 𝐻−→ 𝑣𝑆′, and so 𝑆 𝐻−→ 𝑣𝑤 as required.

Conversely, suppose 𝑆 𝑢−→ for 𝑢 ∈ 𝕎. By the above lemma, the derivation is of the form

𝑆 = 𝜎0
𝐻−→1 …

𝐻−→1 𝜎𝑛 = 𝑢
where 𝜎𝑖 = 𝑤𝑖𝑋𝑖 for some 𝑤𝑖 ∈ 𝕎,𝑋𝑖 ∈ 𝑉 . An initial segment of the 𝑋𝑖 belongs to 𝑉 , until
rewritten as 𝑆′ by a rule added into 𝑃⋆. Then, the rest of the 𝑋𝑖 belong to 𝑉 ′, because only
the new rules in 𝑃⋆ map variables between 𝑉 and 𝑉 ′. Hence the derivation splits into two

halves, 𝑢 = 𝑣𝑤 where 𝑆 𝐺−→ 𝑣, 𝑆′ 𝐺′
−−→ 𝑤, giving the concatenation as required.
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3. Regular languages

3.2. Deterministic automata
Definition. Let Σ be an alphabet. Then a deterministic automaton is a tuple of the form
𝐷 = (Σ,𝑄, 𝛿, 𝑞0, 𝐹) where 𝑄 is a finite set of states, 𝑞0 ∈ 𝑄 is the start state, 𝐹 ⊆ 𝑄 ∖ {𝑞0} is
the accept states, and 𝛿∶ 𝑄 × Σ → 𝑄 is the transition function.

We graphically represent deterministic automata using labelled directed graphs. The nodes
are elements of𝑄, circled twice for accept states and circled once for other states. Each node
has |Σ|-many outgoing arrows labelled with the corresponding letter.

𝑞0start

𝑞1

𝑞2

0

1

0

1

0, 1

We intuitively interpret a deterministic automaton as a machine that starts at 𝑞0 and reads
a word 𝑤 ∈ 𝕎 symbol-by-symbol, transitioning to a new state according to 𝛿 at each step.
After all symbols in the word are parsed, we check whether the machine lies in an accept
state or not. We say the automaton accepts 𝑤 if the final state is an accept state; otherwise,
it rejects 𝑤.
Definition. Wedefine by recursion a function ̂𝛿 ∶ 𝑄×𝕎 → 𝑄 by ̂𝛿(𝑞, 𝜀) = 𝑞 and ̂𝛿(𝑞, 𝑎𝑤) =
̂𝛿(𝛿(𝑞, 𝑎), 𝑤). The language accepted by 𝐷 is

ℒ(𝐷) = {𝑤 ∣ ̂𝛿(𝑞0, 𝑤) ∈ 𝐹}

The sequence of states produced from 𝑞0 and reading𝑤 is uniquely determined and of length
|𝑤| + 1, known as the state sequence of the computation.
We claim that in the example above, ℒ(𝐷) = {𝑤 ∣ 𝑤 contains at least one 0}. Note that
̂𝛿(𝑞0, 𝑤) = 𝑞0 if and only if 𝑤 = 𝜀. There are three transitions in the diagram for the letter 0,

but all such 0-transitions lead to 𝑞1 hence every string with a zero goes to 𝑞1. All transitions
from 𝑞1 go back to 𝑞1, so any string containing a zero must end at 𝑞1. All other strings are of
the form 1111…1, which end at 𝑞2.
Definition. Let𝐷 = (Σ,𝑄, 𝛿, 𝑞0, 𝐹), 𝐷′ = (Σ,𝑄′, 𝛿′, 𝑞′0, 𝐹′) be deterministic automata. Then
a map 𝑓∶ 𝑄 → 𝑄′ is called a homomorphism from 𝐷 to 𝐷′ if

(i) for all 𝑞 ∈ 𝑄 and 𝑎 ∈ Σ, we have 𝛿′(𝑓(𝑞), 𝑎) = 𝑓(𝛿(𝑞, 𝑎));
(ii) 𝑓(𝑞0) = 𝑞′0;
(iii) 𝑞 ∈ 𝐹 if and only if 𝑓(𝑞) ∈ 𝐹′.
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In particular, if 𝑓 is bijective, it has an inverse and is called an isomorphism. We can show
by induction that ̂𝛿′(𝑓(𝑞), 𝑤) = 𝑓( ̂𝛿(𝑞, 𝑤)). Note that if a homomorphism 𝑓 is not surjective,
the states not in its range are not accessible from 𝑞′0. If 𝑓 is not injective, so 𝑓(𝑝) = 𝑓(𝑞) for
𝑝 ≠ 𝑞, then we have 𝑓( ̂𝛿(𝑝, 𝑤)) = ̂𝛿′(𝑓(𝑝), 𝑤) = ̂𝛿′(𝑓(𝑞), 𝑤) = 𝑓( ̂𝛿(𝑞, 𝑤)); we will say that
such states 𝑝, 𝑞 are indistinguishable. We will observe that failure to be bijective only affects
inaccessible states or pairs of indistinguishable states.

Proposition. Let 𝑓 be a homomorphism (not a priori an isomorphism) from 𝐷 to 𝐷′. Then
ℒ(𝐷) = ℒ(𝐷′).

Proof. Let 𝑤 ∈ ℒ(𝐷), so ̂𝛿(𝑞0, 𝑤) ∈ 𝐹. Applying 𝑓, 𝑓( ̂𝛿(𝑞0, 𝑤)) = ̂𝛿′(𝑓(𝑞0), 𝑤) = ̂𝛿′(𝑞′0, 𝑤) ∈
𝐹′ as required. All implications are bi-implications, so the converse holds.

Theorem. Any language of the form ℒ(𝐷) for a deterministic automaton 𝐷 is regular.

Proof. Let 𝐷 = (Σ,𝑄, 𝛿, 𝑞0, 𝐹), and define a grammar 𝐺 = (Σ, 𝑉, 𝑃, 𝑆) by 𝑉 = 𝑄, 𝑆 = 𝑞0, and

𝑃 = {𝑝 → 𝑎𝑞 ∣ 𝛿(𝑝, 𝑎) = 𝑞} ∪ {𝑝 → 𝑎 ∣ 𝛿(𝑝, 𝑎) ∈ 𝐹}

We will show ℒ(𝐷) = ℒ(𝐺). Suppose 𝑤 = 𝑎0…𝑎𝑛 ∈ ℒ(𝐷). Then ̂𝛿(𝑞0, 𝑤) ∈ 𝐹, so there
exist 𝑞0,… , 𝑞𝑛+1 such that 𝑞𝑖+1 = 𝛿(𝑞𝑖, 𝑎𝑖), and 𝑞𝑛+1 ∈ 𝐹. By definition of 𝐺, this holds if
and only if there exist 𝑞0,… , 𝑞𝑛+1 such that 𝑞𝑖 → 𝑎𝑖𝑞𝑖+1 ∈ 𝑃 and 𝑞𝑛 → 𝑎𝑛 ∈ 𝑃. This holds
if and only if there exists 𝑞0,… , 𝑞𝑛+1 such that 𝑞0

𝐺−→1 𝑎0𝑞1
𝐺−→1 …

𝐺−→1 𝑎0…𝑎𝑛−1𝑞𝑛
𝐺−→1 𝑤,

so there exists a derivation 𝑤 ∈ ℒ(𝐺). By regularity of 𝐺, all derivations are of this form, so
we have bi-implications, and ℒ(𝐷) = ℒ(𝐺).

We will show that if 𝐿 is a regular language, we can find a deterministic automaton 𝐷 such
that 𝐿 = ℒ(𝐷). However, regular grammars can have multiple rules that may be used when
reaching a single symbol, for instance 𝑝 → 𝑎𝑞 and 𝑝 → 𝑎𝑞′, so we cannot perform an
obvious translation from this grammar into a deterministic automaton. To encapsulate this
notion, we introduce nondeterministic automata.

3.3. Nondeterministic automata

Definition. A nondeterministic automaton is a tuple of the form 𝑁 = (Σ,𝑄, 𝛿, 𝑞0, 𝐹) where
𝑄 is a finite set of states, 𝑞0 ∈ 𝑄, 𝐹 ⊆ 𝑄 ∖ {𝑞0}, but in contrast with deterministic automata,
we have 𝛿∶ 𝑄 × Σ → 𝒫(𝑄).

We interpret 𝛿(𝑞, 𝑎) as the set of possible states that the machine can transition into when
reading𝑎 from state 𝑞. The graphical representation of such an automaton is the same.
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𝑞0start 𝑞1

𝑞2

𝑎

𝑎

𝑎

𝑎

𝑏

Here, we define ̂𝛿 ∶ 𝑄 ×𝕎 → 𝒫(𝑄), by the equations

̂𝛿(𝑞, 𝜀) = {𝑞}; ̂𝛿(𝑞, 𝑤𝑎) = ⋃
𝑝∈ ̂𝛿(𝑞,𝑤)

𝛿(𝑝, 𝑎)

This produces a unique state set sequence, not a deterministic state sequence. Wedefine

ℒ(𝑁) = {𝑤 ∣ ̂𝛿(𝑞0, 𝑤) ∩ 𝐹 ≠ ∅}

Remark. Deterministic automata can be seen as a special case of nondeterministic automata.

Theorem. Let 𝑁 be a nondeterministic automaton. Then there exists a deterministic auto-
maton 𝐷 such that ℒ(𝑁) = ℒ(𝐷).

Our proof will involve a subset construction.

Proof. Let 𝑁 = (Σ,𝑄, 𝛿, 𝑞0, 𝐹). We define 𝐷 = (Σ, 𝒫(𝑄), Δ, {𝑞0}, 𝐺), where

Δ(𝑋, 𝑎) = ⋃
𝑞∈𝑋

𝛿(𝑞, 𝑎); 𝐺 = {𝑋 ∈ 𝒫(𝑄) ∣ 𝑋 ∩ 𝐹 ≠ ∅}

We show that these two automata produce the same language. Consider the state sequence
of 𝐷 on input 𝑤.

𝑋0 = {𝑞0}; 𝑋𝑖+1 = ⋃
𝑞∈𝑋𝑖

𝛿(𝑞, 𝑎𝑖)

The state set sequence of 𝑁 on input 𝑤 is

𝑌0 = {𝑞0}; 𝑌 𝑖+1 = ⋃
𝑞∈𝑌𝑖

𝛿(𝑞, 𝑎𝑖)

Clearly, these exactly match, so 𝑋𝑖 = 𝑌 𝑖. So 𝑤 is accepted by 𝐷 if and only if it is accepted
by 𝑁.

Remark. Although this construction always works, we have transformed an automaton on
𝑛 states into one on 2𝑛 states.

Theorem. Let 𝐺 be a regular grammar. Then there exists a nondeterministic automaton 𝑁
such that ℒ(𝐺) = ℒ(𝑁).
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Proof. Let 𝐺 = (Σ, 𝑉, 𝑃, 𝑆). Let 𝐻 ∉ Σ ∪ 𝑉 be a new symbol, known as the halt state. Let
𝑄 = 𝑉 ∪ {𝐻}. Define 𝑁 = (Σ,𝑄, 𝛿, 𝑆, {𝐻}) where

𝛿(𝐴, 𝑎) = {{𝐵 ∣ 𝐴 → 𝑎𝐵 ∈ 𝑃} if 𝐴 → 𝑎 ∉ 𝑃
{𝐵 ∣ 𝐴 → 𝑎𝐵 ∈ 𝑃} ∪ {𝐻} if 𝐴 → 𝑎 ∈ 𝑃

We claim that ℒ(𝐺) = ℒ(𝑁). If𝑤 ∈ 𝐿(𝐺), we have a sequence 𝐴0,… , 𝐴𝑛+1 of variables such
that

𝑆 = 𝐴0
𝐺−→1 …

𝐺−→1 𝑎0…𝑎𝑛+1𝐴𝑛+1
𝐺−→1 𝑤

In particular, 𝐴𝑖 → 𝑎𝑖𝐴𝑖+1 ∈ 𝑃 and 𝐴𝑛+1 → 𝑎𝑛 ∈ 𝑃. By definition of 𝛿, there exists a
sequence 𝐴1,… , 𝐴𝑛+1 such that 𝐴𝑖+1 ∈ 𝛿(𝐴𝑖, 𝑎𝑖) and 𝐻 ∈ 𝛿(𝐴𝑛, 𝑎𝑛). Hence 𝐻 ∈ ̂𝛿(𝑆, 𝑤), so
𝑤 ∈ ℒ(𝑁). All implications are bi-implications so the converse holds.

3.4. The pumping lemma for regular languages

Definition. A language 𝐿 satisfies the regular pumping lemma with pumping number 𝑛 if
every word 𝑤 ∈ 𝐿 with length at least 𝑛 can be split into three parts 𝑤 = 𝑥𝑦𝑧, such that
|𝑦| > 0, |𝑥𝑦| ≤ 𝑛 and for all 𝑘 ∈ ℕ, we have 𝑥𝑦𝑘𝑧 ∈ 𝐿. We call 𝑦 a pump for the word 𝑥𝑦𝑧.

Theorem (regular pumping lemma). Every regular language satisfies the pumping lemma.

Remark. If any word can be pumped, the language must be infinite.

Proof. Let 𝐿 be a regular language. Then there exists a deterministic automaton𝐷 such that
𝐿 = ℒ(𝐷). We show that 𝐿 has pumping number 𝑛 = |𝑄|. Let 𝑤 ∈ 𝐿(𝐷) be a word with
|𝑤| ≥ 𝑛. We can write 𝑤 = 𝑎0𝑎1…𝑎𝑛−1𝑣 where 𝑣 ∈ 𝕎.

The state sequence of𝐷 reading 𝑎0,… , 𝑎𝑛−1 is 𝑞0,… , 𝑞𝑛; it has length 𝑛+1 since there are 𝑛
state transitions. But there are only 𝑛 states, so by the pigeonhole principle, one state must
repeat. Let 𝑖 < 𝑗 ≤ 𝑛 such that 𝑞𝑖 = 𝑞𝑗 . Let 𝑥 = 𝑎0…𝑎𝑖−1, 𝑦 = 𝑎𝑖…𝑎𝑗−1, 𝑧 = 𝑎𝑗…𝑎𝑛−1𝑣, so
we have 𝑥𝑦𝑧 = 𝑤, |𝑦| > 0, |𝑥𝑦| ≤ 𝑛 by construction.

We show that we can pump the word. After reading 𝑥, we have ̂𝛿(𝑞0, 𝑥) = 𝑞𝑖, and ̂𝛿(𝑞𝑖, 𝑦) =
𝑞𝑗 = 𝑞𝑖, and finally ̂𝛿(𝑞𝑖, 𝑧) = ̂𝛿(𝑞𝑗 , 𝑧) ∈ 𝐹. Hence, ̂𝛿(𝑞0, 𝑥𝑦𝑘) = 𝑞𝑖 by induction on 𝑘. In
particular, ̂𝛿(𝑞0, 𝑥𝑦𝑘𝑧) ∈ 𝐹 as required.

Example. Let 𝐿 = {0𝑘1𝑘, 𝑘 > 0}. We claim this is not a regular language. Suppose 𝐿 is
regular, and has pumping number 𝑁. Consider the word 0𝑁1𝑁 ∈ 𝐿; this word has more
than 𝑁 letters, so the word can be pumped. The pump must lie in the first 𝑁 letters, all of
which are zeroes. Pumping down, 0𝑁−ℓ1𝑁 ∈ 𝐿 where ℓ is the length of the pump. This is
a contradiction since the length of the pump is nonzero. Note that this language is context-
free, so we know that the inclusion of regular languages in context-free languages is proper.
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Example. Let 𝑛 > 0, and let 𝐿 = {0𝑛𝑤,𝑤 ∈ 𝕎}. We show this is regular, but any determin-
istic automaton 𝐷 such that 𝐿 = ℒ(𝐷) has more than 𝑛 states. For regularity, we can simply
write down a grammar.

𝑃 = {𝑆 → 0𝑋0, 𝑋0 → 0𝑋1,… , 𝑋𝑛−2 → 0𝑋𝑛−1, 𝑋𝑛−2 → 0,
𝑋𝑛−1 → 0,𝑋𝑛−1 → 1,𝑋𝑛−1 → 0𝑋𝑛−1, 𝑋𝑛−1 → 1𝑋𝑛−1}

This has exactly 𝑛+ 1 states. Suppose that an automaton with at most 𝑛 states has the same
language. Then 𝐿 satisfies the pumping lemma with pumping number 𝑛. In particular, we
can pump down the word 0𝑛, obtaining a word with fewer zeroes, and this is not in the
language.

Example. Some non-regular languages also satisfy the pumping lemma. Let Σ = {0, 1}. If
a word 𝑤 ∈ 𝕎 contains at least one zero, we say the tail of the word is the number of ones
that follow the last zero. Let 𝑋 ⊆ ℕ be an arbitrary set of naturals, and define 𝐿𝑋 to be the set
of words that contain no zeroes, or have a tail which lies in 𝑋 . If 𝑋 ≠ 𝑌 , we have 𝐿𝑋 ≠ 𝐿𝑌 ,
so 𝐿 is an injection from 𝒫(ℕ) to the space of languages on Σ. Since there are uncountably
many 𝑋 ⊆ ℕ, but there are only countably many regular languages, there must be some
non-regular languages of the form 𝐿𝑋 .
We claim that all 𝐿𝑋 satisfy the pumping lemma, so then there must be some 𝐿𝑋 which are
non-regular which satisfy the pumping lemma. Let 𝑋 ⊆ ℕ; we claim this has pumping
number 2. Let 𝑤 ∈ 𝐿𝑥 such that |𝑤| ≥ 2.
Suppose 𝑤 starts with a zero, so 𝑤 = 0𝑧. Then let 𝑥 = 𝜀, 𝑦 = 0, so 𝑤 = 𝑥𝑦𝑧. Pumping up
does not change the tail; pumping down either does not change the tail or there are now no
zeroes, but in either case, the new word lies in the language.

Conversely, suppose 𝑤 starts with a one, so 𝑤 = 1𝑧. Let 𝑥 = 𝜀, 𝑦 = 1, so 𝑤 = 𝑥𝑦𝑧 as before.
If 𝑧 contains no zeroes, after pumping 𝑦, there are still no zeroes, so the new word is in the
language. If 𝑧 contains a zero, there is a tail, and pumping 𝑦 does not influence the tail.
Hence, the pumping lemma is satisfied.

3.5. Closure properties
We have already shown that regular languages are closed under concatenation and union.
We will now show that they are closed under complement, intersection, and difference. For
this, it suffices to show they are closed under complement, because intersection and differ-
ence can be expressed in terms of complement and union.

Consider an automaton 𝐷 = (Σ,𝑄, 𝛿, 𝑞0, 𝐹). Without loss of generality, we can ensure that
𝛿(𝑞𝑖, 𝑎) ≠ 𝑞0 for all 𝑖, 𝑎. Now define 𝐷′ = (Σ,𝑄, 𝛿, 𝑞0, ℚ ∖ (𝐹 ∪ {𝑞0})). Then, ℒ(𝐷′) =
𝕎+ ∖ ℒ(𝐷).
There is an alternative construction to obtain union and intersection, known as the product
automaton construction. Let 𝐷 = (Σ,𝑄, 𝛿, 𝑞0, 𝐹) and 𝐷′ = (Σ,𝑄′, 𝛿′, 𝑞′0, 𝐹′). We can define
the pointwise product 𝐷″ = (Σ,𝑄 × 𝑄′, 𝛿 × 𝛿′, (𝑞0, 𝑞′0), 𝐹″), where (𝛿 × 𝛿′)((𝑞, 𝑞′), 𝑎) =
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(𝛿(𝑞, 𝑎), 𝛿′(𝑞′, 𝑎)), and either𝐹″ = {(𝑞, 𝑞′) ∣ 𝑞 ∈ 𝐹, 𝑞′ ∈ 𝐹′} or𝐹″ = {(𝑞, 𝑞′) ∣ 𝑞 ∈ 𝐹 or 𝑞′ ∈ 𝐹′}.
We can see that the language generated by this new automaton is ℒ(𝐷) ∩ ℒ(𝐷′) or ℒ(𝐷) ∪
ℒ(𝐷′).

3.6. Emptiness problem
Lemma. Let 𝐿 be a nonempty regular language with pumping number 𝑛. Then there is a
word 𝑤 ∈ 𝐿 such that |𝑤| < 𝑛.

Proof. Let 𝑤 be a word in 𝐿. If |𝑤| < 𝑛, we are already done. Otherwise, it can be pumped
down into a smaller word. By induction, we can obtain a word of length less than 𝑛.

Corollary. The emptiness problem for regular grammars is solvable.

Proof. Given a regular grammar, we can obtain its pumping number. We can check every
word below this length because the word problem is solvable; if no words are accepted, the
language is empty.

3.7. Regular expressions
Definition. The Kleene star operation on a language 𝐿, written 𝐿⋆, is given by

𝐿⋆ = {𝑤 ∣ ∃ sequence of words in 𝐿,𝑤 = their concatenation}

In particular 𝜀 ∈ 𝐿⋆. The Kleene plus operation is 𝐿+ = 𝐿⋆ ∖ {𝜀}.
Definition. A regular expression on an alphabet Σ is defined inductively by:
(i) the symbol ∅ is a regular expression;

(ii) 𝜀 is a regular expression;
(iii) for all 𝑎 in Σ, 𝑎 is a regular expression;
(iv) if 𝑅, 𝑆 are regular expressions, (𝑅 + 𝑆) is a regular expression;
(v) if 𝑅, 𝑆 are regular expressions, (𝑅𝑆) is a regular expression;
(vi) if 𝑅 is a regular expression, 𝑅⋆ is a regular expression;

(vii) if 𝑅 is a regular expression, 𝑅+ is a regular expression.
By definition, nothing else is a regular expression. By recursion, we can assign a language
ℒ(𝐸) to each regular expression 𝐸.
(i) ℒ(∅) = ∅;
(ii) ℒ(𝜀) = {𝜀};
(iii) for 𝑎 ∈ Σ, ℒ(𝑎) = {𝑎};
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(iv) if 𝑅, 𝑆 are regular expressions, ℒ(𝑅 + 𝑆) = ℒ(𝑅) ∪ ℒ(𝑆);

(v) if 𝑅, 𝑆 are regular expressions, ℒ(𝑅𝑆) = ℒ(𝑅)ℒ(𝑆);

(vi) if 𝑅 is a regular expression, ℒ(𝑅⋆) = ℒ(𝑅)⋆;

(vii) if 𝑅 is a regular expression, ℒ(𝑅+) = ℒ(𝑅)+.

Note that rules (iv) and (v) introduce parentheses, occasionally unnecessarily. When the
meaning is unambiguous, these parentheses are omitted. The binding power of concatena-
tion 𝑅𝑆 is higher than union 𝑅 + 𝑆, so we can write 𝑅𝑆 + 𝑇 for ((𝑅𝑆) + 𝑇).

We say that a language is essentially regular if there is a regular language 𝐿′ such that 𝐿 = 𝐿′
or 𝐿 = 𝐿′ ∪ {𝜀}.

Theorem. If 𝐸 is a regular expression, ℒ(𝐸) is essentially regular.

This is an equivalence, but the converse (often called Kleene’s algorithm) is not required for
this course.

Proof. Observe that (i), (ii), (iii) are essentially regular languages, so it suffices to show that
essentially regular languages are closed under (iv), (v), (vi), (vii). We have already shown
that regular languages are closed under union and concatenation, and the proof for essen-
tially regular languages follows easily. Note that ℒ(𝐸⋆) = ℒ(𝐸 + 𝐸+), so it suffices to show
closure of regular languages under the Kleene plus; we can then perform case analysis to
prove the same for essentially regular languages.

Let 𝐺 = (Σ, 𝑉, 𝑃, 𝑆) be a regular grammar. Let 𝑃+ = 𝑃 ∪ {𝐴 → 𝑎𝑆 ∣ 𝐴 → 𝑎 ∈ 𝑃}. It suffices
to show that 𝐺+ = (Σ, 𝑉, 𝑃+, 𝑆) has the language ℒ(𝐺+) = ℒ(𝐺)+.

Suppose𝑤 ∈ ℒ(𝐺)+, so𝑤 = 𝑤0…𝑤𝑛 for𝑤𝑖 ∈ ℒ(𝐺). If 𝑛 = 0,𝑤 ∈ ℒ(𝐺) and any derivation
can be translated easily into 𝐺+. Otherwise, suppose 𝑤0…𝑤𝑛−1 ∈ ℒ(𝐺+) by induction.
Therefore there is a derivation 𝑆 𝐺+

−−→ 𝑤0…𝑤𝑛−1. This derivation ends with a terminal rule

𝐴 → 𝑎, so we can replace it with a nonterminal rule 𝐴 → 𝑎𝑆, giving 𝑆 𝐺+
−−→ 𝑤0…𝑤𝑛−1𝑆

𝐺−→
𝑤0…𝑤𝑛−1𝑤𝑛, so 𝑤 ∈ ℒ(𝐺) as required.

Now suppose 𝑤 ∈ ℒ(𝐺+). Without loss of generality we can assume that 𝐺 is 𝜀-adequate,
so 𝑆 does not occur on the right-hand side of a rule. Suppose we have a derivation 𝑆 𝐺+

−−→ 𝑤.
Let 𝑛 be the number of times that 𝑆 occurs in the derivation. We then prove 𝑤 ∈ ℒ(𝐺)+ by
induction on 𝑛. 𝑛 cannot be zero. Suppose all words 𝑣 ∈ ℒ(𝐺+) lie in ℒ(𝐺)+ if they have a
derivation with 𝑛 − 1 occurrences of 𝑆. Since 𝑛 ≥ 1, we have 𝑆 𝐺+

−−→ 𝑣𝑆 𝐺+
−−→ 𝑤 where 𝑣𝑆 is

the last occurrence of 𝑆 in the derivation of𝑤. In particular, 𝑆 𝐺+
−−→ 𝑣 with 𝑛−1 occurrences,

since the last rule of 𝑆 𝐺+
−−→ 𝑣𝑆 is one of the added rules in 𝑃+. By induction, 𝑣 ∈ ℒ(𝐺)+.

Since 𝑣𝑆 𝐺+
−−→ 𝑤, we know that 𝑤 = 𝑣𝑤′ by considering the possible derivations in regular
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languages. Hence 𝑆 𝐺+
−−→ 𝑤′ with only one occurrence of 𝑆 at the start. In particular none of

our new rules were used, so 𝑆 𝐺−→ 𝑤′, so 𝑤′ ∈ ℒ(𝐺)+, hence 𝑤 ∈ ℒ(𝐺)+.

3.8. Minimisation of deterministic automata
Definition. A state 𝑞 is called accessible if there is a word 𝑤 such that 𝑞 = ̂𝛿(𝑞0, 𝑤). A state
that is not accessible is called inaccessible.

Definition. States 𝑞 and 𝑞′ are distinguished by a word 𝑤 if ̂𝛿(𝑞, 𝑤) ∈ 𝐹 and ̂𝛿(𝑞′, 𝑤) ∉ 𝐹,
or vice versa. States that are distinguished by some word are called distinguishable. States
that are not distinguished by any word are called indistinguishable.

If 𝑓∶ 𝑄 → 𝑄′ is a homomorphism, then

(i) if 𝑝, 𝑞 are distinguishable, 𝑓(𝑝) ≠ 𝑓(𝑞);
(ii) if 𝑞′ ∈ 𝑄′ is accessible, 𝑞′ lies in the range of 𝑓.

In particular, if 𝑓 is a homomorphism from 𝐷 to 𝐷′ and all pairs of nonequal states in 𝐷 are
distinguishable, 𝑓 is injective; if all states in 𝐷′ are accessible, 𝑓 is surjective.
Definition. An automaton 𝐷 is called irreducible if all pairs of nonequal states are distin-
guishable and all states are accessible.

Hence, any homomorphism between irreducible automata is an isomorphism.

Defining 𝑞 ∼ 𝑞′ if 𝑞 and 𝑞′ are indistinguishable, ∼ is an equivalence relation. As usual,
we write [𝑞] for the equivalence class of states indistinguishable from 𝑞. We can therefore
define the quotient automaton by

𝐷⟋∼ = (Σ,𝑄⟋∼, [𝛿], [𝑞0], [𝐹]); [𝛿]([𝑞], 𝑎) = [𝛿(𝑞, 𝑎)]; [𝐹] = {[𝑞] ∣ 𝑞 ∈ 𝐹}

Note that if an equivalence class contains an accept state, the class is completely contained
in 𝐹, so being an accept state is a class property. The map [𝛿] is well-defined: indeed, if
𝑞 ∼ 𝑞′, we have 𝛿(𝑞, 𝑎) ∼ 𝛿(𝑞′, 𝑎), because if 𝛿(𝑞, 𝑎) ≁ 𝛿(𝑞′, 𝑎), there would exist a word 𝑤
that distinguishes these two states, but then 𝑎𝑤 would distinguish 𝑞 and 𝑞′.
If 𝑞 ≁ 𝑞′, we can show the two states are distinguished in the quotient automaton. By
induction, [ ̂𝛿]([𝑞], 𝑤) = [ ̂𝛿(𝑞, 𝑤)]. Suppose without loss of generality that ̂𝛿(𝑞, 𝑤) ∈ 𝐹,
̂𝛿(𝑞′, 𝑤) ∉ 𝐹. Then [ ̂𝛿]([𝑞], 𝑤) ∈ [𝐹], but [ ̂𝛿]([𝑞′], 𝑤) ∉ [𝐹]. So 𝑤 distinguishes [𝑞] and [𝑞′].

In particular, each pair of nonequal states is distinguishable.

Note further that ℒ(𝐷) = ℒ(𝐷⟋∼), because the quotient map 𝑞 ↦ [𝑞] is a homomorphism.
If 𝐷 had no inaccessible states, 𝐷⟋∼ also has no inaccessible states, since the quotient map
is surjective.

Theorem. For every deterministic automaton, there is an irreducible deterministic auto-
maton 𝐼 such that ℒ(𝐷) = ℒ(𝐼).
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Proof. Let 𝐴 ⊆ 𝑄 be the set of accessible states in 𝐷. Let 𝐷⋆ = (Σ, 𝐴, 𝛿|𝐴×Σ , 𝑞0, 𝐹 ∩ 𝐴). The
inclusion map from 𝐷⋆ to 𝐷 is a homomorphism, so their languages are the same. Now let
𝐼 = 𝐷⋆⟋∼. By the above discussion, 𝐼 is irreducible and has the same language as 𝐷⋆.

Remark. The number of states in 𝐼 is at most the number of states in 𝐷.

Theorem. If 𝐼, 𝐼′ are irreducible deterministic automata and ℒ(𝐼) = ℒ(𝐼′), then 𝐼 and 𝐼′ are
isomorphic.

Proof. It suffices to construct a homomorphism between the two automata, since any ho-
momorphism between irreducible automata is an isomorphism. Let 𝐼 = (Σ, 𝑄, 𝛿, 𝑞0, 𝐹) and
𝐼′ = (Σ,𝑄′, 𝛿′, 𝑞′0, 𝐹′), and without loss of generality let 𝑄 ∩ 𝑄′ = ∅. We can extend ∼ to
𝑄 ∪ 𝑄′, by defining 𝑞 ∼ 𝑞′ if for all 𝑤, ̂𝛿(𝑞, 𝑤) ∈ 𝐹 if and only if ̂𝛿′(𝑞′, 𝑤) ∈ 𝐹′. We know
𝑞0 ∼ 𝑞′0, because by assumption, the languages of the two automata are the same.

We show that for all 𝑞 ∈ 𝑄, there exists 𝑞′ ∈ 𝑄′ such that 𝑞 ∼ 𝑞′. Let sp(𝑞) be the length
of the shortest path from 𝑞0 to 𝑞. Since 𝐼 is irreducible, this is well-defined and finite for all
𝑞 ∈ 𝑄. We prove this claim by induction on sp(𝑞). The base case is sp(𝑞) = 0 so 𝑞 = 𝑞0, and
we have already shown 𝑞0 ∼ 𝑞′0 as required.

Now suppose sp(𝑞) = 𝑘 + 1. Then there exists 𝑝 ∈ 𝑄 and 𝑎 ∈ Σ such that 𝛿(𝑝, 𝑎) = 𝑞 and
sp(𝑝) = 𝑘. By the induction hypothesis, we can find 𝑝′ ∈ 𝑄′ such that 𝑝 ∼ 𝑝′. Then let
𝑞′ = 𝛿′(𝑝′, 𝑎), then 𝑞′ ∼ 𝛿(𝑝, 𝑎) = 𝑞. Hence each 𝑞 ∈ 𝑄 has a 𝑞′ ∈ 𝑄′ such that 𝑞 ∼ 𝑞′.

We now will show that if 𝑞′ ∼ 𝑞 ∼ 𝑝′, we have 𝑞′ = 𝑝′. By transitivity, 𝑞′ ∼ 𝑝′, but by
irreducibility of 𝐼′, 𝑞′ = 𝑝′.

Because of the above results, we can construct a function 𝑓∶ 𝑄 → 𝑄′ defined by 𝑞 ↦ 𝑞′
where 𝑞 ∼ 𝑞′. This is well-defined and unique. We now claim 𝑓 is a homomorphism. Since
𝑞0 ∼ 𝑞′0, we have 𝑓(𝑞0) = 𝑞′0. The requirement 𝑞 ∈ 𝐹 ⟺ 𝑓(𝑞) ∈ 𝐹′ follows by definition
of ∼. Now fix 𝑞 ∈ 𝑄 and 𝑞′ = 𝑓(𝑞), so 𝑞 ∼ 𝑞′. Then, 𝛿(𝑞, 𝑎) ∼ 𝛿′(𝑞′, 𝑎), so 𝑓(𝛿(𝑞, 𝑎)) ∼
𝛿′(𝑞′, 𝑎) = 𝛿′(𝑓(𝑞), 𝑎).

Remark. There is a unique (up to isomorphism) irreducible automaton that accepts a given
regular language, and its size is smaller than all other automata that accept the same lan-
guage.

3.9. Equivalence problem
We have already solved the word problem for noncontracting grammars and the emptiness
problem for regular grammars. To solve the equivalence problem, wewill constructminimal
automata for two given regular grammars, and check whether they are isomorphic; if so, the
languages are the same, and otherwise, the languages are different. Wemust check that this
idea can be formulated into an algorithmwhichmust complete in finitely many steps.

183



IV. Automata and Formal Languages

Proposition. Let 𝐷 be a deterministic automaton and 𝑞 ∈ 𝑄 a state. Then it is solvable
whether 𝑞 is accessible.

Proof. If there is a word 𝑤 such that ̂𝛿(𝑞0, 𝑤) = 𝑞, then the shortest such word has length
at most |𝑄|, which can be easily proven using the technique from the pumping lemma. We
can explicitly check each word of length at most |𝑄|.

Theorem (the table filling algorithm). Let 𝐷 be a deterministic automaton and 𝑞, 𝑞′ ∈ 𝑄
states. Then the proposition 𝑞 ∼ 𝑞′ is solvable.

Proof. Form amatrix 𝐴with entries indexed by𝑄×𝑄. The entry indexed by (𝑞, 𝑞′) contains
information about distinguishability of 𝑞, 𝑞′. In particular, 𝐴𝑞,𝑞′ contains either nothing or
a word 𝑤 distinguishing 𝑞 and 𝑞′. Since ∼ is an equivalence relation, it suffices to consider
the upper triangular part of the matrix, excluding the diagonal. To initialise the matrix, if
𝑞 ∈ 𝐹 and 𝑞′ ∉ 𝐹 we set 𝐴𝑞,𝑞′ = 𝜀, since the empty word distinguishes 𝑞, 𝑞′.

Then, for each 𝑞, 𝑞′ ∈ 𝑄 that do not have a filled entry 𝐴𝑞,𝑞′ already, and for each 𝑎 ∈ Σ, we
can check the entry indexed by (𝛿(𝑞, 𝑎), 𝛿(𝑞′, 𝑎)). If these two states are distinguished by a
word 𝑤, 𝑞 and 𝑞′ are distinguished by 𝑎𝑤. So we can set 𝐴𝑞,𝑞′ = 𝑎𝑤. This single step will
terminate in a finite amount of time, on the order of |𝑄|2|Σ|-many steps.

We then repeat this inductive step until no more assignments into the matrix can be made
in an single iteration. This will happen in finitely many steps.

We now must show that after this process completes, 𝐴𝑞,𝑞′ contains a word 𝑤 if and only if
𝑞 and 𝑞′ are distinguishable, and in this case, 𝑤 distinguishes 𝑞 and 𝑞′. If 𝐴𝑞,𝑞′ contains a
word 𝑤, it is clear that 𝑤 distinguishes 𝑞 and 𝑞′, since ̂𝛿(𝑞, 𝑤) ∈ 𝐹 and ̂𝛿(𝑞′, 𝑤) ∉ 𝐹 or vice
versa. Now suppose there exists a word 𝑤 that distinguishes some states 𝑞 and 𝑞′, but 𝑞, 𝑞′
are unmarked in 𝐴. Let 𝑞, 𝑞′ be a pair of states with a distinguishing word 𝑤 of minimal
length.

Either 𝑤 = 𝜀 or 𝑤 = 𝑎𝑣. If 𝑤 = 𝜀, 𝑞 ∈ 𝐹 and 𝑞′ ∉ 𝐹 or vice versa, so 𝐴𝑞,𝑞′ is marked.
Otherwise, 𝑤 = 𝑎𝑣. Since 𝑣 is shorter than the smallest word that distinguishes two states
that are not marked in𝐴, we must have that the entry (𝛿(𝑞, 𝑎), 𝛿(𝑞′, 𝑎)) is marked with some
word in 𝐴. So at some step in the algorithm, this entry was added into 𝐴. But then the
algorithm would mark 𝑞, 𝑞′ with a word in the next step.

Example. Consider the following automaton.
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3. Regular languages

𝑞0start 𝑞1

𝑞2𝑞3

a

b a

b

a, ba, b

In step zero, we find

𝑞0 𝑞1 𝑞2 𝑞3
𝑞0 𝜀 𝜀
𝑞1 𝜀 𝜀
𝑞2
𝑞3

In step one, checking 𝛿(𝑞0, 𝑎) and 𝛿(𝑞1, 𝑎), we arrive at
𝑞0 𝑞1 𝑞2 𝑞3

𝑞0 𝑎 𝜀 𝜀
𝑞1 𝜀 𝜀
𝑞2
𝑞3

The only remaining entry is (𝑞2, 𝑞3), and this is not filled in a single step. Hence 𝑞2 ∼ 𝑞3.
Corollary. The equivalence problem for regular grammars is solvable.

Hence, for regular grammars, all of our desirable closure properties are true, and all of our
motivating decision problems are solvable.
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IV. Automata and Formal Languages

4. Context-free languages
4.1. Trees
Recall that the language {0𝑘1𝑘 ∣ 𝑘 > 0} is context-free but not regular, so context-free lan-
guages are indeed a proper superset of regular languages. The structure of regular deriva-
tions was very simple; each intermediate stepwas of the form𝑤𝐴 for a word𝑤 and a variable
𝐴 ∈ 𝑉 . However, the structure of context-free derivations is more complicated: we use a
parse tree instead of a linear derivation.

Definition. A set 𝑇 ⊆ ℕ⋆ is called a (finitely-branching) tree if it is closed under initial
segments, and for every 𝑡 ∈ 𝑇, there is a branching number 𝑛 ∈ ℕ such that for all 𝑘, the
sequence 𝑡𝑘 lies in 𝑇 if and only if 𝑘 < 𝑛. A node 𝑡 ∈ 𝑇 with no sucessors is called a leaf.
The empty sequence, which is an element of every tree, is called the root. A node 𝑡 ∈ 𝑇 has
level 𝑘 if the length of the sequence is 𝑘, so |𝑡| = 𝑘. If 𝑇 is finite, there is a maximum level,
called the height of the tree. For a node 𝑡 ∈ 𝑇, the sequence 𝑡|0 , 𝑡|1 ,… , 𝑡||𝑡| = 𝑡 is called the
branch leading to 𝑡.

Example. This is an example of a tree.

𝜀

0 1 2

00 01 10 20 21 22

000 001 100 101 210 220 221

0010

Definition. Let 𝑇 be a tree and 𝑡 ∈ 𝑇. Then 𝑇𝑡 = {𝑠 ∣ 𝑡𝑠 ∈ 𝑇} is the subtree starting from 𝑡.

Definition. We define a partial order on 𝑇 by 𝑡 < 𝑠 if 𝑡 ≠ 𝑠 and if there exists 𝑘 such that
𝑡(𝑘) ≠ 𝑠(𝑘) and 𝑘0 is minimal with this property, then 𝑡(𝑘0) < 𝑠(𝑘0). This is called the
left-to-right order.

Remark. This order is only a partial order since it does not order two distinct nodes that lie
on the same branch, for example, 0 and 00. For each level 𝑘, the nodes of length 𝑘 are totally
ordered. The leaves are totally ordered.

4.2. Parse trees
Definition. Let 𝐺 be a context-free grammar. A pair 𝕋 = (𝑇, ℓ) is a 𝐺-parse tree if 𝑇 is a
finitely-branching tree and ℓ∶ 𝑇 → Ω is a labelling function such that:
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4. Context-free languages

(i) ℓ(𝜀) ∈ 𝑉 , we say 𝑇 starts with ℓ(𝜀);

(ii) if ℓ(𝑡) ∈ Σ, 𝑡 has no successors;

(iii) if 𝑡 has 𝑛 + 1 successors and ℓ(𝑡) = 𝐴 ∈ 𝑉 , then 𝐴 → ℓ(𝑡0)ℓ(𝑡1)…ℓ(𝑡𝑛) ∈ 𝑃.

If 𝕋 = (𝑇, ℓ) is a 𝐺-parse tree, and 𝑡0,… , 𝑡𝑚 are its leaves written in the left-to-right order,
then the string parsed by 𝕋 is 𝜎𝕋 = ℓ(𝑡0)…ℓ(𝑡𝑚).

Remark. If 𝑡 ∈ 𝑇, 𝜎𝕋 = 𝛼𝜎𝕋𝑡𝛽 where 𝕋𝑡 = (𝑇𝑡, ℓ𝑡), ℓ𝑡(𝑠) = ℓ(𝑡𝑠).

Proposition. Let 𝐺 be a context-free grammar. Then 𝑤 ∈ ℒ(𝐺) if and only if there is a
𝐺-parse tree 𝕋 starting from 𝑆 such that 𝜎𝕋 = 𝑤.

Proof. Observe that certain sequences of parse trees correspond to derivations. In partic-
ular, a sequence 𝕋0,… , 𝕋𝑛 of 𝐺-parse trees is derivative if 𝕋0 = ({𝜀}, ℓ0) with ℓ0(𝜀) = 𝑆,
and 𝑇𝑖+1 ⊇ 𝑇𝑖 is constructed by considering a leaf 𝑡 ∈ 𝑇𝑖 such that ℓ𝑖(𝑡) = 𝐴 ∈ 𝑉 and
𝐴 → 𝑥0…𝑥𝑛 ∈ 𝑃, and giving it 𝑛 + 1 successors with ℓ𝑖+1(𝑡𝑘) = 𝑥𝑘. There is a one-to-
one correspondence between 𝐺-derivations starting from 𝑆 and such derivative sequences
of parse trees. In particular, any derivation yields a derivative sequence of parse trees, and
hence the last parse tree in the sequence has 𝜎𝕋𝑛 = 𝑤.

Conversely, given a parse tree 𝕋, it suffices to construct such a derivative sequence of parse
trees, because then the correspondence yields a derivation as required. We start with the
trivial tree 𝕋0 = ({𝜀}, ℓ|{𝜀}). In each step, suppose 𝕋0,… , 𝕋𝑖 already form a derivative se-
quence, and 𝑇𝑖 ≠ 𝑇. Let 𝑡 ∈ 𝑇 ∖ 𝑇𝑖. Then there is a terminal node in 𝑇𝑖 on the branch
containing 𝑡 in 𝑇, which is not a terminal node in 𝑇. We can then create 𝑇𝑖+1 by adding the
𝑇-successors of 𝑡 to 𝑇𝑖. Since 𝑇 is finite, after finitely many steps we are done. In particular,
𝕋0,… , 𝕋𝑛 is a derivative sequence, and thus 𝑆

𝐺−→ 𝜎𝕋𝑛 = 𝜎𝕋 = 𝑤 as required.

Suppose 𝕋 is a parse tree and 𝑡 ∈ 𝑇 such that ℓ(𝑡) = 𝐴, and 𝕋′ is a parse tree starting from
𝐴. Then, we can remove the subtree 𝑇𝑡, and replace it with 𝑇 ′, which also yields a parse tree.
This technique is known as grafting.

Definition. We define graft(𝕋, 𝑡, 𝕋′) = (𝑆, ℓ⋆) where

𝑆 = {𝑠 ∈ 𝑇 ∣ 𝑡 ⊈ 𝑠} ∪ {𝑡𝑢 ∣ 𝑢 ∈ 𝑇 ′}

and

ℓ⋆(𝑠) = {ℓ(𝑠) 𝑡 ⊈ 𝑠
ℓ′(𝑢) ∃𝑢 ∈ 𝑇 ′, 𝑠 = 𝑡𝑢

Then we have
𝜎graft(𝕋,𝑡,𝕋′) = 𝛼𝜎𝕋′𝛽; 𝜎𝕋 = 𝛼𝜎𝕋𝑡𝛽
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4.3. Chomsky normal form
Definition. A grammar is inChomsky normal form if all of its rules are of the form𝐴 → 𝐵𝐶
or 𝐴 → 𝑎. Rules of the form 𝐴 → 𝐵𝐶 are called binary; rules of the form 𝐴 → 𝑎 are called
unary.

Every grammar in Chomsky normal form is context-free.

Lemma. Let 𝐺 be a grammar in Chomsky normal form, and 𝑤 ∈ ℒ(𝐺)with |𝑤| = 𝑛. Then
every 𝐺-derivation of 𝑤 has length 2𝑛 − 1.

Proof. Binary rules increment the length, and increment the variable count. Unary rules
preserve the length, and decrement the variable count. Since 𝑤 is comprised only of letters,
exactly 𝑛 − 1 binary rules and 𝑛 unary rules were used.

Wewill show that every context-free grammar is equivalent to aChomsky normal formgram-
mar, and there is an algorithm to produce such a grammar. There are three types of rules
that are obstructions to a context-free grammar being in Chomsky normal form:

(i) rules 𝐴 → 𝛼 where |𝛼| ≥ 2 and 𝛼 contains a letter;
(ii) rules of the form 𝐴 → 𝐵, called unit rules.
(iii) rules 𝐴 → 𝛼 where |𝛼| > 2 and 𝛼 contains only variables.
Suppose we have a rule of the form 𝐴 → 𝛼 where |𝛼| ≥ 2, and 𝛼 contains a letter. For each
letter 𝑎 ∈ Σ, we can add a variable 𝑋𝑎 and a rule 𝑋𝑎 ↦ 𝑎. Then we convert 𝛼 to 𝑋(𝛼), where
𝑋 is the map converting each 𝑎 into 𝑋𝑎. Then 𝛼 contains no letter. We can therefore suppose
without loss of generality that a given context-free grammar has no rules of this form.

Now consider a unit rule 𝐴 → 𝐵. A grammar is called unit closed if for all 𝐴 → 𝐵 ∈ 𝑃
and 𝐵 → 𝛼 ∈ 𝑃, we also have 𝐴 → 𝛼 ∈ 𝑃. We can easily convert each grammar into
an equivalent unit closed grammar by adding at most |𝑉| ⋅ |𝑃| new rules. If a context-free
grammar 𝐺 is unit closed, we will show that we can remove all unit rules to give a grammar
𝐺′ without changing the language. Clearly ℒ(𝐺′) ⊆ ℒ(𝐺). Suppose 𝑤 ∈ ℒ(𝐺), then 𝑤 has a
shortest 𝐺-derivation. Suppose this 𝐺-derivation of 𝑤 contains a unit rule, so

𝑆 𝐺−→ 𝛼𝐴𝛽 𝐺−→1 𝛼𝐵𝛽
𝐺−→ 𝑤

where this use of the unit rule is the last such usage. Since𝑤 contains no variables, we must
have applied a rule 𝐵 𝐺−→1 𝜁.

𝑆 𝐺−→ 𝛼𝐴𝛽 𝐺−→1 𝛼𝐵𝛽
𝐺−→ 𝛾𝐵𝛿 𝐺−→1 𝛾𝜁𝛿

𝐺−→ 𝑤

where the 𝐵 𝐺−→1 𝜁 is the first usage of a rule for 𝐵. Since 𝛼𝐵𝛽
𝛾−→ 𝐵𝛿 did not use any 𝐵-rule

by assumption, by unit closure we can replace this derivation with

𝑆 𝐺−→ 𝛼𝐴𝛽 𝐺−→ 𝛾𝐴𝛿 𝐺−→1 𝛾𝜁𝛿
𝐺−→ 𝑤
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4. Context-free languages

This is clearly shorter. So the shortest 𝐺-derivation contains no use of a unit rule, so is also
a 𝐺′-derivation.

Finally, let us consider a rule 𝐴 → 𝛼 where |𝛼| > 2 and 𝛼 contains only variables. Suppose
𝛼 = 𝐴1…𝐴𝑛. We define new variables 𝑋1,… , 𝑋𝑛−2, and add new rules 𝐴 → 𝐴1𝑋1, 𝑋1 →
𝐴2𝑋2,…𝑋𝑛−2 → 𝐴𝑛−1𝐴𝑛. Then, performing this for all such rules, we obtain a grammar
without any such rules. This grammar is in Chomsky normal form.

Theorem (Chomsky). Let 𝐺 be a context-free grammar. Then we can compute an equival-
ent context-free grammar 𝐺′ in Chomsky normal form.

Proof. Remove problems due to rules of the form 𝐴 → 𝛼 where 𝛼 contains a letter and has
length at least 2. Form the unit closure, then remove unit rules. Remove problems due to
rules of the form 𝐴 → 𝐴1𝐴2𝐴3…𝐴𝑛.

4.4. The pumping lemma for context-free languages
Definition. Let 𝐿 be a context-free language, and let 𝑛 ∈ ℕ. Suppose that for all 𝑤 ∈ 𝐿
such that |𝑤| ≥ 𝑛, there are 𝑥, 𝑦, 𝑧, 𝑢, 𝑣 such that 𝑤 = 𝑥𝑢𝑦𝑣𝑧, and |𝑢𝑦𝑣| ≤ 𝑛, |𝑢𝑣| > 0, and
for all 𝑘, 𝑥𝑢𝑘𝑦𝑣𝑘𝑧 ∈ 𝐿. Then 𝐿 satisfies the pumping lemma for context-free languages with
pumping number 𝑛. We call 𝑢, 𝑣 the pump.
Remark. The pump now has two parts, and one part may be the empty string. There is no
longer a constraint on the position of the pump in a word; 𝑥 and 𝑧 may be of any length.
The regular pumping lemma implies the context-free pumping lemma. Since there are un-
countably many languages satisfying the regular pumping lemma, there are also uncount-
ably many languages satisfying the context-free pumping lemma. In particular, the context-
free pumping lemma cannot characterise the countable class of all context-free languages.

Theorem. Every context-free language satisfies the context-free pumping lemma for some
pumping number 𝑛.

Proof. Let 𝐿 be a context-free language. Then 𝐿 has a Chomsky normal form grammar 𝐺 =
(Σ, 𝑉, 𝑃, 𝑆), so ℒ(𝐺) = 𝐿. Let𝑚 = |𝑉|, and 𝑛 = 2𝑚. We claim 𝑛 is a pumping number for 𝐺.
If 𝕋 is a 𝐺-parse tree where the height of 𝕋 is ℎ + 1 and 𝜎𝕋 is a word, then |𝜎𝕋| ≤ 2ℎ. Indeed,
the largest possible tree of height ℎ + 1 has 2ℎ+1 leaves. Since 𝜎𝕋 is a word, we must have
applied a unary rule for each letter. Every unary rule reduces the amount of leaves by one.
Thus, the tree must contain 2ℎ+1 − |𝜎𝕋| leaves. Hence |𝜎𝕋| ≤ 2ℎ.
Consider a word 𝑤 ∈ ℒ(𝐺) with |𝑤| ≥ 2𝑚 = 𝑛. Then, if 𝕋 is a 𝐺-parse tree of 𝑤, so 𝜎𝕋 = 𝑤,
we know by the previous claim that the height of 𝕋 is at least𝑚+ 1. Let 𝑡 ∈ 𝑇 such that the
length of the branch to 𝑡 is the height ℎ ≥ 𝑚 + 1 of the tree. Then, the path from 𝜀 to 𝑡 has
ℎ + 1 labels, so contains ℎ variables and one letter.
Let 𝑠 be an element of the branch of 𝑡 such that the height of the subtree 𝑇𝑠 is exactly𝑚+ 1.
Hence ||𝜎𝕋𝑠 || ≤ 2𝑚 = 𝑛. In particular, the path from 𝑠 to 𝑡 has𝑚+2 labels, so contains exactly
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IV. Automata and Formal Languages

𝑚 + 1 variables and one letter. By the pigeonhole principle, there are two nodes 𝑡0 ⊊ 𝑡1 on
the branch from 𝑠 to 𝑡 with the same label 𝐴 ∈ 𝑉 . Let

𝜎𝕋 = 𝑎𝜎𝕋𝑠𝑏; 𝜎𝕋𝑠 = 𝑥′𝜎𝕋𝑡0𝑧
′; 𝜎𝕋𝑡0 = 𝑢𝜎𝕋𝑡1𝑣; 𝜎𝕋𝑡1 = 𝑦

Then let 𝑥 = 𝑎𝑥′; 𝑧 = 𝑧′𝑏 in the definition of the pumping lemma. Since 𝑡0 ≠ 𝑡1, we have
|𝑢𝑣| > 0. Note that 𝑢𝑦𝑣 = 𝜎𝕋𝑡0 , which has length at most ||𝜎𝕋𝑠 ||, which has length at most
2𝑚 = 𝑛.

Pumping down is accomplished by grafting 𝑇𝑡1 into 𝑇𝑡0 ; conversely, pumping up is accom-
plished by iteratively grafting 𝑇𝑡0 into 𝑇𝑡1 . Define 𝕋(0) = 𝕋𝑡1 , and 𝕋(𝑖+1) = graft(𝕋𝑡0 , 𝑡1, 𝕋(𝑖)).
Then 𝕋𝑘 = graft(𝕋, 𝑡1, 𝕋(𝑘)), and 𝜎𝕋𝑘 = 𝑥𝑢𝑘𝑦𝑣𝑘𝑧, thus proving the pumping lemma.

Example. Consider the language 𝐿 = {𝑎𝑛𝑏𝑛𝑐𝑛 ∣ 𝑛 > 0} is not context-free. Suppose it is
context-free. Then it has a pumping number𝑁 ∈ ℕ. Consider the word 𝑎𝑁𝑏𝑁𝑐𝑁 ∈ 𝐿. Then
𝑎𝑁𝑏𝑁𝑐𝑁 = 𝑥𝑢𝑦𝑣𝑧where |𝑢𝑦𝑣| ≤ 𝑁, |𝑢𝑣| > 0. Since |𝑢𝑦𝑣| ≤ 𝑁, the string 𝑢𝑦𝑣 cannot consist
of all three letters 𝑎, 𝑏, 𝑐. In any case, pumping up the string will increase the quantity of one
letter, but not increase the quantity of some other letter. Then the new word does not lie in
𝐿.

4.5. Closure properties
Wehave seen that𝐿 = {𝑎𝑛𝑏𝑛𝑐𝑛 ∣ 𝑛 > 0} is not context-free. However, 𝐿0 = {𝑎𝑛𝑏𝑛𝑐𝑘 ∣ 𝑛, 𝑘 > 0}
and 𝐿1 = {𝑎𝑘𝑏𝑛𝑐𝑛 ∣ 𝑛, 𝑘 > 0} are context-free, as the concatenation of context-free languages.
But the intersection 𝐿0 ∩ 𝐿1 is exactly 𝐿, so context-free languages are not closed under in-
tersection. Therefore, they are also not closed under complement or difference, because
this, along with closure under union, would imply closure under intersection. Note that
any model of computation corresponding to context-free grammars cannot have a product
construction, because such a construction would imply closure of context-free languages
under intersection.

It can be shown that context-free languages correspond to pushdown automata, which are
similar to deterministic automata, except that they also have a stack, which is away of storing
a sequence of arbitrary symbols. The stack has a push operation allowing a symbol to be
pushed onto the top of the stack, and a pop operation that removes the topmost element
currently on the stack. In particular, the stack does not have random access, and any symbol
pushed can be popped at most once. Sequences that are pushed onto the stack are popped
off in reverse order.

The transition function 𝛿 has an additional input denoting the topmost element currently
on the stack, and an additional output describing an operation to perform on the stack, if
any.

Theorem. A language is context-free if and only if there is a pushdown automaton for the
language.

190
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4.6. Decision problems
The word problem is already solved for context-free languages. The emptiness problem can
be solved by the pumping lemma, similarly to the solution for regular languages. Indeed, if
𝑛 is a pumping number, no word with length at most 𝑛 can be the shortest word, since it can
be pumped down. So we can explicitly check each word of length less than 𝑛 to solve the
emptiness problem. Note that the choice of pumping lemma to use does not matter in this
argument.
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5. Register machines

5.1. Definition
A register machine uses an alphabet Σ, has finitely many states, and finitely many registers,
which are last-in first-out storage units containing a word 𝑤 ∈ 𝕎. The machine is able to
access the last letter of the word, remove it, or push a new letter. A configuration or snapshot
of length 𝑛 + 1 is a tuple of the form (𝑞, 𝑤0,… ,𝑤𝑛) ∈ 𝑄 × 𝕎𝑛+1. A configuration defines
the state of the computation at a particular point in time.

The transition function should now be of the form 𝛿∶ 𝑄 × 𝕎𝑛+1 → 𝑄 ×𝕎𝑛+1. However,
not every such function represents a real computation; there are uncountably many such
functions, and the action on the registers is unrestricted.

Definition. Let Σ be an alphabet, and 𝑄 be a nonempty finite set of states. A tuple of the
form

(0, 𝑘, 𝑎, 𝑞) ∈ ℕ × ℕ × Σ × 𝑄
(1, 𝑘, 𝑎, 𝑞, 𝑞′) ∈ ℕ × ℕ × Σ × 𝑄 × 𝑄
(2, 𝑘, 𝑞, 𝑞′) ∈ ℕ × ℕ × 𝑄 × 𝑄
(3, 𝑘, 𝑞, 𝑞′) ∈ ℕ × ℕ × 𝑄 × 𝑄

is called a (Σ, 𝑄)-instruction. For improved readability, we write

+(𝑘, 𝑎, 𝑞) = (0, 𝑘, 𝑎, 𝑞)
?(𝑘, 𝑎, 𝑞, 𝑞′) = (1, 𝑘, 𝑎, 𝑞, 𝑞′)
?(𝑘, 𝜀, 𝑞, 𝑞′) = (2, 𝑘, 𝑞, 𝑞′)
−(𝑘, 𝑞, 𝑞′) = (3, 𝑘, 𝑞, 𝑞′)

Intuitively,

• +(𝑘, 𝑎, 𝑞) represents pushing the letter 𝑎 onto register 𝑘, then advancing to state 𝑞.

• ?(𝑘, 𝑎, 𝑞, 𝑞′) checks if the letter 𝑎 is currently at the top of register 𝑘. If so, we advance
to state 𝑞, and otherwise, we advance to state 𝑞′.

• ?(𝑘, 𝜀, 𝑞, 𝑞′) checks if register 𝑘 is empty. If so, we advance to state 𝑞, and otherwise,
we advance to state 𝑞′.

• −(𝑘, 𝑞, 𝑞′) pops the topmost letter from register 𝑘. If the register was already empty,
we advance to state 𝑞, and otherwise, we advance to state 𝑞′.

These semantics are defined formally later. Let Instr(Σ, 𝑄) be the set of (Σ, 𝑄)-instructions.
This is in principle an infinite set, but finite if 𝑘 is bounded.
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Definition. A tuple 𝑀 = (Σ,𝑄, 𝑃) is called a Σ-register machine if Σ is an alphabet, 𝑄 is a
finite set of states with two distinguished states 𝑞𝑆 ≠ 𝑞𝐻 , called the start state and halt state
respectively, and 𝑃∶ 𝑄 → Instr(Σ, 𝑄) is the program. If 𝑄 = {𝑞0,… , 𝑞𝑛}, we can describe
𝑃 as a finite collection of program lines 𝑞𝑖 ↦ 𝑃(𝑞𝑖). Since 𝑄 is finite, only finitely many
registers 𝑘 are referenced by 𝑃; we call the largest such 𝑘 the upper register index of𝑀.

Definition. Let𝑀 be a registermachinewith upper register index𝑛 andw = (𝑤0,… ,𝑤𝑛) ∈
𝕎𝑛+1. For configurations 𝐶, 𝐶′, we say𝑀 transforms 𝐶 into 𝐶′ if one of the following holds.

• 𝑃(𝑞) = +(𝑘, 𝑎, 𝑞′) and 𝐶′ = (𝑞′, 𝑤0,… ,𝑤𝑘−1, 𝑤𝑘𝑎,𝑤𝑘+1,… ,𝑤𝑚).

• 𝑃(𝑞) = ?(𝑘, 𝑎, 𝑞′, 𝑞″), and

– 𝑤𝑘 = 𝑤𝑎 for some 𝑤 and 𝐶′ = (𝑞′, 𝑤0,… ,𝑤𝑚), or

– 𝑤𝑘 ≠ 𝑤𝑎 for all 𝑤 and 𝐶′ = (𝑞″, 𝑤0,… ,𝑤𝑚).

• 𝑃(𝑞) = ?(𝑘, 𝜀, 𝑞′, 𝑞″), and

– 𝑤𝑘 = 𝜀 and 𝐶′ = (𝑞′, 𝑤0,… ,𝑤𝑚), or

– 𝑤𝑘 ≠ 𝜀 and 𝐶′ = (𝑞″, 𝑤0,… ,𝑤𝑚).

• 𝑃(𝑞) = −(𝑘, 𝑞′, 𝑞″), and

– 𝑤𝑘 = 𝜀 and 𝐶′ = (𝑞′, 𝑤0,… ,𝑤𝑚), or

– 𝑤𝑘 = 𝑤𝑎 and 𝐶′ = (𝑞″, 𝑤0,… ,𝑤𝑘−1, 𝑤, 𝑤𝑘+1,… ,𝑤𝑚).

Then we define the computation sequence of𝑀 with inputw by 𝐶(0,𝑀,w) = (𝑞𝑆,w), 𝐶(𝑘 +
1,𝑀,w) = 𝐶′ where𝑀 transforms 𝐶(𝑘,𝑀,w) into 𝐶′.

Remark. This recursive definition requires that the length ofw is at least 𝑛 + 1, where 𝑛 is
the upper register index. By convention, ifw is too short, we pad it with copies of the empty
word 𝜀.

Remark. As defined above, all computation sequences are infinite, because every configur-
ation is transformed by𝑀 into some other.

Definition. We say that the computation of 𝑀 with input w halts at time 𝑘 or in 𝑘 steps if
𝑘 is the smallest natural such that 𝐶(𝑘,𝑀,w) = (𝑞𝐻 , v). In this case, we say that v is the
register content at time of halting, or the output of the computation. If such a 𝑘 does not exist,
we say the computation does not halt.

5.2. Strong equivalence
Definition. We say that register machines 𝑀,𝑀′ are strongly equivalent if for all 𝑘 and w,
𝐶(𝑘,𝑀,w) and 𝐶(𝑘,𝑀′,w) have the same register content, and for all w, we have that 𝑀
halts after 𝑘 steps with inputw if and only if𝑀′ halts after 𝑘 steps with inputw.
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Remark. If |𝑄| = |𝑄′|, then for every (Σ, 𝑄, 𝑃) there exists a strongly equivalent register
machine (Σ, 𝑄′, 𝑃′) by relabelling the states in 𝑃.
Proposition (the padding lemma). Let𝑀 be a register machine. Then there are infinitely
many different register machines that are strongly equivalent to𝑀.

Proof. Let 𝑀 = (Σ,𝑄, 𝑃). The register machine completely determines the computation
sequence, so after adding a new state ̂𝑞 to 𝑄, ̂𝑞 is never a state in any computation sequence.
So (Σ, 𝑄 ∪ { ̂𝑞}, 𝑃 ∪ { ̂𝑝}) is strongly equivalent to𝑀 for any program line ̂𝑝 for ̂𝑞.

Proposition. Up to strong equivalence, there are only countably many register machines.

Proof. Only the cardinality of𝑄matters up to strong equivalence. Let𝑀𝑛,𝑘 be the collection
of registermachines with a fixed state set with |𝑄| = 𝑛 and upper register index atmost 𝑘. By
checking cases, we find |Instr(Σ, 𝑄)| = (𝑘+1)𝑛|Σ|+(𝑘+1)𝑛2|Σ|+(𝑘+1)𝑛2+(𝑘+1)𝑛2 = 𝑁𝑛,𝑘,
which is finite. Therefore, there are𝑁𝑛

𝑛,𝑘 different programs, andhence ||𝑀𝑛,𝑘|| = 𝑁𝑛
𝑛,𝑘 is finite.

Then the collection of all register machines up to strong equivalence is⋃𝑛,𝑘𝑀𝑛,𝑘 which is
countable.

5.3. Performing operations and answering questions
Definition. An operation is a partial function 𝑓∶ 𝕎𝑛+1 ⇀ 𝕎𝑛+1. We write 𝑓(w) ↓ if w
lies in the domain of 𝑓, and we say the operation is defined or converges. We write 𝑓(w) ↑
otherwise, and say that the operation isundefined or diverges. A registermachine𝑀 performs
an operation 𝑓 if for all w, 𝑓(w) ↓ if and only if 𝑀 halts on input w, and in this case, the
register content at time of halting is 𝑓(w).
Example. The operation ‘never halt’ is the empty function, dom𝑓 = ∅. Then any program
that never references the halt state in the right hand side of a program line performs this
operation. For example, 𝑞𝑆 ↦ +(0, 𝑎, 𝑞𝑆) and 𝑞𝐻 ↦ +(0, 𝑎, 𝑞𝑆) suffices.
Remark. There are many register machines that perform the same operation, including
many that are not strongly equivalent.

Example. The operation ‘halt without doing anything’ is the function 𝑓(w) = w with
dom𝑓 = 𝕎𝑛+1. An example of a program to perform this is 𝑞𝑆 ↦ ?(0, 𝑎, 𝑞𝐻 , 𝑞𝐻). This
halts after one step, and preserves the register content.

Definition. A question with 𝑘+1 answers is a partition of𝕎𝑛+1 into 𝑘+1 sets𝐴𝑖. A register
machine answers a question if it has 𝑘+1 answer states 𝑞𝑖, and upon input ofw, after finitely
many steps its configuration is (𝑞𝑖,w) for the value of 𝑖 wherew ∈ 𝐴𝑖.

Example. The question ‘is register 𝑖 empty’ is performed by 𝑞𝑆 ↦ ?(𝑖, 𝜀, 𝑞𝑌 , 𝑞𝑁). The ques-
tion ‘is the final letter in register 𝑖 the letter 𝑎’ is performed by 𝑞𝑆 ↦ ?(𝑖, 𝑎, 𝑞𝑌 , 𝑞𝑁).
The following lemma allows us to concatenate registermachines, or alternatively, to perform
subroutines.
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Lemma (concatenation). Let𝑀 perform 𝐹 ∶ 𝕎𝑛+1 ⇀𝕎𝑛+1, and𝑀′ perform 𝐹′∶ 𝕎𝑛+1 ⇀
𝕎𝑛+1. Then we can construct a register machine �̂� which performs 𝐹′ ∘ 𝐹.

Remark. If 𝐹(w) ↑, then (𝐹′ ∘ 𝐹)(w) ↑. If 𝐹(w) ↓ and 𝐹′(𝐹(w)) ↑, then (𝐹′ ∘ 𝐹)(w) ↑.
Otherwise, (𝐹′ ∘ 𝐹)(w) ↓.

Proof. Wemay assume without loss of generality that the state sets of the two machines are
disjoint. We define �̂� = 𝑄 ∪ 𝑄′ ∖ {𝑞𝐻}. We write 𝑃⋆ for the program 𝑃 with the rule 𝑞𝐻 ↦
𝑃(𝑞𝐻) removed, and then all instances of 𝑞𝐻 replaced with 𝑞′𝑆. We then define ̂𝑃 = 𝑃⋆ ∪ 𝑃′.
Then �̂� = (Σ, �̂�, ̂𝑃) clearly performs 𝐹′ ∘ 𝐹.

Lemma (case distinction). Let 𝖰 be a question with 𝑘 + 1 answers. Let 𝐹𝑖 ∶ 𝕎𝑛+1 ⇀𝕎𝑛+1

be operations for 𝑖 ≤ 𝑘. Let𝑀 be a register machine that answers 𝖰, and let𝑀𝑖 be register
machines that perform 𝐹𝑖. Then there is a register machine that performs the operation
given by 𝐺(w) = 𝐹𝑖(w) ifw ∈ 𝐴𝑖.

Proof. Weassume that𝑄 is disjoint from each𝑄𝑖, and⋂𝑖≤𝑘 𝑄𝑖 = {𝑞𝐻}. Let 𝑃⋆
𝑖 be 𝑃𝑖 where all

occurrences of 𝑞𝑆,𝑖 are replaced with the 𝑖th answer state 𝑞𝑖. Define𝑄⋆ = 𝑄∪⋃𝑖≤𝑘 𝑄𝑖∖{𝑞𝑆,𝑖}
and 𝑃⋆ = 𝑃 ∪⋃𝑖≤𝑘 𝑃

⋆
𝑖 . Then𝑀⋆ = (Σ,𝑄⋆, 𝑃⋆) performs 𝐺.

5.4. Register machine API
We can perform many different operations and answer many different questions using re-
gister machines. We say that a register is unused if no program line references it. A register
is empty if it contains the empty word. Registers that are used only for computation and not
the output are sometimes called scratch space or scratch registers.

• Consider

𝐹(w) = {w 𝑤𝑖 ≠ 𝜀
↑ 𝑤𝑖 = 𝜀

The question ‘is register 𝑖 empty’ is performed by a register machine, and in this case,
the ‘never halt’ operation can be performed; in the other case, the ‘halt without doing
anything’ operation can be performed.

• The operation ‘delete the final letter of register 𝑖 if it exists’ is performed by the program
𝑞𝑆 ↦ −(𝑖, 𝑞𝐻 , 𝑞𝐻).

• The operation ‘add letter 𝑎 to register 𝑖’ is performed by 𝑞𝑆 ↦ +(𝑖, 𝑎, 𝑞𝐻). Note that
this machine also performs the operation ‘guarantee that the 𝑖th register is nonempty’.

• The operation ‘delete the content of register 𝑖’ is performed by 𝑞𝑆 ↦ −(𝑖, 𝑞𝐻 , 𝑞𝑆).

• We can perform the operation ‘add a fixed word𝑤 to register 𝑖’. If𝑤 = 𝑎0…𝑎ℓ, we use
the concatenation lemma to perform the operation ‘add letter 𝑎𝑗 to register 𝑖’ for each
letter in the word.
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• The operation ‘replace the register content of 𝑖 with the word 𝑤’ can be performed by
concatenating the operations ‘delete the content of register 𝑖’ and ‘add 𝑤 to register 𝑖’.

• We can answer the question ‘what is the final letter of register 𝑖’. This question has
|Σ| + 1 answers, since the register could be empty. For each letter 𝑎𝑗 ∈ Σ, we ask the
question ‘does register 𝑖 end in letter 𝑎𝑗 ’, and if yes, go to the corresponding answer
state 𝑞𝑗 , and if not, go to a state that asks the next question in the sequence. If no
question answers ‘yes’, the register is empty, and we go to an answer state 𝑞𝜀.

• In particular, we can perform the operation ‘copy the final letter of register 𝑖 into re-
gister 𝑗 if it exists’, by asking what this letter is, and then in each case, pushing the
relevant letter onto register 𝑗.

• We can also ‘move the final letter of register 𝑖 into register 𝑗 if it exists’ by first copying
the letter and then removing the original from register 𝑖.

• The operation ‘move the content of register 𝑖 into register 𝑗 in reverse order’ is accom-
plished by repeatedly moving a single letter until no more letters lie in register 𝑖.

• The operation ‘move the content of register 𝑖 into register 𝑗 in the correct order’ can be
performed by considering an unused empty register 𝑘. We move the register content
from 𝑖 to 𝑘 in reverse order and then from 𝑘 to 𝑗 in reverse order.

• The operation ‘reverse the content of register 𝑖’ is performed by moving it in reverse
order to an unused empty register 𝑗, and then moving this into 𝑖 in the correct order.

• The operation ‘move the content of register 𝑖 into registers 𝑗 and 𝑘 in reverse order’ is
easily performed by copying the final letter of register 𝑖 into 𝑗 and then into 𝑘, then
removing the final letter in register 𝑖 iteratively until it is empty.

• The operation ‘copy the content of register 𝑖 into register 𝑗 in reverse order’ is accom-
plished by moving the content of register 𝑖 into 𝑗 and an unused empty register 𝑘, and
then moving the register content of 𝑘 into 𝑖 in reverse order.

• The operation ‘copy the content of register 𝑖 into register 𝑗 in the correct order’ is ac-
complished by copying in the reverse order, and then reversing the content of register
𝑗.

• Consider the question ‘is the content of register 𝑖 the word 𝑤’. Let 𝑤 = 𝑎0…𝑎𝑘. We
define the subroutine 𝑆ℓ to answer the question ‘is 𝑎ℓ the final letter of register 𝑖’. If
no, move to a state 𝑞𝑁 . If yes, move the final letter to an unused empty register 𝑘 and
run subroutine 𝑆ℓ−1, or if ℓ = 0, move to a state 𝑞𝑌 . At state 𝑞𝑁 we move the content
of 𝑘 to 𝑖 and answer 𝑞𝑁 , and at state 𝑞𝑌 we move the content of 𝑘 to 𝑖 and answer 𝑞𝑌 .
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6. Computability theory
6.1. Computable functions and sets
Remark. A lot of computations require the use of scratch space, and we want to reduce the
mathematical information related to this scratch space. In the following definition, only
register zero is considered real output; all other registers are considered scratch space.

Definition. Let 𝑀 be a register machine, and let 𝑘 ∈ ℕ. Then we define 𝑓𝑀,𝑘∶ 𝕎𝑘 ⇀ 𝕎
by 𝑓𝑀,𝑘(w) ↑ when𝑀 does not halt on input w, and 𝑓𝑀,𝑘(w) = 𝑣0 when𝑀 halts on input
w with halting register content v.

Note that if𝑀,𝑀′ are strongly equivalent, 𝑓𝑀,𝑘 = 𝑓𝑀′,𝑘 for all 𝑘. The converse does not hold.
For the special case of 𝑘 = 1, we also write𝑊 𝑀 = dom𝑓𝑀,1.

Definition. A partial function 𝑓∶ 𝕎𝑘 ⇀ 𝕎 is called computable if there is a register ma-
chine𝑀 such that 𝑓 = 𝑓𝑀,𝑘.

Remark. There are only countablymany computable functions, because there are only count-
ably many register machines up to strong equivalence. For each computable function 𝑓,
there are infinitelymany registermachines𝑀 such that𝑓 = 𝑓𝑀,𝑘, since any registermachine
has infinitely many other strongly equivalent register machines. Due to the concatenation
lemma and the case distinction lemma, computable functions are closed under concatena-
tion and case distinction.

Example. The identity function on 𝕎 is computable. Consider 𝑐∶ 𝕎𝑘 → 𝕎 is given by
𝑐(w) = 𝑣 for a fixed 𝑣. The operation ‘replace the content of register 0with 𝑣’ is performable
on a registermachine, so 𝑐 is computable. The projection𝜋𝑖 ∶ 𝕎𝑘 →𝕎 given by𝜋𝑖(w) = 𝑤𝑖
is computable since the operation ‘replace the content of register 0 with register 𝑖’ can be
performed on a register machine by emptying register 0 and then moving the content of
register 𝑖 to register 0.

Definition. Let 𝑋 ⊆ 𝕎𝑘. We say that a total function 𝑓∶ 𝕎𝑘 → 𝕎 is a characteristic
function of 𝑋 if 𝑓(w) ≠ 𝜀 if and only ifw ∈ 𝑋 . Let 𝑎 ∈ Σ. We say that 𝑓 is the characteristic
function of 𝑋 if 𝑓(w) = 𝑎 ifw ∈ 𝑋 and 𝑓(w) = 𝜀 otherwise.

We use the notation 𝜒𝑋 for the characteristic function.

Definition. A set 𝑋 ⊆ 𝕎𝑘 is computable if the characteristic function 𝜒𝑋 of 𝑋 is comput-
able.

Note that a language is a set of words, so we can now reason about computability of lan-
guages.

Definition. Let 𝑋 ⊆ 𝕎𝑘. A partial function 𝑓∶ 𝕎𝑘 ⇀ 𝕎 is called a pseudocharacteristic
function of 𝑋 if dom𝑓 = 𝑋 . 𝑓 is called the pseudocharacteristic function of 𝑋 if 𝑓(w) = 𝑎 if
w ∈ 𝑋 , and undefined otherwise.

We use the notation 𝜓𝑋 for the pseudocharacteristic function.
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Definition. A set 𝑋 ⊆ 𝕎𝑘 is computably enumerable if the pseudocharacteristic function
𝜓𝑋 is computable.

Remark. We will show that every computable set is computably enumerable, but the con-
verse does not hold. We will also show that the computably enumerable sets are exactly the
type 0 languages (those languages that have grammars), and that the class of computable
languages is properly contained between type 1 and type 0.

6.2. Computability of languages
Proposition. Let 𝑋 ⊆ 𝕎𝑘. Then:

(i) 𝑋 is computable if and only if 𝑋𝑐 is computable.

(ii) 𝑋 is computably enumerable if and only if there exists a register machine𝑀 such that
𝑋 = dom𝑓𝑀,𝑘.

(iii) If 𝑋 is computable, then 𝑋 is computably enumerable.

Proof. To simplify notation we consider the case 𝑘 = 1. Note that if 𝑔 and ℎ are computable,
then by the case distinction lemma, so is 𝑓 defined by 𝑓(𝑤) = 𝑔(𝑤) if𝑤 ≠ 𝜀, and 𝑓(𝑤) = ℎ(𝑤)
if 𝑤 = 𝜀.

For the first part, consider the computable function 𝑓1 given by 𝑔(𝑤) = 𝜀 and ℎ(𝑤) = 𝑎.
Then 𝑓1 ∘ 𝜒𝑋 = 𝜒𝑋𝑐 , 𝑓1 ∘ 𝜒𝑋𝑐 = 𝜒𝑋 .

Now consider 𝑓2 given by 𝑔(𝑤) = 𝑎 and ℎ(𝑤) = 𝜀. If 𝑋 = dom𝑓, then 𝜓𝑋 = 𝑓2 ∘ 𝑓.

Finally, consider 𝑓3 given by 𝑔(𝑤) = 𝑎 and ℎ(𝑤) ↑. Then 𝜓𝑋 = 𝑓3 ∘ 𝜒𝑋 .

Theorem. Every regular language is computable.

Proof. Let 𝐿 be such a regular language. Let 𝐷 = (Σ,𝑄, 𝛿, 𝑞0, 𝐹) be a deterministic auto-
maton such that 𝐿 = ℒ(𝐷). The first step in our program is to reverse the content of register
0 into register 1, because register machines read words in the opposite order of deterministic
automata. For each 𝑞 ∈ 𝑄, the register machine will have a set of states𝑄𝑞 that indicate that
we are currently mimicking 𝐷 in state 𝑞. We will now move into the state set 𝑄𝑞0 .

When moving into each state set 𝑄𝑞, our program will read the final letter of register 1. If
there are no letters in register 1, go to a fixed accepting state if 𝑞 ∈ 𝐹 and the non-accepting
state if 𝑞 ∉ 𝐹. Otherwise, let 𝑏 be the last letter in register 1. Remove 𝑏 from register 1, and
go to state set 𝑄𝛿(𝑞,𝑏). We implicitly repeat this step, since we have now transitioned into a
state set.

If the machine is in the given accepting state, we empty register 0, add 𝑎 to register 0, and
then halt. If the machine is in the non-accepting state, we empty register 0, and then halt.
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6.3. The shortlex ordering

We wish to create an order < on𝕎 such that (ℕ, <) is order-isomorphic to (𝕎,<). We first
fix an arbitrary total order < on Σ.

Definition. The shortlex ordering on𝕎 given by an ordering of Σ is given by 𝑤 < 𝑣 when

(i) |𝑤| < |𝑣|; or

(ii) |𝑤| = |𝑣| but 𝑤 ≠ 𝑣, and for the least 𝑚 such that the 𝑚th characters differ, the 𝑚th
character of 𝑤 is less than the𝑚th character of 𝑣.

This ordering first checks length, then the lexicographic ordering. This is a total ordering on
𝕎; it is irreflexive, transitive, and trichotomous. The empty word is the least element.

Example. Let Σ = {0, 1}, and fix 0 < 1. Then an initial segment of the ordering is

𝜀, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000,…

We can identify each word with a natural number, given by its index in this sequence, count-
ing from zero. There are 2𝑘 words of length 𝑘, so the index of the natural number associated
to the word 0𝑘 is exactly 2𝑘 − 1.

We can naturally extend the operations of addition and multiplication on the set of words
by acting on the index of the word in this ordering. For example, 10+01 = 010, because the
associated index of 10 is 5, the index of 01 is 4, and the index of 010 is 9. This gives𝕎 the
structure of a commutative semiring.

Theorem. The shortlex ordering has the same order type as ℕ. We write (ℕ, <) ≅ (𝕎,<).

Proof. For a fixed 𝑤, the set {𝑣 ∣ 𝑣 < 𝑤} is finite. Therefore, the function #∶ 𝕎 → ℕ given
by #(𝑤) = |{𝑣 ∣ 𝑣 < 𝑤}| is well-defined and is an order isomorphism.

Theorem. The set {(𝑣, 𝑤) ∣ 𝑣 < 𝑤} is computable. The successor function 𝑠∶ 𝕎 → 𝕎 with
#(𝑠(𝑤)) = #(𝑤) + 1 is computable.

Proof. The question to determine the ordering of |𝑤𝑖| and ||𝑤𝑗 || can be answered by a register
machine by copying 𝑖, 𝑗 into empty registers and repeatedly removing letters until one or
both is empty. If they have the same length, we again copy 𝑖, 𝑗 into empty registers in the
reverse order, and check and remove each letter until a difference is found.

To compute 𝑠(𝑤) for a word 𝑤, we find the last letter in 𝑤 that is not the largest letter in the
ordering. Replace this letter with the next letter in the ordering, and replace all subequent
letters with the least letter in the ordering. If all 𝑘 letters are the greatest letter, output the
least letter (𝑘 + 1)-many times.
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6.4. Church’s recursive functions
The class of recursive functions is defined inductively.

Definition. The basic functions are

𝜋𝑘,𝑖 ∶ 𝕎𝑘 →𝕎
𝑐𝑘,𝜀∶ 𝕎𝑘 →𝕎
𝑠∶ 𝕎 → 𝕎

where 𝜋𝑘,𝑖(w) = 𝑤𝑖, 𝑐𝑘,𝜀(w) = 𝜀, and #𝑠(𝑤) = #𝑤 + 1.
We call 𝜋𝑘,𝑖 the projection functions, 𝑐𝑘,𝜀 the constant functions, and 𝑠 the successor func-
tion.

Let 𝑓∶ 𝕎𝑚 ⇀𝕎 and 𝑔1,… , 𝑔𝑚∶ 𝕎𝑘 ⇀𝕎. Then their composition is the function ℎ(w) =
𝑓(𝑔1(w),… , 𝑔𝑚(w)).
Let 𝑓∶ 𝕎𝑘 ⇀ 𝕎 and 𝑔∶ 𝕎𝑘+2 ⇀ 𝕎. Then the partial function ℎ∶ 𝕎𝑘+1 ⇀ 𝕎 defined by
ℎ(w, 𝜀) = 𝑓(w) and ℎ(w, 𝑠(𝑣)) = 𝑔(w, 𝑣, ℎ(w, 𝑣)) is a function defined by recursion.
Let 𝑓∶ 𝕎𝑘+1 ⇀𝕎. Then the function ℎ∶ 𝕎𝑘 ⇀𝕎 defined by

ℎ(w) = {𝑣 if for all 𝑢 ≤ 𝑣, we have 𝑓(w, 𝑢) ↓ and 𝑣 is <-minimal such that 𝑓(w, 𝑣) = 𝜀
↑ if there is no 𝑣 satisfying the above property

is a function defined byminimisation.

Remark. If a class of functions has the basic functions and is closed under composition, it
has all constant functions 𝑐𝑘,𝑣(w) = 𝑣, because if 𝑣 = 𝑠𝑘(𝜀), 𝑐𝑘,𝑣 = 𝑠𝑘 ∘ 𝑐𝑘,𝜀.
Definition. A class 𝒞 of partial functions is closed under composition, recursion, and min-
imisation if whenever 𝑓1,… , 𝑓ℓ ∈ 𝒞, then the results of applying these operations also lie in
𝒞.
Remark. The class 𝒫 of all partial functions is closed under composition, recursion, and
minimisation.

Definition. We call a partial function recursive if it lies in the smallest class 𝒞 that contains
the basic functions and is closed under composition, recursion, andminimisation. A partial
function is primitive recursive if it lies in the smallest class𝒞 that contains the basic functions
and is closed under composition and recursion.

Example. 𝜋1,0∶ 𝕎1 →𝕎 is the identity function, which is primitive recursive. 𝜋3,2∶ 𝕎3 →
𝕎 defined by 𝜋3,2(𝑢, 𝑣, 𝑤) = 𝑤 is primitive recursive as it is a basic function. The successor
function 𝑠∶ 𝕎 → 𝕎 is primitive recursive. The function 𝑠 ∘ 𝜋3,2 is primitive recursive, as
the composition of primitive recursive functions.

The function ℎ defined by ℎ(𝑤, 𝜀) = 𝜋1,0(𝑤) and ℎ(𝑤, 𝑠(𝑣)) = 𝑠 ∘ 𝜋3,2(𝑤, 𝑣, ℎ(𝑤, 𝑣)) =
𝑠(ℎ(𝑤, 𝑣)) is primitive recursive, which is exactly the addition function#ℎ(𝑛,𝑚) = #𝑛+#𝑚.
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We can define multiplication and exponentiation in a similar way, and so all of these are
primitive recursive.

We can encode recursive functions in trees. Let 𝑇 be a finitely branching tree, and define a
labelling ℓ on 𝑇 with the labels

label arity branching number
projection 𝐵𝜋𝑘,𝑖 𝑘 0
constant 𝐵𝑐𝑘,𝑖 𝑘 0
successor 𝐵𝑠 1 0

composition 𝐶𝑛,𝑘 𝑘 𝑛 + 1
recursion 𝑅𝑘 𝑘 + 1 2

minimisation 𝑀𝑘 𝑘 1

Definition. A tree 𝑇 with a labelling ℓ is called a recursion tree if the branching of the tree
corresponds exactly to the branching numbers of its labels, and

(i) if ℓ(𝑠) = 𝐶𝑛,𝑘, then the first successor of 𝑠 has a label of arity 𝑛 and all other have labels
with arity 𝑘;

(ii) if ℓ(𝑠) = 𝑅𝑘, then the first successor of 𝑠 has arity 𝑘 and the other has arity 𝑘 + 2;

(iii) if ℓ(𝑠) = 𝑀𝑘, then the successor has arity 𝑘.

A recursion tree is primitive if it has no minimisation labels𝑀𝑘.

The following recursion tree describes the addition function defined above.

𝑅1

𝐵𝜋1,0 𝐶1,3

𝐵𝑠 𝐵𝜋3,2

We can assign a (partial) recursive function 𝑓𝑇,ℓ to every recursive tree (𝑇, ℓ). If the tree is
primitive, the function obtained is primitive recursive.

Theorem. A partial function 𝑓 is recursive if and only if there is a recursion tree (𝑇, ℓ) such
that 𝑓 = 𝑓𝑇,ℓ. It is primitive recursive if it admits a recursion tree that is primitive.

Proof. We can obtain the associated partial function from a recursion tree by induction on
the height on the tree. For the converse, it suffices to show that the class of functions 𝑓𝑇,ℓ
contains the basic functions and is closed under composition, recursion, and minimisation,
which holds by construction.

Theorem. Every partial recursive function is computable.
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Proof. The basic functions have already been shown to be computable. Computable func-
tions are closed under composition (previously called concatenation). So it suffices to show
that the computable functions are closed under recursion and minimisation.

Let 𝑓, 𝑔 be computable functions; we want to show that ℎ defined by ℎ(w, 𝜀) = 𝑓(w) and
ℎ(w, 𝑠(𝑣)) = 𝑔(w, 𝑣, ℎ(w, 𝑣)) is computable. We describe a register machine.
(i) Let 𝑘, ℓ be two empty unused registers.
(ii) Compute 𝑓(w), and write the result to register ℓ. Note that if 𝑓(w) is undefined, this

produces the desired result.

(iii) If 𝑣 = 𝜀, output the content of register ℓ. Otherwise, apply the successor function 𝑠 to
register 𝑘 and perform the following subroutine.

(a) Compute 𝑔(w, 𝑣, 𝑢)where 𝑢 is the content of register ℓ, then overwrite register ℓ
with the result.

(b) Check whether 𝑣 is equal to the register content of 𝑘. If so, output register ℓ.
Otherwise, apply 𝑠 to register 𝑘 and restart the subroutine.

We now consider minimisation. Let 𝑓 be computable. Let 𝑘 be empty and unused. Perform
the following subroutine.

(i) Compute 𝑓(w, 𝑢) where 𝑢 is the content of register 𝑘. If this result is undefined, this
is the desired result.

(ii) Check whether the computation result is empty. If it is empty, output the register
content of 𝑘. Otherwise, apply the successor function 𝑠 to 𝑘 then restart the subroutine.

Remark. The proof showed that the computable functions are closed under recursion and
minimisation, not just that all partial recursive functions are computable. Therefore, we
can use recursion and minimisation directly to construct computable functions or register
machines.

6.5. Merging and splitting words
There is a bijection 𝑧∶ ℕ × ℕ → ℕ, called the Cantor zigzag function.

𝑧(𝑖, 𝑗) = (𝑖 + 𝑗)(𝑖 + 𝑗 + 1)
2 + 𝑗

This gives a bijection 𝕎 × 𝕎 → 𝕎. All of these operations are computable by register
machines.

Definition. Let 𝑣, 𝑤 be words. Then we can merge the two words into 𝑣 ∗ 𝑤, which is the
unique word such that #(𝑣 ∗ 𝑤) = 𝑧(#𝑣, #𝑤). We can split a word 𝑤 into 𝑢, 𝑣 such that
#𝑤 = 𝑧(#𝑢,#𝑣). We write 𝑢 = 𝑤(0) and 𝑣 = 𝑤(1).
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Technically, splitting a word is not a computable function, since computable functions are
defined to always have codomain 𝕎. However, the operation of splitting a word can be
performed.

6.6. Universality
Consider an alphabet Σ. We then have a notion of computability for sets 𝑋 ⊆ Σ⋆ = 𝕎. If
Σ ⊆ Σ′, then every Σ-register machine is a Σ′-register machine. However, the notion of Σ′-
computability is no stronger than Σ-computability. One can show that computability over
any alphabet Σ with |Σ| ≥ 2 is equivalent to computability over the set {0, 1} by encoding
each letter as a binary string.

In this subsection, we aim to show that there is a universal register machine, which is a
machine that can mimic every register machine. Let Σ be an alphabet, and add additional
symbols

𝟎 𝟏 + − ? ( ) , ↦ ◻

We name the new alphabet Σ′. When we encode a mathematical object 𝑜 as a word Σ′⋆, we
write the encoded result code(𝑜).

• We can encode ℕ in binary using 𝟎 and 𝟏, for instance, code(19) = 𝟏𝟎𝟎𝟏𝟏.

• If 𝑄 = {𝑞0,… , 𝑞𝑘}, we define code(𝑞𝑘) = code(𝑘).

• We encode instructions 𝐼 ∈ Instr(Σ, 𝑄)using+−? , ( ); for instance, code(+(𝑘, 𝑎, ℓ)) =
+(code(𝑘), 𝑎, code(ℓ)).

• We encode program lines by code(𝑞 ↦ 𝐼) = code(𝑞) ↦ code(𝐼).

• We encode a register machine with program 𝑃 as code(𝑞0 ↦ 𝑃(𝑞0)),… , code(𝑞𝑛 ↦
𝑃(𝑞𝑛)).

• We encode sequences of words byw by code(w) = ◻𝑤0◻…◻𝑤𝑘◻.

• We encode configurations (𝑞,w) by code(𝑞) code(w).

Lemma. The function ℎ defined by

ℎ(𝑤, 𝑢, 𝑣) = {code(𝐶(𝑀,w, #𝑣)) if ∃𝑀,w such that 𝑤 = code(𝑀), 𝑢 = code(w)
↑ otherwise

is computable.

Proof. Define by recursion

ℎ(code(𝑀), code(w), 𝜀) = code(𝑞0) code(w); ℎ(code(𝑀), code(w), 𝑠(𝑣)) = code(𝐶′)

where 𝐶′ is the result of transforming ℎ(code(𝑀), code(w), 𝑣) by the machine𝑀.
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Corollary. The truncated computation function 𝑡𝑀,𝑘 defined by

𝑡𝑀,𝑘(w, 𝑣) = {𝑎 𝑀 has halted before time #𝑣 on inputw
𝜀 otherwise

is computable.

Proof. Using recursion on the function ℎ from the previous lemma, we check all values of
ℎ for words 𝑢 such that #𝑢 < #𝑣. If any of the values is in state 𝑞𝐻 , output 𝑎, otherwise,
output 𝜀.

Theorem (the software principle). The function 𝑔 defined by

𝑔(𝑣, 𝑢) = {𝑓𝑀,𝑘(w) if 𝑣 = code(𝑀), 𝑢 = code(w) andw has length 𝑘
↑ otherwise

is computable.

Proof. Wehave a computable function𝑓 thatmaps𝑤, 𝑢, 𝑣 to code(𝐶(𝑀,w, #𝑣)) if code(𝑀) =
𝑤 and code(w) = 𝑢 by the previous lemma. We start by checking whether 𝑤 is a code for
a register machine and 𝑢 is a code for a 𝑘-tuple of words; if not, never halt. Write 𝑓′ for the
computable functionmapping𝑤, 𝑢, 𝑣 to 𝑎 if the state of 𝑓(𝑤, 𝑢, 𝑣) is 𝑞𝐻 , and 𝜀 otherwise. We
minimise 𝑓′ to obtain the computable function ℎ, such that ℎ(𝑤, 𝑢) is the least 𝑣 such that
𝑓(𝑤, 𝑢, 𝑣) is in state 𝑞𝐻 if it exists. If ℎ(𝑤, 𝑢) does not halt, then there is no step at which the
computation halts, as expected, since 𝑔(𝑤, 𝑢) should not halt in this case. If ℎ(𝑤, 𝑢) halts,
consider the configuration𝐶(𝑀,w, #ℎ(𝑤, 𝑢)) and find the code for its 0th register, and write
this into the actual 0th register.

Remark. A register machine 𝑈 that computes 𝑔 is called a universal register machine. 𝑈
has a finite amount of used registers and states, but can mimic the behaviour of any register
machine using an arbitrarily large amount of registers and states.

This allows us to streamline notation; for a word 𝑣 ∈ 𝕎, we can write

𝑓𝑣,𝑘(w) = 𝑓𝑈,2(𝑣, code(w)) = 𝑓𝑀,𝑘(w)

if code(𝑀) = 𝑣. Similarly, we can write𝑊𝑣 = dom𝑓𝑣,1, so {𝑊𝑣 ∣ 𝑣 ∈ 𝕎} is the set of comput-
ably enumerable sets.

Theorem (𝑠–𝑚–𝑛 theorem; parameter theorem). Let 𝑔∶ 𝕎𝑘+1 ⇀𝕎 be computable. Then
there exists a total computable function ℎ∶ 𝕎 → 𝕎 such that 𝑓ℎ(𝑣),𝑘(w) = 𝑔(w, 𝑣).
This process is called currying, after Haskell Curry.

Remark. 𝑔𝑣(w) = 𝑔(w, 𝑣) is a function in 𝑘 variables. This is computable, so there is a
mathematical function ℎ such that 𝑔𝑣 = 𝑓ℎ(𝑥),𝑘, but this ℎ is not a priori computable.
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Proof. First, the operation w ↦ (w, 𝑣) is performed by a register machine 𝑀𝑣; this is the
register machine that writes 𝑣 into register 𝑘. Therefore, we have a computable function
𝑣 ↦ code(𝑀𝑣). Now, since 𝑔 is computable, there is a registermachine𝑀 such that 𝑓𝑀,𝑘+1 =
𝑔. Therefore, 𝑔𝑣 is computed by the sequence of register machines 𝑀𝑣 then 𝑀. We can
computably concatenate two registermachines, sowe can compute a code for𝑀∘𝑀𝑣. Hence
the function ℎ(𝑣) = code(𝑀 ∘ 𝑀𝑣) is total and computable.
We must show that 𝑓ℎ(𝑣),𝑘(w) = 𝑔(w, 𝑣). Indeed,

𝑓ℎ(𝑣),𝑘(w) = 𝑓code(𝑀∘𝑀𝑣),𝑘(w) = 𝑓𝑀∘𝑀𝑣,𝑘(w) = 𝑔𝑣(w) = 𝑔(w, 𝑣)

as required.

6.7. The halting problem
Consider the sets

𝕂0 = {(𝑤, 𝑣) ∣ 𝑓𝑤,1(𝑣) ↓}; 𝕂 = {𝑤 ∣ 𝑓𝑤,1(𝑤) ↓}

Theorem. 𝕂0 and 𝕂 are computably enumerable.

Proof. It suffices to show that 𝕂0, 𝕂 are the domains of computable functions. By the soft-
ware principle, 𝑓𝑈,2(𝑤, 𝑣) = 𝑓𝑤,1(𝑣) and dom𝑓𝑈,2 = 𝕂0 as required. Observe that the diag-
onal function Δ(𝑤) = (𝑤,𝑤) is computable, so 𝑓𝑈,2 ∘ Δ is computable, and dom(𝑓𝑈,2 ∘ Δ) =
𝕂.

Theorem (the halting problem). Neither 𝕂0 nor 𝕂 are computable.

Proof. We prove the result for𝕂0. Suppose that𝕂0 is computable, so the characteristic func-
tion 𝜒𝕂0 is computable. Now, define

𝑓(𝑤) = {↑ if 𝜒𝕂0(𝑤,𝑤) = 𝑎
𝜀 if 𝜒𝕂0(𝑤,𝑤) = 𝜀

This is a computable function, so there is a machine 𝑑 ∈ 𝕎 such that 𝑓𝑑,1 = 𝑓. Now,

𝑓(𝑑) ↓⟺ 𝑓𝑑,1(𝑑) ↓⟺ (𝑑, 𝑑) ∈ 𝕂0 ⟺ 𝜒𝕂0(𝑑, 𝑑) = 𝑎 ⟺ 𝑓(𝑑) ↑

The proof is almost exactly the same for 𝕂.

6.8. Sets with quantifiers
Definition. 𝑋 ⊆ 𝕎𝑘 is called Σ1 if there is a computable set 𝑌 ⊆ 𝕎𝑘+1 such that w ∈
𝑋 ⟺ ∃𝑦, (w, 𝑦) ∈ 𝑌 . We say 𝑋 = 𝑝(𝑌) = {w ∣ ∃𝑦, (w, 𝑦) ∈ 𝑌} is the projection of 𝑌 . We
say 𝑋 is Π1 if it is the complement of a Σ1 set. We say 𝑋 is Δ1 if it is Σ1 and it is Π1.
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Remark. The notation Σ is chosen to symbolise an existential quantifier, and Π symbolises
the universal quantifier. In logic, sums and existentials are related, and products and uni-
versal quantifiers are also related. Δ is chosen for the German word Durchschnitt (‘intersec-
tion’), as Δ1 is the intersection of Σ1 and Π1.

Proposition. Every computable set is Δ1.

Proof. By closure under complement, it suffices to show every computable set is Σ1. The
computable set 𝑌 = {(w, 𝑦) ∣ w ∈ 𝑋} has projection 𝑋 . Logically, this adds a trivial existen-
tial quantification.

Theorem. The computably enumerable sets are exactly the Σ1 sets.

Proof. Suppose 𝑋 is computably enumerable. Then by definition, the pseudocharacteristic
function 𝜓𝑋 is computable. Then there exists a register machine 𝑀 such that 𝜓𝑋 = 𝑓𝑀,𝑘.
We define 𝑌 = {(w, 𝑦) ∣ 𝑡𝑀,𝑘(w, 𝑦) = 𝑎} where 𝑡𝑀,𝑘 is the truncated computation function
for the register machine𝑀. 𝑌 is computable, since 𝑡𝑀,𝑘 = 𝜒𝑌 . Thenw ∈ 𝑋 ⟺ 𝜓𝑋(w) ↓
⟺ ∃𝑦, (w, 𝑦) ∈ 𝑌 as required.

Now suppose 𝑋 is Σ1. Let 𝑌 be a computable set such that 𝑋 = 𝑝(𝑌). As the computable
sets are closed under complement, the characteristic function 𝜒𝑌𝑐 is computable. We apply
minimisation to𝜒𝑌𝑐 to obtain a functionℎ such thatℎ(w) is theminimal 𝑦 such that (w, 𝑦) ∈
𝑌 . Then domℎ = 𝑝(𝑌) = 𝑋 , so𝑋 is the domain of a partial computable function as required.

Example. Let 𝑓∶ 𝕎2 ⇀ 𝕎 be a partial computable function in two variables. Then
𝑋 = {𝑤 ∣ ∃𝑣, 𝑓(𝑤, 𝑣) ↓} is computably enumerable. Note that 𝑓(𝑤, 𝑣) ↓ is not a computable
predicate. Let𝑀 be a register machine such that 𝑓 = 𝑓𝑀,2, and let

𝑍 = {(𝑤, 𝑣0, 𝑣1) ∣ 𝑡𝑀,2(𝑤, 𝑣0, 𝑣1) = 𝑎}

Clearly 𝑍 is computable. Define

𝑌 = {(𝑤, 𝑢) ∣ (𝑤, 𝑢(0), 𝑢(1)) ∈ 𝑍}

This is also computable. Now,

∃𝑣, 𝑓(𝑤, 𝑣) ↓ ⟺ ∃𝑣0, ∃𝑣1, (𝑤, 𝑣0, 𝑣1) ∈ 𝑍
⟺ ∃𝑢, (𝑤, 𝑢(0), 𝑢(1)) ∈ 𝑍
⟺ (𝑤, 𝑢) ∈ 𝑌
⟺ 𝑤 ∈ 𝑝(𝑌)

So 𝑋 is Σ1 as required.
Remark. The previous argument is sometimes known as a zigzag argument; a pair of exist-
ential quantifiers can be merged into a single existential by merging the two words. Hence,
we can perform infinitely many computations in parallel.
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Corollary. The computable sets are exactly the Δ1 sets.

Proof. If 𝑋 is computable, it must be Δ1 by a previous result. If 𝑋 is Δ1, we can use a zigzag
technique. We know that there are machines𝑀,𝑀′ such that𝑤 ∈ 𝑋 ⟺ ∃𝑣, 𝑡𝑀,𝑘(w, 𝑣) =
𝑎 and 𝑤 ∉ 𝑋 ⟺ ∃𝑣, 𝑡𝑀′,𝑘(w, 𝑣) = 𝑎. Now, consider

𝑓(w, 𝑣) = {𝑡𝑀,𝑘(w, 𝑣(1)) #𝑣(0) is even
𝑡𝑀′,𝑘(w, 𝑣(1)) #𝑣(0) is odd

This is computable. Apply minimisation to 𝑓 to obtain a function ℎ where ℎ(w) is the least
𝑣 such that 𝑓(w, 𝑣) ≠ 𝜀. We output 𝑎 if #ℎ(w)(0) is even, and 𝜀 if #ℎ(w)(0) is odd.

Corollary. Σ1 is not closed under complement.

Proof. The complement of the halting set𝕎∖ 𝕂 is Π1 and not Δ1, so not Σ1.

Theorem. Every type 0 language is computably enumerable.

Proof. Let 𝐺 = (Σ, 𝑉, 𝑃, 𝑆) and let Σ′ = Ω ∪ {→}. We encode derivations as 𝜎0 → ⋯ → 𝜎𝑛;
this is a Σ′-word. We say 𝑤 ∈ (Σ′)⋆ is a derivation code if 𝑤 is of this form with (𝜎0,… , 𝜎𝑛) a
𝐺-derivation. In this case, we call 𝜎0 the initial string and 𝜎𝑛 the final string. Let

𝑌 = {(𝑤, 𝑣) ∣ 𝑣 is a derivation code with initial string 𝑆 and final string 𝑤}

𝑌 is computable since we can produce a registermachine that tests if a given derivation code
can be produced from a fixed given grammar. But 𝑤 ∈ ℒ(𝐺) ⟺ ∃𝑣, (𝑤, 𝑣) ∈ 𝑌 . This is
Σ1, as required.

Remark. The converse also holds; every computably enumerable set 𝑋 ⊆ 𝕎 is a type 0
language. This will not be proven rigorously in this course; a sketch will be provided later.

6.9. Closure properties
Proposition. The computable sets are closed under intersection, union, complement, dif-
ference, and concatenation.

Proof. Let 𝐴, 𝐵 be computable sets, so 𝜒𝐴, 𝜒𝐵 are computable functions. We obtain

𝜒𝐴∩𝐵(w) = {𝑎 𝜒𝐴(w) = 𝑎 and 𝜒𝐵(w) = 𝑎
𝜀 otherwise

For complement,

𝜒𝕎∖𝐴(w) = {𝑎 𝜒𝐴(w) = 𝜀
𝜀 otherwise
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For concatenation, we suppose 𝐴, 𝐵 ⊆ 𝕎 are one-dimensional. Given a word 𝑤, we can
iterate over all possible decompositions 𝑤 = 𝑣𝑢 and check if 𝑣 ∈ 𝐴, 𝑢 ∈ 𝐵. There are
(|𝑤| + 1)-many such decompositions, so this minimisation will always halt.

Remark. The result for intersection is analogous to the product construction from determ-
inistic automata; two computable functions can be evaluated in parallel since they always
terminate, and then their results may be combined.

Proposition. The computably enumerable sets are closed under intersection, union, and
concatenation. They are not closed under complement or difference.

Proof. We have already shown that the complement of the halting set 𝕂 is Π1 but not Σ1,
so the computably enumerable sets are not closed under complement or difference. For
intersection, the same construction as before works.

𝜒𝐴∩𝐵(w) = {𝑎 𝜓𝐴(w) = 𝑎 and 𝜓𝐵(w) = 𝑎
↑ otherwise

This is because if 𝜓𝐴 or 𝜓𝐵 diverge, the result is ↑ as desired. For union, we cannot compute
𝜓𝐴 and 𝜓𝐵 serially, since if 𝜓𝐴 ↑we never run 𝜓𝐵 at all. Using the zigzag technique, we can
check 𝜓𝐴(w) and 𝜓𝐵(w) in parallel, halting if either halts at any time index. This idea is
elaborated on an example sheet.

For concatenation, consider the set 𝑍 of triples (𝑤, 𝑣, 𝑢) such that 𝑣 is an initial segment
of 𝑤, and after #𝑢 steps, 𝜓𝐴(𝑣) = 𝑎 and 𝜓𝐵(𝑣′) = 𝑎, where 𝑤 = 𝑣𝑣′. Now define 𝑌 =
{(𝑤, 𝑢) || (𝑤, 𝑢(0), 𝑢(1)) ∈ 𝑍}, so 𝑤 ∈ 𝐴𝐵 if and only if there exists 𝑣 such that (𝑤, 𝑣) ∈ 𝑌 .

Proposition. 𝑋 is computably enumerable if and only if there is a partial computable func-
tion 𝑓 such that 𝑋 = Im𝑓.

Remark. In fact, a stronger result is true: 𝑋 is computably enumerable if and only if there is
a total computable function 𝑓 such that 𝑋 = Im𝑓. This is seen on an example sheet. This
result justifies the name ‘computably enumerable’.

Proof. If 𝜓𝑋 is computable, then so is

𝑓(𝑤) = {𝑤 𝜓𝑋(𝑤) ↓
↑ otherwise

Clearly Im𝑓 = 𝑋 as required.

Conversely, suppose 𝑓∶ 𝕎 ⇀ 𝕎 with 𝑋 = Im𝑓. Suppose 𝑓 = 𝑓𝑐,1. We use the zigzag
technique. Define the set 𝑍 of tuples (𝑤, 𝑣, 𝑢) such that 𝑡𝑐,1(𝑣, 𝑢) = 𝑎 and 𝑓𝑐,1(𝑣) = 𝑤. Let
𝑌 = {(𝑤, 𝑣) || (𝑤, 𝑣(0), 𝑣(1)) ∈ 𝑍}, so Im𝑓 = 𝑝(𝑌).
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6.10. The Church–Turing thesis
Register machines and recursive functions can both be used to define computability. Histor-
ically, Turingmachineswere also used to define and analyse computability. There is another
alternative, known as while programs. Notably, in this model, there is no special ‘halt state’;
the program halts simply when there are no more instructions to execute. Therefore the
computation sequence in this model may be finite. This gives rise to a notion of while com-
putable functions, the functions computed by a while program.

Theorem. Let 𝑓∶ 𝕎𝑘 ⇀𝕎. Then, the following are equivalent.

(i) 𝑓 is (register machine) computable.
(ii) 𝑓 is partial recursive.
(iii) 𝑓 is Turing computable.
(iv) 𝑓 is while computable.
Turing machines, register machines, recursive functions, and while programs are superfi-
cially completely different approaches, yet the classes of computable functions that they
define are exactly identical. TheChurch–Turing thesis is that this is universal; any reasonable
notion of computation is equivalent. Unfortunately, this is a nonmathematical statement,
and cannot be made precise; this is simply a statement that describes our intuition about
what computation means. Accepting this thesis allows us to freely choose which notion of
computability we would like to use for a given task.

The following is a proof sketch of the fact that computably enumerable sets are type 0 lan-
guages. The sketch makes use of the fact that Turing computability is exactly register ma-
chine computability. For more detail, see Formal Languages (Salomaa 1973).

Proof sketch. Let𝑀 be a Turing machine computing 𝜓𝑋 . Without loss of generality, let the
read-write head be then moved to the front, so 𝑞𝑠◻𝑤◻

𝑀−→ 𝑞𝐻◻𝑎◻. This is a rewrite system
with the rules described by the definition of the Turing machine, transforming 𝑞𝑆◻𝑤◻ into
𝑞𝐻◻𝑎◻
We define a grammar which starts from 𝑆, with 𝑆 → 𝑞𝐻◻𝑎◻, and performs all Turing in-
structions backwards. When 𝑞𝑆 is seen, it deletes everything except 𝑤.

6.11. Solvability of decision problems
We can use the Church–Turing thesis to give precise statements of our decision problems,
without relying on an informal notion of ‘algorithm’. First, we encode grammars in such a
way that for all 𝑤 ∈ 𝕎, there exists a grammar 𝐺 such that code(𝐺) = 𝑤; we write 𝐺𝑤 for
the associated grammar for a word. We require that all grammars are of the form 𝐺𝑤 for
some word 𝑤 ∈ 𝕎. Now,

(i) the word problem is {(𝑤, 𝑣) ∣ 𝑤 ∈ ℒ(𝐺𝑣)};
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(ii) the emptiness problem is {𝑤 ∣ ℒ(𝐺𝑤) = ∅};
(iii) the equivalence problem is {(𝑤, 𝑣) ∣ ℒ(𝐺𝑤) = ℒ(𝐺𝑣)}.
These are sets of tuples of words, so we can use our notion of computability. We can now
concretely define that such a problem is solvable if the set is computable.

Theorem. The word problem for type 0 grammars is unsolvable.

Proof. Let 𝑊 = {(𝑤, 𝑣) ∣ 𝑤 ∈ ℒ(𝐺𝑣)}. We want to show that 𝑊 is not computable. Recall
that 𝕂0 = {(𝑤, 𝑣) ∣ 𝑓𝑤,1(𝑣) ↓}; we will use a proof analogous to the one used for this set.
Suppose𝑊 is computable, so let

𝑓(𝑤) = {↑ 𝑤 ∈ ℒ(𝐺𝑤)
𝑎 𝑤 ∉ ℒ(𝐺𝑤)

Then 𝑓 is a computable function. Hence, dom𝑓 is computably enumerable. So there exists
a grammar 𝐺 such that ℒ(𝐺) = dom𝑓. Let 𝑑 ∈ 𝕎 be such that 𝐺 = 𝐺𝑑. Then

𝑑 ∈ ℒ(𝐺𝑑) ⟺ 𝑑 ∈ dom𝑓 ⟺ 𝑑 ∉ ℒ(𝐺𝑑)

6.12. Reduction functions
Definition. Let 𝐴, 𝐵 ⊆ 𝕎. A function 𝑓∶ 𝕎 → 𝕎 is called a reduction from 𝐴 to 𝐵 if 𝑓 is
total computable and𝑤 ∈ 𝐴 if and only if 𝑓(𝑤) ∈ 𝐵. We write𝐴 ≤𝑚 𝐵 if there is a reduction
from 𝐴 to 𝐵.
Remark. Given a reduction 𝑓 from 𝐴 to 𝐵, the set 𝐴 is intuitively ‘at most as complicated as
𝐵’. Note that 𝑓−1(𝐵) = 𝐴.
The subscript 𝑚 in the notation 𝐴 ≤𝑚 𝐵 stands for ‘many-one’; the function 𝑓 need not
be injective. Note that ≤𝑚 is reflexive and transitive. This relation respects complements:
𝐴 ≤𝑚 𝐵 implies𝕎∖𝐴 ≤𝑚 𝕎∖𝐵. The relation is not in general antisymmetric, so this does
not form a partial order. Instead, ≤𝑚 forms a (partial) preorder.

If ≤ is a preorder on a set 𝑋 , we can define the equivalence relation 𝑥 ∼ 𝑦 when 𝑥 ≤ 𝑦
and 𝑦 ≤ 𝑥. Then (𝑋⟋∼,≤) is a partial order. A preorder can therefore be understood as a
partial order, except that instead of ordering single elements, it orders clusters of equivalent
elements.

If 𝐴 ≤𝑚 𝐵 and 𝐵 is computable, then 𝐴 is also computable. Similarly, if 𝐴 ≤𝑚 𝐵 and 𝐵 is
computably enumerable, then𝐴 is also computably enumerable. This demonstrates the fact
that 𝜒𝐴 = 𝜒𝐵 ∘ 𝑓 and 𝜓𝐴 = 𝜓𝐵 ∘ 𝑓, where 𝑓 is the reduction.
Note that if 𝐴 ≤𝑚 𝐵 and 𝐴 is not computable, then 𝐵 is also not computable, and a similar
result holds for sets that are not computably enumerable. In particular, if 𝕂 ≤𝑚 𝐴, then 𝐴
is not computable. If𝕎∖ 𝕂 ≤𝑚 𝐴, then 𝐴 is not computably enumerable.
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Remark. Many of the previous proofs in this section have implicitly used the notion of a
reduction function, for instance, the claim that solvability of the set {(𝑤, 𝑣) ∣ 𝑤 ∈ ℒ(𝐺𝑣)} is
equivalent to solvability of the set {(𝑤, 𝑣) ∣ 𝑤 ∈ 𝑊𝑣}.
Proposition. Let 𝐴 be a computable set, and 𝐵 ≠ ∅,𝕎. Then 𝐴 ≤𝑚 𝐵.

Proof. Since 𝐵 ≠ ∅,𝕎, let 𝑣 ∈ 𝐵, 𝑢 ∉ 𝐵. Since 𝐴 is computable, we have the computable
function

𝑓(𝑤) = {𝑣 𝑤 ∈ 𝐴
𝑢 𝑤 ∉ 𝐴

This is a reduction from 𝐴 to 𝐵 as required.

Note that𝕎∖𝕂 ≰𝑚 𝕂, otherwise𝕂 is not computably enumerable. We also have𝕂 ≰𝑚 𝕎∖𝕂
from the first result, after considering complements. There are therefore various different
degrees of unsolvability: equivalence classes of ≤𝑚 that are strictly larger than the class of
computable sets.

There are many more such classes than the ones containing 𝕂 and𝕎 ∖ 𝕂. Let {0, 1} ⊆ Σ.
If 𝐴, 𝐵 are sets, we can define the Turing join 𝐴 ⊕ 𝐵 = 0𝐴 ∪ 1𝐵. Then 𝐴 ≤𝑚 𝐴 ⊕ 𝐵 and
𝐵 ≤𝑚 𝐴 ⊕ 𝐵. The Turing join produces an upper bound in the set of equivalence classes
of sets of words, and it can be shown that this is the least upper bound. Hence we obtain
another class of sets represented by 𝕂⊕𝕎 ∖ 𝕂. This is neither Σ1 nor Π1.

Definition. If 𝒞 is a class of sets, we say that 𝐴 is 𝒞-hard if for all 𝐵 ∈ 𝒞, we have 𝐵 ≤𝑚 𝐴.
We say that 𝐴 is 𝒞-complete if it is 𝒞-hard and 𝐴 ∈ 𝒞.
Remark. A 𝒞-hard set is ‘at least as hard as 𝒞’. A 𝒞-complete set is the ‘most complicated’ 𝒞
set.

Corollary. Let 𝐴 be Δ1 and 𝐴 ≠ ∅,𝕎. Then 𝐴 is Δ1-complete.

Proof. TheΔ1 sets are the computable sets, so we simply apply the previous proposition.

Theorem. 𝕂 is Σ1-complete.

Proof. Clearly 𝕂 ∈ Σ1. Now, let 𝑋 be an arbitrary set in Σ1, so 𝑋 is computably enumerable.
Let 𝑓 be a partial computable function such that 𝑋 = dom𝑓. It suffices to show 𝑋 ≤𝑚 𝕂.
Consider the function 𝑔(𝑤, 𝑢) = 𝑓(𝑤). This is computable. We can therefore apply the 𝑠–𝑚–
𝑛 theorem to obtain a total computable function ℎ such that 𝑓ℎ(𝑤)(𝑢) = 𝑔(𝑤, 𝑢) = 𝑓(𝑤). We
claim that ℎ is a reduction function from 𝑋 to 𝕂.
Suppose 𝑤 ∈ 𝑋 . Then 𝑤 ∈ dom𝑓, so 𝑓ℎ(𝑤) is the constant function 𝑓(𝑤). Hence𝑊 ℎ(𝑤) =
𝕎. So 𝑓 is total, and therefore 𝑓ℎ(𝑤)(ℎ(𝑤)) ↓. So ℎ(𝑤) ∈ 𝕂.
Now suppose𝑤 ∉ 𝑋 , so𝑤 ∉ dom𝑓. Then 𝑓ℎ(𝑤) does not halt for any input, giving𝑊 ℎ(𝑤) =
∅. So 𝑓ℎ(𝑤)(ℎ(𝑤)) ↑ and in particular ℎ(𝑤) ∉ 𝕂.
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6.13. Rice’s theorem
We say that 𝑀 and 𝑀′ are weakly equivalent when dom𝑓𝑀,1 = 𝑊 𝑀 = 𝑊 𝑀′ = dom𝑓𝑀′,1.
We can extend this to words. Words 𝑣, 𝑢 are weakly equivalent when 𝑊𝑣 = 𝑊𝑢, and write
𝑣 ∼ 𝑢.
Definition. A set 𝐼 ⊆ 𝕎 is called an index set if it is closed under weak equivalence.

Remark. Index sets are unions of equivalence classes.

Example. ∅ and𝕎 are the trivial index sets. Other index sets correspond to properties of
computably enumerable sets. Emp = {𝑣 ∣ 𝑊𝑣 = ∅},Fin = {𝑣 ∣ 𝑊𝑣 finite}, Inf = {𝑣 ∣ 𝑊𝑣 infinite},
Tot = {𝑣 ∣ 𝑊𝑣 = 𝕎} are index sets. Note that the emptiness problem is precisely the index
set Emp.

Theorem (Rice’s theorem). No nontrivial index set is computable.

Fix 𝑤 ∈ 𝕎 and consider the function

𝑔(𝑢, 𝑣) = {𝑓𝑤,1(𝑣) 𝑓𝑢(𝑢) ↓ or equivalently, 𝑢 ∈ 𝕂
↑ otherwise

This is computable, even though the case distinction itself is not computable. By the 𝑠–𝑚–𝑛
theorem, there is a total function ℎ such that

𝑓ℎ(𝑢)(𝑣) = 𝑔(𝑢, 𝑣) = {𝑓𝑤,1(𝑣) 𝑢 ∈ 𝕂
↑ 𝑢 ∉ 𝕂

If 𝑢 ∈ 𝕂, then𝑊 ℎ(𝑢) = 𝑊𝑤. If 𝑢 ∉ 𝕂, then𝑊 ℎ(𝑢) = ∅. This ℎ will be used as a reduction
function.

Proof. Let 𝐼 be an index set. Let 𝑒 be such that𝑊𝑒 = ∅. Then either 𝑒 ∈ 𝐼, or 𝑒 ∉ 𝐼.
Suppose 𝑒 ∈ 𝐼. Since 𝐼 is nontrivial, there exists 𝑤 ∉ 𝐼, so𝑊𝑤 ≠ ∅. Consider the function 𝑔
from the discussion above, instantiated with this choice of𝑤, and apply the 𝑠–𝑚–𝑛 theorem
to obtain a total function ℎ. We claim that ℎ reduces𝕎∖𝕂 to 𝐼. If 𝑢 ∈ 𝕂, then𝑊 ℎ(𝑢) = 𝑊𝑤.
Hence ℎ(𝑢) ∼ 𝑤, so ℎ(𝑢) ∉ 𝐼. If 𝑢 ∉ 𝕂, then𝑊 ℎ(𝑢) = ∅, so ℎ(𝑢) ∼ 𝑒, so ℎ(𝑢) ∈ 𝐼.
Now suppose 𝑒 ∉ 𝐼. Then there exists𝑤 ∈ 𝐼, and𝑊𝑤 ≠ ∅. Take 𝑔 and ℎ as before. We claim
now that ℎ reduces 𝕂 to 𝐼. If 𝑢 ∈ 𝕂, then𝑊 ℎ(𝑢) = 𝑊𝑤, so ℎ(𝑢) ∼ 𝑤, so ℎ(𝑢) ∈ 𝐼. If 𝑢 ∉ 𝕂,
then𝑊 ℎ(𝑢) = ∅, so ℎ(𝑢) ∼ 𝑒, giving ℎ(𝑢) ∉ 𝐼.

Remark. The proof given for Rice’s theorem shows a stronger statement: if 𝑒 ∈ 𝐼 then𝕎 ∖
𝕂 ≤𝑚 𝐼, and if 𝑒 ∉ 𝐼 then 𝕂 ≤𝑚 𝐼. This allows us to show that certain index sets are not
computably enumerable. 𝑒 ∈ Emp so𝕎 ∖ 𝕂 ≤𝑚 Emp. Similarly,𝕎 ∖ 𝕂 ≤𝑚 Fin. For the
other two index sets, we can only deduce that 𝕂 ≤𝑚 Inf and 𝕂 ≤𝑚 Tot, since 𝑒 does not lie
in these sets.

Corollary. Emp,Fin, Inf,Tot are not computable.
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Corollary. The emptiness problem for type 0 grammars is unsolvable.

Corollary. The equivalence problem for type 0 grammars is unsolvable.

Proof. We define Eq = {(𝑤, 𝑣) ∣ 𝑊𝑤 = 𝑊𝑣}. The function 𝑔(𝑤) = (𝑤, 𝑒) can be performed by
a register machine for any 𝑒. If𝑊𝑒 = ∅, then 𝜒Emp = 𝜒Eq ∘ 𝑔. Hence, if Eq is computable,
so is Emp.

Remark. One can show that Emp is many-one equivalent to𝕎∖𝕂, so it isΠ1-complete, as
proven on the last example sheet. The other problems Tot, Inf,Fin are not in Σ1 or Π1.

Theorem. Fin is not Σ1 or Π1.

Proof. We know𝕎∖ 𝕂 ≤𝑚 Fin by the proof of Rice’s theorem, so Fin is not Σ1. To show it
is not Π1, one must show that 𝕂 ≤𝑚 Fin. Consider

𝑔(𝑤, 𝑣) = {↑ 𝑡𝑤,1(𝑤, 𝑣) = 𝑎
𝜀 otherwise

Applying the 𝑠–𝑚–𝑛 theorem, we obtain a total function ℎ such that 𝑓ℎ(𝑤),1(𝑣) = 𝑔(𝑤, 𝑣). We
show ℎ reduces𝕂 to Fin. If𝑤 ∈ 𝕂, then 𝑓ℎ(𝑤),1 is undefined from 𝑣 onwards, where 𝑣 is the
halting time of 𝑓𝑤(𝑤). Hence,𝑊 ℎ(𝑤) is finite, so ℎ(𝑤) ∈ Fin. If 𝑤 ∉ 𝕂, then 𝑔(𝑤, 𝑣) = 𝜀 for
all 𝑣. So 𝑓ℎ(𝑤),1 is the constant function with value 𝜀. Hence𝑊 ℎ(𝑤) = 𝕎 which is infinite,
so ℎ(𝑤) ∉ Fin.
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Lectured in Michaelmas 2022 by Prof. A. J. Scholl
Suppose𝐾 and 𝐿 are fields, and𝐾 ⊆ 𝐿. We can view 𝐿 as a vector space over𝐾, and therefore
analyse things like its dimension. We study how these extensions of fields interact, and how
they can embed inside each other.

To analyse these field extensions, we will understand the Galois group associated to a par-
ticular field extension 𝐾 ⊆ 𝐿. This group describes the different ways that 𝐿 can embed
into itself, while preserving the structure of 𝐾. This turns out to provide a measure of the
complexity of 𝐿 with respect to 𝐾.
The central result of the course is the Galois correspondence. If 𝐾 ⊆ 𝐿, there may be other
fields lying between 𝐾 and 𝐿. We prove that the subgroups of the Galois group correspond
exactly to these intermediate fields.

We apply Galois theory to some problems that had been unsolved for many centuries or
millenia. Classic examples include doubling the cube and trisecting the angle. We also
prove that there is no formula for finding a root of the general quintic.
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V. Galois Theory

1. Polynomials
1.1. Introduction
Galois theory concerns itself with solving polynomial equations of higher degree, and dis-
cussing how the symmetries of these polynomials relate to their solubility. The modern
interpretation of Galois theory is more interested in the fields that particular polynomials
generate, rather than their particular solutions; this naturally extends to studying symmet-
ries of fields.

1.2. Solving quadratics, cubics and quartics
Methods for solving quadratic equations have been known since the time of the Babylonians.
Consider 𝑎𝑋2+𝑏𝑋 +𝑐, and complete the square into (𝑋 + 1

2
𝑏)

2
+𝑐− 𝑏2

4
. This leads directly

into the usual formula.

Alternatively, consider (𝑋 − 𝑥1)(𝑋 − 𝑥2) and expand, giving 𝑋2 − (𝑥1 + 𝑥2)𝑋 + 𝑥1𝑥2. Thus,
𝑥1 + 𝑥2 = −𝑏 and 𝑥1𝑥2 = 𝑐. We can write 𝑥1 =

1
2
[(𝑥1 + 𝑥2) + (𝑥1 − 𝑥2)], where 𝑥1 + 𝑥2 = 𝑏

and (𝑥1 − 𝑥2)2 = 𝑏2 − 4𝑐.
Cubics were solved much later, in the early 16th century, by the Italian mathematician del
Ferro. Consider the cubic𝑋3+𝑎𝑋2+𝑏𝑋+𝑐, written as (𝑋−𝑥1)(𝑋−𝑥2)(𝑋−𝑥3). Multiplying,
we find

𝑥1 + 𝑥2 + 𝑥3 = −𝑎; 𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥3𝑥1 = 𝑏; 𝑥1𝑥2𝑥3 = −𝑐
Without loss of generality we can set 𝑎 = 0 by replacing 𝑋 ↦ 𝑋 − 𝑎

3
. Now,

𝑥1 =
1
3[(𝑥1 + 𝑥2 + 𝑥3) + (𝑥1 + 𝜔𝑥2 + 𝜔2𝑥3)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

𝑢
+ (𝑥1 + 𝜔2𝑥2 + 𝜔𝑥3)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

𝑣
]

where 𝜔 = 𝑒
2𝜋𝑖
3 . The 𝑢, 𝑣 are known as Lagrange resolvents. Applying a cyclic permutation

to 𝑥1, 𝑥2, 𝑥3 in 𝑢 or 𝑣, we find 𝑢 ↦ 𝜔𝑢 and 𝑣 ↦ 𝜔𝑣. Hence, the cubes of 𝑢 and 𝑣 are invariant
under cyclic permutations of 𝑥1, 𝑥2, 𝑥3. Under a permutation 𝑥2 ↦ 𝑥3, 𝑥3 ↦ 𝑥2, 𝑢 and 𝑣
swap. Hence, 𝑢3 + 𝑣3 and 𝑢3𝑣3 are invariant under all permutations of roots. A general
fact that we will prove later is that such invariant expressions can be written in terms of the
coefficients of the polynomial. In this case, we have

𝑢3 + 𝑣3 = −27𝑐; 𝑢3𝑣3 = −27𝑏2

Now, 𝑢3 and 𝑣3 are the roots of the quadratic 𝑌2+27𝑐𝑌 −27𝑏2. This then provides a formula
for the root 𝑥1. This process is known as Cardano’s formula.
Similarly, the quartic 𝑋4+𝑎𝑋3+𝑏𝑋2+𝑐𝑋 +𝑑 can be solved by producing an auxiliary cubic
equation, in a similar way to the auxiliary quadratic equation found for the cubic case above.
However, the same process does not work for the quintic; the auxiliary equation has a degree
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1. Polynomials

which is too large. The underlying reason behind this is to do with group theory, and in
particular, the group structure of 𝑆5 and 𝐴5. This will be explored later in the course.

1.3. Polynomial rings

In this course, ringmeans a commutative nonzero ring. If 𝑅 is a ring, 𝑅[𝑋] denotes the ring
of polynomials with elements ∑𝑛

𝑖=0 𝑎𝑖𝑋 𝑖, and the usual operations of addition and multi-
plication. A polynomial 𝑓 ∈ 𝑅[𝑋] can be interpreted as a function 𝑓∶ 𝑅 → 𝑅, given by
𝑥 ↦ ∑𝑛

𝑖=0 𝑎𝑖𝑥𝑖. It is, however, important to distinguish the polynomial and its associated
function; the polynomial is not in general uniquely determined by the function. For ex-
ample, let 𝑅 = ℤ⟋𝑝ℤ, so for all 𝑎 ∈ 𝑅, we have 𝑎𝑝 = 𝑎, and hence 𝑋𝑝 and 𝑋 are different
polynomials yet represent the same function.

Recall from Groups, Rings and Modules that if 𝑅 = 𝐾 is a field, 𝐾[𝑋] is a Euclidean domain
(and hence is a unique factorisation domain, a Noetherian ring, a principal ideal domain,
and an integral domain). Hence, there is a division algorithm: for polynomials 𝑓, 𝑔 ∈ 𝐾[𝑋],
there exists a unique 𝑞, 𝑟 ∈ 𝐾[𝑋] such that 𝑓 = 𝑔𝑞 + 𝑟 and deg 𝑟 < deg 𝑔, where we denote
deg 0 = −∞. If 𝑔 = 𝑋 − 𝑎 is linear, 𝑓 = (𝑋 − 𝑎)𝑞 + 𝑟 where 𝑟 = 𝑓(𝑎) ∈ 𝐾; this is the fa-
miliar remainder theorem. Note that every polynomial 𝑓 ∈ 𝐾[𝑋] is a product of irreducible
polynomials since 𝐾[𝑋] is a unique factorisation domain, and there are greatest common
divisors which can be computed using Euclid’s algorithm in the usual way.

Proposition. Let 𝐾 be a field, and 0 ≠ 𝑓 ∈ 𝐾[𝑋]. Then, 𝑓 has at most deg𝑓 roots in 𝐾.

Proof. If𝑓 has no roots, the proof is complete. If𝑓 has a root𝑎, consider𝑓 = (𝑋−𝑎)𝑞+𝑓(0) =
(𝑋 − 𝑎)𝑞. For a root 𝑏 of 𝑓, either 𝑏 = 𝑎 or 𝑞(𝑏) = 0. By induction, 𝑞 has at most deg 𝑞 roots,
since deg 𝑞 < deg𝑓. Then deg 𝑞 + 1 ≤ deg𝑓 as required.

1.4. Symmetric polynomials

Definition. Let 𝑅 be a ring, and let 𝑛 ≥ 1. A polynomial 𝑓 ∈ 𝑅[𝑋1,… , 𝑋𝑛] is symmetric if,
for every permutation 𝜎 ∈ 𝑆𝑛, we have 𝑓(𝑋𝜎(1),… , 𝑋𝜎(𝑛)) = 𝑓(𝑋1,… , 𝑋𝑛), where 𝑆𝑛 is the
symmetric group of degree 𝑛.

Note that constant polynomials are symmetric, and the property of symmetry is closed un-
der addition and multiplication. Hence, the set of symmetric polynomials is a subring of
𝑅[𝑋1,… , 𝑋𝑛].

Example. 𝑋1 +⋯+ 𝑋𝑛 is symmetric. More generally, 𝑝𝑘 = 𝑋𝑘
1 +⋯+ 𝑋𝑘

𝑛 is symmetric.

Proposition. Let 𝑓𝜎(𝑋) = 𝑓(𝑋𝜎(1),… , 𝑋𝜎(𝑛)). This gives an action (on the right) of the
group 𝑆𝑛 on 𝑅[𝑋1,… , 𝑋𝑛]. A polynomial 𝑓 ∈ 𝑅[𝑋1,… , 𝑋𝑛] is symmetric if and only if 𝑓 is
fixed under the action of 𝑆𝑛; in other words, 𝑓𝜎 = 𝑓 for all 𝜎 ∈ 𝑆𝑛.
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V. Galois Theory

Definition. The elementary symmetric functions or elementary symmetric polynomials are

𝑠𝑟(𝑋1,… , 𝑋𝑛) = ∑
𝑖1<⋯<𝑖𝑟

𝑋𝑖1𝑋𝑖2 ⋯𝑋𝑖𝑟

For instance,
𝑠2(𝑋1, 𝑋2, 𝑋3) = 𝑋1𝑋2 + 𝑋1𝑋3 + 𝑋2𝑋3

It is clear that these are symmetric polynomials.

Definition. Amonomial is an expression of the form𝑋𝐼 = 𝑋𝐼1
1 ⋯𝑋𝐼𝑛𝑛 for 𝐼 ∈ ℕ𝑛. The (total)

degree of a monomial is∑𝑛
𝑖=1 𝐼𝑖. A term is a scalar multiple of a monomial. A polynomial is

uniquely characterised by a sum of terms. The total degree of a polynomial is the maximum
total degree of its terms.

Monomials are equipped with a lexicographic ordering, where we say monomials 𝑋𝐼 > 𝑋𝐽 if
either 𝐼1 > 𝐽1 or 𝐼1 = 𝐽1 and for some 𝑟 ∈ {1,… , 𝑛 − 1}wehave 𝐼1 = 𝐽1,… , 𝐼𝑟 = 𝐽𝑟, 𝐼𝑟+1 > 𝐽𝑟+1.
This is a total order.

Theorem. Every symmetric polynomial in 𝑛 variables over a ring 𝑅 can be expressed as a
polynomial in the 𝑠𝑟 for 1 ≤ 𝑟 ≤ 𝑛, with coefficients in 𝑅. Further, there are no non-trivial
relations between the 𝑠𝑟.
Remark. Consider the ringhomomorphism 𝜃∶ 𝑅[𝑌1,… , 𝑌𝑛] → 𝑅[𝑋1,… , 𝑋𝑛] given by 𝜃(𝑌𝑟) =
𝑠𝑟 and 𝜃(𝑟) = 𝑟 for 𝑟 ∈ 𝑅. The first part of the above theorem stipulates that Im 𝜃 is the set
of symmetric polynomials. The second part implies that 𝜃 is injective, since any element of
ker 𝜃 is a polynomial between the 𝑠𝑟 that evaluates to zero.
Note that we can equivalently define the 𝑠𝑟 as

𝑛
∏
𝑖=1

(𝑇 + 𝑋𝑖) = 𝑇𝑛 + 𝑠1𝑇𝑛−1 +⋯+ 𝑠𝑛−1𝑇 + 𝑠𝑛

If we need to specify the number of variables, we use 𝑠𝑟,𝑛 instead of 𝑠𝑟.

Proof. Let 𝑑 be the total degree of a symmetric polynomial 𝑓. Let 𝑋𝐼 be the largest (in lex-
icographic order) monomial which occurs in 𝑓 with coefficient 𝑐. Since 𝑓 is symmetric, any
permutation of the 𝑋𝑖 yields another monomial that occurs in 𝑓. Hence, 𝐼1 ≥ 𝐼2 ≥ ⋯ ≥
𝐼𝑛, because otherwise the rearranged monomial that satisfies this will be a strictly larger
monomial in 𝑓. We can therefore write

𝑋𝐼 = 𝑋𝐼1−𝐼2
1 (𝑋1𝑋2)𝐼2−𝐼3 ⋯(𝑋1…𝑋𝑛)𝐼𝑛

Consider
𝑔 = 𝑠𝐼1−𝐼21 𝑠𝐼2−𝐼32 ⋯𝑠𝐼𝑛𝑛

By construction, the largest monomial in 𝑔 is 𝑋𝐼 . Since 𝑔 is symmetric, 𝑐𝑔 is symmetric. By
induction, we may assume 𝑓− 𝑐𝑔 is expressible as a sum of symmetric polynomials as it has
total degree no larger than 𝑑, its leading monomial term is smaller than 𝑋𝐼 , and there are
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only finitely many monomials of degree at most 𝑑. Hence 𝑓 is also expressible as a sum of
polynomials as required.

Nowweproveuniqueness by induction on𝑛. Let𝐺 ∈ 𝑅[𝑌1,… , 𝑌𝑛] such that𝐺(𝑠1,𝑛,… , 𝑠𝑛,𝑛) =
0. We want to show that 𝐺 is the zero polynomial. If 𝑛 = 1, the result is trivial as 𝑠1,1 = 𝑋1.
If 𝐺 = 𝑌𝑘

𝑛 𝐻 with 𝑌𝑛 not dividing 𝐻, then 𝑠𝑘𝑛,𝑛𝐻(𝑠1,𝑛,… , 𝑠𝑛,𝑛) = 0. Since 𝑠𝑛,𝑛 = 𝑋1…𝑋𝑛, it
is not a zero divisor in 𝑅[𝑋1,… , 𝑋𝑛]. Hence 𝐻(𝑠1,𝑛,… , 𝑠𝑛,𝑛) = 0. Without loss of generality,
we can assume that 𝐺 is not divisible by 𝑌𝑛. Now, replacing 𝑋𝑛 with zero, 𝑠𝑘,𝑛 is mapped
to 𝑠𝑘,𝑛−1 for 𝑘 ≠ 𝑛, and 𝑠𝑛,𝑛 is mapped to zero. Hence, 𝐺(𝑠1,𝑛−1,… , 𝑠𝑛−1,𝑛−1, 0) = 0. By
induction, 𝐺(𝑌1,… , 𝑌𝑛−1, 0) = 0. Hence 𝑌𝑛 ∣ 𝐺, contradicting our assumption.

Example. Consider, for 𝑛 ≥ 3,
𝑓 = ∑

𝑖≠𝑗
𝑋2
𝑖 𝑋𝑗

The leading term is 𝑋2
1𝑋2 = 𝑋1(𝑋1𝑋2), so we consider

𝑓 − 𝑠1𝑠2 = (∑
𝑖≠𝑗

𝑋2
𝑖 𝑋𝑗) −∑

𝑖
∑
𝑗<𝑘

𝑋𝑖𝑋𝑗𝑋𝑘

= (∑
𝑖≠𝑗

𝑋2
𝑖 𝑋𝑗) − (∑

𝑖≠𝑗
𝑋2
𝑖 𝑋𝑗 + 3 ∑

𝑖<𝑗<𝑘
𝑋𝑖𝑋𝑗𝑋𝑘)

= −3 ∑
𝑖<𝑗<𝑘

𝑋𝑖𝑋𝑗𝑋𝑘

= −3𝑠3

Hence 𝑓 = 𝑠1𝑠2 − 3𝑠3.
Consider 𝑓 = 𝑝5 = ∑𝑖 𝑋5

𝑖 . Computing this in terms of elementary symmetric polynomi-
als by hand is somewhat tedious, but there are various results, such as Newton’s formulae,
which can help in simplifying such expressions.

Theorem (Newton’s formulae). Let 𝑛 ≥ 1. Then for all 𝑘 ≥ 1,

𝑝𝑘 − 𝑠1𝑝𝑘−1 +⋯+ (−1)𝑘−1𝑠𝑘−1𝑝1 + (−1)𝑘𝑘𝑠𝑘 = 0

By convention, let 𝑠0 = 1 and 𝑠𝑟 = 0 if 𝑟 > 𝑛.

Proof. It suffices to consider 𝑅 = ℤ (or, for example, 𝑅 = ℝ). Consider the generating
function

𝐹(𝑇) =
𝑛
∏
𝑖=1

(1 − 𝑋𝑖𝑇) =
𝑛
∑
𝑟=0

(−1)𝑟𝑠𝑟𝑇𝑟

Note that for polynomials 𝑓(𝑥), 𝑔(𝑥), their formal derivatives satisfy
d
d𝑇
(𝑓𝑔)
𝑓𝑔 = 𝑓′𝑔 + 𝑓𝑔′

𝑓𝑔 = 𝑓′
𝑓 + 𝑔′

𝑔
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Then, taking the logarithmic derivative with respect to 𝑇,

𝐹′(𝑇)
𝐹(𝑇) =

d
d𝑇
∏𝑛

𝑖=1(1 − 𝑋𝑖𝑇)

∏𝑛
𝑖=1(1 − 𝑋𝑖𝑇)

=
𝑛
∑
𝑖=1

d
d𝑇
(1 − 𝑋𝑖𝑇)
1 − 𝑋𝑖𝑇

= −
𝑛
∑
𝑖=1

𝑋𝑖
1 − 𝑋𝑖𝑇

= −1
𝑇

𝑛
∑
𝑖=1

∞
∑
𝑟=1

𝑋𝑟
𝑖 𝑇𝑟

= −1
𝑇

∞
∑
𝑟=1

𝑝𝑟𝑇𝑟

Hence,
−𝑇𝐹′(𝑇) = 𝑠1𝑇 − 2𝑠2𝑇2 +⋯+ (−1)𝑛−1𝑛𝑠𝑛𝑇𝑛

but also

−𝑇𝐹′(𝑇) = 𝐹(𝑇)
∞
∑
𝑟=1

𝑝𝑟𝑇𝑟 = (𝑠0 − 𝑠1𝑇 +⋯+ (−1)𝑛𝑠𝑛𝑇𝑛)(𝑝1𝑇 + 𝑝2𝑇2 +…)

Equating the coefficients of powers of𝑇, we find the identity as required by the theorem.

Example. The discriminant polynomial is

𝐷(𝑋1,… , 𝑋𝑛) = Δ(𝑋1,… , 𝑋𝑛)2

where
Δ(𝑋1,… , 𝑋𝑛) =∏

𝑖<𝑗
(𝑋𝑖 − 𝑋𝑗)

This is used in defining the sign of a permutation: applying a permutation 𝜎 to Δmultiplies
Δ by the sign of 𝜎. Hence 𝐷 is symmetric. Therefore, 𝐷 can be written in terms of the
symmetric polynomials.

𝐷(𝑋1,… , 𝑋𝑛) = 𝑑(𝑠1,… , 𝑠𝑛)

where 𝑑 has integer coefficients. For example, 𝑛 = 2 gives 𝐷 = (𝑋1 − 𝑋2)2 = 𝑠21 − 4𝑠2.

Definition. Let 𝑓 = 𝑇𝑛 +∑𝑛−1
𝑖=0 𝑎𝑛−𝑖𝑇 𝑖 be a monic polynomial in 𝑅[𝑇]. Its discriminant is

Disc(𝑓) = 𝑑(−𝑎1, 𝑎2, −𝑎3,… , (−1)𝑛𝑎𝑛) ∈ 𝑅
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Observe that if 𝑓 is a product of linear polynomials 𝑓 = ∏𝑛
𝑖=1(𝑇 − 𝑥𝑖), then

𝑎𝑟 = (−1)𝑟𝑠𝑟(𝑥1,… , 𝑥𝑛)

giving
Disc(𝑓) =∏

𝑖<𝑗
(𝑥𝑖 − 𝑥𝑗)2 = 𝐷(𝑥1,… , 𝑥𝑛)

In particular, if 𝑅 = 𝐾 is a field, Disc(𝑓) = 0 if and only if 𝑓 has a repeated root. For example,
Disc(𝑇2 + 𝑏𝑇 + 𝑐) = 𝑏2 − 4𝑐.
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2. Fields
2.1. Definition
Definition. A field is a commutative nonzero ring 𝐾 with a 1, in which every nonzero ele-
ment is invertible. The set of nonzero elements in 𝐾 is therefore a group under multiplica-
tion, known as the multiplicative group of 𝐾, denoted 𝐾×.

Definition. The characteristic of a field 𝐾 is the least positive integer 𝑝 such that 𝑝 ⋅ 1 = 0;
or if such an integer does not exist, its characteristic is zero.

Example. ℚ has characteristic zero. 𝔽𝑝 = ℤ⟋𝑝ℤ has characteristic 𝑝, when 𝑝 is prime.

Remark. The characteristic of a field is always prime or zero.

Definition. The prime subfield of a field𝐾 is the smallest subfield of𝐾, which is isomorphic
to 𝔽𝑝 (if its characteristic is a prime 𝑝) or ℚ (if its characteristic is zero).

Proposition. Let 𝜑∶ 𝐾 → 𝐿 be a field homomorphism. Then 𝜑 is an injection.

Proof. We have 𝜑(1𝐾) = 1𝐿 ≠ 0𝐿 by the definition of a ring homomorphism. Then ker𝜑 is
a proper ideal of 𝐾. But the only proper ideal of a field is the zero ideal, so ker𝜑 = (0).

2.2. Field extensions
Definition. Let 𝐾 ⊂ 𝐿 be fields (implicitly assuming that the field operations and identity
elements on 𝐾 and 𝐿 are the same). We say 𝐾 is a subfield of 𝐿, and 𝐿 is a field extension of
𝐾, denoted 𝐿/𝐾 (read ‘𝐿 over 𝐾’). If 𝑖 ∶ 𝐾 → 𝐿 is a field homomorphism, we say that 𝑖 is an
isomorphism of 𝐾 with the subfield 𝑖(𝐾) ⊂ 𝐿; in this case, we identify 𝐾 with 𝑖(𝐾) and say 𝐿
is a field extension of 𝐾.
Remark. The notation 𝐿/𝐾 is not related to quotients or division.

Example. (i) ℂ/ℝ/ℚ.
(ii) ℚ(𝑖) = {𝑎 + 𝑏𝑖 ∣ 𝑎, 𝑏 ∈ ℚ}/ℚ.

Definition. Let 𝐾 ⊂ 𝐿, and 𝑥 ∈ 𝐿. We define 𝐾[𝑥] = {𝑝(𝑥) ∣ 𝑝 ∈ 𝐾[𝑇]}, the ring of polyno-
mial expressions in 𝑥. This is a subring of 𝐿, but is not in general a field. We further define
𝐾(𝑥) = {𝑝(𝑥)

𝑞(𝑥)
||| 𝑝, 𝑞 ∈ 𝐾[𝑇], 𝑞(𝑥) ≠ 0} to be the field of fractions of 𝐾[𝑥], which is the field of

rational expressions in 𝑥. This is a subfield of 𝐿, usually read ‘𝐾 adjoin 𝑥’. For 𝑥1,… , 𝑥𝑛 ∈ 𝐿,
we define

𝐾[𝑥1,… , 𝑥𝑛] = {𝑝(𝑥1,… , 𝑥𝑛) ∣ 𝑝 ∈ 𝐾[𝑇1,… , 𝑇𝑛]}

𝐾(𝑥1,… , 𝑥𝑛) = {𝑝(𝑥1,… , 𝑥𝑛)
𝑞(𝑥1,… , 𝑥𝑛)

||| 𝑝, 𝑞 ∈ 𝐾[𝑇1,… , 𝑇𝑛], 𝑞(𝑥1,… , 𝑥𝑛) ≠ 0}

Remark. One can check that𝐾(𝑥1,… , 𝑥𝑛−1)(𝑥𝑛) = 𝐾(𝑥1,… , 𝑥𝑛) and similarly for𝐾[𝑥1,… , 𝑥𝑛].
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2.3. Field extensions as vector spaces
Remark. A field extension 𝐿/𝐾 turns 𝐿 into a 𝐾-vector space by forgetting themultiplication
between elements of 𝐿.
Definition. A field extension 𝐿/𝐾 is called a finite extension if 𝐿 is a finite-dimensional 𝐾-
vector space. In this case, we write [𝐿 ∶ 𝐾] = dim𝐾 𝐿 for the dimension of this vector space,
known as the degree of the extension. Otherwise, we say 𝐿/𝐾 is an infinite extension, and
write [𝐿 ∶ 𝐾] = ∞.

Remark. [𝐿 ∶ 𝐿] = dim𝐿 𝐿 = 1. As a 𝐾-vector space, 𝐿 ≅ 𝐾[𝐿∶𝐾].

Example. ℂ/ℝ is a finite extension of degree two.

If 𝐾 is any field, the extension 𝐾(𝑋)/𝐾 is an infinite extension, where 𝐾(𝑋) is the field of ra-
tional functions, the field of fractions of the polynomial ring𝐾[𝑋]. This is because 1, 𝑋, 𝑋2,…
are linearly independent.

ℝ/ℚ is an infinite extension. This follows by a countability argument. If ℝ/ℚ were a finite
extension of degree 𝑛, we would haveℝ ≅ ℚ𝑛, but the left hand side is uncountable and the
right hand side is countable.

This course is largely concernedwith properties and symmetries of finite field extensions.

Definition. An extension is quadratic, cubic, etc. if its degree is 2, 3, etc.

Proposition. Suppose 𝐾 is a finite field (necessarily of characteristic 𝑝 for 𝑝 ≠ 0 a prime).
Then |𝐾| is a power of 𝑝.

Proof. Note that 𝐾/𝔽𝑝 is a finite extension, and so 𝐾 ≅ 𝔽𝑛𝑝 , giving |𝐾| = 𝑝𝑛.

We will later show that for all prime powers 𝑞 = 𝑝𝑛, there exists a finite field 𝔽𝑞 with 𝑞
elements.

Theorem (tower law). Let 𝑀/𝐿, 𝐿/𝐾 be a pair of field extensions. Then 𝑀/𝐾 is a finite
extension if and only if𝑀/𝐿 and 𝐿/𝐾 are finite. If so, we have [𝑀 ∶ 𝐿][𝐿 ∶ 𝐾] = [𝑀 ∶ 𝐾].
It is easier to prove a more general statement.

Theorem. Let 𝐿/𝐾 and 𝑉 is an 𝐿-vector space. Then 𝑉 is a 𝐾-vector space, and dim𝐾 𝑉 =
[𝐿 ∶ 𝐾] dim𝐿 𝑉 (with the obvious meaning if any of these expressions are infinite).

Taking 𝑉 = 𝑀 proves the tower law as required.

Proof. Let dim𝐿 𝑉 = 𝑑 < ∞. Then 𝑉 ≅ 𝐿 ⊕ ⋯ ⊕ 𝐿 = 𝐿𝑑 as an 𝐿-vector space, so this
also holds as a 𝐾-vector space. But since 𝐿 ≅ 𝐾[𝐿∶𝐾] as a 𝐾-vector space, we have 𝑉 ≅
(𝐾[𝐿∶𝐾])𝑑 ≅ 𝐾𝑑[𝐿∶𝐾] as a 𝐾-vector space.
If 𝑉 is finite-dimensional over 𝐾, then a 𝐾-basis for 𝑉 will span 𝑉 over 𝐿, so 𝑉 is finite-
dimensional over 𝐿. Thus if 𝑉 is infinite-dimensional over 𝐿, it is infinite-dimensional over
𝐾.
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Likewise, if [𝐿 ∶ 𝐾] = ∞ and 𝑉 ≠ 0, then 𝑉 has an infinite set of linearly independent
vectors as a 𝐾-vector space, so dim𝐾 𝑉 = ∞.

Proposition. Let 𝐾 be a field, and 𝐺 ⊂ 𝐾× be a finite subgroup of the multiplicative group.
Then 𝐺 is cyclic. In particular, if 𝐾 is finite, 𝐾× is cyclic.

Proof. We can find𝑚𝑖 such that

𝐺 ≅ ℤ⟋𝑚1ℤ ×⋯× ℤ⟋𝑚𝑘ℤ

where 1 < 𝑚1 ∣ 𝑚2 ∣ ⋯ ∣ 𝑚𝑘 = 𝑚 by the structure theorem for abelian groups. Then, every
element of 𝐺 satisfies 𝑥𝑚 = 1. Since 𝐾 is a field, the polynomial 𝑇𝑚 −1 has at most𝑚 roots.
Every element of 𝐺 is a root of this polynomial, so |𝐺| ≤ 𝑚. This can only happen when
𝑘 = 1, so 𝐺 = ℤ⟋𝑚ℤ.

Remark. If𝐾 = 𝔽𝑝 = ℤ⟋𝑝ℤ, there exists𝑎 ∈ {1,… , 𝑝 − 1} such thatℤ⟋𝑝ℤ = {1, 𝑎, 𝑎2,… , 𝑎𝑝−1}.
Such an 𝑎 is called a primitive rootmod 𝑝.
Proposition. Let 𝑅 be a ring, 𝑝 be a prime such that 𝑝 ⋅ 1𝑅 = 0𝑅 (for instance, 𝑅 could be a
field of characteristic 𝑝). Then, the map 𝜑𝑝∶ 𝑅 → 𝑅 given by 𝜑𝑝(𝑥) = 𝑥𝑝 is a homomorph-
ism, known as the Frobenius endomorphism.

Proof. First, 𝜑𝑝(1) = 1𝑝 = 1 and 𝜑𝑝(𝑥)𝜑𝑝(𝑦) = 𝑥𝑝𝑦𝑝 = (𝑥𝑦)𝑝 = 𝜑𝑝(𝑥𝑦). For 𝑥, 𝑦 ∈ 𝑅,

𝜑𝑝(𝑥 + 𝑦) = (𝑝0)𝑥
𝑝𝑦0 + (𝑝1)𝑥

𝑝−1𝑦1 +⋯+ ( 𝑝
𝑝 − 1)𝑥

1𝑦𝑝−1 + (𝑝𝑝)𝑥
0𝑦𝑝

= 𝑥𝑝 + 𝑦𝑝 = 𝜑𝑝(𝑥) + 𝜑𝑝(𝑦)

since 𝑝 ∣ (𝑝
𝑘
) for 𝑘 ∈ {1,… , 𝑝 − 1} by primality of 𝑝.

Example. This gives another proof of Fermat’s little theorem 𝑥𝑝 ≡ 𝑥mod 𝑝, by induction
on 𝑥 noting that (𝑥 + 1)𝑝 ≡ 𝑥𝑝 + 1mod 𝑝.

2.4. Algebraic elements and minimal polynomials
Definition. Let𝐿/𝐾 be an extension and 𝑥 ∈ 𝐿. 𝑥 is algebraic over𝐾 if there exists a nonzero
polynomial 𝑓 ∈ 𝐾[𝑇] such that 𝑓(𝑥) = 0. Otherwise, we say 𝑥 is transcendental over 𝐾.
For 𝑓 ∈ 𝐾[𝑇], we have 𝑓(𝑥) ∈ 𝐿. Varying 𝑓, this gives a map ev𝑥 ∶ 𝐾[𝑇] → 𝐿 defined by
𝑓 ↦ 𝑓(𝑥). This is a ring homomorphism.
The kernel 𝐼 = ker(ev𝑥) ⊂ 𝐾[𝑇] is an ideal, the set of polynomials which vanish at 𝑥. As
Im(ev𝑥) is a subring of 𝐿 which is a field, it is an integral domain. In particular, 𝐼 is a prime
ideal, so either 𝐼 = 0, in which case 𝑥 is transcendental over 𝐾, or there exists a unique
monic irreducible polynomial 0 ≠ 𝑔 ∈ 𝐾[𝑇] such that 𝐼 = (𝑔), in which case 𝑥 is algebraic
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and we say 𝑔 is the minimal polynomial of 𝑥 over 𝐾. In this case, 𝑓(𝑥) = 0 if and only if
𝑔 ∣ 𝑓. We write 𝑚𝑥,𝐾 for the minimal polynomial of 𝑥 over 𝐾. Note that 𝑚𝑥,𝐾 is the monic
polynomial in 𝐾 of least degree with 𝑥 as a root.
Example. If 𝑥 ∈ 𝐾, 𝑚𝑥,𝐾 = 𝑇 − 𝑥. If 𝑝 is prime and 𝑑 ≥ 1, 𝑇𝑑 − 𝑝 ∈ ℚ[𝑇] is irreducible
by Eisenstein’s criterion, so it is the minimal polynomial of 𝑑√𝑝 ∈ ℝ over ℚ. If 𝑝 is prime,

𝑧 = 𝑒
2𝜋𝑖
𝑝 is a root of 𝑇𝑝 − 1 = (𝑇 − 1)(𝑇𝑝−1 + 𝑇𝑝−2 +⋯+ 1) = (𝑇 − 1)𝑔(𝑇). Note that

𝑔(𝑇 + 1) = (𝑝𝑝)𝑇
𝑝−1 + ( 𝑝

𝑝 − 1)𝑇
𝑝−2 +⋯+ (𝑝2)𝑇 + (𝑝1)

This is irreducible by Eisenstein’s criterion, so 𝑔 is minimal for 𝑧 over ℚ.
We say the degree of an algebraic element 𝑥 over 𝐾 is the degree of its minimal polynomial,
written deg𝐾 𝑥 = deg(𝑥/𝐾).
Proposition. Let 𝐿/𝐾 and 𝑥 ∈ 𝐿. Then, the following are equivalent.
(i) 𝑥 is algebraic over 𝐾.
(ii) [𝐾(𝑥) ∶ 𝐾] is finite.
(iii) 𝐾[𝑥] is finite-dimensional as a 𝐾-vector space.
(iv) 𝐾[𝑥] = 𝐾(𝑥).
(v) 𝐾[𝑥] is a field.

If these hold, deg𝑥 = [𝐾(𝑥) ∶ 𝐾].

Proof. (ii) implies (iii). This follows since 𝐾[𝑥] ⊆ 𝐾(𝑥).
(iv) is equivalent to (v) is trivial.

(iii) implies (v) and (ii). Let 0 ≠ 𝑦 = 𝑔(𝑥) ∈ 𝐾[𝑥]. Consider the map 𝐾[𝑥] → 𝐾[𝑥] given by
𝑧 ↦ 𝑦𝑧. This is a𝐾-linear transformation, and since 𝑦 ≠ 0 this is injective. Because dim𝐾[𝑥]
is finite, this injective map must be a bijection. Therefore there exists 𝑧 such that 𝑦𝑧 = 1,
so 𝑦 is invertible. Hence (v) holds. Since (v) implies (iv), [𝐾(𝑥) ∶ 𝐾] = dim𝐾 𝐾[𝑥] < ∞ as
required for (ii).

(v) implies (i). If 𝑥 = 0, the proof is complete, so assume 𝑥 ≠ 0. Then 𝑥−1 = 𝑎0 + 𝑎1𝑥 +⋯+
𝑎𝑛𝑥𝑛 ∈ 𝐾[𝑥]. Therefore, 𝑎𝑛𝑥𝑛+1 +⋯+ 𝑎0𝑥 − 1 = 0, so 𝑥 is algebraic over 𝐾.
(i) implies (v), (iii), and the degree formula. The image of ev𝑥 ∶ 𝐾[𝑇] → 𝐿 is the subring
𝐾[𝑥] ⊂ 𝐿. If 𝑥 is algebraic over 𝐾, ker(ev𝑥) = (𝑚𝑥,𝐾) is a maximal ideal by irreducibility of
𝑚𝑥,𝐾 . By the first isomorphism theorem, 𝐾[𝑇]⟋(𝑚𝑥,𝐾) ≅ 𝐾[𝑥]. But quotients by maximal
ideals are fields, so 𝐾[𝑥] is a field, proving (v). This polynomial is monic of degree 𝑑 =
deg𝐾 𝑥. Hence 𝐾[𝑇]⟋(𝑚𝑥,𝐾) has a 𝐾-basis 1, 𝑇,… , 𝑇𝑑−1. Thus, dim𝐾 𝐾[𝑥] = 𝑑 = [𝐾(𝑥) ∶
𝐾] < ∞, proving (iii) and the degree formula.
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Corollary. 𝑥1,… , 𝑥𝑛 are algebraic over 𝐾 if and only if 𝐿 = 𝐾(𝑥1,… , 𝑥𝑛) is finite over 𝐾. If
so, every element of 𝐾(𝑥1,… , 𝑥𝑛) is algebraic over 𝐾.
If 𝑥, 𝑦 are algebraic over 𝐾, then so are 𝑥 ± 𝑦, 𝑥𝑦, and 𝑥−1 if 𝑥 is nonzero. If 𝐿/𝐾 is a field
extension, the set of algebraic elements of 𝐿 forms a subfield of 𝐿.

Proof. If 𝑥𝑛 is algebraic over 𝐾, then it is also algebraic over 𝐾(𝑥1,… , 𝑥𝑛−1). Hence the
extension 𝐿/𝐾(𝑥1,… , 𝑥𝑛−1) is finite. By induction on 𝑛, the tower law gives the required
result. Conversely, if 𝐿 is finite over 𝐾, the subfield 𝐾(𝑦) is finite over 𝐾 for all 𝑦 ∈ 𝐿, so 𝑦 is
algebraic over 𝐾.
Suppose 𝑥, 𝑦 are algebraic over 𝐾. Then 𝑥 ± 𝑦, 𝑥𝑦, 𝑥−1 ∈ 𝐾(𝑥, 𝑦), which is finite over 𝐾 as
required.

Example. Consider 𝑧 = 𝑒2𝜋𝑖/𝑝 ∈ ℂ where 𝑝 is an odd prime. This has degree 𝑝 − 1 as
discussed above. Now consider 𝑥 = 2 cos 2𝜋

𝑝
, so 𝑥 = 𝑧 + 1

𝑧
∈ ℚ(𝑧). This is algebraic over ℚ

because it belongs to this finite extension. Note that ℚ(𝑧) ⊃ ℚ(𝑥) ⊃ ℚ, and 𝑧2 − 𝑥𝑧 + 1 = 0.
Hence the degree of 𝑧 over ℚ(𝑥) is at most 2. But [ℚ(𝑧) ∶ ℚ(𝑥)] ≠ 1 because 𝑧 ∈ ℂ ∖ ℝ. By
the tower law, we must have [ℚ(𝑧) ∶ ℚ] = 𝑝−1

2
.

We can now derive the minimal polynomial by considering 𝑧
𝑝−1
2 + 𝑧

𝑝−3
2 + ⋯ + 𝑧

−𝑝−1
2 = 0.

Since 𝑧 + 𝑧−1 = 𝑥, we can express this as a polynomial in 𝑥 of degree 𝑝−1
2
.

Example. Let 𝑥 = √𝑚 + √𝑛 where 𝑚, 𝑛 are integers, and 𝑚, 𝑛,𝑚𝑛 are not squares. We
know that 𝑛 = (𝑥 − √𝑚)2 = 𝑥2 − 2𝑥√𝑚 + 𝑚, so [ℚ(𝑥) ∶ ℚ(√𝑚)] ≤ 2. By symmetry,
[ℚ(𝑥) ∶ ℚ(√𝑛)] ≤ 2. Note that√𝑚 ∈ ℚ(𝑥) because 𝑥2+𝑚−𝑛

2𝑥
= √𝑚.

𝑚, 𝑛 are not squares, so [ℚ(√𝑚) ∶ ℚ] = 2. By the tower law we have [ℚ(𝑥) ∶ ℚ] ∈ {2, 4}. If
[ℚ(𝑥) ∶ ℚ] = 2, we have ℚ(𝑥) = ℚ(√𝑚) = ℚ(√𝑛). In this case, √𝑚 = 𝑎 + 𝑏√𝑛 ⟹ 𝑚 =
𝑎2+𝑏2𝑛+2𝑎𝑏√𝑛, but 𝑛 is not a square, so by rationality, 𝑎𝑏 = 0. But if 𝑏 = 0,𝑚 is a square,
and if 𝑎 = 0,𝑚𝑛 = 𝑏2𝑛2 is a square. Hence the degree of the field extension is 4.
Definition. An extension 𝐿/𝐾 is algebraic if all elements of 𝐿 are algebraic over 𝐾.
Lemma. Let 𝑀/𝐿/𝐾, where 𝐿/𝐾 is algebraic. Suppose 𝑥 is algebraic over 𝐿. Then 𝑥 is
algebraic over 𝐾.

Proof. There exists 𝑓 = 𝑇𝑛 + 𝑎𝑛−1𝑇𝑛−1 + ⋯ + 𝑎0 ∈ 𝐿[𝑇] where 𝑓 ≠ 0 and 𝑓(𝑥) = 0. Let
𝐿0 = 𝐾(𝑎0,… , 𝑎𝑛−1). As each 𝑎𝑖 ∈ 𝐿 is algebraic over𝐾, wemust have that [𝐿0 ∶ 𝐾] is finite.
As 𝑓 ∈ 𝐿0[𝑇], 𝑥 is algebraic over 𝐿0. So [𝐿0(𝑥) ∶ 𝐿0] < ∞ ⟹ [𝐿0(𝑥) ∶ 𝐾] < ∞. Hence
[𝐾(𝑥) ∶ 𝐾] < ∞, so 𝑥 is algebraic over 𝐾.

Proposition. (i) Finite extensions are algebraic.

(ii) 𝐾(𝑥) is algebraic over 𝐾 if and only if 𝑥 is algebraic over 𝐾.

228
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(iii) If𝑀/𝐿/𝐾, we have𝑀/𝐾 is algebraic if and only if𝑀/𝐿 and 𝐿/𝐾 are algebraic.

Proof. (i) [𝐿 ∶ 𝐾] < ∞, so for all 𝑥 ∈ 𝐿, [𝐾(𝑥) ∶ 𝐾] < ∞, so 𝑥 is algebraic.
(ii) Certainly if 𝐾(𝑥) is algebraic over 𝐾, we have that 𝑥 is algebraic over 𝐾. Conversely, if

𝑥 is algebraic over 𝐾, [𝐾(𝑥) ∶ 𝐾] is finite, so it is algebraic by part (i).
(iii) Suppose 𝑀/𝐾 is algebraic. Then for all 𝑥 ∈ 𝑀, we have that 𝑥 is algebraic over 𝐾,

so it satisfies a polynomial 𝑓 ∈ 𝐾[𝑇]. Hence 𝑓 ∈ 𝐿[𝑇] is another polynomial that 𝑥
satisfies, so𝑀/𝐿 is algebraic. 𝐿/𝐾 is clearly algebraic because it is contained within𝑀.

Conversely, suppose 𝑀/𝐿 and 𝐿/𝐾 are algebraic. Let 𝑥 ∈ 𝑀. Then by the previous
lemma, 𝑥 is algebraic over 𝐾 as required.

Example. Let 𝐾 = ℚ and 𝐿 = {𝑥 ∈ ℂ ∣ 𝑥 is algebraic over ℚ} = ℚ. This extension ℚ/ℚ
is algebraic, but not finite. Indeed, for every 𝑛 ≥ 1, 𝑛√2 ∈ 𝐿, and [ℚ(𝑛√2) ∶ ℚ] = 𝑛 by
irreducibility of 𝑇𝑛 − 2. In particular, 𝐿 contains subfields of arbitrarily large degree, so
cannot be a finite extension.

2.5. Algebraic numbers in the real line and complex plane
Traditionally, we call 𝑥 ∈ ℂ algebraic if it is algebraic over ℚ, otherwise it is transcendental.
ℚ = {𝑥 ∣ 𝑥 algebraic} is a proper subfield of ℂ. Indeed, ℚ[𝑇] is a countable set, and ℂ is
uncountable. However, it is difficult to explicitly find an element of ℂ∖ℚ, or to show that a
given number is transcendental.

Example. Liouville’s constant 𝑐 = ∑𝑛≥1 10−𝑛! is transcendental, as proven in IA Numbers
and Sets. This can be proven by showing that algebraic numbers cannot be ‘well approxim-
ated’ by rationals.

Example. Hermite and Lindemann showed that 𝑒 and 𝜋 are transcendental.
Example. Let 𝑥, 𝑦 be algebraic, and 𝑥 ≠ 0, 1. Gelfond and Schneider showed that 𝑥𝑦 is
algebraic if and only if 𝑦 is rational. In particular, 𝑒𝜋 = (−1)−𝑖 is transcendental.

2.6. Ruler and compass constructions
Definition. A ruler and compass construction in plane geometry is a drawing constructed
with the following methods.

(i) Given 𝑃1, 𝑃2, 𝑄1, 𝑄2 in the plane and 𝑃𝑖 ≠ 𝑄𝑖, we can construct the point of intersection
of the lines 𝑃1𝑄1 and 𝑃2𝑄2, if indeed they do intersect.

(ii) Given𝑃1, 𝑃2, 𝑄1, 𝑄2 in the plane and𝑃𝑖 ≠ 𝑄𝑖, we can construct the points of intersection
of the circles with centres 𝑃𝑖 that pass through the 𝑄𝑖, if they intersect.
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(iii) Similarly we can construct the points of intersection of a line and a circle.

A point (𝑥, 𝑦) ∈ ℝ2 is constructible from a set {(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)} if it can be obtained
by finitely many expansions of the set under applications of the above operations. A real
number 𝑥 ∈ ℝ is constructible if (𝑥, 0) is constructible from {(0, 0), (1, 0)}.

Remark. Every rational is constructible. Square roots of constructible numbers are con-
structible.

Definition. Let 𝐾 ⊆ ℝ be a subfield of the reals. We say 𝐾 is constructible if there exists
𝑛 ∈ ℕ and fields ℚ = 𝐹0 ⊂ 𝐹1 ⊂ ⋯ ⊂ 𝐹𝑛 ⊆ ℝ and 𝑎𝑖 ∈ 𝐹𝑖 for 1 ≤ 𝑖 ≤ 𝑛 such that

(i) 𝐾 ⊆ 𝐹𝑛;

(ii) 𝐹𝑖 = 𝐹𝑖−1(𝑎𝑖);

(iii) 𝑎2𝑖 ∈ 𝐹𝑖−1.

Remark. By conditions (ii) and (iii), 𝐹𝑖/𝐹𝑖−1 is at most a quadratic extension. Then, by the
tower law, 𝐹𝑛/ℚ has degree a power of two, so 𝐾/ℚ is a finite extension with degree a power
of two.

Theorem. If 𝑥 is constructible, ℚ(𝑥) is constructible.

Proof. Let 𝐾 = ℚ(𝑥). We show that if (𝑥, 𝑦) can be constructed with 𝑘 steps, ℚ(𝑥, 𝑦) is a
constructible extension ofℚ. By induction, supposeℚ = 𝐹0 ⊂ ⋯ ⊂ 𝐹𝑛 satisfy conditions (ii)
and (iii) such that the coordinates of the points obtained after 𝑘 − 1 constructions lie in 𝐹𝑛.

The intersection point of two lines has coordinates given by rational functions of the coordin-
ates of the points 𝑃𝑖, 𝑄𝑖 with rational coefficients. In particular, if the 𝑘th construction is of
this type, the intersection point has coordinates in 𝐹𝑛. We can similarly see that the intersec-
tion points of two circles and the intersection points of a line and a circle have coordinates
given by quadratic equations 𝑎±𝑏√𝑒, 𝑐±𝑑√𝑒, where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 are rational functions of the
coordinates 𝑃𝑖, 𝑄𝑖. Thus the new points have coordinates which lie in 𝐹𝑛(√𝑒), a constructible
extension of ℚ as required.

Corollary. If 𝑥 is constructible, 𝑥 is algebraic overℚ and the degree of the minimal polyno-
mial is a power of two.

Remark. One can show that if ℚ(𝑥) is constructible, we also have 𝑥 is constructible, so the
above theorem is a bi-implication. However, this will not be required for our purposes in
this course.

2.7. Classical problems
Theorem. It is impossible to square the circle.
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Proof. The statement is to construct a square with area equal to that of a given circle. In
particular, we must construct √𝜋. Suppose such a construction can occur. Then 𝜋 is also
constructible. But 𝜋 is transcendental and hence inconstructible.

Theorem. It is impossible to duplicate the cube.

Proof. To duplicate the cube, one must be able to construct 3√2. The minimal polynomial
of 3√2 is 𝑋3 − 2. This can be easily checked with Eisenstein’s criterion. Since the minimal
polynomial is of degree not a power of two, 3√2 is inconstructible.

Theorem. It is impossible to trisect a given angle.

Proof. If we can trisect any constructible angle, we can in particular trisect the (construct-
ible) angle 2𝜋

3
, for example to construct a regular nonagon. Then the angle 2𝜋

9
would be

constructible, so its sine and cosine would be constructible. By the triple angle formula for
cosine,

cos 3𝜃 = 4 cos3 𝜃 − 3 cos 𝜃 ⟹ 4 cos (2𝜋9 )
3
− 3 cos (2𝜋9 ) = cos (2𝜋3 )

Hence cos (2𝜋
9
) is a root of 8𝑋3 − 6𝑋 + 1. In particular, 2 cos (2𝜋

9
) − 2 is a root of 𝑋3 + 6𝑋2 +

9𝑋 + 3, which can be shown to be irreducible by Eisenstein’s criterion. But this has degree
3, so degℚ cos (

2𝜋
9
) = 3, so this is inconstructible. In particular, the regular nonagon is

inconstructible.

We will later prove the following theorem.

Theorem (Gauss). A regular 𝑛-gon is is constructible if and only if 𝑛 is the product of a
power of two and distinct Fermat primes, which are the primes of the form 22𝑘 + 1.
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3. Types of field extensions
3.1. Fields from polynomials
Suppose 𝐾 is a field and 𝑓 ∈ 𝐾[𝑇]. We wish to find an extension 𝐿/𝐾 of degree as small as
possible such that 𝑓 is expressible as a product of linear factors in 𝐿[𝑇].

Example. Let 𝐾 = ℚ. Then by the fundamental theorem of algebra, a monic polynomial
𝑓 ∈ ℚ[𝑇] is expressible as a product of 𝑛 linear factors (𝑇 − 𝑥𝑖) in ℂ[𝑇]. One example of
such a field extension is 𝐿 = ℚ(𝑥1,… , 𝑥𝑛), which is a finite extension of ℚ.

We will later give another proof of the fundamental theorem of algebra using techniques
from Galois theory.

Example. Let 𝐾 = 𝔽𝑝, and 𝑓 is irreducible and has degree 𝑑 > 1. Since there is no ambient
field structure, explicitly finding 𝐿 is more challenging. We will first find an extension in
which 𝑓 has at least one root, and then use induction.

Theorem. Let 𝑓 be a monic irreducible polynomial. Let 𝐿𝑓 = 𝐾[𝑇]⟋(𝑓). Since 𝑓 is irredu-
cible, (𝑓) is maximal, hence 𝐿𝑓 is a field. Let 𝑡 ∈ 𝐿𝑓 be the residue class 𝑇 modulo (𝑓). Then
𝐿𝑓/𝐾 is a finite field extension of degree deg𝑓, and 𝑓 is the minimal polynomial for 𝑡.

We have thus constructed a field extension of 𝐾 for which 𝑓 has at least a single root. Recall
that if 𝑥 is algebraic over 𝐾, then 𝐾(𝑥) ≅ 𝐾[𝑇]⟋(𝑓) where 𝑓 is minimal for 𝑥.

Definition. Let 𝐾 be a field, and 𝐿/𝐾,𝑀/𝐾 are field extensions. A 𝐾-homomorphism or 𝐾-
embedding from 𝐿 to𝑀 is a field homomorphism 𝜎∶ 𝐿 → 𝑀 such that 𝜎|𝐾 = id𝐾 .

The naming ‘𝐾-embedding’ is justified because any field homomorphism is injective.

Theorem. Let 𝑓 ∈ 𝐾[𝑇] be irreducible, and 𝐿/𝐾 a field extension. Then:

(i) If 𝑥 ∈ 𝐿 is a root of 𝑓, there exists a unique 𝐾-homomorphism 𝜎∶ 𝐿𝑓 = 𝐾[𝑇]⟋(𝑓) → 𝐿
such that 𝑡 = 𝑇 + (𝑓) ↦ 𝑥.

(ii) Every 𝐾-homomorphism 𝜎∶ 𝐿𝑓 → 𝐿 arises in this way.

Hence, we have a bijection between 𝐾-homomorphisms 𝜎∶ 𝐿𝑓 → 𝐿 and the set of roots of
𝑓 in 𝐿. In particular, there are at most deg𝑓-many 𝐾-homomorphisms.

Proof. Let 𝑥 ∈ 𝐿 be a root of 𝑓. We define the 𝐾-homomorphism 𝜎∶ 𝐾[𝑇]⟋(𝑓) → 𝐿 by
𝜎(𝑇) = 𝑥. Conversely, suppose 𝜎∶ 𝐾[𝑇]⟋(𝑓) → 𝐿 is a 𝐾-homomorphism. Then 𝜎(𝑇) is a
root of 𝑓, because 𝑓(𝜎(𝑇)) = 𝜎(𝑓(𝑇)) = 𝜎(0) = 0. So the two definitions are inverses, so we
have a one-to-one correspondence as required.

Corollary. Let 𝐿 = 𝐾(𝑥) for some 𝑥 algebraic over 𝐾. Then there exists a unique isomorph-
ism 𝜎∶ 𝐿𝑓 → 𝐾(𝑥) such that 𝜎(𝑡) = 𝑥, where 𝑓 is minimal for 𝑥 over 𝐾.
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Definition. Let 𝑥, 𝑦 be algebraic over 𝐾. We say 𝑥, 𝑦 are 𝐾-conjugate if they have the same
minimal polynomial over 𝐾.

By the corollary above, 𝐾(𝑥) and 𝐾(𝑦) are isomorphic to 𝐿𝑓 where 𝑓 is minimal for 𝑥 and 𝑦
over 𝐾.

Corollary. Algebraic elements𝑥, 𝑦 are𝐾-conjugate if and only if there exists a𝐾-isomorphism
𝜎∶ 𝐾(𝑥) → 𝐾(𝑦) such that 𝜎(𝑥) = 𝑦.

Proof. The above corollary shows the forward direction. Conversely, for all 𝑔 ∈ 𝐾[𝑇], we
have 𝜎(𝑔(𝑥)) = 𝑔(𝜎(𝑥)) so they have the same minimal polynomial.

Informally, the roots of an irreducible polynomial are algebraically indistinguishable.

It can be useful for inductive arguments to have a generalisation of the above theorem.

Definition. Let𝐿/𝐾, 𝐿′/𝐾′ be field extensions, and let𝜎∶ 𝐾 → 𝐾′ be a field homomorphism.
Let 𝜏∶ 𝐿 → 𝐿′ be a field homomorphism such that 𝜏(𝑥) = 𝜎(𝑥) for all 𝑥 ∈ 𝐾. Then we say 𝜏
is a 𝜎-homomorphism from 𝐿 to 𝐿′. We also say 𝜏 extends 𝜎, or that 𝜎 is the restriction of 𝜏 to
𝐾.

We can now define the following variant of the previous theorem.

Theorem. Let 𝑓 ∈ 𝐾[𝑇] be irreducible, and 𝜎∶ 𝐾 → 𝐿 be a field homomorphism. Let 𝜎𝑓
be the polynomial obtained by applying 𝜎 to the coefficients of 𝑓.

(i) If 𝑥 ∈ 𝐿 is a root of 𝑓, there exists a unique 𝜎-homomorphism 𝜏∶ 𝐿𝑓 → 𝐿 such that
𝜏(𝑡) = 𝑥.

(ii) Every 𝜎-homomorphism 𝐿𝑓 → 𝐿 is of this form.

Therefore there is a bijection between the 𝜎-homomorphisms 𝐿𝑓 → 𝐿 and the roots of 𝑓 in
𝐿.

Example. Let 𝐾 = ℚ(√2) ⊂ ℝ, and 𝐿 = ℂ. Let 𝜎∶ 𝐾 → 𝐿 be the homomorphism such
that 𝜎(𝑥 + 𝑦√2) = 𝑥 − 𝑦√2. Then let 𝑓 = 𝑇2 − (1 + √2). Then the map 𝜏∶ 𝐿𝑓 → ℂ must

satisfy 𝜏(𝑡) = ±√1 −√2 = ±𝑖√√2 − 1 ∈ ℂ. If instead we let 𝜎(𝑥 + 𝑦√2) = 𝑥 + 𝑦√2, we

have 𝜏(𝑡) = ±√√2 + 1, which are both real.

3.2. Splitting fields
Definition. Let 𝑓 ∈ 𝐾[𝑇] be a nonzero polynomial that is not necessarily irreducible. We
say that an extension 𝐿/𝐾 is a splitting field for 𝑓 over 𝐾 if

(i) 𝑓 splits into linear factors in 𝐿[𝑇];

(ii) 𝐿 = 𝐾(𝑥1,… , 𝑥𝑛), where the 𝑥𝑖 are the roots of 𝑓 in 𝐿.
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Remark. The second criterion ensures that 𝑓 does not split into linear factors in any proper
subfield of 𝐿. Note that any splitting field is finite, because the adjoined elements are algeb-
raic.

Theorem. Every nonzero polynomial has a splitting field.

Proof. Let 𝑓 ∈ 𝐾[𝑇]. We prove this by induction on the degree of 𝑓, but allow 𝐾 to vary.
If 𝑓 is constant, there is nothing to prove, since 𝐾 is already a splitting field. Suppose that
for all fields 𝐾′ and all polynomials in 𝐾′[𝑇] of degree less than 𝑓, there is a splitting field.
Consider an irreducible factor 𝑔 of 𝑓, and consider 𝐾′ = 𝐿𝑔 = 𝐾[𝑇]⟋(𝑔). Let 𝑥1 = 𝑇 + (𝑔).
Then 𝑔(𝑥1) = 0, so 𝑓(𝑥1) = 0, hence 𝑓 = (𝑇 − 𝑥1)𝑓1, where 𝑓1 ∈ 𝐾′[𝑇]. By induction, there
exists a splitting field 𝐿 for 𝑓1 over 𝐾′ since deg𝑓1 < deg𝑓. Let 𝑥2,… , 𝑥𝑛 ∈ 𝐿 be the roots
of 𝑓1 in 𝐿. Then 𝑓 splits into linear factors in 𝐿 with roots {𝑥1, 𝑥2,… , 𝑥𝑛}. Because 𝐿 is a
splitting field for 𝑓1 over 𝐾′, we have 𝐿 = 𝐾′(𝑥2,… , 𝑥𝑛) = 𝐾(𝑥1)(𝑥2,… , 𝑥𝑛) = 𝐾(𝑥1,… , 𝑥𝑛),
so 𝐿 is a splitting field for 𝑓.

Remark. If 𝐾 ⊆ ℂ, we already know by the fundamental theorem of algebra that any poly-
nomial over 𝐾 has a subfield of ℂ as its splitting field.

Theorem. Let 𝑓 ∈ 𝐾[𝑇] be a polynomial and 𝐿/𝐾 be a splitting field for 𝑓. Then let 𝜎∶ 𝐾 →
𝑀 be a field homomorphism such that 𝜎𝑓 splits in𝑀[𝑇]. Then

(i) 𝜎 can be extended to a homomorphism 𝜏∶ 𝐿 → 𝑀;

(ii) if𝑀 is a splitting field for 𝜎𝑓 over 𝜎𝐾, then any 𝜏∶ 𝐿 → 𝑀 is an isomorphism.

In particular, any two splitting fields are 𝐾-isomorphic.

Remark. When constructing the splitting field for a polynomial, we had choice in which
irreducible factors to consider first. It is not clear, without this theorem, that two splitting
fields have the same degree.

Note that we can have different 𝜏1, 𝜏2∶ 𝐿 → 𝑀 for splitting fields 𝐿,𝑀 of 𝑓 over 𝐾.

Proof. Wewill prove (i) by induction on [𝐿 ∶ 𝐾]. If𝑛 = 1, we have𝐿 = 𝐾 and there is nothing
to prove. Suppose 𝑥 ∈ 𝐿 ∖ 𝐾 is a root of an irreducible factor 𝑔 of 𝑓 in 𝐾, so deg 𝑔 > 1. Let
𝑦 ∈ 𝑀 be a root of 𝜎𝑔 ∈ 𝑀[𝑇], which exists because 𝜎𝑓 splits in 𝑀. Then, there exists
𝜎1∶ 𝐾(𝑥) → 𝑀 such that 𝜎1(𝑥) = 𝑦, and 𝜎1 extends 𝜎. Then, [𝐿 ∶ 𝐾(𝑥)] < [𝐿 ∶ 𝐾], so by
induction, 𝜎1∶ 𝐾(𝑥) → 𝑀 can be extended to 𝜏∶ 𝐿 → 𝑀, because 𝐿 is a splitting field for 𝑓
over 𝐾(𝑥). This 𝜏 therefore extends 𝜎 as required.

To prove (ii), suppose 𝑀 is a splitting field for 𝜎𝑓 over 𝜎𝐾. Let 𝜏 be as in (i), and {𝑥𝑖} be
the roots of 𝑓 in 𝐿. Then the roots of 𝜎𝑓 in 𝑀 are {𝜏(𝑥𝑖)}. Since 𝑀 is a splitting field, 𝑀 =
𝜎𝐾({𝜏(𝑥𝑖)}) = 𝜏𝐿 as 𝐿 = 𝐾({𝑥𝑖}). So 𝜏 is an isomorphism.

If 𝐾 ⊆ 𝑀 and 𝜎 is the inclusion homomorphism, 𝜏 is a 𝐾-isomorphism.

234



3. Types of field extensions

Example. Let 𝑓 = 𝑇3−2 ∈ ℚ[𝑇]. This has splitting field 𝐿 = ℚ(3√2, 𝜔) ⊆ ℂwhere𝜔 = 𝑒
2𝜋𝑖
3 .

We know [ℚ(3√2) ∶ ℚ] = 3, but 𝜔 ∉ ℝ and 𝜔2 + 𝜔 + 1 = 0, so [𝐿 ∶ ℚ(2√3)] = 2 giving
[𝐿 ∶ ℚ] = 6 by the tower law. In particular, adjoining a single root to ℚ is not enough to
generate 𝐿.

Example. Let 𝑓 = 𝑇5−1
𝑇−1

= 𝑇4 +⋯+ 𝑇 + 1 ∈ ℚ[𝑇]. Let 𝑧 = 𝑒
2𝜋𝑖
5 , then this is the minimal

polynomial of 𝑧. We find 𝑓 = ∏1≤𝑎≤4(𝑇 − 𝑧𝑎), so ℚ(𝑧) is already a splitting field for 𝑓 over
ℚ, and [ℚ(𝑧) ∶ ℚ] = 4.
Example. Let𝑓 = 𝑇3−2 ∈ 𝔽7[𝑇]. This is irreducible because 2 is not a cube in𝔽7. Consider
𝐿 = 𝔽7[𝑋]⟋𝑋3 − 2 = 𝔽7(𝑥), so 𝑥3 = 2. Since 23 = 43 = 1 in 𝔽7, we have (2𝑥)3 = (4𝑥)3 = 2,
so 𝑥, 2𝑥, 4𝑥 are roots of 𝑓 in 𝐿. In particular, 𝐿 is a splitting field for 𝑓, since 𝑓 = (𝑇 −𝑥)(𝑇 −
2𝑥)(𝑇 − 4𝑥); here, adjoining one root is enough to make 𝑓 split.

3.3. Normal extensions
Definition. An extension 𝐿/𝐾 is a normal extension if it is algebraic and for all 𝑥 ∈ 𝐿, the
minimal polynomial splits in 𝐿.
Remark. This condition is equivalent to the statement that for every 𝑥 ∈ 𝐿, 𝐿 contains a
splitting field for 𝑥. In other words, if an irreducible polynomial 𝑓 ∈ 𝐾[𝑇] has a single root
in 𝐿, it splits and has all roots in 𝐿.
Theorem. Let𝐿/𝐾 be a finite extension. Then𝐿 is normal over𝐾 if and only if𝐿 is a splitting
field for some (not necessarily irreducible) polynomial 𝑓 ∈ 𝐾[𝑇].

Proof. Suppose 𝐿 is normal. Then 𝐿 = 𝐾(𝑥1,… , 𝑥𝑛) since 𝐿 is algebraic. Then the minimal
polynomial𝑚𝑥𝑖 ,𝐾 of each 𝑥𝑖 over 𝐾 splits in 𝐿. 𝐿 is generated by the roots of∏𝑖𝑚𝑥𝑖 ,𝐾 , so 𝐿
is a splitting field for 𝑓.
For the converse, suppose 𝐿 is a splitting field for 𝑓 ∈ 𝐾[𝑇]. Let 𝑥 ∈ 𝐿, and let 𝑔 = 𝑚𝑥,𝐾 be
its minimal polynomial. We want to show that 𝑔 splits in 𝐿. Let𝑀 be a splitting field for 𝑔
over 𝐿, and let 𝑦 ∈ 𝑀 be a root of 𝑔. We want to show 𝑦 ∈ 𝐿.
Since 𝐿 is a splitting field for 𝑓 over 𝐾, 𝐿 is a splitting field for 𝑓 over 𝐾(𝑥), and 𝐿(𝑦) is a
splitting field for 𝑓 over 𝐾(𝑦). Now, there exists a 𝐾-isomorphism between 𝐾(𝑥) and 𝐾(𝑦),
because 𝑥, 𝑦 are roots of the same irreducible polynomial 𝑔. By the uniqueness of splitting
fields, [𝐿 ∶ 𝐾(𝑥)] = [𝐿(𝑦) ∶ 𝐾(𝑦)]. Multiplying by [𝐾(𝑥) ∶ 𝐾], we find [𝐿 ∶ 𝐾] = [𝐿(𝑦) ∶ 𝐾]
because [𝐾(𝑦) ∶ 𝐾] = [𝐾(𝑥) ∶ 𝐾] as they are roots of the same irreducible polynomial.
Hence [𝐿(𝑦) ∶ 𝐿] = 1, so 𝑦 ∈ 𝐿 as required.

Corollary (normal closure). Let 𝐿/𝐾 be a finite extension. Then there exists a finite exten-
sion 𝑀/𝐿 such that 𝑀/𝐾 is normal, and if 𝐿 ⊆ 𝑀′ ⊆ 𝑀 and 𝑀′/𝐾 is normal, 𝑀 = 𝑀′.
Moreover, any two such extensions𝑀 are 𝐿-isomorphic.
Such an𝑀 is said to be a normal closure of 𝐿/𝐾.
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Proof. Let 𝐿 = 𝐾(𝑥1,… , 𝑥𝑘), and 𝑓 = ∏𝑘
𝑖=1𝑚𝑥𝑖 ,𝐾 ∈ 𝐾[𝑇]. Then let𝑀 be a splitting field of

𝑓 over 𝐿. Then, since the 𝑥𝑖 are roots of 𝑓,𝑀 is also a splitting field for 𝑓 over 𝐾. So𝑀/𝐾 is
normal.

Let 𝑀′ be such that 𝐿 ⊆ 𝑀′ ⊆ 𝑀 and 𝑀′/𝐾 be normal. Then as 𝑥𝑖 ∈ 𝑀′, the minimal
polynomial𝑚𝑥𝑖 ,𝐾 splits in𝑀′. So𝑀′ = 𝑀.

Any normal extension𝑀/𝐾 must contain a splitting field for 𝑓, and by the minimality con-
dition,𝑀must be a splitting field. By uniqueness of splitting fields, any two such extensions
are 𝐿-isomorphic as required.

3.4. Separable polynomials
Recall that over ℂ, a root 𝑥 of a polynomial is said to be a multiple zero when its derivative
vanishes at 𝑥. Over arbitrary fields, the same is true, but the analytic concept of derivative
must be replaced with an algebraic process.

Definition. The formal derivative of a polynomial 𝑓(𝑇) = ∑𝑑
𝑖=0 𝑎𝑖𝑋 𝑖 is

𝑓′(𝑇) =
𝑑
∑
𝑖=1

𝑖𝑎𝑖𝑋 𝑖−1

Remark. One can check from the definition that the familiar rules (𝑓+𝑔)′ = 𝑓′+𝑔′, (𝑓𝑔)′ =
𝑓′𝑔 + 𝑓𝑔′, and (𝑓𝑛)′ = 𝑛𝑓′𝑓𝑛−1 hold.

Example. Consider a field 𝐾 of characteristic 𝑝 > 0, and let 𝑓 = 𝑇𝑝 + 𝑎0. Then 𝑓′ = 0, so
a non-constant polynomial can have a zero derivative.

Proposition. Let 𝑓 ∈ 𝐾[𝑇], 𝐿/𝐾 be a field extension, and 𝑥 ∈ 𝐿 a root of 𝑓. Then 𝑥 is a
simple root if and only if 𝑓′(𝑥) ≠ 0.

Proof. We can write 𝑓 = (𝑇 − 𝑥)𝑔 ∈ 𝐿[𝑇]. Then 𝑓′ = 𝑔 + (𝑇 − 𝑥)𝑔′, so 𝑓′(𝑥) = 𝑔(𝑥). In
particular, 𝑓′(𝑥) ≠ 0 if and only if (𝑇 − 𝑥) does not divide 𝑔, which is the criterion that 𝑥 is
a simple root of 𝑓.

Definition. A polynomial 𝑓 ∈ 𝐾[𝑇] is separable if it splits into distinct linear factors in a
splitting field. Equivalently, it has deg𝑓 distinct roots.

Corollary. 𝑓 is separable if and only if the greatest common divisor of 𝑓 and 𝑓′ is 1.

For convenience, wewill take gcd(𝑓, 𝑔) to be the uniquemonic polynomial ℎ such that (ℎ) =
(𝑓, 𝑔). Then since𝐾[𝑇] is a Euclidean domain, we can compute a representation ℎ = 𝑎𝑓+𝑏𝑔
for polynomials 𝑎, 𝑏. Note that gcd(𝑓, 𝑔) is invariant under a field extension, because Euclid’s
algorithm does not depend on the ambient field structure.
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Proof. We can replace𝐾 by a splitting field of 𝑓, so we can factorise 𝑓 into a product of linear
factors in 𝐾. The two are separable if 𝑓, 𝑓′ have no common root, which is true if and only
if gcd(𝑓, 𝑓′) = 1.

Example. Let 𝐾 have characteristic 𝑝 > 0, and let 𝑓 = 𝑇𝑝 − 𝑏 for 𝑏 ∈ 𝐾. Then 𝑓′ = 0, so
gcd(𝑓, 𝑓′) = 𝑓 ≠ 1. Hence 𝑓 is inseparable. Let 𝐿 be an extension of 𝐾 containing a 𝑝th root
𝑎 ∈ 𝐿 of 𝑏, so 𝑎𝑝 = 𝑏. Then 𝑓 = (𝑇 − 𝑎)𝑝 = 𝑇𝑝 + (−𝑎)𝑝 = 𝑇𝑝 − 𝑏. In particular, 𝑓 has only
one root in a splitting field.

If 𝑏 is not a 𝑝th power in 𝐾, then 𝑓 is irreducible. This is seen on the example sheets.

Theorem. Let 𝑓 ∈ 𝐾[𝑇] be an irreducible polynomial. Then 𝑓 is separable if and only if
𝑓′ ≠ 0.

In addition, if 𝐾 has characteristic zero, every irreducible polynomial 𝑓 ∈ 𝐾[𝑇] is separable.
If 𝐾 has positive characteristic 𝑝 > 0, an irreducible polynomial 𝑓 ∈ 𝐾[𝑇] is inseparable if
and only if 𝑓(𝑇) = 𝑔(𝑇𝑝) for some 𝑔 ∈ 𝐾[𝑇].

Proof. Without loss of generality, we can assume 𝑓 is monic. Then, since 𝑓 is irreducible,
the greatest common divisor gcd(𝑓, 𝑓′) is either 𝑓 or 1. If gcd(𝑓, 𝑓′) = 𝑓, then 𝑓′ = 0 by
considering the degree.

For a polynomial 𝑓, we can write 𝑓 = ∑𝑑
𝑖=0 𝑎𝑖𝑇 𝑖 and 𝑓′ = ∑𝑑

𝑖=1 𝑖𝑎𝑖𝑇 𝑖−1, so 𝑓′ = 0 if and
only if 𝑖𝑎𝑖 = 0 for all 1 ≤ 𝑖 ≤ 𝑑. In particular, if 𝐾 has characteristic zero, this is true
if and only if 𝑎𝑖 = 0 for all 1 ≤ 𝑖 ≤ 𝑑, so 𝑓 = 𝑎0 is a constant so not irreducible. If 𝐾 has
characteristic 𝑝 > 0, the requirement is that 𝑎𝑖 = 0 for all 𝑖 not divisible by 𝑝, or equivalently,
𝑓(𝑇) = 𝑔(𝑇𝑝).

3.5. Separable extensions

Definition. Let 𝐿/𝐾 be a field extension. We say 𝑥 ∈ 𝐿 is separable over 𝐾 if 𝑥 is algebraic
and its minimal polynomial 𝑓 is separable over 𝐾. 𝐿 is separable over 𝐾 if all elements 𝑥 are
separable over 𝐾.

Theorem. Let 𝑥 be algebraic over 𝐾, and 𝐿/𝐾 be an extension in which the minimal poly-
nomial 𝑚𝑥,𝐾 splits. Then 𝑥 is separable over 𝐾 if and only if there are exactly deg𝑥 𝐾-
homomorphisms from 𝐾(𝑥) to 𝐿.

Proof. The number of 𝐾-homomorphisms from 𝐾(𝑥) to 𝐿 is the number of roots of𝑚𝑥,𝐾 in
𝐿. This is equal to the degree of 𝑥 if and only if 𝑥 is separable.

Let Hom𝐾(𝐿,𝑀) be the set of 𝐾-homomorphisms from 𝐿 to 𝑀. Note that not all 𝐾-linear
maps from 𝐿 to𝑀 are 𝐾-homomorphisms.
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Theorem (counting embeddings). Let 𝐿 = 𝐾(𝑥1,… , 𝑥𝑘) be a finite extension of 𝐾, so the 𝑥𝑖
are algebraic. Let𝑀/𝐾 be any field extension. Then |Hom𝐾(𝐿,𝑀)| ≤ [𝐿 ∶ 𝐾], with equality
if and only if

(i) for all 𝑖, the minimal polynomial𝑚𝑥𝑖 ,𝐾 splits into linear factors in𝑀; and

(ii) all the 𝑥𝑖 are separable over 𝐾.

Remark. The conditions (i) and (ii) are equivalent to the statement that𝑚𝑥𝑖 ,𝐾 split into dis-
tinct linear factors over 𝑀. There is a variant of this theorem: let 𝜎 ∶ 𝐾 → 𝑀 be a field
homomorphism, then |Hom𝜎(𝐿,𝑀)| ≤ |𝐿 ∶ 𝐾|, and equality holds if and only if the 𝜎𝑚𝑥𝑖 ,𝐾
split into distinct linear factors over𝑀.

Proof. We prove this by induction on 𝑘. The case 𝑘 = 0 is trivial. Let 𝐾1 = 𝐾(𝑥1) and
write 𝑑 = deg𝐾 𝑥1 = [𝐾1 ∶ 𝐾]. Then the number of 𝐾-homomorphisms from 𝐾1 to 𝑀,
denoted 𝑒 = |Hom𝐾(𝐾1,𝑀)|, is the number of roots of 𝑚𝑥1,𝐾 in 𝑀. Let 𝜎 ∶ 𝐾1 → 𝑀 be a
𝐾-homomorphism. By the inductive hypothesis, there exist at most [𝐿 ∶ 𝐾1] extensions of
𝜎 to a 𝐾-homomorphism 𝐿 → 𝑀. Hence the number of 𝐾-homomorphisms from 𝐿 to𝑀 is
at most 𝑒[𝐿 ∶ 𝐾1] ≤ 𝑑[𝐿 ∶ 𝐾1] = [𝐿 ∶ 𝐾].

If equality holds, then 𝑒 = 𝑑, and so 𝑚𝑥1,𝐾 splits into 𝑑 distinct linear factors in 𝑀, so
(i) and (ii) hold for 𝑥1. Replacing 𝑥1 with an arbitrary 𝑥𝑖, one implication follows. Con-
versely, suppose conditions (i) and (ii) hold. Then, by the previous theorem, there are 𝑑
distinct homomorphisms from 𝐾1 to 𝑀. Conditions (i) and (ii) still hold over 𝐾1, then by
induction, each 𝜎∶ 𝐾1 → 𝑀 has [𝐿 ∶ 𝐾1] extensions to a homomorphism 𝐿 → 𝑀. Hence
|Hom𝐾(𝐿,𝑀)| = [𝐿 ∶ 𝐾] as required.

Theorem (separably generated implies separable). Let 𝐿 = 𝐾(𝑥1,… , 𝑥𝑘) be a finite exten-
sion of 𝐾. Then 𝐿/𝐾 is a separable extension if and only if each 𝑥𝑖 is separable over 𝐾.

Proof. If 𝐿/𝐾 is separable, the 𝑥𝑖 are separable by definition. Suppose the 𝑥𝑖 are separable.
Let𝑀 be a normal closure of 𝐿/𝐾, so the splitting field of the product of the𝑚𝑥𝑖 ,𝐾 over 𝐿. By
the counting embeddings theorem, conditions (i) and (ii) are satisfied so |Hom𝐾(𝐿,𝑀)| =
[𝐿 ∶ 𝐾]. But if 𝑥 ∈ 𝐿, 𝐿 = 𝐾(𝑥, 𝑥1,… , 𝑥𝑘), so 𝑥 is separable.

Corollary. Let 𝑥, 𝑦 ∈ 𝐿, and 𝐿/𝐾 a field extension. If 𝑥, 𝑦 are separable over 𝐾, so are
𝑥 + 𝑦, 𝑥𝑦, 𝑥−1 for 𝑥 ≠ 0.

Proof. Consider the fields 𝐾(𝑥, 𝑦) and 𝐾(𝑥). These are separable extensions of 𝐾. In partic-
ular, {𝑥 ∈ 𝐿 ∣ 𝑥 separable over 𝐾} is a subfield of 𝐿.

Theorem (primitive element theorem for separable extensions). Let 𝐾 be an infinite field
and 𝐿 = 𝐾(𝑥1,… , 𝑥𝑘) be a finite separable extension. Then there exists 𝑥 ∈ 𝐿 such that
𝐿 = 𝐾(𝑥). In particular, 𝑥 is separable over 𝐾.
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Proof. It suffices to consider the case when 𝑘 = 2, because if we can turn 𝐾(𝑥, 𝑦) into 𝐾(𝑧)
for 𝑧 ∈ 𝐾(𝑥, 𝑦), we can perform this inductively. Let 𝐿 = 𝐾(𝑥, 𝑦) with 𝑥, 𝑦 separable over
𝐾. Let 𝑛 = [𝐿 ∶ 𝐾], and let 𝑀 be a normal closure for 𝐿/𝐾. Then there exist 𝑛 distinct
𝐾-homomorphisms 𝜎𝑖 ∶ 𝐿 → 𝑀. Let 𝑎 ∈ 𝐾, and consider 𝑧 = 𝑥+𝑎𝑦. We will choose 𝑎 such
that 𝐿 = 𝐾(𝑧).
Since 𝐿 = 𝐾(𝑥, 𝑦), we have 𝜎𝑖(𝑥) = 𝜎𝑗(𝑥) and 𝜎𝑖(𝑦) = 𝜎𝑗(𝑦) implies 𝑖 = 𝑗. Consider
𝜎𝑖(𝑧) = 𝜎𝑖(𝑥)+𝑎𝜎𝑖(𝑦). If𝜎𝑖(𝑧) = 𝜎𝑗(𝑧), wemust have (𝜎𝑖(𝑥) − 𝜎𝑗(𝑥))+𝑎(𝜎𝑖(𝑦) − 𝜎𝑗(𝑦)) = 0.
If 𝑖 ≠ 𝑗, at least one of the parenthesised terms is nonzero. Therefore there is at most one
𝑎 ∈ 𝐾 such that 𝜎𝑖(𝑧) = 𝜎𝑗(𝑧). Since 𝐾 is infinite, there exists 𝑎 ∈ 𝐾 such that all of the
𝜎𝑖(𝑧) are distinct. But then deg𝐾 𝑧 = 𝑛, so 𝐿 = 𝐾(𝑧).

Theorem. Let 𝐿/𝐾 be an extension of finite fields. Then 𝐿 = 𝐾(𝑥) for some 𝑥 ∈ 𝐿.

Proof. The multiplicative group 𝐿× is cyclic. Let 𝑥 be a generator of this group. Then 𝐿 =
𝐾(𝑥), since every nonzero element is a power of 𝑥.
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4. Galois theory
4.1. Field automorphisms
Definition. A bijective homomorphism from a field to itself is called an automorphism.
The set of automorphisms of a field 𝐿 forms a group Aut(𝐿) under composition: (𝜎𝜏)(𝑥) =
𝜎(𝜏(𝑥)). This is called the automorphism group of 𝐿. Let 𝑆 ⊆ Aut(𝐿). Then, we define

𝐿𝑆 = {𝑥 ∈ 𝐿 ∣ ∀𝜎 ∈ 𝑆, 𝜎(𝑥) = 𝑥}

This is a subfield of 𝐿, known as the fixed field of 𝑆, since each 𝜎 is a homomorphism.
Example. Let 𝐿 = ℂ and 𝜎 be the complex conjugation automorphism. Then the fixed field
of {𝜎} is ℂ{𝜎} = ℝ.
Definition. Let𝐿/𝐾 be a field extension. WedefineAut(𝐿/𝐾) to be the set of𝐾-automorphisms
of 𝐿, so Aut(𝐿/𝐾) = {𝜎 ∈ Aut(𝐿) ∣ ∀𝑥 ∈ 𝐾, 𝜎(𝑥) = 𝑥}. Equivalently, 𝜎 ∈ Aut(𝐿) is an ele-
ment of Aut(𝐿/𝐾) if 𝐾 ⊆ 𝐿{𝜎}. Aut(𝐿/𝐾) is a subgroup of Aut(𝐿).
Theorem. Let 𝐿/𝐾 be a finite extension. Then |Aut(𝐿/𝐾)| ≤ [𝐿 ∶ 𝐾].

Proof. Let𝑀 = 𝐿, then Hom𝐾(𝐿,𝑀) = Aut(𝐿/𝐾), which has at most [𝐿 ∶ 𝐾] elements.

Proposition. If 𝐾 = ℚ or 𝐾 = 𝔽𝑞, Aut(𝐾) = {1}.

Proof. 𝜎(1𝐾) = 1𝐾 hence 𝜎(𝑛𝐾) = 𝑛𝐾 .

In particular, Aut(𝐿) = Aut(𝐿/𝐾) where 𝐾 is the prime subfield of 𝐿.

4.2. Galois extensions
We need to define a notion of when an extension 𝐿/𝐾 has ‘many symmetries’.

Definition. An extension 𝐿/𝐾 is a Galois extension if it is algebraic, and 𝐿Aut(𝐿/𝐾) = 𝐾.
Remark. If 𝑥 ∈ 𝐿 ∖ 𝐾, there is a 𝐾-automorphism 𝜎 ∶ 𝐿 → 𝐿 such that 𝑥 ≠ 𝜎(𝑥).
Example. ℂ/ℝ is a Galois extension, since the fixed field of complex conjugation isℝ. Sim-
ilarly, ℚ(𝑖)/ℚ is a Galois extension.

Example. Let𝐾/𝔽𝑝 be a finite extension, so𝐾 is a finite field. The Frobenius automorphism
of 𝐾, given by 𝜑𝑝(𝑥) = 𝑥𝑝, has fixed field

𝐾{𝜑𝑝} = {𝑥 ∈ 𝐾 ∣ 𝑥 a root of 𝑇𝑝 − 𝑇}

But since this has at most 𝑝 roots, and each element of 𝔽𝑝 is a root, the fixed field is exactly
𝔽𝑝. So 𝐾Aut(𝐾/𝔽𝑝) = 𝔽𝑝, so this is a Galois extension.

240



4. Galois theory

Definition. Let 𝐿/𝐾 be a Galois extension. We write Gal(𝐿/𝐾) for the automorphism group
Aut(𝐿/𝐾), called the Galois group of 𝐿/𝐾.
Theorem (classification of finite Galois extensions). Let 𝐿/𝐾 be a finite extension, and let
𝐺 = Aut(𝐿/𝐾), then the following are equivalent.
(i) 𝐿/𝐾 is a Galois extension, so 𝐾 = 𝐿𝐺.
(ii) 𝐿/𝐾 is normal and separable.

(iii) 𝐿 is a splitting field of a separable polynomial in 𝐾.
(iv) |Aut(𝐿/𝐾)| = [𝐿 ∶ 𝐾].
If this holds, the minimal polynomial of any 𝑥 ∈ 𝐿 over 𝐾 is 𝑚𝑥,𝐾 = ∏𝑟

𝑖=1(𝑇 − 𝑥𝑖), where
{𝑥1,… , 𝑥𝑟} is the orbit of 𝐺 on 𝑥.

Proof. (i) implies (ii) and the minimal polynomial result. Let 𝑥 ∈ 𝐿, and {𝑥1,… , 𝑥𝑟} be the
orbit of 𝐺 on 𝑥. Let 𝑓 = ∏𝑟

𝑖=1(𝑇 − 𝑥𝑖). Then 𝑓(𝑥) = 0. Since 𝐺 permutes the 𝑥𝑖, the
coefficients of 𝑓 are fixed by 𝐺. By assumption, the coefficients of 𝑓 lie in 𝐾, so the minimal
polynomial of 𝑥 must divide 𝑓. Since 𝑚𝑥,𝐾(𝜎(𝑥)) = 𝜎(𝑚𝑥,𝐾(𝑥)) = 0, so every 𝑥𝑖 is a root of
the minimal polynomial of𝑚𝑥,𝐾 . So 𝑓 is exactly the minimal polynomial as required. 𝑚𝑥,𝐾
is a separable polynomial and splits in 𝐿. So 𝐿/𝐾 is normal and separable.

(ii) implies (iii). Since splitting fields are normal extensions, 𝐿 is a splitting field for some
polynomial 𝑓 ∈ 𝐾[𝑇]. Write 𝑓 = ∏𝑟

𝑖=1 𝑞
𝑒𝑖
𝑖 where the 𝑞𝑖 are distinct irreducible polynomials,

and 𝑒𝑖 ≥ 1. Since 𝐿 and 𝐾 are separable, the 𝑞𝑖 are separable as they are irreducible, so
𝑔 = ∏𝑟

𝑖=1 𝑞𝑖 is separable and 𝐿 is also a splitting field for 𝑔.
(iii) implies (iv). Let 𝐿 = 𝐾(𝑥1,… , 𝑥𝑘) be the splitting field of a separable polynomial 𝑓 ∈
𝐾[𝑇] with roots 𝑥𝑖. By the theorem on counting embeddings with 𝑀 = 𝐿, since 𝑚𝑥𝑖 ,𝐾 ∣ 𝑓,
conditions (i) and (ii) in the theoremare satisfied, andwe find |Aut(𝐿/𝐾)| = |Hom𝐾(𝐿,𝑀)| =
[𝐿 ∶ 𝐾].
(iv) implies (i). Suppose |Aut(𝐿/𝐾)| = |𝐺| = [𝐿 ∶ 𝐾]. Note that 𝐺 ⊆ Aut(𝐿/𝐿𝐺) ⊆ Aut(𝐿/𝐾),
so these inclusions are both equalities. So 𝐺 = Aut(𝐿/𝐿𝐺), so [𝐿 ∶ 𝐾] = |𝐺| ≤ [𝐿 ∶ 𝐿𝐺]. But
since 𝐿𝐺 ⊇ 𝐾, we must have equality by the tower law.

Corollary. Let 𝐿/𝐾 be a finite Galois extension. Then 𝐿 = 𝐾(𝑥) for some 𝑥 ∈ 𝐿 which is
separable over 𝐾, and has degree [𝐿 ∶ 𝐾].

Proof. By (ii) above, 𝐿/𝐾 is separable. Then the primitive element theorem implies that
𝐿 = 𝐾(𝑥) for some 𝑥.

4.3. Galois correspondence
Theorem (Galois correspondence: part (a)). Let 𝐿/𝐾 be a finite Galois extension with 𝐺 =
Gal(𝐿/𝐾). Suppose 𝐹 is another field, and 𝐾 ⊆ 𝐹 ⊆ 𝐿. Then 𝐿/𝐹 is also a Galois extension
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where Gal(𝐿/𝐹) ≤ Gal(𝐿/𝐾). The map 𝐹 ↦ Gal(𝐿/𝐹) is a bijection between the set of
intermediate fields 𝐹 and the set of subgroups of 𝐻 ≤ Gal(𝐿/𝐾). The inverse of this map is
𝐻 ↦ 𝐿𝐻 . This bijection reverses inclusions, and if 𝐹 = 𝐿𝐻 , we have [𝐹 ∶ 𝐾] = (𝐺 ∶ 𝐻).

Proof. Let 𝑥 ∈ 𝐿. Then 𝑚𝑥,𝐹 ∣ 𝑚𝑥,𝐾 in 𝐹[𝑇]. As 𝑚𝑥,𝐾 splits into distinct linear factors in 𝐿
so does𝑚𝑥,𝐹 . So 𝐿/𝐹 is normal and separable, and hence a Galois extension as required. By
definition, Gal(𝐿/𝐹) ≤ Gal(𝐿/𝐾).
To check the map 𝐹 ↦ Gal(𝐿/𝐹) is a bijection with the given inverse, we first consider a
field 𝐹, and its image 𝐿Gal(𝐿/𝐹) under both maps. We have 𝐿Gal(𝐿/𝐹) = 𝐹, since 𝐿/𝐹 is Galois
as required. Conversely, suppose𝐻 ≤ Gal(𝐿/𝐹), and consider its image Gal(𝐿/𝐿𝐻). To show
Gal(𝐿/𝐿𝐻) = 𝐻, it suffices to show that [𝐿 ∶ 𝐿𝐻] ≤ |𝐻|, because certainly 𝐻 ≤ Gal(𝐿/𝐿𝐻)
and ||Gal(𝐿/𝐿𝐻)|| ≤ [𝐿 ∶ 𝐿𝐻]. By the previous corollary, 𝐿 = 𝐿𝐻(𝑥) for some 𝑥, and 𝑓 =
∏𝜎∈𝐻(𝑇 − 𝜎(𝑥)) ∈ 𝐿𝐻[𝑇] is a polynomial with 𝑥 as a root. In particular, [𝐿 ∶ 𝐿𝐻] =
deg𝐿𝐻 (𝑥) ≤ deg𝑓 = |𝐻|. So we have a bijection as claimed.
Suppose 𝐹 ⊆ 𝐹′ are fields between 𝐾 and 𝐿. Then Gal(𝐿/𝐹′) ⊆ Gal(𝐿/𝐹), so the bijection
reverses inclusions. Finally, if 𝐹 = 𝐿𝐻 , we have [𝐹 ∶ 𝐾] = [𝐿∶𝐾]

[𝐿∶𝐹]
= ||Gal(𝐿/𝐾)||

||Gal(𝐿/𝐹)||
= |𝐺|

|𝐻|
= (𝐺 ∶

𝐻).

Theorem (Galois correspondence: part (b)). Let 𝐻 ≤ 𝐺 be a subgroup of a Galois group
𝐺 = Gal(𝐿/𝐾). Then 𝜎𝐻𝜎−1 corresponds to the field 𝜎𝐿𝐻 .

Proof. Under the Galois correspondence, 𝜎𝐻𝜎−1 corresponds to its fixed field

𝐿𝜎𝐻𝜎−1 = {𝑥 ∈ 𝐿 ∣ 𝜎𝜏𝜎−1(𝑥) = 𝑥 for all 𝜏 ∈ 𝐻}

Note that 𝜎𝜏𝜎−1(𝑥) = 𝑥 if and only if 𝜏𝜎−1(𝑥) = 𝜎−1(𝑥), so 𝜏(𝑦) = 𝑦 for 𝑥 = 𝜎(𝑦). Hence
𝑥 ∈ 𝐿𝜎𝐻𝜎−1 if and only if there exists 𝑦 ∈ 𝐿𝐻 , 𝑥 = 𝜎(𝑦). Therefore 𝐿𝜎𝐻𝜎−1 = 𝜎𝐿𝐻 as
required.

Theorem (Galois correspondence: part (c)). Let 𝐻 ≤ 𝐺 = Gal(𝐿/𝐾). Then the following
are equivalent.

(i) 𝐿𝐻/𝐾 is Galois;

(ii) 𝐿𝐻/𝐾 is normal;

(iii) for all 𝜎 ∈ 𝐺, 𝜎𝐿𝐻 = 𝐿𝐻 ;
(iv) 𝐻 is a normal subgroup of 𝐺.

If so, Gal(𝐿𝐻/𝐾) = Gal(𝐿/𝐾)⟋𝐻 = 𝐺⟋𝐻.

Proof. (i) and (ii) are equivalent. 𝐿/𝐾 is separable since it is Galois. So 𝐿𝐻/𝐾 is also separable.

(iii) and (iv) are equivalent. Let 𝐹 = 𝐿𝐻 , and let 𝑥 ∈ 𝐹. Then the set of roots of 𝑚𝑥,𝐾 is the
orbit of 𝑥 under𝐺, so theminimal polynomial splits in 𝐹 if and only if for all 𝜎 ∈ 𝐺, 𝜎(𝑥) ∈ 𝐹.
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As this holds for all 𝑥 ∈ 𝐹, 𝐹 is normal if and only if 𝜎𝐹 ⊆ 𝐹. Since [𝜎𝐹 ∶ 𝐾] = [𝐹 ∶ 𝐾],
as 𝐹 and 𝜎𝐹 are 𝐾-isomorphic, this holds if and only if 𝜎𝐹 = 𝐹. By part (b) of the Galois
correspondence, this is equivalent to the statement that 𝜎𝐻𝜎−1 = 𝐻 for all 𝜎, so𝐻 is normal.

If any of the above hold, for all 𝜎 ∈ 𝐺, we have 𝜎𝐹 = 𝐹, so we have homomorphisms
𝐺 → Gal(𝐹/𝐾) given by the restriction of 𝜎 ∈ 𝐺 to 𝐹. Its kernel is 𝐻. Then from the
isomorphism theorem, 𝐺⟋𝐻 is isomorphic to a subgroup of Gal(𝐹/𝐾). This must be an iso-
morphism because [𝐹 ∶ 𝐾] = (𝐺 ∶ 𝐻).

Example. Let 𝐾 = ℚ and 𝐿 = ℚ(3√2, 𝜔)where 𝜔 = 𝑒
2𝜋𝑖
3 . 𝐿 is a splitting field for 𝑇3−2with

[𝐿 ∶ ℚ] = 6. Since 𝑇3 − 2 is a separable polynomial, 𝐿 is the splitting field of a separable
polynomial and hence Galois. Therefore 𝐺 = Gal(𝐿/ℚ) has order 6.

We have the subfields 𝐹1 = ℚ(𝜔), 𝐹2 = ℚ(3√2), where [𝐹1 ∶ ℚ] = 2 and [𝐹2 ∶ ℚ] = 3. In
the following diagram, the arrows on the left hand side are annotated with the degrees of an
extensions, and the arrows on the right hand side are labelled with the index of the relevant
subgroup.

𝐿 {1}

𝐹1 𝐹2 𝐻1 𝐻2

𝐾 𝐺

3 2

6

3 2

2 32 3

6

By the classification of finite groups of order 6,𝐺 is isomorphic either to𝐶6 or 𝑆3. 𝐹2 = ℚ(3√2)
is not a normal extension of ℚ, because 𝜔3√2 ∉ 𝐹2. So 𝐻2 is not a normal subgroup of 𝐺.
Since all subgroups of abelian groups are normal, 𝐺 is not abelian. So 𝐺 ≅ 𝑆3. Hence
𝐻1 ≅ 𝐴3, and 𝐻2 is a transposition, but since all subgroups generated by transpositions are
conjugate, we can set 𝐻2 = ⟨(1 2)⟩.

The other two subgroups are conjugate to 𝐻2, corresponding to the subfields 𝜎𝐹2 where
𝜎 ∈ 𝐺. Hence, these subfields are exactlyℚ(𝜔3√2) andℚ(𝜔2 3√2), since the conjugates of 3√2
are exactly the roots of theminimal polynomial. Note that since these are the only subgroups,
we have found all intermediate fields between ℚ and ℚ(3√2, 𝜔).

There is an easier way to prove 𝐺 ≅ 𝑆3. Consider a separable polynomial 𝑓 ∈ 𝐾[𝑇], and its
roots 𝑥1,… , 𝑥𝑛 in a splitting field 𝐿. Then𝐺 = Gal(𝐿/𝐾) permutes the {𝑥𝑖}, because 𝑓(𝜎𝑥𝑖) =
𝜎𝑓(𝑥𝑖) = 0. If 𝜎(𝑥𝑖) = 𝑥𝑖 for all 𝑖, since 𝐿 = 𝐾(𝑥1,… , 𝑥𝑛), 𝜎must be the identity map. This
gives an injective homomorphism from 𝐺 into 𝑆𝑛. So 𝐺 is isomorphic to a subgroup of 𝑆𝑛.
In our example above, |𝐺| = 6 and 𝐺 is isomorphic to a subgroup of 𝑆3, so 𝐺 ≅ 𝑆3.
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4.4. Galois groups of polynomials
Definition. Let 𝑓 ∈ 𝐾[𝑇], and let 𝐿 be a splitting field for 𝑓. There is an action of Gal(𝐿/𝐾)
on the set of roots of 𝑓 in 𝐿. If 𝑓 has 𝑛 roots, this action induces a subgroup of permutations
of roots Gal(𝑓/𝐾) ≤ 𝑆𝑛, called the Galois group of 𝑓 over 𝐾.

Remark. Gal(𝑓/𝐾) ≃ Gal(𝐿/𝐾) as 𝐿 is a splitting field for 𝑓 over 𝐾. In particular, [𝐿 ∶ 𝐾] =
|Gal(𝐿/𝐾)| = |Gal(𝑓/𝐾)| ∣ 𝑛!.

There exist several methods for finding the Galois group for a particular polynomial.

Proposition. 𝑓 ∈ 𝐾[𝑇] is irreducible if and only if Gal(𝑓/𝐾) is transitive, so for all 𝑖, 𝑗 ∈
{1,… , 𝑛}, there exists 𝜎 ∈ Gal(𝑓/𝐾) such that 𝜎(𝑖) = 𝑗.

Remark. A subgroup of 𝑆𝑛 is transitive if and only if there is exactly one orbit.

Proof. Let 𝑥 be a root of 𝑓 in a splitting field 𝐿. Then its orbit under 𝐺 = Gal(𝑓/𝐾) is exactly
the set of roots of𝑚𝑥,𝐾 . Since𝑚𝑥,𝐾 is an irreducible factor of 𝑓,𝑚𝑥,𝐾 = 𝑓 if and only if 𝑓 is
irreducible. Conversely, 𝑚𝑥,𝐾 = 𝑓 if and only if each root of 𝑓 is in the orbit of 𝑥, which is
exactly the statement that 𝐺 acts transitively on the roots of 𝑓.

Remark. If 𝐺 ⊆ 𝑆𝑛 is transitive, by the orbit-stabiliser theorem, 𝑛 ∣ |𝐺|.

Recall that for amonic polynomial𝑓 = ∏𝑛
𝑖=1(𝑇−𝑥𝑖), the discriminant of𝑓 is Disc(𝑓) = Δ2 ∈

𝐾, where Δ = ∏𝑖<𝑗(𝑥𝑖−𝑥𝑗). The discriminant is nonzero if and only if 𝑓 is separable.

Proposition. Let char𝐾 ≠ 2, and let 𝑓 ∈ 𝐾[𝑇] be a monic polynomial with splitting field
𝐿. Let 𝐺 = Gal(𝑓/𝐾). Then the fixed field of 𝐺 ∩ 𝐴𝑛 is 𝐾(Δ), where Δ2 is the discriminant.
In particular, Gal(𝑓/𝐾) ⊆ 𝐴𝑛 if and only if the discriminant Disc(𝑓) is a square.

Proof. Let 𝜋 ∈ 𝑆𝑛. The sign of the permutation is given by

∏
𝑖<𝑗

(𝑇𝜋(𝑖) − 𝑇𝜋(𝑗)) = sgn𝜋∏
𝑖<𝑗

(𝑇𝑖 − 𝑇𝑗)

Hence, if 𝜎 ∈ 𝐺, we have 𝜎(Δ) = sgn𝜎 ⋅Δ. Because the characteristic is not 2,−1 ≠ 1. Since
Δ ≠ 0, this implies Δ ∈ 𝐾 if and only if 𝐺 ⊆ 𝐴𝑛, and Δ lies in the fixed field 𝐹 of 𝐺 ∩ 𝐴𝑛.
Because [𝐹 ∶ 𝐾] = (𝐺 ∶ 𝐺 ∩ 𝐴𝑛) ∈ {1, 2}, 𝐹 = 𝐾(Δ) exactly.

Example. Let 𝑛 = 3, 𝑓 = 𝑇3 + 𝑎𝑇 + 𝑏 = ∏3
𝑖=1(𝑇 − 𝑥𝑖) where 𝑥𝑖 lie in a splitting field for 𝑓.

Since there is no𝑇2 term, 𝑥3 = −𝑥1−𝑥2. Hence, 𝑎 = 𝑥1𝑥2−(𝑥1+𝑥2)2, and 𝑏 = 𝑥1𝑥2(𝑥1+𝑥2).
Therefore,

Disc(𝑓) = [(𝑥1 − 𝑥2)(2𝑥1 + 𝑥2)(𝑥1 + 2𝑥2)]
2 = −4𝑎3 − 27𝑏2

In particular, Gal(𝑓/𝐾) ⊆ 𝐴3 if and only if −4𝑎3 − 27𝑏2 is a square in 𝐾.

For example, consider 𝑓 = 𝑇3−21𝑇−7 ∈ ℚ[𝑇]. This is irreducible by Eisenstein’s criterion.
Its discriminant is 4 ⋅213−27⋅72 = (27 ⋅7)2, which is a square. So Gal(𝑓/𝐾) ⊆ 𝐴3. Since 𝑓 is
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irreducible, Gal(𝑓/𝐾) is transitive, so its order is divisible by 3. So Gal(𝑓/𝐾)must be exactly
𝐴3.

Remark. This technique can be used to calculate the Galois group of any cubic polynomial
for characteristic not 2, 3, for example.
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5. Finite fields
5.1. Construction of finite fields
Every finite field has characteristic 𝑝 > 0, and so it can be regarded as a field extension of
𝔽𝑝. We will classify every finite field and study their Galois theory. Recall that, for a finite
field 𝐹 of characteristic 𝑝,

(i) |𝐹| = 𝑝𝑛, where [𝐹 ∶ 𝔽𝑝] = 𝑛;

(ii) 𝐹× is cyclic, of order 𝑝𝑛 − 1;

(iii) The Frobenius automorphism 𝜑𝑝∶ 𝐹 → 𝐹 given by 𝑥 ↦ 𝑥𝑝 is an automorphism of 𝐹.

Theorem. Let 𝑝 be a prime, and 𝑛 ≥ 1. Then there is a finite field with 𝑞 = 𝑝𝑛 elements.
Any such field is a splitting field of the polynomial 𝑓 = 𝑇𝑞−𝑇 over 𝔽𝑝. Since splitting fields
are unique up to 𝔽𝑝-isomorphism, any two finite fields of the same order are isomorphic.

Proof. Let 𝐹 be a field with 𝑞 = 𝑝𝑛 elements. Then if 𝑥 ∈ 𝐹×, 𝑥𝑞−1 = 1. Hence, for all 𝑥 ∈ 𝐹,
𝑥𝑞 = 𝑥. In particular, 𝑓 has 𝑞 distinct roots in 𝐹, which are all of the elements of 𝐹. So 𝑓
splits into linear factors in 𝐹, and not in any proper subfield, so 𝐹 is indeed a splitting field
for 𝑓 as required.

Now, we wish to explicitly construct such a field. Let 𝐿 be a splitting field for 𝑓 = 𝑇𝑞 − 𝑇
over 𝔽𝑝. Let 𝐹 ⊆ 𝐿 be the fixed field of 𝜑𝑛𝑝 , the map 𝑥 ↦ 𝑥𝑞. So 𝐹 is the set of roots of 𝑓 in 𝐿.
So |𝐹| = 𝑞. Therefore, 𝐿 = 𝐹 because 𝐹 has 𝑞 elements, using the above argument.

Now that we have shown isomorphism, we simply write 𝔽𝑞 for any finite field of 𝑞 elements.
There is no canonical finite field of a given order in general.

5.2. Galois theory of finite fields
Theorem. The extension 𝔽𝑝𝑛/𝔽𝑝 is Galois, and the Galois group is cyclic of order 𝑛, gener-
ated by the Frobenius automorphism 𝜑𝑝.

Proof. Since 𝔽𝑝𝑛 is the splitting field of the separable polynomial 𝑇𝑝𝑛 − 𝑇, the extension is
Galois. Let𝐺 ≤ Gal(𝔽𝑝𝑛/𝔽𝑝) be the subgroup generated by𝜑𝑝. Then𝔽𝐺𝑝𝑛 = {𝑥 ∣ 𝑥𝑝 = 𝑥} = 𝔽𝑝,
so by the Galois correspondence, 𝐺 must be the entire group Gal(𝔽𝑝𝑛/𝔽𝑝).

Theorem. 𝔽𝑝𝑛 has a unique subfield of order 𝑝𝑚 for all𝑚 ∣ 𝑛, and no others. If𝑚 ∣ 𝑛, then
𝔽𝑝𝑚 ⊆ 𝔽𝑝𝑛 is the fixed field of 𝜑𝑚𝑝 .

Proof. By the Galois correspondence, it suffices to check the subgroups of ℤ⟋𝑛ℤ. The sub-
groups of ℤ⟋𝑛ℤ are 𝑚ℤ⟋𝑛ℤ for 𝑚 ∣ 𝑛. Hence, the subfields of 𝔽𝑝𝑚 are the fixed fields of the
subgroups ⟨𝜑𝑚𝑝 ⟩, which have degree equal to the indices (ℤ⟋𝑛ℤ ∶ 𝑚ℤ⟋𝑛ℤ) = 𝑚.
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Remark. If𝑚 ∣ 𝑛, Gal(𝔽𝑝𝑛/𝔽𝑝𝑚) = ⟨𝜑𝑚𝑝 ⟩, which has order
𝑛
𝑚
.

Theorem. Let 𝑓 ∈ 𝔽𝑝[𝑇] be separable, and let 𝑛 = deg𝑓. Suppose the irreducible factors
of 𝑓 have degrees 𝑛1,… , 𝑛𝑟, so∑

𝑟
𝑖=1 𝑛𝑖 = 𝑛. Then Gal(𝑓/𝔽𝑝) ⊆ 𝑆𝑛 is cyclic and generated by

an element of cycle type (𝑛1,… , 𝑛𝑟). In particular, ||Gal(𝑓/𝔽𝑝)|| is the least commonmultiple
of the 𝑛𝑖.

Recall that 𝜋 ∈ 𝑆𝑛 has cycle type (𝑛1,… , 𝑛𝑟) if it is a product of 𝑟 disjoint cycles 𝜋𝑖, each with
length 𝑛𝑖.

Proof. Let 𝐿 be a splitting field for 𝑓 over 𝔽𝑝. Consider 𝑥1,… , 𝑥𝑛 ∈ 𝐿. Then Gal(𝐿/𝔽𝑝) is
cyclic and generated by 𝜑𝑝. As the irreducible factors 𝑔𝑖 of 𝑓 are the minimal polynomials of
the 𝑥𝑖, and the roots of the minimal polynomial of 𝑥𝑖 are precisely the orbit of 𝜑𝑝 on 𝑥𝑖, the
cycle type must be as required. The order of any such permutation is the lowest common
multiple of the lengths of the cycles.

5.3. Reduction modulo a prime
Theorem. Let 𝑓 ∈ ℤ[𝑇] be a monic separable polynomial with deg𝑓 = 𝑛, and let 𝑝 be
a prime. Suppose that the reduction 𝑓 ∈ 𝔽𝑝[𝑇] of 𝑓 is also separable. Then Gal(𝑓/𝔽𝑝) ≤
Gal(𝑓/ℚ) as subgroups of 𝑆𝑛.

Remark. The identification of Gal(𝑓/ℚ) with a subgroup of 𝑆𝑛 depends on the choice of
ordering of the roots of 𝑓. Choosing a different ordering corresponds to conjugation of
Gal(𝑓/ℚ) in 𝑆𝑛. The meaning of the statement Gal(𝑓/𝔽𝑝) ≤ Gal(𝑓/ℚ) therefore means that
Gal(𝑓/𝔽𝑝) is conjugate to a subgroup of Gal(𝑓/ℚ) in 𝑆𝑛, not that it is exactly a subgroup.

The following proof is based in algebraic number theory; alternatives are available. The
proof is not examinable.

Proof. Let 𝐿 = ℚ(𝑥1,… , 𝑥𝑛) be a splitting field for 𝑓, where the 𝑥𝑖 are the roots of 𝑓. Let
𝑁 = [𝐿 ∶ ℚ]. Consider 𝑅 = ℤ[𝑥1,… , 𝑥𝑛]. Since 𝑓(𝑥𝑖) = 0 and 𝑓 is monic, every element of
𝑅 is a ℤ-linear combination of 𝑥𝑎11 ,… , 𝑥𝑎𝑛𝑛 where the 𝑎𝑖 < 𝑛 by using 𝑓 to reduce the degrees.
So 𝑅 is finitely-generated as a ℤ-module, or equivalently, as an abelian group. 𝑅 is contained
inside 𝐿 ≃ ℚ𝑁 . 𝑅 is torsion-free, so 𝑅 ≃ ℤ𝑀 with𝑀 ≤ 𝑁 (in fact,𝑀 = 𝑁).

Then 𝑅 = 𝑅⟋𝑝𝑅 has 𝑝𝑀 elements. Let 𝑃 be a maximal ideal for 𝑅, which corresponds to

an ideal 𝑃 of 𝑅 that contains 𝑝𝑅. Then 𝐹 = 𝑅⟋𝑃 ≃ 𝑅⟋𝑃 (by the isomorphism theorem) is a
finite field with 𝑝𝑑 elements for some 𝑑. Since 𝑅 is generated by 𝑥1,… , 𝑥𝑛, 𝐹 is generated by
𝑥1,… , 𝑥𝑛, where 𝑥𝑖 = 𝑥𝑖 +𝑃 ∈ 𝐹. In particular, 𝑓 = ∏𝑛

𝑖=1(𝑇 − 𝑥𝑖). Since 𝑓 is separable, the
𝑥𝑖 are distinct, and 𝐹 is a splitting field for 𝑓.

Let 𝐺 = Gal(𝑓/ℚ). Then 𝐺maps 𝑅 to 𝑅 since it permutes the 𝑥𝑖. Let𝐻 ≤ 𝐺 be the stabiliser
of 𝑃, so 𝐻 = {𝜎 ∈ 𝐺 ∣ 𝜎𝑃 = 𝑃}. Since 𝐻 fixes 𝑃, 𝐻 acts on the quotient 𝑅⟋𝑃 = 𝐹, and it
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permutes the 𝑥𝑖 in the same way as it permutes the 𝑥𝑖. In particular, there is an injective
homomorphism from𝐻 into Gal(𝐹/𝔽𝑝). It now suffices to show that this homomorphism is
an isomorphism.

Let {𝑃 = 𝑃1, 𝑃2,… , 𝑃𝑟} be the orbit of 𝑃 under 𝐺, so 𝑃𝑖 = 𝜎𝑃 for some 𝜎 ∈ 𝐺. These are
all maximal ideals since 𝑃 is, and 𝑅⟋𝑃𝑖 ≃

𝑅⟋𝑃 so each 𝑅⟋𝑃𝑖 have 𝑝
𝑑 elements. The 𝑃𝑖 are

maximal, so 𝑃𝑖 + 𝑃𝑗 = 𝑅 if 𝑖 ≠ 𝑗. So by the Chinese remainder theorem for rings,

𝑅⟋(𝑃1 ∩⋯ ∩ 𝑃𝑘) ≃
𝑅⟋𝑃1 ×⋯× 𝑅⟋𝑃𝑟

As 𝑝 ∈ 𝑃1, 𝑝𝑅 ⊆ 𝑃1 ∩⋯ ∩ 𝑃𝑟. So

𝑝𝑁 ≥ 𝑝𝑀 = ||𝑅⟋𝑝𝑅|| ≥ ||𝑅⟋(𝑃1 ∩⋯ ∩ 𝑃𝑟)
|| =

𝑟
∏
𝑖=1

||𝑅⟋𝑃𝑖
|| = 𝑝𝑟𝑑 ⟹ 𝑁 ≥ 𝑟𝑑

Now, by the orbit-stabiliser theorem, 𝑟 = (𝐺 ∶ 𝐻) = 𝑁
|𝐻|
. Since 𝐻 injects into Gal(𝐹/𝔽𝑝),

we have |𝐻| ≤ 𝑑 with equality if and only if the injection is an isomorphism. So 𝑁 ≤ 𝑟𝑑,
but since 𝑁 ≥ 𝑟𝑑, we must have 𝑁 = 𝑟𝑑, so the injection is an isomorphism, and 𝐻 ≃
Gal(𝑓/𝔽𝑝).

Corollary. Let 𝑓 ∈ ℤ[𝑇] be monic and separable with 𝑝 a prime such that 𝑓 ∈ 𝔽𝑝[𝑇] is
separable. Consider the factorisation into irreducibles 𝑓 = 𝑔1…𝑔𝑟 ∈ 𝔽𝑝[𝑇], where deg 𝑔𝑖 =
𝑛𝑖. Then Gal(𝑓/ℚ) contains an element of cycle type (𝑛1,… , 𝑛𝑟).

Proof. Combine the previous two theorems.

Example. Let 𝑓 = 𝑇4 − 3𝑇 + 1. Consider 𝑝 = 2. In 𝔽2, 𝑓 = 𝑇4 + 𝑇 + 1. This does not
have a root, and not divisible by 𝑇2 + 𝑇 + 1 which is the only irreducible quadratic, so it is
irreducible.

Now, consider 𝑝 = 5. In 𝔽5, 𝑓 = (𝑇 + 1)(𝑇3 − 𝑇2 + 𝑇 + 1), which is a factorisation into
irreducibles.

By the above corollary, Gal(𝑓/ℚ) has a 4-cycle and a 3-cycle. In particular, 12 ∣ |Gal(𝑓/ℚ)|,
so the group is either all of 𝑆4 or it is 𝐴4, as this is the unique index 2 subgroup of 𝑆4. But
4-cycles are odd, so do not lie in 𝐴4. So Gal(𝑓/ℚ) = 𝑆4.

Note that if 𝑓 is separable, Disc(𝑓) ≠ 0, so 𝑝 ∤ Disc(𝑓) so 𝑓 is separable. If 𝑓 is separable,
then 𝑓 is separable for all primes but the finite set of primes dividing Disc(𝑓).
Remark. If Gal(𝑓/ℚ) contains an element of cycle type (𝑛1,… , 𝑛𝑟), it can in fact be shown
that there exist infinitely many primes 𝑝 such that 𝑓 factors into irreducibles of degrees
𝑛1,… , 𝑛𝑟 in 𝔽𝑝. This is known as the Chebotarev density theorem, which is a generalisation
of Dirichlet’s theorem on primes in arithmetic progression. However, the proof is far outside
the scope of this course.
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6. Cyclotomic and Kummer extensions
6.1. Primitive roots of unity
Lemma. Let 𝐶 be a cyclic group of order 𝑛 > 1. Let 𝑎 ∈ ℤ be coprime with 𝑛, also written
(𝑎, 𝑛) = 1. Then the map [𝑎]∶ 𝐶 → 𝐶 given by [𝑎](𝑔) = 𝑔𝑎 is an automorphism of 𝐶, and
the map (ℤ⟋𝑛ℤ)

×
→ Aut(𝐶) defined by 𝑎 ↦ [𝑎] is an isomorphism.

Proof. [𝑎] is clearly a homomorphism, and since 𝑎 is coprime to 𝑛, it is an automorphism
since there exists 𝑏 such that 𝑎𝑏 is congruent to 1 modulo 𝑛. Hence, there is an injection
(ℤ⟋𝑛ℤ)

×
→ Aut(𝐶) given by 𝑎 ↦ [𝑎], and it is a homomorphism. If 𝜑 ∈ Aut(𝐶) and 𝑔 is a

generator for 𝐶, 𝜑(𝑔) = 𝑔𝑎 for some 𝑎 ∈ (ℤ⟋𝑛ℤ)
×
. So 𝜑 = [𝑎], and in particular, the map is

an isomorphism.

Let 𝐾 be a field and 𝑛 ≥ 1. We define 𝛍𝑛(𝐾) = {𝑥 ∈ 𝐾 ∣ 𝑥𝑛 = 1} for the group (under multi-
plication) of 𝑛th roots of unity in 𝐾. This is a finite subgroup of 𝐾×, hence it is cyclic. The
order of any element divides 𝑛, so it has order dividing 𝑛.

We say that 𝜁 ∈ 𝛍𝑛(𝐾) is a primitive 𝑛th root of unity if its order is exactly 𝑛. Such a 𝜁 exists
if and only if 𝛍𝑛(𝐾) has 𝑛 elements, and then 𝜁 is a generator for the group. In particular,
𝑓 = 𝑇𝑛 −1 has 𝑛 distinct roots, 𝜁𝑖 for 𝑖 ∈ {0,… , 𝑛 − 1}, and hence it is separable. In general,
𝑓 = 𝑇𝑛 − 1 is separable if and only if 𝑓 is coprime with 𝑓′ = 𝑛𝑇𝑛−1, which holds if and
only if 𝑛 ≠ 0. In this section, we assume that the characteristic of 𝐾 is zero or is a positive
number 𝑝 that does not divide 𝑛, so 𝑓 is separable.

Let 𝐿/𝐾 be a splitting field for 𝑇𝑛 − 1. This is Galois since 𝑓 is separable, so we can define
𝐺 = Gal(𝐿/𝐾). Then |𝛍𝑛(𝐿)| = 𝑛, and so there exists a primitive 𝑛th root of unity 𝜁 = 𝜁𝑛 ∈ 𝐿.
Such an 𝐿 is called a cyclotomic extension.

Proposition. Let𝐿 = 𝐾(𝜁). There exists an injective homomorphism𝜒 = 𝜒𝑛∶ Gal(𝐿/𝐾) →
(ℤ⟋𝑛ℤ)

×
such that 𝜒(𝜎) = 𝑎 implies 𝜎(𝜁) = 𝜁𝑎. In particular, 𝐺 is abelian. 𝜒 is an isomorph-

ism if and only if 𝐺 acts transitively on the set of primitive roots of unity in 𝐿.

The homomorphism 𝜒 is called the cyclotomic character.

Proof. 𝛍𝑛(𝐿) is cyclic and generated by 𝜁, so the roots of 𝑇𝑛 − 1 are the powers of 𝜁, so
𝐿 = 𝐾(1, 𝜁, 𝜁2,… , 𝜁𝑛−1) = 𝐾(𝜁). Consider the action of 𝐺 on 𝐿. This action permutes 𝛍𝑛(𝐿),
and if 𝜁, 𝜁′ ∈ 𝛍𝑛(𝐿) and 𝜎 ∈ 𝐺, then 𝜎(𝜁𝜁′) = 𝜎(𝜁)𝜎(𝜁′), so 𝜎 acts as an automorphism of
𝛍𝑛(𝐿). 𝜎(𝜁) = 𝜁 if and only if 𝜎 is the identity because 𝐿 = 𝐾(𝜁). This gives an injective
homomorphism 𝐺 ↪ Aut (𝛍𝑛(𝐿)) ≃ (ℤ⟋𝑛ℤ)

×
.

𝜁𝑎𝑛 is primitive if and only if 𝑎 is coprime to 𝑛. Therefore the set of primitive 𝑛th roots of
unity is {𝜁𝑎 || 𝑎 ∈ (ℤ⟋𝑛ℤ)

×
}, which by the previous part, is the orbit of 𝜁 under 𝐺. The map

is surjective if and only if there is one orbit, so the result follows.
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6.2. Cyclotomic polynomials
Definition. Let 𝐾 have characteristic zero or a prime 𝑝 that does not divide 𝑛. The 𝑛th
cyclotomic polynomial is

Φ𝑛(𝑡) = ∏
𝑎∈(ℤ⟋𝑛ℤ)

×
(𝑇 − 𝜁𝑎𝑛 )

in a splitting field 𝐿 of 𝑇𝑛 − 1.
This is the polynomial where the roots are the primitive 𝑛th roots of unity. As 𝐺 permutes
the primitive 𝑛th roots of unity in 𝐿,Φ𝑛 has coefficients in 𝐿𝐺 = 𝐾. The last part of the above
proposition shows that 𝜒 is surjective if and only if Φ𝑛 ∈ 𝐾[𝑇] is irreducible.
𝑥 ∈ 𝐿 satisfies 𝑥𝑛 − 1 = 0 if and only if 𝑥 is a primitive 𝑑th root of unity for some unique
𝑑 ∣ 𝑛. Hence 𝑇𝑛 − 1 = ∏𝑑∣𝑛Φ𝑑, since the sets of roots are equal. In particular, we could
have inductively defined the cyclotomic polynomials by Φ𝑛 =

𝑇𝑛−1
∏𝑑∣𝑛,𝑑≠𝑛Φ𝑑

. This shows that

theΦ𝑛 do not depend on the choice of field 𝐾, sinceΦ𝑛 is the image in 𝐾[𝑇] of a polynomial
in ℤ[𝑇].

For example, Φ𝑝 =
𝑇𝑝−1
𝑇−1

= 𝑇𝑝−1 + 𝑇𝑝−2 +⋯ +⋯ + 𝑇 + 1. We also have Φ1 = 𝑇 − 1 and

Φ𝑝𝑛(𝑇) =
𝑇𝑝𝑛−1
𝑇𝑝𝑛−1−1

= Φ𝑝(𝑇𝑝𝑛−1). We have degΦ𝑛 = |
|(ℤ⟋𝑛ℤ)

×|
| = 𝜑(𝑛) where 𝜑 is the Euler

totient function.

Theorem (rationals). Let 𝐾 = ℚ. Then 𝜒𝑛 is an isomorphism for all 𝑛 > 1. In particular,
[ℚ(𝜁𝑛) ∶ ℚ] = 𝜑(𝑛), and Φ𝑛 is irreducible over ℚ.

Proof. The statements in the theorem are all equivalent by the previous results, so it suffices
to prove thatΦ𝑛 is irreducible overℚ. If 𝑛 is prime, we have already proven its irreducibility
by Eisenstein’s criterion and Gauss’ lemma. We can easily extend this to the case where 𝑛 is
a prime power.

Note that 𝜒𝑛 is an isomorphism if for all primes 𝑝 ∤ 𝑛, the residue class of 𝑝 ∈ (ℤ⟋𝑛ℤ)
×
is

in the image of 𝜒, by factorising 𝑎 as a product of primes if 𝑎 is coprime to 𝑛. Let 𝑓 be the
minimal polynomial of 𝜁 overℚ, and let 𝑔 be the minimal polynomial of 𝜁𝑝 overℚ. If 𝑓 = 𝑔,
then 𝜁𝑝 lies in the orbit of Gal(𝐿/𝐾) on 𝜁, so 𝑝 lies in the image of 𝜒 as required. Otherwise,
𝑓 and 𝑔 are coprime, and they divide 𝑇𝑛 − 1 so 𝑓𝑔 ∣ 𝑇𝑛 − 1. As 𝜁 is a root of 𝑔(𝑇𝑝), we have
𝑓 ∣ 𝑔(𝑇𝑝). Reducing modulo 𝑝, 𝑓 ∈ 𝔽𝑝[𝑇] divides 𝑔(𝑇𝑝) ∈ 𝔽𝑝[𝑇]. But since we are working
over 𝔽𝑝, 𝑔(𝑇𝑝) = 𝑔(𝑇)𝑝. Now, 𝑓 and 𝑔 divide 𝑇𝑛 − 1 in 𝔽𝑝[𝑇], which is separable because
𝑝 ∤ 𝑛. So 𝑓 ∣ 𝑔𝑝, so 𝑓 ∣ 𝑔. But then 𝑓

2
∣ 𝑓𝑔 ∣ 𝑇𝑛 − 1, contradicting separability of 𝑇𝑛 − 1.

Therefore, the minimal polynomial of 𝑒
2𝜋𝑖
𝑛 over ℚ is Φ𝑛.

Theorem (finite fields). Let 𝐾 = 𝔽𝑝, and let 𝑛 be coprime to 𝑝. Let 𝐿 be a splitting field for
𝑇𝑛−1. Then𝜒𝑛 is an isomorphism fromGal(𝐿/𝐾) to ⟨𝑝⟩ ≤ (ℤ⟋𝑛ℤ)

×
, the subgroup generated
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by the residue class of 𝑝, and 𝜒𝑛(𝜑𝑝) = 𝑝mod 𝑛 where 𝜑𝑝 is the Frobenius endomorphism
𝑥 ↦ 𝑥𝑝, which is a generator of Gal(𝐿/𝐾). Further, [𝐿 ∶ 𝐾] = 𝑟, where 𝑟 is the order of
𝑝 modulo 𝑛. Finally, 𝜑𝑝 has cycle type (𝑟,… , 𝑟) acting as a permutation of the roots of the
cyclotomic polynomial Φ𝑛, which are the primitive 𝑛th roots of unity.

Proof. Since 𝜑𝑝(𝜁) = 𝜁𝑝 and 𝐿 = 𝐾(𝜁), by definition of 𝜒𝑛, we have 𝜒𝑛(𝜑𝑝) = 𝑝, or more
precisely, 𝑝mod 𝑛. In particular, 𝜒𝑛(𝐺) = ⟨𝑝⟩, and as this is a Galois extension, [𝐿 ∶ 𝐾] =
|𝐺| = |⟨𝑔⟩| = 𝑟. For the last part, notice that if 𝑎 and 𝑛 are coprime, 𝜑𝑘𝑝(𝜁𝑎) = 𝜁𝑎 holds if and
only if 𝜑𝑘𝑝(𝜁) = 𝜁, or equivalently, 𝑟 ∣ 𝑘. So the orbits of 𝜑𝑝 on the set {𝜁𝑎𝑛 ∣ (𝑎, 𝑛) = 1}, which
is the set of roots of Φ𝑛, all have length 𝑟.

Remark. This almost gives another proof of the irreducibility of the cyclotomic polynomials
Φ𝑛 over ℚ. By reduction modulo 𝑝, Gal(Φ𝑛/ℚ) contains Gal(Φ𝑛/𝔽𝑝) as a subgroup, up to
conjugacy by elements of 𝑆𝜑(𝑛). It is not difficult to show that in fact 𝜒𝑛(Gal(Φ𝑛/ℚ)) ⊇
𝜒𝑛(Gal(Φ𝑛/𝔽𝑝)) = ⟨𝑝⟩. As this holds for all primes 𝑝 not dividing 𝑛, 𝜒𝑛(Gal(Φ𝑛/ℚ)) =
(ℤ⟋𝑛ℤ)

×
.

Remark. The last part of the above theorem implies that over 𝔽𝑝, the cyclotomic polynomial
Φ𝑛 factors as a product of irreducibles of degree 𝑟. This depends only on the value of 𝑝
modulo 𝑛. In general, for a polynomial with integer coefficients 𝑓 ∈ ℤ[𝑇], its factorisation
modulo 𝑝 does not follow an obvious pattern.

Answering this question is part of the Langlands programme, a large area of research in
modern number theory. The case where there is such a congruence pattern turns out to be
when Gal(𝑓/ℚ) is abelian. This study is known as class field theory, which is studied in Part
III.

6.3. Quadratic reciprocity
The following theorem is from Part II Number Theory. This theorem has several hundred
proofs, and this particular one follows from the above theory on cyclotomic polynomials.

Let 𝑝 be an odd prime and 𝑎 an integer coprime to 𝑝. Then the Legendre symbol (𝑎
𝑝
) is

defined by

(𝑎𝑝) = {+1 if 𝑎 is a square mod 𝑝
−1 otherwise

Euler’s formula for the Legendre symbol is

(𝑎𝑝) ≡ 𝑎
𝑝−1
2 mod 𝑝

Let 𝑞 be another odd prime, and consider the case𝑛 = 𝑞 in the above discussion, so𝐿 = 𝐾(𝜁𝑞)
is a splitting field for 𝑓 = 𝑇𝑞 − 1 = (𝑇 − 1)Φ𝑞. On roots of 𝑓 in 𝐿, the Frobenius map 𝜑𝑝
has cycle type (1, 𝑟,… , 𝑟). There are 𝑞−1

𝑟
-many 𝑟-cycles. The sign of the permutation 𝜑𝑝
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is (−1)(𝑟−1)
𝑞−1
𝑟 = (−1)

𝑞−1
𝑟 since 𝑞 is odd. Note that 2 ∣ 𝑞−1

𝑟
holds if and only if 𝑟 ∣ 𝑞−1

2
, or

equivalently, 𝑝
𝑞−1
2 ≡ 1mod 2. This is in the form of Euler’s formula for the Legendre symbol.

So the sign of 𝜑𝑝 is exactly (
𝑝
𝑞
).

Since 𝐺 = ⟨𝜑𝑝⟩, the sign of 𝜑𝑝 is +1 if and only if 𝐺 ⊆ 𝐴𝑞 since 𝑞 = deg𝑓. This holds if and
only if Disc(𝑓) is a square in 𝔽𝑝.

Lemma. Let 𝑓 = ∏(𝑇 − 𝑥𝑖) over some field. Then Disc(𝑓) = (−1)
𝑑(𝑑−1)

2 ∏𝑓′(𝑥𝑖). where
𝑑 = deg𝑓.

This lemma can be shown directly from the definition of the discriminant. We use the above
lemma with 𝑓 = 𝑇𝑞 − 1 = ∏𝑞−1

𝑎=0(𝑇 − 𝜁𝑛𝑞 ) and 𝑓′ = 𝑞𝑇𝑞−1 to find

Disc(𝑓) = (−1)
𝑞(𝑞−1)

2

𝑞−1
∏
𝑎=0

𝑞𝜁𝑎(𝑞−1)𝑞 = (−1)
𝑞−1
2 𝑞𝑞𝜁

(𝑞−1) 𝑞(𝑞−1)2𝑞 = (−1)
𝑞−1
2 𝑞𝑞

since 𝑞 is odd. Hence, by the fact that (−1
𝑝
) = (−1)

𝑝−1
2 ,

(𝑝𝑞 ) = (Disc(𝑓)𝑝 ) = ((−1)
𝑞−1
2 𝑞

𝑝 ) = (𝑞𝑝)(−1)
(𝑝−1)(𝑞−1)

4

which is the quadratic reciprocity law.

6.4. Construction of regular polygons
Lemma. If𝑚 is a positive integer such that 2𝑚 + 1 is prime, then𝑚 is a power of two.

Proof. If 𝑞 is odd, 2𝑞𝑟+1 = (2𝑟+1)(2𝑞𝑟−𝑟−2𝑞𝑟−2𝑟+⋯+1), which is a nontrivial factorisation.

Ruler and compass construction of a regular 𝑛-gon for 𝑛 ≥ 3 is equivalent to constructing
the real number cos(2𝜋

𝑛
).

Theorem (Gauss). A regular 𝑛-gon is contructible if and only if 𝑛 is a power of two multi-
plied by a product of distinct primes of the form 22𝑘 + 1.

Remark. Let 𝐹𝑘 = 22𝑘 + 1 be the 𝑘th Fermat number. 𝐹1 = 5, 𝐹2 = 17, 𝐹3 = 257, and
𝐹4 = 65537 are all prime. Fermat conjectured that all 𝐹𝑘 are prime. This is false; Euler
proved that 𝐹5 = 641 ⋅ 6700417. Many Fermat numbers are known to be composite, and no
more have been found to be prime.
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Proof. Recall that a real number 𝑥 ∈ ℝ is constructible if and only if there is a sequence of
fields ℚ = 𝐾0 ⊂ 𝐾1 ⊂ ⋯ ⊂ 𝐾𝑛 such that 𝑥 ∈ 𝐾𝑛 and [𝐾𝑖+1 ∶ 𝐾𝑖] = 2. In particular, if 𝑥 is
constructible, [ℚ(𝑥) ∶ ℚ] = degℚ(𝑥) is a power of two. Note that

𝑥 = cos (2𝜋𝑛 ) = 1
2(𝜁𝑛 + 𝜁−1𝑛 ) ⟹ 𝜁2𝑛 − 2𝑥𝜁𝑛 + 1 = 0

Since 𝑥 ∈ ℝ and 𝜁𝑛 ∉ ℝ (for 𝑛 ≥ 3), [ℚ(𝜁𝑛) ∶ ℚ(𝑥)] = 2. If 𝑥 is constructible, then
[ℚ(𝜁𝑛) ∶ ℚ] is a power of two. But [ℚ(𝜁𝑛) ∶ ℚ] = 𝜑(𝑛).
Let 𝑛 = ∏𝑟

𝑖=1 𝑝
𝑒𝑖
𝑖 be the prime factorisation of 𝑛. Then [ℚ(𝜁𝑛) ∶ ℚ] = ∏𝑟

𝑖=1 𝑝
𝑒𝑖−1
𝑖 (𝑝 − 1).

This is a power of two if and only if for all odd 𝑝𝑖, we have 𝑒𝑖 = 1 and 𝑝𝑖 − 1 is a power of
two. By the previous lemma, 𝜑(𝑛) is a power of two if and only if 𝑛 is of the required form.
Now suppose 𝑛 is of the required form, so 𝜑(𝑛) = 2𝑚. ℚ(𝜁𝑛)/ℚ is Galois, with Galois group
𝐺 ≃ (ℤ⟋𝑛ℤ)

×
, which has 2𝑚 elements. There exist subgroups 𝐺 = 𝐻0 ⊃ 𝐻1 ⊃ ⋯ ⊃

𝐻𝑚 = 1 such that [𝐻𝑖 ∶ 𝐻𝑖+1] = 2. Indeed, as 2 ∣ 2𝑚, by Cauchy’s theorem there exists an
element 𝜎 ∈ 𝐺 of order 2, assuming 𝐺 is not the trivial group. Take 𝐻𝑚−1 = ⟨𝜎⟩, and then
consider𝐺⟋⟨𝜎⟩, which contains a subgroup of order 2 by the same argument; we can proceed
inductively. Then the tower of fixed fields 𝐾𝑖 = ℚ(𝜁𝑛)𝐻𝑖 is a tower of quadratic extensions
by the Galois correspondence.

6.5. Kummer extensions
Theorem (linear independence of field embeddings). Let𝐾, 𝐿 be fields. Let𝜎1,… , 𝜎𝑛∶ 𝐾 →
𝐿 be distinct field homomorphisms. Let 𝑦1,… , 𝑦𝑛 ∈ 𝐿 be such that for all 𝑥 ∈ 𝐾×, 𝑦1𝜎1(𝑥) +
⋯ + 𝑦𝑛𝜎𝑛(𝑥) = 0. Then all 𝑦𝑖 = 0. In other words, 𝜎1,… , 𝜎𝑛 are 𝐿-linearly independent
elements of the set of functions 𝐾 → 𝐿, considered as an 𝐿-vector space.
This is a special case, using 𝐺 = 𝐾×, of the following theorem.

Theorem (linear independence of characters). Let 𝐺 be a group and 𝐿 be a field. Let
𝜎1,… , 𝜎𝑛∶ 𝐺 → 𝐿× be distinct group homomorphisms. Then 𝜎1,… , 𝜎𝑛 are 𝐿-linearly in-
dependent elements.

Proof. We use induction on 𝑛. If 𝑛 = 1, the result is clear. Suppose 𝑛 > 1. Let 𝑦1,… , 𝑦𝑛 ∈ 𝐿
be such that for all 𝑔 ∈ 𝐺, 𝑦1𝜎1(𝑔)+⋯+𝑦𝑛𝜎𝑛(𝑔) = 0. Since the homomorphisms are distinct,
there is an element ℎ ∈ 𝐺 such that 𝜎1(ℎ) ≠ 𝜎𝑛(ℎ). The 𝜎𝑖 are homomorphisms, so

𝑦1𝜎1(ℎ𝑔) +⋯+ 𝑦𝑛𝜎𝑛(ℎ𝑔) = 𝑦1𝜎1(ℎ)𝜎1(𝑔) +⋯ + 𝑦𝑛𝜎𝑛(ℎ)𝜎𝑛(𝑔) = 0

Multiplying the original expression in 𝑔 by 𝜎𝑛(ℎ) and subtracting,

𝑦′1𝜎1(𝑔) +⋯ + 𝑦′𝑛−1𝜎𝑛−1(𝑔) = 0; 𝑦′𝑖 = 𝑦𝑖(𝜎𝑖(ℎ) − 𝜎𝑛(ℎ))

By induction, all 𝑦′𝑖 = 0. But 𝜎1(ℎ) ≠ 𝜎𝑛(ℎ), so 𝑦1 = 0. So the original equation 𝑦1𝜎1(𝑔) +
⋯ + 𝑦𝑛𝜎𝑛(𝑔) = 0 can be simplified into 𝑦2𝜎2(𝑔) + ⋯ + 𝑦𝑛𝜎𝑛(𝑔) = 0, so again by induction,
all 𝑦𝑖 are zero.
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V. Galois Theory

We now consider extensions of the form 𝐿 = 𝐾(𝑥) for 𝑥𝑛 = 𝑎 ∈ 𝐾. The special case 𝑎 = 1
gives the cyclotomic extensions. These extensions are not necessarily Galois; for example,
ℚ(3√2)/ℚ is not Galois. In this section, let 𝑛 > 1, and 𝑛 ≠ 0 in 𝐾.

Theorem. Let 𝐾 be a field that contains a primitive 𝑛th root of unity 𝜁 = 𝜁𝑛. Let 𝐿/𝐾 be
a field extension with 𝐿 = 𝐾(𝑥), where 𝑥𝑛 = 𝑎 ∈ 𝐾×. Then 𝐿/𝐾 is a splitting field for
𝑓 = 𝑇𝑛 − 𝑎, and is Galois with cyclic Galois group. [𝐿 ∶ 𝐾] is the least 𝑚 ≥ 1 such that
𝑥𝑚 ∈ 𝐾.

Proof. Note that 𝛍𝑛(𝐾) = {𝜁𝑖 ∣ 0 ≤ 𝑖 < 𝑛} has 𝑛 elements. Then 𝑓 has 𝑛 distinct roots 𝜁𝑖𝑥
in 𝐿. So 𝐿 is a splitting field for the separable polynomial 𝑓, and in particular, 𝐿 is a Galois
extension.

Let 𝜎 ∈ Gal(𝐿/𝐾) = 𝐺. Then 𝑓(𝜎(𝑥)) = 0, so 𝜎(𝑥) = 𝜁𝑖𝑥 for some 𝑖, which is unique modulo
𝑛. This induces a map 𝜃∶ 𝐺 → 𝛍𝑛(𝐾) ≃ ℤ⟋𝑛ℤ, given by 𝜃(𝜎) =

𝜎(𝑥)
𝑥

which is equal to 𝜁𝑖 for
some 𝑖. We claim this is a homomorphism. Let 𝜎, 𝜏 ∈ 𝐺. Then since 𝜁 ∈ 𝐾, 𝜏(𝜃(𝜎)) = 𝜃(𝜎).
So

𝜃(𝜏𝜎) = 𝜏𝜎(𝑥)
𝑥 = 𝜏(𝜎(𝑥)𝑥 ) ⋅ 𝜏(𝑥)𝑥 = 𝜏(𝜃(𝜎)) ⋅ 𝜃(𝜏) = 𝜃(𝜎)𝜃(𝜏)

It is injective, because 𝜃(𝜎) = 1 if and only if 𝜎(𝑥) = 𝑥, so 𝜎 = id. So 𝐺 is isomorphic to a
subgroup of a cyclic group. Hence it is cyclic.

If 𝑚 ≥ 1, since 𝐿/𝐾 is Galois, 𝑥𝑚 ∈ 𝐾 if and only if for all 𝜎 ∈ 𝐺, 𝜎(𝑥𝑚) = 𝑥𝑚. By the
definition of 𝜃, this holds if and only if for all 𝜎 ∈ 𝐺, 𝜃(𝜎)𝑚 = 1. So |𝐺| = [𝐿 ∶ 𝐾] divides𝑚.
So [𝐿 ∶ 𝐾]must be the least𝑚 such that 𝑥𝑚 ∈ 𝐾, as required.

Corollary. Let 𝐾 be a field that contains a primitive 𝑛th root of unity 𝜁 = 𝜁𝑛. Let 𝑎 ∈ 𝐾×.
Then 𝑓 = 𝑇𝑛−𝑎 is irreducible over𝐾 if and only if 𝑎 is not a 𝑑th power in𝐾 for any 1 ≠ 𝑑 ∣ 𝑛.

Proof. Let 𝐿 be a splitting field for 𝑓 = 𝑇𝑛 − 𝑎, so 𝐿 = 𝐾(𝑥) for 𝑥𝑛 = 𝑎. Then the minimal
polynomial of 𝑥 divides 𝑓. So 𝑓 is irreducible if and only if 𝑓 = 𝑚𝑥,𝐾 , or equivalently, [𝐿 ∶
𝐾] = 𝑛.

Suppose 𝑛 = 𝑚𝑑 for 𝑑 ≠ 1. Then 𝑎 is a 𝑑th power in 𝐾 if and only if 𝑥𝑚 ∈ 𝐾 since 𝜁𝑛 ∈ 𝐾.
By the above theorem, this holds if and only if |𝐺| ∣ 𝑚.

Remark. This does not hold if we relax the assumption 𝜁𝑛 ∈ 𝐾. For example, consider𝐾 = ℚ
and 𝑇4 + 4.

Definition. Extensions of the form 𝐿 = 𝐾(𝑥) where 𝑥𝑛 = 𝑎 ∈ 𝐾 and 𝜁𝑛 ∈ 𝐾 are called
Kummer extensions.

Example. Let 𝑛 = 2 and char𝐾 ≠ 2. Then 𝜁2 = −1 ∈ 𝐾. Then 𝐾(√𝑎)/𝐾 is a quadratic
Kummer extension if 𝑎 ∉ (𝐾×)2. Conversely, any quadratic extension must be of this form.
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6. Cyclotomic and Kummer extensions

Theorem. Let 𝐾 be a field that contains a primitive 𝑛th root of unity 𝜁 = 𝜁𝑛 where 𝑛 > 1.
Let 𝐿/𝐾 be a Galois extension with cyclic Galois group of order 𝑛. Then 𝐿 is a Kummer
extension of 𝐾.

Proof. Let Gal(𝐿/𝐾) = {1, 𝜎, 𝜎2,… , 𝜎𝑛−1}. For 𝑦 ∈ 𝐿, let

𝑥 = 𝑅(𝑦) = 𝑦 + 𝜁−1𝜎(𝑦) + 𝜁−2𝜎2(𝑦) +⋯ + 𝜁−(𝑛−1)𝜎𝑛−1(𝑦) =
𝑛−1
∑
𝑗=0

𝜁−𝑗𝜎𝑗(𝑦) ∈ 𝐿

This is known as a Lagrange resolvent. Then

𝜎(𝑥) =
𝑛−1
∑
𝑗=0

𝜁−𝑗𝜎𝑗+1(𝑦) =
𝑛
∑
𝑗=0

𝜁1−𝑗𝜎𝑗(𝑦) = 𝜁𝑥

Hence 𝜎(𝑥𝑛) = 𝜁𝑛𝑥𝑛 = 𝑥𝑛, so 𝑥𝑛 ∈ 𝐾. By the linear independence of field embeddings with
{𝜎𝑖} = {1, 𝜎,… , 𝜎𝑛−1}, there exists 𝑦 such that 𝑅(𝑦) = 𝑥 ≠ 0. Now, since 𝜎𝑖𝑥 = 𝜁𝑖𝑥, the 𝜎𝑖(𝑥)
are distinct, and so deg𝐾 𝑥 = 𝑛. In particular, [𝐾(𝑥) ∶ 𝐾] = 𝑛 = [𝐿 ∶ 𝐾], so 𝐿 = 𝐾(𝑥).

Example. Let 𝐿/ℚ be a Galois extension of degree 3. Since 𝜁3 ∉ ℚ, this is not a Kummer
extension.
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V. Galois Theory

7. Trace and norm
7.1. Trace and norm
Let 𝐿/𝐾 be an extension of degree 𝑛, so 𝐿 is a 𝐾-vector space of dimension 𝑛. Let 𝑥 ∈ 𝐿.
Then the map 𝑈𝑥 ∶ 𝐿 → 𝐿 defined by 𝑈𝑥(𝑦) = 𝑥𝑦 is 𝐾-linear, as it is 𝐿-linear. Since it is a
linear map, it has a characteristic polynomial, a determinant, and a trace.

Definition. The trace and norm of 𝑥 ∈ 𝐿 (relative to the extension 𝐿/𝐾) are Tr𝐿/𝐾(𝑥) =
tr𝑈𝑥 ∈ 𝐾 and 𝑁𝐿/𝐾(𝑥) = det𝑈𝑥 ∈ 𝐾 respectively. The characteristic polynomial of 𝑥 ∈ 𝐿 is
𝑓𝑥,𝐿/𝐾 = det(𝑇𝐼 − 𝑈𝑥) ∈ 𝐾[𝑇] where 𝐼 is the identity linear transformation.
We sometimes write tr𝐾 , det𝐾 . Let 𝑒1,… , 𝑒𝑛 be a basis for 𝐿/𝐾. Then 𝑈𝑥 can be written as
a unique 𝐾-valued matrix 𝐴 = (𝑎𝑖𝑗), so 𝑥𝑒𝑖 = ∑𝑗 𝑎𝑗𝑖𝑒𝑗 . Then Tr𝐿/𝐾(𝑥) = tr(𝐴), and so
on.

Example. Consider the quadratic extensionℚ(√𝑑)/ℚwith the basis 1,√𝑑. Let 𝑥 = 𝑎+𝑏√𝑑.
Since 𝑥 ⋅ 1 = 𝑎 + 𝑏√𝑑 and 𝑥 ⋅ √𝑑 = 𝑏𝑑 + 𝑎√𝑑,

𝐴 = (𝑎 𝑏𝑑
𝑏 𝑎 )

Hence Tr𝐿/𝐾(𝑥) = 2𝑎 and 𝑁𝐿/𝐾(𝑥) = 𝑎2 − 𝑏2𝑑.
Example. Consider ℂ/ℝ with the basis 1, 𝑖. Then the matrix of 𝑈𝑥+𝑖𝑦 is

(𝑥 −𝑦
𝑦 𝑥 )

which is the usual encoding of complex numbers as 2 × 2 real matrices. Note the similarity
between this matrix and the Cauchy–Riemann equations

𝜕𝑢
𝜕𝑥 = 𝜕𝑣

𝜕𝑦 ;
𝜕𝑢
𝜕𝑦 = −𝜕𝑣𝜕𝑥

Lemma. Let 𝑥, 𝑦 ∈ 𝐿 and 𝑎 ∈ 𝐾, where 𝑛 = [𝐿 ∶ 𝐾]. Then,
(i) Tr𝐿/𝐾(𝑥 + 𝑦) = Tr𝐿/𝐾(𝑥) + Tr𝐿/𝐾(𝑦);
(ii) 𝑁𝐿/𝐾(𝑥𝑦) = 𝑁𝐿/𝐾(𝑥)𝑁𝐿/𝐾(𝑦);
(iii) 𝑁𝐿/𝐾(𝑥) = 0 if and only if 𝑥 = 0;
(iv) Tr𝐿/𝐾(1) = 𝑛 and 𝑁𝐿/𝐾(1) = 1;
(v) Tr𝐿/𝐾(𝑎𝑥) = 𝑎Tr𝐿/𝐾(𝑥) and 𝑁𝐿/𝐾(𝑎𝑥) = 𝑎𝑛𝑁𝐿/𝐾(𝑥).

In particular, Tr𝐿/𝐾 is 𝐾-linear and 𝑁𝐿/𝐾 ∶ 𝐿× → 𝐾× is a homomorphism.

Proof. For part (iii), 𝑁𝐿/𝐾(𝑥) = det(𝑈𝑥) ≠ 0 if and only if 𝑈𝑥 is invertible. But this holds if
and only if 𝑥 is nonzero because 𝐿 is a field. The other results follow from the laws of linear
transformations.
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7. Trace and norm

7.2. Formulae and applications
Theorem. Let𝑀/𝐿/𝐾 be a tower of finite extensions. Then, for all 𝑥 ∈ 𝑀,

Tr𝐿/𝐾(Tr𝑀/𝐿(𝑥)) = Tr𝑀/𝐾(𝑥); 𝑁𝐿/𝐾(𝑁𝑀/𝐿(𝑥)) = 𝑁𝑀/𝐾(𝑥)

Proof. We prove the theorem for the trace; we will not need the result for the norm. Let
𝑥 ∈ 𝑀. Let 𝑢1,… , 𝑢𝑚 be a basis for𝑀/𝐿, and let 𝑣1,… , 𝑣𝑛 be a basis for 𝐿/𝐾. Let (𝑎𝑖𝑗) be the
matrix of 𝑈𝑥,𝑀/𝐿, so (𝑎𝑖𝑗) ∈ Mat𝑚,𝑚(𝐿). Then Tr𝑀/𝐿(𝑥) = ∑𝑚

𝑖=1 𝑎𝑖𝑖. For each (𝑖, 𝑗), let the
matrix of 𝑈𝑎𝑖𝑗 be 𝐴𝑖𝑗 ∈ Mat𝑛,𝑛(𝐾). Then, Tr𝐿/𝐾(Tr𝑀/𝐿(𝑥)) = ∑𝑚

𝑖=1 Tr𝐿/𝐾(𝑎𝑖𝑖) = ∑𝑚
𝑖=1 tr(𝐴𝑖𝑖).

Consider the basis 𝑢1𝑣1,… , 𝑢1𝑣𝑚, 𝑢2𝑣1,… , 𝑢𝑛𝑣𝑚 for 𝑀 over 𝐾. Then the matrix of 𝑈𝑥,𝑀/𝐾
is the block matrix

⎛
⎜
⎜
⎝

𝐴11
𝐴22

⋱
𝐴𝑛𝑛

⎞
⎟
⎟
⎠

which has trace∑𝑚
𝑖=1 tr(𝐴𝑖𝑖) as required.

Proposition. Let 𝐿 = 𝐾(𝑥), and 𝑓 = 𝑇𝑛 + 𝑐𝑛−1𝑇𝑛−1 + ⋯ + 𝑐0 ∈ 𝐾[𝑇] be the minimal
polynomial for 𝑥 over 𝐾. Then 𝑓𝑥,𝐿/𝐾 = 𝑓. Further, Tr𝐿/𝐾(𝑥) = −𝑐𝑛−1 and 𝑁𝐿/𝐾(𝑥) =
(−1)𝑛𝑐0.

Proof. It suffices to prove the first statement, since the second follows from the fact that
the determinant and trace are the given coefficients of the characteristic polynomial for any
linear transformation. Consider the basis 1, 𝑥,… , 𝑥𝑛−1 for 𝐿/𝐾. Then, the matrix of 𝑈𝑥 is

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 ⋯ −𝑐0
1 0 ⋯ −𝑐1
0 1 0 ⋯
⋮ 0 1 0 ⋯

⋮ 0 1 ⋯
⋮ ⋮ ⋱

−𝑐𝑛−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

which has characteristic polynomial 𝑓 since it is in rational canonical form.

Corollary. Let char𝐾 = 𝑝 > 0, and 𝐿 = 𝐾(𝑥) where 𝑥 ∉ 𝐾 but 𝑥𝑝 ∈ 𝐾. Then for all 𝑦 ∈ 𝐿,
we have Tr𝐿/𝐾(𝑦) = 0 and 𝑁𝐿/𝐾(𝑦) = 𝑦𝑝.

Proof. Recall that the minimal polynomial of 𝑥 is 𝑇𝑝 − 𝑥𝑝, so [𝐿 ∶ 𝐾] = 𝑝. Suppose that
𝑦 ∈ 𝐾. By a previous lemma, Tr𝐿/𝐾(𝑦) = 𝑝𝑦 = 0 and𝑁𝐿/𝐾(𝑦) = 𝑦𝑝. Otherwise, since [𝐿 ∶ 𝐾]
is prime, 𝐾(𝑦) = 𝐿, and in particular, if 𝑦 = ∑𝑎𝑖𝑥𝑖 then 𝑦𝑝 = (∑𝑎𝑖𝑥𝑖)

𝑝 = ∑𝑎𝑖(𝑥𝑝)𝑖 ∈ 𝐾.
So the minimal polynomial of 𝑦 is 𝑇𝑝 − 𝑦𝑝. Applying the previous proposition, the result
follows.
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Proposition. Let 𝐿/𝐾 be a finite separable extension of degree 𝑛. Let 𝜎1,… , 𝜎𝑛∶ 𝐿 → 𝑀 be
the distinct 𝐾-homomorphisms of 𝐿 into a normal closure𝑀 for 𝐿/𝐾. Then

Tr𝐿/𝐾(𝑥) =
𝑛
∑
𝑖=1

𝜎𝑖(𝑥); 𝑁𝐿/𝐾(𝑥) =
𝑛
∏
𝑖=1

𝜎𝑖(𝑥); 𝑓𝑥,𝐿/𝐾 =
𝑛
∏
𝑖=1

(𝑇 − 𝜎𝑖(𝑥))

Remark. If 𝐿/𝐾 is finite and Galois, then Tr𝐿/𝐾(𝑥) = ∑𝜎∈Gal(𝐿/𝐾) 𝜎(𝑥), and the other results
are similar.

Proof. It suffices to show the result for the characteristic polynomial. Let 𝑒1,… , 𝑒𝑛 be a basis
for 𝐿/𝐾. Let 𝑃 = (𝜎𝑖(𝑒𝑗)) ∈ Mat𝑛,𝑛(𝑀). Recall that the 𝜎𝑖 are linearly independent, so there
exist no 𝑦𝑖 ∈ 𝑀 such that for all 𝑗, 𝜎𝑖(𝑒𝑗) = 0. Hence 𝑃 is nonsingular. Let 𝐴 = (𝑎𝑖𝑗) be the
matrix of 𝑈𝑥, so 𝑥𝑒𝑗 = ∑𝑟 𝑎𝑟𝑗𝑒𝑟. Applying 𝜎𝑖, we have

𝜎𝑖(𝑥)𝜎𝑖(𝑒𝑗) = ∑
𝑟
𝜎𝑖(𝑒𝑟)𝑎𝑟𝑗

So if 𝑆 is the diagonal matrix with (𝑖, 𝑖)th entry 𝜎𝑖(𝑥), then the given equation can be rewrit-
ten as 𝑆𝑃 = 𝑃𝐴. Therefore 𝑆 = 𝑃𝐴𝑃−1. So 𝑆 and 𝐴 are conjugate matrices and hence have
the same characteristic polynomial. We explicitly find that the characteristic polynomial
of 𝑆 is∏(𝑇 − 𝜎𝑖(𝑥)) and the characteristic polynomial of 𝐴 is 𝑓𝑥,𝐿/𝐾 . So they are equal as
required.

Note that since the trace Tr𝐿/𝐾 ∶ 𝐿 → 𝐾 is 𝐾-linear, it is either the zero map or surject-
ive.

Theorem. Let 𝐿/𝐾 be a finite extension. Then, 𝐿/𝐾 is separable if and only if Tr𝐿/𝐾 is
surjective.

Remark. If char𝐾 = 0, Tr𝐿/𝐾(1) = 𝑛 ≠ 0, so the result holds easily.

Proof. Suppose𝐿/𝐾 is separable, and𝜎𝑖,… , 𝜎𝑛 are the𝐾-homomorphisms of𝐿 into a normal
closure 𝑀 of 𝐿/𝐾. Then Tr𝐿/𝐾(𝑥) = ∑𝑛

𝑖=1 𝜎𝑖(𝑥). As the 𝜎𝑖 are linearly independent, there
exists 𝑥 such that∑𝑛

𝑖=1 𝜎𝑖(𝑥) ≠ 0. So Tr𝐿/𝐾(𝑥) ≠ 0, and in particular, it must be surjective
as it is 𝐾-linear.
Now suppose 𝐿/𝐾 is inseparable. Then there exists 𝑥 ∈ 𝐿 such that 𝐾(𝑥) ⊋ 𝐾(𝑥𝑝) from
example 7 on example sheet 2. As we have shown, Tr𝐾(𝑥)/𝐾(𝑥𝑝) = 0, so

Tr𝐿/𝐾 = Tr𝐿/𝐾(𝑥) ∘Tr𝐾(𝑥)/𝐾(𝑥𝑝) ∘Tr𝐾(𝑥𝑝)/𝐾 = 0

Example. Consider the extension of finite fields 𝔽𝑞𝑛/𝔽𝑞 for 𝑞 = 𝑝𝑟. This is separable, so
there exists 𝑥 ∈ 𝔽𝑞𝑛 such that Tr(𝑥) = 1. It is also possible to prove this directly by using
the fact that the multiplicative group is cyclic.

Remark. This criterion can be used to give another proof that if𝑀/𝐿 and 𝐿/𝐾 are separable,
𝑀/𝐾 is also separable.
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8. Algebraic closure
8.1. Definition
Definition. A field 𝐾 is algebraically closed if every non-constant polynomial over 𝐾 splits
into linear factors over 𝐾.

Remark. An equivalent condition is that the only irreducible polynomials are linear.

Example. The complex numbers ℂ form an algebraically closed field due to the funda-
mental theorem of algebra.

Proposition. The following are equivalent.

(i) 𝐾 is algebraically closed.

(ii) If 𝐿/𝐾 is a field extension and 𝑥 ∈ 𝐿 is algebraic over 𝐾, then 𝑥 ∈ 𝐾.

(iii) If 𝐿/𝐾 is an algebraic extension, 𝐿 = 𝐾.

Proof. (i) implies (ii). Let 𝐿/𝐾 be a field extension and 𝑥 ∈ 𝐿 algebraic over 𝐾. Let 𝑓 be the
minimal polynomial for 𝑥 over 𝐾. Then 𝑓 is linear, so 𝑥 ∈ 𝐾.

(ii) implies (iii). An extension 𝐿/𝐾 is algebraic when all 𝑥 ∈ 𝐿 are algebraic over 𝐾. So 𝑥 ∈ 𝐾
by (ii).

(iii) implies (i). Let 𝑓 be an irreducible polynomial, and 𝐿 = 𝐾[𝑇]⟋(𝑓), so 𝐿/𝐾 is a finite
algebraic extension. Then 𝐿 = 𝐾, so 𝑓 is linear.

Proposition. Let 𝐿/𝐾 be an algebraic extension such that every irreducible polynomial 𝑓 ∈
𝐾[𝑇] splits into linear factors in 𝐿. Then 𝐿 is algebraically closed.

Such a field is called an algebraic closure of 𝐾.

Proof. Let𝑀/𝐿 be an extension, and let 𝑥 ∈ 𝑀 be algebraic over 𝐿. Then 𝑥 is algebraic over
𝐾. By hypothesis, its minimal polynomial 𝑚𝑥,𝐾 ∈ 𝐾[𝑇] splits into linear factors over 𝐿. So
𝑥 ∈ 𝐿. By criterion (ii) in the previous proposition, 𝐿 is algebraically closed.

Remark. An algebraic closure of 𝐾 is the same as an algebraic extension of 𝐾 which is algeb-
raically closed.

Corollary. The field ℚ of algebraic complex numbers is algebraically closed. In particular,
ℚ is an algebraic closure of ℚ.

Proof. We apply the previous result to the extension ℚ/ℚ. The extension is algebraic, so
it suffices to check that every irreducible polynomial 𝑓 ∈ ℚ[𝑇] splits into linear factors
in ℚ. By the fundamental theorem of algebra, 𝑓 splits in ℂ. By definition of ℚ, we have
𝑓 = ∏(𝑇 − 𝑥𝑖) where each 𝑥𝑖 ∈ ℚ as required.
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8.2. Algebraic closures of countable fields
Proposition. Let 𝐾 be a countable field. Then 𝐾 has an algebraic closure.

Proof. If 𝐾 is a countable field, then 𝐾[𝑇] is a countable ring. We will enumerate the monic
irreducible polynomials 𝑓𝑖 ∈ 𝐾[𝑇] for 𝑖 ≥ 1. Let 𝐿0 = 𝐾, and inductively define 𝐿𝑖 to be a
splitting field for 𝑓𝑖 over 𝐿𝑖−1.

One can perform this in such away that no choices need to bemade in the construction of the
splitting fields. We may also assume that 𝐿𝑖−1 ⊆ 𝐿𝑖 for each 𝑖 ≥ 1, because if 𝜎∶ 𝐿𝑖−1 → 𝐿𝑖
is the extension, we can replace 𝐿𝑖 with 𝐿𝑖−1 ⊔ (𝐿𝑖 ∖ 𝜎(𝐿𝑖−1)). Let 𝐿 = ⋃𝐿𝑖 be their union.
By construction, every 𝑓𝑖 splits in 𝐿, so 𝐿 is an algebraic closure of 𝐾.

Example. 𝔽𝑝 has an algebraic closure.

8.3. Zorn’s lemma
For a general field, we need to apply some set-theoretic machinery.

Definition. A binary relation ⪯ on a set 𝑆 is a partial order if it is reflexive, transitive, and
antisymmetric. Explicitly, for all 𝑥, 𝑦, 𝑧 ∈ 𝑆, we have

𝑥 ⪯ 𝑥; 𝑥 ⪯ 𝑦, 𝑦 ⪯ 𝑧 ⟹ 𝑥 ⪯ 𝑧; 𝑥 ⪯ 𝑦, 𝑦 ⪯ 𝑥 ⟹ 𝑧 = 𝑦

We say (𝑆, ⪯) is a partially ordered set, or a poset. It is totally ordered if the order is total; 𝑥 ⪯ 𝑦
or 𝑦 ⪯ 𝑥 for all 𝑥, 𝑦 ∈ 𝑆.

Definition. Let 𝑆 be a partially ordered set. A chain in 𝑆 is a totally ordered subset. An
upper bound for a subset 𝑇 of 𝑆 is an element 𝑧 ∈ 𝑆 such that for all 𝑥 ∈ 𝑇, we have 𝑥 ⪯ 𝑧.
Amaximal element of 𝑆 is an element 𝑦 ∈ 𝑆 such that for all 𝑥 ∈ 𝑆, 𝑦 ⪯ 𝑥 implies 𝑦 = 𝑥.

If 𝑆 is totally ordered, 𝑆 has at most one maximal element.

Lemma (Zorn). Let 𝑆 be a nonempty partially ordered set. Suppose that every chain in 𝑆
has an upper bound in 𝑆. Then 𝑆 has a maximal element.

This can be proven using the axiom of choice.

Example. Let 𝑉 be a vector space over 𝐾. Then 𝑉 has a basis; a set 𝐵 ⊆ 𝑉 such that any
finite subset of 𝐵 is linearly independent, and for all 𝑣 ∈ 𝑉 , there exists 𝑏1,… , 𝑏𝑘 ∈ 𝐵
and 𝑎1,… , 𝑎𝑘 ∈ 𝐾 such that 𝑣 = ∑𝑘

𝑖=1 𝑎𝑖𝑏𝑖. If 𝑉 = {0}, the result is trivial by taking 𝑉 =
∅. Otherwise, let 𝑆 be the set of all subsets 𝑋 ⊆ 𝑉 where finite subsets of 𝑋 are linearly
independent. 𝑆 is ordered by inclusion; this is a partial order. 𝑆 is nonempty since 𝑉 ≠ {0}.
Each chain 𝑇 ⊆ 𝑆 has an upper bound by taking its union 𝑌 = ⋃𝑋∈𝑇 𝑋 . This upper bound
indeed lies in 𝑆, since we only need to check finite subsets of 𝑌 for linear independence.
Then by Zorn’s lemma, 𝑆 has a maximal element 𝐵, which can be seen to be a basis.
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Proposition. Let 𝐿/𝐾 be an algebraic extension, and let 𝑀 be algebraically closed. Let
𝜎∶ 𝐾 → 𝑀. Then there exists 𝜎∶ 𝐿 → 𝑀 extending 𝜎.

Proof. First, consider the case 𝐿 = 𝐾(𝑥) where 𝑥 is algebraic over 𝐾 with minimal polyno-
mial𝑚𝑥,𝐾 = 𝑓. Then 𝜎𝑓 ∈ 𝑀[𝑇]. Since𝑀 is algebraically closed, 𝜎𝑓 splits in𝑀. Therefore
there exists such a 𝜎∶ 𝐾(𝑥) → 𝑀 extending 𝜎. We can obtain one homomorphism for each
root of 𝜎𝑓 in𝑀.

Now consider the general case. Suppose 𝐾 ⊆ 𝐿 without loss of generality, by replacing 𝐾
with its image in 𝐿. Let

𝑆 = {(𝐹, 𝜏) ||| 𝐾 ⊆ 𝐹 ⊆ 𝐿, 𝜏∶ 𝐹 → 𝑀, 𝜏|||𝐾
= 𝜎}

This has a partial order given by (𝐹, 𝜏) ⪯ (𝐹′, 𝜏′) where 𝐹 ⊆ 𝐹′ and 𝜏′|𝐹 = 𝜏. Therefore, 𝑆 is
a partially ordered set. It contains (𝐾, 𝜎), so it is not empty.
Let 𝑇 = (𝐹𝑖, 𝜏𝑖)𝑖∈𝐼 be a chain in 𝑆. If 𝑇 is empty, we can vacuously upper bound it with
(𝐾, 𝜎). Otherwise, we define 𝐹′ = ⋃𝑖∈𝐼 𝐹𝑖. This is a field since 𝑇 is a chain; in particular, for
all 𝑖, 𝑗 ∈ 𝐼, we have either 𝐹𝑖 ⊆ 𝐹𝑗 or 𝐹𝑗 ⊆ 𝐹𝑖. Now define 𝜏′∶ 𝐹′ → 𝑀 by mapping 𝑥 to 𝜏𝑖(𝑥)
where 𝑥 ∈ 𝜏𝑖; this is independent of the choice of 𝑖 since 𝜏𝑗 ||𝐹𝑖 = 𝜏𝑖 and 𝑇 is a chain. This is
an upper bound in 𝑆 for the chain.
Then, by Zorn’s lemma, 𝑆 has a maximal element. Let (𝐹, 𝜏) be this maximal element. We
will show 𝐹 = 𝐿; in this case, 𝜏 = 𝜎 is an extension as required.
Clearly 𝐹 ⊆ 𝐿. If 𝑥 ∈ 𝐿, then by the first part applied to 𝐹(𝑥)/𝐹, we can extend the ho-
momorphism 𝜏∶ 𝐹 → 𝑀 into a homomorphism 𝜏∶ 𝐹(𝑥) → 𝑀. Then (𝐹(𝑥), 𝜏) ∈ 𝑆, and
(𝐹, 𝜏) ⪯ (𝐹(𝑥), 𝜏). By maximality, 𝐹(𝑥) = 𝐹, so 𝑥 ∈ 𝐹. Hence 𝐹 = 𝐿 as required.

8.4. Algebraic closures of general fields
One can construct an algebraic closure of a field using Zorn’s lemma, obtaining a field that
extends all algebraic extensions of a given field. However, difficulties arise since the class of
algebraic extensions of a field does not form a set. Zorn’s lemma can be utilised inside a suit-
ably well-behaved set, but instead, we will construct the algebraic closure via the maximal
ideal theorem.

Theorem (maximal ideal theorem). Let 𝑅 be a non-zero commutative ring with a 1. Then
𝑅 has a maximal ideal.

Proof sketch. Let 𝑆 be the set of all proper ideals 𝐼 ⊲ 𝑅, partially ordered by inclusion. A
maximal ideal is a maximal element of 𝑆. We apply Zorn’s lemma. Let 𝑇 be a nonempty
chain, since anything is an upper bound for an empty chain. Then 𝐽 = ⋃𝐼∈𝑇 𝐼 is an ideal.
As 1 ∉ 𝐼 for all 𝐼 ∈ 𝑇, we conclude 1 ∉ 𝐽. So 𝐽 is a proper ideal, and hence is an upper
bound.
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Theorem. Let 𝐾 be a field. Then 𝐾 has an algebraic closure 𝐾. If 𝜎∶ 𝐾 → 𝐾′ is an iso-
morphism, and 𝐾, 𝐾

′
are any algebraic closures of 𝐾, 𝐾′, then 𝜎 extends to an isomorphism

𝜎∶ 𝐾 → 𝐾
′
.

Remark. The extension 𝜎 is not generally unique.

Proof. We begin by proving the existence of the algebraic closure. Let 𝑃 be the set of monic
irreducible polynomials in 𝐾[𝑇], and construct 𝐾1 such that every 𝑓 ∈ 𝑃 has a root in 𝐾1.
First, we will find a ring in which every 𝑓 ∈ 𝑃 has a root.

Let 𝑅 = 𝐾[{𝑇𝑓}𝑓∈𝑃] be the set of finite 𝐾-linear combinations of monomials 𝑇
𝑚1
𝑓1 …𝑇𝑚𝑘

𝑓𝑘 for
𝑓𝑖 ∈ 𝑃. Let 𝐼 be the ideal generated by 𝑓(𝑇𝑓) for each 𝑓 ∈ 𝑃. Now, in 𝑅⟋𝐼, 𝑇𝑓 + 𝐼 is a root of
𝑓.
We must check that 𝐼 ≠ 𝑅. If 𝐼 = 𝑅, then in particular 1 ∈ 𝐼. In other words, for some finite
subset 𝑄 ⊆ 𝑃, there exists 𝑟𝑓 ∈ 𝑅 for 𝑓 ∈ 𝑄 such that 1 = ∑𝑓∈𝑄 𝑟𝑓𝑓(𝑇𝑓). Enlarging 𝑄 if
necessary, we can assume that each 𝑟𝑓 is a polynomial in {𝑇𝑔 ∣ 𝑔 ∈ 𝑄}. Let 𝐿/𝐾 be a splitting
field for∏𝑓∈𝑄 𝑓, and 𝑎𝑓 ∈ 𝐿 be a root of 𝑓 for each 𝑓 ∈ 𝑄. Consider the homomorphism
𝜑∶ 𝑅 → 𝐿 such that 𝜑|𝐾 = id and 𝜑(𝑇𝑓) = 𝑎𝑓 for 𝑓 ∈ 𝑄, and 𝜑(𝑇𝑓) = 0 for 𝑓 ∉ 𝑄. Then

1 = 𝜑(1) = ∑
𝑓∈𝑄

𝜑(𝑟𝑓𝑓(𝑇𝑓)) = ∑
𝑓∈𝑄

𝜑(𝑟𝑓)𝑓(𝑎𝑓) = 0

This is a contradiction, so 𝐼 is in fact a proper ideal.
By the maximal ideal theorem, the ring 𝑅⟋𝐼 has a maximal ideal 𝐽. Equivalently, there exists
a maximal ideal 𝐽 of 𝑅 containing 𝐼, since the ideals of 𝑅⟋𝐼 are in bijection with the ideals
of 𝑅 containing 𝐼 by the isomorphism theorem. Now let 𝐾1 = 𝑅⟋𝐽. This is a field since 𝐽
is maximal. Let 𝑥𝑓 = 𝑇𝑓 + 𝐽 ∈ 𝐾1, then 𝐾1/𝐾 is generated by the 𝑥𝑓, and 𝑓(𝑥𝑓) = 0 by
construction. So 𝐾1/𝐾 is an algebraic extension of 𝐾 in which every 𝑓 ∈ 𝑃 has a root.
Let 𝑃1 be the set of monic irreducibles in 𝐾1[𝑇]. We apply the same procedure to 𝐾1 and 𝑃1
to obtain a field 𝐾2, and so on. We then obtain a tower 𝐾 ⊆ 𝐾1 ⊆ 𝐾2 ⊆ ⋯ such that if
𝑓 ∈ 𝐾𝑛[𝑇] is non-constant, it has a root in 𝐾𝑛+1.
Now, suppose 𝑓 ∈ 𝐾[𝑇] is non-constant. Then we can write 𝑓 = (𝑇 − 𝑥1)𝑓1 where 𝑥1 ∈
𝐾1, 𝑓1 ∈ 𝐾1[𝑇], and so on. So 𝑓 splits in 𝐾deg𝑓−1. Therefore, the union⋃𝑛∈ℕ 𝐾𝑛 is algebra-
ically closed, and hence is an algebraic closure of 𝐾.

We now prove uniqueness. Let 𝐾 ⊆ 𝐾 and 𝐾′ ⊆ 𝐾
′
be algebraic closures, and let 𝜎∶ 𝐾 →

𝐾′ be an isomorphism. Then by the previous result, as 𝐾/𝐾 is algebraic, 𝜎 extends to a
homomorphism 𝜎∶ 𝐾 → 𝐾

′
. It suffices to show that 𝜎 is an isomorphism. We have 𝐾′ ⊆

𝜎(𝐾) ⊆ 𝐾
′
, so 𝐾

′
/𝜎(𝐾) is algebraic. 𝐾 is algebraically closed, so 𝜎(𝐾) is also algebraically

closed. So 𝐾
′
= 𝜎(𝐾) by part (iii) of a previous result.
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9. Solving polynomial equations
9.1. Cubics
Let 𝑓 ∈ 𝐾[𝑇] be a monic separable cubic. Then 𝐺 = Gal(𝑓/𝐾) ≤ 𝑆3 acting on the roots
𝑥1, 𝑥2, 𝑥3 in a splitting field 𝐿 of 𝐾. If 𝑓 is reducible, 𝑓 is either a product of three linear
factors, in which case 𝐺 is trivial, or 𝑓 is a linear factor multiplied by a quadratic, in which
case 𝐺 is isomorphic to 𝑆2.

Now suppose 𝑓 is irreducible. Wewill assume that char𝐾 ≠ 2, 3. We have𝐺 = 𝑆3 or𝐺 = 𝐴3.
We know that 𝐺 = 𝐴3 if and only if the discriminant Disc(𝑓) is a square in 𝐾×. In general,
the Galois correspondence yields

𝐿 = 𝐾(𝑥1, 𝑥2, 𝑥3) {1}

𝐾1 = 𝐾(Δ) = 𝐿𝐺∩𝐴3 𝐺 ∩ 𝐴3

𝐾 𝐺

3 if 𝑓 irreducible, else 1

2 or 1

Then 𝐾1 = 𝐾(√Disc(𝑓)), and 𝐾1 = 𝐿 if 𝑓 is reducible.

In the irreducible case, 𝐿/𝐾1 is Galois with Gal(𝐿/𝐾1) ≃ ℤ⟋3ℤ. Recall that if 𝜔 ∈ 𝐾1 is a
primitive third root of unity, then 𝐿 = 𝐾1(𝑦) where 𝑦3 ∈ 𝐾1, by Kummer theory.

We can compute this 𝑦 explicitly. Suppose 𝑓 = 𝑇3 + 𝑏𝑇 + 𝑐 without loss of generality. Then
Δ2 = −4𝑏3 − 27𝑐2. If 𝑏 = 0, the roots of 𝑓 are 𝑤𝑖 3√−𝑐, so let 𝑦 be any of them. In the
other case 𝑏 ≠ 0, let 𝑦 be a Lagrange resolvent. If the roots of 𝑓 in 𝐿 are 𝑥1, 𝑥2, 𝑥3, take
𝑦 = 𝑥1+𝜔2𝑥2+𝜔𝑥3 = (1−𝜔)(𝑥1−𝜔𝑥2) as𝑥1+𝑥2+𝑥3 = 0. Then𝐿(𝜔) = 𝐾(Δ, 𝜔, 𝑦) if and only
if 𝑦 ≠ 0, by the proof of the structure of Kummer extensions. Let 𝑦′ = 𝑥1+𝜔𝑥2+𝜔2𝑥3, then
𝑦𝑦′ = −3𝑏 ≠ 0 sincewe are not in characteristic 3. Note that 𝑦+𝑦′ = 𝑦+𝑦′+𝑥1+𝑥2+𝑥3 = 3𝑥1.
One can calculate 𝑦3 = 1

2
(−3√−3Δ + 27𝑐), so 𝑥1 = 𝑦 − 3𝑏

𝑦
.

If not, let 𝐿(𝜔) be the splitting field of 𝑓 ⋅ (𝑇3 − 1) over 𝐾. Then 𝐿(𝜔)/𝐾1(𝜔) is Galois with
Galois group ℤ⟋3ℤ as before. So 𝐿(𝜔) = 𝐾1(𝜔, 𝑦) where 𝑦3 ∈ 𝐾1(𝜔).

Therefore, in every case, 𝑥𝑖 lie in the field obtained by adjoining successive square roots and
cube roots to 𝐾, since 𝜔 = −1+√−3

2
. This is a theoretical description of Cardano’s solution to

the cubic.

9.2. Quartics
Let 𝑓 ∈ 𝐾[𝑇] be a monic separable quartic, with char𝐾 ≠ 2, 3. Then Gal(𝑓/𝐾) ≤ 𝑆4. Note
that 𝑆4 acts on the partitions (12 ∣ 34), (13 ∣ 24), (14 ∣ 23) of {1, 2, 3, 4}. Then we have a
homomorphism 𝑆4 → 𝑆3. The kernel of this homomorphism is the Klein four-group 𝑉 =
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{𝑒, (12)(34), (13)(24), (14)(23)} ⊲ 𝑆4. Hence the homomorphism is surjective, as |𝑉| ⋅ |𝑆3| =
|𝑆4|.

Let 𝑓 have splitting field 𝐿 with (distinct) roots 𝑥1,… , 𝑥4. Suppose that 𝑥1 + ⋯ + 𝑥4 = 0
without loss of generality as the characteristic is not 2, so 𝑓 = 𝑇4 +𝑎𝑇2 +𝑏𝑇 + 𝑐. Since 𝑉 is
a normal subgroup of 𝑆4, 𝐺∩𝑉 is a normal subgroup of 𝐺 and contains 𝑉 . In particular, we
have a homomorphism 𝐺⟋𝐺 ∩ 𝑉 ↪ 𝑆4⟋𝑉 ≃ 𝑆3. But 𝐺⟋𝐺 ∩ 𝑉 = Gal(𝑀/𝐾). So we should be
able to write𝑀 as the splitting field of a cubic 𝑔 ∈ 𝐾[𝑇].

Let 𝑦12 = 𝑥1 + 𝑥2 = −(𝑥3 + 𝑥4) = −𝑦34, and let 𝑦13, 𝑦24, 𝑦14, 𝑦23 be defined similarly. Note
that 𝐺 ∩ 𝑉 maps 𝑦12 to 𝑦12 or 𝑦34 = −𝑦12, and so on. So 𝑦212, 𝑦213, 𝑦214 are fixed under 𝐺 ∩ 𝑉 .
Hence they lie in𝑀 = 𝐿𝐺∩𝑉 .

Suppose 𝑦212 = 𝑦213. Then either 𝑦12 = 𝑦13, so 𝑥2 = 𝑥3, contradicting separability, or 𝑦12 =
−𝑦13, so 2𝑥1 + 𝑥2 + 𝑥3 = 0, giving 𝑥1 = 𝑥4, also contradicting separability. So these are
distinct elements of𝑀, and hence are indeed the roots of a separable cubic 𝑔 ∈ 𝐾[𝑇]. This
is called the resolvent cubic.

𝑀 = 𝐿𝐺∩𝑉 is a splitting field of 𝑔. Note that 𝑥1 =
1
2
(𝑦12 + 𝑦13 + 𝑦14) and similar results

hold for 𝑥2, 𝑥3, 𝑥4. Hence 𝐿 = 𝑀(𝑦12, 𝑦13, 𝑦14). We can compute 𝑔 = (𝑇 − 𝑦212)(𝑇 − 𝑦213)(𝑇 −
𝑦214) = 𝑇3 + 2𝑎𝑇2 + (𝑎2 − 4𝑐)𝑇 − 𝑏2. In particular, 𝑦12𝑦13𝑦14 = 𝑏, hence we can simplify to
𝐿 = 𝑀(𝑦12, 𝑦13) where 𝑦212, 𝑦213 ∈ 𝑀.

In conclusion, we have found away to solve 𝑓 = 0. First, we solve the resolvent equation 𝑔 =
0, and then we take at most two square roots to obtain the relevant field generators.

9.3. Solubility by radicals

Let 𝑓 ∈ 𝐾[𝑇] be a monic polynomial in a field 𝐾 of characteristic zero. To prove that there
is no quintic formula, we must first establish a definition of ‘formula’. The relevant notion
is solubility by radicals.

Definition. An irreducible polynomial 𝑓 ∈ 𝐾[𝑇] is soluble by radicals over 𝐾 if there exists
a sequence of fields 𝐾 = 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚, with 𝑥 ∈ 𝐾𝑚 a root of 𝑓, and each 𝐾𝑖 is
obtained from 𝐾𝑖−1 by adjoining a root, so 𝐾𝑖 = 𝐾𝑖−1(𝑦𝑖) where 𝑦𝑑𝑖𝑖 ∈ 𝐾𝑖−1.

Remark. This is a generalisation of ruler and compass constructions to permit roots of arbit-
rary degree.

Note that we can adjoin extra roots if desired. In particular, adjoining roots of unity, 𝑓 is
soluble by radicals over 𝐾 if there exists 𝑑 ≥ 1 and 𝐾 = 𝐾0 ⊆ ⋯ ⊆ 𝐾𝑚, such that 𝑥 ∈ 𝐾𝑚
is a root of 𝑓, and 𝐾1 = 𝐾0(𝜁𝑑) where 𝜁𝑑 is a primitive 𝑑th root of unity. We can also assume
that the other extensions satisfy 𝐾𝑖 = 𝐾𝑖−1(𝑦𝑖) for 𝑦𝑑𝑖 = 𝑎𝑖 ∈ 𝐾𝑖−1. This condition can be
easily satisfied by letting 𝑑 be the least common multiple of the 𝑑𝑖 that occurs in the tower
of fields.
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Note that 𝐾1/𝐾0 is Galois with abelian Galois group. 𝐾𝑖/𝐾𝑖−1 for 𝑖 > 1 is Galois, where the
Galois group is a subgroup of ℤ⟋𝑑ℤ as it is a Kummer extension.

To obtain all roots of 𝑓, we consider a normal closure𝑀 of 𝐾𝑚; this will contain a splitting
field for 𝑓, since it contains one root and 𝑓 is irreducible. To determine 𝑀, let 𝐾′

𝑖 ⊆ 𝑀 be
a normal closure of 𝐾𝑖 for each 𝑖. As we are in characteristic zero, an extension is Galois if
and only if it is normal. Note that 𝐾1 is Galois, so 𝐾1 = 𝐾′

1 = 𝐾(𝜁𝑑).

Proposition. 𝐾′
𝑖 = 𝐾′

𝑖−1({𝑑√𝜎(𝑎𝑖) || 𝜎 ∈ Gal(𝐾′
𝑖−1/𝐾)}).

Proof. Suppose 𝜎 ∈ Gal(𝐾′
𝑖−1/𝐾). Then we can lift 𝜎 to an element 𝜎 ∈ Gal(𝐾′

𝑖/𝐾) such that
𝜎||𝐾′

𝑖−1
= 𝜎. Since 𝐾′

𝑖/𝐾 is normal, it contains 𝜎(𝑦𝑖), and 𝜎(𝑦)𝑑 = 𝜎(𝑦𝑑) = 𝜎(𝑎𝑖). So the right
hand side is contained in 𝐾′

𝑖 .

It suffices to show the right hand side is a normal extension. It is the splitting field over 𝐾′
𝑖−1

of the polynomial 𝑔𝑖 =∏𝜎∈Gal(𝐾′
𝑖−1/𝐾)

(𝑇𝑑 − 𝜎(𝑎𝑖)). This has coefficients in 𝐾. If 𝐾′
𝑖−1 is the

splitting field of some polynomial ℎ𝑖−1 over 𝐾, then the right hand side is the splitting field
of the product 𝑔𝑖ℎ𝑖−1 over 𝐾. So it is normal.

Proposition. Gal(𝐾′
𝑖/𝐾′

𝑖−1) is abelian.

Proof. This proof is a variant on the proof of a previous theorem. Consider the case 𝑖 > 1.
Let 𝐴 = Gal(𝐾′

𝑖/𝐾′
𝑖−1). Let 𝜏 ∈ 𝐴 and 𝜎 ∈ Gal(𝐾′

𝑖/𝐾). Then 𝜏(𝑑√𝜎(𝑎𝑖)) = 𝜁𝑚𝜎
𝑑

𝑑√𝜎(𝑎𝑖)
where 𝑚𝜎 ∈ ℤ⟋𝑑ℤ. Hence 𝜏 ↦ (𝑚𝜎) ∈ (ℤ⟋𝑑ℤ)

𝑟
is an injective homomorphism, where

𝑟 = ||Gal(𝐾′
𝑖−1/𝐾)||.

If 𝑖 = 1, then 𝐾1 = 𝐾(𝜁𝑑). So the Galois group is a subgroup of (ℤ⟋𝑑ℤ)
×
, so is abelian.

Since all of the fields 𝐾′
𝑖 are normal closures, the 𝑁 𝑖 are normal subgroups of 𝐺.

Definition. A finite group 𝐺 is soluble if there exists a chain of normal subgroups 𝑁 𝑖 ⊴ 𝐺
with 𝐺 = 𝑁0 ⊇ 𝑁1 ⊇ ⋯ ⊇ 𝑁𝑚 = {1} such that 𝑁 𝑖⟋𝑁 𝑖+1

is abelian for all 𝑖.

Example. Any abelian group is soluble. 𝑆3 is soluble, by considering the chain 𝑆3 ⊃ 𝐴3 ⊃
{1}, as 𝑆3⟋𝐴3

≃ ℤ⟋2ℤ and 𝐴3 ≃ ℤ⟋3ℤ. 𝑆4 is also soluble; the chain 𝑆4 ⊃ 𝐴4 ⊃ 𝑉 ⊃ {1}

suffices. Note that 𝑆4⟋𝐴4
≃ ℤ⟋2ℤ, 𝐴4⟋𝑉 ≃ ℤ⟋3ℤ, 𝑉 ≃ (ℤ⟋2ℤ)

2
.

We have shown that 𝑁 𝑖⟋𝑁 𝑖+1
= Gal(𝐾′

𝑖/𝐾′
𝑖−1) is abelian. Hence Gal(𝑀/𝐾) is soluble.

Lemma. Every subgroup and quotient of a soluble group is soluble.

Proof. Let 𝐺 = 𝑁0 ⊃ 𝑁1 ⊃ …𝑁𝑚 = {1}, where the quotients 𝑁 𝑖⟋𝑁 𝑖+1
are abelian. Let

𝐻 ≤ 𝐺. Then 𝐻 ∩ 𝑁 𝑖 ⊴ 𝐻, and there is an injective homomorphism from 𝐻 ∩ 𝑁 𝑖⟋𝐻 ∩ 𝑁 𝑖+1
to 𝑁 𝑖⟋𝑁 𝑖+1

. Hence the 𝐻 ∩ 𝑁 𝑖⟋𝐻 ∩ 𝑁 𝑖+1
are abelian, so 𝐻 is soluble.
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Now let 𝜋∶ 𝐺 → 𝐺 = 𝐺⟋𝐻 for 𝐻 ⊴ 𝐺. Then 𝜋(𝑁 𝑖) ⊴ 𝐺, and 𝑁 𝑖⟋𝑁 𝑖+1
surjects onto

𝜋(𝑁 𝑖)⟋𝜋(𝑁 𝑖+1).

Theorem (Abel–Ruffini). Let 𝑓 ∈ 𝐾[𝑇] be soluble by radicals over 𝐾. Then Gal(𝑓/𝐾) is
soluble.

Proof. Gal(𝑓/𝐾) = Gal(𝐿/𝐾) ≃ Gal(𝑀/𝐾)⟋Gal(𝑀/𝐿). We know that Gal(𝑀/𝐾) is soluble, so
the result follows from the fact that quotients of soluble groups are soluble.

Remark. One can easily show the converse to this theorem.

Proposition. If 𝑛 ≥ 5, then 𝑆𝑛 and 𝐴𝑛 are insoluble.

Proof. 𝑆𝑛 and 𝐴𝑛 contain 𝐴5 as a subgroup, so it suffices to show that 𝐴5 is insoluble. 𝐴5 is
not abelian, and it is simple, so it is insoluble.

Corollary. Let 𝑛 = deg𝑓 ≥ 5, and 𝐴𝑛 ≤ Gal(𝑓/𝐾). Then 𝑓 is not soluble by radicals over
𝐾.

266



10. Miscellaneous results

10. Miscellaneous results
10.1. Fundamental theorem of algebra
This subsection is non-examinable. We show that ℂ is algebraically closed over ℚ, without
using complex analysis. We will only use the following facts:

(i) every polynomial of odd degree over ℝ has a root, due to the intermediate value the-
orem;

(ii) every quadratic over ℂ splits into linear factors, so we can take square roots;

(iii) every finite group 𝐺 has a subgroup 𝐻 such that (𝐺 ∶ 𝐻) is odd and |𝐻| is a power of
2, by Sylow’s theorem for 𝑝 = 2;

(iv) if 𝐺 is a 𝑝-group, so |𝐺| = 𝑝𝑘 and 𝑘 > 0, then 𝐺 has a subgroup of index 𝑝, since 𝐺 has
a non-trivial centre.

Let 𝐾/ℂ be a finite extension. Let 𝐿/𝐾 be a normal closure of 𝐾 over ℝ, so 𝐿 is a Galois
extension of ℝ containing ℂ. Let 𝐺 = Gal(𝐿/ℝ). We will show that 𝐿 = ℂ.

Let 𝐻 ≤ 𝐺 be a Sylow 2-subgroup, and consider 𝐿𝐻 . We have [𝐿𝐻 ∶ ℝ] = (𝐺 ∶ 𝐻), which is
odd. So if 𝑥 ∈ 𝐿𝐻 , by (i), its minimal polynomial is linear over ℝ, so 𝑥 ∈ ℝ. Hence 𝐿𝐻 = ℝ,
so 𝐻 = 𝐺. So 𝐺 is a 2-group.

Let 𝐺 ⊃ 𝐺1 = Gal(𝐿/ℂ), and 𝐺2 ≤ 𝐺1 be a subgroup of index 2, which exists by (iv). Then
[𝐿𝐺2 ∶ ℂ] = (𝐺1 ∶ 𝐺2), contradicting the fact (ii) that quadratics split in ℂ. So there cannot
exist a subgroup of index 2, so 𝐺1 = {𝑒}, and 𝐿 = ℂ.

10.2. Artin’s theorem on invariants
Theorem (Artin). Let 𝐿 be a field and𝐺 ≤ Aut(𝐿) be a finite subgroup of automorphisms of
𝐿. Define 𝐿𝐺 = {𝑥 ∈ 𝐿 ∣ ∀𝜎 ∈ 𝐺, 𝜎(𝑥) = 𝑥}. Then 𝐿/𝐿𝐺 is finite, and satisfies [𝐿 ∶ 𝐿𝐺] = |𝐺|.

Remark. Unlike in the Galois correspondence, this theorem does not rely on a field exten-
sion, just a single field and a finite group of automorphisms. In particular, we find that 𝐿/𝐿𝐺
is finite and Galois, with Galois group 𝐺.

Proof. It suffices to show 𝐿/𝐿𝐺 is finite, because then we can apply the Galois correspond-
ence to show [𝐿 ∶ 𝐿𝐺] = |𝐺|. Let 𝐾 = 𝐿𝐺, and let 𝑥 ∈ 𝐿. Then if {𝜎1(𝑥),… , 𝜎𝑟(𝑥)} is the orbit
of 𝐺 on 𝑥, then 𝑥 is a root of 𝑓 = ∏𝑟

𝑖=1(𝑇 − 𝜎𝑖(𝑥)). But 𝑓 ∈ 𝐿𝐺[𝑇] = 𝐾[𝑇]. By construction,
𝑓 is separable. Hence 𝑥 is algebraic and separable over 𝐾, and deg𝐾 𝑥 ≤ |𝐺|.

Let 𝑦 ∈ 𝐿 have maximal degree. We claim that 𝐾(𝑦) = 𝐿. If not, there exists 𝑥 ∈ 𝐿 ∖ 𝐾(𝑦).
By above, 𝑥, 𝑦 are algebraic and separable over 𝐾. By the primitive element theorem, there
exists 𝑧 ∈ 𝐿 such that 𝐾(𝑥, 𝑦) = 𝐾(𝑧) ⊋ 𝐾(𝑦), so deg𝐾 𝑧 > deg𝐾 𝑦. But 𝑦 was chosen to have
maximal degree, so this is a contradiction.
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Remark. One can prove this theorem directly without appealing to the Galois correspond-
ence or the primitive element theorem. This can then be used as a starting point for Galois
theory, which then allows the more complicated theorems to be proven.

There are two common ways to construct finite Galois extensions. The first, studied earlier
in the course, involves taking the splitting field of a separable polynomial; this method con-
structs a larger field from a given base field. Artin’s theorem provides another way to con-
struct such extensions, by fixing a large field 𝐿 and constructing the subfield 𝐿𝐺.
Example. Let𝕜 be a field, and let𝐿 = 𝕜(𝑋1,… , 𝑋𝑛) be the field of rational functions, defined
as the fractions of the polynomial ring 𝕜[𝑋1,… , 𝑋𝑛]. Let 𝐺 = 𝑆𝑛 be the symmetric group
permuting the 𝑋𝑖. Then 𝐺 ≤ Aut(𝐿).
Theorem. Let 𝕜 be a field and let 𝐿 = 𝕜(𝑋1,… , 𝑋𝑛). Then 𝐿𝐺 = 𝕜(𝑠1,… , 𝑠𝑛).

Proof. Recall that 𝕜[𝑋1,… , 𝑋𝑛]𝐺 = 𝕜[𝑠1,… , 𝑠𝑛] where the 𝑠𝑖 are the elementary symmetric
polynomials in the 𝑋𝑖, and there are no nontrivial relations between the 𝑠𝑖. In particular,
𝕜(𝑠1,… , 𝑠𝑛) ⊆ 𝐿𝐺.

Conversely, let 𝑓
𝑔
∈ 𝐿𝐺 for 𝑓, 𝑔 ∈ 𝕜[𝑋1,… , 𝑋𝑛] = 𝑅. Without loss of generality let 𝑓, 𝑔 be

coprime. Then for all 𝜎 ∈ 𝐺, 𝑓
𝑔
= 𝜎𝑓

𝜎𝑔
. By Gauss’ lemma, 𝑅 is a unique factorisation domain,

and the units in 𝑅 are the nonzero constants 𝕜×. Hence 𝜎𝑓 = 𝑐𝜎𝑓 and 𝜎𝑔 = 𝑐𝜎𝑔 where
𝑐𝜎 ∈ 𝕜×.
Since 𝐺 is finite and has order 𝑁 = 𝑛!, 𝑓 = 𝜎𝑁𝑓 = 𝑐𝑁𝜎 𝑓. So 𝑐𝜎 is an 𝑁th root of unity.
Then 𝑓𝑔𝑁−1, 𝑔𝑁 are invariant under 𝜎, so 𝑓𝑔𝑁−1, 𝑔𝑁 ∈ 𝑅𝐺 = 𝕜[𝑠1,… , 𝑠𝑛]. So

𝑓
𝑔
= 𝑓𝑔𝑁−1

𝑔𝑁
∈

𝕜(𝑠1,… , 𝑠𝑛).

Example. Let 𝐿 = 𝕜(𝑋1,… , 𝑋𝑛), and let 𝐾 = 𝕜(𝑠1,… , 𝑠𝑛) = 𝐿𝐺 where 𝐺 = 𝑆𝑛. Then by
Artin’s theorem, 𝐿/𝐾 is a finite Galois extension with Galois group𝐺. Let 𝑓 = 𝑇𝑛−𝑠1𝑇𝑛−1+
⋯+(−1)𝑛𝑠𝑛 ∈ 𝐾[𝑇]. Then in 𝐿, 𝑓 = ∏𝑛

𝑖=1(𝑇 −𝑋𝑖). Since the 𝑋𝑖 are different, 𝑓 is separable,
and 𝐿/𝐾 is a splitting field for 𝑓. Hence Gal(𝑓/𝐾) = 𝑆𝑛. Informally, the general polynomial
of degree 𝑛 has Galois group 𝑆𝑛. It is not difficult to show that for any finite group 𝐺, there
exists a Galois extension with Galois group isomorphic to 𝐺.

10.3. Other areas of study
This is one of a number of theories in invariant theory, in which one considers a ring 𝑅 and
a group 𝐺 ≤ Aut(𝑅), and study 𝑅𝐺. If 𝑅 is a polynomial ring 𝕜[𝑋1,… , 𝑋𝑛] and 𝐺 ≤ 𝑆𝑛, then
knowing 𝑅𝐺 can help with the computation of Galois groups algorithmically. For example,
if 𝐺 = 𝐴𝑛, then 𝕜[𝑋1,… , 𝑋𝑛]𝐴𝑛 = 𝕜[𝑠1,… , 𝑠𝑛, Δ] where Δ = ∏𝑖<𝑗(𝑋𝑖 − 𝑋𝑗), for char𝕜 ≠
2.
Now consider 𝑅 = 𝕜[𝑋1, 𝑋2] and 𝐺 = {1, 𝜎} where 𝜎(𝑋𝑖) = −𝑋𝑖. Let char𝕜 ≠ 2. Then one
can show 𝑅𝐺 = 𝕜[𝑋2

1 , 𝑋2
2 , 𝑋1𝑋2] = 𝕜[𝑌1, 𝑌2, 𝑌3]⟋(𝑌1𝑌2 − 𝑌 2

3 ). Geometrically, {𝑌1𝑌2 = 𝑌 2
3 } ⊂
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ℝ3 is a double cone. The point at which the cones meet is known as a singularity; such
singularities occur in the study of algebraic geometry.

If 𝐾 and 𝐺 are fixed, it is not always the case that there exists a Galois extension 𝐿/𝐾 such
that Gal(𝐿/𝐾) = 𝐺. For instance, if 𝐾 is algebraically closed, it has no nontrivial Galois
extensions. If 𝐾 = 𝔽𝑝, then Gal(𝐿/𝐾)must be cyclic.
The inverse Galois problem asks whether every finite group 𝐺 is the Galois group of some
Galois extension 𝐿/ℚ. This is unsolved in the general case. On the extra example sheet, one
shows that every abelian group is in fact the Galois group of some Galois extension 𝐿/ℚ.
There is a famous theorem by Shafarevich that every finite soluble group is such a Galois
group over ℚ. This is also known to hold for most finite simple groups; in particular, due
to a theorem of John Thompson, the monster group is known to be a Galois group over
ℚ.
Perhaps to solve this problem, it would be better to instead understand Gal(ℚ/ℚ). The
inverse Galois problem is equivalent to asking whether every finite group is a quotient of
Gal(ℚ/ℚ). Wemay also be interested in finding the representations of this group. This leads
to the Langlands programme.
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Lectured in Lent 2023 by Prof. S. Martin
Coding theory allows us to mathematically reason about methods of communication. The
theory is largely broken into two parts: noiseless coding and noisy coding.

Noiseless codes describe ways to compress data into less space. Such schemes have been in
use since at least the time of the Ancient Greeks, who used torches placed upon hilltops to
concisely convey Greek letters over a long distance. We explore some examples of noiseless
codes, and prove theoretical results about how efficiently they can be expected to encode
data from a variety of sources.

Noisy coding aims to detect, or possibly correct, errors that may have been introduced while
transmitting data across a noisy channel. An example of such a code is the International
Standard Book Number: it detects any digit typed incorrectly, and any transposition of two
adjacent digits. We investigate how reliably channels can transmit data, and at what rate.
In practice, noiseless and noisy codes are combined to transmit data across a noisy channel
with high reliability and efficiency.

In addition to transmitting data reliably, we may also wish to transmit our message securely.
This leads to the study of cryptography. There are several possible aims that a cryptographic
cipher might try to achieve, for example ensuring that a message was not read or tampered
with, or ‘signing’ amessage to authenticate that it originated from a particular sender. These
concepts form the basis of modern internet security.
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VI. Coding and Cryptography

1. Modelling communication
To reason about communication, we use the following model. We have a source which
knows a message, that uses an encoder to produce some code words. The code words are
sent through a channel, but errors and noise may be introduced in this channel. The code
words are received by a decoder, which performs some formof error detection and correction.
The message is finally received by a receiver.

The source is often named Alice, and the receiver is named Bob. There may be an agent
watching the channel called Eve, short for eavesdropper.

Examples of these ideas include the optical and electrical telegraph, SMS, postcodes, CDs
and their error correction, compression algorithms such as gzip, and PINs.

Given a source and a channel, modelled probabilistically, the basic problem is to design an
encoder and decoder to transmitmessages economically (noiseless coding, compression) and
reliably (noisy coding).

An example of noiseless coding is Morse code, where every letter is assigned a unique se-
quence of dots and dashes, where more common letters are assigned shorter strings. Noise-
less coding is adapted to the source.

Here is an example of noisy coding. Eachbookhas an ISBN𝑎1𝑎2…𝑎9𝑎10where the𝑎1,… , 𝑎9
are digits in {0,… , 9}, and 𝑎10 ∈ {0,… , 9, 𝑋} such that 11 ∣ ∑10

𝑗=1 𝑗𝑎𝑗 . This coding system de-
tects the common human errors of writing an incorrect digit and transposing two adjacent
digits. Noisy coding is adapted to the channel, which in this case is the human reading the
number and typing it into a computer.

Definition. A communication channel accepts a string of symbols from a finite alphabet
𝒜 = {𝑎1,… , 𝑎𝑟} and outputs a string of symbols from another finite alphabetℬ = {𝑏1,… , 𝑏𝑠}.
It is modelled by the probabilities ℙ (𝑦1…𝑦𝑛 received ∣ 𝑥1…𝑥𝑛 sent).

Definition. Adiscretememoryless channel is a channelwhere𝑝𝑖𝑗 = ℙ (𝑏𝑗 received ∣ 𝑎𝑖 sent)
are the same for each channel use, and independent of all past and future uses of the channel.
Its channel matrix is the 𝑟 × 𝑠 stochastic matrix 𝑃 = (𝑝𝑖𝑗).

Example. The binary symmetric channel with error probability 𝑝 ∈ [0, 1] is a discrete
memoryless channel with input and output alphabets {0, 1}, where the channel matrix is

(1 − 𝑝 𝑝
𝑝 1 − 𝑝)

Here, a symbol is transmitted correctly with probability 1 − 𝑝. Usually, we assume 𝑝 < 1
2
.

Example. The binary erasure channel has𝒜 = {0, 1} and ℬ = {0, 1,⋆}. The channel matrix
is

(1 − 𝑝 0 𝑝
0 1 − 𝑝 𝑝)
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1. Modelling communication

𝑝 can be interpreted as the probability that the symbol received is unreadable. If⋆ is received,
we say that we have received a splurge error.

Definition. We model 𝑛 uses of a channel by the 𝑛th extension, with input alphabet 𝒜𝑛

and output alphabet ℬ𝑛. A code 𝐶 of length 𝑛 is a functionℳ → 𝒜𝑛, whereℳ is a set of
messages. Implicitly, we also have a decoding rule ℬ𝑛 →ℳ.

• The size of this code is𝑚 = |ℳ|.

• The information rate of the code is 𝜌(𝐶) = 1
𝑛
log2𝑚.

• The error rate of the code is ̂𝑒(𝐶) = max𝑥∈ℳ ℙ (error ∣ 𝑥 sent).
Definition. A channel can transmit reliably at rate 𝑅 if there is a sequence of codes (𝐶𝑛)∞𝑛=1
with each 𝐶𝑛 a code of length 𝑛 such that lim𝑛→∞ 𝜌(𝐶𝑛) = 𝑅 and lim𝑛→∞ ̂𝑒(𝐶𝑛) = 0. The
capacity of a channel is the supremum of all reliable transmission rates.

It is a nontrivial fact that the capacity of the binary symmetric channel with𝑝 < 1
2
is nonzero.

This is one of Shannon’s theorems, proven later.
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2. Noiseless coding
2.1. Prefix-free codes
Let 𝒜 be a finite alphabet. We write 𝒜⋆ for the set of strings of elements of 𝒜, defined by
𝒜⋆ = ⋃𝑛≥0 𝐴𝑛. The concatenation of two strings 𝑥 = 𝑥1…𝑥𝑟 and 𝑦 = 𝑦1…𝑦𝑠 is the string
𝑥𝑦 = 𝑥1…𝑥𝑟𝑦1…𝑦𝑠.
Definition. Let𝒜,ℬ be alphabets. A code is a function 𝑐∶ 𝒜 → ℬ⋆. The codewords of 𝑐 are
the elements of Im 𝑐.
Example (Greek fire code). Let 𝒜 = {𝛼, 𝛽,… , 𝜔}, and 𝐵 = {1, 2, 3, 4, 5}. We map 𝑐(𝛼) =
11, 𝑐(𝛽) = 12,… , 𝑐(𝜓) = 53, 𝑐(𝜔) = 54. 𝑥𝑦means to hold up 𝑥 torches and another 𝑦 torches
nearby. This code was described by the historian Polybius.

Example. Let 𝒜 be a set of words in some dictionary. Let ℬ be the letters of English
{𝐴,… , 𝑍, ␣} The code is to spell the word and follow with a space.

The general idea is to send a message 𝑥1,… , 𝑥𝑛 ∈ 𝒜⋆ as 𝑐(𝑥1)… 𝑐(𝑥𝑛) ∈ ℬ⋆. So 𝑐 extends to
a function 𝑐⋆∶ 𝒜⋆ → ℬ⋆.

Definition. A code 𝑐 is decipherable (or uniquely decodable) if 𝑐⋆ is injective.

If 𝑐 is decipherable, each string inℬ⋆ corresponds to at most onemessage. It does not suffice
to require that 𝑐 be injective. Consider 𝒜 = {1, 2, 3, 4}, ℬ = {0, 1}, and let 𝑐(1) = 0, 𝑐(2) =
1, 𝑐(3) = 00, 𝑐(4) = 01. Then 𝑐⋆(114) = 0001 = 𝑐⋆(312).
Typically we define 𝑚 = |𝒜| and 𝑎 = |ℬ|. We say 𝑐 is an 𝑎-ary code of size 𝑚. A 2-ary
code is a binary code, and a 3-ary code is a ternary code. We aim to construct decipherable
codes with short word lengths. Assuming that 𝑐 is injective, the following codes are always
decipherable.

(i) a block code, where all codewords have the same length, such as in the Greek fire code;

(ii) a comma code, which reserves a letter from ℬ to signal the end of a word;

(iii) a prefix-free code, a code in which no codeword is a prefix of another codeword.

Block codes and comma codes are examples of prefix-free codes. Such codes require no
lookahead to determine if we have reached the end of a word, so such codes are some-
times called instantaneous codes. One can easily find decipherable codes that are not prefix-
free.

2.2. Kraft’s inequality
Definition. Let𝒜 be an alphabet of size𝑚, andℬ be an alphabet of size 𝑎. Let 𝑐∶ 𝒜 → ℬ⋆

be a code with codewords are of length ℓ1,… , ℓ𝑚. Then, Kraft’s inequality is
𝑚
∑
𝑖=1

𝑎−ℓ𝑖 ≤ 1
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Theorem. A prefix-free code (with given codeword lengths) exists if and only if Kraft’s in-
equality holds.

Proof. Let us rewrite Kraft’s inequality as∑𝑠
ℓ=1 𝑛ℓ𝑎−ℓ ≤ 1, where 𝑛ℓ is the number of code-

words of length ℓ, and 𝑠 is the length of the longest codeword. Suppose 𝑐∶ 𝒜 → ℬ⋆ is
prefix-free. Then,

𝑛1𝑎𝑠−1 + 𝑛2𝑎𝑠−2 +⋯+ 𝑛𝑠−1𝑎 + 𝑛𝑠 ≤ 𝑎𝑠

since the left hand side counts the number of strings of length 𝑠 inℬwith some codeword of
𝑐 as a prefix, and the right hand side counts the total number of strings of length 𝑠. Dividing
by 𝑎𝑠 gives the desired result.
Now, suppose that∑𝑠

ℓ=1 𝑛ℓ𝑎−ℓ ≤ 1. We aim to construct a prefix-free code 𝑐 with 𝑛ℓ code-
words of length ℓ for all ℓ ≤ 𝑠. Proceed by induction on 𝑠. The case 𝑠 = 1 is clear; in
this case, the inequality gives 𝑛1 ≤ 𝑎. By the inductive hypothesis, we have construc-
ted a prefix-free code ̂𝑐 with 𝑛ℓ codewords of length ℓ for all ℓ < 𝑠. The inequality gives
𝑛1𝑎𝑠−1 +⋯+ 𝑛𝑠−1𝑎 + 𝑛𝑠 ≤ 𝑎𝑠. The first 𝑠 − 1 terms on the left hand side gives the number
of strings of length 𝑠 with some codeword of ̂𝑐 as a prefix. So we are free to add 𝑛𝑠 addi-
tional codewords of length 𝑠 to ̂𝑐 to form 𝑐 without exhausting our supply of 𝑎𝑠 total strings
of length 𝑠.

Remark. The proof of existence of such a code is constructive; one can choose codewords in
order of increasing length, ensuring that we do not introduce prefixes at each stage.

2.3. McMillan’s inequality
Theorem. Any decipherable code satisfies Kraft’s inequality.

Proof. Let 𝑐∶ 𝒜 → ℬ⋆ be decipherable with word lengths ℓ1,… , ℓ𝑚. Let 𝑠 = max𝑖≤𝑚 ℓ𝑖. For
𝑅 ∈ ℕ, we have

(
𝑚
∑
𝑖=1

𝑎−ℓ𝑖)
𝑅

=
𝑅𝑠
∑
ℓ=1

𝑏ℓ𝑎−ℓ

where 𝑏ℓ is the number of ways of choosing 𝑅 codewords of total length ℓ. Since 𝑐 is de-
cipherable, any string of length ℓ formed from codewords must correspond to exactly one
sequence of codewords. Hence, 𝑏ℓ ≤ ||ℬℓ|| = 𝑎ℓ. The inequality therefore gives

(
𝑚
∑
𝑖=1

𝑎−ℓ𝑖)
𝑅

≤ 𝑅𝑠 ⟹
𝑚
∑
𝑖=1

𝑎−ℓ𝑖 ≤ (𝑅𝑠)
1
𝑅

As 𝑅 → ∞, the right hand side converges to 1, giving Kraft’s inequality as required.

Corollary. A decipherable code with prescribed word lengths exists if and only if a prefix-
free code with the same word lengths exists.

We can therefore restrict our attention to prefix-free codes.
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2.4. Entropy
Entropy is a measure of ‘randomness’ or ‘uncertainty’ in an input message. Suppose that
we have a random variable 𝑋 taking a finite number of values 𝑥1,… , 𝑥𝑛 with probability
𝑝1,… , 𝑝𝑛. Then, the entropy of this random variable is the expected number of fair coin
tosses required to determine 𝑋 .

Example. Suppose 𝑝1 = 𝑝2 = 𝑝3 = 𝑝4 =
1
4
. Identifying {𝑥1, 𝑥2, 𝑥3, 𝑥4} = {00, 01, 10, 11},

we would expect 𝐻(𝑋) = 2.

Example. Suppose 𝑝1 = 1
2
, 𝑝2 = 1

4
, and 𝑝3 = 𝑝4 = 1

8
. Identifying {𝑥1, 𝑥2, 𝑥3, 𝑥4} =

{0, 10, 110, 111}, we obtain 𝐻(𝑋) = 1
2
⋅ 1 + 1

4
⋅ 2 + 1

8
⋅ 3 + 1

8
⋅ 3 = 7

4
.

In a sense, the first example is ‘more random’ than the second, as its entropy is higher.

Definition. The entropy of a random variable 𝑋 taking a finite number of values 𝑥1,… , 𝑥𝑛
with probabilities 𝑝1,… , 𝑝𝑛 is defined to be

𝐻(𝑋) = 𝐻(𝑝1,… , 𝑝𝑛) = −
𝑛
∑
𝑖=1

𝑝𝑖 log𝑝𝑖 = −𝔼 [log𝑝𝑖]

where the logarithm is taken with base 2.

Note that 𝐻(𝑋) ≥ 0, and equality holds exactly when 𝑋 is constant with probability 1. It is
measured in bits, binary digits. By convention, we write 0 log 0 = 0 (note that 𝑥 log𝑥 → 0 as
𝑥 → 0).
Example. For a biased coin with probability 𝑝 of a head, we write 𝐻(𝑝, 1 − 𝑝) = 𝐻(𝑝). We
find

𝐻(𝑝) = −𝑝 log𝑝 − (1 − 𝑝) log(1 − 𝑝); 𝐻′(𝑝) = log 1 − 𝑝
𝑝

This graph is concave, taking a maximum value of 1 when 𝑝 = 1
2
. If 𝑝 = 0, 1 then 𝐻(𝑝) = 0.

2.5. Gibbs’ inequality
Proposition. Let (𝑝1,… , 𝑝𝑛), (𝑞1,… , 𝑞𝑛) be discrete probability distributions. Then,

−∑𝑝𝑖 log𝑝𝑖 ≤ −∑𝑝𝑖 log 𝑞𝑖

with equality if and only if 𝑝𝑖 = 𝑞𝑖.
The right hand side is sometimes called the cross entropy, ormixed entropy.

Proof. Since log𝑥 = ln𝑥
ln 2

, we may replace the inequality with

−∑𝑝𝑖 ln𝑝𝑖 ≤ −∑𝑝𝑖 ln 𝑞𝑖
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2. Noiseless coding

Define 𝐼 = {𝑖 ∣ 𝑝𝑖 ≠ 0}. Now, ln𝑥 ≤ 𝑥 − 1 for all 𝑥 > 0, with equality if and only if 𝑥 = 1.
Hence, ln 𝑞𝑖

𝑝𝑖
≤ 𝑞𝑖

𝑝𝑖
− 1 for all 𝑖 ∈ 𝐼. Then,

∑
𝑖∈𝐼

𝑝𝑖 ln
𝑞𝑖
𝑝𝑖

≤ ∑
𝑖∈𝐼

𝑞𝑖 −∑
𝑖∈𝐼

𝑝𝑖

As the 𝑝𝑖 form a probability distribution, ∑𝑖∈𝐼 𝑝𝑖 = 1 and ∑𝑖∈𝐼 𝑞𝑖 ≤ 1, so the right hand
side is at most 0. Therefore,

−
𝑛
∑
𝑖=1

𝑝𝑖 ln𝑝𝑖 = −∑
𝑖∈𝐼

𝑝𝑖 ln𝑝𝑖 ≤ −∑
𝑖∈𝐼

𝑝𝑖 ln 𝑞𝑖 ≤ −
𝑛
∑
𝑖=1

𝑝𝑖 ln 𝑞𝑖

If equality holds, we must have∑𝑖∈𝐼 𝑞𝑖 = 1 and 𝑞𝑖
𝑝𝑖
= 1 for all 𝑖 ∈ 𝐼, giving that 𝑝𝑖 = 𝑞𝑖 for

all 𝑖.

Corollary. 𝐻(𝑝1,… , 𝑝𝑛) ≤ log𝑛, with equality if and only if 𝑝1 = ⋯ = 𝑝𝑛.

2.6. Optimal codes
Let 𝒜 = {𝜇1,… , 𝜇𝑚} be an alphabet of 𝑚 ≥ 2messages, and let ℬ be an alphabet of length
𝑎 ≥ 2. Let 𝑋 be a random variable taking values in 𝐴 with probabilities 𝑝1,… , 𝑝𝑚.
Definition. A code 𝑐∶ 𝒜 → ℬ⋆ is called optimal if it has the smallest possible expected
word length∑𝑝𝑖ℓ𝑖 = 𝔼 [𝑆] among all decipherable codes.
Theorem (Shannon’s noiseless coding theorem). The expected word length 𝔼 [𝑆] of a de-
cipherable code satisfies

for decipherable codes

⏞⎴⎴⏞⎴⎴⏞𝐻(𝑋)
log 𝑎 ≤ 𝔼[𝑆] < 𝐻(𝑋)

log 𝑎 + 1
⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

for optimal codes

Moreover, the left hand inequality is an equality if and only if 𝑝𝑖 = 𝑎−ℓ𝑖 with∑𝑎−ℓ𝑖 = 1 for
some integers ℓ1,… , ℓ𝑚.

Proof. First, we consider the lower bound. Let 𝑐∶ 𝒜 → ℬ⋆ be a decipherable code with
word lengths ℓ1,… , ℓ𝑚. Let 𝑞𝑖 =

𝑎−ℓ𝑖
𝐷

where 𝐷 = ∑𝑎−ℓ𝑖 , so∑𝑞𝑖 = 1. By Gibbs’ inequality,

𝐻(𝑋) ≤ −∑𝑝𝑖 log 𝑞𝑖 = −∑𝑝𝑖(−ℓ𝑖 log 𝑎 − log𝐷) = log𝐷 + log 𝑎∑𝑝𝑖ℓ𝑖
By McMillan’s inequality, 𝐷 ≤ 1 so log𝐷 ≤ 0. Hence, 𝐻(𝑋) ≤ log 𝑎∑𝑝𝑖ℓ𝑖 = log 𝑎𝔼 [𝑆] as
required. Equality holds exactly when 𝐷 = 1 and 𝑝𝑖 = 𝑞𝑖 =

𝑎−ℓ𝑖
𝐷

= 𝑎−ℓ𝑖 for some integers
ℓ1,… , ℓ𝑚.
Now, consider the upper bound. We construct a code called the Shannon–Fano code. Let
ℓ𝑖 = ⌈− log𝑎 𝑝𝑖⌉, so − log𝑎 𝑝𝑖 ≤ ℓ𝑖 < − log𝑎 𝑝𝑖 + 1. Therefore, log𝑎 𝑝𝑖 ≥ −ℓ𝑖, so 𝑝𝑖 ≥ 𝑎−ℓ𝑖 .

279



VI. Coding and Cryptography

Thus, Kraft’s inequality∑𝑎−ℓ𝑖 ≤ 1 is satisfied, so there exists a prefix-free code 𝑐with these
word lengths ℓ1,… , ℓ𝑚. 𝑐 has expected word length

𝔼 [𝑆] = ∑𝑝𝑖ℓ𝑖 < ∑𝑝𝑖(− log𝑝𝑖 + 1) = 𝐻(𝑋)
log 𝑎 + 1

as required.

Example (Shannon–Fano coding). For probabilities 𝑝1,… , 𝑝𝑚, we set ℓ𝑖 = ⌈− log𝑎 𝑝𝑖⌉.
Construct a prefix-free code with these word lengths by choosing codewords in order of size,
with smallest codewords being selected first to ensure that the prefix-free property holds. By
Kraft’s inequality, this process can always be completed.

Example. Let 𝑎 = 2,𝑚 = 5, and define

𝑖 𝑝𝑖 ⌈− log2 𝑝𝑖⌉
1 0.4 2 00
2 0.2 3 010
3 0.2 3 011
4 0.1 4 1000
5 0.1 4 1001

Here, 𝔼 [𝑆] = ∑𝑝𝑖ℓ𝑖 = 2.8, and𝐻(𝑋) = 𝐻(𝑋)
log 2

≈ 2.12. Clearly, this is not optimal; one could
take 𝑐(4) = 100, 𝑐(5) = 101 to reduce the expected word length.

2.7. Huffman coding
Let 𝒜 = {𝜇1,… , 𝜇𝑚} and 𝑝𝑖 = ℙ (𝑋 = 𝜇𝑖). We assume 𝑎 = 2 and ℬ = {0, 1} for simplicity.
Without loss of generality, we can assume 𝑝1 ≥ 𝑝2 ≥ ⋯ ≥ 𝑝𝑚. We construct an optimal
code inductively.

If𝑚 = 2, we take codewords 0 and 1. If𝑚 > 2, first we take the Huffman code for messages
𝜇1,… , 𝜇𝑚−2, 𝜈 with probabilities 𝑝1, 𝑝2,… , 𝑝𝑚−2, 𝑝𝑚−1 + 𝑝𝑚. Then, we append 0 and 1 to
the codeword for 𝜈 to obtain the new codewords for 𝜇𝑚−1, 𝜇𝑚.
Remark. By construction, Huffman codes are prefix-free. In general, Huffman codes are not
unique; we require a choice if 𝑝𝑖 = 𝑝𝑗 .
Example. Consider the example Let 𝑎 = 2,𝑚 = 5, and consider as before

𝑖 𝑝𝑖
1 0.4
2 0.2
3 0.2
4 0.1
5 0.1
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2. Noiseless coding

Merging 4 and 5, as they have the lowest probabilities,

𝑖 𝑝𝑖
1 0.4
2 0.2
3 0.2
45 0.2

Continuing, we obtain
𝑖 𝑝𝑖

(3(45))2 0.6
1 0.4

giving codewords
•

• 1

• 2

3 •

4 5

0 1

0 1

0 1

0 1

This gives 𝔼 [𝑆] = 2.2, better than the Shannon–Fano code found above.
Lemma. Let 𝜇1,… , 𝜇𝑚 be messages in𝒜 with probabilities 𝑝1,… , 𝑝𝑚. Let 𝑐 be an optimal
prefix-free code for 𝑐 with word lengths ℓ1,… , ℓ𝑚. Then,
(i) if 𝑝𝑖 > 𝑝𝑗 , ℓ𝑖 ≤ ℓ𝑗 ; and
(ii) among all codewords of maximal length, there exist two which differ only in the last

digit.

Proof. If this were not true, one could modify 𝑐 by
(i) swapping the 𝑖th and 𝑗th codewords; or
(ii) deleting the last letter of each codeword of maximal length

which yields a prefix-free code with strictly smaller expected word length.

Theorem. Huffman codes are optimal.

Proof. The proof is by induction on 𝑚. If 𝑚 = 2, then the codewords are 0 and 1, which
is clearly optimal. Assume 𝑚 > 2, and let 𝑐𝑚 be the Huffman code for 𝑋𝑚 which takes val-
ues 𝜇1,… , 𝜇𝑚with probabilities𝑝1 ≥ ⋯ ≥ 𝑝𝑚. 𝑐𝑚 is constructed from aHuffman code 𝑐𝑚−1
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with randomvariable𝑋𝑚−1 taking values𝜇1,… , 𝜇𝑛−2, 𝜈with probabilities𝑝1,… , 𝑝𝑚−2, 𝑝𝑚−1+
𝑝𝑚. The code 𝑐𝑚−1 is optimal by the inductive hypothesis. The expected word length 𝔼 [𝑆𝑚]
is given by

𝔼 [𝑆𝑚] = 𝔼 [𝑆𝑚−1] + 𝑝𝑚−1 + 𝑝𝑚

Let 𝑐′𝑚 be an optimal code for 𝑋𝑚, which without loss of generality can be chosen to be
prefix-free. Without loss of generality, the last two codewords of 𝑐′𝑚 can be chosen to have
the largest possible length and differ only in the final position, by the previous lemma. Then,
𝑐′𝑚(𝜇𝑚−1) = 𝑦0 and 𝑐′𝑚(𝜇𝑚) = 𝑦1 for some 𝑦 ∈ {0, 1}⋆. Let 𝑐′𝑚−1 be the prefix-free code for
𝑋𝑚−1 given by

𝑐′𝑚−1(𝜇𝑖) = {𝑐
′
𝑚(𝜇𝑖) 𝑖 ≤ 𝑚 − 2
𝑦 𝑖 = 𝑚 − 1,𝑚

The expected word length satisfies

𝔼 [𝑆′𝑚] = 𝔼 [𝑆′𝑚−1] + 𝑝𝑚−1 + 𝑝𝑚

By the inductive hypothesis, 𝑐𝑚−1 is optimal, so 𝔼 [𝑆𝑚−1] ≤ 𝔼 [𝑆′𝑚−1]. Combining the equa-
tions,

𝔼 [𝑆𝑚] ≤ 𝔼 [𝑆′𝑚]

So 𝑐𝑚 is optimal as required.

Remark. Not all optimal codes are Huffman codes. However, we have proven that, given a
prefix-free optimal code with prescribed word lengths, there is a Huffman code with these
word lengths.

2.8. Joint entropy

Let 𝑋, 𝑌 be random variables with values in 𝒜,ℬ. Then, the pair (𝑋, 𝑌) is also a random
variable, taking values in𝒜×ℬ. This has entropy𝐻(𝑋, 𝑌), called the joint entropy for 𝑋 and
𝑌 .

𝐻(𝑋, 𝑌) = − ∑
𝑥∈𝒜

∑
𝑦∈ℬ

ℙ (𝑋 = 𝑥, 𝑌 = 𝑦) logℙ (𝑋 = 𝑥, 𝑌 = 𝑦)

This construction generalises to finite tuples of random variables.

Lemma. Let𝑋, 𝑌 be random variables taking values in𝒜,ℬ. Then𝐻(𝑋, 𝑌) ≤ 𝐻(𝑋)+𝐻(𝑌),
with equality if and only if 𝑋 and 𝑌 are independent.

Proof. Let 𝒜 = {𝑥1,… , 𝑥𝑚} and ℬ = {𝑦1,… , 𝑦𝑛}. Let 𝑝𝑖𝑗 = ℙ (𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑗), 𝑝𝑖 =
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ℙ (𝑋 = 𝑥𝑖), and 𝑞𝑗 = ℙ (𝑌 = 𝑦𝑗). By Gibbs’ inequality applied to {𝑝𝑖𝑗} and {𝑝𝑖𝑞𝑗},

𝐻(𝑋, 𝑌) = −∑𝑝𝑖𝑗 log𝑝𝑖𝑗 ≤ −∑𝑝𝑖𝑗 log(𝑝𝑖𝑞𝑗)

= −∑
𝑖
(∑

𝑗
𝑝𝑖𝑗) log𝑝𝑖 −∑

𝑗
(∑

𝑖
𝑝𝑖𝑗) log 𝑞𝑗

= −∑
𝑖
𝑝𝑖 log𝑝𝑖 −∑

𝑗
𝑞𝑗 log 𝑞𝑗

= 𝐻(𝑋) + 𝐻(𝑌)

Equality holds if and only if 𝑝𝑖𝑗 = 𝑝𝑖𝑞𝑗 for all 𝑖, 𝑗, or equivalently, if 𝑋, 𝑌 are independent.
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3. Noisy channels
3.1. Decoding rules
Definition. A binary [𝑛,𝑚]-code is a subset 𝐶 of {0, 1}𝑛 of size 𝑚 = |𝐶|. We say 𝑛 is the
length of the code, and elements of 𝐶 are called codewords.

We use an [𝑛,𝑚]-code to send one of 𝑚 messages through a channel using 𝑛 bits. For in-
stance, if the channel is a binary symmetric channel, we use the channel 𝑛 times. Note that
1 ≤ 𝑚 ≤ 2𝑛, so the information rate 𝜌(𝐶) = 1

𝑛
log𝑚 satisfies 0 ≤ 𝜌(𝐶) ≤ 1. If 𝑚 = 1,

𝜌(𝐶) = 0, and if 𝐶 = {0, 1}𝑛, 𝜌(𝐶) = 1.
Definition. Let 𝑥, 𝑦 ∈ {0, 1}𝑛. The Hamming distance between 𝑥 and 𝑦 is

𝑑(𝑥, 𝑦) = |{𝑖 ∣ 𝑥𝑖 ≠ 𝑦𝑖}|

In this section, we consider only the binary symmetric channel with probability 𝑝.
Definition. Let 𝐶 be a binary [𝑛,𝑚]-code.

• The ideal observer decoding rule decodes 𝑥 ∈ {0, 1}𝑛 as the 𝑐 ∈ 𝐶 maximising the
probability that 𝑐 was sent given that 𝑥 was received;

• The maximum likelihood decoding rule decodes 𝑥 ∈ {0, 1}𝑛 as the 𝑐 ∈ 𝐶 maximising
the probability that 𝑥 was received given that 𝑐 was sent;

• Theminimum distance decoding rule decodes 𝑥 ∈ {0, 1}𝑛 as the 𝑐 ∈ 𝐶 minimising the
Hamming distance 𝑑(𝑥, 𝑐).

Lemma. Let 𝐶 be a binary [𝑛,𝑚]-code.
(i) If allmessages are equally likely, the ideal observer andmaximum likelihood decoding

rules agree.

(ii) If 𝑝 < 1
2
, then the maximum likelihood and minimum distance decoding rules agree.

Note that the hypothesis in part (i) is reasonable if we first encode a message using noiseless
coding. The hypothesis in part (ii) is reasonable, since a channel with 𝑝 = 1

2
can carry no

information, and a channel with 𝑝 > 1
2
can be used as a channel with probability 1 − 𝑝 by

inverting its outputs. Channels with 𝑝 = 0 are called lossless channels, and channels with
𝑝 = 1

2
are called useless channels.

Proof. Part (i). By Bayes’ rule,

ℙ (𝑐 sent ∣ 𝑥 received) = ℙ (𝑐 sent, 𝑥 received)
𝑥 received = ℙ (𝑐 sent)

ℙ (𝑥 received)ℙ (𝑥 received ∣ 𝑐 sent)

By hypothesis, ℙ (𝑐 sent) is independent of 𝑐. Hence, for some fixed received message 𝑥,
maximising ℙ (𝑐 sent ∣ 𝑥 received) is the same as maximising ℙ (𝑥 received ∣ 𝑐 sent).
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3. Noisy channels

Part (ii). Let 𝑟 = 𝑑(𝑥, 𝑐). Then,

ℙ (𝑥 received ∣ 𝑐 sent) = 𝑝𝑟(1 − 𝑝)𝑛−𝑟 = (1 − 𝑝)𝑛( 𝑝
1 − 𝑝)

𝑟

As 𝑝 < 1
2
, 𝑝
1−𝑝

< 1. Hence, maximising ℙ (𝑥 received ∣ 𝑐 sent) is equivalent to minimising
𝑟 = 𝑑(𝑥, 𝑐).

We can therefore choose to use minimum distance decoding from this point.

Example. Suppose codewords 000, 111 are sent with probabilities 𝛼 = 9
10
and 1 − 𝛼 = 1

10
,

through a binary symmetric channel with error probability 𝑝 = 1
4
. Suppose that we receive

110. Clearly, an error has been introduced.

ℙ (000 sent ∣ 110 received) = 𝛼𝑝2(1 − 𝑝)
𝛼𝑝2(1 − 𝑝) + (1 − 𝛼)𝑝(1 − 𝑝)2 =

3
4

ℙ (111 sent ∣ 110 received) = 1
4

The ideal observer therefore decodes 110 as 000. The maximum likelihood or minimum
distance decoding rules decode 110 as 111.
Remark. Minimumdistance decodingmay be expensive in terms of time and storage if |𝐶| is
large, since the distance to all codewords must be calculated a priori. One must also specify
a convention in case of a tie between the probabilities or distances, for instance, using a
random choice, or requesting a retransmission.

3.2. Error detection and correction
The aim when constructing codes for noisy channels is to detect errors, and if possible, to
correct them.

Definition. A binary [𝑛,𝑚]-code 𝐶 is

• 𝑑-error detecting if, when changing up to 𝑑 digits in each codeword, we can never
produce another codeword;

• 𝑒-error correcting if, knowing that 𝑥 ∈ {0, 1}𝑛 differs from a codeword in at most 𝑒
positions, we can deduce the codeword.

Example. A repetition code of length 𝑛 has codewords 0𝑛, 1𝑛. This is an [𝑛, 2]-code. It is
(𝑛 − 1)-error detecting, and ⌊𝑛−1

2
⌋-error correcting. Its information rate is 1

𝑛
.

Example. A simple parity check code or paper tape code of length 𝑛 identifies the set {0, 1}
with the field 𝔽2 of two elements, and defines 𝐶 = {(𝑥1,… , 𝑥𝑛) ∈ 𝔽𝑛2 ∣ ∑𝑥𝑖 = 0}. This is an
[𝑛, 2𝑛−1]-code. This is 1-error detecting and 0-error correcting, but has information rate 𝑛−1

𝑛
.
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Example. Hamming’s original code is a 1-error correcting binary [7, 16]-code, defined on
a subset of 𝔽72 by

𝐶 = {𝑐 ∈ 𝔽72 ∣ 𝑐1 + 𝑐3 + 𝑐5 + 𝑐7 = 0; 𝑐2 + 𝑐3 + 𝑐6 + 𝑐7 = 0; 𝑐4 + 𝑐5 + 𝑐6 + 𝑐7 = 0}
The bits 𝑐3, 𝑐5, 𝑐6, 𝑐7 are chosen arbitrarily, and 𝑐1, 𝑐2, 𝑐4 are check digits, giving a size of
24 = 16. Suppose that we receive 𝑥 ∈ 𝔽72. We form the syndrome 𝑧 = 𝑧𝑥 = (𝑧1, 𝑧2, 𝑧4) ∈ 𝔽32
where

𝑧1 = 𝑥1 + 𝑥3 + 𝑥5 + 𝑥7; 𝑧2 = 𝑥2 + 𝑥3 + 𝑥6 + 𝑥7; 𝑧4 = 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7
By definition of 𝐶, if 𝑥 ∈ 𝐶 then 𝑧 = (0, 0, 0). If 𝑑(𝑥, 𝑐) = 1 for some 𝑐 ∈ 𝐶, then the place
where 𝑥 and 𝑐 differ is given by 𝑧1 +2𝑧2 +4𝑧4 (not modulo 2). Indeed, if 𝑥 = 𝑐+ 𝑒𝑖 where 𝑒𝑖
is the zero vector with a one in the 𝑖th position, 𝑧𝑥 = 𝑧𝑒𝑖 , and one can check that this holds
for each 1 ≤ 𝑖 ≤ 7. Therefore, Hamming’s original code is 1-error correcting.
Lemma. The Hamming distance is a metric on 𝔽𝑛2 .

Proof. Clearly, 𝑑(𝑥, 𝑦) ≥ 0 and equality holds if and only if 𝑥 = 𝑦, and 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥). Let
𝑥, 𝑦, 𝑧 ∈ 𝔽𝑛2 . Then,

{𝑖 ∣ 𝑥𝑖 ≠ 𝑧𝑖} ⊆ {𝑖 ∣ 𝑥𝑖 ≠ 𝑦𝑖} ∪ {𝑖 ∣ 𝑦𝑖 ≠ 𝑧𝑖}
Hence 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧).

Remark. We could write 𝑑(𝑥, 𝑦) as∑𝑑1(𝑥𝑖, 𝑦𝑖) where 𝑑1 is the discrete metric on 𝔽2.

3.3. Minimum distance
Definition. The minimum distance of a code is the minimum value of 𝑑(𝑐1, 𝑐2) for code-
words 𝑐1 ≠ 𝑐2.
Lemma. Let 𝐶 be a code with minimum distance 𝑑 > 0. Then,
(i) 𝐶 is (𝑑 − 1)-error detecting, but cannot detect all sets of 𝑑 errors;

(ii) 𝐶 is ⌊𝑑−1
2
⌋-error correcting, but cannot correct all sets of ⌊𝑑−1

2
⌋ + 1 errors.

Proof. Part (i). If 𝑥 ∈ 𝔽𝑛2 and 𝑐 is a codeword with 1 ≤ 𝑑(𝑥, 𝑐) ≤ 𝑑 − 1. Then 𝑥 ∉ 𝐶, so
𝑑 − 1 errors are detected. Suppose 𝑐1, 𝑐2 are codewords with 𝑑(𝑐1, 𝑐2) = 𝑑. Then 𝑐1 can be
corrupted into 𝑐2 with only 𝑑 errors, and this is undetectable.

Part (ii). Let 𝑒 = ⌊𝑑−1
2
⌋. By definition, 𝑒 ≤ 𝑑−1

2
< 𝑒 + 1, so 2𝑒 < 𝑑 ≤ 2(𝑒 + 1). Let 𝑥 ∈ 𝔽𝑛2 .

If 𝑐1 ∈ 𝐶 with 𝑑(𝑥, 𝑐1) ≤ 𝑒, we want to show that 𝑑(𝑥, 𝑐2) > 𝑒 for all 𝑐2 ≠ 𝑐1. By the
triangle inequality, 𝑑(𝑥, 𝑐2) ≥ 𝑑(𝑐1, 𝑐2)−𝑑(𝑥, 𝑐1) ≥ 𝑑−𝑒 > 𝑒 as required. Hence, 𝐶 is 𝑒-error
correcting.

Let 𝑐1, 𝑐2 ∈ 𝐶 with 𝑑(𝑐1, 𝑐2) = 𝑑. Let 𝑥 ∈ 𝔽𝑛2 differ from 𝑐1 in precisely 𝑒 + 1 places that 𝑐1
and 𝑐2 differ. Then 𝑑(𝑥, 𝑐1) = 𝑒 + 1, and 𝑑(𝑥, 𝑐2) = 𝑑 − (𝑒 + 1) ≤ 𝑒 + 1. Hence, 𝐶 cannot
correct all sets of 𝑒 + 1 errors.
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Definition. An [𝑛,𝑚]-code with minimum distance 𝑑 is called an [𝑛,𝑚, 𝑑]-code.
Note that𝑚 ≤ 2𝑛 with equality if and only if 𝐶 = 𝔽𝑛2 . Similarly, 𝑑 ≤ 𝑛, with equality in the
case of the repetition code.

Example. The repetition code of length 𝑛 is an [𝑛, 2, 𝑛]-code. The simple parity check code
of length 𝑛 is an [𝑛, 2𝑛−1, 2]-code. The trivial code on 𝑛 bits is an [𝑛, 2𝑛, 1]-code. Ham-
ming’s original code is 1-error correcting, so has minimum distance at least 3. The min-
imum distance can easily be shown to be exactly 3 as 0000000, 1110000 are codewords, so it
is a [7, 16, 3]-code.

3.4. Covering estimates
Definition. Let 𝑥 ∈ 𝔽𝑛2 and 𝑟 ≥ 0. Then, we denote the closed Hamming ball with centre 𝑥
and radius 𝑟 by 𝐵(𝑥, 𝑟). We write 𝑉(𝑛, 𝑟) = |𝐵(𝑥, 𝑟)| = ∑𝑟

𝑖=0 (
𝑛
𝑖
) for the volume of this ball.

Lemma (Hamming’s bound; sphere packing bound). An 𝑒-error correcting code𝐶 of length
𝑛 has

|𝐶| ≤ 2𝑛
𝑉(𝑛, 𝑒)

Proof. 𝐶 is 𝑒-error correcting, so 𝐵(𝑐1, 𝑒)∩𝐵(𝑐2, 𝑒) is empty for all codewords 𝑐1 ≠ 𝑐2. Hence,

∑
𝑐∈𝐶

|𝐵(𝑐, 𝑒)| ≤ |𝔽𝑛2 | ⟹ |𝐶|𝑉(𝑛, 𝑒) ≤ 2𝑛

as required.

Definition. An 𝑒-error correcting code 𝐶 of length 𝑛 such that |𝐶| = 2𝑛

𝑉(𝑛,𝑒)
is called perfect.

Remark. Equivalently, a code is perfect if for all 𝑥 ∈ 𝔽𝑛2 , there exists a unique 𝑐 ∈ 𝐶 such
that 𝑑(𝑥, 𝑐) ≤ 𝑒. Alternatively, 𝔽𝑛2 is a union of disjoint balls 𝐵(𝑐, 𝑒) for all 𝑐 ∈ 𝐶, or that any
collection of 𝑒 + 1 will cause the message to be decoded incorrectly.
Example. Consider Hamming’s [7, 16, 3]-code. This is 1-error correcting, and

2𝑛
𝑉(𝑛, 𝑒) =

27
𝑉(7, 1) =

27
1 + 7 = 24 = |𝐶|

So Hamming’s original code is perfect.

Example. The binary repetition code of length 𝑛 is perfect if and only if 𝑛 is odd.

Remark. If 2𝑛

𝑉(𝑛,𝑒)
is not an integer, there does not exist a perfect 𝑒-error correcting code of

length 𝑛. The converse is false; the case 𝑛 = 90, 𝑒 = 2 is discussed on the second example
sheet.

Definition. 𝐴(𝑛, 𝑑) is the largest possible size𝑚 of an [𝑛,𝑚, 𝑑]-code.
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The values of the 𝐴(𝑛, 𝑑) are unknown in general.
Example. 𝐴(𝑛, 1) = 2𝑛, considering the trivial code. 𝐴(𝑛, 2) = 2𝑛−1, maximised at the
simple parity check code. 𝐴(𝑛, 𝑛) = 2, maximised at the repetition code.
Lemma. 𝐴(𝑛, 𝑑 + 1) ≤ 𝐴(𝑛, 𝑑).

Proof. Let 𝑚 = 𝐴(𝑛, 𝑑 + 1), and let 𝐶 be an [𝑛,𝑚, 𝑑 + 1]-code. Let 𝑐1, 𝑐2 ∈ 𝐶 be distinct
codewords such that 𝑑(𝑐1, 𝑐2) = 𝑑 + 1. Let 𝑐′1 differ from 𝑐1 in exactly one of the places
where 𝑐1 and 𝑐2 differ. Then 𝑑(𝑐′1, 𝑐2) = 𝑑. If 𝑐 ∈ 𝐶 is any codeword not equal to 𝑐1, then
𝑑(𝑐, 𝑐1) ≤ 𝑑(𝑐, 𝑐′1) + 𝑑(𝑐′1, 𝑐1) hence 𝑑 + 1 ≤ 𝑑(𝑐, 𝑐′1) + 1, so the code given by 𝐶 ∪ {𝑐′1} ∖ {𝑐1}
has minimum distance 𝑑, but has length 𝑛 and size𝑚. This is therefore an [𝑛,𝑚, 𝑑]-code as
required.

Corollary. Equivalently, 𝐴(𝑛, 𝑑) = max {𝑚 ∣ ∃[𝑛,𝑚, 𝑑′]-code, for some 𝑑′ ≥ 𝑑}.
Theorem.

2𝑛
𝑉(𝑛, 𝑑 − 1) ≤ 𝐴(𝑛, 𝑑) ≤ 2𝑛

𝑉(𝑛, ⌊𝑑−1
2
⌋)

The upper bound is Hamming’s bound; the lower bound is known as the GSV (Gilbert–
Shannon–Varshamov) bound. The upper bound can be thought of as a sphere packing
bound, and the lower bound is a sphere covering bound.

Proof. We prove the lower bound. Let 𝑚 = 𝐴(𝑛, 𝑑), and let 𝐶 be an [𝑛,𝑚, 𝑑]-code. Then,
there exists no 𝑥 ∈ 𝔽𝑛2 with 𝑑(𝑥, 𝑐) ≥ 𝑑 for all codewords. Indeed, if such an 𝑥 exists,
we could consider the code 𝐶 ∪ {𝑥}, which would be an [𝑛,𝑚 + 1, 𝑑]-code, contradicting
maximality of𝑚. Then,

𝔽𝑛2 ⊆ ⋃
𝑐∈𝐶

𝐵(𝑐, 𝑑 − 1) ⟹ 2𝑛 ≤ ∑
𝑐∈𝐶

|𝐵(𝑐, 𝑑 − 1)| = 𝑚𝑉(𝑛, 𝑑 − 1)

as required.

Example. Let 𝑛 = 10, 𝑑 = 3. Then 𝑉(𝑛, 1) = 11 and 𝑉(𝑛, 2) = 56, so the GSV bound is
210

56
≤ 𝐴(10, 3) ≤ 210

11
. Hence, 19 ≤ 𝐴(10, 3) ≤ 93. It was known that the lower bound could

be improved to 72. We now know that the true value of 𝐴(10, 3) is exactly 72. In this case,
the GSV bound was not a sharp inequality.

3.5. Asymptotics

We study the information rate log𝐴(𝑛,⌊𝑛𝛿⌋)
𝑛

as 𝑛 → ∞ to see how large the information rate
can be for a fixed error rate.

Proposition. Let 0 < 𝛿 < 1
2
. Then,
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3. Noisy channels

(i) log𝑉(𝑛, ⌊𝑛𝛿⌋) ≤ 𝑛𝐻(𝛿);

(ii) 1
𝑛
log𝐴(𝑛, ⌊𝑛𝛿⌋) ≥ 1 − 𝐻(𝛿);

where 𝐻(𝛿) = −𝛿 log 𝛿 − (1 − 𝛿) log(1 − 𝛿).

Proof. (i) implies (ii). By the GSV bound, we find

𝐴(𝑛, ⌊𝑛𝛿⌋) ≥ 2𝑛
𝑉(𝑛, ⌊𝑛𝛿⌋ − 1) ≥

2𝑛
𝑉(𝑛, ⌊𝑛𝛿⌋)

Taking logarithms,

1
𝑛 log𝐴(𝑛, ⌊𝑛𝛿⌋) ≥ 1 − log𝑉(𝑛, ⌊𝑛𝛿⌋)

𝑛 ≥ 1 − 𝐻(𝛿)

Part (i). 𝐻(𝛿) is increasing for 𝛿 < 1
2
. Therefore, without loss of generality, we may assume

𝑛𝛿 is an integer. Now, as 𝛿
1−𝛿

< 1,

1 = (𝛿 + (1 − 𝛿))𝑛

=
𝑛
∑
𝑖=0

(𝑛𝑖 )𝛿
𝑖(1 − 𝛿)𝑛−𝑖

≥
𝑛𝛿
∑
𝑖=0

(𝑛𝑖 )𝛿
𝑖(1 − 𝛿)𝑛−𝑖

= (1 − 𝛿)𝑛
𝑛𝛿
∑
𝑖=0

(𝑛𝑖 )(
𝛿

1 − 𝛿)
𝑖

≥ (1 − 𝛿)𝑛
𝑛𝛿
∑
𝑖=0

(𝑛𝑖 )(
𝛿

1 − 𝛿)
𝑛𝛿

= 𝛿𝑛𝛿(1 − 𝛿)𝑛(1−𝛿)𝑉(𝑛, 𝑛𝛿)

Taking logarithms,

0 ≥ 𝑛𝛿 log 𝛿 + 𝑛(1 − 𝛿) log(1 − 𝛿) + log𝑉(𝑛, 𝑛𝛿)

as required.

The constant 𝐻(𝛿) in the proposition is optimal.

Lemma. lim𝑛→∞
log𝑉(𝑛,⌊𝑛𝛿⌋)

𝑛
= 𝐻(𝛿).

Proof. Exercise. Follows from Stirling’s approximation to factorials.
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3.6. Constructing new codes from old
Let 𝐶 be an [𝑛,𝑚, 𝑑]-code.
Example. The parity check extension is an [𝑛 + 1,𝑚, 𝑑′]-code given by

𝐶+ = {(𝑐1,… , 𝑐𝑛,
𝑛
∑
𝑖=1

𝑐𝑖)
||||
(𝑐1,… , 𝑐𝑛) ∈ 𝐶}

where 𝑑′ is either 𝑑 or 𝑑 + 1, depending on whether 𝑑 is odd or even.
Example. Let 1 ≤ 𝑖 ≤ 𝑛. Then, deleting the 𝑖th digit from each codeword gives the punc-
tured code

𝐶− = {(𝑐1,… , 𝑐𝑖−1, 𝑐𝑖+1,… , 𝑐𝑛) | (𝑐1,… , 𝑐𝑛) ∈ 𝐶}
If 𝑑 ≥ 2, this is an [𝑛 − 1,𝑚, 𝑑′]-code where 𝑑′ is either 𝑑 or 𝑑 − 1.
Example. Let 1 ≤ 𝑖 ≤ 𝑛 and let 𝛼 ∈ 𝔽2. The shortened code is

𝐶′ = {(𝑐1,… , 𝑐𝑖−1, 𝑐𝑖+1,… , 𝑐𝑛) | (𝑐1,… , 𝑐𝑖−1, 𝛼, 𝑐𝑖+1,… , 𝑐𝑛) ∈ 𝐶}

This is an [𝑛 − 1,𝑚′, 𝑑′] with 𝑑′ ≥ 𝑑 and𝑚′ ≥ 𝑚
2
for a suitable choice of 𝛼.
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4. Information theory

4.1. Sources and information rate

Definition. A source is a sequence of random variables 𝑋1, 𝑋2,… taking values in 𝒜.

Example. The Bernoulli (or memoryless) source is a source where the 𝑋𝑖 are independent
and identically distributed according to a Bernoulli distribution.

Definition. A source 𝑋1, 𝑋2,… is reliably encodable at rate 𝑟 if there exist subsets 𝐴𝑛 ⊆ 𝒜𝑛

such that

(i) lim log |𝐴𝑛|
𝑛

= 𝑟;

(ii) limℙ ((𝑋1,… , 𝑋𝑛) ∈ 𝐴𝑛) = 1.

Definition. The information rate𝐻 of a source is the infimum of all reliable encoding rates.

Example. 0 ≤ 𝐻 ≤ log |𝒜|, with both bounds attainable. The proof is left as an exercise.

Shannon’s first coding theorem computes the information rate of certain sources, including
Bernoulli sources.

Recall from IA Probability that a probability space is a tuple (Ω,ℱ, ℙ), and a discrete random
variable is a function 𝑋 ∶ Ω → 𝒜. The probability mass function is the function 𝑝𝑋 ∶ 𝒜 →
[0, 1] given by 𝑝𝑋(𝑥) = ℙ (𝑋 = 𝑥). We can consider the function 𝑝(𝑋)∶ Ω → [0, 1] defined
by the composition 𝑝𝑋 ∘ 𝑋 , which assigns 𝑝(𝑋)(𝜔) = ℙ (𝑋 = 𝑋(𝜔)); hence, 𝑝(𝑋) is also a
random variable.

Similarly, given a source𝑋1, 𝑋2,… of randomvariableswith values in𝒜, the probabilitymass
function of any tuple 𝑋(𝑛) = (𝑋1,… , 𝑋𝑛) is 𝑝𝑋(𝑛)(𝑥1,… , 𝑥𝑛) = ℙ (𝑋1 = 𝑥1,… , 𝑋𝑛 = 𝑥𝑛). As
𝑝𝑋(𝑛) ∶ 𝒜𝑛 → [0, 1], and 𝑋(𝑛)∶ Ω → 𝒜𝑛, we can consider 𝑝(𝑋(𝑛)) = 𝑝𝑋(𝑛) ∘ 𝑋(𝑛) defined by
𝜔 ↦ 𝑝𝑋(𝑛)(𝑋(𝑛)(𝜔)).

Example. Let 𝒜 = {𝐴, 𝐵, 𝐶}. Suppose

𝑋(2) =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

𝐴𝐵 with probability 0.3
𝐴𝐶 with probability 0.1
𝐵𝐶 with probability 0.1
𝐵𝐴 with probability 0.2
𝐶𝐴 with probability 0.25
𝐶𝐵 with probability 0.05
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Then, 𝑝𝑋(2)(𝐴𝐵) = 0.3, and so on. Hence,

𝑝(𝑋(2)) =

⎧
⎪⎪
⎨
⎪⎪
⎩

0.3 with probability 0.3
0.1 with probability 0.2
0.2 with probability 0.2
0.25 with probability 0.25
0.05 with probability 0.05

We say that a source 𝑋1, 𝑋2,… converges in probability to a random variable 𝐿 if for all 𝜀 > 0,
lim𝑛→∞ ℙ (|𝑋𝑛 − 𝐿| > 𝜀) = 0. Wewrite𝑋𝑛

ℙ−→ 𝐿. Theweak lawof large numbers states that if
𝑋1, 𝑋2,… is a sequence of independent identically distributed real-valued random variables
with finite expectation 𝔼 [𝑋1], then

1
𝑛
∑𝑛

𝑖=1 𝑋𝑖
ℙ−→ 𝔼 [𝑋].

Example. Let 𝑋1, 𝑋2,… be a Bernoulli source. Then 𝑝(𝑋1), 𝑝(𝑋2),… are independent and
identically distributed random variables, and 𝑝(𝑋1,… , 𝑋𝑛) = 𝑝(𝑋1)…𝑝(𝑋𝑛). Note that by
the weak law of large numbers,

−1𝑛 log𝑝(𝑋1,… , 𝑋𝑛) = −1𝑛
𝑛
∑
𝑖=1

log𝑝(𝑋𝑖)
ℙ−→ 𝔼 [− log𝑝(𝑋1)] = 𝐻(𝑋1)

Lemma. The information rate of a Bernoulli source 𝑋1, 𝑋2,… is at most the expected word
length of an optimal code 𝑐∶ 𝒜 → {0, 1}⋆ for 𝑋1.

Proof. Let ℓ1, ℓ2,… be the codeword lengths when we encode 𝑋1, 𝑋2,… using 𝑐. Let 𝜀 > 0.
Let

𝐴𝑛 = {𝑥 ∈ 𝒜𝑛 ∣ 𝑐⋆(𝑥) has length less than 𝑛(𝔼 [ℓ1] + 𝜀)}
Then,

ℙ ((𝑋1,… , 𝑋𝑛) ∈ 𝐴𝑛) = ℙ(
𝑛
∑
𝑖=1

ℓ𝑖 ≤ 𝑛(𝔼 [ℓ1] + 𝜀)) = ℙ(
||||
1
𝑛

𝑛
∑
𝑖=1

ℓ𝑖 − 𝔼 [ℓ𝑖]
||||
< 𝜀) → 1

Now, 𝑐 is decipherable so 𝑐⋆ is injective. Hence, |𝐴𝑛| ≤ 2𝑛(𝔼[ℓ1]+𝜀). Making 𝐴𝑛 larger if
necessary, we can assume |𝐴𝑛| = ⌊2𝑛(𝔼[ℓ1]+𝜀)⌋. Taking logarithms, log |𝐴𝑛|

𝑛
→ 𝔼[ℓ1] + 𝜀. So

𝑋1, 𝑋2,… is reliably encodable at rate 𝑟 = 𝔼 [ℓ1] + 𝜀 for all 𝜀 > 0. Hence the information rate
is at most 𝔼 [ℓ1].

Corollary. A Bernoulli source has information rate less than 𝐻(𝑋1) + 1.

Proof. Combine the previous lemma with the noiseless coding theorem.

Suppose we encode 𝑋1, 𝑋2,… in blocks of size𝑁. Let 𝑌1 = (𝑋1,… , 𝑋𝑁), 𝑌2 = (𝑋𝑁+1,… , 𝑋2𝑁)
and so on, such that 𝑌1, 𝑌2,… take values in 𝒜𝑁 . One can show that if the source 𝑋1, 𝑋2,…
has information rate 𝐻, then 𝑌1, 𝑌2,… has information rate 𝑁𝐻.
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Proposition. The information rate 𝐻 of a Bernoulli source is at most 𝐻(𝑋1).

Proof. Apply the previous corollary to the 𝑌 𝑖 to obtain

𝑁𝐻 < 𝐻(𝑌1) + 1 = 𝐻(𝑋1,… , 𝑋𝑁) + 1 = 𝑁𝐻(𝑋1) + 1 ⟹ 𝐻 < 𝐻(𝑋1) +
1
𝑁

as required.

4.2. Asymptotic equipartition property

Definition. A source 𝑋1, 𝑋2,… satisfies the asymptotic equipartition property if there exists
a constant 𝐻 ≥ 0 such that

−1𝑛 log𝑝(𝑋1,… , 𝑋𝑛)
ℙ−→ 𝐻

Example. Supposewe toss a biased coinwith probability𝑝 of obtaining ahead. Let𝑋1, 𝑋2,…
be the results of independent coin tosses. If we toss the coin 𝑁 times, we expect 𝑝𝑁 heads
and (1−𝑝)𝑁 tails. The probability of any particular sequence of 𝑝𝑁 heads and (1−𝑝)𝑁 tails
is

𝑝𝑝𝑁(1 − 𝑝)(1−𝑝)𝑁 = 2𝑁(𝑝 log𝑝+(1−𝑝) log(1−𝑝)) = 2−𝑁𝐻(𝑋)

Not every sequence of tosses is of this form, but there is only a small probability of ‘atypical
sequences’. With high probability, it is a ‘typical sequence’ which has a probability close to
2−𝑁𝐻(𝑋).

Lemma. The asymptotic equipartition property for a source 𝑋1, 𝑋2,… is equivalent to the
property that for all 𝜀 > 0, there exists 𝑛 ∈ ℕ such that for all 𝑛 ≥ 𝑛0, there exists a ‘typical
set’ 𝑇𝑛 ⊆ 𝒜𝑛 such that

(i) ℙ ((𝑋1,… , 𝑋𝑛) ∈ 𝑇𝑛) > 1 − 𝜀;

(ii) 2−𝑛(𝐻+𝜀) ≤ 𝑝(𝑥1,… , 𝑥𝑛) ≤ 2−𝑛(𝐻−𝜀) for all (𝑥1,… , 𝑥𝑛) ∈ 𝑇𝑛.

Proof sketch. First, we show that the asymptotic equipartition property implies the alternat-
ive definition. We define

𝑇𝑛 = {(𝑥1,… , 𝑥𝑛) |||
|||−
1
𝑛 log𝑝(𝑥1,… , 𝑥𝑛) − 𝐻||| ≤ 𝜀} = {(𝑥1,… , 𝑥𝑛) ∣ condition (ii) holds}

For the converse,
ℙ(|||

1
𝑛 log𝑝(𝑥1,… , 𝑥𝑛) − 𝐻||| < 𝜀) ≥ ℙ (𝑇𝑛) → 1
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4.3. Shannon’s first coding theorem
Theorem. Let 𝑋1, 𝑋2,… be a source satisfying the asymptotic equipartition property with
constant 𝐻. Then this source has information rate 𝐻.

Proof. Let 𝜀 > 0, and let 𝑇𝑛 ⊆ 𝒜𝑛 be typical sets. Then, for all 𝑛 ≥ 𝑛0(𝜀), for all (𝑥1,… , 𝑥𝑛) ∈
𝑇𝑛 we have 𝑝(𝑥1,… , 𝑥𝑛) ≥ 2−𝑛(𝐻+𝜀). Therefore, 1 ≥ ℙ (𝑇𝑛) ≥ 2−𝑛(𝐻+𝜀) ⋅ |𝑇𝑛|, giving
1
𝑛
log |𝑇𝑛| ≤ 𝐻 + 𝜀. Taking 𝐴𝑛 = 𝑇𝑛 in the definition of reliable encoding shows that the

source is reliably encodable at rate 𝐻 + 𝜀.

Conversely, if 𝐻 = 0 the proof concludes, so we may assume 𝐻 > 0. Let 0 < 𝜀 < 𝐻
2
, and

suppose that the source is reliably encodable at rate𝐻 −2𝜀with sets 𝐴𝑛 ⊆ 𝒜𝑛. Let 𝑇𝑛 ⊆ 𝒜𝑛

be typical sets. Then, for all (𝑥1,… , 𝑥𝑛) ∈ 𝑇𝑛, 𝑝(𝑥1,… , 𝑥𝑛) ≤ 2−𝑛(𝐻−𝜀), so ℙ (𝐴𝑛 ∩ 𝑇𝑛) ≤
2−𝑛(𝐻−𝜀)|𝐴𝑛|, giving

1
𝑛 logℙ (𝐴𝑛 ∩ 𝑇𝑛) ≤ −(𝐻 − 𝜀) + 1

𝑛 log |𝐴𝑛| → −(𝐻 − 𝜀) + (𝐻 − 2𝜀) = −𝜀

Then, logℙ (𝐴𝑛 ∩ 𝑇𝑛) → −∞, soℙ (𝐴𝑛 ∩ 𝑇𝑛) → 0. Butℙ (𝑇𝑛) ≤ ℙ (𝐴𝑛 ∩ 𝑇𝑛)+ℙ (𝒜𝑛 ∖ 𝐴𝑛) →
0+0, contradicting typicality. So we cannot reliably encode at rate𝐻−𝜀, so the information
rate is at least 𝐻.

Corollary. A Bernoulli source 𝑋1, 𝑋2,… has information rate 𝐻(𝑋1).

Proof. In a previous example we showed that for a Bernoulli source,− 1
𝑛
log𝑝(𝑋1,… , 𝑋𝑛)

ℙ−→
𝐻(𝑋1). So the asymptotic equipartition property holds with 𝐻 = 𝐻(𝑋1), giving the result by
Shannon’s first coding theorem.

Remark. The asymptotic equipartition property is useful for noiseless coding. We can en-
code the typical sequences using a block code, and encode the atypical sequences arbitrarily.

Many sources, which are not necessarily Bernoulli, also satisfy the property. Under suitable
hypotheses, the sequence 1

𝑛
𝐻(𝑋1,… , 𝑋𝑛) is decreasing, and the asymptotic equipartition

property is satisfied with constant 𝐻 = lim𝑛→∞
1
𝑛
𝐻(𝑋1,… , 𝑋𝑛).

4.4. Capacity
Consider a communication channel with input alphabet 𝒜 and output alphabet ℬ. Recall
the following definitions. A code of length 𝑛 is a subset 𝐶 ⊆ 𝒜𝑛. The error rate is

̂𝑒(𝐶) = max
𝑐∈𝐶

ℙ (error ∣ 𝑐 sent)

The information rate is 𝜌(𝐶) = log |𝐶|
𝑛

. A channel can transmit reliably at rate 𝑅 if there exist
codes 𝐶1, 𝐶2,… where 𝐶𝑛 has length 𝑛 such that lim𝑛→∞ 𝜌(𝐶𝑛) = 𝑅 and lim𝑛→∞ ̂𝑒(𝐶𝑛) = 0.
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The (operational) capacity of a channel is the supremum of all rates at which it can transmit
reliably.

Suppose we are given a source with information rate 𝑟 bits per second that emits symbols
at a rate of 𝑠 symbols per second. Suppose we also have a channel with capacity 𝑅 bits
per transmission that transmits symbols at a rate of 𝑆 transmissions per second. Usually,
information theorists take 𝑆 = 𝑠 = 1. We will show that reliable encoding and transmission
is possible if and only if 𝑟𝑠 ≤ 𝑅𝑆.
We will now compute the capacity of the binary symmetric channel with error probability
𝑝.

Proposition. A binary symmetric channel with error probability 𝑝 < 1
4
has nonzero capa-

city.

Proof. Let 𝛿 be such that 2𝑝 < 𝛿 < 1
2
. We claim that we can reliably transmit at rate 𝑅 =

1 − 𝐻(𝛿) > 0. Let 𝐶𝑛 be a code of length 𝑛, and suppose it has minimum distance ⌊𝑛𝛿⌋ of
maximal size. Then, by the GSV bound,

|𝐶𝑛| = 𝐴(𝑛, ⌊𝑛𝛿⌋) ≥ 2−𝑛(1−𝐻(𝛿)) = 2𝑛𝑅

Replacing 𝐶𝑛 with a subcode if necessary, we can assume |𝐶𝑛| = ⌊2𝑛𝑅⌋, with minimum
distance at least ⌊𝑛𝛿⌋. Using minimum distance decoding,

̂𝑒(𝐶𝑛) ≤ ℙ (in 𝑛 uses, the channel makes at least ⌊⌊𝑛𝛿⌋ − 1
2 ⌋ errors)

≤ ℙ (in 𝑛 uses, the channel makes at least ⌊𝑛𝛿 − 1
2 ⌋ errors)

Let 𝜀 > 0 be such that 𝑝+𝜀 < 𝛿
2
. Then, for 𝑛 sufficiently large, 𝑛𝛿−1

2
= 𝑛(𝛿

2
− 1

2𝑛
) > 𝑛(𝑝+𝜀).

Hence, ̂𝑒(𝐶𝑛) ≤ ℙ (in 𝑛 uses, the channel makes at least 𝑛(𝑝 + 𝜀) errors). We show that this
value converges to zero as 𝑛 → ∞ using the next lemma.

Lemma. Let 𝜀 > 0. A binary symmetric channel with error probability 𝑝 is used to transmit
𝑛 digits. Then,

lim
𝑛→∞

ℙ (in 𝑛 uses, the channel makes at least 𝑛(𝑝 + 𝜀) errors) = 0

Proof. Consider random variables 𝑈 𝑖 = 𝟙[the 𝑖th digit is mistransmitted]. The 𝑈 𝑖 are inde-
pendent and identically distributed with ℙ (𝑈 𝑖 = 1) = 𝑝. In particular, 𝔼 [𝑈 𝑖] = 𝑝. There-
fore, the probability that the channel makes at least 𝑛(𝑝 + 𝜀) errors is

ℙ(
𝑛
∑
𝑖=1

𝑈 𝑖 ≥ 𝑛(𝑝 + 𝜀)) ≤ ℙ(
||||
1
𝑛

𝑛
∑
𝑖=1

𝑈 𝑖 − 𝑝
||||
≥ 𝜀)

so the result holds by the weak law of large numbers.
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4.5. Conditional entropy
Definition. Let𝑋, 𝑌 be randomvariables taking values in alphabets𝒜,ℬ respectively. Then,
the conditional entropy is defined by

𝐻(𝑋 ∣ 𝑌 = 𝑦) = − ∑
𝑥∈𝒜

ℙ (𝑋 = 𝑥 ∣ 𝑌 = 𝑦) logℙ (𝑋 = 𝑥 ∣ 𝑌 = 𝑦)

and
𝐻(𝑋 ∣ 𝑌) = ∑

𝑦∈ℬ
ℙ (𝑌 = 𝑦)𝐻(𝑋 ∣ 𝑌 = 𝑦)

Note that 𝐻(𝑋 ∣ 𝑌) ≥ 0.

Lemma. 𝐻(𝑋, 𝑌) = 𝐻(𝑋 ∣ 𝑌) + 𝐻(𝑌).

Proof.

𝐻(𝑋 ∣ 𝑌) = − ∑
𝑦∈ℬ

∑
𝑥∈𝒜

ℙ (𝑋 = 𝑥 ∣ 𝑌 = 𝑦)ℙ (𝑌 = 𝑦) log (ℙ (𝑋 = 𝑥 ∣ 𝑌 = 𝑦))

= − ∑
𝑦∈ℬ

∑
𝑥∈𝒜

ℙ (𝑋 = 𝑥 ∣ 𝑌 = 𝑦)ℙ (𝑌 = 𝑦) log (ℙ (𝑋 = 𝑥, 𝑌 = 𝑦)
ℙ (𝑌 = 𝑦) )

= − ∑
𝑦∈ℬ

∑
𝑥∈𝒜

ℙ (𝑋 = 𝑥, 𝑌 = 𝑦) (logℙ (𝑋 = 𝑥, 𝑌 = 𝑦) − logℙ (𝑌 = 𝑦))

= − ∑
𝑦∈ℬ

∑
𝑥∈𝒜

ℙ (𝑋 = 𝑥, 𝑌 = 𝑦) logℙ (𝑋 = 𝑥, 𝑌 = 𝑦)

+ ∑
𝑦∈ℬ

∑
𝑥∈𝒜

ℙ (𝑋 = 𝑥, 𝑌 = 𝑦) logℙ (𝑌 = 𝑦)

= − ∑
𝑦∈ℬ

∑
𝑥∈𝒜

ℙ (𝑋 = 𝑥, 𝑌 = 𝑦) logℙ (𝑋 = 𝑥, 𝑌 = 𝑦)

+ ∑
𝑦∈ℬ

ℙ (𝑌 = 𝑦) logℙ (𝑌 = 𝑦)

= 𝐻(𝑋, 𝑌) − 𝐻(𝑌)

Example. Let 𝑋 be a uniform random variable on {1,… , 6} modelling a dice roll, and 𝑌 is
defined to be zero if 𝑋 is even, and one if 𝑋 is odd. Then, 𝐻(𝑋, 𝑌) = 𝐻(𝑋) = log 6 and
𝐻(𝑌) = log 2. Therefore, 𝐻(𝑋 ∣ 𝑌) = log 3 and 𝐻(𝑌 ∣ 𝑋) = 0.

Corollary. 𝐻(𝑋 ∣ 𝑌) ≤ 𝐻(𝑋), with equality if and only if 𝑋 and 𝑌 are independent.

Proof. Combine this result with the fact that 𝐻(𝑋, 𝑌) ≤ 𝐻(𝑋) + 𝐻(𝑌) where equality holds
if and only if 𝐻(𝑋),𝐻(𝑌) are independent.
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Now, replace random variables 𝑋 and 𝑌 with random vectors 𝑋(𝑟) = (𝑋1,… , 𝑋𝑟) and 𝑌 (𝑠) =
(𝑌1,… , 𝑌𝑠). Similarly, we can define 𝐻(𝑋1,… , 𝑋𝑟 ∣ 𝑌1,… , 𝑌𝑠) = 𝐻(𝑋(𝑟) ∣ 𝑌 (𝑠)). Note that
𝐻(𝑋, 𝑌 ∣ 𝑍) is the entropy of 𝑋 and 𝑌 combined, given the value of 𝑍, and is not the entropy
of 𝑋 , together with 𝑌 given 𝑍.

Lemma. Let 𝑋, 𝑌, 𝑍 be random variables. Then, 𝐻(𝑋 ∣ 𝑌) ≤ 𝐻(𝑋 ∣ 𝑌, 𝑍) + 𝐻(𝑍).

Proof. Expand 𝐻(𝑋, 𝑌, 𝑍) in two ways.

𝐻(𝑍 ∣ 𝑋, 𝑌) + 𝐻(𝑋 ∣ 𝑌) + 𝐻(𝑌)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
𝐻(𝑋,𝑌)

= 𝐻(𝑋, 𝑌, 𝑍) = 𝐻(𝑋 ∣ 𝑌, 𝑍) + 𝐻(𝑍 ∣ 𝑌) + 𝐻(𝑌)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
𝐻(𝑌,𝑍)

Since 𝐻(𝑍 ∣ 𝑋, 𝑌) ≥ 0, we have

𝐻(𝑋 ∣ 𝑌) ≤ 𝐻(𝑋 ∣ 𝑌, 𝑍) + 𝐻(𝑍 ∣ 𝑌) ≤ 𝐻(𝑋 ∣ 𝑌, 𝑍) + 𝐻(𝑍)

Proposition (Fano’s inequality). Let𝑋, 𝑌 be randomvariables taking values in𝒜. Let |𝒜| =
𝑚, and let 𝑝 = ℙ (𝑋 ≠ 𝑌). Then 𝐻(𝑋 ∣ 𝑌) ≤ 𝐻(𝑝) + 𝑝 log(𝑚 − 1).

Proof. Define 𝑍 to be zero if 𝑋 = 𝑌 and one if 𝑋 ≠ 𝑌 . Then, ℙ (𝑍 = 0) = ℙ (𝑋 = 𝑌) = 1−𝑝,
and ℙ (𝑍 = 1) = ℙ (𝑋 ≠ 𝑌) = 𝑝. Hence, 𝐻(𝑍) = 𝐻(𝑝). Applying the previous lemma,
𝐻(𝑋 ∣ 𝑌) ≤ 𝐻(𝑋 ∣ 𝑌, 𝑍) + 𝐻(𝑝), so it suffices to show 𝐻(𝑋 ∣ 𝑌, 𝑍) ≤ 𝑝 log(𝑚 − 1).

Since𝑍 = 0 implies𝑋 = 𝑌 ,𝐻(𝑋 ∣ 𝑌 = 𝑦, 𝑍 = 0) = 0. There are𝑚−1 remaining possibilities
for 𝑋 . Hence, 𝐻(𝑋 ∣ 𝑌 = 𝑦, 𝑍 = 1) ≤ log(𝑚 − 1).

𝐻(𝑋 ∣ 𝑌, 𝑍) = ∑
𝑦∈𝒜

∑
𝑧∈{0,1}

ℙ (𝑌 = 𝑦, 𝑍 = 𝑧)𝐻(𝑋 ∣ 𝑌 = 𝑦, 𝑍 = 𝑧)

≤ ∑
𝑦∈𝒜

ℙ (𝑌 = 𝑦, 𝑍 = 1) log(𝑚 − 1)

= ℙ (𝑍 = 1) log(𝑚 − 1)
= 𝑝 log(𝑚 − 1)

as required.

Let 𝑋 be a random variable describing the input to a channel and 𝑌 be a random variable
describing the output of the channel. 𝐻(𝑝) provides the information required to decide
whether an error has occurred, and 𝑝 log(𝑚 − 1) gives the information needed to resolve
that error in the worst possible case.
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4.6. Shannon’s second coding theorem

Definition. Let 𝑋, 𝑌 be random variables taking values in 𝒜. The mutual information is
𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋 ∣ 𝑌).

This is nonnegative, as 𝐼(𝑋; 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) ≥ 0. Equality holds if and only if
𝑋, 𝑌 are independent. Clearly, 𝐼(𝑋; 𝑌) = 𝐼(𝑌; 𝑋).

Definition. Consider a discrete memoryless channel with input alphabet 𝒜 of size 𝑚 and
output alphabet ℬ. Let 𝑋 be a random variable taking values in 𝒜, used as the input to
this channel. Let 𝑌 be the random variable output by the channel, depending on 𝑋 and the
channel matrix. The information capacity of the channel is max𝑋 𝐼(𝑋; 𝑌).

The maximum is taken over all discrete random variables 𝑋 taking values in 𝒜, or equival-
ently. This maximum is attained since 𝐼 is continuous and the space

{(𝑝1,… , 𝑝𝑚) ∈ ℝ𝑚 ||||
𝑝𝑖 ≥ 0,

𝑚
∑
𝑖=1

𝑝𝑖 = 1}

is compact. The information capacity depends only on the channel matrix.

Theorem. For a discrete memoryless channel, the (operational) capacity is equal to the
information capacity.

We prove that the operational capacity is atmost the information capacity in general, andwe
will prove the other inequality for the special case of the binary symmetric channel.

Example. Assuming this result holds, we compute the capacity of certain specific channels.

(i) Consider the binary symmetric channel with error probability 𝑝, input 𝑋 , and output
𝑌 . Let ℙ (𝑋 = 0) = 𝛼, ℙ (𝑋 = 1) = 1−𝛼, so ℙ (𝑌 = 0) = (1−𝑝)𝛼𝑝(1−𝛼), ℙ (𝑌 = 1) =
(1 − 𝑝)(1 − 𝛼) + 𝑝𝛼. Then, as 𝐻(𝑌 ∣ 𝑋) = ℙ (𝑋 = 0)𝐻(𝑝) + ℙ (𝑋 = 1)𝐻(𝑝),

𝐶 = max
𝛼

𝐼(𝑋; 𝑌) = max
𝛼
[𝐻(𝑌) − 𝐻(𝑌 ∣ 𝑋)]

= max
𝛼

[𝐻(𝛼(1 − 𝑝) + (1 − 𝛼)𝑝) − 𝐻(𝑝)] = 1 − 𝐻(𝑝)

with the maximum attained at 𝛼 = 1
2
. Hence, the capacity of the binary symmetric

channel is 𝐶 = 1 + 𝑝 log𝑝 + (1 − 𝑝) log(1 − 𝑝). If 𝑝 = 0 or 𝑝 = 1, 𝐶 = 1. If 𝑝 = 1
2
,

𝐶 = 0. Note that 𝐼(𝑋; 𝑌) = 𝐼(𝑌; 𝑋); we can choose which to calculate for convenience.

(ii) Consider the binary erasure channel with erasure probability 𝑝, input 𝑋 , and output
𝑌 . Let ℙ (𝑋 = 0) = 𝛼, ℙ (𝑋 = 1) = 1 − 𝛼, so ℙ (𝑌 = 0) = (1 − 𝑝)𝛼, ℙ (𝑌 = 1) =
(1 − 𝑝)(1 − 𝛼), ℙ (𝑌 = ⋆) = 𝑝. We obtain

𝐻(𝑋 ∣ 𝑌 = 0) = 0; 𝐻(𝑋 ∣ 𝑌 = 1) = 0; 𝐻(𝑋 ∣ 𝑌 = ⋆) = 𝐻(𝛼)
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Therefore, 𝐻(𝑋 ∣ 𝑌) = 𝑝𝐻(𝛼), giving

𝐶 = max
𝛼

𝐼(𝑋; 𝑌) = max
𝛼

[𝐻(𝑋) − 𝐻(𝑋 ∣ 𝑌)]

= max
𝛼

[𝐻(𝛼) − 𝑝𝐻(𝛼)] = (1 − 𝑝)max
𝛼

𝐻(𝛼) = 1 − 𝑝

with maximum attained at 𝛼 = 1
2
.

We will now model using a channel 𝑛 times as the 𝑛th extension, replacing 𝒜 with 𝒜𝑛 and
ℬ with ℬ𝑛, and use the channel matrix defined by

ℙ (𝑦1…𝑦𝑛 received ∣ 𝑥1…𝑥𝑛 sent) =
𝑛
∏
𝑖=1

ℙ (𝑦𝑖 ∣ 𝑥𝑖)

Lemma. Consider a discrete memoryless channel with information capacity 𝐶. Then, its
𝑛th extension has information capacity 𝑛𝐶.

Proof. Let𝑋1,… , 𝑋𝑛 be the input producing an output𝑌1,… , 𝑌𝑛. Since the channel ismemory-
less,

𝐻(𝑌1,… , 𝑌𝑛 ∣ 𝑋1,… , 𝑋𝑛) =
𝑛
∑
𝑖=1

𝐻(𝑌 𝑖 ∣ 𝑋1,… , 𝑋𝑛) =
𝑛
∑
𝑖=1

𝐻(𝑌 𝑖 ∣ 𝑋𝑖)

Therefore,

𝐼(𝑋1,… , 𝑋𝑛; 𝑌1,… , 𝑌𝑛) = 𝐻(𝑌1,… , 𝑌𝑛) − 𝐻(𝑌1,… , 𝑌𝑛 ∣ 𝑋1,… , 𝑋𝑛)

≤
𝑛
∑
𝑖=1

𝐻(𝑌 𝑖) −
𝑛
∑
𝑖=1

𝐻(𝑌 𝑖 ∣ 𝑋𝑖)

=
𝑛
∑
𝑖=1

[𝐻(𝑌 𝑖) − 𝐻(𝑌 𝑖 ∣ 𝑋𝑖)]

=
𝑛
∑
𝑖=1

𝐼(𝑋𝑖; 𝑌 𝑖) ≤ 𝑛𝐶

Equality is attained by taking 𝑋1,… , 𝑋𝑛 independent and identically distributed such that
𝐼(𝑋𝑖; 𝑌 𝑖) = 𝐶. Indeed, if 𝑋1,… , 𝑋𝑛 are independent, then so are 𝑌1,… , 𝑌𝑛, so𝐻(𝑌1,… , 𝑌𝑛) =
∑𝑛

𝑖=1𝐻(𝑌 𝑖). Therefore,

max
𝑋1,…,𝑋𝑛

𝐼(𝑋1,… , 𝑋𝑛; 𝑌1,… , 𝑌𝑛) = 𝑛𝐶

as required.

We now prove part of Shannon’s second coding theorem, that the operational capacity is at
most the information capacity for a discrete memoryless channel.
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Proof. Let 𝐶 be the information capacity. Suppose reliable transmission is possible at a rate
𝑅 > 𝐶. Then, there is a sequence of codes (𝐶𝑛)𝑛≥1 where 𝐶𝑛 has length 𝑛 and size ⌊2𝑛𝑅⌋,
such that lim𝑛→∞ 𝜌(𝐶𝑛) = 𝑅 and lim𝑛→∞ ̂𝑒(𝐶𝑛) = 0.

Recall that ̂𝑒(𝐶𝑛) = max𝑐∈𝐶𝑛 ℙ (error ∣ 𝑐 sent). Define the average error rate 𝑒(𝐶) by 𝑒(𝐶) =
1

|𝐶𝑛|
∑𝑐∈𝐶 ℙ (error ∣ 𝑐 sent). Note that 𝑒(𝐶𝑛) ≤ ̂𝑒(𝐶𝑛). As ̂𝑒(𝐶𝑛) → 0, we also have 𝑒(𝐶𝑛) → 0.

Consider an input random variable 𝑋 distributed uniformly over 𝐶𝑛. Let 𝑌 be the output
given by𝑋 and the channelmatrix. Then 𝑒(𝐶𝑛) = ℙ (𝑋 ≠ 𝑌) = 𝑝. Hence,𝐻(𝑋) = log |𝐶𝑛| =
log⌊2𝑛𝑅⌋ ≥ 𝑛𝑅 − 1 for sufficiently large 𝑛. Also, by Fano’s inequality, 𝐻(𝑋 ∣ 𝑌) ≤ 𝐻(𝑝) +
𝑝 log(|𝐶𝑛| − 1) ≤ 1 + 𝑝𝑛𝑅.

Recall that 𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋 ∣ 𝑌). By the previous lemma, 𝑛𝐶 ≥ 𝐼(𝑋; 𝑌), so

𝑛𝐶 ≥ 𝑛𝑅 − 1 − 1 − 𝑝𝑛𝑅 ⟹ 𝑝𝑛𝑅 ≥ 𝑛(𝑅 − 𝑐) − 2 ⟹ 𝑝 ≥ 𝑛(𝑅 − 𝐶) − 2
𝑛𝑅

As 𝑛 → ∞, the right hand side converges to 𝑅−𝐶
𝑅

> 0. This contradicts the fact that 𝑝 =
𝑒(𝐶𝑛) → 0. Hence, we cannot transmit reliably at any rate which exceeds 𝐶, hence the
capacity is at most 𝐶.

To complete the proof of Shannon’s second coding theorem for the binary symmetric chan-
nel with error probability 𝑝, we prove that the operational capacity is at least 1−𝐻(𝑝).

Proposition. Consider a binary symmetric channel with error probability 𝑝, and let 𝑅 <
1 − 𝐻(𝑝). Then there exists a sequence of codes (𝐶𝑛)𝑛≥1 with 𝐶𝑛 of length 𝑛 and size ⌊2𝑛𝑅⌋
such that lim𝑛→∞ 𝜌(𝐶𝑛) = 𝑅 and lim𝑛→∞ 𝑒(𝐶𝑛) = 0.

Remark. This proposition deals with the average error rate, instead of the error rate ̂𝑒.

Proof. We use the method of random coding. Without loss of generality let 𝑝 < 1
2
. Let 𝜀 > 0

such that 𝑝 + 𝜀 < 1
2
and 𝑅 < 1 − 𝐻(𝑝 + 𝜀). We use minimum distance decoding, and in the

case of a tie, we make an arbitrary choice. Let𝑚 = ⌊2𝑛𝑅⌋, and let 𝐶 = {𝑐1,… , 𝑐𝑚} be a code
chosen uniformly at random from 𝒞 = {[𝑛,𝑚]-codes}, a set of size (2𝑛

𝑚
).

Choose 1 ≤ 𝑖 ≤ 𝑚 uniformly at random, and send 𝑐𝑖 through the channel, and obtain an
output 𝑌 . Then, ℙ (𝑌 not decoded as 𝑐𝑖) is the average value of 𝑒(𝐶) for 𝐶 ranging over 𝒞,
giving 1

|𝒞|
∑𝐶∈𝒞 𝑒(𝐶). We can choose a code 𝐶𝑛 ∈ 𝒞 such that 𝑒(𝐶𝑛) ≤

1
|𝒞|
∑𝐶∈𝒞 𝑒(𝐶). So it

suffices to show ℙ (𝑌 not decoded as 𝑐𝑖) → 0.

Let 𝑟 = ⌊𝑛(𝑝 + 𝜀)⌋. Then if 𝐵(𝑌, 𝑟) ∩ 𝐶 = {𝑐𝑖}, 𝑌 is correctly decoded as 𝑐𝑖. Therefore,

ℙ (𝑌 not decoded as 𝑐𝑖) ≤ ℙ (𝑐𝑖 ∉ 𝐵(𝑌, 𝑟)) + ℙ (𝐵(𝑌, 𝑟) ∩ 𝐶 ⊋ {𝑐𝑖})

We consider the two cases separately.
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In the first case with 𝑑(𝑐𝑖, 𝑌) > 𝑟, ℙ (𝑑(𝑐𝑖, 𝑌) > 𝑟) is the probability that the channel makes
more than 𝑟 errors, and hence more than 𝑛(𝑝 + 𝜀) errors. We have already shown that this
converges to zero as 𝑛 → ∞.

In the second case with 𝑑(𝑐𝑖, 𝑌) ≤ 𝑟, if 𝑗 ≠ 𝑖,

ℙ (𝑐𝑗 ∈ 𝐵(𝑌, 𝑟) ∣ 𝑐𝑖 ∈ 𝐵(𝑌, 𝑟)) = 𝑉(𝑛, 𝑟) − 1
2𝑛 − 1 ≤ 𝑉(𝑛, 𝑟)

2𝑛

Therefore,

ℙ (𝐵(𝑌, 𝑟) ∩ 𝐶 ⊋ {𝑐𝑖}) ≤ ∑
𝑗≠𝑖

ℙ (𝑐𝑗 ∈ 𝐵(𝑌, 𝑟), 𝑐𝑖 ∈ 𝐵(𝑌, 𝑟))

≤ ∑
𝑗≠𝑖

ℙ (𝑐𝑗 ∈ 𝐵(𝑌, 𝑟) ∣ 𝑐𝑖 ∈ 𝐵(𝑌, 𝑟))

≤ (𝑚 − 1)𝑉(𝑛, 𝑟)2𝑛

≤ 𝑚𝑉(𝑛, 𝑟)
2𝑛

≤ 2𝑛𝑅2𝑛𝐻(𝑝+𝜀)2−𝑛

= 2𝑛(𝑅−(1−𝐻(𝑝+𝜀))) → 0

as required.

Proposition. We can replace 𝑒 with ̂𝑒 in the previous result.

Proof. Let 𝑅′ be such that 𝑅 < 𝑅′ < 1 − 𝐻(𝑝). Then, apply the previous result to 𝑅′ to
construct a sequence of codes (𝐶′

𝑛)𝑛≥1 of length 𝑛 and size ⌊2𝑛𝑅
′⌋, where 𝑒(𝐶′

𝑛) → 0. Order
the codewords of 𝐶′

𝑛 by the probability of error given that the codeword was sent, and delete
the worst half. This gives a code 𝐶𝑛 with ̂𝑒(𝐶𝑛) ≤ 2𝑒(𝐶′

𝑛). Hence ̂𝑒(𝐶𝑛) → 0 as 𝑛 → ∞. Since
𝐶𝑛 has length 𝑛, and size

1
2
⌊2𝑛𝑅′⌋ = ⌊2𝑛𝑅′−1⌋. But 2𝑛𝑅′−1 = 2𝑛(𝑅

′− 1
𝑛 ) ≥ 2𝑛𝑅 for sufficiently

large 𝑛. So we can replace 𝐶′
𝑛 with a code of smaller size ⌊2𝑛𝑅⌋ and still have ̂𝑒(𝐶𝑛) → 0 and

𝜌(𝐶𝑛) → 𝑅 as 𝑛 → ∞.

Therefore, a binary symmetric channel with error probability 𝑝 has operational capacity
1 − 𝐻(𝑝), as we can transmit reliably at any rate 𝑅 < 1 − 𝐻(𝑝), and the capacity is at most
1 − 𝐻(𝑝). The result shows that codes with certain properties exist, but does not give a way
to construct them.

4.7. The Kelly criterion
Let 0 < 𝑝 < 1, 𝑢 > 0, 0 ≤ 𝑤 < 1. Suppose that a coin is tossed 𝑛 times in succession
with probability 𝑝 of obtaining a head. If a stake of 𝑘 is paid ahead of a particular throw, the
return is 𝑘𝑢 if the result is a head, and the return is zero if the result is a tail.
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Suppose the initial bankroll is 𝑋0 = 1. After 𝑛 throws, the bankroll is 𝑋𝑛. We bet 𝑤𝑋𝑛 on
the (𝑛 + 1)th coin toss, retaining (1 − 𝑤)𝑋𝑛. The bankroll after the toss is

𝑋𝑛+1 = {𝑋𝑛(𝑤𝑢 + (1 − 𝑤)) (𝑛 + 1)th toss is a head
𝑋𝑛(1 − 𝑤) (𝑛 + 1)th toss is a tail

Define 𝑌𝑛+1 =
𝑋𝑛+1
𝑋𝑛

, then the 𝑌 𝑖 are independent and identically distributed. Then log𝑌 𝑖 is
a sequence of independent and identically distributed random variables. Note that log𝑋𝑛 =
∑𝑛

𝑖=1 log𝑌 𝑖.

Lemma. Let 𝜇 = 𝔼 [log𝑌1] , 𝜎2 = Var (log𝑌1). Then, if 𝑎 > 0,

(i) ℙ (||
1
𝑛
∑𝑛

𝑖=1 log𝑌 𝑖 − 𝜇|| ≥ 𝑎) ≤ 𝜎2

𝑛𝑎2
by Chebyshev’s inequality;

(ii) ℙ (||
log𝑋𝑛
𝑛

− 𝜇|| ≥ 𝑎) ≤ 𝜎2

𝑛𝑎2
;

(iii) given 𝜀 > 0 and 𝛿 > 0, there exists 𝑁 such that ℙ (||
log𝑋𝑛
𝑛

− 𝜇|| ≥ 𝛿) ≤ 𝜀 for all 𝑛 ≥ 𝑁.

Consider a single coin toss, with probability 𝑝 < 1 of a head. Suppose that a bet of 𝑘 on
a head gives a payout of 𝑘𝑢 for some payout ratio 𝑢 > 0. Suppose further that we have an
initial bankroll of 1, and we bet 𝑤 on heads, retaining 1−𝑤, for some 0 ≤ 𝑤 < 1. Then, if 𝑌
is the expected fortune after the throw, 𝔼 [log𝑌] = 𝑝 log(1 + (𝑢 − 1)𝑤) + (1 − 𝑝) log(1 − 𝑤).
One can show that the value of 𝔼 [log𝑌] is maximised by taking𝑤 = 0 if 𝑢𝑝 ≤ 1, and setting
𝑤 = 𝑢𝑝−1

𝑢−1
if 𝑢𝑝 > 1.

Let 𝑞 = 1 − 𝑝. If 𝑢𝑝 > 1, at the optimum value of 𝑤, we find

𝔼 [log𝑌] = 𝑝 log𝑝 + 𝑞 log 𝑞 + log𝑢 − 𝑞 log(𝑢 − 1) = −𝐻(𝑝) + log𝑢 − 𝑞 log(𝑢 − 1)

Kelly’s criterion is that in order to maximise profit, 𝔼 [log𝑌] should be optimised, given that
we can bet arbitrarily many times.

One can show that if 𝑤 is set below the optimum, the bankroll will still increase, but does
so more slowly. If 𝑤 is set sufficiently high, the bankroll will tend to decrease.
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5. Algebraic coding theory
5.1. Linear codes
Definition. A binary code 𝐶 ⊆ 𝔽𝑛2 is linear if 0 ∈ 𝐶, and whenever 𝑥, 𝑦 ∈ 𝐶, we have
𝑥 + 𝑦 ∈ 𝐶.

Equivalently, 𝐶 is a vector subspace of 𝔽𝑛2 .

Definition. The rank of a linear code 𝐶, denoted rank𝐶, is its dimension as an 𝔽2-vector
space. A linear code of length 𝑛 and rank 𝑘 is called an (𝑛, 𝑘)-code. If it has minimum
distance 𝑑, it is called an (𝑛, 𝑘, 𝑑)-code.

Let 𝑣1,… , 𝑣𝑘 be a basis for 𝐶. Then 𝐶 = {∑𝑘
𝑖=1 𝜆𝑖𝑣𝑖 ∣ 𝜆𝑖 ∈ 𝔽2}. The size of the code is there-

fore 2𝑘, so an (𝑛, 𝑘)-code is an [𝑛, 2𝑘]-code, and an (𝑛, 𝑘, 𝑑)-code is an [𝑛, 2𝑘, 𝑑]-code. The
information rate is 𝑘

𝑛
.

Definition. The weight of 𝑥 ∈ 𝔽𝑛2 is 𝑤(𝑥) = 𝑑(𝑥, 0).

Lemma. Theminimum distance of a linear code is theminimumweight of a nonzero code-
word.

Proof. Let 𝑥, 𝑦 ∈ 𝐶. Then, 𝑑(𝑥, 𝑦) = 𝑑(𝑥 + 𝑦, 0) = 𝑤(𝑥 + 𝑦). Observe that 𝑥 ≠ 𝑦 if and only
if 𝑥 + 𝑦 ≠ 0, so 𝑑(𝐶) is the minimum 𝑤(𝑥 + 𝑦) for 𝑥 + 𝑦 ≠ 0.

Definition. Let 𝑥, 𝑦 ∈ 𝔽𝑛2 . Define 𝑥 ⋅ 𝑦 = ∑𝑛
𝑖=1 𝑥𝑖𝑦𝑖 ∈ 𝔽2. This is symmetric and bilinear.

There are nonzero 𝑥 such that 𝑥 ⋅ 𝑥 = 0.

Definition. Let 𝑃 ⊆ 𝔽𝑛2 . The parity check code defined by 𝑃 is

𝐶 = {𝑥 ∈ 𝔽𝑛2 ∣ ∀𝑝 ∈ 𝑃, 𝑝 ⋅ 𝑥 = 0}

Example. (i) 𝑃 = {11…1} gives the simple parity check code.

(ii) 𝑃 = {1010101, 0110011, 0001111} gives Hamming’s original [7, 16, 3]-code.

(iii) 𝐶+ and 𝐶− are linear if 𝐶 is linear.

Lemma. Every parity check code is linear.

Proof. 0 ∈ 𝐶 as 𝑝 ⋅ 0 = 0. If 𝑝 ⋅ 𝑥 = 0 and 𝑝 ⋅ 𝑦 = 0 then 𝑝 ⋅ (𝑥 + 𝑦) = 0, so 𝑥, 𝑦 ∈ 𝐶 implies
𝑥 + 𝑦 ∈ 𝐶.

Definition. Let 𝐶 ⊆ 𝔽𝑛2 be a linear code. The dual code 𝐶⟂ is defined by

𝐶⟂ = {𝑥 ∈ 𝔽𝑛2 ∣ ∀𝑦 ∈ 𝐶, 𝑥 ⋅ 𝑦 = 0}
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By definition, 𝐶⟂ is a parity check code, and hence is linear. Note that 𝐶 ∩ 𝐶⟂ may contain
elements other than 0.

Lemma. rank𝐶 + rank𝐶⟂ = 𝑛.

Proof. One can prove this by defining 𝐶⟂ as an annihilator from linear algebra. A proof
using coding theory is shown later.

Corollary. Let 𝐶 be a linear code. Then (𝐶⟂)⟂ = 𝐶. In particular, all linear codes are parity
check codes, defined by 𝐶⟂.

Proof. If 𝑥 ∈ 𝐶, then 𝑥 ⋅ 𝑦 = 0 for all 𝑦 ∈ 𝐶⟂ by definition, so 𝑥 ∈ (𝐶⟂)⟂. Then rank𝐶 =
𝑛 − rank𝐶⟂ = 𝑛 − (𝑛 − rank(𝐶⟂)⟂) = rank(𝐶⟂)⟂, so 𝐶 = (𝐶⟂)⟂.

Definition. Let 𝐶 be an (𝑛, 𝑘)-code. A generator matrix 𝐺 for 𝐶 is a 𝑘× 𝑛matrix where the
rows form a basis for 𝐶. A parity checkmatrix𝐻 for 𝐶 is a generator matrix for the dual code
𝐶⟂, so it is an (𝑛 − 𝑘) × 𝑛matrix.
The codewords of a linear code can be viewed either as linear combinations of rows of 𝐺, or
linear dependence relations between the columns of 𝐻, so 𝐶 = {𝑥 ∈ 𝔽𝑛2 ∣ 𝐻𝑥 = 0}.
Definition. Let 𝐶 be an (𝑛, 𝑘)-code. The syndrome of 𝑥 ∈ 𝔽𝑛2 is 𝐻𝑥.
If we receive a word 𝑥 = 𝑐+𝑧where 𝑐 ∈ 𝐶 and 𝑧 is the error pattern,𝐻𝑥 = 𝐻𝑧 as𝐻𝑐 = 0. If
𝐶 is 𝑒-error correcting, we precompute 𝐻𝑧 for all 𝑧 for which 𝑤(𝑧) ≤ 𝑒. On receiving 𝑥, we
can compute the syndrome𝐻𝑥 and find this entry in the table of values of𝐻𝑧. If successful,
we decode 𝑐 = 𝑥 − 𝑧, with 𝑑(𝑥, 𝑐) = 𝑤(𝑧) ≤ 𝑒.
Definition. Codes 𝐶1, 𝐶2 ⊆ 𝔽𝑛2 are equivalent if there exists a permutation of bits that maps
codewords in 𝐶1 to codewords in 𝐶2.
Codes are typically only considered up to equivalence.

Lemma. Every (𝑛, 𝑘)-linear code is equivalent to onewith generatormatrixwith block form
(𝐼𝑘 𝐵) for some 𝑘 × (𝑛 − 𝑘)matrix 𝐵.

Proof. Let𝐺 be a 𝑘×𝑛 generatormatrix for𝐶. UsingGaussian elimination, we can transform
𝐺 into row echelon form

𝐺𝑖𝑗 = {0 𝑗 < ℓ(𝑖)
1 𝑗 = ℓ(𝑖)

for some ℓ(1) < ℓ(2) < ⋯ < ℓ(𝑘). Permuting the columns replaces 𝐶 with an equivalent
code, so without loss of generality we may assume ℓ(𝑖) = 𝑖. Hence,

𝐺 = (
1 ⋆

⋱ 𝐵
1

)

Further row operations eliminate ⋆ to give 𝐺 in the required form.
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A message 𝑦 ∈ 𝔽𝑘2 viewed as a row vector can be encoded as 𝑦𝐺. If 𝐺 = (𝐼𝑘 𝐵), then
𝑦𝐺 = (𝑦, 𝑦𝐵) where 𝑦 is the message and 𝑦𝐵 is a string of check digits. We now prove the
following lemma that was stated earlier.

Lemma. rank𝐶 + rank𝐶⟂ = 𝑛.

Proof. Let 𝐶 have generator matrix 𝐺 = (𝐼𝑘 𝐵). 𝐺 has 𝑘 linearly independent columns, so
there is a linear map 𝛾∶ 𝔽𝑛2 → 𝔽𝑘2 defined by 𝑥 ↦ 𝐺𝑥 which is surjective. Its kernel is 𝐶⟂.
By the rank-nullity theorem, dim𝔽𝑛2 = dimker 𝛾 + dim Im 𝛾, so 𝑛 = rank𝐶 + rank𝐶⟂ as
required.

Lemma. An (𝑛, 𝑘)-code with generator matrix 𝐺 = (𝐼𝑘 𝐵) has parity check matrix 𝐻 of
the form (𝐵⊺ 𝐼𝑛−𝑘).

Proof.

𝐺𝐻⊺ = (𝐼𝑘 𝐵) ( 𝐵
𝐼𝑛−𝑘

) = 𝐵 + 𝐵 = 2𝐵 = 0

So the rows of 𝐻 generate a subcode of 𝐶⟂. But rank𝐻 = 𝑛 − 𝑘, and rank𝐶⟂ = 𝑛 − 𝑘. So
𝐻 = 𝐶⟂, and 𝐶⟂ has generator matrix 𝐻.

Lemma. Let 𝐶 be a linear code with parity check matrix 𝐻. Then, 𝑑(𝐶) = 𝑑 if and only if

(i) any 𝑑 − 1 columns of 𝐻 are linearly independent; and

(ii) a set of 𝑑 columns of 𝐻 are linearly dependent.

The proof is left as an exercise.

5.2. Hamming codes

Definition. Let 𝑑 ≥ 1, and let 𝑛 = 2𝑑 − 1. Let 𝐻 be the 𝑑 × 𝑛 matrix with columns given
by the nonzero elements of 𝔽𝑑2 . The Hamming (𝑛, 𝑛 − 𝑑)-linear code is the code with parity
check matrix 𝐻.

Lemma. The Hamming (𝑛, 𝑛−𝑑)-code 𝐶 has minimum distance 𝑑(𝐶) = 3, and is a perfect
1-error correcting code.

Proof. Any two columns of 𝐻 are linearly independent, but there are three linearly depend-
ent columns. Hence, 𝑑(𝐶) = 3. Hence, 𝐶 is ⌊3−1

2
⌋ = 1-error correcting. A perfect code is

one such that |𝐶| = 2𝑛

𝑉(𝑛,𝑒)
. In this case, 𝑛 = 2𝑑 − 1 and 𝑒 = 1, so 2𝑛

1+2𝑑−1
= 2𝑛−𝑑 = |𝐶| as

required.
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5.3. Reed–Muller codes
Let 𝑋 = {𝑝1,… , 𝑝𝑛} be a set of size 𝑛. There is a correspondence between the power set𝒫(𝑋)
and 𝔽𝑛2 .

𝒫(𝑋) 𝐴↦𝟙𝐴−−−−→ {𝑓∶ 𝑋 → 𝔽2}
𝑓↦(𝑓(𝑝1),…,𝑓(𝑝𝑛))−−−−−−−−−−−−−→ 𝔽𝑛2

The symmetric difference of two sets 𝐴, 𝐵 is defined to be 𝐴 △ 𝐵 = 𝐴 ∖ 𝐵 ∪ 𝐵 ∖ 𝐴, which
corresponds to vector addition in 𝔽𝑛2 . Intersection 𝐴 ∩ 𝐵 corresponds to the wedge product
𝑥 ∧ 𝑦 = (𝑥1𝑦1,… , 𝑥𝑛𝑦𝑛).

Let 𝑋 = 𝔽𝑑2 , so 𝑛 = 2𝑑−|𝑋|. Let 𝑣0 = (1,… , 1), and let 𝑣𝑖 = 𝟙𝐻𝑖 where𝐻𝑖 = {𝑝 ∈ 𝑋 ∣ 𝑝𝑖 = 0}
is a coordinate hyperplane.

Definition. Let 0 ≤ 𝑟 ≤ 𝑑. The Reed–Muller code 𝑅𝑀(𝑑, 𝑟) of order 𝑟 and length 2𝑑 is the
linear code spanned by 𝑣0 and all wedge products of at most 𝑟 of the the 𝑣𝑖 for 1 ≤ 𝑖 ≤ 𝑑.

By convention, the empty wedge product is 𝑣0.

Example. Let 𝑑 = 3, and let 𝑋 = 𝔽32 = {𝑝1,… , 𝑝8} in binary order.

𝑋 000 001 010 011 100 101 110 111
𝑣0 1 1 1 1 1 1 1 1
𝑣1 1 1 1 1 0 0 0 0
𝑣2 1 1 0 0 1 1 0 0
𝑣3 1 0 1 0 1 0 1 0

𝑣1 ∧ 𝑣2 1 1 0 0 0 0 0 0
𝑣2 ∧ 𝑣3 1 0 0 0 1 0 0 0
𝑣1 ∧ 𝑣3 1 0 1 0 0 0 0 0

𝑣1 ∧ 𝑣2 ∧ 𝑣3 1 0 0 0 0 0 0 0

A generator matrix for Hamming’s original code is a submatrix in the top-right corner.

𝑅𝑀(3, 0) is spanned by 𝑣0, and is hence the repetition code of length 8. 𝑅𝑀(3, 1) is spanned
by 𝑣0, 𝑣1, 𝑣2, 𝑣3, which is equivalent to a parity check extension of Hamming’s original (7, 4)-
code. 𝑅𝑀(3, 2) is an (8, 7)-code, and can be shown to be equivalent to a simple parity check
code of length 8. 𝑅𝑀(3, 3) is the trivial code 𝔽82 of length 8.

Theorem. (i) The vectors 𝑣𝑖1 ∧ ⋯ ∧ 𝑣𝑖𝑠 for 𝑖1 < ⋯ < 𝑖𝑠 and 0 ≤ 𝑠 ≤ 𝑑 form a basis for
𝔽𝑛2 .

(ii) The rank of 𝑅𝑀(𝑑, 𝑟) is∑𝑟
𝑠=0 (

𝑑
𝑠
).

Proof. Part (i). There are∑𝑑
𝑠=0 (

𝑑
𝑠
) = 2𝑑 = 𝑛 vectors listed, so it suffices to show they are a

spanning set, or equivalently 𝑅𝑀(𝑑, 𝑑) is the trivial code. Let 𝑝 ∈ 𝑋 , and let 𝑦𝑖 be 𝑣𝑖 if 𝑝𝑖 = 0
and 𝑣0 + 𝑣𝑖 if 𝑝𝑖 = 1. Then 𝟙{𝑝} = 𝑦1 ∧ ⋯ ∧ 𝑦𝑑. Expanding this using the distributive law,
𝟙{𝑝} ∈ 𝑅𝑀(𝑑, 𝑑). But the set of 𝟙{𝑝} for 𝑝 ∈ 𝑋 spans 𝔽𝑛2 , as required.
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Part (ii). 𝑅𝑀(𝑑, 𝑟) is spanned by 𝑣𝑖1 ∧ ⋯ ∧ 𝑣𝑖𝑠 where 𝑖1 < ⋯ < 𝑖𝑠 and 0 ≤ 𝑠 ≤ 𝑟. Since
these are linearly independent, the rank of 𝑅𝑀(𝑑, 𝑟) is the number of such vectors, which is
∑𝑑

𝑠=0 (
𝑑
𝑠
).

Definition. Let 𝐶1, 𝐶2 be linear codes of length 𝑛 where 𝐶2 ⊆ 𝐶1. The bar product is 𝐶1 ∣
𝐶2 = {(𝑥 ∣ 𝑥 + 𝑦) ∣ 𝑥 ∈ 𝐶1, 𝑦 ∈ 𝐶2}.

This is a linear code of length 2𝑛.

Lemma. (i) rank(𝐶1 ∣ 𝐶2) = rank𝐶1 + rank𝐶2.

(ii) 𝑑(𝐶1 ∣ 𝐶2) = min {2𝑑(𝐶1), 𝑑(𝐶2)}.

Proof. Part (i). If 𝐶1 has basis 𝑥1,… , 𝑥𝑘 and 𝐶2 has basis 𝑦1,… , 𝑦ℓ, then 𝐶1 ∣ 𝐶2 has basis

{(𝑥𝑖 ∣ 𝑥𝑖) ∣ 1 ≤ 𝑖 ≤ 𝑘} ∪ {(0 ∣ 𝑦𝑖) ∣ 1 ≤ 𝑖 ≤ ℓ}

Part (ii). Let 0 ≠ (𝑥 ∣ 𝑥 + 𝑦) ∈ 𝐶1 ∣ 𝐶2. If 𝑦 ≠ 0, then 𝑤(𝑥 ∣ 𝑥 + 𝑦) = 𝑤(𝑥) + 𝑤(𝑥 + 𝑦) ≥
𝑤(𝑦) ≥ 𝑑(𝐶2). If 𝑦 = 0, then 𝑤(𝑥 ∣ 𝑥 + 𝑦) = 𝑤(𝑥 ∣ 𝑥) = 2𝑤(𝑥) ≥ 2𝑑(𝐶1). Hence,
𝑑(𝐶1 ∣ 𝐶2) ≥ min {2𝑑(𝐶1), 𝑑(𝐶2)}.

There is a nonzero 𝑥 ∈ 𝐶1 with 𝑤(𝑥) = 𝑑(𝐶1), so 𝑑(𝐶1 ∣ 𝐶2) ≤ 𝑤(𝑥 ∣ 𝑥) = 2𝑑(𝐶1). There is
a nonzero 𝑦 ∈ 𝐶2 with 𝑤(𝑦) = 𝑑(𝐶2), giving 𝑑(𝐶1 ∣ 𝐶2) ≤ 𝑤(0 ∣ 0 + 𝑦) = 𝑑(𝐶2), giving the
other inequality as required.

Theorem. (i) 𝑅𝑀(𝑑, 𝑟) = 𝑅𝑀(𝑑 − 1, 𝑟) ∣ 𝑅𝑀(𝑑 − 1, 𝑟 − 1) for 0 < 𝑟 < 𝑑.

(ii) 𝑅𝑀(𝑑, 𝑟) has minimum distance 2𝑑−𝑟 for all 𝑟.

Proof. Part (i). Exercise.

Part (ii). If 𝑟 = 0, then 𝑅𝑀(𝑑, 𝑟) is the repetition code of length 2𝑑, which has minimum
distance 2𝑑. If 𝑟 = 𝑑, 𝑅𝑀(𝑑, 𝑟) is the trivial code of length 2𝑑, which has minimum distance
1 = 2𝑑−𝑑. We prove the remaining cases by induction on 𝑑. From part (i), 𝑅𝑀(𝑑, 𝑟) =
𝑅𝑀(𝑑 − 1, 𝑟) ∣ 𝑅𝑀(𝑑 − 1, 𝑟 − 1). By induction, the minimum distance of 𝑅𝑀(𝑑 − 1, 𝑟) is
2𝑑−1−𝑟 and the minimum distance of 𝑅𝑀(𝑑 − 1, 𝑟 − 1) is 2𝑑−𝑟. By part (ii) of the previous
lemma, the minimum distance of 𝑅𝑀(𝑑, 𝑟) is min {2 ⋅ 2𝑑−1−𝑟, 2𝑑−𝑟} = 2𝑑−𝑟.

5.4. Cyclic codes

If 𝐹 is a field and 𝑓 ∈ 𝐹[𝑋], 𝐹[𝑋]⟋(𝑓) is in bijection with 𝐹𝑛 where 𝑛 = deg𝑓, since 𝐹[𝑋]⟋(𝑓)
is represented by the set of functions of degree less than deg𝑓.

Definition. A linear code 𝐶 ⊆ 𝔽𝑛2 is cyclic if

(𝑎0, 𝑎1,… , 𝑎𝑛−1) ∈ 𝐶 ⟹ (𝑎𝑛−1, 𝑎0,… , 𝑎𝑛−2) ∈ 𝐶
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We identify𝔽2[𝑋]⟋(𝑋𝑛 − 1)with𝔽𝑛2 , letting𝜋(𝑎0+𝑎1𝑋+⋯+𝑎𝑛−1𝑋𝑛−1) = (𝑎0, 𝑎1,… , 𝑎𝑛−1).

Lemma. A code 𝐶 ⊆ 𝔽𝑛2 is cyclic if and only if 𝜋(𝒞) = 𝐶 satisfies

(i) 0 ∈ 𝒞;

(ii) 𝑓, 𝑔 ∈ 𝒞 implies 𝑓 + 𝑔 ∈ 𝒞;

(iii) 𝑓 ∈ 𝔽2[𝑋], 𝑔 ∈ 𝒞 implies 𝑓𝑔 ∈ 𝒞.

Equivalently, 𝒞 is an ideal of 𝔽2[𝑋]⟋(𝑋𝑛 − 1).

Proof. If 𝑔(𝑋) = 𝑎0+𝑎1𝑋 +⋯+𝑎𝑛−1𝑋𝑛−1, multiplication by 𝑋 gives 𝑋𝑔(𝑋) = 𝑎𝑛−1+𝑎0𝑋 +
⋯+𝑎𝑛−2𝑋𝑛−1. So 𝒞 is cyclic if and only if (i) and (ii) hold and 𝑔(𝑋) ∈ 𝐶 implies 𝑋𝑔(𝑋) ∈ 𝐶.
Linearity then gives (iii).

Wewill identify𝐶with𝒞. The cyclic codes of length𝑛 correspond to ideals in𝔽2[𝑋]⟋(𝑋𝑛 − 1).
Such ideals correspond to ideals of 𝔽2[𝑋] that contain𝑋𝑛−1. Since 𝔽2[𝑋] is a principal ideal
domain, these ideals correspond to polynomials 𝑔(𝑋) ∈ 𝔽2[𝑋] dividing 𝑋𝑛 − 1.

Theorem. Let 𝐶 ⊴ 𝔽2[𝑋]⟋(𝑋𝑛 − 1) be a cyclic code. Then, there exists a unique generator
polynomial 𝑔(𝑋) ∈ 𝔽2[𝑋] such that

(i) 𝐶 = (𝑔);

(ii) 𝑔(𝑋) ∣ 𝑋𝑛 − 1.

In particular, 𝑝(𝑋) ∈ 𝔽2[𝑋] represents a codeword if and only if 𝑔 ∣ 𝑝.

Proof. Let 𝑔(𝑋) ∈ 𝔽2[𝑋] be the polynomial of smallest degree that represents a nonzero
codeword of 𝐶. Note that deg 𝑔 < 𝑛. Since 𝐶 is cyclic, (𝑔) ⊆ 𝐶. Now let 𝑝(𝑋) ∈ 𝔽2[𝑋]
represent a codeword. By the division algorithm, 𝑝 = 𝑞𝑔 + 𝑟 for 𝑞, 𝑟 ∈ 𝔽2[𝑋] where deg 𝑟 <
deg 𝑔. Then, 𝑟 = 𝑝 − 𝑞𝑔 ∈ 𝐶 as 𝐶 is an ideal. But deg 𝑟 < deg 𝑔, so 𝑟 = 0. Hence, 𝑔 ∣ 𝑝. For
part (ii), let 𝑝(𝑋) = 𝑋𝑛 − 1, giving 𝑔 ∣ 𝑋𝑛 − 1.

Now we show uniqueness. Suppose 𝐶 = (𝑔1) = (𝑔2). Then 𝑔1 ∣ 𝑔2 and 𝑔2 ∣ 𝑔1. So 𝑔1 = 𝑐𝑔2
where 𝑐 ∈ 𝔽⋆

2 , so 𝑐 = 1.

Lemma. Let 𝐶 be a cyclic code of length 𝑛 with generator 𝑔(𝑋) = 𝑎0 + 𝑎1𝑋 + ⋯ + 𝑎𝑘𝑋𝑘

with 𝑎𝑘 ≠ 0. Then 𝐶 has basis {𝑔, 𝑋𝑔, 𝑋2𝑔,… , 𝑋𝑛−𝑘−1𝑔}. In particular, rank𝐶 = 𝑛 − 𝑘.

Proof. Exercise.
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Corollary. Let 𝐶 be a cyclic code of length 𝑛 with generator 𝑔(𝑋) = 𝑎0 + 𝑎1𝑋 +⋯+ 𝑎𝑘𝑋𝑘

with 𝑎𝑘 ≠ 0. Then, a generator matrix for 𝐶 is given by

𝐺 =
⎛
⎜
⎜
⎝

𝑎0 𝑎1 𝑎2 ⋯ 𝑎𝑘 0 0 ⋯ 0
0 𝑎0 𝑎1 ⋯ 𝑎𝑘−1 𝑎𝑘 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 0 𝑎0 𝑎1 ⋯ 𝑎𝑘

⎞
⎟
⎟
⎠

This is an (𝑛 − 𝑘) × 𝑛matrix.
Definition. Let 𝑔 be a generator for 𝐶. The parity check polynomial is the polynomial ℎ
such that 𝑔(𝑋)ℎ(𝑋) = 𝑋𝑛 − 1.
Corollary. Writing ℎ(𝑋) = 𝑏0 + 𝑏1𝑋 +⋯+ 𝑏𝑛−𝑘𝑋𝑛−𝑘, the parity check matrix is

𝐻 =
⎛
⎜
⎜
⎝

𝑏𝑛−𝑘 𝑏𝑛−𝑘−1 𝑏𝑛−𝑘−2 ⋯ 𝑏1 𝑏0 0 0 ⋯ 0
0 𝑏𝑛−𝑘 𝑏𝑛−𝑘−1 ⋯ 𝑏2 𝑏1 𝑏0 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 0 𝑏𝑛−𝑘 𝑏𝑛−𝑘−1 𝑏𝑛−𝑘−2 ⋯ 𝑏0

⎞
⎟
⎟
⎠

which is a 𝑘 × 𝑛matrix.

Proof. One can check that the inner product of the 𝑖th row of the generator matrix and the
𝑗th row of the parity checkmatrix is the coefficient of 𝑋𝑛−𝑘−𝑖+𝑗 in 𝑔(𝑋)ℎ(𝑋) = 𝑋𝑛−1. Since
1 ≤ 𝑖 ≤ 𝑛−𝑘 and 1 ≤ 𝑗 ≤ 𝑘, 0 < 𝑛−𝑘−𝑖+𝑗 < 𝑛, and such coefficients are zero. Hence, the
rows of 𝐺 are orthogonal to the rows of𝐻. Note that as 𝑏𝑛−𝑘 ≠ 0, rank𝐻 = 𝑘 = rank𝐶⟂, so
𝐻 is the parity check matrix.

Remark. Given a polynomial 𝑓(𝑋) = ∑𝑚
𝑖=0 𝑓𝑖𝑋𝑖 of degree 𝑚, the reverse polynomial is

̌𝑓(𝑋) = 𝑓𝑛 + 𝑓𝑛−1𝑋 + ⋯ + 𝑓0𝑋𝑀 = 𝑋𝑚𝑓( 1
𝑋
). The cyclic code generated by ̌ℎ is the dual

code 𝐶⟂.

Lemma. If 𝑛 is odd, 𝑋𝑛 − 1 = 𝑓1(𝑋)…𝑓𝑡(𝑋) where the 𝑓𝑖(𝑋) are distinct irreducible poly-
nomials in 𝔽2[𝑋]. Thus, there are 2𝑡 cyclic codes of length 𝑛.
This is false if 𝑛 is even, for instance, 𝑋2 − 1 = (𝑋 − 1)2. The proof follows from Galois
theory.

5.5. BCH codes
Recall that if 𝑝 is a prime, 𝔽𝑝 = ℤ⟋𝑝ℤ is a field, and if 𝑓(𝑋) ∈ 𝔽𝑝[𝑋] is irreducible, the
quotient 𝐾 = 𝔽𝑝[𝑋]⟋(𝑓) is a field and has order 𝑝deg𝑓. Moreover, any finite field arises in
this way.

If 𝑞 = 𝑝𝛼 is a prime power where 𝛼 ≥ 1, there exists a unique field 𝔽𝑞 of order 𝑞, up to iso-
morphism. Note that 𝔽𝑞 ≄ ℤ⟋𝑞ℤ if 𝛼 > 1. The multiplicative group 𝔽×𝑞 is cyclic; there exists
𝛽 ∈ 𝔽𝑞 such that 𝔽×𝑞 = ⟨𝛽⟩ = {1, 𝛽,… , 𝛽𝑞−2}. Such a 𝛽 is called a primitive element.
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Let 𝑛 be an odd integer, and let 𝑟 ≥ 1 such that 2𝑟 ≡ 1 mod 𝑛, which always exists as
2 is coprime to 𝑛. Let 𝐾 = 𝔽2𝑟 , and define 𝛍𝑛(𝐾) = {𝑥 ∈ 𝐾 ∣ 𝑥𝑛 = 1} ≤ 𝐾×, which is
a cyclic group. Since 𝑛 ∣ (2𝑟 − 1) = |𝐾×|, 𝛍𝑛(𝐾) is the cyclic group of order 𝑛. Hence,
𝛍𝑛(𝐾) = {1, 𝛼, 𝛼2,… , 𝛼𝑛−1} for some primitive 𝑛th root of unity 𝛼 ∈ 𝐾.
Definition. The cyclic code of length 𝑛 with defining set 𝐴 ⊆ 𝛍𝑛(𝐾) is the code

𝐶 = {𝑓(𝑋) ∈ 𝔽2[𝑋]⟋(𝑋𝑛 − 1) || ∀𝑎 ∈ 𝐴, 𝑓(𝑎) = 0}

The generator polynomial 𝑔(𝑋) is the nonzero polynomial of least degree such that 𝑔(𝑎) = 0
for all 𝑎 ∈ 𝐴. Equivalently, 𝑔 is the least common multiple of the minimal polynomials of
the elements of 𝐴.
Definition. The cyclic code of length 𝑛with defining set {𝛼, 𝛼2,… , 𝛼𝛿−1} is a BCH codewith
design distance 𝛿.
Theorem. A BCH code 𝐶 with design distance 𝛿 has minimum distance 𝑑(𝐶) ≥ 𝛿.
This proof needs the following result.

Lemma. The Vandermonde matrix satisfies

det

⎛
⎜
⎜
⎜
⎝

1 1 1 ⋯ 1
𝑥1 𝑥2 𝑥3 ⋯ 𝑥𝑛
𝑥21 𝑥22 𝑥23 ⋯ 𝑥2𝑛
⋮ ⋮ ⋮ ⋱ ⋮

𝑥𝑛−11 𝑥𝑛−12 𝑥𝑛−13 ⋯ 𝑥𝑛−1𝑛

⎞
⎟
⎟
⎟
⎠

= ∏
1≤𝑗<𝑖≤𝑛

(𝑥𝑖 − 𝑥𝑗)

Proof of theorem. Consider

𝐻 =
⎛
⎜
⎜
⎝

1 𝛼 𝛼2 ⋯ 𝛼𝑛−1
1 𝛼2 𝛼4 ⋯ 𝛼2(𝑛−1)
⋮ ⋮ ⋮ ⋱ ⋮
1 𝛼𝛿−1 𝛼2(𝛿−1) ⋯ 𝛼(𝛿−1)(𝑛−1)

⎞
⎟
⎟
⎠

This is a (𝛿 − 1) × 𝑛matrix. Any collection of (𝛿 − 1) columns is independent as it forms a
Vandermondematrix. But any codeword of𝐶 is a dependence relation between the columns
of 𝐻. Hence every nonzero codeword has weight at least 𝛿, giving 𝑑(𝐶) ≥ 𝛿.

Note that 𝐻 in the proof above is not a parity check matrix, as its entries do not lie in
𝔽2.
Let 𝐶 be a cyclic code with defining set {𝛼, 𝛼2,… , 𝛼𝛿−1} where 𝛼 ∈ 𝐾 is a primitive 𝑛th root
of unity. Its minimum distance is at least 𝛿, so we should be able to correct 𝑡 = ⌊𝛿−1

2
⌋ errors.

Supposewe send 𝑐 ∈ 𝐶 through the channel, and receive 𝑟 = 𝑐+𝑒where 𝑒 is the error pattern
with at most 𝑡 nonzero errors. Note that 𝑟, 𝑐, 𝑒 correspond to polynomials 𝑟(𝑋), 𝑐(𝑋), 𝑒(𝑋),
and 𝑐(𝛼𝑗) = 0 for 𝑗 ∈ {1,… , 𝛿 − 1} as 𝑐 is a codeword. Hence, 𝑟(𝛼𝑗) = 𝑒(𝛼𝑗).
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Definition. The error locator polynomial of an error pattern 𝑒 ∈ 𝔽𝑛2 is

𝜎(𝑋) =∏
𝑖∈ℰ

(1 − 𝛼𝑖𝑋) ∈ 𝐾[𝑋]

where ℰ = {𝑖 ∣ 𝑒𝑖 = 1}.
Assuming that deg𝜎 = |ℰ|, where 2𝑡 + 1 ≤ 𝛿, we must recover 𝜎 from 𝑟(𝑋).
Theorem. Suppose deg𝜎 = |ℰ| ≤ 𝑡 where 2𝑡 + 1 ≤ 𝛿. Then 𝜎(𝑋) is the unique polynomial
in 𝐾[𝑋] of least degree such that
(i) 𝜎(0) = 1;

(ii) 𝜎(𝑋)∑2𝑡
𝑗=1 𝑟(𝛼𝑗)𝑋𝑗 = 𝜔(𝑋)mod 𝑋2𝑡+1 for some 𝜔 ∈ 𝐾[𝑋] of degree at most 𝑡.

Proof. Define 𝜔(𝑋) = −𝑋𝜎′(𝑋), called the error co-locator. Hence,

𝜔(𝑋) = ∑
𝑖∈ℰ

𝛼𝑖𝑋∏
𝑗≠𝑖

(1 − 𝛼𝑗𝑋)

This polynomial has deg𝜔 = deg𝜎. Consider the ring 𝐾⟦𝑋⟧ of formal power series. In this
ring,

𝜔(𝑋)
𝜎(𝑋) = ∑

𝑖∈ℰ

𝛼𝑖𝑋
1 − 𝛼𝑖𝑋 = ∑

𝑖∈ℰ

∞
∑
𝑗=1

(𝛼𝑖𝑋)𝑗 =
∞
∑
𝑗=1

𝑋𝑗 ∑
𝑖∈ℰ

(𝛼𝑗)𝑖 =
∞
∑
𝑗=1

𝑒(𝛼𝑗)𝑋𝑗

Hence 𝜎(𝑋)∑∞
𝑗=1 𝑒(𝛼𝑗)𝑋𝑗 = 𝜔(𝑋). By definition of 𝐶, we have 𝑐(𝛼𝑗) = 0 for all 1 ≤ 𝑗 ≤

𝛿 − 1. Hence 𝑐(𝛼𝑗) = 0 for 1 ≤ 𝑗 ≤ 2𝑡. As 𝑟 = 𝑐 + 𝑒, 𝑟(𝛼𝑗) = 𝑒(𝛼𝑗) for all 1 ≤ 𝑗 ≤ 2𝑡,
hence 𝜎(𝑋)∑2𝑡

𝑗=1 𝑟(𝛼𝑗)𝑋𝑗 = 𝜔(𝑋)mod 𝑋2𝑡+1. This verifies (i) and (ii) for this choice of 𝜔, so
deg𝜔 = deg𝜎 = |ℰ| ≤ 𝑡.
For uniqueness, suppose there exist �̃�, 𝜔 with the properties (i), (ii). Without loss of gener-
ality, we can assume deg �̃� ≤ deg𝜎. 𝜎(𝑋) has distinct nonzero roots, so 𝜔(𝑋) = −𝑋𝜎′(𝑋) is
nonzero at these roots. Hence 𝜎, 𝜔 are coprime polynomials. By property (ii), �̃�(𝑋)𝜔(𝑋) =
𝜎(𝑋)𝜔(𝑋) mod 𝑋2𝑡+1. But the degrees of 𝜎, �̃�, 𝜔, 𝜔 are at most 𝑡, so this congruence is an
equality. But 𝜎(𝑋) and 𝜔(𝑋) are coprime, so 𝜎 ∣ �̃�, but deg �̃� ≤ deg𝜎 by assumption, so
�̃� = 𝜆𝜎 for some 𝜆 ∈ 𝐾. By property (i), 𝜎(0) = �̃�(0) hence 𝜆 = 1, giving �̃� = 𝜎.

Suppose that we receive 𝑟(𝑋) and wish to decode it.

• Compute∑2𝑡
𝑗=1 𝑟(𝛼𝑗)𝑋𝑗 .

• Set 𝜎(𝑋) = 1 + 𝜎1𝑋 +⋯+ 𝜎𝑡𝑋𝑡, and compute the coefficients of 𝑋 𝑖 for 𝑡 + 1 ≤ 𝑖 ≤ 2𝑡
to obtain linear equations for 𝜎1,… , 𝜎𝑡, which are of the form∑𝑡

0 𝜎𝑗𝑟(𝛼𝑖−𝑗) = 0.
• Then solve these polynomials over 𝐾, keeping solutions of least degree.
• Compute ℰ = {𝑖 ∣ 𝜎(𝛼−𝑖) = 0}, and check that |ℰ| = deg𝜎.
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• Set 𝑒(𝑋) = ∑𝑖∈ℰ 𝑋 𝑖, then 𝑐(𝑋) = 𝑟(𝑋) + 𝑒(𝑋), and check that 𝑐 is a codeword.

Example. Consider 𝑛 = 7, and 𝑋7 − 1 = (𝑋 + 1)(𝑋3 + 𝑋 + 1)(𝑋3 + 𝑋2 + 1) in 𝔽2[𝑋]. Let
𝑔(𝑋) = 𝑋3 + 𝑋 + 1, so ℎ(𝑋) = (𝑋 + 1)(𝑋3 + 𝑋2 + 1) = 𝑋4 + 𝑋2 + 𝑋 + 1. The parity check
matrix is

𝐻 = (
1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

)

The columns are the elements of 𝔽32 ∖ {0}. This is the Hamming (7, 4)-code.

Let 𝐾 be a splitting field for 𝑋7 − 1; we can take 𝐾 = 𝔽8. Let 𝛽 ∈ 𝐾 be a root of 𝑔. Note that
𝛽3 = 𝛽 + 1, so 𝛽6 = 𝛽2 + 1, so 𝑔(𝛽2) = 0, and hence 𝑔(𝛽4) = 0. So the BCH code defined
by {𝛽, 𝛽2} has generator polynomial 𝑔(𝑋), again proving that this is Hamming’s (7, 4)-code.
This code has design distance 3, so 𝑑(𝐶) ≥ 3, and we know Hamming’s code has minimum
distance exactly 3.

5.6. Shift registers
Definition. A (general) feedback shift register is a map 𝑓∶ 𝔽𝑑2 → 𝔽𝑑2 given by

𝑓(𝑥0,… , 𝑥𝑑−1) = (𝑥1,… , 𝑥𝑑−1, 𝐶(𝑥0,… , 𝑥𝑑−1))

where𝐶∶ 𝔽𝑑2 → 𝔽2. We say that the register has length 𝑑. The stream associated to an initial
fill (𝑦0,… , 𝑦𝑑−1) is the sequence 𝑦0,… with 𝑦𝑛 = 𝐶(𝑦𝑛−𝑑,… , 𝑦𝑛−1) for 𝑛 ≥ 𝑑.

Definition. The general feedback shift register 𝑓∶ 𝔽𝑑2 → 𝔽𝑑2 is a linear feedback shift register
if 𝐶 is linear, so

𝐶(𝑥0,… , 𝑥𝑑−1) =
𝑑−1
∑
𝑖=0

𝑎𝑖𝑥𝑖

We usually set 𝑎0 = 1.

The stream produced by a linear feedback shift register is now given by the recurrence rela-
tion 𝑦𝑛 = ∑𝑑−1

𝑖=0 𝑎𝑖𝑦𝑛−𝑑+𝑖. We can define the auxiliary polynomial 𝑃(𝑋) = 𝑋𝑑 + 𝑎𝑑−1𝑋𝑑−1 +
⋯+ 𝑎1𝑋 + 𝑎0. We sometimes write 𝑎𝑑 = 1, so 𝑃(𝑋) = ∑𝑑

𝑖=0 𝑎𝑖𝑋 𝑖.

Definition. The feedback polynomial is ̌𝑃(𝑋) = 𝑎0𝑋𝑑 +⋯ + 𝑎𝑑−1𝑋 + 1 = ∑𝑑
𝑖=0 𝑎𝑑−𝑖𝑋 𝑖. A

sequence 𝑦0,… of elements of 𝔽2 has generating function∑
∞
𝑗=0 𝑦𝑗𝑋𝑗 ∈ 𝔽2⟦𝑋⟧.

Theorem. The stream (𝑦𝑛)𝑛∈ℕ comes from a linear feedback shift register with auxiliary
polynomial 𝑃(𝑋) if and only if its generating function is (formally) of the form 𝐴(𝑋)

̌𝑃(𝑋)
with

𝐴 ∈ 𝔽2[𝑋] such that deg𝐴 < deg ̌𝑃.

Note that ̌𝑃(𝑋) = 𝑋deg𝑃𝑃(𝑋−1).
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Proof. Let 𝑃(𝑋) and ̌𝑃(𝑋) be as above. We require

(
∞
∑
𝑗=0

𝑦𝑗𝑋𝑗)(
𝑑
∑
𝑖=0

𝑎𝑑−𝑖𝑋 𝑖)

to be a polynomial of degree strictly less than 𝑑. This holds if and only if the coefficient of
𝑋𝑛 in 𝐺(𝑋) ̌𝑃(𝑋) is zero for all 𝑛 ≥ 𝑑, which is∑𝑑

𝑖=0 𝑎𝑑−𝑖𝑦𝑛−𝑖 = 0. This holds if and only if
𝑦𝑛 = ∑𝑑−1

𝑖=0 𝑎𝑖𝑦𝑛−𝑑+𝑖 for all 𝑛 ≥ 𝑑. This is precisely the form of a stream that arises from a
linear feedback shift register with auxiliary polynomial 𝑃.

The problem of recovering the linear feedback shift register from its stream and the prob-
lem of decoding BCH codes both involve writing a power series as a quotient of polynomi-
als.

5.7. The Berlekamp–Massey method
Let (𝑥𝑛)𝑛∈ℕ be the output of a binary linear feedback shift register. We wish to find the
unknown length 𝑑 and values 𝑎0,… , 𝑎𝑑−1 such that 𝑥𝑛 + ∑𝑑

𝑖=1 𝑎𝑑−𝑖𝑥𝑛−𝑖 = 0 for all 𝑛 ≥ 𝑑.
We have

⎛
⎜
⎜
⎜
⎝

𝑥𝑑 𝑥𝑑−1 ⋯ 𝑥1 𝑥0
𝑥𝑑+1 𝑥𝑑 ⋯ 𝑥2 𝑥1
⋮ ⋮ ⋱ ⋮ ⋮

𝑥2𝑑−1 𝑥2𝑑−2 ⋯ 𝑥𝑑 𝑥𝑑−1
𝑥2𝑑 𝑥2𝑑−1 ⋯ 𝑥𝑑+1 𝑥𝑑

⎞
⎟
⎟
⎟
⎠⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

𝐴𝑑

⎛
⎜
⎜
⎜
⎝

𝑎𝑑
𝑎𝑑−1
⋮
𝑎1
𝑎0

⎞
⎟
⎟
⎟
⎠

= 0

We look successively at 𝐴0 = (𝑥0) , 𝐴1 = (𝑥1 𝑥0
𝑥2 𝑥1

) ,…, starting at 𝐴𝑟 if we know 𝑑 ≥ 𝑟.
For each 𝐴𝑖, we compute its determinant. If |𝐴𝑖| ≠ 0, then 𝑑 ≠ 𝑖. If |𝐴𝑖| = 0, we solve
the system of linear equations on the assumption that 𝑑 = 𝑖, giving a candidate for the
coefficients 𝑎0,… , 𝑎𝑑−1. This candidate can be checked over as many terms of the stream as
desired.
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6. Cryptography
6.1. Cryptosystems
We want to modify a message such that it becomes unintelligible to an eavesdropper Eve.
Certain secret information is shared between two participants Alice and Bob, called the key,
chosen from a set of possible keys𝒦. The unencryptedmessage is called the plaintext, which
lies in a set ℳ, and the encrypted message is called the ciphertext, and lies in a set 𝒞. A
cryptosystem consists of (𝒦,ℳ,𝒞) together with the encryption function 𝑒∶ ℳ×𝒦 → 𝒞 and
decryption function 𝑑∶ 𝒞 × 𝒦 → ℳ. These maps have the property that 𝑑(𝑒(𝑚, 𝑘), 𝑘) = 𝑚
for all𝑚 ∈ ℳ, 𝑘 ∈ 𝒦.
Example. Supposeℳ = 𝒞 = {𝐴, 𝐵,… , 𝑍}⋆ = Σ⋆. The simple substitution cipher defines𝒦
to be the set of permutations of Σ. To encrypt a message, each letter of plaintext is replaced
with its image under a chosen permutation 𝜋 ∈ 𝒦.
The Vigenère cipher has𝒦 = Σ𝑑 for some 𝑑. We identify Σ and ℤ⟋26ℤ. Write out the key re-
peatedly below the plaintext, and add each plaintext letter with the corresponding key letter
to produce a letter of ciphertext. For instance, encrypting the plaintext ATTACKATDAWN
with the key LEMON gives ciphertext LXFOPVEFRNHR. Note, for instance, that each oc-
currence of the letter A in the plaintext corresponds to a letter of the key in the ciphertext.
If 𝑑 = 1, this is the Caesar cipher.

6.2. Breaking cryptosystems
Eve may know 𝑒 and 𝑑, as well as the probability distributions of 𝒦,ℳ, but she does not
know the key itself. She seeks to recover the plaintext from a given string of ciphertext.
There are three possible attack levels.

1. (ciphertext-only) Eve only knows some piece of ciphertext.

2. (known-plaintext) Eve knows a considerable length of plaintext and its corresponding
ciphertext, but not the key. In other words, she knows𝑚 and 𝑒(𝑚, 𝑘), but not 𝑘.

3. (chosen plaintext) Eve can acquire the ciphertext for any plaintext message; she can
generate 𝑒(𝑚, 𝑘) for any𝑚.

Remark. The simple substitution cipher and Vigenère cipher fail at Level 1 in English if the
messages are sufficiently long, as we can perform frequency analysis. Even if the plaintext is
suitably random, both examples can fail at Level 2. Formodern applications, Level 3 security
is desirable.

Consider a cryptosystem (ℳ,𝒦, 𝒞). We model the keys and messages as independent ran-
dom variables𝐾,𝑀 taking values in𝒦,ℳ. The ciphertext random variable is𝐶 = 𝑒(𝐾,𝑀) ∈
𝒞.
Definition. A cryptosystem (ℳ,𝒦, 𝒞) has perfect secrecy if 𝐻(𝑀 ∣ 𝐶) = 𝐻(𝑀), or equival-
ently,𝑀 and 𝐶 are independent, or 𝐼(𝑀; 𝐶) = 0.

314
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One can show that perfect secrecy implies that |𝒦| ≥ |ℳ|.
Definition. Themessage equivocation is 𝐻(𝑀 ∣ 𝐶). The key equivocation is 𝐻(𝐾 ∣ 𝐶).
Lemma. 𝐻(𝑀 ∣ 𝐶) ≤ 𝐻(𝐾 ∣ 𝐶).

Proof. Note that 𝑀 = 𝑑(𝐶, 𝐾), hence 𝐻(𝑀 ∣ 𝐶, 𝐾) = 0. Therefore, 𝐻(𝐶, 𝐾) = 𝐻(𝑀,𝐶, 𝐾).
So

𝐻(𝐾 ∣ 𝐶) = 𝐻(𝐾, 𝐶) − 𝐻(𝐶)
= 𝐻(𝑀,𝐶, 𝐾) − 𝐻(𝑀 ∣ 𝐾, 𝐶) − 𝐻(𝐶)
= 𝐻(𝑀,𝐾, 𝐶) − 𝐻(𝐶)
= 𝐻(𝐾 ∣ 𝑀, 𝐶) + 𝐻(𝑀,𝐶) − 𝐻(𝐶)
= 𝐻(𝐾 ∣ 𝑀, 𝐶) + 𝐻(𝑀 ∣ 𝐶)

Hence 𝐻(𝐾 ∣ 𝐶) ≥ 𝐻(𝑀 ∣ 𝐶).

Letℳ = 𝒞 = 𝒜, and suppose we send 𝑛messages modelled as𝑀(𝑛) = (𝑀1,… ,𝑀𝑛) encryp-
ted as 𝐶(𝑛) = (𝐶1,… , 𝐶𝑛) using the same key 𝐾.
Definition. The unicity distance is the least 𝑛 such that 𝐻(𝐾 ∣ 𝐶(𝑛)) = 0; it is the smallest
number of encrypted messages required to uniquely determine the key.

Now,

𝐻(𝐾 ∣ 𝐶(𝑛)) = 𝐻(𝐾, 𝐶(𝑛)) − 𝐻(𝐶(𝑛))
= 𝐻(𝐾,𝑀(𝑛), 𝐶(𝑛)) − 𝐻(𝐶(𝑛))
= 𝐻(𝐾,𝑀(𝑛)) − 𝐻(𝐶(𝑛))
= 𝐻(𝐾) + 𝐻(𝑀(𝑛)) − 𝐻(𝐶(𝑛))

as 𝐾,𝑀(𝑛) are independent. We make the following assumptions.

(i) All keys are equally likely, so 𝐻(𝐾) = log |𝒦|.
(ii) 𝐻(𝑀(𝑛)) ≈ 𝑛𝐻 for some constant 𝐻 and sufficiently large 𝑛.

(iii) All sequences of ciphertext are equally likely, so 𝐻(𝐶(𝑛)) = 𝑛 log |𝒜|.
Hence,

𝐻(𝐾 ∣ 𝐶(𝑛)) = log |𝒦| + 𝑛𝐻 − 𝑛 log |𝒜|
This is nonnegative if and only if

𝑛 ≤ 𝑈 = log |𝒦|
log |𝒜| − 𝐻

Equivalently, log |𝒜|
𝑅 log |𝒜|

where 𝑅 = 1 − 𝐻
log |𝒜|

is the redundancy of the source. Recall that
0 ≤ 𝐻 ≤ log |𝒜|. To make the unicity distance large, we can make the number of keys large,
or use a message source with little redundancy.

315



VI. Coding and Cryptography

6.3. One-time pad
Consider streams in 𝔽2 representing the plaintext 𝑝0, 𝑝1,…, the key stream 𝑘0, 𝑘1,…, and
the ciphertext 𝑧0, 𝑧1,… where 𝑧𝑛 = 𝑝𝑛 + 𝑘𝑛.
Definition. A one-time pad is a cryptosystem where 𝑘 is generated randomly; the 𝑘𝑖 are
independent and take values of 0 or 1 with probability 1

2
.

𝑧 = 𝑝 + 𝑘 is now a stream of independent and identically distributed random variables
taking values of 0 or 1 with probability 1

2
. Hence, without the key stream, deciphering is

impossible, so the unicity distance is infinite. One can show that a one-time pad has perfect
secrecy.

In order to effectively use a one-time pad, we need to generate a randomkey stream. We then
need to share the key stream to the recipient, which is exactly the initial problem. In most
applications, the one-time pad is not practical. Instead, we share an initial fill 𝑘0,… , 𝑘𝑑−1
to be used in a shared feedback shift register of length 𝑑 to generate 𝑘. We then apply the
following result.

Lemma. Let 𝑥0, 𝑥1,… be a stream in 𝔽2 produced by a feedback shift register of length 𝑑.
Then there exist𝑀,𝑁 ≤ 2𝑑 such that 𝑥𝑁+𝑟 = 𝑥𝑟 for all 𝑟 ≥ 𝑀.

Proof. Let the register be 𝑓∶ 𝔽𝑑2 → 𝔽𝑑2 , and let 𝑣𝑖 = (𝑥𝑖,… , 𝑥𝑖+𝑑−1). Then for all 𝑖, we have
𝑓(𝑣𝑖) = 𝑣𝑖+1. Since ||𝔽𝑑2 || = 2𝑑, the tuples 𝑣0, 𝑣1,… , 𝑣2𝑑 cannot all be distinct. Let 𝑎 < 𝑏 ≤ 2𝑑
such that 𝑣𝑎 = 𝑣𝑏. Let 𝑀 = 𝑎 and 𝑁 = 𝑏 − 𝑎, so 𝑣𝑀 = 𝑣𝑀+𝑁 so by induction we have
𝑣𝑟 = 𝑣𝑟+𝑁 for all 𝑟 ≥ 𝑀.

Remark. The maximum period of a feedback shift register of length 𝑑 is 2𝑑. For a linear
feedback shift register, the maximum period is 2𝑑 − 1; this result is shown on the fourth
example sheet.

Stream ciphers using linear feedback shift registers fail at level 2 due to the Berlekamp–
Massey method. However, this cryptosystem is cheap, fast, and easy to use. Encryption and
decryption can be performed on-the-fly, without needing the entire codeword first, and it is
error-tolerant.

Recall that the stream produced by a linear feedback shift register is given by

𝑥𝑛 =
𝑑
∑
𝑖=1

𝑎𝑑−𝑖𝑥𝑛−𝑖

for all 𝑛 ≥ 𝑑, and has auxiliary polynomial

𝑃(𝑋) = 𝑋𝑑 + 𝑎𝑑−1𝑋𝑑−1 +⋯+ 𝑎0
with 𝑎𝑑 = 1. The solutions to the recursion relations are linear combinations of powers of
roots of 𝑃. Over ℂ, the general solution is a linear combination of 𝛼𝑛, 𝑛𝛼𝑛,… , 𝑛𝑡−1𝛼𝑛 where
𝛼 is a root of 𝑃(𝑋) with multiplicity 𝑡.
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As 𝑛2 = 𝑛 in 𝔽2, we cannot use thismethod directly. First, wemust work in a splitting field𝐾
of 𝑃, a field containing 𝔽2 in which 𝑃 is expressible as a product of linear factors. In addition,
we replace the 𝑛𝑖𝛼𝑛 term with (𝑛

𝑖
)𝛼𝑛. The general solution is now a linear combination of

these terms in 𝐾.

We can also generate new key streams from old ones.

Lemma. Let (𝑥𝑛), (𝑦𝑛) be outputs from linear feedback shift registers of length 𝑀,𝑁 re-
spectively. Then,

(i) the sequence (𝑥𝑛+𝑦𝑛) is the output of a linear feedback shift register of length𝑀+𝑁;

(ii) the sequence (𝑥𝑛𝑦𝑛) is the output of a linear feedback shift register of length𝑀𝑁.

The following proof is non-examinable.

Proof. Assume for simplicity that the auxiliary polynomials 𝑃(𝑋), 𝑄(𝑋) each have distinct
roots 𝛼1, 𝛼𝑀 and 𝛽1,… , 𝛽𝑁 in a field 𝐾 extending 𝔽2. Then 𝑥𝑛 = ∑𝑀

𝑖=1 𝜆𝑖𝛼𝑛𝑖 and 𝑦𝑛 =
∑𝑁

𝑖=1 𝜇𝑗𝛽𝑛𝑗 where 𝜆𝑖, 𝜇𝑗 ∈ 𝐾. Now, 𝑥𝑛 + 𝑦𝑛 = ∑𝑀
𝑖=1 𝜆𝑖𝛼𝑛𝑖 ∑

𝑁
𝑖=1 𝜇𝑗𝛽𝑛𝑗 is produced by a linear

feedback shift register with auxiliary polynomial 𝑃(𝑋)𝑄(𝑋). For the second part, 𝑥𝑛𝑦𝑛 =
∑𝑀

𝑖=1∑
𝑛
𝑗=1 𝜆𝑖𝜇𝑗(𝛼𝑖𝛽𝑗)𝑛 is the output of a linear feedback shift register with auxiliary polyno-

mial∏𝑁
𝑖=1∏

𝑀
𝑗=1(𝑋 − 𝛼𝑖𝛽𝑗).

Adding outputs of linear feedback shift registers is no more economical than producing the
same string with a single linear feedback shift register. Muliplying streams does increase
the effective length of the linear feedback shift register, but 𝑥𝑛𝑦𝑛 = 0 when either 𝑥𝑛 or 𝑦𝑛
are zero, so we gain little extra data. Nonlinear feedback shift registers are in general hard
to analyse; in particular, an eavesdropper may understand the feedback shift register better
than Alice and Bob.

6.4. Asymmetric ciphers
Stream ciphers are examples of symmetric cryptosystems. In such a system, the decryption
process is the same, or is easily deduced from, the encryption process. In an asymmetric
cryptosystem, the key is split into two parts: the private key for decryption, and the public
key for encryption. Knowing the encryption and decryption processes and the public key,
it should still be hard to find the private key or to decrypt the messages. This aim implies
security at level 3. In this case, there is also no key exchange problem, since the public key
can be broadcast on an open channel.

We base asymmetric cryptosystems on certain mathematical problems in number theory
which are believed to be ‘hard’, such as the following.

(i) Factoring. Let𝑁 = 𝑝𝑞 for 𝑝, 𝑞 large prime numbers. Given𝑁, the task is to find 𝑝 and
𝑞.
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(ii) Discrete logarithm problem. Let 𝑝 be a large prime and 𝑔 be a primitive root mod 𝑝 (a
generator of 𝔽⋆

𝑝). Given 𝑥, we wish to find 𝑎 such that 𝑥 ≡ 𝑔𝑎 mod 𝑝.

Definition. An algorithm runs in polynomial time if the number of operations needed to
perform the algorithm is at most 𝑐𝑁𝑑 where 𝑁 is the input size, and 𝑐, 𝑑 are constants.

Example. An algorithm for factoring 𝑁 has input size log2𝑁, roughly the number of bits
in its binary expansion. Polynomial time algorithms include arithmetic operations on in-
tegers including the division algorithm, computation of greatest common divisors, and the
Euclidean algorithm. We can also compute 𝑥𝛼 mod 𝑁 in polynomial time using repeated
squaring; this is called modular exponentiation. Primality testing can be performed in poly-
nomial time.

Polynomial time algorithms are not known for examples (i) and (ii) above. However, we
have elementary methods for computing (i) and (ii) that take exponential time. If 𝑁 = 𝑝𝑞,
dividing 𝑁 by successive primes up to√𝑁 will find 𝑝 and 𝑞 but takes 𝑂(√𝑁) = 𝑂(2

𝐵
2 ) steps

where 𝐵 = log2𝑁.

We describe the baby-step, giant-step algorithm for the discrete logarithm problem. Set𝑚 =
⌈√𝑝⌉, and write 𝑎 = 𝑞𝑚 + 𝑟 for 0 ≤ 𝑞, 𝑟 < 𝑚. Then, 𝑥 ≡ 𝑔𝑎 = 𝑔𝑞𝑚+𝑟 mod 𝑝, so 𝑔𝑞𝑚 = 𝑔−𝑟𝑥
mod 𝑝. We list all values of 𝑔𝑞𝑚 and 𝑔−𝑟𝑥 mod 𝑝; we then sort the lists and search for a
match. This takes 𝑂(√𝑝 log𝑝) steps.

The best known methods for solving the examples above use a factor base method, called
themodular number sieve. It has running time

𝑂(exp(𝑐(log𝑁)
1
3 (log log𝑁)

2
3 ))

where 𝑐 is a known constant.

6.5. Rabin cryptosystem

Recall that Euler’s totient function is denoted 𝜑, where 𝜑(𝑛) is the number of integers less
than 𝑛 which are coprime to 𝑛. Equivalently, 𝜑(𝑛) = |

|(ℤ⟋𝑛ℤ)
×|
|. By Lagrange’s theorem,

𝑎𝜑(𝑁) ≡ 1 mod 𝑁 for each 𝑎 coprime to 𝑁; this result is sometimes known as the Fermat–
Euler theorem. If 𝑁 = 𝑝 is prime, 𝑎𝑝−1 ≡ 1mod 𝑝, which is Fermat’s little theorem.

Lemma. Let 𝑝 = 4𝑘 − 1 be a prime, and let 𝑑 ∈ ℤ. If 𝑥2 ≡ 𝑑mod 𝑝 is soluble, one solution
is 𝑥 ≡ 𝑑𝑘 mod 𝑝.

Proof. Suppose 𝑥0 is a solution, so 𝑥20 ≡ 𝑑mod 𝑝. Without loss of generality we can assume
𝑥0 ≢ 0, or equivalently, 𝑥0 ∤ 𝑝. Then 𝑥20 ≡ 𝑑 so 𝑑2𝑘−1 ≡ 𝑥2(2𝑘−1)0 ≡ 𝑥𝑝−10 ≡ 1. Hence,
(𝑑𝑘)2 ≡ 𝑑.
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In the Rabin cryptosystem, the private key consists of two large distinct primes 𝑝, 𝑞 ≡ 3
mod 4. The public key is 𝑁 = 𝑝𝑞. ℳ = 𝒞 = {1,… ,𝑁 − 1} = ℤ×𝑁 . We encrypt a plaintext
message 𝑚 as 𝑐 = 𝑚2 mod 𝑁. Usually, we restrict our messages so that (𝑚,𝑁) = 1 and
𝑚 > √𝑁.

Receiving ciphertext 𝑐, we can solve for 𝑥1, 𝑥2 such that 𝑥21 ≡ 𝑐 mod 𝑝 and 𝑥22 ≡ 𝑐 mod
𝑞 using the previous lemma. Then, applying the Chinese remainder theorem, we can find
𝑥 such that 𝑥 ≡ 𝑥1 mod 𝑝 and 𝑥 ≡ 𝑥2 mod 𝑞, hence 𝑥2 ≡ 𝑐 mod 𝑁. Indeed, running
the Euclidean algorithm on 𝑝, 𝑞 gives integers 𝑟, 𝑠 such that 𝑟𝑝 + 𝑠𝑞 = 1, then we can take
𝑥 = 𝑠𝑞𝑥1 + 𝑟𝑝𝑥2.

Lemma. (i) Let 𝑝 be an odd prime, and let (𝑑, 𝑝) = 1. Then 𝑥2 ≡ 𝑑 mod 𝑝 has no
solutions or exactly two solutions.

(ii) Let 𝑁 = 𝑝𝑞 where 𝑝, 𝑞 are distinct odd primes, and let (𝑑, 𝑁) = 1. Then 𝑥2 ≡ 𝑑 mod
𝑁 has no solutions or exactly four solutions.

Proof. Part (i). 𝑥2 ≡ 𝑦2 mod 𝑝 if and only if 𝑝 ∣ (𝑥2−𝑦2) = (𝑥−𝑦)(𝑥+𝑦), so either 𝑝 ∣ 𝑥−𝑦
or 𝑝 ∣ 𝑥 + 𝑦, so 𝑥 = ±𝑦.

Part (ii). If 𝑥0 is a solution, then by the Chinese remainder theorem, there exist solutions 𝑥
with 𝑥 ≡ ±𝑥0 mod 𝑝 and 𝑥 ≡ ±𝑥0 mod 𝑞. This gives four solutions as required. By (i), these
are the only possible solutions.

Hence, to decrypt the Rabin cipher, we must find all four solutions to 𝑥2 ≡ 𝑐 mod 𝑁. Mes-
sages should include enough redundancy to uniquely determine which of these four solu-
tions is the intended plaintext.

Theorem. Breaking the Rabin cryptosystem is essentially as difficult as factoring 𝑁.

Proof. If we can factorise 𝑁 as 𝑝𝑞, we have seen that we can decrypt messages. Conversely,
supposewe can break the cryptosystem, sowehave an algorithm to find square rootsmodulo
𝑁. Choose 𝑥 mod 𝑁 at random, and use the algorithm to find 𝑦 such that 𝑦2 ≡ 𝑥2 mod 𝑁.
With probability 1

2
, 𝑥 ≠ ±𝑦 mod 𝑁. Then, (𝑁, 𝑥 − 𝑦) is a nontrivial factor of 𝑁. If this fails,

choose another 𝑥, and repeat until the probability of failure ( 1
2
)
𝑟
is acceptably low.

6.6. RSA cryptosystem
Suppose 𝑁 = 𝑝𝑞 where 𝑝, 𝑞 are distinct odd primes. We claim that if we know a multiple
𝑚 of 𝜑(𝑁) = (𝑝 − 1)(𝑞 − 1), then factoring 𝑁 is ‘easy’. Write 𝑜𝑝(𝑥) for the order of 𝑥 as an
element of (ℤ⟋𝑝ℤ)

×
. Write𝑚 = 2𝑎𝑏 where 𝑎 ≥ 1, 𝑏 odd. Let

𝑋 = {𝑥 ∈ (ℤ⟋𝑁ℤ)
× |
| 𝑜𝑝(𝑥𝑏) ≠ 𝑜𝑞(𝑥𝑏)}
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Theorem. (i) If 𝑥 ∈ 𝑋 , then there exists 0 ≤ 𝑡 < 𝑎 such that (𝑥2𝑡𝑏 − 1,𝑁) is a nontrivial
factor of 𝑁.

(ii) |𝑋| ≥ 1
2
|
|(ℤ⟋𝑁ℤ)

×|
| =

1
2
(𝑝 − 1)(𝑞 − 1).

Proof. Part (i). By the Fermat–Euler theorem, 𝑥𝜑(𝑁) ≡ 1 mod 𝑁. Hence 𝑥𝑚 ≡ 1 mod 𝑁.
But 𝑚 = 2𝑎𝑏, so setting 𝑦 = 𝑥𝑏 mod 𝑁, we obtain 𝑦2𝑎 ≡ 1 mod 𝑁. In particular, 𝑜𝑝(𝑦) and
𝑜𝑞(𝑦) are powers of 2. Since 𝑥 ∈ 𝑋 , 𝑜𝑝(𝑦) ≠ 𝑜𝑞(𝑦), so without loss of generality suppose
𝑜𝑝(𝑦) < 𝑜𝑞(𝑦). Let 𝑜𝑝(𝑦) = 2𝑡, so 0 ≤ 𝑡 < 𝑎. Then 𝑦2𝑡 ≡ 1 mod 𝑝, but 𝑦2𝑡 ≢ 1 mod 𝑞. So
(𝑦2𝑡 − 1,𝑁) = 𝑝 as required.

The proof of part (ii) will be seen later.

In the RSA cryptosystem, the private key consists of large distinct primes 𝑝, 𝑞 chosen at
random. Let𝑁 = 𝑝𝑞, and choose the encrypting exponent 𝑒 randomly such that (𝑒, 𝜑(𝑁)) = 1,
for instance taking 𝑒 prime larger than 𝑝, 𝑞. By Euclid’s algorithm, there exist 𝑑, 𝑘 such that
𝑑𝑒 − 𝑘𝜑(𝑁) = 1; 𝑑 is called the decrypting exponent.
The public key is (𝑁, 𝑒), and we encrypt 𝑚 ∈ ℳ as 𝑐 ≡ 𝑚𝑒 mod 𝑁. The private key is
(𝑁, 𝑑), and we decrypt 𝑐 ∈ 𝒞 as 𝑥 ≡ 𝑐𝑑 mod 𝑁. By the Fermat–Euler theorem, 𝑥 ≡ 𝑚𝑑𝑒 ≡
𝑚1+𝑘𝜑(𝑁) ≡ 𝑚 mod 𝑁, noting that the probability that (𝑚,𝑁) ≠ 1 is small enough to be
ignored. Hence, the decrypting function is inverse to the encrypting function.

Corollary. Finding the RSA private key (𝑁, 𝑑) is essentially as difficult as factoring 𝑁.

Proof. Wehave already shown that if we can factorise𝑁, we can find 𝑑. Conversely, suppose
there is an algorithm to find 𝑑 given 𝑁 and 𝑒. Then 𝑑𝑒 ≡ 1 mod 𝜑(𝑁). Taking 𝑚 = 𝑑𝑒 − 1
in the proof of part (i) of the theorem above, we can factorise 𝑁. If this fails, repeat until the
probability of failure is acceptably low. After 𝑟 such random choices, we find a factor of 𝑁
with probability 1 − ( 1

2
)
𝑟
.

We now prove part (ii) of the above theorem.

Proof. The Chinese remainder theorem provides a multiplicative group isomorphism

(ℤ⟋𝑁ℤ)
×
→ (ℤ⟋𝑝ℤ)

×
× (ℤ⟋𝑞ℤ)

×

mapping 𝑥 to (𝑥mod 𝑝, 𝑥mod 𝑞). We claim that if we partition (ℤ⟋𝑝ℤ)
×
according to the

value of 𝑜𝑝(𝑥𝑏), then each equivalence class has size at most

1
2
|||(
ℤ⟋𝑝ℤ)

×||| =
1
2(𝑝 − 1)

We show that one of these subsets has size exactly 1
2
(𝑝 − 1). Let 𝑔 be a primitive root mod

𝑝, so (ℤ⟋𝑝ℤ)
×
= ⟨𝑔⟩. By Fermat’s little theorem, 𝑔𝑝−1 ≡ 1mod 𝑝, so 𝑔𝑚 = 𝑔2𝑎𝑏 ≡ 1mod 𝑝.
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Hence, 𝑜𝑝(𝑔𝑏) is a power of 2, say 2𝑡 ≤ 𝑎. Let 𝑥 = 𝑔𝑘 for some 0 ≤ 𝑘 ≤ 𝑝−2, then 𝑥𝑏 = (𝑔𝑏)𝑘,
so 𝑜𝑝(𝑥𝑏) =

2𝑡

(2𝑡,𝑘)
. So 𝑜𝑝(𝑥𝑏) = 2𝑡 if and only if 𝑘 is odd, so

𝑜𝑝(𝑥𝑏) = 𝑜𝑝(𝑔𝑏𝑘) = {𝑜𝑝(𝑔
𝑏) = 2𝑡 if 𝑘 odd

< 2𝑡 if 𝑘 even

Thus, {𝑔𝑘 mod 𝑝 ∣ 𝑘 odd} is the set as required, proving the claim. To finish, for each 𝑦 ∈
(ℤ⟋𝑞ℤ)

×
, the set

{𝑥 ∈ (ℤ⟋𝑝ℤ)
× ||| 𝑜𝑝(𝑥

𝑏) ≠ 𝑜𝑞(𝑥𝑏)}

has at least 1
2
(𝑝 − 1) elements. Applying the Chinese remainder theorem,

|𝑋| = |||{(𝑥, 𝑦) ∈ (ℤ⟋𝑝ℤ)
×
× (ℤ⟋𝑞ℤ)

× ||| 𝑜𝑝(𝑥
𝑏) ≠ 𝑜𝑞(𝑥𝑏)}||| ≥

1
2(𝑝 − 1)(𝑞 − 1) = 1

2𝜑(𝑁)

Remark. We have shown that finding (𝑁, 𝑑) from the public key (𝑁, 𝑒) is as hard as factoring
𝑁. It is unknown whether decrypting messages sent via RSA is as hard as factoring.

RSA avoids the issue of needing to share keys, but it is slow. Symmetric ciphers are often
faster.

Example (Shamir’s padlock example). Let 𝒜 = ℤ𝑝. Alice chooses 𝑎 ∈ ℤ⋆
𝑝−1 and computes

𝑔𝑎. She finds 𝑎′ such that 𝑎𝑎′ = 1mod 𝑝 − 1. Bob chooses 𝑏 ∈ ℤ⋆
𝑝−1 and computes 𝑔𝑏. He

similarly finds 𝑏′ such that 𝑏𝑏′ = 1mod 𝑝 − 1.

Let𝑚 be a message in ℤ𝑝. She encodes𝑚 as 𝑐 = 𝑚𝑎 mod 𝑝. She then sends this to Bob, who
computes 𝑑 = 𝑐𝑏 mod 𝑝. He sends this back to Alice, who computes 𝑒 = 𝑑𝑎′ mod 𝑝. She
sends this back to Bob, who computes 𝑒𝑏′ mod 𝑝. By Fermat’s little theorem, 𝑒𝑏′ ≡ 𝑑𝑎′𝑏′ ≡
𝑐𝑏𝑎′𝑏′ ≡ 𝑚𝑎𝑏𝑎′𝑏′ ≡ 𝑚.

𝑚 𝑚𝑎 𝑐𝑏 𝑑𝑎′ 𝑒𝑏′𝐴 𝐵 𝐴 𝐵

Example (Diffie–Hellman key exchange). Alice and Bob wish to agree on a secret key 𝑘.
Let 𝑝 be a large prime, and 𝑔 a primitive root mod 𝑝. Alice chooses an exponent 𝛼 ∈ ℤ𝑝−1
and sends 𝑔𝛼 mod 𝑝 to Bob. Bob chooses an exponent 𝛽 and sends 𝑔𝛽 mod 𝑝 to Alice. Both
Alice and Bob compute 𝑘 = 𝑔𝛼𝛽, which can be used as their secret key. An eavesdropper
must find 𝑔𝛼𝛽 knowing 𝑔, 𝑔𝛼, and 𝑔𝛽. Diffie and Hellman conjectured that this problem is
as difficult as solving the discrete logarithm problem.
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6.7. Secrecy and attacks
Consider amessage𝑚 sent byAlice to Bob. Here are some possible aims that the participants
may have in communication.

(i) Secrecy: Alice and Bob can be sure that no third party can read the message.

(ii) Integrity: Alice and Bob can be sure that no third party can alter the message.

(iii) Authenticity: Bob can be sure that Alice sent the message.

(iv) Non-repudiation: Bob can prove to a third party that Alice sent the message.

Example (authenticity using RSA). Suppose Alice uses a private key (𝑁, 𝑑) to encrypt 𝑚.
Anyone can decrypt 𝑚 using the public key (𝑁, 𝑒) as (𝑚𝑑)𝑒 = (𝑚𝑒)𝑑 = 𝑚, but they cannot
forge a message sent by Alice. Suppose Bob picks a randommessage𝑚 and sends it to Alice;
if Bob then receives a message back from Alice which after decryption ends in 𝑚, then he
can be sure it comes from Alice.

Signature schemes preserve integrity and non-repudiation. They also prevent tampering in
the following sense.

Example (homomorphism attack). Suppose a bank sends messages of the form (𝑀1,𝑀2)
where𝑀1 represents the client’s name and𝑀2 represents an amount of money to be trans-
ferred into their account. Suppose that messages are encoded using RSA as (𝑍1, 𝑍2) =
(𝑀𝑒

1,𝑀𝑒
2), where all calculations are performed modulo 𝑁. A client 𝐶 transfers £100 to their

account, and observes the encryptedmessage (𝑍1, 𝑍2). Then, sending (𝑍1, 𝑍32) to the bank, 𝐶
becomes a millionaire without breaking RSA. Alternatively, one could simply send (𝑍1, 𝑍2)
to the bankmany times, gaining more money each time; this particular attack is defeated by
timestamping the messages.

Definition. Amessage𝑚 is signed as (𝑚, 𝑠)where the signature 𝑠 = 𝑠(𝑚, 𝑘) is a function of
𝑚 and the private key 𝑘.

The recipient can check the signature using the public key to verify authenticity of the mes-
sage. The signature function or trapdoor function 𝑠∶ ℳ × 𝒦 → 𝒮 is designed such that
without knowledge of the private key, one cannot sign messages, but anyone can check
whether a signature is valid. Note that the signature is associated to each message, not to
each sender.

Example (signatures using RSA). Suppose Alice has a private key (𝑁, 𝑑), and broadcasts a
public key (𝑁, 𝑒). She signs a message 𝑚 as (𝑚, 𝑠) where 𝑠 = 𝑚𝑑 mod 𝑁. The signature is
verified by checking 𝑠𝑒 = 𝑚.

This technique is vulnerable to the homomorphism attack. This is also vulnerable to the
existential forgery attack, in which an attacker produces valid signed messages of the form
(𝑠𝑒 mod 𝑁, 𝑠) after choosing 𝑠 first. Hopefully, such messages are not meaningful.

To solve these problems, we could use a better signature scheme. In addition, rather than
signing amessage𝑚, we instead sign the digest ℎ(𝑚)where ℎ∶ ℳ → {1,… ,𝑁 − 1} is a hash
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function. A hash function is a publicly known function for which it is very difficult to find
pairs of messages with matching hashes; such a pair is called a collision. Examples of hash
functions include MD5 and the SHA family.

6.8. Elgamal signature scheme
Alice chooses a large prime 𝑝 and a random integer 𝑢 with 1 < 𝑢 < 𝑝. Let 𝑔 be a primitive
root mod 𝑝. The public key is 𝑝, 𝑔, 𝑦 = 𝑔𝑢 mod 𝑝. The private key is 𝑢. Let ℎ∶ ℳ →
{1,… , 𝑝 − 1} be a collision-resistant hash function.
To send a message 𝑚 with 0 ≤ 𝑚 ≤ 𝑝 − 1, Alice randomly chooses 𝑘 with 1 ≤ 𝑘 ≤ 𝑝 − 2
coprime to 𝑝 − 1. She computes 𝑟, 𝑠 with 1 ≤ 𝑟 ≤ 𝑝 − 1 and 1 ≤ 𝑠 ≤ 𝑝 − 2 satisfying

𝑟 ≡ 𝑔𝑘 mod 𝑝; ℎ(𝑚) ≡ 𝑢𝑟 + 𝑘𝑠 mod (𝑝 − 1)

Since 𝑘 is coprime to 𝑝 − 1, the congruence for 𝑠 always has a solution. Alice signs the
message with the signature (𝑟, 𝑠). Now,

𝑔ℎ(𝑚) ≡ 𝑔𝑢𝑟+𝑘𝑠 ≡ (𝑔𝑢)𝑟(𝑔𝑘)𝑠 ≡ 𝑦𝑟𝑟𝑠 mod 𝑝

Bob accepts a signature if 𝑔ℎ(𝑚) ≡ 𝑦𝑟𝑟𝑠 mod 𝑝. To forge a signature, obvious attacks involve
the discrete logarithm problem, finding 𝑢 from 𝑦 = 𝑔𝑢.
Lemma. Let 𝑎, 𝑏,𝑚 ∈ ℕ and consider the congruence 𝑎𝑥 ≡ 𝑏 mod 𝑚. This has either no
solutions or gcd(𝑎,𝑚) solutions for 𝑥mod𝑚.

Proof. Let 𝑑 = gcd(𝑎,𝑚). If 𝑑 ∤ 𝑏, there is no solution. If 𝑑 ∣ 𝑏, we can rewrite the con-
gruence as 𝑎

𝑑
𝑥 ≡ 𝑏

𝑑
mod 𝑚

𝑑
. Note that 𝑎

𝑑
, 𝑚
𝑑
are coprime, so this congruence has a unique

solution.

It is vital that Alice chooses a new value of 𝑘 to sign eachmessage. Suppose she sends𝑚1, 𝑚2
using the same value of 𝑘. Denote the signatures (𝑟, 𝑠1) and (𝑟, 𝑠2); note that 𝑟 depends only
on 𝑘 and is hence fixed.

ℎ(𝑚1) ≡ 𝑢𝑟 + 𝑘𝑠1 mod (𝑝 − 1); ℎ(𝑚2) ≡ 𝑢𝑟 + 𝑘𝑠2 mod (𝑝 − 1)

Hence,
ℎ(𝑚1) − ℎ(𝑚2) ≡ 𝑘(𝑠1 − 𝑠2) mod (𝑝 − 1)

Let 𝑑 = gcd(𝑝 − 1, 𝑠1 − 𝑠2). By the previous lemma, this is the number of solutions for 𝑘
modulo 𝑝−1. Choose the solution that gives the correct value in the first congruence 𝑟 ≡ 𝑔𝑘
mod 𝑝. Then,

𝑠1 ≡
ℎ(𝑚1) − 𝑢𝑟

𝑘 mod (𝑝 − 1)

This gives 𝑢𝑟 ≡ ℎ(𝑚1)−𝑘𝑠1. Hence, using the lemma again, there are gcd(𝑝−1, 𝑟) solutions
for 𝑢. Choose the solution for 𝑢 that gives 𝑦 ≡ 𝑔𝑢. This allows us to deduce Alice’s private
key 𝑢, as well as the exponent 𝑘 used in both messages.
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6.9. The digital signature algorithm
The digital signature algorithm is a variant of the Elgamal signature scheme developed by
the NSA. The public key is (𝑝, 𝑞, 𝑔) constructed as follows.

• Let𝑝 be a prime of exactly𝑁 bits, where𝑁 is amultiple of 64 such that 512 ≤ 𝑁 ≤ 1024,
so 2𝑁−1 < 𝑝 < 2𝑁 .

• Let 𝑞 be a prime of 160 bits, such that 𝑞 ∣ 𝑝 − 1.

• Let 𝑔 ≡ ℎ
𝑝−1
𝑞 mod 𝑝, where ℎ is a primitive root mod 𝑝; in particular, 𝑔 is an element

of order 𝑞 in ℤ×𝑝 .
• Alice chooses a private key 𝑥 with 1 < 𝑥 < 𝑞 and publishes 𝑦 = 𝑔𝑥.

Let 𝑚 be a message with 0 ≤ 𝑚 < 𝑞. She chooses a random 𝑘 with 1 < 𝑘 < 𝑞, and
computes

𝑠1 ≡ (𝑔𝑘 mod 𝑝)mod 𝑞; 𝑠2 ≡ 𝑘−1(𝑚 + 𝑥𝑠1)mod 𝑞
The signature is (𝑠1, 𝑠2). To verify a signature, we perform the following procedure. Bob
computes𝑤 ≡ 𝑠−12 mod 𝑞, 𝑢1 ≡ 𝑚𝑤mod 𝑞, 𝑢2 ≡ 𝑠1𝑤mod 𝑞, and 𝑣 = (𝑔𝑢1𝑦𝑢2 mod 𝑝)mod 𝑞.
He accepts the signature if 𝑣 = 𝑠1.
Proposition. If a message is signed with the DSA and the message is not manipulated, the
signature is accepted.

Proof. First, note that (𝑚 + 𝑥𝑠1)𝑤 = 𝑘𝑠2𝑠−12 mod 𝑞. Now, as 𝑔𝑞 = 1mod 𝑝,

𝑣 = (𝑔𝑢1𝑦𝑢2 mod 𝑝)mod 𝑞
= (𝑔𝑚𝑤𝑔𝑥𝑠1𝑤 mod 𝑝)mod 𝑞
= (𝑔(𝑚+𝑥𝑠1)𝑤 mod 𝑝)mod 𝑞
= (𝑔𝑘 mod 𝑝)mod 𝑞
= 𝑠1

Hence, for a correctly signed message, the verification succeeds.

Suppose that Alice sends𝑚1 to Bob and𝑚2 to Carol, and provides signatures for each mes-
sage using the DSA. One can show that if Alice uses the same value of 𝑘 for both transmis-
sions, it is possible for an eavesdropper to recover the private key 𝑥 from the signed mes-
sages.

6.10. Commitment schemes
Suppose Alice wants to send a bit𝑚 ∈ {0, 1} to Bob in such a way that
(i) Bob cannot determine the value of𝑚 without Alice’s help; and

(ii) Alice cannot change the bit once she has sent it.
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Such a system can be used for coin tossing: suppose Alice and Bob are in different rooms,
where Alice tosses a coin and Bob guesses the result. The result of the coin and Bob’s guess
can be viewed as messages of this form. As another example, consider a poll whose result
cannot be viewed until everyone has voted. We will see two examples of such a commit-and-
reveal strategy, known as bit commitment.

Suppose that we have a publicly known encryption function 𝑒𝐴 and a decryption function
𝑑𝐴 known only to Alice. Alice makes a choice for her message 𝑚, and commits to Bob the
ciphertext 𝑐 = 𝑒𝐴(𝑚). Under the assumption that the cipher is secure, Bob cannot decipher
the message. To reveal her choice, Alice sends her private key to Bob, who can then use it
to decipher the message 𝑑𝐴(𝑐) = 𝑑𝐴(𝑒𝐴(𝑚)) = 𝑚. He can also check that 𝑑𝐴, 𝑒𝐴 are inverse
functions and thus ensure that Alice sent the correct private key.

Alternatively, suppose that Alice has two ways to communicate to Bob: a clear channel
which transmits with no errors, and a binary symmetric channel with error probability 𝑝.
Suppose 0 < 𝑝 < 1

2
, and the noisy channel corrupts bits independent of any action of Alice

or Bob, so neither can affect its behaviour. Bob publishes a binary linear code 𝐶 of length 𝑁
and minimum distance 𝑑, and Alice publishes a random non-trivial linear map 𝜃∶ 𝐶 → 𝔽2.
To send a bit𝑚 ∈ 𝔽2, Alice chooses a random codeword 𝑐 ∈ 𝐶 such that 𝜃(𝑐) = 𝑚, and sends
𝑐 to Bob via the noisy channel. Bob receives 𝑟 = 𝑐+𝑒 ∈ 𝔽𝑁2 where 𝑒 is the error pattern. The
expected value of 𝑑(𝑟, 𝑐) = 𝑑(𝑒, 0) is 𝑁𝑝. 𝑁 is chosen such that 𝑁𝑝 ≫ 𝑑, so Bob cannot tell
what the original codeword 𝑐 was, and hence cannot find 𝜃(𝑐) = 𝑚.

To reveal, Alice sends 𝑐 to Bob using the clear channel. Bob can check that 𝑑(𝑐, 𝑟) ≈ 𝑁𝑝; if
so, he accepts the message. It is possible that many more or many fewer bits of 𝑐 were cor-
rupted by the noisy channel, which maymake Bob reject the message even if Alice correctly
committed and revealed themessage. 𝑁, 𝑑 should be chosen such that the probability of this
occurring is negligible.

We have shown that Bob cannot read Alice’s guess until she reveals it. In addition, Alice
cannot cheat by changing her guess, because she knows 𝑐 but not how itwas corrupted by the
noisy channel. All she knows is that the received message 𝑟 has distance approximately 𝑁𝑝
from 𝑐. If she were to send 𝑐′ ≠ 𝑐, shemust ensure that 𝑑(𝑟, 𝑐′) ≈ 𝑁𝑝, but the probability that
this happens is small unless she chooses 𝑐′ very close to 𝑐. But any two distinct codewords
have distance at least 𝑑, so she cannot cheat.

6.11. Secret sharing schemes
Suppose that the CMS is attacked by the MIO. The Faculty will retreat to a bunker known
as MR2. Entry to MR2 is controlled by a secret, which is a positive integer 𝑆. This secret is
known only to the Leader. Each of the 𝑛members of the Faculty knows a pair of numbers,
called their shadow or share. It is required that, in the absence of the Leader, any 𝑘members
of the Faculty can reconstruct the secret from their shadows, but any 𝑘 − 1 cannot.

Definition. Let 𝑘, 𝑛 ∈ ℕ with 𝑘 < 𝑛. A (𝑘, 𝑛)-threshold scheme is a method of sharing a
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message 𝑆 among a set of𝑛 participants such that any subset of 𝑘 participants can reconstruct
𝑆, but no subset of smaller size can reconstruct 𝑆.
We discuss Shamir’s method for implementing such a scheme. Let 0 ≤ 𝑆 ≤ 𝑁 be the secret,
which can be chosen at random by the Leader. The Leader chooses and publishes a prime
𝑝 > 𝑛,𝑁. They then choose independent random coefficients 𝑎1,… , 𝑎𝑘−1 with 0 ≤ 𝑎𝑗 ≤
𝑝−1wherewe take 𝑎0 = 𝑆, and distinct integers 𝑥1,… , 𝑥𝑛with 1 ≤ 𝑥𝑗 ≤ 𝑝−1. Define

𝑃(𝑟) ≡ 𝑎0 +
𝑘−1
∑
𝑗=1

𝑎𝑗𝑥𝑗𝑟 mod 𝑝

choosing 0 ≤ 𝑃(𝑟) ≤ 𝑝 − 1. The 𝑟th participant is given their shadow pair (𝑥𝑟, 𝑃(𝑟)) to be
kept secret. The Leader can then discard their computations.

Suppose 𝑘 members of the Faculty assemble with shadow pairs (𝑦𝑗 , 𝑄(𝑗)) = (𝑥𝑖𝑗 , 𝑃(𝑖𝑗)) for
1 ≤ 𝑗 ≤ 𝑘. By properties of the Vandermonde determinant,

det
⎛
⎜
⎜
⎝

1 𝑦1 ⋯ 𝑦𝑘−11
1 𝑦2 ⋯ 𝑦𝑘−12
⋮ ⋮ ⋱ ⋮
1 𝑦𝑘 ⋯ 𝑦𝑘−1𝑘

⎞
⎟
⎟
⎠

= ∏
1≤𝑗<𝑖≤𝑘

(𝑦𝑖 − 𝑦𝑗)

The 𝑦𝑖 are distinct, so this determinant does not vanish. Hence, we can uniquely solve the
system of 𝑘 simultaneous equations

𝑧0 + 𝑦1𝑧1 + 𝑦21𝑧2 +⋯+ 𝑦𝑘−1𝑘 𝑧𝑘−1 ≡ 𝑄(1)
𝑧0 + 𝑦2𝑧1 + 𝑦22𝑧2 +⋯+ 𝑦𝑘−12 𝑧𝑘−1 ≡ 𝑄(2)

⋮
𝑧0 + 𝑦𝑘𝑧1 + 𝑦2𝑘𝑧2 +⋯+ 𝑦𝑘−1𝑘 𝑧𝑘−1 ≡ 𝑄(𝑘)

In particular, 𝑧0 = 𝑎0 = 𝑆 is the secret, as (𝑎0,… , 𝑎𝑘−1) is also a solution to these equations
by construction. Suppose 𝑘 − 1 people attempt to reconstruct the secret. In this case, the
Vandermonde determinant gives

det
⎛
⎜
⎜
⎝

𝑦1 𝑦21 ⋯ 𝑦𝑘−11
𝑦2 𝑦22 ⋯ 𝑦𝑘−12
⋮ ⋮ ⋱ ⋮

𝑦𝑘−1 𝑦2𝑘−1 ⋯ 𝑦𝑘−1𝑘−1

⎞
⎟
⎟
⎠

= 𝑦1𝑦2…𝑦𝑘−1 ∏
1≤𝑗<𝑖≤𝑘−1

(𝑦𝑖 − 𝑦𝑗)

This is nonzero modulo 𝑝, so the system of equations

𝑧0 + 𝑦1𝑧1 + 𝑦21𝑧2 +⋯+ 𝑦𝑘−1𝑘 𝑧𝑘−1 ≡ 𝑄(1)
𝑧0 + 𝑦2𝑧1 + 𝑦22𝑧2 +⋯+ 𝑦𝑘−12 𝑧𝑘−1 ≡ 𝑄(2)

⋮
𝑧0 + 𝑦𝑘−1𝑧1 + 𝑦2𝑘−1𝑧2 +⋯+ 𝑦𝑘−1𝑘−1𝑧𝑘−1 ≡ 𝑄(𝑘 − 1)

has solutions for 𝑧1,… , 𝑧𝑘−1 regardless of the value of 𝑧0. Thus, 𝑘−1members of the Faculty
cannot reconstruct the secret 𝑆, or even tell which values are more likely than others.
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Remark. Note that a polynomial of degree 𝑘−1 can be recovered from its values at 𝑘 points,
but not on fewer points; this technique is known as Lagrange interpolation. The secret
shadow pairs can be changed without altering the secret 𝑆; the Leader simply chooses a
different random polynomial with the same constant term. Changing the polynomial fre-
quently can increase security, since any eavesdropper who has gathered some shadow pairs
generated from one polynomial cannot use that information to help decrypt a different poly-
nomial.

Example. Consider a (3, 𝑛)-threshold scheme, where ordinary workers in a company have
single shares, the vice presidents have two shares, and the Leader has three. In this case,
the secret can be recovered by any three ordinary workers, any two workers if one of them
is a vice president, or the Leader alone. In such hierarchical schemes, the ‘importance’ of
individuals determines how many of them are required to recover the secret.

Example. SupposeAlice has a private key that shewishes to store securely and reliably. She
uses a (𝑘, 2𝑘−1)-threshold scheme, where she forms 2𝑘−1 shadow pairs and stores them in
different locations. As long as she does not lose more than half of the pairs, she can recover
her key, hence the scheme is reliable. An eavesdropper needs to steal more than half of the
pairs in order to recover the key, hence the scheme is secure.
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Computation

Lectured in Lent 2023 by Prof. N. Datta
Computers manipulate bits of information to process inputs and answer questions. Regard-
less of the physical form of the computer, it has certain fundamental theoretical limitations.
As the size of a bit string increases, the number of possible values of the string increases
exponentially, and this means that many computational tasks require exponential amounts
of time or space to compute a result.

Quantum computation allows us to bypass some of these limitations by leveraging features
of quantum mechanics. In the quantum case, we store information using quantum bits
(‘qubits’) instead of classical bits. While a classical computer can only operate on a single
state at a time, we can construct a superposition of quantum states and operate on them all
at once. We can use this to solve certain classical problems with a quantum computer faster
than is possible with a classical computer, even in theory.

One example of a difficult problem is 𝖲𝖠𝖳, the Boolean satisfiability problem. The input is a
Boolean function in 𝑛 variables, and we wish to determine whether there is an assignment
of the variables that makes the formula true. This problem is 𝖭𝖯-complete: any problem in
the complexity class 𝖭𝖯 can be reduced to a case of 𝖲𝖠𝖳. One of the quantum algorithms
discussed in this course is Grover’s quantum search algorithm, which solves 𝖲𝖠𝖳 with a
quadratic speedup compared to the classical complexity. This shows that Grover’s algorithm
can be applied to any 𝖭𝖯 problem to give a quadratic speedup. Hence, quantum computers
can be used to solve a wide class of problems faster than a classical computer can.
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1. Mathematical background
1.1. Motivation
In classical computation, the elementary unit of information is the bit, which takes a value
in {0, 1}. This gives the result of a single binary decision problem, where the zero and one
correspond to different answers to the problem. Binary strings of length greater than one
are used to provide more than 2 answers to a problem; if we have 𝑛 bits, we can encode 2𝑛
different messages.

Classical computation is understood to be the processing of information: taking an initial
bit string and and updating it by a prescribed sequence of steps. The steps are taken to be the
action of local Boolean logic gates, such as conjunction, disjunction, or negation. At each
step, a small number of bits in prescribed locations are edited.

Information in the real world must be tied to a physical representation. For example, bits in
a processor are often represented by different voltages of specific components. Importantly,
there is no information without representation. Performing a computation classically must
therefore involve the evolution of a physical system over time, which is coverned by the laws
of classical physics.

However, nature does not abide by classical physics at subatomic levels, and we must use
quantummechanics to accuratelymodel such behaviours. One such behaviourmodelled by
quantummechanics is the superposition principle, that the corresponding quantum analog
of the bit need not be in precisely one state. Quantum entanglement is the phenomenon
where particles can be linked in such a way that their states can be manipulated even at a
distance. Quantum measurement is probabilistic and alters the underlying system.

Quantum information and computation therefore exploits these features of quantummech-
anics to address issues of information storage, communication, computation, and crypto-
graphy. The features of quantum mechanics seem to allow us benefits which are beyond
the limits of classical information and computation, even in principle. Note that a quantum
computer cannot performany task that cannot in principle be performed classically. We only
hope that quantum techniques allowa reduction in the complexity of certain algorithms.

1.2. Benefits of quantum information and computation
In complexity theory, we study the hardness of a certain computational task. One must
consider the resources required for the task; which in classical computation are normally
limited to time (measured in number of computational steps) and space (amount ofmemory
required).

If an algorithm takes time bounded by a polynomial function in the input size 𝑛, we say
the algorithm is polynomial-time. Otherwise, we say it is an exponential-time algorithm.
Polynomial-time algorithms are typically taken to be computable in practice, but exponential-
time algorithms are usually considered only computable in principle. Quantummechanical
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techniques can provide polynomial-time algorithms that have only exponential-time clas-
sical versions. One example is Shor’s integer factorisation algorithm.

Quantum states of physical sytems can be used to encode information, such as spin states of
electrons. There are certain tasks possible with such quantum states which are impossible
in classical physics; one example is quantum teleportation.

There are also some technological issues with classical physics. Components of processors
have become minified to atomic scale, and therefore they cannot be shrunk much further
without dealing with the effects of quantummechanics. Conversely, there are technological
challenges with quantum physics. Quantum systems are very fragile, and modern quantum
computers typically require temperatures close to absolute zero to reduce noise.

Quantum supremacy refers to the hypothetical moment at which a programmable quantum
computer can first solve a problem in practice that a classical computer cannot. At the time
of writing, there is no concensus that quantum supremacy has been achieved.

1.3. Hilbert spaces
Every quantum mechanical system is associated with a Hilbert space 𝒱, a complex inner
product space that is a complete metric space with respect to the distance function induced
by the inner product. We use Dirac’s bra-ket notation: a vector is represented by |𝑣⟩ ∈ 𝒱,
and its conjugate transpose is denoted ⟨𝑣| ∈ 𝒱⋆. If 𝒱 = ℂ𝑛, we write

|𝜓⟩ = (
𝑎1
⋮
𝑎𝑛
) ; ⟨𝜓| = (𝑎⋆

1 ⋯ 𝑎⋆
𝑛)

The inner product of 𝜓 and 𝜙 is written ⟨𝜓|𝜙⟩. Recall that an inner product satisfies
• ⟨𝜓|𝜓⟩ ≥ 0, and equal to zero if and only if |𝜓⟩ = 0;
• linearity in the second argument, so ⟨𝜓|𝑎𝜙1 + 𝑏𝜙2⟩ = 𝑎 ⟨𝜓|𝜙1⟩ + 𝑏 ⟨𝜓|𝜙2⟩;
• antilinearity in the first argument, so ⟨𝑎𝜓1 + 𝑏𝜓2|𝜙⟩ = 𝑎⋆ ⟨𝜓1|𝜙⟩ + 𝑏⋆ ⟨𝜓2|𝜙⟩;
• skew-symmetry, so ⟨𝜓|𝜙⟩⋆ = ⟨𝜙|𝜓⟩;

and induces a norm ‖𝜓‖ = ‖|𝜓⟩‖ = √⟨𝜓|𝜓⟩. In this course, we will often consider 𝒱 = ℂ2

and define
|0⟩ = (10) ; |1⟩ = (01)

For an arbitrary |𝑣⟩ ∈ ℂ2, we can write |𝑣⟩ = 𝑎 |0⟩ + 𝑏 |1⟩, giving

|𝑣⟩ = (𝑎𝑏) ; ⟨𝑣| = (𝑎⋆ 𝑏⋆)

If |𝑤⟩ = 𝑐 |0⟩ + 𝑑 |1⟩, then ⟨𝑣|𝑤⟩ = 𝑎⋆𝑐 + 𝑏⋆𝑑.
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We can also compute the outer product of two vectors, defined to be |𝜓⟩⟨𝜙|. If 𝒱 = ℂ𝑛, the
outer product is an 𝑛 × 𝑛 matrix. An orthonormal basis (|𝑖⟩)𝑛𝑖=1 for 𝒱 is called complete if
∑𝑛

𝑖=1 |𝑖⟩⟨𝑖| is the identity matrix.

If𝒱 has a complete orthonormal basis, we canwrite |𝜓⟩ = ∑𝑛
𝑖=1 𝑐𝑖 |𝑖⟩ for some 𝑐𝑖. If ⟨𝜓|𝜓⟩ = 1,

we say |𝜓⟩ is normalised. In this case, ∑|𝑐𝑖|
2 = 1, and the |𝑐𝑖|

2 form a discrete probability
distribution. We call the 𝑐𝑖 the probability amplitudes.
Let 𝒱,𝒲 be vector spaces, where dim𝒱 = 𝑛, dim𝒲 = 𝑚. Let |𝑣⟩ ∈ 𝒱, |𝑤⟩ ∈ 𝒲. Suppose
|𝑣⟩ = (𝑎1 ⋯ 𝑎𝑛)

⊺
, and |𝑤⟩ = (𝑏1 ⋯ 𝑏𝑚)

⊺
. Then, |𝑣⟩ ⊗ |𝑤⟩ is the tensor product of |𝑣⟩

and |𝑤⟩, defined by

|𝑣⟩ ⊗ |𝑤⟩ =

⎛
⎜
⎜
⎜
⎜
⎝

𝑎1𝑏1
⋮

𝑎1𝑏𝑚
𝑎2𝑏1
⋮

𝑎𝑛𝑏𝑚

⎞
⎟
⎟
⎟
⎟
⎠

∈ 𝒱 ⊗𝒲

If (|𝑒𝑖⟩)
𝑛
𝑖=1 is a complete orthonormal basis for 𝒱 and (||𝑓𝑗⟩)

𝑚
𝑗=1 is a complete orthonormal

basis for𝒲, then (|𝑒𝑖⟩ ⊗ ||𝑓𝑗⟩)
𝑛,𝑚
𝑖,𝑗=1 is a complete orthonormal basis for𝒱⊗𝒲. We sometimes

write |𝑣⟩ ⊗ |𝑤⟩ as |𝑣⟩ |𝑤⟩ or |𝑣𝑤⟩.
If |𝛼⟩ ∈ 𝒱, we canwrite |𝛼⟩ = ∑𝑎𝑖 |𝑒𝑖⟩, and similarly if |𝛽⟩ ∈ 𝒲, we canwrite |𝛽⟩ = ∑𝑏𝑗 ||𝑓𝑗⟩.
Then, |𝛼𝛽⟩ = ∑𝑎𝑖𝑐𝑗 ||𝑒𝑖𝑓𝑗⟩.
We say |Ψ⟩ ∈ 𝒱 ⊗𝒲 is a product vector if |Ψ⟩ = |𝜓⟩⊗ |𝜙⟩ for some 𝜓, 𝜙. Vectors that are not
product vectors are called entangled vectors.

Let𝒱 = ℂ2 = 𝒲. Define |𝜙+⟩ = 1
√2
(|00⟩ + |11⟩). Suppose |𝜙+⟩ = |𝜓⟩⊗|𝜙⟩ = (𝑎 |0⟩+𝑏 |1⟩)⊗

(𝑐 |0⟩ + 𝑑 |1⟩). Then, |𝜙+⟩ = 𝑎𝑐 |00⟩ + 𝑎𝑑 |01⟩ + 𝑏𝑐 |10⟩ + 𝑏𝑑 |11⟩. So one of 𝑎 and 𝑑, and one
of 𝑏 and 𝑐 is equal to zero, contradicting the assumption, so |𝜙+⟩ is entangled.
We define the inner product on the product space by defining

⟨𝜙1|𝜓2⟩ = (⟨𝛼1| ⟨𝛽1|)(|𝛽2⟩ |𝛼2⟩) = ⟨𝛼1|𝛼2⟩ ⟨𝛽1|𝛽2⟩
where |𝜓𝑖⟩ = |𝛼𝑖⟩ |𝛽𝑖⟩. In the general case, |𝐴⟩ = ∑𝑎𝑖𝑗 |𝑒𝑖⟩ ||𝑓𝑗⟩ , |𝐵⟩ = ∑𝑏𝑖𝑗 |𝑒𝑖⟩ ||𝑓𝑗⟩, and we
define

⟨𝐴|𝐵⟩ = (∑𝑎⋆
𝑖𝑗 ⟨𝑒𝑖| ⟨𝑓𝑗 ||)(∑𝑏𝑖𝑗 |𝑒𝑖⟩ ||𝑓𝑗⟩) = ∑𝑎⋆

𝑖𝑗𝑏𝑖𝑗𝛿𝑖𝑖′𝛿𝑗𝑗′ = ∑𝑎⋆
𝑖𝑗𝑏𝑖𝑗

where 𝛿 is the Kronecker 𝛿 symbol.
We define the 𝑘-fold tensor power of a vector space 𝒱 by

𝒱⊗𝑛 = 𝒱 ⊗⋯⊗𝒱⏟⎵⎵⏟⎵⎵⏟
𝑛 times

If 𝒱 = ℂ2, this has dimension 2𝑘, and complete orthonormal basis |𝑖1…𝑖𝑘⟩ for 𝑖𝑗 ∈ {0, 1}.
Note that |𝑣⟩ |𝑤⟩ ≠ |𝑤⟩ |𝑣⟩.
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1.4. First postulate: quantum states
In this course, we will restrict our attention to finite-dimensional vector spaces, and finite
time evolution. We describe the postulates for quantum mechanics that we will work un-
der.

The first postulate is that, given an isolated quantummechanical system 𝑆, we can associate
a finite-dimensional vector space𝒱. The physical state of the system is given by a unit vector
|𝜓⟩ in 𝒱. More precisely, the state is given by a ray, an equivalence class of vectors 𝑒𝑖𝜃 |𝜓⟩
for 𝜃 ∈ ℝ. No measurements can distinguish states in a given equivalence class. Note that
states 𝑎 |𝜓1⟩ + 𝑏 |𝜓2⟩ and 𝑎 |𝜓1⟩ + 𝑏𝑒𝑖𝜃 |𝜓2⟩ can be distinguished by measurement, since the
phase difference is relative, not global.

Example. Let 𝒱 = ℂ2 with (complete orthonormal) basis |0⟩ , |1⟩. The elementary unit of
quantum information is knownas the qubit, which is any quantum systemwith𝒱 = ℂ2. The
spin of an electron, which is some superposition of spin-up and spin-down, can bemodelled
by ℂ2. A property of the polarisation of a photon, such as vertical or horizontal, or right-
circular or left-circular, can also be modelled in this way.

Define |+⟩ = 1
√2
(|0⟩ + |1⟩) and |−⟩ = 1

√2
(|0⟩ − |1⟩). This is another complete orthonormal

basis for 𝒱, sometimes called the conjugate basis.

1.5. Second postulate: composite systems
The second postulate of quantum mechanics is that two quantum systems 𝑆1, 𝑆2 with as-
sociated vector spaces 𝒱1, 𝒱2 can be composed into the composite system with vector space
𝒱1 ⊗𝒱2.

Example. Consider𝒱⊗𝑛, the space of 𝑛 qubits. An orthonormal basis is |𝑖1…𝑖𝑛⟩where 𝑖𝑗 ∈
{0, 1}. A vector in 𝒱⊗𝑛 can be written∑𝑎𝑖1…𝑖𝑛 |𝑖1…𝑖𝑛⟩. There are 2𝑛 different amplitudes
𝑎𝑖1…𝑖𝑛 , providing exponential growth in information. However, in a product state, we obtain
only linear growth in information.

1.6. Observables
An observable is a property of a physical system which can, in theory, be measured. Math-
ematically, these are modelled by linear self-adjoint (or Hermitian) operators.

The action of a linear operator 𝐴 on a state space 𝒱 is a written 𝐴 |𝜓⟩. By linearity, we have
𝐴(𝑎 |𝜓⟩ + 𝑏 |𝜙⟩) = 𝑎𝐴 |𝜓⟩ + 𝑏𝐴 |𝜙⟩ for 𝑎, 𝑏 ∈ ℂ. For any operator 𝐴 acting on 𝒱, there is
a unique linear operator 𝐴† such that ⟨𝑣|𝐴𝑤⟩ = ⟨𝐴†𝑣||𝑤⟩, called the adjoint of 𝐴; operators
equal to their adjoints are called self-adjoint.

We can easily show that (𝐴𝐵)† = 𝐵†𝐴†. By convention, we define |𝜓⟩† = ⟨𝜓|, so for a self-
adjoint operator 𝐴, we have (𝐴 |𝜓⟩)† = ⟨𝜓| 𝐴. There are four important operators which act
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on the single-qubit space ℂ2.

𝜎0 = (1 0
0 1) ; 𝜎𝑥 = (0 1

1 0) ; 𝜎𝑦 = (0 −𝑖
𝑖 0 ) ; 𝜎𝑧 = (1 0

0 −1)

𝜎0 is the identity matrix, and 𝜎𝑥, 𝜎𝑦, 𝜎𝑧 are called the Pauli matrices. The actions of these
matrices on the basis vectors |0⟩ and |1⟩ are

𝜎0 |0⟩ = |0⟩ ; 𝜎0 |1⟩ = |1⟩ ; 𝜎𝑥 |0⟩ = |1⟩ ; 𝜎𝑥 |1⟩ = |0⟩ ;

𝜎𝑦 |0⟩ = 𝑖 |1⟩ ; 𝜎𝑦 |1⟩ = −𝑖 |0⟩ ; 𝜎𝑧 |0⟩ = |0⟩ ; 𝜎𝑧 |1⟩ = − |1⟩
Note that

𝜎𝑥𝜎𝑦 = 𝑖𝜎𝑧; 𝜎𝑦𝜎𝑧 = 𝑖𝜎𝑥; 𝜎𝑧𝜎𝑥 = 𝑖𝜎𝑦
Intuitively, 𝜎𝑥 is a bit flip, 𝜎𝑦 is a phase flip, and 𝜎𝑧 is a combined bit and phase flip.

1.7. Dirac notation for linear operators
Let |𝑣⟩ = 𝑎 |0⟩ + 𝑏 |1⟩, and |𝑤⟩ = 𝑐 |0⟩ + 𝑑 |1⟩. The outer product is

𝑀 = |𝑣⟩⟨𝑤| = (𝑎𝑏) (𝑐
⋆ 𝑑⋆) = (𝑎𝑐

⋆ 𝑎𝑑⋆

𝑏𝑐⋆ 𝑏𝑑⋆)

which is a linear map on 𝒱 = ℂ2. One can show that𝑀 |𝑥⟩ = (|𝑣⟩⟨𝑤|) |𝑥⟩ = |𝑣⟩ ⟨𝑤|𝑥⟩, which
is the scalar product of the vector |𝑣⟩with the inner product ⟨𝑤|𝑥⟩. Such outer products yield
the linearmaps fromℂ2 toℂ2 that have rank 1, and the kernel of𝑀 is the subspace of vectors
orthogonal to |𝑤⟩. Note that

|0⟩⟨0| = (1 0
0 0) ; |0⟩⟨1| = (0 1

0 0) ; |1⟩⟨0| = (0 0
1 0) ; |1⟩⟨1| = (0 0

0 1)

Hence, we can write

𝐴 = (𝑎 𝑏
𝑐 𝑑) ⟹ 𝐴 = 𝑎 |0⟩⟨0| + 𝑏 |0⟩⟨1| + 𝑐 |1⟩⟨0| + 𝑑 |1⟩⟨1|

In particular, |0⟩⟨0| , |0⟩⟨1| , |1⟩⟨0| , |1⟩⟨1| forms a basis for the vector space 𝒱 ⊗ 𝒱⋆ of linear
maps on 𝒱. Note also that ⟨𝑤|𝑣⟩ = Tr |𝑣⟩⟨𝑤|.

1.8. Projection operators
Suppose that |𝑣⟩ is a normalised vector, so ⟨𝑣|𝑣⟩ = 1. Then,Π𝑣 = |𝑣⟩⟨𝑣| is the projection oper-
ator onto 𝑣, satisfying Π𝑣Π𝑣 = Π𝑣 and Π†

𝑣 = Π𝑣. In Dirac notation, one can see that

Π𝑣Π𝑣 = |𝑣⟩⟨𝑣| |𝑣⟩⟨𝑣| = |𝑣⟩ ⟨𝑣|𝑣⟩ ⟨𝑣| = |𝑣⟩⟨𝑣| = Π𝑣
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If |𝑎⟩ is orthogonal to |𝑣⟩, thenΠ𝑣 |𝑎⟩ = |𝑣⟩ ⟨𝑣|𝑎⟩ = 0. Therefore,Π𝑣 |𝑥⟩ is the vector obtained
by projection of |𝑥⟩ onto the one-dimensional subspace of 𝒱 spanned by |𝑣⟩.

Now suppose ℰ is any linear subspace of some vector space 𝒱, and |𝑒1⟩ ,… , |𝑒𝑑⟩ is any or-
thonormal basis of ℰ. Then,

Πℰ = |𝑒1⟩⟨𝑒1| + ⋯ + |𝑒𝑑⟩⟨𝑒𝑑|

is the projection operator into ℰ. This property can be checked by extending |𝑒1⟩ ,… , |𝑒𝑑⟩
into an orthonormal basis of 𝒱.

Note that if |𝑥⟩ = 𝐴 |𝑣⟩, then ⟨𝑥| = (𝐴 |𝑣⟩)† = |𝑣⟩† 𝐴† = ⟨𝑣| 𝐴†. Therefore, when constructing
inner products, we can write ⟨𝑎|𝑀|𝑏⟩ as ⟨𝑎|𝑥⟩ or ⟨𝑦|𝑏⟩ where |𝑥⟩ = 𝑀 |𝑏⟩ or |𝑦⟩ = 𝑀† |𝑎⟩ (so
that we have ⟨𝑦| = ⟨𝑎|𝑀).

1.9. Tensor products of linear maps
Suppose 𝐴, 𝐵 are linear maps ℂ2 → ℂ2. Then, we define 𝐴⊗ 𝐵∶ ℂ2⊗ℂ2 → ℂ2⊗ℂ2 by its
action on the basis (𝐴 ⊗ 𝐵) |𝑖⟩ |𝑗⟩ = 𝐴 |𝑖⟩ 𝐵 |𝑗⟩. In particular, for product vectors we obtain
(𝐴 ⊗ 𝐵)(|𝑣⟩ |𝑤⟩) = 𝐴 |𝑣⟩ ⊗ 𝐵 |𝑤⟩.

The 4 × 4 matrix of components of 𝐴 ⊗ 𝐵 has a simple block form, which can be seen by
writing down its action on basis states.

𝐴 = (𝑎 𝑏
𝑐 𝑑) ; 𝐵 = (𝑝 𝑞

𝑟 𝑠) ⟹ 𝐴⊗ 𝐵 = (𝑎𝐵 𝑏𝐵
𝑐𝐵 𝑑𝐵) =

⎛
⎜
⎜
⎝

𝑎𝑝 𝑎𝑞 𝑏𝑝 𝑏𝑞
𝑎𝑟 𝑎𝑠 𝑏𝑟 𝑏𝑠
𝑐𝑝 𝑐𝑞 𝑑𝑝 𝑑𝑞
𝑐𝑟 𝑐𝑠 𝑑𝑟 𝑑𝑠

⎞
⎟
⎟
⎠

Note that𝐴⊗𝐼 and 𝐼⊗𝐴 can be thought of as acting only on one of the subspaces. Consider
|Φ⟩ = 1

√2
(|00⟩ + |11⟩), and define 𝐴 as above. Then,

(𝐴 ⊗ 𝐼) |Φ⟩ = 1
√2

[(𝐴 |0⟩) |0⟩ + (𝐴 |1⟩) |1⟩]

= 1
√2

[(𝑎 |0⟩ + 𝑐 |1⟩) |0⟩ + (𝑏 |0⟩ + 𝑑 |1⟩) |1⟩]

= 1
√2

[𝑎 |00⟩ + 𝑏 |01⟩ + 𝑐 |10⟩ + 𝑑 |11⟩]

(𝐼 ⊗ 𝐴) |Φ⟩ = 1
√2

[|0⟩ (𝐴 |0⟩) + |1⟩ (𝐴 |1⟩)]

= 1
√2

[|0⟩ (𝑎 |0⟩ + 𝑐 |1⟩) + |1⟩ (𝑏 |0⟩ + 𝑑 |1⟩)]

= 1
√2

[𝑎 |00⟩ + 𝑐 |01⟩ + 𝑏 |10⟩ + 𝑑 |11⟩]
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1.10. Third postulate: physical evolution of quantum systems
The third postulate of quantum mechanics is that any physical finite-time evolution of a
closed quantum system is represented by a unitary operation on the corresponding vector
space of states. Recall that the following are equivalent for a linear operator 𝑈 :

• 𝑈 is unitary, so 𝑈−1 = 𝑈†;

• 𝑈 maps an orthonormal basis to an orthonormal set of vectors;

• the columns (or rows) of 𝑈 form an orthonormal set of vectors.

If a system is in a state |𝜓(𝑡1)⟩ at a time 𝑡1 and later in a state |𝜓(𝑡2)⟩ at a time 𝑡2, then |𝜓(𝑡2)⟩ =
𝑈(𝑡1, 𝑡2) |𝜓(𝑡1)⟩ for some unitary map 𝑈(𝑡1, 𝑡2)which depends only on 𝑡1, 𝑡2. This operator is
derived from the Schrödinger equation, which is

𝑖ℏ 𝜕𝜕𝑡 |𝜓(𝑡)⟩ = 𝐻 |𝜓(𝑡)⟩

where 𝐻 is a self-adjoint operator known as the Hamiltonian. In particular, if 𝐻 is time-
independent, we have

𝑈(𝑡1, 𝑡2) = 𝑒−
𝑖
ℏ𝐻(𝑡2−𝑡1)

In the more general case,
𝑈(𝑡1, 𝑡2) = 𝑒−

𝑖
ℏ ∫𝑡2𝑡1 𝐻(𝑡)d𝑡

The unitary evolution of a closed system is deterministic.

1.11. Partial inner products
A vector |𝑣⟩ ∈ 𝒱 defines a linear map 𝒱 ⊗𝒲 →𝒲 called the partial inner product with |𝑣⟩,
defined on the basis |𝑒𝑖⟩ ||𝑓𝑗⟩ of 𝒱 ⊗𝒲 by |𝑒𝑖⟩ ||𝑓𝑗⟩ ↦ ⟨𝑣|𝑒𝑖⟩ ||𝑓𝑗⟩. Similarly, for any |𝑤⟩ ∈ 𝒲,
we obtain a partial inner product 𝒱 ⊗ 𝒲 → 𝒱. If 𝒱,𝒲 are isomorphic, we must specify
which partial inner product is intended.

1.12. Fourth postulate: quantummeasurement
Consider a system 𝑆 with state space 𝒱, and let 𝐴 be an observable. 𝐴 can be written as
its spectral projection 𝐴 = ∑𝑘 𝑎𝑘𝑃𝑘 where 𝐴 |𝜑𝑘⟩ = 𝑎𝑘 |𝜑𝑘⟩. If 𝑎𝑘 is nondegenerate, 𝑃𝑘 =
|𝜑𝑘⟩⟨𝜑𝑘|. If 𝑎𝑘 is degenerate of multiplicity𝑚, then 𝑃𝑘 = ∑𝑚

𝑖=1 ||𝜑𝑖𝑘⟩⟨𝜑𝑖𝑘||.
The fourth postulate is that when an observable is measured, the resulting measurement
will be an eigenvalue 𝑎𝑗 , with probability 𝑝(𝑎𝑗) = ⟨𝜓|𝑃𝑗 |𝜓⟩. Then, |𝜓⟩ is replaced with the
post-measurement state

𝑃𝑗 |𝜓⟩

√𝑝(𝑎𝑗)
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This is known as Born’s rule. Such a measurement is called a projective measurement (or
sometimes a von Neumann measurement), since the post-measurement state is given by a
projection operator.

Suppose 𝐴, 𝐵 are operators that do not commute, so [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 ≠ 0. Then, the
measurement of 𝐴 will influence the outcome probabilities of a subsequent measurement
of 𝐵. For instance, suppose |𝜓⟩ = |+⟩ , 𝐴 = 𝜎𝑧, 𝐵 = 𝜎𝑥.

1.13. Complete and incomplete projective measurements
Let |𝜓⟩ ∈ 𝒱 be a state in a state space of dimension 𝑛. Letℬ = {|𝑒𝑖⟩} be a set of 𝑛 orthogonal
basis vectors for 𝒱. Then |𝜓⟩ = ∑𝑎𝑗 ||𝑒𝑗⟩ where 𝑎𝑘 = ⟨𝑒𝑘|𝜓⟩. If the outcomes of a meas-
urement are the indices of the basis vectors 𝑗 = 1,… , 𝑛, we have 𝑝(𝑗) = ⟨𝜓|𝑃𝑗 |𝜓⟩ where
𝑃𝑗 = ||𝑒𝑗⟩⟨𝑒𝑗 ||. Therefore, 𝑝(𝑗) = ||⟨𝜓||𝑒𝑗⟩||

2 = ||𝑎𝑗 ||
2. If the outcome is 𝑗, the post-measurement

state is
𝑃𝑗 |𝜓⟩
√𝑝(𝑗)

=
||𝑒𝑗⟩ ⟨𝑒𝑗 ||𝜓⟩
√𝑝(𝑗)

= ||𝑒𝑗⟩

Hence the state collapses to a basis vector. Taking another measurement immediately in
the same basis, we obtain the result 𝑗 with probability 1. Such a measurement is called a
complete projective measurement; it is called complete as all 𝑃𝑗 are of rank 1. When we
measure a state |𝜓⟩ in a basis, it is often helpful to consider an orthogonal decomposition of
𝒱 using the basis vectors.

Conversely, an incomplete projective measurement corresponds to an arbitrary orthogonal
decomposition of 𝒱. Consider a decomposition of 𝒱 into 𝑑 mutually orthogonal subspaces
ℰ1,… , ℰ𝑑, so 𝒱 = ℰ1⊕⋯⊕ℰ𝑑, and dim𝒱 = ∑ dimℰ𝑗 . LetΠ𝑖 be a projection operator onto
ℰ𝑖. Since the spaces are mutually orthogonal, Π𝑖Π𝑗 = 𝛿𝑖𝑗Π𝑖. Consider a measurement with
outcomes 1,… , 𝑑 representing a particular subspace. The probability of observing outcome
𝑖 is ⟨𝜓|Π𝑖|𝜓⟩. If the outcome is 𝑖, |𝜓⟩ is replaced with

Π𝑖 |𝜓⟩
√𝑝(𝑖)

. In this case, theΠ𝑖 are no longer
rank 1 projection operators. If ℰ𝑖 has basis {||𝑓𝑗⟩}, we can write Π𝑖 = ∑ ||𝑓𝑗⟩⟨𝑓𝑗 ||.
Incomplete projectivemeasurement is a generalisation of complete projectivemeasurement.
One can refine an incomplete measurement into a complete measurement by first consid-
ering a complete measurement, and then summing the relevant outcome probabiilities to

obtain a description of the incomplete measurement probabilities. Let {||𝑒
(𝑗)
𝑘 ⟩}

𝑑𝑗

𝑘=1
be a basis

for ℰ𝑗 for each 𝑗. Then 𝒱 = ⨁𝑑
𝑖=1 ℰ𝑗 has orthonormal basis {||𝑒

(𝑗)
𝑘 ⟩}

𝑗,𝑘
. Then, ⟨𝑒(𝑘1)𝑖

||𝑒
(𝑘2)
𝑗 ⟩ =

𝛿𝑖𝑗𝛿𝑘1𝑘2 .
Consider a two-bit string 𝑏1𝑏2. The parity of this string is 𝑏1 ⊕ 𝑏2, where ⊕ represents ad-
dition modulo 2. Consider the orthogonal decomposition of 𝒱 into ℰ0 ⊕ ℰ1, where ℰ0 =
span {|00⟩ , |11⟩} is the even parity subspace, and ℰ1 = span {|01⟩ , |10⟩} is the odd parity
subspace. The outcomes of an incomplete measurement are then the labels 0 and 1 of the
subspaces ℰ0 and ℰ1. Note that {|00⟩ , |01⟩ , |10⟩ , |11⟩} is a complete orthonormal basis for
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𝒱, so we can consider the complete projective measurement. ⟨𝜓|𝑃00|𝜓⟩ is the probability
of outcome 00 for the complete measurement, where 𝑃00 = |00⟩⟨00|. For the incomplete
measurement, 𝑝(0) = ⟨𝜓|Π0|𝜓⟩ is the probability of outcome 0, where Π0 = 𝑃00 + 𝑃11. So
𝑝(0) = ⟨𝜓|𝑃00|𝜓⟩ + ⟨𝜓|𝑃11|𝜓⟩.

1.14. Extended Born rule
Let𝑆1, 𝑆2 be quantumsystemswith state spaces𝒱,𝒲 with dimensions𝑚, 𝑛, andwe consider
the composite system 𝑆1𝑆2. Let {|𝑒𝑖⟩} be a complete orthonormal basis of 𝒱, and let {||𝑓𝑗⟩} be
a complete orthonormal basis of𝒲. Suppose the composite system is in an initial state |𝜓⟩ =
∑𝑎𝑖𝑗 |𝑒𝑖⟩ ||𝑓𝑗⟩. Suppose now that we want to measure |𝜓⟩ in the basis {|𝑒𝑖⟩}; this amounts to
an incomplete measurement with subspaces ℰ𝑖 = span {|𝑒𝑖⟩ ⊗ |𝜑⟩ ∣ |𝜑⟩ ∈ 𝒲} for 1 ≤ 𝑖 ≤ 𝑚.
The outcomes of such ameasurement are {1,… ,𝑚}, and theℰ𝑖 aremutually orthogonal. The
probability of a given outcome is 𝑝(𝑘) = ⟨𝜓|𝑃𝑘 ⊗ 𝐼|𝜓⟩, where 𝑃𝑘 = |𝑒𝑘⟩⟨𝑒𝑘|. Hence,

𝑝(𝑘) = (∑𝑎⋆
𝑖′𝑗′ ⟨𝑒′𝑖|| ⟨𝑓′𝑗 ||)(|𝑒𝑘⟩⟨𝑒𝑘| ⊗ 𝐼)(∑𝑎𝑖𝑗 |𝑒𝑖⟩ ||𝑓𝑗⟩) =

𝑛
∑
𝑗=1

𝑎⋆
𝑘𝑗𝑎𝑘𝑗

If the outcome is 𝑘, then the post-measurement state is given by

|𝜓after⟩ =
(𝑃𝑘 ⊗ 𝐼) |𝜓⟩

𝑝(𝑘) =
∑𝑗 𝑎𝑘𝑗 |𝑒𝑘⟩ ||𝑓𝑗⟩

√∑𝑗 ||𝑎𝑘𝑗 ||
2

Using partial inner products, one can show that |𝜓after⟩ is normalised. These rules are re-
ferred to as the extended Born rule.

Consider a quantum system 𝑆 with state space 𝒱. A measurement relative to any basis 𝒞
can be performed by first performing a unitary operator, then performing a measurement
in a fixed basis ℬ. Let ℬ = {|𝑒𝑖⟩}, and 𝒞 = {||𝑒′𝑖⟩}. Let 𝑈 be a unitary operator such that
||𝑒′𝑖⟩ = 𝑈 |𝑒𝑖⟩. Then, 𝑈† = 𝑈−1 has the property that 𝑈−1 ||𝑒′𝑖⟩ = |𝑒𝑖⟩. Suppose we have a state
|𝜓⟩ ∈ 𝒱. Let |𝜓⟩ = ∑𝑐𝑖 ||𝑒′𝑖⟩. Applying 𝑈−1 to |𝜓⟩, we obtain 𝑈−1 |𝜓⟩ = ∑𝑐𝑖 |𝑒𝑖⟩ by linearity.
We can then measure |𝜓′⟩ = 𝑈−1 |𝜓⟩ in the basis ℬ. By the Born rule, 𝑝(𝑖) = ⟨𝜓′|𝑃𝑖|𝜓′⟩ =
⟨𝜓|𝑈𝑃𝑖𝑈† |𝜓⟩ where 𝑃𝑖 = |𝑒𝑖⟩⟨𝑒𝑖|, as we are performing a complete projective measurement.
If the outcome is 𝑖, then the post-measurement state is ||𝜓′after⟩ =

𝑃𝑖 ||𝜓′⟩
𝑝(𝑖)

.

1.15. Standard measurement on multi-qubit systems
Consider a system of 𝑛 qubits. The state space is (ℂ2)⊗𝑛. The computational basis or stand-
ard basis is ℬ = {|𝑖1…𝑖𝑛⟩ ∣ 𝑖𝑗 ∈ {0, 1}}. The labels of the elements of the standard basis are
labelled by bit strings of length 𝑛.
Supposewe aremeasuring a subset of 𝑘 qubits of the𝑛-qubit system. Let𝑛 = 3, and let

|𝜓⟩ = 𝑖
2 |000⟩ +

1 + 𝑖
2√2

|001⟩ − 1
2 |101⟩ +

3
10 |110⟩ −

2𝑖
5 |111⟩
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The standard measurement of any of the three qubits will always have the outcome zero or
one. Suppose we perform a standard measurement on the first qubit. By the extended Born
rule, we obtain

𝑝(1)(1) = ⟨𝜓| 𝑃1 ⊗ 𝐼 ⊗ 𝐼 |𝜓⟩ = ⟨𝜓| (|1⟩⟨1| ⊗ 𝐼 ⊗ 𝐼) |𝜓⟩ = 1
4 +

9
100 +

4
25 =

1
2

If we measure the outcome 1, the post-measurement state is |𝜓after⟩ =
(𝑃1⊗𝐼⊗𝐼)|𝜓⟩

√𝑝(1)(1)
.

1.16. Reliably distinguishing states
Note that the measurement postulate implies that states with guaranteed (with probability
1) different measurement outcomes always lie in mutually orthogonal subspaces. We say
that two states are reliably distinguishable if there exists a measurement which outputs two
distinct outcomes with probability 1 when applied to the two states. Therefore, two states
|𝜓⟩ , |𝜑⟩ are reliably distinguishable if and only if they are orthogonal, so ⟨𝜓|𝜑⟩ = 0.
Let |𝜓⟩ and |𝜑⟩ be orthogonal. Let ℬ = {|𝜓⟩ , |𝑓1⟩ ,… , |𝑓𝑚−1⟩} be a complete orthonormal
basis for 𝒱. Then ⟨𝜓||𝑓𝑗⟩ = 0 and ⟨𝑓𝑗 ||𝑓𝑘⟩ = 𝛿𝑗𝑘. Measuring |𝜓⟩ in this basis, 𝑝(1) = ⟨𝜓| 𝑃1 |𝜓⟩
where 𝑃1 = |𝜓⟩⟨𝜓|, so the probability is 1. Measuring |𝜑⟩ in this basis, 𝑝(1) = ⟨𝜓|𝜑⟩ ⟨𝜑|𝜓⟩ = 0.
This is an example of a measurement which can reliably distinguish |𝜓⟩ and |𝜑⟩.
Vectors |𝑣⟩ = |𝜓⟩ and |𝑣′⟩ = 𝑒𝑖𝜃 |𝜓⟩ are not distinguishable. For any measurement, the
probability of obtaining a particular outcome when measuring |𝑣⟩ is always the same as the
probability when measuring |𝑣′⟩.
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2. Quantum states as information carriers
2.1. Using higher Hilbert spaces
Quantum information is encoded in the states of a quantum system. Classical information
is encoded in states chosen from an orthonormal set, since all distinct classical messages can
be distinguished. Given a quantum system 𝑆 and a quantum state |𝜓⟩, we can perform this
sequence of operations.

• (ancilla) Consider an auxiliary system 𝐴 in a fixed state |𝐴⟩ ∈ 𝒱𝐴. The composite
system 𝑆𝐴 has vector space 𝒱𝑆 ⊗ 𝒱𝐴. The initial joint state is |𝜓⟩ |𝐴⟩. This results in
an embedding of quantum information in a higher dimensional space.

• (unitary) Consider the action of a unitary operator 𝑈 on 𝑆𝐴 (or on 𝑆), modelling the
time evolution of the quantum system.

• (measure) We can perform measurements on 𝑆𝐴 (or on 𝑆). The post-measurement
state of 𝑆 is retained, and the auxiliary system 𝐴 is discarded.

This process is sometimes known as ‘going to the church of the higher Hilbert space’. The
presence of the ancilla allows for entanglement with other quantum systems.

2.2. No-cloning theorem
Classically, information can be easily copied by measuring all relevant information and re-
producing it. Quantum copying involves three systems:

• a system 𝐴 containing some quantum information to be copied;

• a system 𝐵 with 𝒱𝐵 ≃ 𝒱𝐴 initially in some fixed state |0⟩ where the information is to
be copied;

• a system 𝑀 which represents any physical machinery in some ‘ready’ state |𝑀0⟩ re-
quired for performing the copy.

The initial state of this composite system 𝐴𝐵𝑀 is |𝜓⟩ |0⟩ |𝑀0⟩. Note that the |𝜓⟩ and |0⟩ |𝑀0⟩
are uncorrelated in this state, as we are using the tensor product to combine them. Suppose
that the cloning process is performed using some unitary operator 𝑈 , so 𝑈 |𝜓𝐴⟩ |0⟩ |𝑀0⟩ =
|𝜓𝐴⟩ |𝜓𝐵⟩ ||𝑀𝜓⟩. This cloning process may be required to work either for all states of 𝐴, or for
some subset of 𝐴.
Theorem. Let 𝒮 be any set of states of the system𝐴 that contains at least one pair of distinct
non-orthogonal states. Then there does not exist any unitary operator𝑈 that clones all states
in 𝒮.

Proof. Let |𝜉⟩ , |𝜂⟩ be distinct non-orthogonal states in𝒮, so ⟨𝜉|𝜂⟩ ≠ 0. Suppose such a unitary
operator 𝑈 exists. Then, we must have

𝑈 |𝜉𝐴⟩ |0𝐵⟩ |𝑀0⟩ = |𝜉𝐴⟩ |𝜉𝐵⟩ ||𝑀𝜉⟩ ; 𝑈 |𝜂𝐴⟩ |0𝐵⟩ |𝑀0⟩ = |𝜂𝐴⟩ |𝜂𝐵⟩ ||𝑀𝜂⟩

342



2. Quantum states as information carriers

Unitary operators preserve inner products. Hence,

⟨𝜉𝐴|𝜂𝐴⟩ ⟨0𝐵|0𝐵⟩ ⟨𝑀0|𝑀0⟩ = ⟨𝜉𝐴|𝜂𝐴⟩ ⟨𝜉𝐵|𝜂𝐵⟩ ⟨𝑀𝜉||𝑀𝜂⟩

Hence, ⟨𝜉|𝜂⟩ = (⟨𝜉|𝜂⟩)2 ⟨𝑀𝜉||𝑀𝜂⟩. By taking the absolute value, |⟨𝜉|𝜂⟩| = |⟨𝜉|𝜂⟩|2||⟨𝑀𝜉||𝑀𝜂⟩||.
Since 𝜉 ≠ 𝜂, we must have 0 < |⟨𝜉|𝜂⟩| < 1, and 0 ≤ ||⟨𝑀𝜉||𝑀𝜂⟩|| ≤ 1. Therefore, 1 =
|⟨𝜉|𝜂⟩|||⟨𝑀𝜉||𝑀𝜂⟩|| < 1, which is a contradiction.

If quantum cloning were possible, superluminal (indeed, instantaneous) communication
would also be possible. Suppose we have a state ||𝜓+𝐴𝐵⟩ =

1
√2
(|00⟩ + |11⟩) ∈ ℂ2⊗ℂ2. Let𝐴, 𝐵

be the entangled parts of this quantum state, and suppose that we send qubit 𝐴 to Alice and
𝐵 to Bob, far apart from each other.

If wewant to send the bit ‘yes’ fromAlice to Bob, wemeasure the qubit𝐴 in the basis {|0⟩ , |1⟩},
which gives outcomes 0, 1 with probability 1

2
. If the outcome is 0, the final state of 𝐵 is |0⟩,

and if the outcome is 1, the final state of 𝐵 is |1⟩. If we want to send ‘no’, we instead measure
𝐴 in the basis {|+⟩ , |−⟩}, which gives the outcomes +,− with probability 1

2
. Similarly, the

final state of 𝐵 is |+⟩ or |−⟩.
We claim that these ‘yes’ (|0⟩ , |1⟩) and ‘no’ (|+⟩ , |−⟩) preparations of qubit 𝐵 are indistin-
guishable by Bob with any local action on the qubit. That is, they each give exactly the same
probability distribution of outcomes of any measurement. In fact, the distribution matches
the prior distribution before qubit 𝐴 was measured.

Let Π𝑖 be the projection operator for outcome 𝑖 on qubit 𝐵. Suppose that ‘yes’ was sent.
Then,

𝑝yes(𝑖) =
1
2 ⟨0|Π𝑖|0⟩ +

1
2 ⟨1|Π𝑖|1⟩ =

1
2 Tr [Π𝑖(|0⟩⟨0| + |1⟩⟨1|)] = 1

2 TrΠ𝑖

In the ‘no’ case,

𝑝no(𝑖) =
1
2 ⟨+|Π𝑖|+⟩ +

1
2 ⟨−|Π𝑖|−⟩ =

1
2 Tr [Π𝑖(|+⟩⟨+| + |−⟩⟨−|)] = 1

2 TrΠ𝑖

These probability distributions match.

Suppose that cloning were possible. We clone the qubit 𝐵 multiple times after the message
was sent, to produce one of the states |0⟩… |0⟩ , |1⟩… |1⟩ , |+⟩… |+⟩ , |−⟩… |−⟩. We nowmeas-
ure each qubit in the basis |0⟩ , |1⟩ separately. If the ‘yes’ message was sent, all measurements
will result in 0 or 1. If ‘no’ was sent, it is possible that two measurements would differ. In
expectation, half of the measurements would result in the outcome 0 and half would result
in the outcome 1. Therefore, the ‘yes’ and ‘no’ errors can be distinguished with probability
of error 2−𝑁+1 if we make 𝑁 copies of 𝐵.

2.3. Distinguishing non-orthogonal states

Suppose you know a state |𝜓⟩ has state |𝛼0⟩ or |𝛼1⟩ with probability
1
2
, where ⟨𝛼0|𝛼1⟩ ≠ 0.

Since the states are non-orthogonal, we cannot perfectly distinguish the states, but must
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allow some error rate. The simplest possibility is to not make a measurement and guess
randomly; in which case, the guess is correct with probability 1

2
.

Suppose we append an auxiliary system |𝐴⟩ to |𝛼𝑖⟩. Note that ⟨𝐴| ⟨𝛼𝑖|𝛼𝑖⟩ |𝐴⟩ = ⟨𝛼𝑖|𝛼𝑖⟩ as |𝐴⟩ is
normalised. If we apply a unitary operator𝑈 to |𝛼𝑖⟩ then perform a projective measurement
in the basis {Π0, Π1}, our action corresponds to simply performing a measurement Π′

0 =
𝑈†Π0𝑈 or Π′

1 = 𝑈†Π1𝑈 , which leads to the same probabilities of outcomes. Indeed,

𝑝(𝑖) = ⟨𝑈𝜉|Π𝑖|𝑈𝜉⟩ = ⟨𝜉|𝑈†Π𝑖𝑈|𝜉⟩ = ⟨𝜉|Π′
𝑖|𝜉⟩

Therefore, in this particular problem, we gain no benefit from moving to a larger Hilbert
space or applying unitary operators.

We now describe the state estimation or state discrimination process. We will consider a
two-outcome measurement {Π0, Π1}, where Π0 + Π1 = 𝐼. The average success probability
is

𝑝𝑆(Π0, Π1) =
1
2ℙ (0 ∣ |𝜓⟩ = |𝛼0⟩) +

1
2ℙ (1 ∣ |𝜓⟩ = |𝛼1⟩)

= 1
2 ⟨𝛼0|Π0|𝛼0⟩ +

1
2 ⟨𝛼1|Π1|𝛼1⟩

= 1
2 +

1
2 Tr [Π0(|𝛼0⟩⟨𝛼0| − |𝛼1⟩⟨𝛼1|)]

as Tr(𝐴 |𝜓⟩⟨𝜓|) = ⟨𝛼|𝐴|𝛼⟩. The optimal choice of measurement maximises the average
success probability 𝑝𝑆. Note that Δ = |𝛼0⟩⟨𝛼0| − |𝛼1⟩⟨𝛼1| is self-adjoint, and we can write
𝑝𝑆 = 1

2
+ 1

2
Tr(Π0Δ). Therefore, the eigenvalues of Δ are real, and the eigenvectors form

an orthonormal basis. For a state |𝛽⟩ orthogonal to both |𝛼0⟩ and |𝛼1⟩, we have Δ |𝛽⟩ = 0.
Therefore, Δ acts nontrivially only in the vector space spanned by |𝛼0⟩ and |𝛼1⟩, and hence
has at most two nonzero eigenvalues, and its eigenvectors lie in span {|𝛼0⟩ , |𝛼1⟩}.
Now, TrΔ = 0 so the eigenvalues are 𝛿 and −𝛿 for some 𝛿 ∈ ℝ. Let |𝑝⟩ be the eigenvector
for 𝛿, and |𝑚⟩ be the eigenvector for −𝛿, so ⟨𝑝|𝑚⟩ = 0. We can write Δ in its spectral decom-
position, giving Δ = 𝛿 |𝑝⟩⟨𝑝| − 𝛿 |𝑚⟩⟨𝑚|.
Let ||𝛼⟂0 ⟩ ∈ span {|𝛼0⟩ , |𝛼1⟩} be a normalised vector such that ⟨𝛼⟂0 ||𝛼0⟩ = 0. Then, {|𝛼0⟩ , ||𝛼⟂0 ⟩}
is an orthonormal basis. Hence, we can write |𝛼1⟩ = 𝑐0 |𝛼0⟩ + 𝑐1 ||𝛼⟂0 ⟩. In this basis,

Δ = (1 0
0 0) + (−|𝑐0|

2 −𝑐0𝑐⋆
1

−𝑐⋆
0𝑐1 −|𝑐1|

2) = (1 − |𝑐0|
2 −𝑐0𝑐⋆

1
−𝑐⋆

0𝑐1 −|𝑐1|
2) = ( |𝑐1|

2 −𝑐0𝑐⋆
1

−𝑐⋆
0𝑐1 −|𝑐1|

2)

which has eigenvalues 𝛿 = |𝑐1|, −𝛿 = −|𝑐1|. Since |𝑐0| = |⟨𝛼0|𝛼1⟩| = cos 𝜃 where 𝜃 ≥ 0, we
have 𝛿 = sin 𝜃. Then,

𝑝𝑆(Π0, Π1) =
1
2 +

1
2 Tr(Π0Δ)

= 1
2 +

1
2 Tr(Π0[sin 𝜃 |𝑝⟩⟨𝑝| − sin 𝜃 |𝑚⟩⟨𝑚|])

= 1
2 +

sin 𝜃
2 [ ⟨𝑝|Π0|𝑝⟩ − ⟨𝑚|Π0|𝑚⟩]
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Note that for any |𝜑⟩, we have 0 ≤ ⟨𝜑|Π|𝜑⟩ ≤ 1, so the measurement is maximised when
⟨𝑝|Π0|𝑝⟩ = 1 and ⟨𝑚|Π0|𝑚⟩ = 0. We therefore define Π0 = |𝑝⟩⟨𝑝|. Then, the optimal
average success probability is

𝑝⋆
𝑆 =

1
2 +

sin 𝜃
2

Theorem (Holevo–Helstrom theorem for pure states). Let |𝛼0⟩ , |𝛼1⟩ be equally likely states,
with |⟨𝛼0|𝛼1⟩| = cos 𝜃, 𝜃 ≥ 0. Then, the probability 𝑝𝑆 of correctly identifying the state by
any quantum measurement satisfies

𝑝𝑆 ≤
1
2 +

sin 𝜃
2

and this bound can be attained.

In the case of orthogonal states, the theorem implies that 𝑝𝑆 ≤ 1 and the bound can be
attained, which was shown before.

2.4. No-signalling principle
Suppose we have a possibly entangled state |𝜙𝐴𝐵⟩ ∈ 𝒱𝐴 ⊗ 𝒱𝐵 shared between two agents
Alice (𝐴) and Bob (𝐵). Suppose we perform a complete projective measurement on |𝜙𝐴⟩. By
the extended Born rule, each measurement outcome will lead to an instantaneous change
of |𝜙𝐵⟩. If this change in state could be detected by measuring |𝜙𝐵⟩, instantaneous commu-
nication between 𝐴 and 𝐵 would be possible.

Consider ||𝜙+𝐴𝐵⟩ =
1
√2
(|00⟩ + |11⟩). Suppose qubit𝐴 ismeasured in the standard basis {|0⟩ , |1⟩}.

outcome probability post-measurement state final state of 𝐵
0 1

2
|00⟩ |0⟩

1 1
2

|11⟩ |1⟩

Suppose qubit 𝐵 is subsequently measured in {|𝑏0⟩ , |𝑏1⟩}. If 𝐵 is in the state |0⟩, we can
write |0⟩ = 𝑐0 |𝑏0⟩ + 𝑐1 |𝑏1⟩, and 𝑝|0⟩(𝑖) = |𝑐𝑖|

2 = |⟨𝑏𝑖|0⟩|
2. If 𝐵 is in the state |1⟩, we write

|1⟩ = 𝑑0 |𝑏0⟩+𝑑1 |𝑏1⟩, and𝑝|1⟩(𝑖) = |𝑑𝑖|
2 = |⟨𝑏𝑖|1⟩|

2. Therefore, 𝑝(𝑖) = 1
2
|⟨𝑏𝑖|0⟩|

2+ 1
2
|⟨𝑏𝑖|1⟩|

2 =
1
2
. The two outcomes for this measurement are equally likely, regardless of the choice of
complete orthonormal basis {|𝑏0⟩ , |𝑏1⟩}.

Suppose instead𝐴 is not measured, but we perform the samemeasurement on 𝐵. The initial
state is ||𝜙+𝐴𝐵⟩, so by the extended Born rule, 𝑝(𝑖) = ⟨𝜙+𝐴𝐵||(𝐼𝐴 ⊗ |𝑏𝑖⟩⟨𝑏𝑖|)||𝜙+𝐴𝐵⟩ =

1
2
. We can

therefore not detect throughmeasuring 𝐵whether ameasurement was performed at𝐴. This
is the no-signalling principle.

Wenowprove themore general case. Let |𝜙𝐴𝐵⟩ ∈ 𝒱𝐴⊗𝒱𝐵 be an arbitrary possibly entangled
state.
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Suppose we measure 𝐵 in a complete orthonormal basis {|𝑏⟩}dim𝒱𝐵
𝑏=1 , which is a complete

projective measurement on 𝐵. Let {|𝑎⟩}dim𝒱𝐴
𝑎=1 be a complete orthonormal basis for 𝒱𝐴. Then,

expanding |𝜙𝐴𝐵⟩, in this basis, we can write |𝜙𝐴𝐵⟩ = ∑𝑎,𝑏 𝑐𝑎𝑏 |𝑎⟩ |𝑏⟩. We obtain outcome 𝑏
with probability 𝑝(𝑏) = ⟨𝜙𝐴𝐵|(𝐼𝐴 ⊗ 𝑃𝑏)|𝜙𝐴𝐵⟩ = ∑dim𝒱𝐴

𝑎=1 |𝑐𝑎𝑏|
2. The post-measurement state

is ||𝜙′𝐴𝐵⟩.

Suppose that we first measure 𝐴 in a complete orthonormal basis {|𝑎⟩}dim𝒱𝐴
𝑎=1 , and then per-

form the measurement {|𝑏⟩}dim𝒱𝐵
𝑏=1 on 𝐵. The outcome of the first measurement is 𝑎 with

probability 𝑝(𝑎) = ⟨𝜙𝐴𝐵|(𝑃𝑎 ⊗ 𝐼𝐵)|𝜙𝐴𝐵⟩ = ∑dim𝒱𝐵
𝑏=1 |𝑐𝑎𝑏|

2. We denote the post-measurement
state of the joint system by ||𝜙″𝐴𝐵⟩ =

(𝑃𝑎⊗𝐼𝐵)|𝜙𝐴𝐵⟩
√𝑝(𝑎)

. Then, the outcome of the second measure-
ment is 𝑏 with probability

𝑝(𝑎 ∣ 𝑏) = ⟨𝜙″𝐴𝐵||(𝐼𝐴 ⊗ 𝑃𝑏)||𝜙″𝐴𝐵⟩

= 1
𝑝(𝑎) ⟨𝜙𝐴𝐵|(𝑃𝑎 ⊗ 𝐼𝐵)(𝐼𝐴 ⊗ 𝑃𝑏)(𝑃𝑎 ⊗ 𝐼𝐵)|𝜙𝐴𝐵⟩

= 1
𝑝(𝑎) ⟨𝜙𝐴𝐵|(𝑃𝑎 ⊗ 𝑃𝑏)|𝜙𝐴𝐵⟩

𝑝(𝑎, 𝑏) = 𝑝(𝑎)𝑝(𝑎 ∣ 𝑏) = ⟨𝜙𝐴𝐵|(𝑃𝑎 ⊗ 𝑃𝑏)|𝜙𝐴𝐵⟩ = |𝑐𝑎𝑏|
2

Hence 𝑝(𝑏) = ∑dim𝒱𝐴
𝑎=1 |𝑐𝑎𝑏|

2, which is exactly the distribution we obtained when no meas-
urement on 𝐴 was performed. This proves the no-signalling principle.

2.5. The Bell basis
Let ℂ2 ⊗ ℂ2 model a quantum system representing the spins of two electrons. Consider
||𝜙+𝐴𝐵⟩ =

1
2
(|00⟩ + |11⟩) ∈ ℂ2⊗ℂ2. This is amaximally entangled state; we have information

about the whole system, but no information about the individual states.

||𝜙±𝐴𝐵⟩ =
1
√2

(|00⟩ ± |11⟩); ||𝜓±𝐴𝐵⟩ =
1
√2

(|01⟩ ± |10⟩)

{||𝜙±𝐴𝐵⟩ , ||𝜓±𝐴𝐵⟩} forms a complete orthonormal basis of ℂ2 ⊗ℂ2. This is called the Bell basis.
The basis vectors are sometimes knownasEPR states, after Einstein, Podolsky, andRosen.

One bit of classical information can be encoded in a single qubit, and two bits can be en-
coded in a pair of qubits in the Bell basis. The Bell states have a parity 0 or 1, representing
parallel {||𝜙±⟩} or antiparallel {||𝜓±⟩} spins. The states also have a phase, which can be posit-
ive {|𝜙+⟩ , |𝜓+⟩} or negative {|𝜙−⟩ , |𝜓−⟩}. For example, we can encode the classical message
01 using the state |𝜙−⟩.
We can perform a complete projective measurement on both qubits in the Bell basis to re-
cover the encoded information with certainty. For instance, 𝑃00 = |𝜙+⟩⟨𝜙+|. If we prepare a
pair of electrons |𝜙⟩ in the state |𝜙−⟩ for example, we obtain 𝑝(00) = 𝑝(10) = 𝑝(11) = 0 and
𝑝(01) = 1.
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2.6. Superdense coding
Suppose Alice wants to send a classical message to Bob. Two bits of classical information
can be sent reliably via a single qubit, provided that Alice and Bob share an entangled state,
using superdense coding or quantum dense coding. Let

𝑋 = 𝜎𝑥; 𝑍 = 𝜎𝑧; 𝑌 = 𝑖𝜎𝑦 = ( 0 1
−1 0)

One can check that the Bell basis vectors satisfy

|𝜙+⟩ = (𝐼 ⊗ 𝐼) |𝜙+⟩ = (𝐼 ⊗ 𝐼) |𝜙+⟩
|𝜙−⟩ = (𝑍 ⊗ 𝐼) |𝜙+⟩ = (𝐼 ⊗ 𝑍) |𝜙+⟩
|𝜓+⟩ = (𝑋 ⊗ 𝐼) |𝜙+⟩ = (𝐼 ⊗ 𝑋) |𝜙+⟩
|𝜓−⟩ = (𝑌 ⊗ 𝐼) |𝜙+⟩ = −(𝐼 ⊗ 𝑌) |𝜙+⟩

Suppose we have shared the entangled Bell state ||𝜙+𝐴𝐵⟩ between Alice and Bob. The super-
dense coding protocol is

Alice’s message local action on 𝐴 final state of 𝐴𝐵
00 𝐼 |𝜙+⟩
01 𝑍 |𝜙−⟩
10 𝑋 |𝜓+⟩
11 𝑌 |𝜓−⟩

Then, Alice sends qubit 𝐴 to Bob, so Bob has the entire state 𝐴𝐵. Bob performs a Bell meas-
urement, which distinguishes between the four Bell states, thus recovering Alice’s message.
Since the state is maximally entangled, an eavesdropper whomay intercept Alice’s transmis-
sion cannot recover any part of the message.

2.7. Quantum gates
Aquantum gate is given by a unitary operator acting on some qubits. Such gates havematrix
representations in the computational basis.

(i) The Hadamard gate is

𝐻 = 1
√2

(1 1
1 −1)

One can show that

𝐻 |0⟩ = |+⟩ ; 𝐻 |1⟩ = |−⟩ ; 𝐻 |+⟩ = |0⟩ ; 𝐻 |−⟩ = |1⟩

Note that𝐻⊺ = 𝐻† = 𝐻 and𝐻2 = 𝐼. As an orthogonal transformation in ℝ2, it acts as
a reflection by an angle of 𝜋

8
to the positive 𝑥 axis. This gate is drawn

𝐻
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In general, by linearity we obtain

𝑎 |0⟩ + 𝑏 |1⟩ 𝐻 𝑎 |+⟩ + 𝑏 |−⟩
(ii) The 𝑋, 𝑍 gates are given by

𝑋 |𝑘⟩ = |𝑘 ⊕ 1⟩ ; 𝑍 |𝑘⟩ = (−1)𝑘 |𝑘⟩
where⊕ denotes addition modulo 2. They 𝑋, 𝑍, 𝑌 gates are drawn

𝑋 ; 𝑍 ; 𝑋 𝑍
(iii) The phase gate is

𝑃𝜃 = (1 0
0 𝑒𝑖𝜃)

Note that 𝑍 = 𝑃𝜋.
(iv) The controlled-X gate, also called a CNOT gate, is

𝐶𝑋 =
⎛
⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟
⎟
⎠

= (𝐼 0
0 𝑋)

Note that 𝐶𝑋 |𝑖⟩ |𝑗⟩ = |𝑖⟩ |𝑖 ⊕ 𝑗⟩. The first qubit is called the control qubit, and the
second is called the target qubit. If 𝑖 = 0, there is no action on the second qubit.
If 𝑖 = 1, 𝑋 is performed on the second qubit. In general, 𝐶𝑋 |0⟩ |𝜓⟩ = |0⟩ |𝜓⟩, and
𝐶𝑋 |1⟩ |𝜓⟩ = |1⟩ (𝑋 |𝜓⟩). The circuit diagram is as follows.

|𝑖⟩ • |𝑖⟩

|𝑗⟩ |𝑖 ⊕ 𝑗⟩
One can show that

•

= 𝐻 • 𝐻

𝐻 𝐻
(v) The controlled-Z gate, also called a CZ gate, is

𝐶𝑍 = (𝐼 0
0 𝑍)

So 𝐶𝑍 |0⟩ |𝜓⟩ = |0⟩ |𝜓⟩ and 𝐶𝑍 |1⟩ |𝜓⟩ = |1⟩ (𝑍 |𝜓⟩). 𝐶𝑍 is symmetric in its action on the
two qubits; for example, 𝐶𝑍12 |0⟩ |1⟩ = 𝐶𝑍21 |0⟩ |1⟩. This gate is drawn

•

𝑍

or •

•
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2.8. Quantum teleportation
Suppose Alice and Bob share the Bell state |𝜙+⟩𝐴𝐵, and that Alice wants to send the state
of qubit |𝜓⟩𝐶 to Bob, but only classical communication between them is possible. It is pos-
sible to transfer the information about the state of |𝜓⟩𝐶 without physically transferring qubit
𝐶 to Bob. This state transfer can be accomplished in such a way that is unaffected by any
physical process in the space between Alice and Bob, since it relies only on classical commu-
nication.

The initial state of 𝐶𝐴𝐵 is |Ψ⟩ = |𝜓⟩𝐶 ⊗ |𝜙+⟩𝐴𝐵, assuming |𝜓⟩𝐶 is uncorrelated with |𝜙+⟩𝐴𝐵.
Let |𝜓⟩𝐶 = 𝑎 |0⟩𝐶 + 𝑏 |1⟩𝐶 , so

|Ψ⟩ = |𝜓⟩𝐶 ⊗ |𝜙+⟩𝐴𝐵 =
1
√2

[𝑎 |000⟩ + 𝑎 |011⟩ + 𝑏 |100⟩ + 𝑏 |111⟩]

Alice sends 𝐶 and 𝐴 through a 𝐶𝑋 gate. Now,

|Ψ⟩ = |𝜑1⟩ =
1
√2

[𝑎 |000⟩ + 𝑎 |011⟩ + 𝑏 |110⟩ + 𝑏 |101⟩]

She now sends 𝐶 through a Hadamard gate.

|Ψ⟩ = |𝜑2⟩ =
1
√2

[𝑎 |+00⟩ + 𝑎 |+11⟩ + 𝑏 |−10⟩ + 𝑏 |−01⟩]

= 1
2[ |00⟩ |𝜓⟩ + |01⟩ (𝑋 |𝜓⟩) + |10⟩ (𝑍 |𝜓⟩) + |11⟩ (−𝑌 |𝜓⟩)]

Alice now measures 𝐶𝐴 in the computational basis of ℂ2 ⊗ ℂ2. The probability of each
outcome is 1

4
, irrespective of the values of 𝑎 and 𝑏 and hence of |𝜓⟩. She then sends the

result of her measurement to Bob. If Alice measures outcome 𝑖𝑗, 𝐵 is in state 𝑋𝑗𝑍𝑖 |𝜓⟩. Then,
Bob can act on 𝐵 using 𝑍𝑖𝑋𝑗 , as 𝑋 and 𝑍 are involutive, giving |𝜓⟩ as desired. This process
can be represented with the following diagram, where double-struck wires are classical, and
the meter symbol denotes a measurement of the quantum state.

|𝜓⟩𝐶 • 𝐻  •

|𝜙+⟩𝐴  •

|𝜙+⟩𝐵 𝑋 𝑍 |𝜓⟩
Note that after the measurement of 𝐶𝐴, the entanglement between 𝐶𝐴 and 𝐵 is broken. No-
cloning is not violated, as the original state |𝜓⟩𝐶 is destroyed.
Note that the first steps of this process includingAlice’smeasurement correspond to perform-
ing a Bell measurement on 𝐶𝐴. This is because the action of 𝐶𝑋𝐶𝐴 then 𝐻𝐶 corresponds to
a rotation of the Bell basis to the standard basis.
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3. Quantum cryptography
3.1. One-time pads
Wecanuse quantum information theory to securely transmitmessages between agentsAlice
and Bob, who may be in distant locations, without the possibility that an eavesdropper Eve
can recover the message that was sent.

We will assume that Alice and Bob have an authenticated classical channel through which
they can send classical information; Alice and Bob can verify that any particular message
on the channel came from a particular sender. We also assume that Eve cannot block the
channel ormodify anymessages transmitted, but she canmonitor the channel freely. Hence,
Alice and Bob can receive messages from each other without error.

In the classical setting, there exists a provably secure classical scheme for private commu-
nications, called the one-time pad. This requires that Alice and Bob share a private key
𝐾, which is a binary string. 𝐾 must have been created beforehand, and must be chosen
uniformly at random from the set of binary strings of the same length as the message 𝑀.
Suppose𝑀,𝐾 ∈ {0, 1}𝑛.
The protocol is as follows. First, Alice computes the encryptedmessage𝐶 = 𝑀⊕𝐾. She then
sends𝐶 to Bob through the classical channel. Bob can then compute𝐶⊕𝐾 = 𝑀⊕𝐾⊕𝐾 = 𝑀
to obtain the message that was sent by Alice. Eve cannot learn any information about the
message (apart from its length), as she has no knowledge of 𝐾. In general, the probability
that a particular 𝐾 was chosen is 2−𝑛. This scheme cannot be broken.
Suppose that Alice and Bob use the same key𝐾 to send twomessages𝑀1,𝑀2. Eve can obtain
𝑀1 ⊕𝐾 and𝑀2 ⊕𝐾, and can therefore compute (𝑀1 ⊕𝐾) ⊕ (𝑀2 ⊕𝐾) = 𝑀1 ⊕𝑀2, which
gives some information about themessages that were sent. Any keymust only be used once,
so the one-time pad protocol is inefficient. To solve this problem, we will construct methods
for distributing keys, using techniques from quantum information theory.

3.2. The BB84 protocol
Quantum key distribution allows Alice and Bob to generate a private key without needing
to physically meet. This key can then be used to send messages over the one-time pad pro-
tocol. In addition to a classical channel, we assume that Alice and Bob also have access to a
quantum channel through which they can send qubits. We will show that Eve cannot gain
information about the key that Alice and Bob generate without being detected.

Consider the basesℬ0 = {|0⟩ , |1⟩}, ℬ1 = {|+⟩ , |−⟩}. These are examples ofmutually unbiased
bases; a pair of bases such that if any basis vector is measured relative to the other basis, all
outcomes are equally likely. For example, measuring |+⟩ relative to ℬ0 gives probability

1
2

for outcomes 0 and 1.

First, Alice generates two 𝑚-bit strings 𝑥 = 𝑥1…𝑥𝑚 ∈ {0, 1}𝑚, 𝑦 = 𝑦1…𝑦𝑚 ∈ {0, 1}𝑚
uniformly at random. She then prepares the 𝑚-qubit state ||𝜓𝑥𝑦⟩ = ||𝜓𝑥1𝑦1⟩ ⊗ ⋯⊗ ||𝜓𝑥𝑚𝑦𝑚⟩
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where

||𝜓𝑥𝑖𝑦𝑖⟩ =
⎧⎪
⎨⎪
⎩

|0⟩ 𝑥𝑖 = 0; 𝑦𝑖 = 0
|1⟩ 𝑥𝑖 = 1; 𝑦𝑖 = 0
|+⟩ 𝑥𝑖 = 0; 𝑦𝑖 = 1
|−⟩ 𝑥𝑖 = 1; 𝑦𝑖 = 1

Alice sends the qubits ||𝜓𝑥𝑦⟩ to Bobwith𝑚 uses of the quantum channel. The qubits received
are not necessarily in the state ||𝜓𝑥𝑦⟩ due to noise or malicious manipulation of the channel.
Bob then generates an 𝑚-bit string 𝑦′ = 𝑦′1…𝑦′𝑚 ∈ {0, 1}𝑚 uniformly at random. If 𝑦′𝑖 = 0,
he measures the 𝑖th qubit in the basis ℬ0 = {|0⟩ , |1⟩}. If 𝑦′𝑖 = 1, he acts on the 𝑖th qubit by
the Hadamard gate and then measures inℬ0. Equivalently, he measures the 𝑖th qubit in the
basis ℬ1 = {|+⟩ , |−⟩}. Let the sequence of outcomes be 𝑥′ = 𝑥′1…𝑥′𝑚 ∈ {0, 1}𝑚.
If 𝑦′𝑖 = 𝑦𝑖, we have 𝑥′𝑖 = 𝑥𝑖. Indeed, suppose 𝑦′𝑖 = 0 = 𝑦𝑖. Then ||𝜋𝑥𝑖𝑦𝑖⟩ ∈ ℬ0, and Bob
measures in basisℬ0, so he can determine 𝑥𝑖 with probability 1. If 𝑦′𝑖 = 1 = 𝑦𝑖, ||𝜋𝑥𝑖𝑦𝑖⟩ ∈ ℬ1,
and Bob measures in basis ℬ1.

Now, Alice and Bob compare their values of 𝑦 and 𝑦′ over the classical channel, and discard
all 𝑥𝑖 and 𝑥′𝑖 for which 𝑦𝑖 ≠ 𝑦′𝑖. The remaining 𝑥𝑖 and 𝑥′𝑖 match, given that Bob receives ||𝜓𝑥𝑦⟩
exactly, and this forms the shared private key ̃𝑥 = ̃𝑥′. The average length of ̃𝑥 is 𝑚

2
.

In the case𝑚 = 8, suppose 𝑥 = 01110100 and 𝑦 = 11010001. Alice prepares ||𝜓𝑥𝑦⟩ and sends
the qubits to Bob. Suppose that Bob receives ||𝜓𝑥𝑦⟩ exactly, and he generates 𝑦′ = 01110110.
Bobmeasures qubit 1 in the basisℬ0, but the qubit is in state |+⟩, so he obtains both outcomes
for𝑥′1with equal probability. Hemeasures qubit 2 in the basisℬ1, and the qubit is in state |−⟩,
so after applying 𝐻 and measuring, he obtains the correct outcome 𝑥′2 = 1 with probability
1. After discarding mismatched 𝑦𝑖, the obtained private key is ̃𝑥 = 110.
In the general case, however, there may be noise or malicious activity on the channel. We
therefore include the further step of information reconciliation at the end of the BB84 pro-
tocol. Alice and Bob want to estimate the bit error rate, which is the proportion of bits in ̃𝑥
and ̃𝑥′ that differ. They can publicly compare a random sample of their bits, and discard the
bits used in the test. They assume that the bit error rate in the sample is approximately the
same as the bit error rate of ̃𝑥 and ̃𝑥′.
Suppose that Alice and Bob have estimated the bit error rate to be 1

7
, and now have strings

𝑎, 𝑏 of length 7. They can use classical error correcting code techniques to fix any remaining
errors. They publicly agree to act on 𝑎, 𝑏 by a matrix

𝐻 = (
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

)

which is the check matrix of a Hamming code. Alice computes the syndrome for 𝑎, given by
𝑠𝐴 = (𝑠𝐴1 , 𝑠𝐴2 , 𝑠𝐴3 )⊺ = 𝐻𝑎⊺, and sends this to Bob on the public channel. Bob computes the
syndrome 𝑠𝐵 for 𝑏, and calculates 𝑠 = 𝑠𝐵 − 𝑠𝐴. There is a unique bit string 𝑣 with at most
one nonzero entry such that 𝐻𝑣⊺ = 𝑠; he can therefore recover 𝑎.
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The estimation of the bit error rate and the transmission of the syndrome can reveal some
information on the public channel. Alice and Bob want to estimate the maximum amount
of information that an eavesdropper could gain about the remaining bits, using privacy amp-
lification. This depends on the choice of action that Eve takes.

As an example, suppose 𝑎⋆ = (𝑎1, 𝑎2, 𝑎3) ∈ {0, 1}3, and suppose Eve knows at most one bit
of this string. Let 𝑐 = (𝑎1 ⊕ 𝑎3, 𝑎2 ⊕ 𝑎3). We claim that Eve has no knowledge about 𝑐.
Indeed, we can explicitly enumerate all possibilities of 𝑎⋆ and the corresponding values of 𝑐,
and show that Eve’s knowledge about any of the bits of 𝑎⋆ does not change the distribution
of 𝑐.
One strategy for Eve, called the intercept and resend strategy, is to intercept the qubits as they
are transferred to Bob, measure them, and retransmit the post-measurement state. The best
possible measurement she can perform is in the Breidbart basis {|𝛼0⟩ , |𝛼1⟩} where

|𝛼0⟩ = cos 𝜋8 |0⟩ − sin 𝜋8 |1⟩ ; |𝛼1⟩ = sin 𝜋8 |0⟩ + cos 𝜋8 |1⟩

Note that
|⟨𝛼0|0⟩|

2 = |⟨𝛼0|+⟩|
2 = cos2 𝜋8 ; |⟨𝛼1|1⟩|

2 = |⟨𝛼1|−⟩|
2 = cos2 𝜋8

The |𝛼𝑖⟩ provide the best possible simultaneous approximations of |0⟩ , |+⟩ and |1⟩ , |−⟩. Sup-
pose 𝑦′𝑖 = 𝑦𝑖, and suppose Eve intercepts the 𝑖th qubit and measures it in the Breidbart basis.
Her outcomes are 0 or 1, and she learns the correct value of 𝑥𝑖 with probability cos2

𝜋
8
≈ 0.85.

If she measures 0, she transmits |𝛼0⟩ to Bob, and if she measures 1, she transmits |𝛼1⟩ to
Bob.

The probability that Bob makes an incorrect inference of the value of the 𝑖th bit after this
manipulation is 1

4
, regardless of the state of the qubit transmitted byAlice. Suppose ||𝜓𝑥𝑖𝑦𝑖⟩ =

|0⟩, so 𝑥𝑖 = 0, 𝑦𝑖 = 0. Then,

ℙ (𝑥′𝑖 ≠ 𝑥𝑖) = ℙ (𝐵 measures 1 ∣ 𝐴 sent |0⟩)
= ℙ (𝐸 sent |𝛼0⟩ ∣ 𝐴 sent |0⟩) ℙ (𝐵 measures 1 ∣ 𝐸 sent |𝛼0⟩)
+ ℙ (𝐸 sent |𝛼1⟩ ∣ 𝐴 sent |0⟩) ℙ (𝐵 measures 1 ∣ 𝐸 sent |𝛼1⟩)
= |⟨𝛼0|0⟩|

2|⟨𝛼0|1⟩|
2 + |⟨𝛼1|0⟩|

2|⟨𝛼1|1⟩|
2

= 1
4
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4. Quantum computation

4.1. Classical computation

A computational task takes an input bit string and produces an output bit string.

A decision problem is a computational task that produces an output of length 1. Let 𝐵 =
𝐵1 = {0, 1} and denote 𝐵𝑛 = {0, 1}𝑛. Define 𝐵⋆ = ⋃𝑛≥1 𝐵𝑛. A language is a subset 𝐿 ⊆ 𝐵⋆. A
decision problem corresponds to the problem of checking whether a word 𝑤 ∈ 𝐵⋆ lies in a
language 𝐿. For example, the set of primes, expressed in binary, forms a language 𝑃 ⊆ 𝐵⋆,
and there is a corresponding decision problem to check if a given binary string represents a
prime.

More generally, the output of a computational task can be of any length. For example, the
task 𝖥𝖠𝖢𝖳𝖮𝖱(𝑥) takes the input 𝑥 and produces a bit string containing a factor of 𝑥, or 1 if 𝑥
is prime.

There are various models of computation, but we restrict to the circuit or gate array model.
In this model, we have an input 𝑥 = 𝑏1…𝑏𝑛 ∈ 𝐵𝑛, and extend it with some trailing zeroes
to add scratch space to perform computations. We then perform some computational steps,
an application of designated Boolean gates 𝑓∶ 𝐵𝑛 → 𝐵𝑚 on preassigned bits. For each 𝑛,
we have a circuit 𝐶𝑛, which is a prescribed sequence of computational steps that performs a
given task for all inputs of size 𝑛. The output to the computation is a designated subsequence
of the extended bit string.

Suppose that, in addition to extending the input bit string with zeroes, we also add 𝑘 random
bits, which have values set to 0 or 1 uniformly at random. The output of the computation
will now be probabilistic. The probability that the output is 𝑦 is 𝑎2−𝑘, where 𝑎 is the number
of bit strings 𝑟 that produce the desired outcome. We typically require that the output is
correct with some prescribed probability.

4.2. Classical complexity

The time complexity is a measure of the amount of computational steps required for a par-
ticular algorithm for an input of size 𝑛. In the circuit model, we define 𝑇(𝑛) to be the
total number of gates in the circuit 𝐶𝑛, known as the size of the circuit or runtime of the
algorithm.

For a positive function 𝑇(𝑛), we write 𝑇(𝑛) = 𝑂(𝑓(𝑛)) if there exist positive constants 𝑐, 𝑛0
such that for all 𝑛 > 𝑛0, we have 𝑇(𝑛) ≤ 𝑐𝑓(𝑛). If 𝑇(𝑛) = 𝑂(𝑛𝑘) for some 𝑘 > 0, we say that
𝑇(𝑛) is 𝑂(poly(𝑛)), and the corresponding algorithm is a poly-time algorithm. The class of
languages for which themembership problem has a classical poly-time algorithm is called 𝖯.
The class of languages for which the membership problem has a randomised classical poly-
time algorithm that gives the correct answer with probability at least 2

3
is called 𝖡𝖯𝖯, short

for bounded-error probabilistic poly-time. The problem 𝖥𝖠𝖢𝖳𝖮𝖱(𝑀,𝑁) which determines if
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there is a nontrivial factor of𝑁 that is atmost𝑀 does not lie in𝖡𝖯𝖯. The best known runtime
is 𝑇(𝑛) = 𝑂(𝑛

1
3 (log𝑛)

2
3 ).

A black box promise problem is a computational task where the input is a black box or oracle
which can compute a Boolean function 𝑓∶ 𝐵𝑚 → 𝐵𝑛, and there is an a priori promise on 𝑓
restricting the possible values of 𝑓. For example, the black box promise problem for constant
vs. balanced functions takes a function 𝑓∶ 𝐵𝑛 → 𝐵 such that 𝑓 is constant or balanced, in
which case 𝑓 is equal to zero for exactly half of the 2𝑛 possible inputs.
The corresponding complexity is called query complexity, which counts the amount of times
we need to query the black box. We typically wish to minimise the query complexity.

4.3. Quantum circuits
In a quantum circuit, we have qubit inputs |𝑏1⟩… |𝑏𝑛⟩ |0⟩… |0⟩ analogously to the classical
case. The input size 𝑛 is the number of qubits. The addition of randomness to classical com-
putation needs no analogue in the quantum case, since randomness is obtained by meas-
urement. For instance, if we have a qubit |0⟩, we can generate a uniform Bernoulli random
variable by sending the qubit through a Hadamard gate and then measuring in the compu-
tational basis.

The computational steps are gates or unitary operators, which act on a prescribed set of
qubits, constituting a quantum circuit 𝐶𝑛. The output is obtained by performing a measure-
ment on a prescribed set of qubits. One can show that any circuit involving arbitrarily many
measurements is equivalent to a circuit that only performs a single measurement at the end
of the computation.

4.4. Quantum oracles
Note that all quantum gates are invertible, as they are represented with unitary operators,
but not all classical gates are invertible. Any 𝑓∶ 𝐵𝑚 → 𝐵𝑛 can be expressed in an equivalent
invertible form 𝑓∶ 𝐵𝑚+𝑛 → 𝐵𝑚+𝑛 by defining 𝑓(𝑏, 𝑐) = (𝑏, 𝑐 ⊕ 𝑓(𝑏)). If we can compute
𝑓 we can also compute 𝑓, and conversely given 𝑓 we can find 𝑓(𝑏) = 𝑓(𝑏, 0). This is self-
inverse.

𝑓(𝑓(𝑏, 𝑐)) = 𝑓(𝑏, 𝑐 ⊕ 𝑓(𝑏)) = (𝑏, 𝑐 ⊕ 𝑓(𝑏) ⊕ 𝑓(𝑏)) = (𝑏, 𝑐)
A quantum oracle for a function 𝑓∶ 𝐵𝑚 → 𝐵𝑛 is the quantum gate𝑈𝑓 acting on𝑚+𝑛 qubits
such that 𝑈𝑓 |𝑥⟩ |𝑦⟩ = |𝑥⟩ |𝑦 ⊕ 𝑓(𝑥)⟩ for |𝑥⟩ , |𝑦⟩ states in the computational basis. In other
words, its action on the computational basis is 𝑓. We say that |𝑥⟩ is the input register and |𝑦⟩
is the output register.

One can show that 𝑈𝑓 is always a unitary operator. We can show this directly by consid-
ering 𝑈𝑓 |𝑥′⟩ |𝑦′⟩ = |𝑥′⟩ |𝑦′ ⊕ 𝑓(𝑥′)⟩, and we can take the inner product with 𝑈𝑓 |𝑥⟩ |𝑦⟩ =
|𝑥⟩ |𝑦 ⊕ 𝑓(𝑥)⟩. An easier way to show this is to consider 𝑓∶ 𝐵𝑘 → 𝐵𝑘 as a permutation on
𝐵𝑘 where 𝑚 + 𝑛 = 𝑘. We can write 𝑈𝑓 |𝑥⟩ |𝑦⟩ = 𝑈𝑓 |𝑖1…𝑖𝑘⟩ = ||𝑓(𝑖1…𝑖𝑘)⟩. Since 𝑓 is a
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permutation, 𝑈𝑓 is therefore represented by a permutation matrix, which has a single 1 in
each row and column. All permutation matrices are unitary.

In contrast to a classical oracle, a quantumoracle can act on a superposition of input registers.
Let 𝑓∶ 𝐵𝑚 → 𝐵𝑛, and consider the equal superposition state |𝜑𝑚⟩ =

1
√2𝑚

∑𝑥∈𝐵𝑚 |𝑥⟩. We can
find

𝑈𝑓 |𝜑𝑚⟩ |𝑦⟩ = 𝑈𝑓(
1

√2𝑚
∑

𝑥∈𝐵𝑚
|𝑥⟩) |𝑦⟩ = 1

√2𝑚
∑

𝑥∈𝐵𝑚
𝑈𝑓 |𝑥⟩ |𝑦⟩ = ||𝜓𝑓⟩

In a single use of the oracle, we obtain a final state which depends on the value of 𝑓 corres-
ponding to all possible inputs. One can easily create such an equal superposition state |𝜑𝑚⟩
by sending the 𝑚-qubit state |0⟩… |0⟩ through 𝑚 Hadamard gates 𝐻 ⊗ ⋯ ⊗ 𝐻. We have
(𝐻 |0⟩)⊗𝑚 = (|+⟩)⊗𝑚 = |𝜑𝑚⟩. This creates a superposition of exponentially many terms
using a linear amount of Hadamard gates.

4.5. Deutsch–Jozsa algorithm
Consider the black box problem for balanced vs. constant functions. Classically, one needs
2𝑛−1 + 1 queries to solve the problem in the worst case. This amount of queries is clearly
sufficient; even if 𝑓 is balanced, the first 2𝑛−1 queries could have equal outcomes, but the
subsequent querymust have a different outcome. Suppose that there exists an algorithm that
can solve the problem in 2𝑛−1 queries. An adversary that controls the oracle can respond
with 0 for every query, and subsequently choose a function 𝑓 that agrees with the earlier
query results but is balanced or constant as required to cause the algorithm to produce an
error. Therefore, classically we require a query complexity of 𝑂(exp(𝑛)).
Suppose we have a quantum oracle 𝑈𝑓 with 𝑈𝑓 |𝑥⟩ |𝑦⟩ = |𝑥⟩ |𝑦 ⊕ 𝑓(𝑥)⟩, where |𝑥⟩ is an 𝑛-
qubit state and |𝑦⟩ is a 1-qubit state. Set each qubit to state |0⟩, then act by𝐻⊗𝑛⊗(𝐻 ⋅ 𝑋) on
|𝑥⟩ |𝑦⟩. We then obtain the state |𝐴⟩ = 1

√2𝑛
∑𝑥∈𝐵𝑛 |𝑥⟩ |−⟩. Send this state through the oracle

to obtain 𝑈𝑓 |𝐴⟩ =
1

√2𝑛
𝑈𝑓∑𝑥∈𝐵𝑛 |𝑥⟩ |−⟩. Note that

𝑈𝑓 |𝑥⟩ |−⟩ =
1
√2

𝑈𝑓(|𝑥⟩ |0⟩ − |𝑥⟩ |1⟩)

= 1
√2

(|𝑥⟩ |𝑓(𝑥)⟩ − |𝑥⟩ |𝑓(𝑥)𝑐⟩)

= {
1
√2
|𝑥⟩ (|0⟩ − |1⟩) = |𝑥⟩ |−⟩ if 𝑓(𝑥) = 0

1
√2
|𝑥⟩ (|1⟩ − |0⟩) = − |𝑥⟩ |−⟩ if 𝑓(𝑥) = 1

= (−1)𝑓(𝑥) |𝑥⟩ |−⟩
The method of encoding all information into a phase is called phase kickback. Hence,

𝑈𝑓 |𝐴⟩ =
1

√2𝑛
𝑈𝑓 ∑

𝑥∈𝐵𝑛
|𝑥⟩ |−⟩ = 1

√2𝑛
( ∑
𝑥∈𝐵𝑛

(−1)𝑓(𝑥) |𝑥⟩) |−⟩
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We can then easily discard the last qubit, as it is now in a product state. We obtain

|𝑓⟩ = 1
√2𝑛

∑
𝑥∈𝐵𝑛

(−1)𝑓(𝑥) |𝑥⟩

If 𝑓 is constant,

|𝑓⟩ = ± 1
√2𝑛

∑
𝑥∈𝐵𝑛

|𝑥⟩ = ±(𝐻 |0⟩)⊗𝑛

Ifwe apply𝐻⊗𝑛 to |𝑓⟩, we obtain± |0⟩⊗𝑛. If𝑓 is balanced, writing |𝜑𝑛⟩ =
1

√2𝑛
∑𝑦∈𝐵𝑛 |𝑦⟩,

⟨𝑓|𝜑𝑛⟩ =
1
2𝑛 ∑

𝑥,𝑦∈𝐵𝑛
(−1)𝑓(𝑥) ⟨𝑦|𝑥⟩ = 1

2𝑛 ∑
𝑥∈𝐵𝑛

(−1)𝑓(𝑥) = 0

In this case, |𝑓⟩ is orthogonal to |𝜑𝑛⟩. Applying 𝐻⊗𝑛 to |𝑓⟩, we have that 𝐻⊗𝑛 |𝑓⟩ is ortho-
gonal to 𝐻⊗𝑛 |𝜑𝑛⟩ = |0⟩⊗𝑛.

After obtaining |𝑓⟩, we apply 𝐻⊗𝑛 and measure in the computational basis. If 𝑓 is constant,
wemeasure 0…0with probability 1, and if 𝑓 is balanced, wemeasure 0…0with probability
0. This allows us to infer whether 𝑓 is constant or balanced with probability 1.

|0⟩1 𝐻

𝑈𝑓

𝐻  𝑥1

|0⟩2 𝐻 𝐻  𝑥2

⋮ ⋮

|0⟩𝑛 𝐻 𝐻  𝑥𝑛

|0⟩ 𝑋 𝐻 discard

For this algorithm, we use one query and 3𝑛 + 2 further operations.

Suppose we permit a probability 𝜀 > 0 of error. In the quantum case, we only need one
query. In the classical case, there is a randomised algorithm which solves the problem with
a constant number 𝑂(log 1

𝜀
) of queries for all 𝑛. Choose 𝑘 inputs each chosen uniformly at

random, and evaluate 𝑓(𝑥) for each 𝑥 in this set. If 𝑓(𝑥) is constant for all of these 𝑘 inputs,
we infer 𝑓 is constant; otherwise we infer it is balanced. An error can only occur when
the function is balanced but we infer it is constant. The probability of error is 2

2𝑘
= 2−𝑘+1.

Hence, we can take 𝜀 < 2−𝑘+1, so 𝑘 = 𝑂(log 1
𝜀
).
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4.6. Simon’s algorithm
Consider a function 𝑓∶ 𝐵𝑛 → 𝐵𝑛 with the promise that either 𝑓 is injective, or 𝑓(𝑥) = 𝑓(𝑦)
if and only if 𝑦 = 𝑥 or 𝑦 = 𝑥 ⊕ 𝜉 for a fixed 0 ≠ 𝜉 ∈ 𝐵𝑛. The problem is to determine with
bounded error whether 𝑓 is in the 1-1 form or the 2-1 form, and in the latter case, to find the
constant 𝜉. Note that 𝑓(𝑥 ⊕ 𝜉) = 𝑓(𝑥) is the statement that 𝑓 has period 𝜉.

Classically, the query complexity is𝑂(exp(𝑛)). In order to solve the problem, we need to find
two distinct 𝑥, 𝑦 inputs for which 𝑓(𝑥) = 𝑓(𝑦), or show that this is not possible. However,
there is a quantum algorithm with query complexity 𝑂(𝑛).

4.7. Quantum Fourier transform
Let 𝒱𝑁 be a state space, and ℬ𝑁 = {|0⟩ , |1⟩ ,… , |𝑁 − 1⟩} be an orthonormal basis for 𝒱𝑁 .
Write ℤ𝑁 for integers modulo 𝑁, and let 𝜔 = 𝑒

2𝜋𝑖
𝑁 . For |𝑘⟩ ∈ ℬ𝑁 , we define

𝑄𝐹𝑇𝑁 |𝑘⟩ =
1
√𝑁

𝑁−1
∑
ℓ=0

𝑒
2𝜋𝑖
𝑁 𝑘ℓ |ℓ⟩ = 1

√𝑁

𝑁−1
∑
ℓ=0

𝜔𝑘ℓ |ℓ⟩

The quantumFourier transform can be viewed as a generalisation of theHadamard operator,
as 𝑄𝐹𝑇2 = 𝐻.

We show that this is a unitary operator.

(𝑄𝐹𝑇)𝑗𝑘 = ⟨𝑗| 𝑄𝐹𝑇 |𝑘⟩ = 1
√𝑁

𝑁−1
∑
ℓ=0

𝜔𝑘ℓ ⟨𝑗|ℓ⟩ = 1
√𝑁

𝜔𝑗𝑘

𝑄𝐹𝑇 = 1
√𝑁

⎛
⎜
⎜
⎜
⎝

1 1 1 1 ⋯
1 𝜔 𝜔2 𝜔3 ⋯
1 𝜔2 𝜔4 𝜔6 ⋯
1 𝜔3 𝜔6 𝜔9 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎠

Let 𝑆𝑗 be the sum of the 𝑗th row or column. If 𝑗 = 0, 𝑆𝑗 =
1
√𝑁

𝑁. Otherwise,

𝑆𝑗 =
1
√𝑁

(1 + 𝜔𝑗 +⋯+ 𝜔𝑗(𝑁−1)) = 1
√𝑁

⋅ 1 − 𝜔𝑗𝑁
1 − 𝜔𝑗 = 0

We can use this to prove that (𝑄𝐹𝑇†𝑄𝐹𝑇)𝑗𝑘 = 𝛿𝑗𝑘, so it is a unitary operator.

Suppose we have a periodic function 𝑓∶ ℤ𝑁 → 𝑌 , where typically 𝑌 = ℤ𝑀 for some𝑀. Let
𝑟 be the smallest integer in ℤ𝑁 for which 𝑓(𝑥 + 𝑟) = 𝑓(𝑥) for all 𝑥 ∈ ℤ𝑁 , so 𝑓 is periodic
with period 𝑟. Suppose further that 𝑓 is injective in each period. We wish to find 𝑟 with a
particular probability of error.
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There is a classical algorithm with query complexity 𝑂(√𝑁) = 𝑂(2log𝑁
1
2 ) = 𝑂(2

1
2 log𝑁).

In the quantum case, for any error probability 𝜀 ∈ (0, 1), there is an algorithm with query
complexity 𝑂(log log𝑁), which provides an exponential speed increase.

We first describe an attempt to construct such an algorithm without using the quantum
Fourier transform. Begin with the uniform superposition state |𝜓𝑁⟩ =

1
√𝑁

∑𝑁−1
𝑥=0 |𝑥⟩. Con-

sider the quantum oracle 𝑈𝑓 corresponding to 𝑓∶ ℤ𝑁 → ℤ𝑀 , defined by 𝑈𝑓 |𝑥⟩ |𝑦⟩ =
|𝑥⟩ |𝑦 + 𝑓(𝑥)⟩, where addition is performed modulo𝑀. Set the output register |𝑦⟩ to |0⟩, and
then compute |𝑓⟩ = 𝑈𝑓 |𝜓𝑁⟩ |0⟩. We obtain

|𝑓⟩ = 𝑈𝑓 |𝜓𝑁⟩ |0⟩ =
1
√𝑁

𝑁−1
∑
𝑥=0

𝑈𝑓 |𝑥⟩ |0⟩ =
1
√𝑁

𝑁−1
∑
𝑥=0

|𝑥⟩ |𝑓(𝑥)⟩

Since 𝑟 is the period, we have 𝑟 ∣ 𝑁, so let 𝐴 = 𝑁
𝑟
∈ ℕ be the number of periods. We now

measure the second register, giving an outcome 𝑦 = 𝑓(𝑥0) for some 𝑥0 ∈ {0,… , 𝑟 − 1}. Note
that 𝑦 = 𝑓(𝑥0 + 𝑗𝑟) for any 𝑗 ∈ {0,… ,𝐴 − 1}. The terms in |𝑓⟩ which contribute to the
outcome 𝑦 = 𝑓(𝑥0) are

1
√𝑁

𝐴−1
∑
𝑗=0

|𝑥0 + 𝑗𝑟⟩ |𝑓(𝑥0)⟩

Hence, the probability of obtaining a particular outcome 𝑓(𝑥0) is
𝐴
𝑁
= 1

𝑟
. Then, the post-

measurement state of the input register is

|per⟩ = 1
√𝐴

𝐴−1
∑
𝑗=0

|𝑥0 + 𝑗𝑟⟩

The state |per⟩ is periodic. If we measure the input register, we obtain |𝑥0 + 𝑗0𝑟⟩ for some
𝑗0 ∈ {0,… ,𝐴 − 1}, selected uniformly at random. The probability that the outcome of this
second measurement is 𝑥0 + 𝑗0𝑟 is

1
𝐴
. Therefore, no information about 𝑟 is obtained.

We resolve this issue by utilising the quantum Fourier transform. Instead of measuring the
input register, we act on |per⟩ by 𝑄𝐹𝑇𝑁 . Since

𝑄𝐹𝑇𝑁 |𝑥⟩ =
1
√𝑁

𝑁−1
∑
𝑦=0

𝜔𝑥𝑦 |𝑦⟩
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we find

𝑄𝐹𝑇𝑁 |per⟩ =
1
√𝐴

𝑁−1
∑
𝑦=0

𝑄𝐹𝑇𝑁 |𝑥0 + 𝑗𝑟⟩

= 1
√𝐴

1
√𝑁

𝐴−1
∑
𝑗=0

𝑁−1
∑
𝑦=0

𝜔(𝑥0+𝑗𝑟)𝑦 |𝑦⟩

= 1
√𝑁𝐴

𝑁−1
∑
𝑦=0

𝜔𝑥0𝑦 [
𝐴−1
∑
𝑗=0

(𝜔𝑟𝑦)𝑗]
⏟⎵⎵⎵⏟⎵⎵⎵⏟

𝑆

|𝑦⟩

Note that

𝑆 = {
𝐴 if 𝜔𝑟𝑦 = 1
1−𝜔𝑟𝑦𝐴

1−𝜔𝑟𝑦 = 0 otherwise

Note that 𝜔𝑟𝑦 = 1 if 𝑦 = 𝑘𝐴 = 𝑘𝑁
𝑟
for 𝑘 ∈ {0,… , 𝑟 − 1}. Hence, we obtain

𝑄𝐹𝑇𝑁 |per⟩ =
𝐴

√𝑁𝐴

𝑟−1
∑
𝑘=0

𝜔𝑥0
𝑘𝑁
𝑟 |||

𝑘𝑁
𝑟 ⟩ = 1

√𝑟

𝑟−1
∑
𝑘=0

𝜔𝑥0
𝑘𝑁
𝑟 |||

𝑘𝑁
𝑟 ⟩

The value of 𝑥0 is no longer present in a ket, and has been converted into phase information.
It therefore does not affect measurement outcomes. The periodicity in 𝑟 has been inverted
into periodicity in 1

𝑟
. The resulting state is still periodic, but each period begins at 0 instead

of 𝑥0.

Now,whenmeasuring this register, the outcome is 𝑐 = 𝑘0𝑁
𝑟
for some𝑘0 ∈ {0,… , 𝑟 − 1}. Each

outcome occurs with probability 𝑟. Note that 𝑘0
𝑟
= 𝑐

𝑁
, and 𝑐

𝑁
is known after performing the

measurement; we wish to know the value of 𝑟.
Suppose first that 𝑘0 is coprime to 𝑟. In this case, we can cancel

𝑐
𝑁
to its lowest form, then

the denominator is 𝑟. If 𝑘0 is not coprime to 𝑟, the denominator ̃𝑟will instead be a factor of 𝑟.
To solve this, we can compute the reduced denominator and then evaluate 𝑓(0), 𝑓( ̃𝑟); if they
are equal, ̃𝑟 = 𝑟, and otherwise, ̃𝑟 ∣ 𝑟. We would like to know the probability that a randomly
chosen 𝑘0 is coprime to the true periodicity 𝑟.
Theorem (coprimality theorem). Let 𝜑(𝑟) denote the number of integers less than 𝑟 that
are coprime to 𝑟. Then there exist 𝑐 > 0, 𝑟0 > 0 such that for all 𝑟 ≥ 𝑟0, 𝜑(𝑟) ≥ 𝑐 𝑟

log log 𝑟
. In

particular, 𝜑(𝑟) = Ω( 𝑟
log log 𝑟

).

This theorem implies that since 𝑘0 is chosen uniformly at random, the probability that 𝑘0 is
coprime to 𝑟 is 𝑂( 1

log log 𝑟
). We claim that if we repeat this process 𝑂(log log 𝑟) times, we will

obtain an outcome 𝑐 such that after cancellation, 𝑐
𝑁
= 𝑘0

𝑟
where 𝑘0 is coprime to 𝑟 in at least

one case, with a constant probability. This claim follows from the following lemma.

359



VII. Quantum Information and Computation

Lemma. Suppose that a single trial has success probability 𝑝, and the trial is repeated 𝑀
times independently, for any 𝜀 ∈ (0, 1), the probability of at least one success is greater than
1 − 𝜀 if𝑀 = − log 𝜀

𝑝
.

Therefore, to achieve a constant probability 1 − 𝜀 of success, we need 𝑂( 1
𝑝
) trials. In the

algorithm above, 𝑝 = 𝑂( 1
log log 𝑟

), so we need 𝑂(𝑝) = 𝑂(log log 𝑟) < 𝑂(log log𝑁) trials to
achieve the desired result.

In each invocation of the algorithm, we query 𝑓 three times: once to construct the state
|𝑓⟩, and twice to check if ̃𝑟 is the true periodicity. We also need to apply the quantum
Fourier transform 𝑄𝐹𝑇𝑁 , which has implementations in 𝑂((log𝑁)2) steps. We must also
perform standard arithmetic operations such as to cancel denominators, which are com-
putable in 𝑂(poly(log𝑁)) steps. Therefore, we succeed in determining the period with any
constant probability of success 1−𝜀with𝑂(log log𝑁) queries and𝑂(poly(log𝑁)) additional
steps.

4.8. Efficient implementation of quantum Fourier transform

We can implement a quantum Fourier transform using 𝑂(poly(log𝑁)) gates if 𝑁 = 2𝑛. In
this case, 𝑄𝐹𝑇𝑁 acts on 𝑛 qubits. If 𝑁 ≠ 2𝑛, we do not have an efficient implementation; in
this case, we approximate 𝑁 by 2𝑘 for some 𝑘 ∈ ℤ. In the case 𝑁 = 2𝑛, we demonstrate a
quantum circuit of size 𝑂(𝑛2).

If 𝑥 ∈ ℤ𝑛 = {0,… , 2𝑛 − 1}, note that

𝑄𝐹𝑇𝑁 |𝑥⟩ =
1
√𝑁

𝑁−1
∑
𝑦=0

𝜔𝑥𝑦 |𝑦⟩

We can represent 𝑥 and 𝑦 by 𝑛-bit strings.

𝑥 = (𝑥0, 𝑥1,… , 𝑥𝑛−1); 𝑥 =
𝑛−1
∑
𝑖=0

2𝑖𝑥𝑖

Now, 𝜔𝑥𝑦 = exp [2𝜋𝑖
2𝑛
𝑥𝑦].

𝑥𝑦
2𝑛 = 1

2𝑛 [(𝑥0 + 2𝑥1 +⋯+ 2𝑛−1𝑥𝑛−1)(𝑦0 + 2𝑦1 +⋯+ 2𝑛−1𝑦𝑛−1)]

Retaining only the fractional terms of 𝑥𝑦
2𝑛
, as integral parts do not contribute to the final

result, we obtain
𝑦𝑛−1(.𝑥0) + 𝑦𝑛−2(.𝑥1𝑥0) +⋯ + 𝑦0(.𝑥𝑛−1…𝑥0)
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where for instance .𝑥1𝑥0 =
𝑥1
2
+ 𝑥0

22
. Hence,

𝑄𝐹𝑇 |𝑥⟩ = 1
√2𝑛

∑
𝑦0,…,𝑦𝑛−1∈{0,1}

exp [2𝜋𝑖𝑥𝑦2𝑛 ] |𝑦𝑛−1⟩… |𝑦0⟩

= ( 1
√2

∑
𝑦𝑛−1∈{0,1}

exp [2𝜋𝑖𝑦𝑛−1(.𝑥0)] |𝑦𝑛−1⟩)⋯( 1
√2

∑
𝑦0∈{0,1}

exp [2𝜋𝑖𝑦0(.𝑥𝑛−1…𝑥0)] |𝑦0⟩)

= 1
√2

(|0⟩ + 𝑒2𝜋𝑖(.𝑥0) |1⟩)… 1
√2

(|0⟩ + 𝑒2𝜋𝑖(.𝑥𝑛−1…𝑥0) |1⟩)

To implement the quantum Fourier transform, we will use the Hadamard gate, the 1-qubit
phase gate, and the 2-qubit controlled phase gate. Note that we can write

𝐻 |𝑥⟩ = 1
√2

[|0⟩ + 𝑒2𝜋𝑖(.𝑥) |1⟩]

For any 𝑑 ∈ ℤ+, the phase gate is given by

𝑅𝑑 = (
1 0
0 exp[ 𝑖𝜋

2𝑑
]) = (

1 0

0 exp[2𝜋𝑖(. 0…0⏟
𝑑 zeroes

1)])

Note that 𝑅𝑑 |0⟩ = |0⟩ and 𝑅𝑑 |1⟩ = 𝑒2𝜋𝑖(.0…01) |1⟩. In the case 𝑑 = 1, we obtain 𝑅1 |1⟩ =
𝑒2𝜋𝑖(.01) |1⟩ = 𝑖 |1⟩. The two-qubit controlled phase gate, denoted 𝐶𝑅𝑑, is drawn

|𝜓⟩ 𝑅𝑑

|𝜑⟩ •

If |𝜑⟩ = |0⟩, 𝐶𝑅𝑑 |0⟩ |𝜓⟩ = |0⟩ |𝜓⟩. If |𝜑⟩ = |1⟩, 𝐶𝑅𝑑 |1⟩ |𝜓⟩ = |1⟩ 𝑅𝑑 |𝜓⟩. We will now describe
the quantum circuit for 𝑄𝐹𝑇8, so 𝑁 = 8 and 𝑛 = 3.

|𝑥2⟩ 𝐻 𝑅1 𝑅2 |𝑦0⟩

|𝑥1⟩ • 𝐻 𝑅1 |𝑦1⟩

|𝑥0⟩ • • 𝐻 |𝑦2⟩
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Applying the given gates to |𝑥2⟩, we obtain

|𝑥2⟩
𝐻−→ 1

√2
[|0⟩ + 𝑒2𝜋𝑖(.𝑥2) |1⟩]

𝑅1−−→ 1
√2

[|0⟩ + 𝑒2𝜋𝑖(.𝑥2)𝑒2𝜋𝑖(.0𝑥1) |1⟩]

𝑅2−−→ 1
√2

[|0⟩ + 𝑒2𝜋𝑖(.𝑥2)𝑒2𝜋𝑖(.0𝑥1)𝑒2𝜋𝑖(.00𝑥0) |1⟩]

= 1
√2

[|0⟩ + 𝑒2𝜋𝑖(.𝑥2𝑥1𝑥0) |1⟩] = |𝑦0⟩

as required. Typically, after applying the above circuit, we will swap the states |𝑦0⟩ , |𝑦1⟩ , |𝑦2⟩
to be in reverse order; this takes 𝑂(𝑛) gates.

In this implementation, we used 3 Hadamard gates, and 2+ 1 = 3 controlled phase gates. If
𝑁 = 2𝑛, we need 𝑛 Hadamard gates and 𝑛(𝑛−1)

2
= 𝑂(𝑛2) controlled phase gates.

4.9. Grover’s algorithm
Suppose we have a large unstructured database of 𝑁 items, in which we aim to locate a
particular ‘good’ item. Suppose that given an item, we can easily check if it is the ‘good’
item. We wish to construct an algorithm to locate this good item with success probability at
least 1 − 𝜀. Each access to the database is considered a query.

In the classical case, we need 𝑂(𝑁) queries: if we find a bad item, it gives us no information
about the location of the good item. The probability that any item is good is 1

𝑁
. Given 𝑀

queries, the probability of success is 𝑀
𝑁

≥ 1 − 𝜀, so 𝑀 ≥ (1 − 𝜀)𝑁 gives 𝑀 = 𝑂(𝑁). In
the quantum case, 𝑂(√𝑁) queries are necessary and sufficient. This is not an exponential
speedup but a quadratic speedup.

Let 𝒱 be a vector space, and let |𝑣⟩ ∈ 𝒱. We define the rank 1 projection operator Π|𝛼⟩ =
|𝛼⟩⟨𝛼|, and the reflection operator 𝐼|𝛼⟩ = 𝐼 − 2 |𝛼⟩⟨𝛼|. Note that 𝐼|𝛼⟩ |𝛼⟩ = − |𝛼⟩. Let |𝜓⟩ ∈
𝒮⟂|𝑣⟩ = span {|𝛽⟩ ∈ 𝒱 ∣ ⟨𝛼|𝛽⟩ = 0} . Then 𝐼|𝛼⟩ |𝜓⟩ = |𝜓⟩ − |𝛼⟩ ⟨𝛼|𝜓⟩ = |𝜓⟩.

For any unitary operator𝑈 acting on 𝒱, we have𝑈Π|𝛼⟩𝑈† = 𝑈 |𝛼⟩⟨𝛼| 𝑈† = Π𝑈|𝛼⟩. Note also
that 𝑈𝐼|𝛼⟩𝑈† = 𝑈(𝐼 − 2 |𝛼⟩⟨𝛼|)𝑈† = 𝐼 − 2 |𝑈𝛼⟩⟨𝑈𝛼| = 𝐼𝑈|𝛼⟩.

If 𝒱 = ℂ2, for all |𝛼⟩ ∈ 𝒱, let ||𝛼⟂⟩ be orthogonal to |𝛼⟩. For all |𝑣⟩ ∈ 𝒱, we can write
|𝑣⟩ = 𝑎 |𝛼⟩ + 𝑏 ||𝛼⟂⟩, so Π|𝛼⟩ |𝑣⟩ = 𝑎 |𝛼⟩ and 𝐼|𝛼⟩ |𝑣⟩ = −𝑎 |𝛼⟩ + 𝑏 ||𝛼⟂⟩.

Let 𝑁 = 2𝑛, so we can label each item in the database with an 𝑛-bit binary string. We will
convert the search problem into a black-box promise problem. The database corresponds to
the Boolean function 𝑓∶ 𝐵𝑛 → 𝐵 where 𝑓(𝑥0) = 1 for a particular 𝑥0 ∈ 𝐵𝑛, and 𝑓(𝑥) = 0
otherwise. The corresponding quantum oracle is 𝑈𝑓 |𝑥⟩ |𝑦⟩ = |𝑥⟩ |𝑦 ⊕ 𝑓(𝑥)⟩, where |𝑥⟩ ∈
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(ℂ2)⊗𝑛 and |𝑦⟩ ∈ ℂ2. The fact that the database is unstructured corresponds to the fact that
the quantum oracle𝑈𝑓 is a black box. We will use the operator 𝐼𝑥0 , which has the following
action on the basis vectors.

𝐼𝑥0 |𝑥⟩ = {+ |𝑥⟩ if 𝑥 ≠ 𝑥0
− |𝑥⟩ if 𝑥 = 𝑥0

If 𝑥0 = 0…0 ∈ 𝐵𝑛, we define 𝐼0 = 𝐼𝑥0 . Note that 𝐼𝑥0 can be implemented using 𝑈𝑓; in-
deed,

𝑈𝑓 |𝑥⟩ |−⟩ =
1
√2

𝑈𝑓 |𝑥⟩ (|0⟩ − |1⟩)

= 1
√2

(|𝑥⟩ |𝑓(𝑥)⟩ − |𝑥⟩ |𝑓(𝑥)𝑐⟩)

= {
1
√2
|𝑥⟩ (|0⟩ − |1⟩) if 𝑥 ≠ 𝑥0

1
√2
|𝑥⟩ (|1⟩ − |0⟩) if 𝑥 = 𝑥0

= {+ |𝑥⟩ |−⟩ if 𝑥 ≠ 𝑥0
− |𝑥⟩ |−⟩ if 𝑥 = 𝑥0

Hence, 𝑈𝑓 |𝑥⟩ |−⟩ = (𝐼𝑥0 |𝑥⟩) |−⟩. So if |𝜓⟩ ∈ (ℂ2)⊗𝑛, |𝜓⟩ = 𝑎0 |𝑥0⟩ + ∑𝑥≠𝑥0 𝑎𝑥 |𝑥⟩ gives
𝑈𝑓 |𝜓⟩ |−⟩ = (𝐼𝑥0 |𝜓⟩) |−⟩ = −𝑎0 |𝑥0⟩ + ∑𝑥≠𝑥0 𝑎𝑥 |𝑥⟩.

Given a black box which computes 𝐼𝑥0 for some 𝑥0 ∈ 𝐵𝑛, we wish to determine 𝑥0 with
the least amount of queries. We will now describe Grover’s algorithm. We begin with the
equal superposition state |𝜓0⟩ =

1
√2𝑛

∑𝑥∈𝐵𝑛 |𝑥⟩. Consider Grover’s iteration operator 𝑄 =
−𝐻𝑛𝐼0𝐻𝑛𝐼𝑥0 where 𝐻𝑛 = 𝐻⊗𝑛. Note that 𝑄 is real-valued, so acts geometrically on the
real-valued vector |𝜓0⟩ in real Euclidean space. It has the following properties.

(i) In the plane 𝒫(𝑥0) spanned by |𝑥0⟩ and |𝜓0⟩, 𝑄 acts as a rotation through an angle 2𝛼
where sin𝛼 = 1

√2𝑛
.

(ii) In the plane orthogonal to 𝒫(𝑥0), 𝑄 acts as −𝐼.

We repeatedly apply 𝑄 to |𝜓0⟩ to obtain the rotated vector |𝜓′0⟩, and then measure in the
computational basis.

|𝜓′0⟩ = 𝑎0 |𝑥0⟩ + ∑
𝑥𝑖≠𝑥0

∑𝑎𝑖 |𝑥𝑖⟩

Hence, the probability that the outcome is 𝑥0 is |𝑎0|
2 = |⟨𝑥0|𝜓′0⟩|

2 = |cos 𝛿|2 ≈ 1 where 𝛿 is
the angle between |𝜓′0⟩ and |𝑥0⟩.

If 𝑛 is large, |𝜓0⟩ is almost orthogonal to |𝑥0⟩, with ⟨𝑥0|𝜓0⟩ =
1

√2𝑛
= cos 𝛽. By property (i), 𝑄

acting on |𝜓0⟩ rotates the state by 2𝛼, where sin𝛼 =
1

√2𝑛
. Let𝑚 be the number of iterations
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needed to rotate |𝜓0⟩ close to |𝑥0⟩. Then

𝑚 = 𝛽
2𝛼 =

arccos ( 1
√2𝑛

)

2 arcsin ( 1
√2𝑛

)

Since sin𝛼 ≈ 𝛼, this implies that 2𝛼 ≈ 2 sin𝛼 = 2
√2𝑛

. Then 2𝛼𝑚 ≈ 𝜋
2
, so 𝑚 ≈ 𝜋

4𝛼
= 𝜋

4
√𝑁.

The number of iterations is independent of |𝑥0⟩; it depends only on 𝑛.

Example. Consider a database with four items, so 𝑛 = 2,𝑁 = 4. Here, sin𝛼 = 1
2
, so 𝛼 = 𝜋

6
.

𝑄 causes a rotation through 2𝛼 = 𝜋
3
. The initial state is

|𝜓0⟩ = |++⟩ = 1
2(|00⟩ + |01⟩ + |10⟩ + |11⟩)

For any 𝑥0 ∈ 𝐵2, we have cos 𝛽 = ⟨𝑥0|𝜓0⟩ =
1
2
so 𝛽 = 𝜋

3
. Therefore, we need precisely one

iteration, which rotates |𝜓0⟩ to |𝑥0⟩ exactly. Performing ameasurement in the computational
basis, we obtain 𝑥0 with certainty.
We now prove the geometric properties of 𝑄. First, note that 𝑄 = −𝐻𝑛𝐼0𝐻𝑛𝐼𝑥0 = −𝐼|𝜓0⟩𝐼|𝑥0⟩.
If |𝛼⟩ , |𝑣⟩ ∈ 𝒱 and |𝑣⟩ ∈ 𝒫(𝑥0), we have

• 𝐼|𝑥0⟩ |𝑣⟩ = |𝑣⟩ − 2 ⟨𝑥0|𝑣⟩ |𝑥0⟩;
• 𝐼|𝜓0⟩ |𝑣⟩ = |𝑣⟩ − 2 ⟨𝜓0|𝑣⟩ |𝜓0⟩.

These operators are reflections about lines perpendicular to |𝑥0⟩ and |𝜓0⟩ respectively. Thus,
𝒫(𝑥0) is stable under the action of 𝐼|𝑥0⟩ and 𝐼|𝜓0⟩.
Let𝑀1,𝑀2 be lines in the Euclidean plane, intersecting at 𝑂. Let 𝜃 be the angle between𝑀1
and 𝑀2. Then, reflection about 𝑀1 then 𝑀2 acts as an anticlockwise rotation by 2𝜃 about
𝑂.
In our case, the angle between the lines perpendicular to |𝑥0⟩ and |𝜓0⟩ is 𝛽. Therefore,
𝐼|𝜓0⟩𝐼|𝑥0⟩ is an anticlockwise rotation by an angle of 2𝛽. For any real unit vector 𝑣 ∈ ℝ2,
we have −𝐼𝑣 = 𝐼𝑣⟂ where 𝑣⟂ is a unit vector orthogonal to 𝑣. Hence, −𝐼|𝜓0⟩𝐼|𝑥0⟩ = 𝐼||𝜓⟂0 ⟩𝐼|𝑥0⟩,
which is an anticlockwise rotation by an angle of 2𝛼, as 𝛼 + 𝛽 = 𝜋

2
. This proves property

(i).

Now consider |𝜉⟩ ∈ 𝒫(𝑥0)⟂ perpendicular to |𝜓0⟩ and to |𝑥0⟩. Clearly 𝐼|𝑥0⟩ |𝜉⟩ = |𝜉⟩ and
𝐼|𝜓0⟩ |𝜉⟩ = |𝜉⟩. So 𝑄 |𝜉⟩ = − |𝜉⟩, giving property (ii).
Grover’s algorithm achieves an unstructured search for a unique good item in approximately
𝜋
4
√𝑁 queries, and there is no algorithm that has smaller asymptotic query complexity. Any

quantum algorithm that achieves this search in an unstructured database of size𝑁 must use
𝑂(√𝑁) queries. Moreover, it can be shown that 𝜋

4
(1−𝜀)√𝑁 queries are insufficient for each

𝜀, so Grover’s algorithm is tight.
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4.10. Grover’s algorithm for multiple items
Consider the case where there are 𝑟 ≥ 1 good items, and 𝑟 is known. Here, 𝑓(𝑥𝑖) = 1 if
𝑖 = 1,… , 𝑟, and 𝑓(𝑥) = 0 otherwise, where 𝑥1,… , 𝑥𝑟 are the binary labels for the good items.
We want to find any of the good items. Then, define

𝐼𝐺 |𝑥⟩ = 𝐼 − 2
𝑟
∑
𝑖=1

|𝑥𝑖⟩⟨𝑥𝑖| = {+ |𝑥⟩ 𝑥 ∉ {𝑥1,… , 𝑥𝑟}
− |𝑥⟩ 𝑥 ∈ {𝑥1,… , 𝑥𝑟}

Note that 𝐼𝐺 is not of the form 𝐼|𝑣⟩ for a single vector |𝑣⟩. Now, define 𝑄𝐺 = −𝐻𝑛𝐼0𝐻𝑛𝐼𝐺 =
−𝐼|𝜓0⟩𝐼𝐺. Let |𝜓𝐺⟩ =

1
√𝑟
∑𝑟

𝑖=1 |𝑥𝑖⟩ be an equal superposition of the good states, and |𝜓𝐵⟩ =
1

√𝑁−𝑟
∑𝑁

𝑖=𝑟+1 |𝑥𝑖⟩ be an equal superposition of the bad states. Note that ⟨𝜓𝐺|𝜓𝐵⟩ = 0. Begin
with the equal superposition state.

|𝜓0⟩ = (𝐻 |0⟩)⊗𝑁 = √𝑟
√𝑁

|𝜓𝐺⟩ +
√𝑁 − 𝑟
√𝑁

|𝜓𝐵⟩

Consider the plane 𝒫𝐺 spanned by |𝜓𝐺⟩ and |𝜓0⟩, which contains |𝜓𝐵⟩. Let 𝛼 be the angle
between |𝜓𝐺⟩ and ||𝜓⟂0 ⟩.
We show that in the plane 𝒫𝐺, 𝑄𝐺 acts as a rotation through an angle 2𝛼 where sin𝛼 =
⟨𝜓0|𝜓𝐺⟩ =

√𝑟
√𝑁

. The states |𝜓𝐺⟩ , |𝜓𝐵⟩ form an orthonormal basis for 𝒫𝐺. We find 𝐼𝐺(𝑎 |𝜓𝐺⟩ +
𝑏 |𝜓𝐵⟩) = −𝑎 |𝜓𝐺⟩ + 𝑏 |𝜓𝐵⟩; indeed, restricting to the plane 𝒫𝐺, the action of 𝐼𝐺 is precisely
the action of 𝐼|𝜓𝐺⟩. Hence, as before,𝑄𝐺 causes the desired rotation through 2𝛼 in this plane.
The probability of finding a single good item is |⟨𝜓|𝜓𝐺⟩|

2, as |𝜓⟩ = 𝑎 |𝜓𝐺⟩ + 𝑏 |𝜓𝐵⟩.
Suppose now that 𝑟 is unknown. In this case, we start with |𝜓0⟩ and repeatedly apply 𝑄 to
rotate |𝜓0⟩ to |𝜓𝐺⟩ as before. However, we do not know how many iterations of 𝑄 to apply,
since this depends on 𝑟.

If 𝑟 ≪ 𝑁, we choose 𝐾 uniformly at random in (0, 𝜋
4
√𝑁), and apply 𝐾 iterations of 𝑄. We

measure the final state ||𝜓𝐾⟩ to obtain𝑥, and check if𝑓(𝑥) = 1 or not. Note that each iteration
causes a rotation of 2𝛼 where sin𝛼 = √𝑟

√𝑁
so 2𝛼 ≈ 2 √𝑟

√𝑁
. Choosing 𝐾 therefore implicitly

chooses a random angle in the range (0, 𝜋
2
√𝑟). Now, if the final rotated state |𝜓⟩ makes an

angle within ±𝜋
4
with |𝜓0⟩, the probability of locating a good item is |⟨𝜓|𝜓0⟩|

2 ≥ cos2 𝜋
4
= 1

2
.

Since for every quadrant in the plane 𝒫𝐺, half of the angles are within ±
𝜋
4
from the 𝑦-axis,

the randomised procedure using 𝑂(√𝑁) queries will locate a good item with probability
approximately 1

4
. The procedure can then be repeated to reduce the error probability to an

acceptable level.

4.11. 𝖭𝖯 problems
A verifier 𝑉 for a language 𝐿 is a computation with two inputs 𝑤, 𝑐 such that
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(i) if 𝑤 ∈ 𝐿, there exists a certificate of membership 𝑐 such that 𝑉(𝑤, 𝑐) halts in an accept-
ing state; and

(ii) if 𝑤 ∉ 𝐿, for any 𝑐, 𝑉(𝑤, 𝑐) halts in a rejecting state.

𝑉 is a poly-time verifier if for all inputs 𝑤, 𝑐, the algorithm 𝑉 runs in polynomial time in
𝑛, where 𝑛 is the size of the input 𝑤. A problem in the non-deterministic polynomial-time
complexity class 𝖭𝖯 is easy to verify, but may be hard to solve. More precisely, a language 𝐿
is in 𝖭𝖯 if it has a polynomial time verifier 𝑉 .

Alternatively, consider a computer operating non-deterministically; at each binary choice,
the computer duplicates itself and performs both branches in parallel. We require that all
possible paths eventually halt with either an accepting or rejecting state. The running time
of a given algorithm is the length of the longest path. The computation is defined to accept
its input if at least one path accepts it, and rejects its input if all paths reject it. One can
check that 𝖭𝖯 is precisely the class of languages that are decided by a non-deterministic
computation with polynomial running time.

Let 𝑓∶ 𝐵𝑛 → 𝐵 be a Boolean formula. The Boolean satisfiability problem 𝖲𝖠𝖳 seeks an as-
signment of the variables 𝑥1,… , 𝑥𝑛 such that 𝑓(𝑥1,… , 𝑥𝑛) = 1. Any such assignment is
called a satisfying assignment. This problem clearly lies in 𝖭𝖯; if 𝑓 is satisfiable, then 𝑐 is any
assignment for which 𝑉(𝑓, 𝑐) = 1 where 𝑉(𝑓, 𝑐) = 𝑓(𝑐). Brute-force methods have 𝑂(2𝑛)
runtime.

Searching for arbitrarily many good items in an unstructured database corresponds to 𝖲𝖠𝖳.
Assuming that there are few satisfying assignments, we can run the randomised Grover’s
algorithm to give a quantum algorithm for solving 𝖲𝖠𝖳 in 𝑂(√2𝑛) time with low probability
of error. Any 𝖭𝖯 problem can be converted into an application of 𝖲𝖠𝖳; we say 𝖲𝖠𝖳 is 𝖭𝖯-
complete. Grover’s algorithm can hence be applied to any𝖭𝖯 problem to provide a quadratic
speedup.

4.12. Shor’s algorithm
Suppose 𝑁 is a positive integer and 𝑛 = ⌈log𝑁⌉ is the number of bits in a binary repres-
entation of 𝑁. We wish to factorise 𝑁. We will describe an algorithm which, given 𝑁 and
a fixed acceptable probability of error, outputs a factor 1 < 𝑘 < 𝑁, or outputs 𝑁 if 𝑁 is
prime. This algorithm runs in polynomial time in 𝑛; there is no classical algorithmwith this
property.

We first use results from number theory to convert the problem into a periodicity determin-
ation problem. Then, we apply the quantum period-finding algorithm using the quantum
Fourier transform.

Choose an integer 1 < 𝑎 < 𝑁 uniformly at random, and compute 𝑏 = gcd(𝑎, 𝑁). If
𝑏 > 1, then 𝑏 ∣ 𝑁 so is a factor; in this case we simply output 𝑏. If 𝑏 = 1, then 𝑎,𝑁 are
coprime.
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Theorem (Euler’s theorem). Let 𝑎,𝑁 be coprime. Then there exists 1 < 𝑟 < 𝑁 such that
𝑎𝑟 ≡ 1mod 𝑁. A minimal such 𝑟 is called the order of 𝑎modulo 𝑁.

Consider the modular exponentiation function 𝑓∶ ℤ → ℤ⟋𝑛ℤ such that 𝑓(𝑘) = 𝑎𝑘 mod 𝑁.
This function satisfies 𝑓(𝑘1 + 𝑘2) = 𝑓(𝑘1)𝑓(𝑘2). 𝑓 is periodic with period 𝑟, and is injective
within each period.

Suppose that we can find 𝑟, and suppose 𝑟 is even. Then 𝑎𝑟 − 1 ≡ (𝑎
𝑟
2 + 1)(𝑎

𝑟
2 − 1) ≡ 0mod

𝑁. Note that 𝑁 ∤ (𝑎
𝑟
2 − 1) since 𝑟 was minimal such that 𝑎𝑟 ≡ 1 mod 𝑁. If 𝑁 ∤ (𝑎

𝑟
2 + 1),

then 𝑁 must have some prime factors in (𝑎
𝑟
2 +1) and some in (𝑎

𝑟
2 −1). We can use Euclid’s

algorithm to compute gcd(𝑎
𝑟
2 + 1,𝑁) and gcd(𝑎

𝑟
2 − 1,𝑁), which are factors of 𝑁. Thus, we

find factors of 𝑁 provided 𝑟 is even and 𝑎
𝑟
2 + 1 ≢ 0mod 𝑁.

Consider 𝑁 = 15, 𝑎 = 7. Then 𝑓(𝑘) = 7𝑘 mod 15 takes values 1, 7, 4, 13, so has period 𝑟 = 4.
This is even, so we can write 𝑎𝑟 − 1 = (𝑎

𝑟
2 + 1)(𝑎

𝑟
2 − 1) = 50 ⋅ 48. 𝑁 = 15 does not divide 50,

so gcd(50, 𝑁) = 5 is a factor, and gcd(48, 15) = 3 is a factor.

Theorem. Let 𝑁 be odd and not a prime power. Then, choosing 𝑎 uniformly at random
such that gcd(𝑎, 𝑁) = 1, the probability that 𝑟 is even and (𝑎

𝑟
2 + 1) ≢ 0mod 𝑁 is at least 1

2
.

This implies that if 𝑁 is odd and not a prime power, we obtain a factor of 𝑁 with probability
at least 1

2
. We repeat this process until the probability of not finding a factor is acceptably

low. If 𝑁 is even, we simply output 2 as a factor.

Lemma. Let 𝑁 = 𝑐ℓ for some 𝑐, ℓ ∈ ℕ. There is a classical polynomial-time algorithm that
computes 𝑐.

Shor’s algorithm can be summarised as follows.

(i) Test if 𝑁 is even; if so, output 2 and halt.

(ii) Run the classical algorithm to test if 𝑁 is of the form 𝑐ℓ with ℓ > 1; if so, output 𝑐 and
halt.

(iii) Choose 1 < 𝑎 < 𝑁 uniformly at random and compute 𝑏 = gcd(𝑎, 𝑁). If 𝑏 > 1, output
𝑏 and halt.

(iv) Find the period 𝑟 of the modular exponentiation function 𝑓(𝑘) = 𝑎𝑘 mod 𝑁. If this
fails, return to step (iii).

(v) If 𝑟 is even and (𝑎
𝑟
2 + 1) ≢ 0mod 𝑁, compute 𝑡 = gcd(𝑎

𝑟
2 + 1,𝑁); if 1 < 𝑡 < 𝑁, output

𝑡 and halt. Otherwise, return to step (iii).

We now describe the method to compute the period of the modular exponentiation func-
tion. Note that 𝑓∶ ℤ → ℤ, not ℤ𝑁 → ℤ𝑀 ; we therefore cannot directly use the algorithm
discussed previously. We must first truncate the domain ℤ to some ℤ𝑀 . If 𝑟 is unknown, 𝑓
will not necessarily be periodic onℤ𝑀 . However, if𝑀 is𝑂(𝑁2), the single incomplete period
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has a negligible effect on the periodicity determination. We will define𝑀 = 2𝑚 for some𝑚
and use 𝑄𝐹𝑇𝑀 .
Consider a finite domain 𝐷 = {0,… , 2𝑚 − 1}, where 𝑚 is the smallest integer such that
2𝑚 > 𝑁2. Suppose 2𝑚 = 𝐵𝑟 + 𝑏 where 0 ≤ 𝑏 < 𝑟, so 𝐵 = ⌊2

𝑚

𝑟
⌋. We start with the equal

superposition state |𝜓𝑚⟩ =
1

√2𝑚
∑𝑥∈𝐷 |𝑥⟩. Consider the quantum oracle 𝑈𝑓 corresponding

to the modular exponentiation function 𝑓. Then
|Ψ⟩ = 𝑈𝑓 |𝜓𝑚⟩ |0⟩

= 1
√2𝑚

∑
𝑥∈𝐷

|𝑥⟩ |𝑓(𝑥)⟩

= 1
√2𝑚

𝑏−1
∑
𝑥0=0

𝐵
∑
𝑗=0

|𝑥0 + 𝑗𝑟⟩ |𝑓(𝑥0)⟩ +
1

√2𝑚

𝑟
∑
𝑥0=𝑏

𝐵−1
∑
𝑗=0

|𝑥0 + 𝑗𝑟⟩ |𝑓(𝑥0)⟩

Measuring the second register, we obtain an outcome 𝑦 = 𝑓(𝑥0). In the case 𝑥0 < 𝑏, 𝑓(𝑥0) =
𝑓(𝑥0 + 𝑗𝑟) for 𝑗 ∈ {0,… , 𝐵}. If 𝑥0 ≥ 𝑏, 𝑓(𝑥0) = 𝑓(𝑥0 + 𝑗𝑟) for 𝑗 ∈ {0,… , 𝐵 − 1}.

If 𝑦 = 𝑓(𝑥0) for 𝑥0 < 𝑏, the probability of measuring 𝑦 is 𝐵+1
2𝑚

. The post-measurement state

of the first register is |per⟩ = 1
√𝐵+1

∑𝐵
𝑗=0 |𝑥0 + 𝑗𝑟⟩. In the case 𝑥0 ≥ 𝑏, we have |per⟩ =

1
√𝐵

∑𝐵−1
𝑗=0 |𝑥0 + 𝑗𝑟⟩. In both cases,

|per⟩ = 1
√𝐴

𝐴−1
∑
𝑗=0

|𝑥0 + 𝑗𝑟⟩

where 𝐴 = 𝐵 + 1 if 𝑦 = 𝑓(𝑥0) with 𝑥0 < 𝑏 and 𝐴 = 𝐵 if 𝑦 = 𝑓(𝑥0) with 𝑥0 ≥ 𝑏. We act on
|per⟩ by 𝑄𝐹𝑇2𝑚 to obtain

𝑄𝐹𝑇2𝑚 |per⟩ =
1
√𝐴

1
√2𝑛

𝐴−1
∑
𝑗=0

2𝑚−1
∑
𝑐=0

𝜔(𝑥0+𝑗𝑟)𝑐 |𝑐⟩

= 1
√𝐴

1
√2𝑛

2𝑚−1
∑
𝑐=0

𝜔𝑥0𝑐 [
𝐴−1
∑
𝑗=0

(𝜔𝑐𝑟)𝑗]
⏟⎵⎵⏟⎵⎵⏟

𝑆

|𝑐⟩

where 𝜔 = 2
2𝜋𝑖
𝑀 where𝑀 = 2𝑚. 𝑆 is a geometric series. If 𝑀

𝑟
∉ ℤ, 𝛼𝐴 ≠ 1. We claim that a

measurement on 𝑄𝐹𝑇2𝑚 |per⟩ yields an integer 𝑐which is close to a multiple of
𝑀
𝑟
with high

probability.

Consider 𝑘 2
𝑚

𝑟
for 𝑘 = 0,… , 𝑟 − 1. Each of these multiples is within 1

2
of a unique integer;

indeed, 2𝑚 = 𝐵𝑟+𝑏 so 𝑟 < 2𝑚, giving that 𝑘 2
𝑚

𝑟
cannot be a half integer. Consider the values

of 𝑐 such that ||𝑐 − 𝑘 2
𝑚

𝑟
|| <

1
2
for 𝑘 = 0,… , 𝑟 − 1.
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Theorem. Suppose that𝑄𝐹𝑇2𝑚 |per⟩ = ∑2𝑚−1
𝑐=0 𝑔(𝑐) |𝑐⟩, and thatwemeasure the state and re-

ceive an outcome 𝑐. Let 𝑐𝑘 be the unique integer such that ||𝑐𝑘 − 𝑘 2
𝑚

𝑟
|| <

1
2
. Thenℙ (𝑐 = 𝑐𝑘) >

𝛾
𝑟
for a fixed constant 𝛾 (which can be shown to be 4

𝜋2
). Moreover, the probability that 𝑘, 𝑟

are coprime is Ω( 1
log log 𝑟

) by the coprimality theorem.

Thus, with 𝑂(log log𝑁) > 𝑂(log log 𝑟) repetitions, we obtain a good 𝑐 value with high prob-
ability. Suppose that we measure 𝑐 such that ||𝑐 − 𝑘 2

𝑚

𝑟
|| <

1
2
, so ||

𝑐
2𝑚

− 𝑘
𝑟
|| <

1
2𝑚+1 . Recall

that 𝑟 < 𝑁 and 𝑚 is minimal such that 2𝑚 > 𝑁2. Then ||
𝑐
2𝑚

− 𝑘
𝑟
|| <

1
2𝑁2 . Note that

𝑐
2𝑚

is
known.

We show that there is at most one fraction 𝑘
𝑟
with denominator 𝑟 < 𝑁 such that ||

𝑐
2𝑚

− 𝑘
𝑟
|| <

1
2𝑁2 . Suppose

𝑘′

𝑟′
, 𝑘

″

𝑟″
both satisfy this requirement. Then

|||
𝑘′
𝑟′ −

𝑘″
𝑟″
||| =

|𝑘′𝑟″ − 𝑘″𝑟′|
𝑟′𝑟″ ≥ 1

𝑟′𝑟″ >
1
𝑁2

But ||
𝑐
2𝑚

− 𝑘′

𝑟′
||, ||

𝑐
2𝑚

− 𝑘′

𝑟′
|| <

1
2𝑁2 , contradicting the triangle inequality. This result is the reason

for choosing 𝑚minimal such that 2𝑚 > 𝑁2. Therefore, we have with high probability that
𝑐
2𝑚

is close to a unique fraction 𝑘
𝑟
.

Example. Let𝑁 = 39 and choose 𝑎 = 7; note that 7 and 39 are coprime. Let 𝑟 be the period
of 𝑓(𝑘) = 𝑎𝑘 mod 39. Note that 210 < 𝑁2 < 211, so set 𝑚 = 11. Suppose that 𝑄𝐹𝑇211 |per⟩
gives a measurement of 𝑐. Then ||𝑐 − 𝑘 2

11

𝑟
|
| <

1
2
with probability 𝛾

𝑟
.

Suppose 𝑐 = 853. One can explicitly check all fractions of the form 𝑎
𝑏
to find one that satisfies

||
𝑎
𝑏
− 853

2048
|| <

1
212
. This is consistent with 𝑎

𝑏
= 5

12
, 10
24
; as we are constrained by coprimality

we must choose 𝑟 = 12. One can check that 712 ≡ 1 mod 39, hence 𝑟 = 12. Note that
𝑂(𝑁2) = 𝑂(exp(𝑛)) computations are needed for this calculation; there is a more efficient
way to compute 𝑎, 𝑏 using continued fractions.
A rational number 𝑠

𝑡
can be written in the form of a continued fraction

𝑠
𝑡 =

1
𝑎1 +

1
𝑎2+

1
⋯+ 1

𝑎ℓ

= [𝑎1,… , 𝑎ℓ]

where 𝑎1,… , 𝑎ℓ are positive integers. We can write
𝑠
𝑡
= 1

𝑡
𝑠
= 1

𝑎1+
𝑠1
𝑡1

, and so on. For example,

if 𝑠
𝑡
= 13

35
, we can find 𝑎1 = 2, 𝑎2 = 2, 𝑎3 = 1, 𝑎4 = 1, 𝑎5 = 2 and ℓ = 5. Since the sequence

𝑡𝑘 is decreasing, the expansion will always terminate. For each 𝑘 = 1,… , ℓ, we can truncate
the computation at level 𝑘. This gives the sequence of rational numbers

𝑝1
𝑞1

= [𝑎1],
𝑝2
𝑞2

= [𝑎1, 𝑎2],… , 𝑝ℓ𝑞ℓ
= [𝑎1,… , 𝑎ℓ] =

𝑠
𝑡
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𝑝𝑘
𝑞𝑘
is the 𝑘th convergent of the continued fraction 𝑠

𝑡
.

Lemma. Let 𝑎1,… , 𝑎ℓ be positive reals, and let 𝑝0 = 0, 𝑞0 = 1, 𝑝1 = 1, 𝑞1 = 𝑎1. Then,
(i) [𝑎1,… , 𝑎𝑘] =

𝑝𝑘
𝑞𝑘
where 𝑝𝑘 = 𝑎𝑘𝑝𝑘−1 + 𝑝𝑘−2 and 𝑞𝑘 = 𝑎𝑘𝑞𝑘−1 + 𝑞𝑘−2;

(ii) if the 𝑎𝑘 are integers, then so are the 𝑝𝑘 and 𝑞𝑘, with 𝑞𝑘𝑝𝑘−1 − 𝑝𝑘𝑞𝑘−1 = (−1)𝑘 for
𝑘 ≥ 1, and moreover gcd(𝑝𝑘, 𝑞𝑘) = 1.

Theorem. Consider a continued fraction 𝑠
𝑡
= [𝑎1,… , 𝑎ℓ], and let

𝑝𝑘
𝑞𝑘
be the 𝑘th convergent.

If 𝑠 and 𝑡 are given by 𝑚-bit integers, then the length ℓ of the continued fraction is 𝑂(𝑚),
and the continued fraction and its convergents can be computed in 𝑂(𝑚3) time.

Proof sketch. We have 𝑎𝑘 ≥ 1 and 𝑝𝑘, 𝑞𝑘 ≥ 1. Part (i) of the above lemma implies that
(𝑝𝑘) and (𝑞𝑘) are increasing sequences. If 𝑘 is even, 𝑝𝑘 ≥ 2𝑝𝑘−2 and 𝑞𝑘 ≥ 2𝑞𝑘−2 hence
𝑝𝑘, 𝑞𝑘 ≥ 2

𝑘
2 . Thus, in general, 𝑝𝑘, 𝑞𝑘 ≥ 2⌊

𝑘
2 ⌋. We therefore need at most ℓ = 𝑂(𝑚) iterations

to obtain 𝑠
𝑡
exactly, since 𝑞𝑘, 𝑝𝑘 are coprime and each are at least 2

⌊𝑘2 ⌋. The computation
of each successive 𝑎𝑘 value involves division of 𝑂(𝑚)-bit integers and converting it into an
integer and remainder term; these computations can be performed in 𝑂(𝑚2) time. Hence,
the entire computation requires only 𝑂(𝑚3) time.

Theorem. Let 𝑥 ∈ ℚ with 0 < 𝑥 < 1. Let 𝑝
𝑞
∈ ℚ such that |||𝑥 −

𝑝
𝑞
||| <

1
2𝑞2

. Then 𝑝
𝑞
is a

convergent of the continued fraction expansion of 𝑥.
In our situation, we have 𝑐 such that

|||
𝑐
2𝑚 − 𝑘

𝑟
||| <

1
2𝑁2 ; 𝑟 < 𝑁

In particular, ||
𝑐
2𝑚

− 𝑘
𝑟
|| <

1
2𝑟2
, and we have seen that there is at most one fraction 𝑘

𝑟
such that

this holds. Note that 0 < 𝑐 < 2𝑚, so 0 < 𝑐
2𝑚

< 1. Hence, 𝑘
𝑟
is a convergent of 𝑐

2𝑚
. Note

that 2𝑚 > 𝑁2 > 2𝑚−1, so 𝑐, 2𝑚 are𝑂(𝑚)-bit integers, and hence the sequence of convergents
(and in particular 𝑘

𝑟
) can be computed in 𝑂(𝑚3) time. We can then explicitly check for each

convergent 𝑘
𝑟
if ||

𝑐
2𝑚

− 𝑘
𝑟
|| <

1
2𝑁2 and 𝑟 < 𝑁 hold.

Example. Consider again 𝑁 = 39 and 2𝑚 = 211 = 2048. Suppose 𝑐 = 853. Then one can
explicitly compute

𝑐
2𝑚 = 853

2048 = [2, 2, 2, 42, 4]

Its convergents are
1
2;

2
5 ;

5
12 ;

212
509;

853
2048

Only 5
12
satisfies ||

𝑐
2𝑚

− 𝑘
𝑟
|| <

1
2𝑁2 and 𝑟 < 𝑁. So 𝑟 = 12 is the period.
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A classical factoring algorithm takes 𝑂(exp(𝑛
1
3 )) time; we analyse the time complexity of

Shor’s algorithm. Consider the case when𝑁 is odd and not a prime power, and let 𝑛 = log𝑁.
The modular exponentiation function requires 𝑂(𝑚) = 𝑂(𝑛)multiplications, each of which
take 𝑂(𝑚2) = 𝑂(𝑛2) time, so this algorithm takes 𝑂(𝑛3) time. The construction of the equal
superposition state requires 𝑚 = 𝑂(𝑛) Hadamard gates, and applying the quantum oracle
gives the state 1

2𝑚
∑𝑥∈𝐵𝑚 |𝑥⟩ |𝑓(𝑥)⟩ in 𝑂(𝑛

3) steps. We measure the second register which
contains 𝑂(𝑛) qubits, hence requiring 𝑂(𝑛) single-qubit measurements. The first register
is then in state |per⟩. We then apply the quantum Fourier transform 𝑄𝐹𝑇2𝑚 , which can be
implemented in 𝑂(𝑚2) = 𝑂(𝑛2) steps. We then measure the first register to obtain 𝑐, requir-
ing 𝑂(𝑛) single-qubit measurements. Then, we find 𝑟 from 𝑐 using the continued fraction
algorithm, requiring 𝑂(𝑛3) steps. A good 𝑐 value is obtained with probability 1 − 𝜀 with
𝑂(log log𝑁) = 𝑂(log𝑛) repetitions. Then, 𝑡 = gcd(𝑎

𝑟
2 + 1,𝑁) is computed using Euclid’s

algorithm, taking𝑂(𝑛3) steps. If 𝑟 is odd or is even but 𝑡 = 1, then we return to the start, and
the case where 𝑟 is even and 𝑡 ≠ 1 occurs with probability at least 1 − 𝜀 if we perform log 1

𝜀
repetitions.
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Lectured in Lent 2023 by Prof. I. Grojnowski
Anumber field is a field extension ofℚ, generated by finitelymany algebraic numbers. Com-
mon number fields include the rationals ℚ, the Gaussian rationals ℚ(𝑖), and more general
quadratic fieldsℚ(√𝑑). The field of rationals contain the ring of integersℤ, and eachnumber
field similarly contains its own ring of algebraic integers. For example, the ring of algebraic
integers in ℚ(𝑖) is ℤ[𝑖].
While the field structure of a number field is typically relatively simple, the ring structure of
the algebraic integers can offer more insight into the field in question. In general, the ring
of algebraic integers is not a unique factorisation domain, but some fields have ‘better’ or
‘worse’ factorisation properties than others. We quantify the degree to which unique factor-
isation fails by assigning a group to each number field, called the class group. If the class
group is large, there are many ways in which unique factorisation could fail. A remarkable
fact proven in this course is that the class group is finite.

We also study the units in the ring of algebraic integers. The roots of unity in a number field
are units, but there may be other units not of this form. Dirichlet’s unit theorem describes
a geometric interpretation of the set of units. In particular, modulo the roots of unity, they
form a lattice isomorphic to ℤ𝑘 for some 𝑘 ∈ {0, 1,… }. We can use this theorem to find all
of the integer solutions of problems like Pell’s equation, 𝑥2 − 𝑑𝑦2 = ±1.
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1. Number fields

1. Number fields
1.1. Algebraic integers
Recall that if𝐾 and 𝐿 are fields and dim𝐾 𝐿 < ∞, wewrite [𝐿 ∶ 𝐾] for this dimension and say
that 𝐿/𝐾 is a finite extension. If 𝐿/𝐾 is a finite extension, every element 𝑥 ∈ 𝐿 is algebraic
over 𝐾.
Definition. A number field is a finite extension of ℚ.
Definition. Let 𝐿 be a number field. 𝛼 ∈ 𝐿 is an algebraic integer if there exists 𝑓 ∈ ℤ[𝑥]
monic such that 𝑓(𝛼) = 0. We write 𝒪𝐿 = {𝛼 ∈ 𝐿 ∣ 𝛼 is an algebraic integer} for the set of
integers of 𝐿.

ℤ ℚ

𝒪𝐿 𝐿

Lemma. 𝒪ℚ = ℤ.

Proof. Clearly if 𝛼 is an integer, then 𝑓(𝑥) = 𝑥−𝛼 is a monic polynomial such that 𝑓(𝛼) = 0.
Conversely, if 𝛼 is a rational number, we can let 𝛼 = 𝑟

𝑠
where 𝑟 and 𝑠 are coprime. Let

𝑓(𝑥) = 𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎0 ∈ ℤ[𝑥] such that 𝑓(𝛼) = 0. Clearing denominators,
𝑟𝑛 + 𝑎𝑛−1𝑟𝑛−1𝑠 + ⋯ + 𝑎0𝑠𝑛 = 0. Hence 𝑠 ∣ 𝑟𝑛. If 𝑠 ≠ 1, let 𝑝 ∣ 𝑠 be a prime, then 𝑝 ∣ 𝑟, so 𝑟
and 𝑠 were not coprime.

Wewill soon show that𝒪𝐿 is a ring. In other words, 𝛼, 𝛽 ∈ 𝒪𝐿 implies 𝛼±𝛽, 𝛼𝛽 ∈ 𝒪𝐿.

Note that 𝛼 ∈ 𝒪𝐿 does not in general imply
1
𝛼
∈ 𝒪𝐿. Recall from Galois Theory that if

𝛼, 𝛽 ∈ 𝐿, and 𝛼, 𝛽 are algebraic over 𝐾, then so is 𝛼 ± 𝛽, 𝛼𝛽. The proof from Galois Theory
will not work in this case, since that proof does not provide for monic polynomials.

Definition. Let 𝑅 ⊆ 𝑆 be commutative rings with a 1.
(i) 𝛼 ∈ 𝑆 is integral over 𝑅 if there exists a monic polynomial 𝑓 ∈ 𝑅[𝑥] such that 𝑓(𝛼) = 0.
(ii) 𝑆 is integral over 𝑅 if all 𝛼 ∈ 𝑆 are integral over 𝑅.
(iii) 𝑆 is finitely generated over 𝑅 if there exist elements𝛼1,… , 𝛼𝑛 ∈ 𝑆 such that any element

of 𝑆 can bewritten as an𝑅-linear combination of the 𝛼𝑖. Equivalently, themap𝑅𝑛 → 𝑆
given by (𝑟1,… , 𝑟𝑛) ↦ ∑𝑛

𝑖=1 𝑟𝑖𝛼𝑖 is surjective.
Example. Let ℚ ⊆ 𝐿 be a number field. Then 𝛼 ∈ 𝐿 is an algebraic integer if and only if 𝛼
is integral over ℤ. 𝒪𝐿 is integral over ℤ (once we have proven it is a ring).
If 𝛼1,… , 𝛼𝑟 ∈ 𝑆, we write 𝑅[𝛼1,… , 𝛼𝑟] for the subring of 𝑆 generated by 𝑅 and the 𝛼𝑖. This
is equivalently the image of the polynomial ring 𝑅[𝑥1,… , 𝑥𝑟] → 𝑆 mapping 𝑥𝑖 to 𝛼𝑖.
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Proposition. Let 𝑆 = 𝑅[𝑠], where 𝑠 is integral over 𝑅. Then 𝑆 is finitely generated over 𝑅.
Further, if 𝑆 = 𝑅[𝑠1,… , 𝑠𝑛] with each 𝑠𝑖 integral over 𝑅, then 𝑆 is finitely generated over 𝑅.

Proof. 𝑆 is spanned by 1, 𝑠, 𝑠2,… over 𝑅. By assumption, there exists 𝑎0,… , 𝑎𝑛−1 ∈ 𝑅 such
that 𝑠𝑛 = ∑𝑛−1

𝑖=0 𝑎𝑖𝑠𝑖. So the 𝑅-module spanned by 1,… , 𝑠𝑛−1 is stable under multiplication
by 𝑠, so contains 𝑠𝑛, 𝑠𝑛+1,… and hence is all of 𝑆.
Let 𝑆 𝑖 = 𝑅[𝑠1,… , 𝑠𝑖−1]. Then 𝑆 𝑖+1 = 𝑆 𝑖[𝑠𝑖+1], and 𝑠𝑖+1 is integral over 𝑅, hence is integral
over 𝑆 𝑖. So 𝑆 𝑖+1 is finitely generated over 𝑆 𝑖. Note that if 𝐴 ⊆ 𝐵 ⊆ 𝐶 where 𝐵 is finitely
generated over 𝐴 and 𝐶 is finitely generated over 𝐵, then 𝐶 is finitely generated over 𝐴.
Indeed, if 𝑏𝑖 generate 𝐵 over 𝐴 and 𝑐𝑗 generate 𝐶 over 𝐵, the 𝑏𝑖𝑐𝑗 generate 𝐶 over 𝐴.

Theorem. If 𝑆 is finitely generated over 𝑅, 𝑆 is integral over 𝑅.

Proof. Let 𝛼1,… , 𝛼𝑛 generate 𝑆 as an 𝑅-module. Without loss of generality, we can as-
sume 𝛼1 = 1. Let 𝑠 ∈ 𝑆, and consider the function 𝑚𝑠∶ 𝑆 → 𝑆 given by 𝑚𝑠(𝑥) = 𝑠𝑥.
Then, 𝑚𝑠(𝛼𝑖) = 𝑠𝛼𝑖 = ∑𝑏𝑖𝑗𝛼𝑗 for some choice of 𝑏𝑖𝑗 . Let 𝐵 = (𝑏𝑖𝑗). By definition, (𝑠𝐼 −
𝐵)(𝛼1,… , 𝛼𝑛)⊺ = 0.
Recall that for any matrix 𝑋 , the adjugate has the property that adj(𝑋)𝑋 = det𝑋 ⋅ 𝐼. Hence,
det(𝑠𝐼 − 𝐵)(𝛼1,… , 𝛼𝑛)⊺ = 0. In particular, det(𝑠𝐼 − 𝐵)𝛼1 = det(𝑠𝐼 − 𝐵) = 0. Let 𝑓(𝑡) =
det(𝑡𝐼 − 𝐵), which is a monic polynomial in 𝑅. As 𝑓(𝑠) = 0, 𝑠 is integral over 𝑅.

Note the similarity to a proof of the Cayley–Hamilton theorem. Note further that this proof
is constructive.

Corollary. Let ℚ ⊆ 𝐿 be a number field. Then 𝒪𝐿 is a ring.

Proof. If 𝛼, 𝛽 ∈ 𝒪𝐿, then ℤ[𝛼, 𝛽] is finitely generated over ℤ. So this ring is integral.

Corollary. Let 𝐴 ⊆ 𝐵 ⊆ 𝐶 be ring extensions, where 𝐵/𝐴 is integral and 𝐶/𝐵 is integral.
Then 𝐶/𝐴 is integral.

Proof. If 𝑐 ∈ 𝐶, let 𝑓(𝑥) = ∑𝑛
𝑖=0 𝑏𝑖𝑥𝑖 be the monic polynomial in 𝐵[𝑥] it satisfies, and set

𝐵0 = 𝐴[𝑏0,… , 𝑏𝑛−1], 𝐶0 = 𝐵[𝑐]. Then 𝐵0 is finitely generated over 𝐴 as 𝑏0,… , 𝑏𝑛−1 are
integral over 𝐴, and 𝐶0 is finitely generated over 𝐵0 as 𝑐 is integral over 𝐵0. 𝐶0 is therefore
finitely generated over 𝐴. Then the theorem implies that 𝑐 is integral over 𝐴.

Remark. 𝐶 could have had infinitely many generators, for instance,

𝐶 = {𝛼 ∈ ℂ ∣ 𝛼 is an algebraic integer}
This possibility is why we passed to 𝐶0. This kind of proof is common in commutative al-
gebra, applying a powerful theorem such as the Cayley–Hamilton theorem carefully to find
its consequences.

Example. 𝒪ℚ[𝑖] = ℤ[𝑖].
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1.2. Minimal polynomials
Let 𝐾 ⊆ 𝐿 be fields. Recall that the minimal polynomial of 𝛼 ∈ 𝐿 is the monic polynomial
𝑝𝛼(𝑥) ∈ 𝐾[𝑥] of minimum degree such that 𝑝𝛼(𝛼) = 0.
Lemma. Let 𝑓(𝑥) ∈ 𝐾[𝑥] satisfy 𝑓(𝛼) = 0. Then 𝑝𝛼 ∣ 𝑓.

Proof. By Euclid, 𝑓 = 𝑝𝛼ℎ + 𝑟 where 𝑟 ∈ 𝐾[𝑥] has degree less than that of 𝑝. Then 0 =
𝑓(𝛼) = 𝑝𝛼(𝛼)ℎ(𝛼) + 𝑟(𝛼). If 𝑟 ≠ 0, this contradicts minimality of deg𝑝𝛼.

The converse is obvious, so the lemma implies the uniqueness of 𝑝𝛼.
Proposition. Let 𝐿 be a number field and 𝛼 ∈ 𝐿. Then 𝛼 ∈ 𝒪𝐿 if and only if 𝑝𝛼(𝑥) ∈ ℚ[𝑥]
is in ℤ[𝑥].

Proof. If 𝑝𝛼 has integer coefficients, this holds by definition. Conversely, suppose 𝛼 ∈ 𝒪𝐿,
where 𝑝𝛼 is the minimal polynomial. Let 𝑀 ⊇ 𝐿 be a splitting field for 𝑝𝛼, i.e. a field in
which 𝑝𝛼 splits into linear factors. Let ℎ(𝑥) be a monic polynomial which 𝛼 satisfies. By the
lemma, 𝑝𝛼 ∣ ℎ, so each root 𝛼𝑖 of 𝑝𝛼 in𝑀 is an algebraic integer. By the previous theorem,
sums and products of algebraic integers are algebraic. So the coefficients of 𝑝𝛼 are algebraic
integers. But 𝑝𝛼 ∈ ℚ[𝑥], so the coefficients are in ℤ.

Remark. One can also show this from the previous result and Gauss’ lemma.

Lemma. The field of fractions of 𝒪𝐿 is 𝐿. In fact, if 𝛼 ∈ 𝐿, there exists 𝑛 ∈ ℤ, 𝑛 ≠ 0 such
that 𝑛𝛼 ∈ 𝒪𝐿.

Proof. Let 𝛼 ∈ 𝐿, and 𝑔 be the minimal polynomial of 𝛼. Then 𝑔 is monic, and there exists
an integer 𝑛 ∈ ℤ, 𝑛 ≠ 0 such that 𝑛𝑔 ∈ ℤ[𝑥]. So ℎ(𝑥) = 𝑛deg𝑔𝑔(𝑥

𝑛
) is an integer polynomial

which is monic, and this is the minimal polynomial of 𝑛𝛼, so 𝑛𝛼 ∈ 𝒪𝐿.

1.3. Integral basis
If 𝐿/𝐾 is a field extension, and 𝛼 ∈ 𝐿, we write 𝑚𝛼∶ 𝐿 → 𝐿 for the map given by mul-
tiplication by 𝛼. We define the norm of 𝛼 to be the determinant of 𝑚𝛼, and the trace of
𝛼 to be the trace of 𝑚𝛼. Recall that if 𝑝𝛼(𝑥) is the minimal polynomial of 𝛼, then the
characteristic polynomial of 𝑚𝛼 is det(𝑥𝐼 − 𝑚𝛼) = 𝑝[𝐿/𝐾(𝛼)]𝛼 . Further, if 𝑝𝛼(𝑡) splits as
(𝑡 −𝛼1)⋯ (𝑡−𝛼𝑟) in some field 𝐿′ ⊇ 𝐾(𝛼), then𝑁𝐾(𝛼)/𝐾(𝛼) = ∏𝛼𝑖 and Tr𝐾(𝛼)/𝐾(𝛼) = ∑𝛼𝑖,
and 𝑁𝐿/𝐾(𝛼) = (∏𝛼𝑖)[𝐿∶𝐾(𝛼)],Tr𝐿/𝐾(𝛼) = [𝐿 ∶ 𝐾(𝛼)]∑𝛼𝑖.
If 𝐿 is a number field, then 𝛼 is an algebraic integer if and only if the minimal polynomial
is has integer coefficients, which is the case if and only if the characteristic polynomial of
𝑚𝛼 has integer coefficients. In particular, in this case, 𝑁𝐿/ℚ(𝛼) ∈ ℤ and Tr𝐿/ℚ(𝛼) ∈ ℤ. If
the degree of 𝐿 overℚ is 2, the norm and trace are integers if and only if 𝛼 is algebraic, since
these values determine the characteristic polynomial.
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VIII. Number Fields

Example. Let 𝐿 = 𝐾(√𝑑)where 𝑑 ∈ 𝐾 is not a square. This has basis 1,√𝑑. If 𝛼 = 𝑥+𝑦√𝑑,
the matrix𝑚𝛼 is

(𝑥 𝑑𝑦
𝑦 𝑥 )

Then, Tr𝐿/𝐾(𝑥 + 𝑦√𝑑) = 2𝑥 = (𝑥 + 𝑦√𝑑) + (𝑥 − 𝑦√𝑑), and 𝑁𝐿/𝐾(𝑥 + 𝑦√𝑑) = 𝑥2 − 𝑑𝑦2 =
(𝑥 + 𝑦√𝑑)(𝑥 − 𝑦√𝑑).

Lemma. Let 𝐿 = ℚ(√𝑑), 𝑑 ∈ ℤ a nonzero square-free integer. Such a field is called a
quadratic field. Then, 𝒪𝐿 = ℤ[√𝑑] if 𝑑 ≡ 2, 3mod 4, and 𝒪𝐿 = ℤ[ 1

2
(1 + √𝑑)] if 𝑑 ≡ 1mod

4.

Proof. 𝑥 + 𝑦√𝑑 ∈ 𝒪𝐿 if and only if 2𝑥, 𝑥2 − 𝑑𝑦2 ∈ ℤ. This implies that 4𝑑𝑦2 ∈ ℤ. If 𝑦 = 𝑟
𝑠

with gcd(𝑟, 𝑠) = 1, then 𝑠2 ∣ 4𝑑. But 𝑑 was square-free, so 𝑠2 ∣ 4 so 𝑠 = ±1,±2. As 2𝑥 ∈ ℤ,
we can write 𝑥 = 𝑢

2
and 𝑦 = 𝑣

2
, for 𝑢, 𝑣 ∈ ℤ. Therefore, 𝑢2 − 𝑑𝑣2 ∈ 4ℤ, so 𝑢2 ≡ 𝑑𝑣2 mod 4.

Note that 𝑢2 must be 0 or 1 mod 4.
So if 𝑑 is not congruent to 1 mod 4, 𝑢2 ≡ 𝑑𝑣2 has a solution, so 𝑢2, 𝑣2 are both zero mod 4,
so 𝑢, 𝑣 are even. In this case, 𝑥, 𝑦 ∈ ℤ, so any 𝛼 ∈ 𝒪𝐿 is a ℤ-combination of 1,√𝑑.
On the other hand, if 𝑑 ≡ 1, then 𝑢, 𝑣 have the same parity mod 2, so we can write any such
values as a ℤ-combination of 1, 1

2
(1 + √𝑑).

Example. If 𝑑 = −1, 𝒪ℚ[𝑖] = ℤ[𝑖]. Note that the minimal polynomial of 1
2
(1 + √𝑑) is

𝑡2 − 𝑡 + 1
4
(1 − 𝑑), which has integer coefficients as 𝑑 ≡ 1.

Definition. Let 𝐿 be a number field. Then, a basis 𝛼1,… , 𝛼𝑛 of 𝐿 as a ℚ-vector space is
called an integral basis if 𝒪𝐿 = {∑𝑛

𝑖=1𝑚𝑖𝛼𝑖 ∣ 𝑚𝑖 ∈ ℤ} = ⨁𝑛
𝑖=1 ℤ𝛼𝑖.

Example. ℚ(√𝑑) has integer basis 1, 1
2
(1 +√𝑑) or 1,√𝑑, depending on the value of 𝑑mod

4.

Integral bases are not unique. Given two such bases, there exists a matrix 𝑔 ∈ 𝐺𝐿𝑛(ℤ)
which transforms one into the other. We now aim to show that there exists an integral basis
for every number field.

Recall that if 𝐿/𝐾 is a finite separable extension, then there exists 𝛼 ∈ 𝐿 such that 𝐿 =
𝐾(𝛼); this is the primitive element theorem. Note that all extensions in characteristic 0 are
separable.

Example. ℚ(√2,√3) = ℚ(√2 + √3).
This implies that if 𝐿/ℚ is a number field, then there exists 𝛼 ∈ 𝐿 such that 𝐿 = ℚ(𝛼),
isomorphic to ℚ[𝑥]⟋(𝑝𝛼(𝑥)) where 𝑝𝛼 is the minimal polynomial for 𝑥. 𝐿 is a field, so
𝑃𝛼 ⊲ ℚ[𝑥] is a maximal ideal in the principal ideal domain ℚ[𝑥], and 𝑝𝛼 is irreducible.
Let deg𝑝𝛼 = [𝐿 ∶ ℚ] = 𝑛. Then 𝐿 has basis 1, 𝛼,… , 𝛼𝑛−1 as a ℚ-vector space.
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Lemma. 𝑛 is the number of field embeddings of 𝐿 into ℂ.

Proof. 𝑝𝛼 ∈ ℚ[𝑥] is irreducible, so gcd(𝑝𝛼, 𝑝′𝛼) = 1. So 𝑝𝛼(𝑥) = (𝑥 − 𝛼1)… (𝑥 − 𝛼𝑛) has 𝑛
distinct roots in ℂ. A field homomorphism ℚ[𝑥]⟋(𝑝𝛼(𝑥)) → ℂ is automatically ℚ-linear, so
must map 𝑥 to a root 𝛼𝑖 of 𝑝𝛼(𝑥) in ℂ. Conversely, there exists such a map for each 𝛼𝑖, and
they are distinct.

This allows us to define a new invariant which refines 𝑛 = [𝐿 ∶ ℚ].
Definition. Let 𝑟 be the number of real roots of 𝑝𝛼(𝑥), and let 𝑠 be the number of complex
conjugate pairs of roots of 𝑝𝛼(𝑥). Also, 𝑟 is the number of field embeddings of 𝐿 intoℝ, so is
independent of the choice of 𝛼. 𝑠 is therefore also an invariant, as 𝑟 + 2𝑠 = 𝑛.
Lemma. Let 𝐿/ℚ be a number field. Let 𝜎1,… , 𝜎𝑛∶ 𝐿 → ℂ be the different field embed-
dings, so 𝑛 = [𝐿 ∶ ℚ]. If 𝛽 ∈ 𝐿, then Tr𝐿/ℚ(𝛽) = ∑𝜎𝑖(𝛽) and 𝑁𝐿/ℚ(𝛽) = ∏𝜎𝑖(𝛽). We call
the 𝜎𝑖(𝛽) the conjugates of 𝛽 in ℂ.

Example. If 𝐿 = ℚ(√𝑑) where 𝑑 is square-free, then 𝑎 + 𝑏√𝑑 and 𝑎 − 𝑏√𝑑 are conjugates.
Proposition. Let 𝐿/𝐾 be a finite separable extension. Then, the 𝐾-bilinear form 𝐿×𝐿 → 𝐾
given by (𝑥, 𝑦) ↦ Tr𝐿/𝐾(𝑥𝑦), known as the trace form, is a nondegenerate inner product.
Equivalently, if 𝛼1,… , 𝛼𝑛 is a basis of 𝐿/𝐾, the Gram matrix has nonzero determinant, that
is, Δ(𝛼1,… , 𝛼𝑛) = det Tr𝐿/𝐾(𝛼𝑖𝛼𝑗) ≠ 0. Conversely, if 𝐿/𝐾 is inseparable, the trace form is
the zero map.

Proof. Let 𝜎1,… , 𝜎𝑛∶ 𝐿 → 𝐾 be the 𝑛 distinct 𝐾-linear field embeddings of 𝐿 into an algeb-
raic closure 𝐾, which exists by separability. Let 𝑆 be the matrix (𝜎𝑖(𝛼𝑗)). Observe that 𝑆⊺𝑆 is
the matrix with (𝑖, 𝑗) term

𝑛
∑
𝑘=1

𝜎𝑘(𝛼𝑖)𝜎𝑘(𝛼𝑗) =
𝑛
∑
𝑘=1

𝜎𝑘(𝛼𝑖𝛼𝑗) = Tr𝐿/𝐾(𝛼𝑖𝛼𝑗)

So Δ(𝛼1,… , 𝛼𝑛) = det 𝑆 det 𝑆⊺ = (det 𝑆)2. By the primitive element theorem, there exists
𝜃 ∈ 𝐿 such that 𝐿 = 𝐾(𝜃). Therefore, 1, 𝜃,… , 𝜃𝑛−1 forms a basis of 𝐿/𝐾. Then

𝑆 = (
1 𝜎1(𝜃) ⋯ 𝜎1(𝜃𝑛−1)
⋮ ⋮ ⋮
1 𝜎𝑛(𝜃) ⋯ 𝜎𝑛(𝜃𝑛−1)

)

This is a Vandermonde matrix, which gives

(det 𝑆)2 =∏
𝑖<𝑗

(𝜎𝑖(𝜃) − 𝜎𝑗(𝜃))
2 = Δ(1, 𝜃,… , 𝜃𝑛−1)

This is nonzero; indeed, if 𝜎𝑖(𝜃) = 𝜎𝑗(𝜃), then 𝜎𝑖(𝜃𝑎) = 𝜎𝑗(𝜃𝑎) for all 𝑎, so 𝜎𝑖 = 𝜎𝑗 , but they
are distinct.
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Moreover, if 𝛼1,… , 𝛼𝑛 is any basis of 𝐿/𝐾, and 𝛼′1,… , 𝛼′𝑛 is another basis of 𝐿/𝐾, then

Δ(𝛼′1,… , 𝛼′𝑛) = (det𝐴)2Δ(𝛼1,… , 𝛼𝑛)

where 𝛼′𝑖 = ∑𝑎𝑖𝑗𝛼𝑗 and 𝐴 = (𝑎𝑖𝑗). Hence, Δ(𝛼1,… , 𝛼𝑛) ≠ 0 for any basis.

Remark. 𝐿 = 𝐾(𝜃) and 𝑝𝜃(𝑡) = ∏(𝑡 − 𝜎𝑖(𝜃)). The Galois theory notion of the discrim-
inant of 𝑝𝜃, which is∏𝑖<𝑗(𝜎𝑖(𝜃) − 𝜎𝑗(𝜃))2, is exactly the determinant of the Gram matrix
Δ(1, 𝜃,… , 𝜃𝑛−1), also often called a discriminant.
Remark. Let 𝐿 be a number field. If 𝛼, 𝛽 ∈ 𝒪𝐿, Tr𝐿/ℚ(𝛼𝛽) ∈ ℤ. Therefore, the inner product
is a function 𝒪𝐿 × 𝒪𝐿 → ℤ. If 𝛼1,… , 𝛼𝑛 ∈ 𝐿 form a basis of 𝐿 over ℚ, and 𝛼1,… , 𝛼𝑛 are
algebraic integers, then Δ(𝛼1,… , 𝛼𝑛) is a nonzero integer.
Theorem. Let 𝐿/ℚ be a number field. Then there exists an integral basis for𝒪𝐿: there exist
𝛼1,… , 𝛼𝑛 ∈ 𝒪𝐿 such that 𝒪𝐿 =⨁ℤ𝛼𝑖 ≃ ℤ𝑛 and 𝐿 = ⨁ℚ𝛼𝑖 ≃ ℚ𝑛.

Proof. Let 𝛼1,… , 𝛼𝑛 be any basis for 𝐿 as a ℚ-vector space. We have shown that there exists
𝑛𝑖 ∈ ℤ such that 𝑛𝑖𝛼𝑖 ∈ 𝒪𝐿. Therefore, we can assume 𝛼1,… , 𝛼𝑛 ∈ 𝒪𝐿 without loss of
generality. Here, Δ(𝛼1,… , 𝛼𝑛) is a nonzero integer.
Choose 𝛼1,… , 𝛼𝑛 such that Δ(𝛼1,… , 𝛼𝑛) has minimum absolute value. Suppose the result
is false, so let 𝑥 ∈ 𝒪𝐿 and 𝑥 = ∑𝜆𝑖𝛼𝑖 where 𝜆𝑖 ∈ ℚ, and suppose that some 𝜆𝑖 is not an
integer. Without loss of generality let 𝜆1 ∉ ℤ. Write 𝜆1 = 𝑛1 + 𝜀1, and 0 < 𝜀1 < 1. Now, let

𝛼′1 = 𝑥 − 𝑛1𝛼1 = 𝜀1𝛼1 + 𝜆2𝛼2 +⋯+ 𝜆𝑛𝛼𝑛

Note 𝛼′1 ∈ 𝒪𝐿. Then 𝛼′1, 𝛼2,… , 𝛼𝑛 is a basis of 𝐿 containing only the elements of 𝒪𝐿. But
Δ(𝛼′1, 𝛼2,… , 𝛼𝑛) = 𝜀21Δ(𝛼1,… , 𝛼𝑛) contradicting the minimality assumption.

Remark. If 𝛼′1,… , 𝛼′𝑛 are any other integral basis of 𝒪𝐿, then there exists 𝑔 ∈ 𝐺𝐿𝑛(ℤ) such
that 𝑔(𝛼′𝑖) = 𝛼𝑖. But det 𝑔 ∈ 𝐺𝐿1(ℤ) = {±1}, so (det 𝑔)2 = 1, giving Δ(𝛼′1,… , 𝛼′𝑛) =
Δ(𝛼1,… , 𝛼𝑛), so this is an invariant.
Definition. The discriminant of a number field 𝐿/ℚ is the invariant 𝐷𝐿 = Δ(𝛼1,… , 𝛼𝑛).

Example. Let 𝐿 = ℚ(√𝑑) where 𝑑 is square-free. Then, 𝑑 ≡ 2, 3 mod 4, then 1,√𝑑 is an
integral basis. If 𝑑 ≡ 1mod 4, then 1, 1

2
(1 + √𝑑) is an integral basis. Then,

𝐷𝐿 = [det (1 √𝑑
1 −√𝑑

)]
2

= 4𝑑; 𝐷𝐿 = [det(
1 1

2
(1 + √𝑑)

1 1
2
(1 − √𝑑)

)]
2

= 𝑑

So the discriminant is either 4𝑑 or 𝑑.
Remark. Results on quadratic fields are often phrased more uniformly if written in terms of
𝐷𝐿. Note also that 𝐿 = ℚ(√𝐷𝐿). An integral basis is 1,

√𝐷𝐿+𝐷𝐿
2

regardless of the value of 𝑑.
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2. Ideals
2.1. Ideals in the ring of integers
Lemma. Let 𝑥 ∈ 𝒪𝐿, where 𝐿 is a number field. Then 𝑥 is a unit in 𝒪𝐿 if and only if
𝑁𝐿/ℚ(𝑥) = ±1. We write 𝒪⋆

𝐿 for the set of units of 𝒪𝐿.

Proof. If 𝑥 is a unit, then as the norm is multiplicative, 𝑁(𝑥𝑥−1) = 1 so 𝑁(𝑥)𝑁(𝑥−1) = 1. So
𝑁(𝑥) = ±1. Conversely, let 𝜎1,… , 𝜎𝑛∶ 𝐿 → ℂ be the distinct field embeddings. Let 𝐿 ⊆ ℂ be
the containment given by 𝜎1. If 𝑥 ∈ 𝒪𝐿, then 𝑁(𝑥) = 𝑥𝜎2(𝑥)…𝜎𝑛(𝑥). So if 𝑁(𝑥) = ±1, we
have 1

𝑥
= ±∏𝑛

𝑖=2 𝜎𝑖(𝑥). This is a product of algebraic integers, hence an algebraic integer.
So 𝑥−1 ∈ 𝒪𝐿.

Recall that if 𝑥 ∈ 𝒪𝐿, it is irreducible if it does not factorise as 𝑎𝑏 where 𝑎, 𝑏 ∈ 𝒪𝐿 not units.
If 𝑥 = 𝑢𝑦 where 𝑢 is a unit, we say 𝑥 and 𝑦 are associate. Many number fields have rings of
algebraic integers which are not unique factorisation domains.

Example. Let 𝐿 = ℚ(√−5). Here,𝒪𝐿 = ℤ[√−5]. Note that 3⋅7 = (1 + 2√−5)(1 − 2√−5),
and 𝑁(3) = 9, 𝑁(7) = 49, 𝑁(1 ± √−5) = 21. These are not associates. We claim that
3, 7, 1 ± 2√−5 are irreducible, so 𝒪𝐿 is not a unique factorisation domain. If this were not
the case, 3 = 𝛼𝛼, where 𝛼 = 𝑥 + 𝑦√−5, but 𝑁(3) = 9 = 𝑁(𝛼)𝑁(𝛼) = 𝑁(𝛼)2 so 𝑁(𝛼) =
𝑥2 + 5𝑦2 = ±3, but there are no integer solutions to this equation. All of the other factors
are similarly irreducible.

Remark. In any number field, one can factorise any 𝛼 ∈ 𝒪𝐿 into a product of irreducibles by
induction on |𝑁(𝛼)|, but this factorisation is not in general unique. An idea due to Kummer
is to measure the failure of unique factorisation by studying ideals 𝔞 ⊲ 𝒪𝐿.

If 𝑥1,… , 𝑥𝑛 ∈ 𝒪𝐿, we write (𝑥1,… , 𝑥𝑛) for the ideal ∑𝑥𝑖𝒪𝐿 generated by the 𝑥𝑖. We will
consider products of ideals, rather than products of elements.

Definition. If 𝔞, 𝔟 ⊲ 𝒪𝐿, define

𝔞 + 𝔟 = {𝑥 + 𝑦 ∣ 𝑥 ∈ 𝔞, 𝑦 ∈ 𝔟}; 𝔞𝔟 = {∑
𝑖
𝑥𝑖𝑦𝑖

||||
𝑥𝑖 ∈ 𝔞, 𝑦𝑖 ∈ 𝔟}

One can check that this is an ideal, and that products are associative.

Example. (𝑥1,… , 𝑥𝑛)(𝑦1,… , 𝑦𝑚) = ({𝑥𝑖𝑦𝑗 ∣ 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛}). For instance, (𝑥)(𝑦) =
(𝑥𝑦), so the product of principal ideals is principal.

Example. Consider ℤ[√5] = 𝒪𝐿, and the ideals 𝔭1 = (3, 1 + 2√5), 𝔭2 = (3, 1 − 2√5). We
obtain 𝔭1𝔭2 = (9, 3(1 − 2√5), 3(1 + 2√5), 21) = (3). So the ideal (3) factors as 𝔭1𝔭2 in 𝒪𝐿.
Note that 37 = (1 + 2√−5)(1 − 2√−5), so ℤ[√5] is not a unique factorisation domain.
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Recall that an ideal 𝔭 ⊲ 𝑅 is prime if 𝑅⟋𝔭 is an integral domain, so 𝑝 ≠ 𝑅 and for all 𝑥, 𝑦 ∈ 𝑅,
𝑥𝑦 ∈ 𝔭 implies 𝑥 ∈ 𝔭 or 𝑦 ∈ 𝔭. In this course, we will also define that a prime ideal is
nonzero.

Lemma. If 𝔞 ⊲ 𝒪𝐾 , it contains an integer, and moreover, 𝒪𝐾⟋𝔞 is a finite abelian group.

Proof. Let 𝛼 ∈ 𝔞, 𝛼 ≠ 0. Let 𝑝𝛼(𝑥) = 𝑥𝑚 + 𝑎𝑚−1𝑥𝑚−1 + ⋯ + 𝑎0 ∈ ℤ[𝑥] be its minimal
polynomial, and 𝑎0 ≠ 0. Then 𝑎0 = −𝛼(𝛼𝑛−1 + 𝑎𝑛−1𝛼𝑛−1 + ⋯ + 𝑎2𝛼 + 𝑎1). But 𝑎0 ∈ ℤ,
𝛼 ∈ 𝔞, and the other factor lies in 𝒪𝐾 . So 𝑎0 ∈ 𝔞 as 𝔞 is an ideal. Hence 𝑎0𝒪𝐾 ⊆ 𝔞, so
𝒪𝐾⟋𝑎0𝒪𝐾

surjects onto 𝒪𝐾⟋𝔞. But for any integer 𝑑, 𝒪𝐾⟋𝑑𝒪𝐾
= ℤ𝑛⟋𝑑ℤ𝑛 = (ℤ⟋𝑑ℤ)

𝑛
is a

finite set, so 𝒪𝐾⟋𝔞 is finite.

Corollary. 𝔞 ≃ ℤ𝑛, as 𝒪𝐾 ≃ ℤ𝑛 and the quotient is finite.
Therefore, nonzero ideals in 𝒪𝐾 are isomorphic to ℤ𝑛 as abelian groups.
Proposition. (i) 𝒪𝐾 is an integral domain.

(ii) 𝒪𝐾 is a Noetherian ring.

(iii) 𝒪𝐾 is integrally closed in 𝐾 (which is the field of fractions of 𝒪𝐾): if 𝑥 ∈ 𝐾 is integral
over 𝒪𝐾 , it lies in 𝒪𝐾 .

(iv) Every (implicitly nonzero) prime ideal is maximal. We say that the Krull dimension of
𝒪𝐾 is 1.

Remark. A ring with these four properties is called a Dedekind domain. Many of the results
in this section hold for all Dedekind domains.

Proof. Part (i). 𝒪𝐾 ⊆ 𝐾, and 𝐾 is a field.

Part (ii). We have shown that 𝒪𝐾 ≃ ℤ𝑛, where 𝑛 = [𝐾 ∶ ℚ], so 𝒪𝐾 is finitely generated as
an abelian group, so is certainly finitely generated as a ring.

Part (iii). 𝒪𝐾 is integral over ℤ by definition, so if 𝑥 is integral over 𝒪𝐾 , it is integral over ℤ.
So 𝑥 is an algebraic integer, so lies in 𝒪𝐾 .

Part (iv). If 𝔭 is a prime ideal, then by the previous lemma 𝒪𝐾⟋𝔭 is finite and an integral
domain, as 𝔭 is prime. All finite integral domains are fields, hence 𝔭 is maximal.

Example. Consider 𝑅 = ℂ[𝑋, 𝑌]. Then (𝑥) is prime but not maximal, since (𝑥) ⊊ (𝑥, 𝑦).

2.2. Unique factorisation of ideals
We aim to show that every ideal in 𝒪𝐾 factors uniquely as a product of prime ideals.

Definition. 𝔟 divides 𝔞 if there exists an ideal 𝔠 such that 𝔞 = 𝔟𝔠. We write 𝔟 ∣ 𝔞.
Example. (5, 1 + 2√5) ∣ (3) in 𝒪ℚ(√−5). 3ℤ ∣ 6ℤ as 3ℤ ⋅ 2ℤ = 6ℤ.
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Note that 𝔟𝔠 ⊆ 𝔟, as 𝔟 is an ideal. So if 𝔟 ∣ 𝔞, then 𝔞 ⊆ 𝔟. We will show the converse, that
𝔞 ⊆ 𝔟 implies 𝔟 ∣ 𝔞. This allows us to prove results about division by using containment.
Note that prime ideals are maximal, which allows us to use the containment relation.

Lemma. Let 𝔭 be a prime ideal in a ring 𝑅, and let 𝔞, 𝔟 ⊲ 𝑅 be ideals. Then if 𝔞𝔟 ⊆ 𝔭, either
𝔞 ⊆ 𝔭 or 𝔟 ⊆ 𝔭.

Proof. Otherwise, there exists 𝑎 ∈ 𝔞 ∖ 𝔭 and 𝑏 ∈ 𝔟 ∖ 𝔭, with 𝑎𝑏 ∈ 𝔭. But 𝔭 is prime giving a
contradiction.

Lemma. Let 𝔞 ⊴ 𝒪𝐾 be a nonzero ideal. Then 𝔞 contains a product of prime ideals.

Proof. Otherwise, as 𝒪𝐾 is Noetherian, there exists a ideal 𝔞 which is maximal with this
property. In particular, 𝔞 is not prime. So there exists 𝑥, 𝑦 ∈ 𝒪𝐾 with 𝑥 or 𝑦 not in 𝔞 but
𝑥𝑦 ∈ 𝔞. So 𝔞 ⊊ 𝔞 + (𝑥). But then, 𝔞 + (𝑥) contains a product of prime ideals 𝔭1,… , 𝔭𝑟 with
𝔭1…𝔭𝑟 ⊆ 𝔞 + (𝑥). Similarly, there exist prime ideals 𝔮1,… 𝔮𝑠 such that 𝔮1…𝔮𝑠 ⊆ 𝔞 + (𝑦).
Then,

𝔭1…𝔭𝑟𝔮1…𝔮𝑠 ⊆ (𝔞 + (𝑥))(𝔞 + (𝑦)) = 𝔞 + (𝑥𝑦)
But 𝑥𝑦 ∈ 𝔞, giving a contradiction.

Themain proof will use the idea that we can formally introduce the group of fractions of the
commutative monoid of ideals. The object {𝑦 ∈ 𝐾 ∣ 𝑦𝔞 ⊆ 𝒪𝐾} will represent the inverse of
𝔞.
Lemma. (i) Let 0 ≠ 𝔞 ⊴ 𝒪𝐾 be an ideal. If 𝑥 ∈ 𝐾 has the property that 𝑥𝔞 ⊆ 𝔞, then

𝑥 ∈ 𝒪𝐾 .

(ii) Let 0 ≠ 𝔞 ⊲ 𝒪𝐾 be a proper ideal. Then, 𝒪𝐾 ⊆ {𝑦 ∈ 𝐾 ∣ 𝑦𝔞 ⊆ 𝒪𝐾} contains elements
which are not in 𝒪𝐾 . Equivalently, {𝑦 ∈ 𝐾 ∣ 𝑦𝔞 ⊆ 𝒪𝐾}⟋𝒪𝐾

≠ {1} as abelian groups.

Example. Let𝒪𝐾 = ℤ and 𝔞 = 3ℤ. Then, part (i) shows that if 𝑎
𝑏
⋅ 3 ∈ 𝟛ℤ, then 𝑎

𝑏
∈ ℤ. Part

(ii) shows that if 𝑎
𝑏
⋅ 3 ∈ ℤ then 𝑎

𝑏
∈ 1

3
ℤ; for instance, if 𝑎

𝑏
= 1

3
, we have

1
3
ℤ⟋ℤ = ℤ⟋3ℤ ≠ {1}.

Proof. Part (i). 𝔞 ⊆ 𝒪𝐾 is finitely generated as an abelian group, as it is isomorphic to ℤ𝑛.
Let 𝛼1,… , 𝛼𝑛 be a ℤ-basis of 𝔞. Consider𝑚𝑥 ∶ 𝔞 → 𝔞 given by multiplication by 𝑥 ∈ 𝐾. We
write 𝑥𝛼𝑖 = ∑𝑎𝑖𝑗𝛼𝑗 , where by assumption, 𝑎𝑖𝑗 are integers. Hence,

(𝑥𝐼 − 𝐴) (
𝛼1
⋮
𝛼𝑛
) = 0

where 𝐴 = (𝑎𝑖𝑗). So det(𝑥𝐼 − 𝐴) = 0, so 𝑥 is integral over ℤ; that is, 𝑥 ∈ 𝒪𝐾 .

Part (ii). If this holds for 𝔞, it certainly holds for all ideals 𝔞′ ⊆ 𝔞. Sowithout loss of generality,
let 𝔞 be maximal, so 𝔞 = 𝔭 is a prime ideal. Let 𝛼 ∈ 𝔭 be nonzero. By the previous lemma,
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there exist prime ideals 𝔭1,… , 𝔭𝑟 such that 𝔭1…𝔭𝑟 ⊆ (𝛼) ⊆ 𝔭. Suppose that 𝑟 is minimal.
By the first lemma in this subsection, there exists 𝑖 such that 𝔭𝑖 ⊆ 𝔭, and without loss of
generality 𝑖 = 1. So 𝔭1 ⊆ 𝔭. But 𝔭1 is maximal, so 𝔭1 = 𝔭.

Since 𝑟 is minimal, 𝔭2…𝔭𝑟 ⊊ (𝛼). Fix 𝛽 ∈ 𝔭2…𝔭𝑟 ∖ (𝛼). Then 𝛽𝔭 ⊆ 𝔭(𝔭2…𝔭𝑟) ⊆ (𝛼), but
𝛽 ∈ (𝛼). So, dividing by 𝛼, we obtain 𝛽

𝛼
𝔭 ⊆ (1) = 𝒪𝐾 , but

𝛽
𝛼
∉ 𝒪𝐾 .

Definition. A fractional ideal is an 𝒪𝐾-module 𝑋 such that 𝑋 ⊆ 𝐾 and 𝑋 is finitely gener-
ated.

𝑋 = {𝑥 ∈ 𝐾 ∣ 𝑥𝔞 ⊆ 𝒪𝐾} is an 𝒪𝐾-module. If 𝛼 ∈ 𝔞 ∖ {0}, then 𝛼𝑋 ⊆ 𝒪𝐾 = ℤ𝑛 where
𝑛 = [𝐾 ∶ ℚ]. Multiplication by 𝛼 is an isomorphism 𝑋 → 𝛼𝑋 , and submodules of ℤ𝑛 are
finitely generated abelian groups, so 𝑋 is finitely generated as an abelian group, hence as an
𝒪𝐾-module. Hence 𝑋 is a fractional ideal.

Lemma. 𝔮 ⊆ 𝐾 is a fractional ideal if and only if there exists a nonzero constant 𝑐 ∈ 𝐾 such
that 𝑐𝔮 is an ideal in 𝒪𝐾 .

Proof. Suppose 𝑐𝔮 is an ideal. Then 𝔮 ⊆ 𝐾, andmultiplication by 𝑐 is an isomorphism 𝔮 → 𝑐𝔮
as 𝒪𝐾-modules, so it is finitely generated as 𝔮 is.

Suppose 𝔮 is a fractional ideal. Then, 𝑥1,… , 𝑥𝑟 generate 𝔮 as an 𝒪𝐾-module. But 𝑥𝑖 ∈ 𝐾 so
𝑥𝑖 =

𝑦𝑖
𝑛𝑖
where 𝑦𝑖 ∈ 𝒪𝐾 , 𝑛𝑖 ∈ ℤ. Let 𝑐 be the least common multiple of the 𝑛𝑖, and then

𝑐𝑞 ⊆ 𝒪𝐾 , and is a submodule of 𝒪𝐾 , and hence is an ideal.

Corollary. 𝔮 is isomorphic to ℤ𝑛 as an abelian group.

Proof. We have shown that all nonzero ideals in𝒪𝐾 are isomorphic to ℤ𝑛 as abelian groups,
where 𝑛 = [𝐾 ∶ ℚ], and multiplication by 𝑐 is an isomorphism 𝔮 → 𝑐𝔮.

Ideals are sometimes called integral ideals to distinguish from fractional ideals. One can
define multiplication of fractional ideals in the same way that we defined it for integral
ideals.

Definition. A fractional ideal 𝔮 is invertible if there exists a fractional ideal 𝔯 such that
𝔮𝔯 = (1) = 𝒪𝐾 .

Proposition. Every nonzero fractional ideal 𝔮 is invertible, and its inverse is

𝔮−1 = {𝑥 ∈ 𝐾 ∣ 𝑥𝔮 ⊆ 𝒪𝐾}

Remark. 𝔮 = 1
𝑛
𝔞, 𝔯 = 1

𝑚
𝔟 where 𝔞, 𝔟 are integral ideals in 𝒪𝐾 , and 𝑛,𝑚 ∈ 𝐾⋆. Then 𝔮𝔯 = 1

if and only if 𝔞𝔟 = (𝑛𝑚). Therefore, the proposition is equivalent to the statement that for
every 𝔞 ⊴ 𝒪𝐾 , there exists an ideal 𝔟 ⊴ 𝒪𝐾 such that 𝔞𝔟 is principal.
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Proof. 𝔮 is invertible if and only if 𝔞 is invertible, where 𝑛𝔮 = 𝔞 as above. So, without loss of
generality, let 𝔮 be an integral ideal. If the proposition is false, there exists some integral ideal
in𝒪𝐾 . As𝒪𝐾 is Noetherian, there exists a maximal such ideal 𝔞 ≠ 𝒪𝐾 . So every ideal 𝔞′ ⊋ 𝔞
is invertible. Let 𝔟 = {𝑥 ∈ 𝐾 ∣ 𝑥𝔞 ⊆ 𝒪𝐾}, which is a fractional ideal. 𝒪𝐾 ⊆ 𝔟 hence 𝔞 ⊆ 𝔞𝔟.
If 𝔞 = 𝔞𝔟, then part (i) of a previous lemma implies that 𝔟 ⊆ 𝒪𝐾 . Part (ii) of the same lemma
implies 𝔟 ∖ 𝒪𝐾 ≠ ∅, which is a contradiction. So 𝔞 ⊊ 𝔞𝔟 ⊊ 𝒪𝐾 . Then 𝔞𝔟 is invertible by
assumption, so 𝔞 is invertible, giving a contradiction. Finally, 𝔮−1 ⊆ {𝑥 ∈ 𝐾 ∣ 𝑥𝔮 ⊆ 𝒪𝐾} = 𝑋 ,
so 𝔮𝔮−1 = 𝒪𝐾 ⊆ 𝔮𝑋 ⊆ 𝒪𝐾 , so we have equality: 𝔮−1 = 𝑋 .

Corollary. Let 𝔞, 𝔟, 𝔠 ⊲ 𝒪𝐾 be integral ideals, and let 𝔠 ≠ (0). Then,
(i) 𝔟 ⊆ 𝔞 ⟺ 𝔟𝔠 ⊆ 𝔞𝔠;
(ii) 𝔞 ∣ 𝔟 ⟺ 𝔞𝔠 ∣ 𝔟𝔠;
(iii) 𝔞 ∣ 𝔟 ⟺ 𝔟 ⊆ 𝔞.

Proof. The forward direction of parts (i) and (ii) are clear; the backward direction follows
from multiplication by 𝔠−1. The forward direction of part (iii) has already been seen. Now,
suppose 𝔟 ⊆ 𝔞. By the proposition above, there exists 𝔠 such that 𝔞𝔠 = (𝛼) is principal. Then,
𝔟 ⊆ 𝔞 if and only if 𝔟𝔠 ⊆ (𝛼) by part (i). 𝔞 ∣ 𝔟 if and only if (𝛼) ∣ 𝔟𝔠 by part (ii). But if
𝔟𝔠 is generated by 𝛽1,… , 𝛽𝑟, 𝔟𝔠 ⊆ (𝛼) means that each 𝛽𝑖 is divisible by 𝛼. More precisely,
𝛽𝑖 = 𝛽′𝑖𝛼 for some 𝛽′𝑖 ∈ 𝒪𝐾 . So (𝛽1,… , 𝛽𝑟) = (𝛽′1,… , 𝛽′𝑟)(𝛼) proving part (iii).

Remark. Part (iii) is straightforward if 𝔞 is principal, and invertibility via fractional ideals
allows us to reduce to this case.

Theorem. Let 𝔞 ⊲ 𝒪𝐾 be a nonzero ideal. Then 𝔞 can be written uniquely as a product of
prime ideals.

Proof. If 𝔞 is not prime, it is not maximal. Let 𝔟 ⊋ 𝔞 be an ideal in𝒪𝐾 . Then 𝔞 = 𝔟𝔠 for some
ideal 𝔠 containing 𝔞 by part (iii) of the previous corollary. We continue factoring in this way.
As the ring is Noetherian, this process will always terminate, as we produce an ascending
chain.

For uniqueness, we have shown that 𝔭 ∣ 𝔞𝔟 implies 𝔭 ∣ 𝔞 or 𝔭 ∣ 𝔟. So if 𝔭1…𝔭𝑟 = 𝔮1…𝔮𝑠 with
𝔭𝑖, 𝔮𝑖 prime, we have 𝔭1 ∣ 𝔮𝑖 for some 𝑖. So let 𝑖 = 1without loss of generality, so 𝔮1 ⊆ 𝔭1. But
𝔮1 is maximal, so 𝔮1 = 𝔭1. Multiply by 𝔭−11 to obtain 𝔭2…𝔭𝑟 = 𝔮2…𝔮𝑠, then by induction,
the 𝔭𝑖 and 𝔮𝑖 match.

Corollary. The nonzero fractional ideals form a group 𝐼𝐾 under multiplication. 𝐼𝐾 is the
free abelian group generated by the prime ideals 𝔭 ⊲ 𝒪𝐾 . In other words, any 𝔮 ∈ 𝐼𝐾 can be
written uniquely as a product of prime ideals and their inverses. 𝔮 ∈ 𝐼𝐾 is an integral ideal
if and only if all of the exponents are nonnegative.

Proof. Follows from the previous theorem after writing 𝔮 = 𝔞𝔟−1 where 𝔞, 𝔟 ⊴ 𝒪𝐾 .
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2.3. Class group
Observe that we have a map 𝐾⋆ → 𝐼𝐾 mapping 𝑥 to the principal ideal (𝑥). This map is a
group homomorphism, as 𝛼𝛽 ↦ (𝛼)(𝛽). Its kernel is the set of 𝛼 ∈ 𝐾⋆ such that (𝛼) = (1) =
𝒪𝐾 , which is the set𝒪⋆

𝐾 of invertible elements of𝒪𝐾 . The image is the set of principal ideals
𝑃𝐾 .
Definition. The class group of a number field 𝐾 is Cl𝐾 = 𝐼𝐾⟋𝑃𝐾 , the cokernel of the map𝐾⋆ → 𝐼𝐾 .
If 𝔞 ∈ 𝐼𝐾 , we write [𝔞] for its equivalence class in the class group, so [𝔞] = [𝔟] if and only if
there exists 𝛾 ∈ 𝐾⋆ such that 𝛾𝔞 = 𝔟.
Theorem. The following are equivalent.

(i) 𝒪𝐾 is a principal ideal domain;

(ii) 𝒪𝐾 is a unique factorisation domain;

(iii) Cl𝐾 is trivial.

Proof. (i) holds if and only if (iii) holds by definition. (i) implies (ii) is a general fact from
IB Groups, Rings and Modules. The proof that (ii) implies (i) remains. Let 𝔭 be a prime
ideal in 𝒪𝐾 , and 𝑥 ∈ 𝔭 a nonzero element of this ideal. We can factorise 𝑥 into irreducibles
𝑥 = 𝛼1…𝛼𝑟 uniquely by assumption. As 𝔭 is prime, some 𝛼𝑖 lies in 𝔭. Then (𝛼𝑖) ⊆ 𝔭, and
as 𝒪𝐾 is a unique factorisation domain and 𝛼𝑖 is irreducible, (𝛼𝑖) is prime. But prime ideals
are maximal, so (𝛼𝑖) = 𝔭 as required.

The following sequence is exact.

1 𝒪⋆
𝐾 𝐾⋆ 𝐼𝐾 Cl𝐾 1

We can now state the main theorems of the course, which are:

(i) the class group is finite;

(ii) 𝒪⋆
𝐾 is the direct product of the roots of unity in 𝐾 with ℤ𝑟+𝑠−1.

Example. (3, 1 + 2√5)(3, 1 − 2√5) = (3), so (3, 1 + 2√5) and (3, 1 − 2√5) are inverse in the
class group.

Example. Let [𝐿 ∶ ℚ] = 2, so 𝐿 = ℚ(√𝑑) for 𝑑 ∈ ℤ, and 𝑑 ≢ 1 mod 4. Let 𝔞 ⊴ 𝒪𝐿, so
𝔞 ≃ ℤ2 giving 𝔞 = (𝛼, 𝛽) as an 𝒪𝐿-module. We can always assume 𝛽 ∈ ℤ. Indeed, write
𝛼 = 𝑎+ 𝑏√𝑑 and 𝛽 = 𝑎′ + 𝑏′√𝑑. Assume |𝑎| + |𝑎′| is minimal, so without loss of generality
𝑎 ≥ 𝑎′ ≥ 0, and if 𝑎′ ≠ 0, 𝛼 − 𝛽, 𝛽 has smaller |𝑎| + |𝑎′|.
Example. In a quadratic field 𝔞 = (𝛼, 𝑏) where 𝑏 ∈ ℤ. Then (𝑏, 𝛼)(𝑏, 𝛼) is principal.

𝔞𝔞 = (𝑏2, 𝑏𝛼, 𝑏𝛼, 𝛼𝛼) = (𝑏2, 𝑏𝛼, 𝑏 (𝛼 + 𝛼)⏟⎵⏟⎵⏟
Tr(𝛼)

, 𝑁(𝛼)) = (𝑏𝛼, 𝑐)
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where 𝑐 = gcd(𝑏2,Tr(𝛼), 𝑁(𝛼)). Let 𝑥 = 𝑏𝛼
𝑐
∈ 𝐿⋆. Tr(𝑥) = 𝑏Tr(𝛼)

𝑐
∈ ℤ, and 𝑁(𝑐) = 𝑁(𝑏𝛼

𝑐
) =

𝑏2𝑁(𝛼)
𝑐2

= 𝑏2

𝑐
𝑁(𝛼)
𝑐

∈ ℤ, so 𝑥 ∈ 𝒪𝐿, giving 𝑐 ∣ 𝑏𝛼, so 𝔞𝔞 = (𝑐). In particular, (𝑏, 𝛼), (𝑏, 𝛼) are
inverse in the class group.

2.4. Norms of ideals
Definition. Let 𝐿 be a number field, and let [𝐿 ∶ ℚ] = 𝑛. Let 𝔞 ⊴ 𝒪𝐿 be a nonzero ideal.
The norm of 𝔞 is ||𝒪𝐿⟋𝔞||.

By Lagrange’s theorem, 𝑁(𝔞) ⋅ 1 = 0 in 𝒪𝐿⟋𝔞. Hence 𝑁(𝔞) ∈ 𝔞 ∩ ℤ.

Example. Let 𝑝 be a prime. 𝑁((𝑝)) = |
|ℤ

𝑛⟋(𝑝ℤ)𝑛
|
| = 𝑝𝑛.

Proposition. Let 𝔞, 𝔟 ⊴ 𝒪𝐿 be nonzero ideals. Then, 𝑁(𝔞𝔟) = 𝑁(𝔞)𝑁(𝔟).

Remark. By unique factorisation of ideals, it suffices to show that

𝑁(𝔭𝑎11 …𝔭𝑎𝑛𝑛 ) = 𝑁(𝔭1)𝑎1 …𝑁(𝔭𝑛)𝑎𝑛

for 𝔭𝑖 distinct prime ideals. To show this, we need that

(i) 𝒪𝐿⟋𝔭𝑎11 …𝔭𝑎𝑛𝑛 ≃ 𝒪𝐿⟋𝔭𝑎11 …𝒪𝐿⟋𝔭𝑎𝑛𝑛 by the Chinese remainder theorem.

(ii) ||𝒪𝐿⟋𝔭𝑒|| = ||𝒪𝐿⟋𝔭|| ⋅ ||𝔭⟋𝔭2
||⋯

|||
𝔭𝑒−1⟋𝔭𝑒

|||which is a general fact, and this is equal to ||𝒪𝐿⟋𝔭||
𝑒

as 𝔭𝑎⟋𝔭𝑎+1 is a one-dimensional vector space over the field 𝒪𝐿⟋𝔭. This fact is specific
to number fields (or more generally, Dedekind domains). For a counterexample, con-
sider 𝔽𝑝[𝑋, 𝑌] and 𝔭 = (𝑥, 𝑦).

The following proof uses the above approach obscurely but quickly.

Proof. By unique factorisation it suffices to show the result for 𝔟 = 𝔭 where 𝔭 is prime.
𝔞 ≠ 𝔞𝔭 by unique factorisation, so let 𝛼 ∈ 𝔞 ∖ 𝔞𝔭. We claim that the homomorphism of
abelian groups 𝒪𝐿⟋𝔭 → 𝔞⟋𝔞𝔭mapping 𝑥 ↦ 𝛼𝑥 is an isomorphism. Then,

𝒪𝐿⟋𝔞 ≃
(𝒪𝐿⟋𝔞𝔭)⟋(𝔞⟋𝔞𝔭)

so
𝑁(𝔞) = ||𝒪𝐿⟋𝔞|| =

𝑁(𝔞𝔭)
||𝔞⟋𝔞𝔭||

but ||𝔞⟋𝔞𝔭|| = ||𝒪𝐿⟋𝔭|| = 𝑁(𝔭) by the claim, proving the proposition. We now prove the claim.

We show the homomorphism is injective. (𝛼) ⊆ 𝔞 so (𝛼) = 𝔞𝔠 for some 𝔠 ⊲ 𝒪𝐿. Suppose 𝑥
has 𝛼𝑥 ∈ 𝔞𝔭, so 𝑥+𝔭 is in the kernel. Then, 𝑥𝔞𝔠 ⊆ 𝔞𝔭. Dividing by 𝔞, 𝑥𝔠 ⊆ 𝔭. But 𝔭 is prime,
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so 𝑥 ∈ 𝑝 or 𝔠 ⊆ 𝔭. But 𝔠 ⊆ 𝔭 implies 𝛼 ∈ 𝔞𝔭, contradicting our choice of 𝛼. So 𝑥 ∈ 𝔭, so the
map is injective as required.

We show the homomorphism is surjective. We want to show (𝛼) + 𝔞𝔭 = 𝔞. We know that
𝔞𝔭 ⊊ (𝛼) + 𝔞𝔭 ⊆ 𝔞. Multiplying by 𝔞−1, we obtain

𝔭 ⊊ ((𝛼) + 𝔞𝔭)𝔞−1 ⊆ 𝒪𝐿

But 𝔭 is a prime and hence maximal. Therefore, ((𝛼) + 𝔞𝔭)𝔞−1 = 𝒪𝐿, so (𝛼) + 𝑝 = 𝔞, so the
map is surjective.

Lemma. Let 𝑀 ⊆ ℤ𝑛 be a subgroup. Then 𝑀 ≃ ℤ𝑟 for some 0 ≤ 𝑟 ≤ 𝑛. Suppose further
that 𝑟 = 𝑛. Let 𝑒1,… , 𝑒𝑛 be a basis ofℤ𝑛 and 𝑣1,… , 𝑣𝑛 be a basis of𝑀 overℤ. Then, ||ℤ

𝑛⟋𝑀|| =
det𝐴 where 𝐴 = (𝑎𝑖𝑗) and 𝑣𝑗 = ∑𝑎𝑖𝑗𝑒𝑖.

Proof. We can choose a basis 𝑣1,… , 𝑣𝑛 of𝑀 such that 𝐴 is upper triangular. Then, |det𝐴| =
|𝑎11…𝑎𝑛𝑛|.

Lemma. Let 𝔞 ⊲ 𝒪𝐿 be a nonzero ideal, and 𝑛 = [𝐿 ∶ ℚ]. Then,

(i) There exist 𝛼1,… , 𝛼𝑛 ∈ 𝔞 such that 𝔞 = {∑𝑛
𝑖=1 𝑟𝑖𝛼𝑖 ∣ 𝑟𝑖 ∈ ℤ}, and 𝛼1,… , 𝛼𝑛 are a basis

of 𝐿/ℚ.

(ii) For any such 𝛼1,… , 𝛼𝑛 ∈ 𝔞, Δ(𝛼1,… , 𝛼𝑛) = 𝑁(𝔞)2𝐷𝐿 where 𝐷𝐿 is the discriminant of
𝐿, and where Δ(𝛼1,… , 𝛼𝑛) = det Tr(𝛼𝑖𝛼𝑗) = (det(𝜎𝑖𝛼𝑗))

2.

Proof. Part (i). The result holds for 𝒪𝐿, and if 𝑑 ∈ 𝔞 is an integer, such as 𝑑 = 𝑁(𝔞), then
𝑑𝒪𝐿 ⊆ 𝔞 ⊆ 𝒪𝐿, so as abelian groups, (𝑑ℤ)𝑛 ⊆ 𝔞 ⊆ ℤ𝑛, so 𝔞 ≃ ℤ𝑛.

Part (ii). Let 𝛼′1,… , 𝛼′𝑛 be an integral basis of 𝒪𝐿. Let 𝐴 be the change of basis matrix
from 𝛼1,… , 𝛼𝑛 to 𝛼′1,… , 𝛼′𝑛. Then Δ(𝛼1,… , 𝛼𝑛) = (det𝐴)2Δ(𝛼′1,… , 𝛼′𝑛) = ||𝒪𝐿⟋𝔞||

2
𝐷𝐿 by

the lemma.

Corollary. If 𝛼1,… , 𝛼𝑛 generating 𝔞 as a ℤ-module has Δ(𝛼1,… , 𝛼𝑛) square-free, then 𝔞 =
𝒪𝐿 and 𝐷𝐿 is square-free. In particular, if 𝐿 = ℚ(𝛼) and 𝛼 ∈ 𝒪𝐿 where the discriminant
disc(𝛼) = Δ(1, 𝛼,… , 𝛼𝑛−1) is square-free, then ℤ[𝛼] = 𝒪𝐿. More generally, if 𝛼 ∈ 𝒪𝐿 and
𝐿 = ℚ(𝛼), and 𝑑 ∈ ℤ is a maximal integer such that 𝑑2 ∣ disc(𝛼), then ℤ[𝛼] ⊆ 𝒪𝐿 ⊆

1
𝑑
ℤ[𝛼].

Lemma. Let 𝛼 ∈ 𝒪𝐿 be a nonzero algebraic integer. Then 𝑁((𝛼)) = ||𝑁𝐿/ℚ(𝛼)||.
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Proof. Let 𝛼1,… , 𝛼𝑛 be an integral basis of 𝒪𝐿. Consider

Δ(𝛼1𝛼,… , 𝛼𝑛𝛼) = (det(𝜎𝑖(𝛼𝑗𝛼)))
2

= (det((𝜎𝑖𝛼𝑗)(𝜎𝑖𝛼)))
2

= (
𝑛
∏
𝑖=1

𝜎𝑖(𝛼) ⋅ det(𝜎𝑖𝛼𝑗))
2

= 𝑁(𝛼)2Δ(𝛼1,… , 𝛼𝑛)
= 𝑁(𝛼)2𝐷𝐿

But 𝛼1𝛼,… , 𝛼𝑛𝛼 is a basis of (𝛼), hence this is equal to 𝑁((𝛼))2𝐷𝐿. So 𝑁((𝛼))2 = 𝑁𝐿/ℚ(𝛼)2,
but 𝑁((𝛼)) > 0, giving the result as required.

2.5. Prime ideals
Lemma. Let 𝔭 ⊲ 𝒪𝐿 be a prime ideal. Then there exists a unique prime 𝑝 ∈ ℤ such that
𝔭 ∣ (𝑝) = 𝑝𝒪𝐿. Moreover, 𝑁(𝔭) = 𝑝𝑓 for some integer 1 ≤ 𝑓 ≤ 𝑛 = [𝐿 ∶ ℚ].

Proof. 𝔭 ∩ ℤ is an ideal in ℤ, hence principal. So for some 𝑝 ∈ ℤ, 𝔭 ∩ ℤ = 𝑝ℤ; we claim
𝑝 is prime. If 𝑝 = 𝑎𝑏 with 𝑎, 𝑏 ∈ ℤ, then as 𝑝 ∈ 𝔭, 𝑎 or 𝑏 lie in 𝔭 ∩ ℤ, so 𝑎 or 𝑏 lie in
𝑝ℤ, so 𝑝 ∣ 𝑎 or 𝑝 ∣ 𝑏. By factorisation of ideals, (𝑝) = 𝔭𝔞 for some 𝔞 ⊴ 𝒪𝐿. Taking norms,
𝑁((𝑝)) = 𝑁(𝔭)𝑁(𝔞). But 𝑁((𝑝)) = 𝑝𝑛, so 𝑁(𝔭) = 𝑝𝑓 for 1 ≤ 𝑓 ≤ 𝑛.

Remark. Every prime ideal in 𝒪𝐿 is a factor of (𝑝) ⊲ ℤ where 𝑝 is a prime. Hence, we can
factorise (𝑝) as 𝔭𝑒11 …𝔭𝑒𝑟𝑟 for each prime 𝑝 ∈ ℤ to identify all prime ideals in 𝒪𝐿.

Let 𝑝 ∈ ℤ be a prime. Consider the map 𝑞∶ 𝒪𝐿 → 𝒪𝐿⟋𝑝𝒪𝐿
, which is a surjection. By the

isomorphism theorem, there is a bijection 𝐼 ↦ 𝑞−1(𝐼) with inverse 𝐽 ↦ 𝐽⟋(𝑝) between the
set of ideals in𝒪𝐿⟋𝑝𝒪𝐿

and ideals of𝒪𝐿 containing 𝑝𝒪𝐿, or equivalently, ideals 𝔭 ⊲ 𝒪𝐿 with
𝔭 ∣ (𝑝). The bijection maps prime ideals to prime ideals.
Under certain assumptions, we can determine the prime ideals in 𝒪𝐿⟋(𝑝) exactly.

Theorem (Dedekind’s criteria). Let 𝛼 ∈ 𝒪𝐿 have minimal polynomial 𝑔(𝑥) ∈ ℤ[𝑥]. Sup-
pose that ℤ[𝛼] ⊆ 𝒪𝐿 has finite index ||𝒪𝐿⟋ℤ[𝛼]|| not divisible by 𝑝. Let 𝑔(𝑥) = 𝑔(𝑥)mod 𝑝 ∈
𝔽𝑝[𝑥]. Let 𝑔(𝑥) = 𝜑𝑒11 …𝜑𝑒𝑟𝑟 be the factorisation of 𝑔(𝑥) into irreducibles in 𝔽𝑝[𝑥]. Then
𝑝𝒪𝐿 = (𝑝) = 𝔭𝑒11 …𝔭𝑒𝑟𝑟 where 𝔭𝑖 = (𝑝, 𝜑𝑖(𝛼)) is the prime ideal in 𝒪𝐿 where we choose any
monic polynomial 𝜑𝑖(𝑥) ∈ ℤ[𝑥] which has reduction mod 𝑝 equal to 𝜑𝑖(𝑥).

Proof. First, we show that each factor 𝜑𝑖 defines a prime ideal in ℤ[𝛼]⟋𝑝ℤ[𝛼]. We will then
relate this to prime ideals in 𝒪𝐿⟋𝑝𝒪𝐿

. We have a surjective ring homomorphism ℤ[𝑥] →
𝔽𝑝[𝑥]⟋𝜑𝑖.
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We claim that the kernel of this homomorphism is the ideal generated by𝑝, 𝜑𝑖. We can factor
the map as ℤ[𝛼] → 𝔽𝑝[𝑥] → 𝔽𝑝[𝑥]⟋𝜑𝑖. It is clear that 𝑝, 𝜑𝑖 lie in the kernel. If 𝑓 ↦ 0, then
𝜑𝑖 ∣ 𝑓 so there exists ℎ ∈ 𝔽𝑝[𝑥] such that 𝑓 = 𝜑𝑖ℎ, so 𝑓 = 𝜑𝑖ℎ + 𝑝𝑠 for any lift ℎ of ℎ of the
same degree. So the kernel is precisely (𝑝, 𝜑𝑖).

We can alternatively factor the map as ℤ[𝛼] → ℤ[𝑥]⟋𝑔(𝑥)ℤ[𝑥] → 𝔽𝑝[𝑥]⟋𝜑𝑖. We claim that

the kernel of the map ℤ[𝛼] → 𝔽𝑝[𝛼] = 𝔽𝑝[𝑥]⟋𝜑𝑖 is the ideal 𝔮𝑖 ⊲ ℤ[𝛼] generated by 𝑝, 𝜑𝑖(𝛼).

The proof of this claim is left as an exercise. Therefore, ℤ[𝛼]⟋𝔮𝑖 ≃
𝔽𝑝[𝑥]⟋𝜑𝑖(𝑥). But 𝜑𝑖(𝑥)

is irreducible by hypothesis, so 𝔽𝑝[𝑥]⟋𝜑𝑖(𝑥) is a field, hence 𝔮𝑖 is a prime ideal. Therefore,
𝔽𝑝[𝑥]⟋𝜑𝑖 ≃ 𝔽𝑞 where 𝑞 = 𝑝𝑓𝑖 is some power of 𝑝. In particular, ||ℤ[𝛼]⟋𝔮𝑖

|| = |||
𝔽𝑝[𝑥]⟋𝜑𝑖(𝑥)

||| =
𝑝𝑓𝑖 where 𝑓𝑖 = deg𝜑𝑖.

Now, if ℤ[𝛼] = 𝒪𝐿 the first part implies that 𝔭𝑖 = 𝔮𝑖 is a prime ideal containing 𝑝, and
𝑁(𝔭𝑖) = 𝑝𝑓𝑖 . Suppose 𝑝 ∤ ||𝒪𝐿⟋ℤ[𝛼]||. We claim that the inclusion map defines an iso-
morphism 𝜄∶ ℤ[𝛼]⟋𝑝ℤ[𝛼] → 𝒪𝐿⟋𝑝𝒪𝐿

. This implies that there is a bijection between ideals

of ℤ[𝛼]⟋𝑝ℤ[𝛼] and ideals of 𝒪𝐿⟋𝑝𝒪𝐿
. Hence, there is a bijection between ideals of ℤ[𝛼] con-

taining 𝑝 and ideals of 𝒪𝐿 containing 𝑝, where this bijection maps an ideal (𝑝, 𝑦) ⊴ ℤ[𝛼] to
𝔭 ⊴ 𝒪𝐿 generated by the same elements under the inclusion map. In other words, it maps
an ideal 𝔮 to 𝔮𝒪𝐿. The inverse bijectionmaps 𝔭 to 𝔭∩ℤ[𝛼]. Moreover,𝒪𝐿⟋𝔭 ≃ ℤ[𝛼]⟋𝔭 ∩ ℤ[𝛼]
hence 𝑁(𝔭𝑖) = 𝑝deg𝜑𝑖 = 𝑝𝑓𝑖 for 𝔭𝑖 as above.

We now prove the claim. The map 𝒪𝐿⟋ℤ[𝛼] → 𝒪𝐿⟋ℤ[𝛼] given by multiplication by 𝑝 is an
isomorphism. It is injective as the kernel is a 𝑝-group so must be trivial, and 𝒪𝐿⟋ℤ[𝛼] is a
finite abelian group, so this is an isomorphism. But the kernel of the map 𝜄∶ ℤ[𝛼]⟋𝑝ℤ[𝛼] →
𝒪𝐿⟋𝑝𝒪𝐿

is ℤ[𝛼] ∩ 𝑝𝒪𝐿⟋𝑝ℤ[𝛼], which is precisely the kernel of the map given by multiplica-
tion by 𝑝. So 𝜄 is injective.

𝜄 is surjective if 𝒪𝐿 = ℤ[𝛼] + 𝑝𝒪𝐿. The map given by multiplication by 𝑝 is surjective, so 𝜄 is
indeed surjective, and hence an isomorphism as required.

We have now constructed prime ideals 𝔭𝑖 = (𝑝, 𝜑𝑖(𝛼)) ⊲ 𝒪𝐿 containing𝑝with norm𝑁(𝔭𝑖) =
𝑝𝑓𝑖 with 𝑓𝑖 = deg𝜑𝑖. We must now show that there are no other ideals containing 𝑝. Now,
𝔭𝑒𝑖𝑖 = (𝑝, 𝜑𝑖(𝛼))𝑒𝑖 ⊆ (𝑝, 𝜑𝑖(𝛼)𝑒𝑖 ), so

𝔭𝑒11 …𝔭𝑒𝑟𝑟 ⊆ (𝑝, 𝜑1(𝛼)𝑒1)… (𝑝, 𝜑𝑟(𝛼)𝑒𝑟) ⊆ (𝑝, 𝜑1(𝛼)𝑒1 …𝜑𝑟(𝛼)𝑒𝑟)

But 𝜑𝑒11 …𝜑𝑒𝑟𝑟 = 𝑔, so 𝜑𝑒11 …𝜑𝑒𝑟𝑟 = 𝑔 + 𝑝𝑠. So (𝑝, 𝜑1(𝛼)𝑒1 …𝜑𝑟(𝛼)𝑒𝑟) = (𝑝, 𝑔(𝛼)) = (𝑝) as
𝑔(𝛼) = 0. So 𝔭𝑒11 …𝔭𝑒𝑟𝑟 ⊆ (𝑝). But [𝐿 ∶ ℚ] = 𝑛 = deg 𝑔 = deg 𝑔 = ∑𝑟

𝑖=1 𝑒𝑖 deg𝜑𝑖 = ∑𝑟
𝑖=1 𝑒𝑖𝑓𝑖.

390



2. Ideals

Taking norms,

𝑁(𝔭𝑒11 …𝔭𝑒𝑟𝑟 ) =
𝑟
∏
𝑖=1

𝑁(𝔭𝑖)𝑒𝑖 = 𝑝𝑒1𝑓1+⋯+𝑒𝑟𝑓𝑟 = 𝑝𝑛 = 𝑁((𝑝))

One can show that if 𝔞 ⊆ 𝔟 and 𝑁(𝔞) = 𝑁(𝔟), then 𝔞 = 𝔟. So the two ideals are equal.

Note that if 𝑖 ≠ 𝑗, 𝜑𝑖, 𝜑𝑗 are coprime in 𝔽𝑝[𝑥], so 𝔭𝑖 + 𝔭𝑗 = (𝑝, 𝜑𝑖(𝛼), 𝜑𝑗(𝛼)) ≠ 𝔭𝑖, so 𝔭𝑖 ≠
𝔭𝑗 .

Note that since we choose a monic polynomial, deg𝜑𝑖(𝑥) = deg𝜑𝑖(𝑥). Different choices of
𝜑𝑖(𝑥) give the same ideal as 𝑝 is in the ideal. 𝔭𝑖 ≠ 𝔭𝑗 if 𝑖 ≠ 𝑗, and 𝔭𝑒11 …𝔭𝑒𝑟𝑟 is the factorisation
of (𝑝) into irreducibles.

Remark. Most 𝛼 ∈ 𝒪𝐿 have𝒪𝐿⟋ℤ[𝛼] finite, but the condition that 𝑝 ∤ ||𝒪𝐿⟋ℤ[𝛼]|| is restrictive.

Example. Let 𝐿 = ℚ(√−11), and let us factorise (5) ⊆ 𝒪𝐿. As −11 ≡ 1mod 4, ℤ[√−11] ≠
𝒪𝐿. So ℤ[√−11] has index 2 in 𝒪𝐿, and 5 ∤ 2, so Dedekind’s theorem applies. Modulo 5,
𝑥2 + 1 = (𝑥 − 2)(𝑥 + 2), so (5) = (5, −2 + √−11)(5, −2 − √−11).

Example. In general, let 𝐿 = ℚ(√𝑑) where 𝑑 is square free and not equal to zero or one.
Let 𝑝 be an odd prime. Then, ℤ[√𝑑] ⊆ 𝒪𝐿 has index 1 or 2, and both are coprime to 𝑝.
Factorising 𝑥2 − 𝑑modulo 𝑝, there are three cases.

• Suppose there are two distinct roots modulo 𝑝 of 𝑥2 − 𝑑. Then, using the Legendre
symbol, (𝑑

𝑝
) = 1. In this case, 𝑥2 − 𝑑 = (𝑥 − 𝑟)(𝑥 + 𝑟) for some 𝑟 ∈ ℤ. By Dedekind’s

theorem, 𝑝 = 𝔭1𝔭2 where 𝔭1 = (𝑝,√𝑑 − 𝑟) and 𝔭2 = (𝑝,√𝑑 + 𝑟). In this case, 𝑁(𝔭1) =
𝑁(𝔭2) = 𝑝; we say 𝑝 splits in 𝐿/ℚ.

• Suppose 𝑥2 −𝑑 is irreducible modulo 𝑝. Then (𝑑
𝑝
) = −1. (𝑝) = 𝔭 is prime; we say 𝑝 is

inert in 𝐿.

• Suppose 𝑥2 − 𝑑 has a repeated root, so 𝑑 ≡ 0 modulo 𝑝. Then (𝑑
𝑝
) = 0. In this case,

Dedekind’s theorem gives (𝑝) = 𝔭2 where 𝔭 = (𝑝,√𝑑). We say that 𝑝 ramifies in 𝐿.

Now consider the case 𝑝 = 2.

Lemma. 2 splits in 𝐿 if and only if 𝑑 ≡ 1mod 8. 2 is inert in 𝐿 if and only if 𝑑 ≡ 5mod 8. 2
ramifies in 𝐿 if and only if 𝑑 ≡ 2, 3mod 4.

Proof. If 𝑑 ≡ 1mod 4, then 𝒪𝐿 = ℤ[𝛼]where 𝛼 = 1
2
(1 +√𝑑). The minimal polynomial of 𝛼

is 𝑥2 − 𝑥 + 1
4
(1 − 𝑑). Reducing modulo 2, if 𝑑 ≡ 1mod 8 then this is 𝑥(𝑥 + 1) so 2 splits. If

𝑑 ≡ 5mod 8 then this gives 𝑥2 + 𝑥 + 1 which is irreducible, so 2 is inert. If 𝑑 ≡ 2, 3mod 4,
then 𝒪𝐿 = ℤ[√𝑑] and 𝑥2 − 𝑑 is either 𝑥2 or (𝑥 − 1)2, which ramifies.
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Recall that 𝐷𝐿 = 4𝑑 if 𝑑 ≡ 2, 3mod 4, and 𝐷𝐿 = 𝑑 if 𝑑 ≡ 1mod 4.

Corollary. Let 𝐿 = ℚ(√𝑑). 𝑝 ∣ 𝐷𝐿 if and only if 𝑝 ramifies in 𝐿.

Proof. Case analysis.

Definition. Let (𝑝) = 𝔭𝑒11 …𝔭𝑒𝑟𝑟 be the factorisation of (𝑝) into irreducibles in 𝒪𝐿, where
𝑝𝑓𝑖 = 𝑁(𝔭𝑖). We say that

• 𝑝 ramifies if some 𝑒𝑖 is greater than 1;
• 𝑝 is inert if 𝑟 = 1 and 𝑒1 = 1, so (𝑝) remains prime;
• 𝑝 splits or splits completely if 𝑟 = 𝑛 and 𝑒𝑖 = 𝑓𝑖 = ⋯ = 𝑒𝑛 = 𝑓𝑛 = 1.

Corollary. Let 𝑝 be a prime and 𝑝 < 𝑛 = [𝐿 ∶ ℚ]. Let ℤ[𝛼] ⊆ 𝒪𝐿 have finite index coprime
to 𝑝. Then 𝑝 does not split completely.

Proof. Let 𝑔 be the minimal polynomial of 𝛼. Suppose 𝑝 splits, so 𝑔 has 𝑛 distinct roots in 𝔽𝑝
by Dedekind’s theorem. But 𝑛 > 𝑝, so this is not possible.

Example. Let 𝐿 = ℚ(𝛼) and 𝛼 has minimal polynomial 𝑥3 − 𝑥2 − 2𝑥 − 8. On an example
sheet, we show that 2 splits completely in 𝒪𝐿. Hence, for all 𝛽 ∈ 𝒪𝐿 ∖ ℤ, ℤ[𝛽] ⊆ 𝒪𝐿 has
even index.

Note that Dedekind’s theorem allows for the factorisation of (𝑝) for all but finitely many 𝑝,
as if 𝛼 ∈ 𝒪𝐿 with 𝒪𝐿⟋ℤ[𝛼] finite, only finitely many primes 𝑝 divide its order.

Theorem. For all primes 𝑝, we have (𝑝) = 𝔭𝑒11 …𝔭𝑒𝑟𝑟 with 𝒪𝐿⟋𝔭𝑖 =
𝔽𝑝[𝑥]⟋𝜑𝑖(𝑥) where

𝜑𝑖 ∈ 𝔽𝑝[𝑥] is an irreducible polynomial of degree 𝑓𝑖 and 𝑁(𝔭𝑖) = 𝑝𝑓𝑖 , and 𝒪𝐿⟋𝑝𝒪𝐿
≃

∏𝑟
𝑖=1

𝔽𝑝[𝑥]⟋𝜑𝑖(𝑥) = ∏𝑟
𝑖=1 𝔽𝑝𝑓𝑖 .

Dedekind’s theorem implies that this holds if there exists 𝛼 ∈ 𝒪𝐿 with 𝑝 ∤ ||𝒪𝐿⟋ℤ[𝛼]|| <
∞.

Theorem. 𝑝 ramifies in 𝐿 if and only if 𝑝 ∣ 𝐷𝐿.
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3. Geometry of numbers

3. Geometry of numbers
3.1. Imaginary quadratic fields

Let 𝐿 = ℚ(√𝑑) where 𝑑 is square-free and 𝑑 < 0. 𝒪𝐿 = ℤ[𝛼] where 𝛼 = 1
2
(1 + √𝑑) or

𝛼 = √𝑑. Choose a square root of 𝑑 in ℂ to construct an embedding of 𝒪𝐿 into ℂ.
Suppose Λ = ℤ𝑣1 + ℤ𝑣2 ⊆ ℝ2 where ℝ2 is equipped with the Euclidean norm, and 𝑣1, 𝑣2
are linearly independent over ℝ. Let 𝐴(Λ) be the area of the parallelogram generated by 𝑣1
and 𝑣2. If 𝑣𝑖 = 𝑎𝑖𝑒1 + 𝑏𝑖𝑒2, we have

𝐴(Λ) = |||det (
𝑎1 𝑎2
𝑏1 𝑏2

)|||

Minkowski’s lemma is that a closed disk𝑆 around zero contains a nonzero point ofΛwhenever
the area of 𝑆 is at least 4𝐴(Λ). More precisely, there exists 𝛼 ∈ Λ such that 0 < |𝛼|2 < 4𝐴(Λ)

𝜋
.

Note that this condition depends only on the area of the parallelogram, not its shape. This
will be proven shortly.

We will apply this to Λ = 𝔞 ⊴ 𝒪𝐿 for 𝐿 = ℚ(√𝑑), 𝑑 < 0 square-free. Let √𝑑 ∈ ℂ be chosen
with positive imaginary part to embed 𝒪𝐿 in ℂ.

Lemma. (i) if 𝛼 = 𝑎 + 𝑏√𝑑 ∈ 𝒪𝐿, then |𝛼|
2 = (𝑎 + 𝑏√𝑑)(𝑎 − 𝑏√𝑑) = 𝑁(𝛼);

(ii) 𝐴(𝒪𝐿) =
1
2
√|𝐷𝐿|;

(iii) 𝐴(𝔞) = 𝑁(𝔞)𝐴(𝒪𝐿);

(iv) 𝐴(𝔞) = 1
2
|Δ(𝛼1, 𝛼2)|

1
2 where 𝛼1, 𝛼2 are an integral basis for 𝔞.

Proof. Part (i) is clear. (iv) implies (ii) and (iii). We will prove (iv) later in a more general
setting, giving the justification for the coefficient 1

2
.

We now prove (ii) and (iii) manually, without appealing to (iv). For part (ii), 𝒪𝐿 has basis
1, 𝛼. Therefore, 𝐴(𝒪𝐿) =

1
2
√𝑑 or √𝑑, which is exactly 1

2
√|𝐷𝐿|. Part (iii) is a variant of the

fact that Δ(𝛼1,… , 𝛼𝑛) = 𝑁(𝔞)2𝐷𝐿.

Minkowski’s lemma implies that there exists 𝛼 ∈ 𝔞 with 𝑁(𝛼) ≤ 4𝐴(𝔞)
𝜋

= 𝑁(𝔞)𝐶𝐿 where

𝐶𝐿 = 2√|𝐷𝐿|
𝜋

is Minkowski’s constant. Since 𝛼 ∈ 𝔞, (𝛼) ⊆ 𝔞. Hence (𝛼) = 𝔞𝔟 for some
𝔟 ⊴ 𝒪𝐿. So 𝑁(𝛼) = 𝑁((𝛼)) = 𝑁(𝔞)𝑁(𝔟), so 𝑁(𝔟) ≤ 𝐶𝐿.
Recall that the class group of 𝐿 is 𝐼𝐿⟋𝑃𝐿, the quotient of fractional ideals over principal ideals.
Then, [𝔟] = [𝔞−1] ∈ Cl𝐿. Replacing 𝔞 with 𝔞−1, we have shown that for all [𝔞] ∈ Cl𝐿, there
exists a representative 𝔟 of [𝔞] which is an ideal with 𝑁(𝔟) ≤ 2√|𝐷𝐿|

𝜋
= 𝐶𝐿. But for all𝑚 ∈ ℤ,

the number of ideals 𝔞 ⊴ 𝒪𝐿 with 𝑁(𝔞) = 𝑚 is finite; indeed, if 𝑁(𝔞) = 𝑚, then 𝑚 ∈ 𝔞
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so 𝔞 ∣ (𝑚), but there are only finitely many ideals dividing (𝑚), as they biject with ideals in
𝒪𝐿⟋𝑚𝒪𝐿

≃ (ℤ⟋𝑚ℤ)
𝑛
.

Therefore, we have shown that Cl𝐿 is finite, and generated by the class of prime ideals divid-
ing (𝑝), for 𝑝 a prime integer less than 2√|𝐷𝐿|

𝜋
= 𝐶𝐿. Indeed, if 𝔞 = 𝔭𝑒11 …𝔭𝑒𝑟𝑟 with 𝑁(𝔞) < 𝐶𝐿,

then 𝑁(𝔭𝑖) < 𝐶𝐿.

Example. Let 𝑑 = −7. Then 𝐷𝐿 = −7, and 2√7
𝜋

< 2. So there are no primes 𝑝 < 𝐶𝐿, giving
Cl𝐿 = {1}. In particular, 𝒪𝐿 is a unique factorisation domain. Similarly, 𝑑 = −1,−2,−3 give
unique factorisation domains.

Example. Let 𝑑 = −5. Here, 𝐷𝐿 = −20, and 2 < 4√5
𝜋

< 3. Hence, Cl𝐿 is generated by
prime ideals dividing (2). Note that (2) = (2, 1 + √−5)2 by Dedekind’s theorem.

We now must check if (2, 1 + √−5) is principal. If (2, 1 + √−5) = (𝛽), then 𝑁(𝛽) = 2. But
𝛽 = 𝑎 + 𝑏√−5, so 𝑁(𝛽) = 𝑎2 + 5𝑏2, which is not satisfiable by integers. So (2, 1 + √−5) is
principal but its square is, so Cl𝐿 = ℤ⟋2ℤ.
Example. Let 𝑑 = −17, then 5 < 𝐶𝐿 < 6. Cl𝐿 is generated by prime ideals dividing
(2), (3), (5). Modulo 2, 𝑥2 + 17 = 𝑥2 + 1 = (𝑥 + 1)2, so (2) = 𝔭2 where 𝔭 = (2, 1 + √−17).
Modulo 3, 𝑥2 + 17 = 𝑥2 − 1 = (𝑥 + 1)(𝑥 − 1), giving (3) = 𝔮𝔮 where 𝔮 = (3, 1 + √−17), 𝔮 =
(3, 1 −√−17). Modulo 5, 𝑥2 +17 = 𝑥2 +2which is irreducible, so (5) is inert, so is trivial in
the class group.

Hence Cl𝐿 = (𝔭, 𝔮, 𝔮) = (𝔭, 𝔮). We could compute powers of 𝔭 and 𝔮 until we obtain all
nontrivial relations between them. Amore efficient way to compute Cl𝐿 in this case is to find
principal ideals of small norm which are multiples of 2 and 3 to find the relations. Consider
(1 + √−17), which has norm 𝑁(1 + √−17) = 18 = 2 ⋅ 32. Note that 1 + √−17 ∈ 𝔭 ∩ 𝔮 so
(1 + √−17) = 𝔭𝔮𝔯 where 𝔯 ∈ (𝔭, 𝔮). We can show that 𝔯 = 𝔮. This shows that [𝔭] = [𝔮]−2 in
Cl𝐿. So Cl𝐿 is generated by [𝔮]. So it is cyclic, and we can show [𝔮]2 ≠ 1, as 𝔭 is not principal,
but [𝔮]4 = [𝔭2]−1 = 1. So Cl𝐿 = ℤ⟋4ℤ.

Theorem. Let 𝐿 = ℚ(√−𝑑) with 𝑑 > 0.
(i) 𝒪𝐿 is a unique factorisation domain if 𝑑 ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163};
(ii) there are no others.

3.2. Lattices
Definition. A subset 𝑋 ⊆ ℝ𝑛 is called discrete if for all 𝐾 ⊆ ℝ𝑛 compact, 𝐾 ∩ 𝑋 is finite.
Equivalently, for all 𝑥 ∈ 𝑋 there exists 𝜀 > 0 with 𝐵𝜀(𝑥) ∩ 𝑋 = {𝑥}.
Recall that 𝐾 ⊆ ℝ𝑛 is compact if and only if it is closed and bounded.

Proposition. Let Λ ⊆ ℝ𝑛. Then the following are equivalent.
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(i) Λ is a discrete subgroup of (ℝ𝑛, +);
(ii) Λ = {∑𝑚

𝑖=1 𝑛𝑖𝑥𝑖 ∣ 𝑛𝑖 ∈ ℤ} where 𝑥1,… , 𝑥𝑚 are linearly independent over ℝ.

Example. ℤ√2 + ℤ√3 ⊆ ℝ is not discrete. If Λ = 𝔞 ⊴ 𝑂𝐿 is an ideal where 𝐿 = ℚ(√−𝑑)
and 𝑑 > 0, Λ is discrete.

Proof. (ii) implies (i). Observe that if 𝑔 ∈ 𝐺𝐿𝑛(ℝ), then 𝑔Λ is discrete if Λ is. 𝑔Λ satisfies (ii)
if and only if Λ does. Suppose property (ii) holds, so Λ = {∑𝑚

𝑖=1 𝑛𝑖𝑥𝑖 ∣ 𝑛𝑖 ∈ ℤ}. There exists
𝑔 ∈ 𝐺𝐿𝑛(ℝ) such that 𝑔𝑥𝑖 = 𝑒𝑖 where the 𝑒𝑖 form the standard basis ofℝ𝑛. Clearly,⨁𝑚

𝑖=1 ℤ𝑒𝑖
is discrete.

(i) implies (ii). Let 𝑦1,… , 𝑦𝑚 ∈ Λwhich areℝ-linearly independent such that𝑚 is maximal.
Note that𝑚 ≤ 𝑛. Also,

{
𝑚
∑
𝑖=1

𝜆𝑖𝑦𝑖
||||
𝜆𝑖 ∈ ℝ} = {

𝑁
∑
𝑖=1

𝜆𝛼𝑧𝛼
||||
𝜆𝛼 ∈ ℝ, 𝑧𝛼 ∈ Λ,𝑁 ≥ 0}

This is the smallest ℝ-vector subspace of ℝ𝑛 containing Λ. Let 𝑋 = {∑𝑚
𝑖=1 𝜆𝑖𝑦𝑖 ∣ 𝜆𝑖 ∈ [0, 1]}.

This is closed and bounded, hence compact. Λ is discrete, so 𝑋 ∩ Λ is finite.

Consider the subgroup ℤ𝑚 = ⨁𝑚
𝑖=1 ℤ𝑦𝑖 ⊆ Λ. We can write 𝜆 ∈ Λ as 𝜆 = 𝜆0 + 𝜆1 where

𝜆0 ∈ 𝑋 ∩ Λ is the integral part and 𝜆1 ∈ ℤ𝑚 = ⨁𝑚
𝑖=1 ℤ𝑦𝑖 is the fractional part. Hence,

||Λ⟋ℤ𝑚|| ≤ |𝑋 ∩ Λ| is finite. Let 𝑑 = ||Λ⟋ℤ𝑚||, so by Lagrange’s theorem, 𝑑 = 0 in Λ⟋ℤ𝑚, so
𝑑Λ ⊆ ℤ𝑚. In particular, ℤ𝑚 ⊆ Λ ⊆ 1

𝑑
ℤ𝑚. The structure theorem for finitely generated

abelian groups shows that there exist 𝑥1,… , 𝑥𝑚 ∈ Λ with Λ =⨁𝑚
𝑖=1 ℤ𝑥𝑖.

Definition. If rankΛ = 𝑛, so if 𝑛 = 𝑚, we say Λ is a lattice in ℝ𝑛.

Definition. Let Λ ⊆ ℝ𝑛 be a lattice with basis 𝑥1,… , 𝑥𝑛. The fundamental parallelogram
is 𝑃 = {∑𝑛

𝑖=1 𝜆𝑖𝑥𝑖 ∣ 𝜆𝑖 ∈ [0, 1]}. The covolume of Λ is the volume of 𝑃, which is |det𝐴| if
𝑥𝑖 = ∑𝑛

𝑗=1 𝑎𝑖𝑗𝑒𝑗 .

Note that if 𝑥′1,… , 𝑥′𝑛 are another basis of Λ, the change of basis matrix 𝐵 given by 𝑥′𝑖 =
∑𝑚

𝑗=1 𝑏𝑖𝑗𝑥𝑗 has integer coefficients, so 𝐵 ∈ 𝐺𝐿𝑛(ℤ), giving det𝐵 = ±1. Hence, the covolume
is well-defined irrespective of the choice of basis. Observe that 𝑃 is a fundamental domain
for the action of Λ on ℝ𝑛; ℝ𝑛 = ⋃𝛾∈Λ(𝛾 + 𝑃) and (𝛾 + 𝑃) ∩ (𝜇 + 𝑃) ⊆ 𝜕𝑃 if 𝛾 ≠ 𝜇. We can
think of 𝑃 as a set of coset representatives for ℝ𝑛⟋Λ, ignoring the boundary of 𝑃; this can be
justified by noting that 𝜕𝑃 has no volume.

3.3. Minkowski’s lemma
Theorem. LetΛ ⊆ ℝ𝑛 be a lattice, and 𝑃 be a fundamental parallelogram for it. Let 𝑆 ⊆ ℝ𝑛

be a measurable set.

395



VIII. Number Fields

(i) If vol(𝑆) > covol(Λ), there exist 𝑥, 𝑦 ∈ 𝑆 with 𝑥 ≠ 𝑦 and 𝑥 − 𝑦 ∈ Λ.

(ii) Suppose 𝑠 ∈ 𝑆 if and only if−𝑠 ∈ 𝑆, so 𝑆 is symmetric around zero, and that 𝑆 is convex.
Then, if

(a) vol(𝑆) > 2𝑛 covol(Λ), or

(b) vol(𝑆) ≥ 2𝑛 covol(Λ) and 𝑆 is closed,

then there exists 𝛾 ∈ 𝑆 ∩ Λ with 𝛾 ≠ 0.

Note that this implies the result we usedwhen 𝑛 = 2. In the case of the square latticeΛ = ℤ𝑛
and 𝑆 = [−1, 1]𝑛, we can see that these bounds are sharp.

Proof. Part (i). Observe that vol(𝑆) = ∑𝛾∈Λ vol(𝑆 ∩ (𝑃 + 𝛾)) as 𝑃 is a fundamental domain,
volume is additive, and vol(𝜕(𝑃+𝛾)) = 0. Note that vol(𝑆∩(𝑃+𝛾)) = vol((𝑆−𝛾)∩𝑃) as volume
is translation invariant. We claim that the sets (𝑆 − 𝛾) ∩ 𝑃 are not pairwise disjoint. Indeed,
if they were, then vol(𝑃) ≥ ∑𝛾∈Λ vol((𝑆 − 𝛾) ∩ 𝑃) = vol(𝑆) contradicting the assumption.
Hence there exists 𝛾𝜇 ∈ Λ with 𝛾 ≠ 𝜇 such that (𝑆 − 𝛾) ∩ 𝑃 and (𝑆 − 𝜇) ∩ 𝑃 are not disjoint,
so there exist 𝑥, 𝑦 ∈ 𝑆 with 𝑥 − 𝛾 = 𝑦 − 𝜇, hence 𝑥 − 𝑦 ∈ Λ.

Part (ii)(a). Let 𝑆′ = 1
2
𝑆 = { 1

2
𝑠 ∣ 𝑠 ∈ 𝑆}. Then vol(𝑆′) = 2−𝑛 vol(𝑆) > covol(Λ) by assump-

tion. By part (i), there exist 𝑦, 𝑧 ∈ 𝑆′ with 𝑦 − 𝑧 ∈ Λ ∖ {0}. But 𝑦 − 𝑧 = 1
2
(2𝑦 + −2𝑧). 2𝑧 ∈ 𝑆

so −2𝑧 ∈ 𝑆 as 𝑆 is symmetric around zero. 2𝑦 ∈ 𝑆, and 𝑆 is convex, so 𝑦 − 𝑧 ∈ 𝑆 as required.

Part (ii)(b). Apply part (ii)(a) to 𝑆𝑚 = (1 + 1
𝑚
)𝑆 for all𝑚 ∈ ℕ,𝑚 > 0. We obtain 𝛾𝑚 ∈ 𝑆𝑚∩Λ

with 𝛾𝑚 ≠ 0. By convexity of 𝑆, 𝑆𝑚 ⊆ 𝑆1. So 𝛾1, 𝛾2,… are contained in 𝑆1 ∩ Λ, which is a
finite set as 𝑆1 is closed and bounded (without loss of generality) and Λ is discrete. So there
exists 𝛾 ∈ 𝑆𝑚 ∩ Λ such that 𝛾𝑚 = 𝛾 for infinitely many𝑚. Hence, 𝛾 ∈ ⋂𝑚>0 𝑆𝑚 = 𝑆 as 𝑆 is
closed. Therefore 𝛾 ∈ 𝑆 ∩ Λ with 𝛾 ≠ 0.

Let 𝐿 be a number field and let 𝑛 = [𝐿 ∶ ℚ]. Let 𝜎1,… , 𝜎𝑟 ∶ 𝐿 → ℝ be the real embeddings,
and 𝜎𝑟+1,… , 𝜎𝑟+𝑠, 𝜎𝑟+1,… , 𝜎𝑟+𝑠∶ 𝐿 → ℂ be the complex embeddings, where 𝑟+2𝑠 = 𝑛. This
gives an embedding

(𝜎1,… , 𝜎𝑟+𝑠)∶ 𝐿 ↪ ℝ𝑟 × ℂ𝑠 ≃−→ ℝ𝑟 × ℝ2𝑠 = ℝ𝑟+2𝑠

In other words, we can write

𝜎 = (𝜎1,… , 𝜎𝑟,Re𝜎𝑟+1, Im𝜎𝑟+1,… ,Re𝜎𝑟+𝑠, Im𝜎𝑟+𝑠)

Lemma. 𝜎(𝒪𝐿) is a lattice in ℝ𝑛 of covolume 2−𝑠|𝐷𝐿|
1
2 . If 𝔞 ⊴ 𝒪𝐿 is an ideal, then 𝜎(𝔞) is a

lattice, and covol(𝜎(𝔞)) = 2−𝑠|𝐷𝐿|
1
2𝑁(𝔞).
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Proof. The first part is a special case of the second part. Recall that 𝔞 has an integral basis
𝛾1,… , 𝛾𝑛, and (det(𝜎𝑖(𝛾𝑗)))2 = Δ(𝛾1,… , 𝛾𝑛) = 𝑁(𝔞)2𝐷𝐿. Hence, ||det(𝜎𝑖(𝛾𝑗))|| = 𝑁(𝔞)|𝐷𝐿|

1
2 .

Note that if 𝜎𝑟+𝑖(𝛾)𝜎𝑟+𝑖(𝛾) = 𝑧𝑧,

(Re 𝑧Im 𝑧) = (
1
2
(𝑧 + 𝑧)

1
2𝑖
(𝑧 − 𝑧)

) = 1
2 (

1 1
𝑖 −𝑖) (

𝑧
𝑧)

The determinant of the change of basis matrix is − 1
2
.

Proposition (Minkowski bound). Let 𝔞 ⊴ 𝒪𝐿. Then there exists 𝛼 ∈ 𝔞 with 𝛼 ≠ 0 and
|𝑁(𝛼)| ≤ 𝐶𝐿𝑁(𝔞) where 𝐶𝐿 = ( 4

𝜋
)
𝑠 𝑛!
𝑛𝑛
|𝐷𝐿|

1
2 .

Proof. Let

𝐵𝑟,𝑠(𝑡) = {(𝑦1,… , 𝑦𝑟, 𝑧1,… , 𝑧𝑠) ∈ ℝ𝑟 × ℂ𝑠 ∣ ∑ |𝑦𝑖| + 2|𝑧𝑖| ≤ 𝑡}

This set is closed and bounded, hence compact. It is also convex, symmetric around zero, and
measurable with volume 2𝑟(𝜋

2
)
2 𝑡𝑛

𝑛!
. Choose 𝑡 such that the volume of 𝐵𝑟,𝑠(𝑡) is 2𝑛 covol(𝔞),

so 𝑡𝑛 = ( 4
𝜋
)
𝑠
𝑛!|𝐷𝐿|

1
2𝑁(𝔞). Minkowski’s lemma implies that there exists 𝛼 ∈ 𝔞 and 𝛼 ≠ 0

such that 𝜎(𝛼) = (𝑦1,… , 𝑦𝑟, 𝑧1,… , 𝑧𝑠) ∈ 𝐵𝑟,𝑠(𝑡).

Note that 𝑁(𝛼) = 𝑦1…𝑦𝑟𝑧1𝑧1…𝑧𝑠𝑧𝑠 = ∏𝑦𝑖∏||𝑧𝑗 ||
2. Since the geometric mean is at most

the arithmetic mean, taking 𝑛th roots we obtain |𝑁(𝛼)|
1
𝑛 ≤ 1

𝑛
(∑ |𝑦𝑖| + 2∑ ||𝑧𝑗 ||) ≤

𝑡
𝑛
as

𝜎(𝛼) ∈ 𝐵𝑟,𝑠(𝑡). So |𝑁(𝛼)| ≤
𝑡𝑛

𝑛𝑛
= 𝐶𝐿𝑁(𝔞) as required.

To show that the volume of𝐵𝑟,𝑠(𝑡) is 2𝑟(
𝜋
2
)
2 𝑡𝑛

𝑛!
, we can use inductionwith base cases𝐵1,0(𝑡) =

[−𝑡, 𝑡] and 𝐵0,1(𝑡) =
𝜋
4
𝑡2. Given the result for 𝐵𝑟,𝑠(𝑡), the volume of 𝐵𝑟+1,𝑠(𝑡) is

∫
𝑡

−𝑡
vol𝐵𝑟,𝑠(𝑡 − |𝑦|) d𝑦 = 2∫

𝑡

0
(𝜋2 )

𝑠
2𝑟 (𝑡𝑦)

𝑛

𝑛! d𝑦 = 2𝑟+1(𝜋2 )
2 𝑡𝑛+1
𝑛!

The other inductive step is on an example sheet.

Corollary. Every element of the class group [𝔞] has a representative 𝔞 ⊴ 𝒪𝐿 with norm at
most 𝐶𝐿.

Theorem. The class group of 𝐿 is finite, and generated by prime ideals 𝔞 ⊴ 𝒪𝐿 with𝑁(𝔞) ≤
𝐶𝐿.

Proof. Follows the argument used for imaginary quadratic fields.
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Theorem (Hermite, Minkowski). Let 𝑛 ≥ 2. Then |𝐷𝐿| ≥
𝜋
3
(3𝜋
4
)
𝑛−1

> 1. In particular,
|𝐷𝐿| > 1, so at least one prime ramifies in 𝐿.

Proof. Apply this to [𝒪𝐿] and obtain an ideal 𝔞 ⊴ 𝒪𝐿 with 1 ≤ 𝑁(𝔞) ≤ 𝐶𝐿, so 𝐶𝐿 ≥ 1. So

|𝐷𝐿|
1
2 ≥ (𝜋4 )

𝑠𝑛𝑛
𝑛! ≥ (𝜋4 )

𝑛
2 𝑛𝑛
𝑛! 𝑎

1
2𝑛

as 𝜋
4
< 1 and 𝑠 ≤ 𝑛

2
. So 𝑎2 = 𝜋2

4
and 𝑎𝑛+1

𝑎𝑛
= 𝜋

4
(1 + 1

𝑛
)
2𝑛

> 𝜋
4
(1 + 2) = 3𝜋

4
. So 𝑎𝑛 ≥

𝜋2

4
(3𝜋
4
)
𝑛−2

= 𝜋
3
(3𝜋
4
)
𝑛−1

.
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4. Dirichlet’s unit theorem

4. Dirichlet’s unit theorem
4.1. Real quadratic fields
Recall that 𝛼 ∈ 𝒪𝐿 is a unit if and only if𝑁(𝛼) = ±1. We aim to show that𝒪⋆

𝐿 ≃ 𝛍𝐿×ℤ𝑟+𝑠−1
where 𝛍𝐿 = {𝛼 ∈ 𝐿 ∣ 𝛼𝑎 = 1 for some 𝑎 > 0} is the set of roots of unity in 𝐿, a finite cyclic
group.

Example. Let 𝐿 = ℚ(√𝑑)where 𝑑 > 0 is square-free. Here, 𝑟 = 2, 𝑠 = 0, 𝑛 = 2. 𝐿 ⊆ ℝ gives
𝛍𝐿 ⊆ {±1} so 𝛍𝐿 = {±1}. Note that 𝑁(𝑥 + 𝑦√𝑑) = 𝑥2 − 𝑑𝑦2, so Dirichlet’s theorem implies
the following statement, which we will now prove directly.

Theorem (Pell’s equation). There exist infinitely many 𝑥 + 𝑦√𝑑 ∈ 𝒪𝐿 with 𝑥2 − 𝑑𝑦2 = ±1.

Proof. Recall that we have 𝜎∶ 𝒪𝐿 → ℝ2 given by 𝑥 + 𝑦√𝑑 ↦ (𝑥 + 𝑦√𝑑, 𝑥 − 𝑦√𝑑). For
example, if 𝑑 = 2, the image is a lattice with basis (1, 1), (−√2,√2), note also that no point
lies in the coordinate axes apart from 0. The covolume of 𝜎(𝒪𝐿) is |𝐷𝐿|

1
2 .

Consider

𝑆𝑡 = {(𝑦1, 𝑦2) ∈ ℝ2
||||
|𝑦1| ≤ 𝑡, |𝑦2| ≤

|𝐷𝐿|
1
2

𝑡 }

The volume of 𝑆𝑡 is 4|𝐷𝐿|
1
2 = 2𝑛 covol(𝜎(𝒪𝐿)) as 𝑛 = 2. Minkowski’s lemma implies that

there exists a nonzero 𝛼 ∈ 𝒪𝐿 with 𝜎(𝛼) ∈ 𝑆𝑡. But 𝜎(𝛼) = (𝑦1, 𝑦2) gives 𝑁(𝛼) = 𝑦1𝑦2.
We have therefore found an element 𝛼 ∈ 𝒪𝐿 with 𝜎(𝛼) ∈ 𝑆𝑡 that has norm satisfying 1 ≤
𝑛(𝛼) ≤ |𝐷𝐿|

1
2 . We show that there exist infinitely many such 𝛼 for 0 < 𝑡 < 1, so there are

infinitely many 𝛼 ∈ 𝒪𝐿 with |𝑁(𝛼)| = 𝑁((𝛼)) < |𝐷𝐿|
1
2 . For fixed 𝑡, 𝑆𝑡 ∩ 𝜎(𝒪𝐿) is finite as 𝑆𝑡

is compact. Given 𝑡1 > 𝑡2 > ⋯ > 𝑡𝑛, choose 𝑡𝑛+1 less than all 𝑦1 where 𝜎(𝛼) = (𝑦1, 𝑦2) ∈
𝑆𝑡𝑛 ∩ 𝜎(𝒪𝐿). Note that 𝛼 ≠ 0 so 𝜎1(𝛼) ≠ 0, so 𝑡𝑛+1 > 0.

Hence, there exists𝑚 ∈ ℤ with 1 ≤ |𝑚| ≤ |𝐷𝐿|
1
2 for which there are infinitely many 𝛼 with

𝑁(𝛼) = 𝑚, by the pigeonhole principle. But ideals 𝔞 ⊴ 𝒪𝐿 with 𝑚 ∈ 𝔞 biject with ideals
in 𝒪𝐿⟋𝑚 = (ℤ⟋𝑚ℤ)

2
, and hence there are finitely many of them. Again by the pigeonhole

principle, there exists 𝛽 ∈ 𝒪𝐿 and infinitely many 𝛼 ∈ 𝒪𝐿 with 𝑁(𝛽) = 𝑁(𝛼) = 𝑚, where
(𝛽) = (𝛼). But 𝛽

𝛼
is a unit, so there are infinitely many units.

We can prove Dirichlet’s unit theorem for real quadratic fields from this result.

Corollary. 𝒪⋆
𝐿 = {±𝜀𝑛0 ∣ 𝑛 ∈ ℤ} for 𝜀0 ∈ 𝒪⋆

𝐿.

Such an 𝜀0 is called a fundamental unit.
Remark. As there are infinitelymanyunits, there exists 𝜀 ∈ 𝒪⋆

𝐿with 𝜀 ≠ ±1. Hence, |𝜎1(𝜀)| ≠
±1 as 𝜎1(𝜀) = ±1 if and only if 𝜀 = ±1. Replacing 𝜀 by 𝜀−1 if necessary, we can assume
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𝐸 = |𝜎1(𝜀)| > 1. Consider {𝛼 ∈ 𝒪𝐿 ∣ 𝑁(𝛼) = ±1, 1 ≤ |𝜎1(𝛼)| ≤ 𝐸}, which is a finite set as 𝒪𝐿
is discrete in ℝ2. Hence, 𝜀0 can be chosen in this set with minimum |𝜎1(𝜀0)| and 𝜀0 ≠ ±1.

We claim that if 𝜀 ∈ 𝒪⋆
𝐿 has 𝜎1(𝜀) > 0, then 𝜀 = 𝜀𝑁0 for some 𝑁 ∈ ℤ. Indeed, we can write

log𝜎1(𝜀)
log𝜎1(𝜀0)

= 𝑁 + 𝛾 where 𝑁 ∈ ℤ, 0 ≤ 𝛾 < 1. Hence 𝜀𝜀−𝑁0 = 𝜀𝛾0, and if 𝛾 ≠ 0, ||𝜀𝛾0|| = |𝜀|𝛾 < |𝜀0|
contradicting the choice of 𝜀0 (taking 𝜎1 as necessary to simplify notation).

4.2. General case
We can prove Dirichlet’s unit theorem in general.

Let 𝐿 be a number field and let [𝐿 ∶ ℚ] = 𝑛 with 𝜎1,… , 𝜎𝑟 ∶ 𝐿 → ℝ real embeddings and
𝜎𝑟+1,… , 𝜎𝑟+𝑠, 𝜎𝑟+1,… , 𝜎𝑟+𝑠 ∶ 𝐿 → ℂ complex embeddings, choosing some representative
between 𝜎𝑟+𝑖, 𝜎𝑟+𝑖 arbitrarily. Define a map ℓ∶ 𝒪⋆

𝐿 → ℝ𝑟+𝑠 by

ℓ(𝑥) = (log |𝜎1(𝑥)|,… , log |𝜎𝑟(𝑥)|, 2 log |𝜎𝑟+1(𝑥)|,… , 2 log |𝜎𝑟+𝑠(𝑥)|)

Lemma. (i) The image of ℓ is a discrete subgroup of ℝ𝑟+𝑠.

(ii) The kernel of ℓ is 𝛍𝐿, the roots of unity in 𝐿, which is a finite cyclic group.

Remark. ℓ is independent of the choice of representative 𝜎𝑟+𝑖, 𝜎𝑟+𝑖, as they have the same
absolute value.

Proof. Part (i). log |𝑎𝑏| = log |𝑎| + log |𝑏|, so ℓ is a group homomorphism. The image is
therefore an additive subgroup ofℝ𝑟+𝑠. For part (i), it suffices to show that Im ℓ∩[−𝐴,𝐴]𝑟+𝑠
is finite for all 𝐴 > 0. ℓ factorises as

𝒪⋆
𝐿 (ℝ≠0)𝑟 × ℂ𝑠 ℝ𝑟+𝑠𝜎 𝑗

where
𝑗(𝑦1,… , 𝑦𝑟, 𝑧1,… , 𝑧𝑠) = (log |𝑦1|,… , log |𝑦𝑟|, 2 log |𝑧1|,… , 2 log |𝑧𝑠|)

and
𝑗−1([−𝐴,𝐴]𝑟+𝑠) = {(𝑦𝑖, 𝑧𝑗) ∣ 𝑒−𝐴 ≤ |𝑦𝑖| ≤ 𝑒𝐴, 𝑒−𝐴 ≤ 2||𝑧𝑗 || ≤ 𝑒𝐴}

which is compact. As 𝜎(𝒪𝐿) is a lattice, 𝜎(𝒪⋆
𝐿) ∩ 𝑗−1([−𝐴,𝐴]𝑟+𝑠) is finite. This gives (i), and

also shows that ker 𝑗 = ker ℓ is finite.

Part (ii). ker ℓ is a group and finite, so every element has finite order. In particular, ker ℓ ≤
𝛍𝐿. But each root of unity lies in ker ℓ, so ker ℓ = 𝛍𝐿. But 𝐿 ↪ ℂ by any embedding, so 𝛍𝐿 is
contained in the set of roots of unity inℂ of a fixed order, which is a cyclic group. Subgroups
of cyclic groups are cyclic.

Note that if 𝑟 > 0, 𝐿 ↪ ℝ, so 𝛍𝐿 = {±1}.
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Observe that Im ℓ is contained in the set {(𝑦1,… , 𝑦𝑟+𝑠) ∣ 𝑦1 +⋯+ 𝑦𝑟+𝑠 = 0}. Indeed, 𝛼 ∈ 𝒪⋆
𝐿

gives 𝑁(𝛼) = ∏𝑟
𝑖=1 𝜎𝑖(𝛼)∏

𝑠
𝑖=1 𝜎𝑟+𝑖(𝛼)𝜎𝑟+𝑖(𝛼) = ±1, so taking logarithms,

log |𝑁(𝛼)| =
𝑟
∑
𝑖=1

log |𝜎𝑖(𝛼)| +
𝑠
∑
𝑖=1

2 log |𝜎𝑟+𝑖(𝛼)| = 0

So Im ℓ ⊆ ℝ𝑟+𝑠−1 is a discrete subgroup, hence isomorphic to ℤ𝑎 for 𝑎 ≤ 𝑟 + 𝑠 − 1.

Theorem (Dirichlet’s unit theorem). Im ℓ ⊆ ℝ𝑟+𝑠−1 is a lattice; it is isomorphic to ℤ𝑟+𝑠−1.

We now prove this theorem.

Lemma. Let 1 ≤ 𝑘 ≤ 𝑠, and 𝛼 ∈ 𝒪𝐿, 𝛼 ≠ 0. Then there exists 𝛽 ∈ 𝒪𝐿 with |𝑁(𝛽)| ≤
( 2
𝜋
)
𝑠
|𝐷𝐿|

1
2 andwith 𝑏𝑖 < 𝑎𝑖 for all 𝑖 ≠ 𝑘, where ℓ(𝛼) = (𝑎1,… , 𝑎𝑟+𝑠) and ℓ(𝛽) = (𝑏1,… , 𝑏𝑟+𝑠).

Proof. Apply Minkowski’s lemma. Let

𝑆 = {(𝑦1,… , 𝑦𝑟, 𝑧𝑟,… , 𝑧𝑠) ∈ ℝ𝑟 × ℂ𝑠 ≃ ℝ𝑛 || |𝑦𝑖| ≤ 𝑐𝑖, ||𝑧𝑗 ||
2 ≤ 𝑐𝑟+𝑗}

We have vol(𝑆) = 2𝑟𝜋𝑠𝑐1…𝑐𝑟+𝑠. This is convex and symmetric around zero. By choos-
ing 𝑐𝑖 such that 0 < 𝑐𝑖 < 𝑒𝑎𝑖 for 𝑖 ≠ 𝑘, and setting 𝑐𝑘 = ( 2

𝜋
)
𝑠
|𝐷𝐿|

1
2 𝑐−11 …𝑐−1𝑘−1𝑐−1𝑘+1…𝑐−1𝑟+𝑠,

Minkowski gives 𝛽 ∈ 𝜎(𝒪𝐿) ∩ 𝑆.

Fix some 1 ≤ 𝑘 ≤ 𝑠. Repeatedly applying this lemma, we can obtain a sequence 𝛼1, 𝛼2,⋯ ∈
𝒪𝐿 such that 𝑁(𝛼𝑗) is bounded, and for all 𝑖 ≠ 𝑘, the 𝑖th coordinate of ℓ(𝛼1), ℓ(𝛼2),… is
strictly decreasing. Hence, there exists 𝑡 < 𝑡′ with 𝑁(𝛼𝑡) = 𝑁(𝛼𝑡′) = 𝑚 as there are only
finitely many possible norms of the 𝛼𝑡, and 𝛼𝑡 = 𝛼𝑡′ modulo 𝒪𝐿⟋𝑚 by the pigeonhole prin-
ciple. Therefore (𝛼𝑡) = (𝛼𝑡′) as in the proof for real quadratic fields.

Let 𝑢𝑘 = 𝛼𝑡𝛼−1𝑡′ ; this is a unit in 𝒪𝐿 such that ℓ(𝑢𝑘) = ℓ(𝑎𝑡) − ℓ(𝑎𝑡′) = (𝑦1,… , 𝑦𝑟+𝑠) has
𝑦𝑖 < 0 if 𝑖 ≠ 𝑘. Note that as∑𝑦𝑖 = 0, we have 𝑦𝑘 > 0.

We now have units 𝑢1,… , 𝑢𝑟+𝑠 by performing this for each coordinate. We now show that
ℓ(𝑢1),… , ℓ(𝑢𝑟+𝑠−1) are linearly independent, hence the rank of ℓ(𝒪⋆

𝐿) is 𝑟 + 𝑠 − 1. Indeed,
let 𝐴 be the (𝑟 + 𝑠) × (𝑟 + 𝑠) matrix with 𝑗th row given by ℓ(𝑢𝑗), and apply the following
lemma.

Lemma. Let 𝐴 ∈ 𝑀𝑚×𝑚(ℝ) be a matrix with 𝑎𝑖𝑖 > 0, 𝑎𝑖𝑗 < 0 for 𝑖 ≠ 𝑗, and∑𝑗 𝑎𝑖𝑗 ≥ 0 for
all 𝑖. Then rank𝐴 ≥ 𝑚− 1.

Note that the assumptions of this lemma are satisfied for our choice of matrix 𝐴.

Proof. Let 𝑣𝑖 be the 𝑖th column of 𝐴. We show that 𝑣1,… , 𝑣𝑚−1 are linearly independent.
Suppose that there exist 𝑡𝑖 ∈ ℝ with∑𝑚−1

𝑖=1 𝑡𝑖𝑣𝑖 = 0, and not all 𝑡𝑖 are zero. Choose 𝑘 such
that 𝑡𝑘 has maximum absolute value. Dividing the linear dependence relation by 𝑡𝑘, we can
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VIII. Number Fields

assume 𝑡𝑘 = 1 and all other 𝑡𝑖 have absolute value at most 1. Now consider the 𝑘th entry of
the linear dependence relation.

0 =
𝑚−1
∑
𝑖=1

𝑡𝑖𝑎𝑘𝑖 = 𝑡𝑘𝑎𝑘𝑘 + ∑
𝑖≠𝑘,1≤𝑖≤𝑚−1

𝑡𝑖𝑎𝑘𝑖

Since 𝑡𝑖 ≤ 1, 𝑎𝑘𝑖 < 0, we have

0 ≥
𝑚−1
∑
𝑖=1

𝑎𝑘𝑖 >
𝑚
∑
𝑖=1

𝑎𝑘𝑖 ≥ 0

as 𝑎𝑘𝑚 < 0, giving a contradiction as required.

This proves Dirichlet’s unit theorem.

Definition. Let 𝑅𝐿 = covol(ℓ(𝒪⋆
𝐿) ⊆ ℝ𝑟+𝑠−1). This is an invariant of a number field, called

the regulator of 𝐿.
Concretely, choose 𝜀1,… , 𝜀𝑟+𝑠−1 in 𝒪⋆

𝐿 such that 𝒪⋆
𝐿 ≃ 𝛍𝐿 × {𝜀𝑛11 …𝜀𝑛𝑟+𝑠−1𝑟+𝑠−1 ∣ 𝑛𝑖 ∈ ℤ}. Take

any (𝑟 + 𝑠 − 1) × (𝑟 + 𝑠 − 1)minor of the (𝑟 + 𝑠 − 1) × (𝑟 + 𝑠)matrix (ℓ(𝜀1),… , ℓ(𝜀𝑟+𝑠)). The
determinant of the absolute value of this submatrix is 𝑅𝐿.
Example. Let 𝐿 be a real quadratic field, and let 𝜀 be a fundamental unit. Then log |𝜎1(𝜀)| =
𝑅𝐿.

4.3. Finding fundamental units
We now need to find such fundamental units. One way is to guess a unit and then find all
smaller ones.

Example. Let 𝐿 = ℚ(√𝑑) and 𝑑 > 0, and embed this into ℝ by choosing√𝑑 > 0. Consider
𝑑 = 2. One might guess 𝜀 = 1 + √2, as 𝑁(𝜀) = 1 so 𝜀 is a unit. We claim that this is
fundamental. If not, there exists 𝑢 = 𝑎 + 𝑏√2 with 𝑎, 𝑏 ∈ ℤ, 𝑢 ∈ 𝒪⋆

𝐿, and 1 < 𝑢 < 𝜀
as elements of ℝ, identifying 𝐿 with 𝜎1(𝐿) ⊆ ℝ. The other embedding 𝑢 = 𝑎 − 𝑏√2 has
𝑢𝑢 = ±1. As 𝑢 > 1, ||𝑢|| < 1, so 𝑢 + 𝑢, 𝑢 − 𝑢 > 0. Hence 𝑎, 𝑏 > 0, so there are no possibilities
for 1 < 𝑎 + 𝑏√2 < 1 + 1√2 with 𝑎, 𝑏 > 0 integers. Hence 𝜀 is a fundamental unit.

Example. Consider 𝑑 = 11. Let 𝜀 = 10 − 3√11 as 𝑁(𝜀) = 1. Notice that 𝜀 ≈ 0.5. 𝜀−1 > 1
and 𝜀−1 < 20. If this were not fundamental, there exists 𝑢 = 𝑎 + 𝑏√11 with 1 < 𝑢 < 𝜀−1 =
10 + 3√11 < 20. We could check all cases like in the above example, but we can do better
in this case. If 𝑁(𝑢) = −1, we have 𝑎2 − 11𝑏2 = −1, which has no solutions modulo 11
as −1 is not a square in 𝔽11. Hence 𝑁(𝑢) = 1 so 𝑢 = 𝑢−1, giving 𝜀−1 > 𝑢 > 1 implies
0 < 𝜀 < 𝑢−1 = 𝑢 < 1, so 0 < 𝑎 − 𝑏√11 < 1, so −1 < −𝑎 + 𝑏√11 < 0. Combining with
the previous inequality, 0 < 2𝑏√11 < 10 + 3√11 < 7√11 so 𝑏 = 1, 2, 3. Now we can check
that 1 + 𝑏2 ⋅ 11 is not a square in 𝔽11 for 𝑏 = 1, 2, 3 so there is no possible 𝑎. Hence 𝜀 is a
fundamental unit.
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4. Dirichlet’s unit theorem

Remark. There is an algorithm for ℚ(√𝑑) to compute fundamental units. Recall that any
real number 𝑡 can be written as

𝑡 = 𝑎0 +
1

𝑎1 +
1

𝑎2+
1

𝑎3+⋯

= [𝑎0, 𝑎1, 𝑎2, 𝑎3,… ]

where 𝑎0 = ⌊𝑡⌋. 𝑡 is a quadratic algebraic number, so [ℚ(𝑡) ∶ ℚ] = 2, if and only if the
expansion of 𝑡 as a continued fraction is periodic 𝑡 = [𝑎0, 𝑎1,… , 𝑎𝑚].
The following proposition is non-examinable (and should not be used in exams).

Proposition. Let √𝑑 = [𝑎0, 𝑎1,… , 𝑎𝑚] and let
𝑝
𝑞
= [𝑎0,… , 𝑎𝑚−1]. Then 𝑝 + 𝑞√𝑑 is a unit

in 𝐿 = ℚ(√𝑑), and if 𝑑 ≡ 2, 3mod 4, it is fundamental.
The proof is omitted.

Example. √7 = [2, 1, 1, 1, 4] so 𝑝
𝑞
= [2, 1, 1, 1] = 8

3
and (8 + 3√7)(8 − 3√7) = 1.

This algorithm is polynomial-time in the regulator, but not polynomial-time in the discrim-
inant.

If 𝑞(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 is a quadratic form for 𝑎, 𝑏, 𝑐 ∈ ℤ and 𝐷 = 𝑏2 − 4𝑎𝑐, define
𝐿 = ℚ(√𝐷), and define the ideal associated to 𝑞 to be (𝑎, −𝑏+√𝐷

2
). One can show that if

𝑎 > 0, 𝐷 < 0, the ideal attached to 𝑞 is equal to the ideal attached to 𝑞′ in the class group if
and only 𝑞 and 𝑞′ are equal under the action of 𝑆𝐿2(ℤ), i.e. if 𝑞′(𝑥, 𝑦) = 𝑞(𝑥′, 𝑦′)

(𝑥
′

𝑦′) = (𝛼 𝛽
𝛾 𝛿)⏟⎵⏟⎵⏟

∈𝑆𝐿2(ℤ)

(𝑥𝑦)

In particular, the size of the class group is exactly the number of orbits of positive definite
quadratic forms with discriminant 𝐷 under the action of 𝑆𝐿2(ℤ).
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5. Dirichlet series and 𝐿-functions
5.1. Dirichlet series
Theorem (Euclid). There exist infinitely many primes.

The following proof is due to Euler in 1748.

Proof. Consider

∏
𝑝 prime

(1 − 1
𝑝)

−1
= ∏

𝑝 prime
(1 + 1

𝑝 + 1
𝑝2 +…) =

∞
∑
𝑛=1

1
𝑛

as every 𝑛 > 0 factors uniquely as a product of primes so occurs exactly once when we
expand the product. If there are finitely many primes, the product is finite. As ∑∞

𝑖=1 𝑝−𝑖

converges to (1 − 1
𝑝
)
−1
,∑∞

𝑖=1
1
𝑛
must converge.

We aim to prove that for all 𝑎, 𝑞 ∈ ℤ coprime, there are infinitely many primes of the form
𝑎+𝑘𝑞, 𝑘 ∈ ℕ. Note that there is no nice series expansion for∏𝑝≡𝑎mod 𝑞,𝑝 prime (1 −

1
𝑝
)
−1
, so

Euler’s proof does not generalise.

Definition. The Riemann zeta function is 𝜁(𝑠) = ∑𝑛≥1 𝑛−𝑠 for 𝑠 ∈ ℂ.

Proposition. (i) 𝜁(𝑠) converges for Re(𝑠) > 1.

(ii) 𝜁(𝑠) = ∏𝑝 prime (1 −
1
𝑝𝑠
)
−1

in this region; this result is known as the Euler product.
This product converges absolutely.

(iii) 𝜁(𝑠) − 1
𝑠−1

extends to a holomorphic function for Re(𝑠) > 0, so the zeta function has a
simple pole with residue 1 at 𝑠 = 1.

If the series∑ log(1 − 𝑎𝑛) converges,∏(1−𝑎𝑛) converges. ∏(1−𝑎𝑛) absolutely converges
if∑|log(1 − 𝑎𝑛)| converges.

If 𝑎𝑛 is a sequence of complex numbers, call the function∑𝑛≥1 𝑎𝑛𝑛−𝑠 a Dirichlet series. In-
stead of part (i), we will prove the following more general lemma.

Lemma. If there exists 𝑟 ∈ ℝ with 𝑎1 +⋯ + 𝑎𝑁 = 𝑂(𝑁𝑟), then∑𝑛≥1 𝑎𝑛𝑛−𝑠 converges for
Re(𝑠) > 𝑟, and it is holomorphic in this region.

Proof of lemma.

𝑁
∑
𝑛=1

𝑎𝑛𝑛−𝑠 = 𝑎1(1−𝑠 − 2−𝑠) + (𝑎1 + 𝑎2)(2−𝑠 − 3−𝑠) +⋯+ (𝑎1 + 𝑎𝑁−1)((𝑁 − 1)−𝑠 −𝑁−𝑠) + 𝑅𝑛
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where 𝑅𝑛 =
𝑇(𝑁)
𝑁𝑠 with 𝑇(𝑁) = 𝑎1 +⋯+ 𝑎𝑁 = 𝑂(𝑁𝑟). By assumption, if Re(𝑠) > 𝑟,

|||
𝑇(𝑁)
𝑁𝑠

||| =
|||
𝑇(𝑁)
𝑁𝑟

||| ⋅
1

|𝑁𝑠−𝑟| =
|||
𝑇(𝑁)
𝑁𝑟

||| ⋅
1

𝑁Re(𝑠)−𝑟 → 0

as 𝑥𝑠 = 𝑒𝑠 log𝑥 so |𝑥𝑠| = ||𝑥Re 𝑠||. So if Re(𝑠) > 𝑟,∑𝑎𝑛𝑛−𝑠 = ∑𝑇(𝑁)(𝑁−𝑠 − (𝑁 + 1)−𝑠). But
|𝑇(𝑁)| ≤ 𝐵𝑁𝑟 for some constant𝐵 by assumption, so it suffices to show∑𝑁𝑟(𝑁−𝑠−(𝑁+1)−𝑠)
converges. Note that

𝑁−𝑠 − (𝑁 + 1)−𝑠 = ∫
𝑁+1

𝑁
𝑠 d𝑥𝑥𝑠+1

and 𝑁𝑟 ≤ 𝑥𝑟 if 𝑥 ∈ [𝑁,𝑁 + 1]. Hence

𝑁𝑟(𝑁−𝑠 − (𝑁 + 1)−𝑠) ≤ ∫
𝑁+1

𝑁
𝑥𝑟𝑠 d𝑥𝑥𝑠+1 ≤ 𝑠∫

𝑁+1

𝑁

d𝑥
𝑥𝑠+1−𝑟

It is enough to show that 𝑠 ∫𝑁
1

d𝑥
𝑥𝑠+1−𝑟

converges, which it does to 𝑠
𝑠−𝑟

.

Proof of proposition. Part (ii). Let 𝑝1,… , 𝑝𝑟 be the first 𝑟 primes. Then,∏
𝑟
𝑖=1(1 − 𝑝−𝑠𝑟 )−1 =

∑𝑛∈𝑋 𝑛−𝑠 where 𝑋 is the set of positive integers whose prime divisors are only in 𝑝1,… , 𝑝𝑟.
So

||||
𝜁(𝑠) −

𝑟
∏
𝑖=1

(1 − 𝑝−𝑠𝑟 )−1
||||
=
||||
∑
𝑛∉𝑋

𝑛−𝑠
||||
≤ ∑

𝑛∉𝑋
|𝑛−𝑠| = ∑

𝑛∉𝑋
𝑛−Re(𝑠) ≤ ∑

𝑛>𝑟
𝑛−Re(𝑠)

as 1,… , 𝑟 ∈ 𝑋 . Hence the infinite product converges to 𝜁(𝑠). The proof of absolute conver-
gence is omitted.

Part (iii). Left as an exercise, noting that

1
𝑠 − 1 =

∞
∑
𝑖=1

∫
𝑛+1

𝑛

d𝑡
𝑡𝑠

5.2. Zeta functions in number fields
The remaining new content in this course is nonexaminable.

Definition. Let 𝐿 be a number field. The zeta function of 𝐿 is

𝜁𝐿(𝑠) = ∑
𝔞⊴𝒪𝐿

𝑁(𝔞)−𝑠 = ∑
𝑛≥1

#{𝔞 ⊴ 𝒪𝐿 ∣ 𝑁(𝔞) = 𝑛}𝑛−𝑠

Proposition. (i) 𝜁𝐿(𝑠) converges to a holomorphic function for Re(𝑠) > 1.
(ii) 𝜁𝐿(𝑠) = ∏𝔭 prime ideal(1 − 𝑁(𝔭)−𝑠)−1 in this region.
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(iii) 𝜁𝐿(𝑠) is a meromorphic function for Re(𝑠) > 1− 1
[𝐿∶ℚ]

, with a simple pole at 𝑠 = 1with
residue

|Cl𝐿|2𝑟+𝑠𝜋𝑠𝑅𝐿
|𝐷𝐿|

1
2 |𝛍𝐿|

This is called the analytic class number formula.

Proof. Part (ii) is clear. Parts (i) and (iii) follow from the following estimate. Writing 𝜁𝐿(𝑠) =
∑ 𝑎𝑛

𝑛𝑠
where 𝑎𝑛 is the number of ideals of norm 𝑛, one can show

𝑎1 +⋯+ 𝑎𝑁 = |Cl𝐿|2𝑟+𝑠𝜋𝑠𝑅𝐿
|𝐷𝐿|

1
2 |𝛍𝐿|

⋅ 𝑁 + 𝑂(𝑁1− 1
[𝐿∶ℚ] )

If 𝐿 ≠ ℚ, it turns out that 𝜁𝐿(𝑠) factors into 𝜁ℚ(𝑠) = 𝜁(𝑠) and some other factors. Suppose
𝐿 = ℚ(√𝑑) and 𝑑 ≠ 0, 1 is square-free.

𝜁𝐿 − ∏
𝔭 prime ideal

(1 − 𝑁(𝔭)−𝑠)−1 = ∏
𝑝 prime

∏
𝔭∣(𝑝)

(1 − 𝑁(𝔭)−𝑠)−1

If 𝑝 ∣ 𝐷𝐿, then (𝑝) = 𝔭2 ramifies. In this case, 𝑁(𝔭) = 𝑝 and we have a term (1 − 𝑝−𝑠)
in the product. If (𝑝) remains prime in 𝐿, then 𝑁(𝔭) = 𝑝2 giving the term (1 − 𝑝−2𝑠) =
(1 − 𝑝−𝑠)(1 − 𝑝𝑠). If (𝑝) = 𝔭1𝔭2 splits, then 𝑁(𝔭𝑖) = 𝑝 and we have a term (1 − 𝑝−𝑠)2.
Let

𝜒𝐷𝐿(𝑝) = 𝜒(𝑝) =
⎧
⎨
⎩

0 𝑝 ramifies
−1 𝑝 inert
1 𝑝 splits

= (𝐷𝐿
𝑝 )

⏟
if 𝑝 odd

Then, defining 𝐿(𝜒, 𝑠) = ∏𝑝 prime 1 − 𝜒(𝑝)𝑝−𝑠−1, we have 𝜁𝐿(𝑠) = 𝜁ℚ(𝑠)𝐿(𝜒, 𝑠). The function
𝐿 is called a Dirichlet 𝐿-function. When expanding the infinite product defining 𝐿(𝜒𝐷, 𝑠) the
coefficient of 𝑛−𝑠, if 𝑛 = 𝑝𝑒11 …𝑝𝑒𝑟𝑟 is 𝜒𝐷(𝑝1)𝑒1 …𝜒𝐷(𝑝𝑟)𝑒𝑟 . We can extend the definition of
𝜒 to make it multiplicative: 𝜒𝐷(𝑝𝑒11 …𝑝𝑒𝑟𝑟 ) = 𝜒𝐷(𝑝1)𝑒1 …𝜒𝐷(𝑝𝑟)𝑒𝑟 .

Example. Let 𝐿 = ℚ(√−1), so 𝐷𝐿 = 4. We have (−4
𝑝
) = (−1

𝑝
) = (−1)

𝑝−1
2 for 𝑝 ≠ 2. 2

ramifies, so 𝜒𝐷(2) = 0. We claim that

𝜒−4(𝑚) = {(−1)
𝑚−1
2 𝑚 odd

0 𝑚 even

Indeed, if 𝑛 is even, this is clear; otherwise, this claim is that (−1)
𝑚𝑛−1

2 = (−1)
𝑚−1
2 (−1)

𝑛−1
2 ,

which is easy to verify. Hence,

𝐿(𝜒−4, 𝑠) = 1 − 1
3𝑠 +

1
5𝑠 −

1
7𝑠 +…
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5. Dirichlet series and 𝐿-functions

In this example, the coefficients are periodic mod 4; this is true for general 𝐿(𝜒𝐷, 𝑠). Since
𝜁𝐿(𝑠) = 𝜁ℚ(𝑠)𝐿(𝜒−4, 𝑠), the fact that 𝜁ℚ(𝑠) has a simple pole at 𝑠 = 1 with residue 1, together
with the analytic class number formula, gives 𝐿(𝜒−4, 1) =

𝜋
4
.

Definition. 𝜒∶ ℤ → ℂ is a Dirichlet character of modulus 𝐷 if there exists a group homo-
morphism 𝜔∶ (ℤ⟋𝐷ℤ)

⋆
→ ℂ such that

𝜒(𝑛) = {𝜔(𝑛mod 𝐷) 𝑛 invertible mod 𝐷
0 otherwise

For such a 𝜒, we have 𝜒(𝑛)𝜒(𝑚) = 𝜒(𝑛𝑚), and we can define

𝐿(𝜒, 𝑠) = ∏
𝑝 prime

(1 − 𝜒(𝑝)𝑝−𝑠)−1 = ∑
𝑛≥1

𝜒(𝑛)𝑛−𝑠

The previous example shows that 𝜒−4 is a Dirichlet character of modulus 4.

Theorem. For any 𝑑 ≠ 0, 1 square-free, defining 𝐿 = ℚ(√𝑑), 𝐷 = 𝐷𝐿, we have that 𝜒𝐷 is a
Dirichlet character of modulus 𝐷.

Proof. We must show 𝜒𝐷(𝑛 + 𝐷) = 𝜒𝐷(𝑛) for 𝑛 ∈ ℕ. Suppose first that 𝑑 ≡ 3mod 4. Here,
𝐷 = 4𝑑, so 𝜒𝐷(2) = 0 as 2 ramifies, so 𝜒𝐷(𝑛) = 0 if 𝑛 is even as required. For 𝑝 > 2,
𝜒𝐷(𝑝) = (𝐷

𝑝
) = (𝑑

𝑝
) by definition, but this is equal to (𝑝

𝑑
)(−1)

𝑝−1
2 by quadratic reciprocity

as 𝑝, 𝑑 are odd, and as 𝑑 ≡ 3 mod 4, 𝑑−1
2

≡ 1 mod 4. 𝑛 ↦ (−1)
𝑛−1
2 is multiplicative, so

𝜒𝐷(𝑛 + 𝐷) = (𝑛+𝐷
𝑑
)(−1)

𝑛−1
2 (−1)4𝑑2 = 𝜒𝐷(𝑛). The other cases are omitted.

This theorem can be seen as equivalent to the law of quadratic reciprocity. Note that 𝜒 is
nontrivial if 𝜔 ≢ 1
Lemma. If 𝜒 is a nontrivial Dirichlet character, 𝐿(𝜒, 𝑠) is holomorphic for Re 𝑠 > 0.

Proof. Recall that if 𝐺 is a finite group and 𝜒1, 𝜒2 are characters of irreducible complex rep-
resentations, then

1
𝐺 ∑

𝑔∈𝐺
𝜒1(𝑔)𝜒2(𝑔) = {1 𝜒1 = 𝜒2

0 otherwise

Applying this to 𝐺 = (ℤ⟋𝑑ℤ)
⋆
where 𝜒1 is the trivial character and 𝜒2 = 𝜔, this gives

∑
𝑎𝑑<𝑖<(𝑎+1)𝑑

𝜒(𝑖) = ∑
𝑖∈ℤ⟋𝑑ℤ

𝜒(𝑖) = ∑
𝑖∈(ℤ⟋𝑑ℤ)

⋆
𝜔(𝑖) = 0

In particular,∑𝑛
𝑖=1 𝜒(𝑖) = 𝑂(1) is bounded. So∑𝑛

𝑖=1
𝜒(𝑖)
𝑛𝑠

converges for Re(𝑠) > 0.
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Corollary. If 𝐷 < 0,

𝐿(𝜒𝐷, 1) =
2𝜋||Clℚ(√𝐷)||

|𝐷|
1
2 ||𝛍ℚ(√𝐷)||

In particular, 𝐿(𝜒𝐷, 1) ≠ 0.

Proof. 𝜁ℚ(√(𝐷))(𝑠) = 𝜁ℚ(𝑠)𝐿(𝜒𝐷, 𝑠), so both sides have a simple pole at 𝑠 = 1. The analytic
class number formula gives the residue of the left hand side, and Res𝜁(1) = 1.

5.3. 𝐿-functions in cyclotomic fields
We will show that 𝐿(𝜒, 1) ≠ 0 for any Dirichlet character 𝜒, and hence show that there are
infinitely many primes in arithmetic progression. To do this, we will factor 𝜁

ℚ(𝑒
2𝜋𝑖
𝑞 )

for any

𝑞. Consider 𝐿 = ℚ(𝜔𝑞) where 𝜔𝑞 is a primitive 𝑞th root of unity,

Proposition. (i) [𝐿 ∶ ℚ] = 𝜑(𝑞) where 𝜑(𝑞) = |||(ℤ⟋𝑞ℤ)
⋆|||;

(ii) 𝐿/ℚ is a Galois extension with Galois group 𝐺 = (ℤ⟋𝑞ℤ)
⋆
, and if 𝑟 ∈ (ℤ⟋𝑞ℤ)

⋆
, then 𝑟

acts on 𝐿 by mapping 𝜔𝑞 to 𝜔𝑟𝑞;

(iii) 𝒪𝐿 = ℤ[𝜔𝑞] = ℤ[𝑥]⟋Φ𝑞(𝑥) where Φ𝑞 is the 𝑞th cyclotomic polynomial;

(iv) if 𝑝 is prime, 𝑝 ∣ 𝐷𝐿 if and only if 𝑝 ∣ 𝑞;
(v) if 𝑝 is prime, 𝑝 ramifies in 𝒪𝐿 if and only if 𝑝 ∣ 𝑞;

(vi) if 𝑝 is prime with 𝑝 ∤ 𝑞, then (𝑝) factors as a product of 𝜑(𝑞)
𝑓

distinct prime ideals, each

of norm 𝑝𝑓, where 𝑓 is the order of 𝑝 in (ℤ⟋𝑞ℤ)
⋆
.

Proof. Parts (i) and (ii) follow from Galois theory. Part (iii) for 𝑞 prime is on an example
sheet, and the general case is omitted. Part (iv) is omitted. Part (iv) implies (v) is a general
fact; we will only show part (vi).

As 𝒪𝐿 = ℤ[𝑥]⟋Φ𝑞(𝑥), Dedekind’s theorem applies. We study 𝒪𝐿⟋(𝑝) = 𝔽𝑝[𝑥]⟋Φ𝑞(𝑥) by
factoring Φ𝑞(𝑥)modulo 𝑝. Recall that

Φ𝑞(𝑥) =
𝑥𝑞 − 1

∏𝑑≠𝑞,𝑑∣𝑞Φ𝑑(𝑥)

so for instance Φ8(𝑥) =
𝑥8−1
𝑥4−1

= 𝑥4 + 1.

(ℤ⟋8ℤ)
⋆
= {1, 3, −3, −1} ≃ ℤ⟋2ℤ × ℤ⟋2ℤ
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In this example, if 𝑝 = 17, 𝑥4 + 1 factors into four linear factors, but if 𝑝 = 3, 𝑥4 + 1 factors
into two factors as the order of 3 is 2 in (ℤ⟋8ℤ)

⋆
.

Write Φ𝑞(𝑥) = 𝛾𝑒11 …𝛾𝑒𝑔𝑔 for 𝛾𝑖 irreducible and distinct, so

𝒪𝐿⟋(𝑝) = 𝔽𝑝[𝑥]⟋(𝛾𝑒11 ) × …𝔽𝑝[𝑥]⟋(𝛾𝑒𝑔𝑔 )

For any number field 𝐿, Gal(𝐿/ℚ) preserves𝒪𝐿. Indeed, if 𝛼 ∈ 𝒪𝐿, 𝑓(𝛼) = 0 for somemonic
polynomial 𝑓 ∈ ℤ[𝑥], but then 𝑔 ∈ Gal(𝐿/ℚ) givesn 0 = 𝑔𝑓(𝛼) = 𝑓(𝑔(𝛼)) = 0, so 𝑔(𝛼) is
also a root of 𝑓 and hence in 𝒪𝐿.

𝐺 permutes the roots of Φ𝑞, so 𝐺 acts on {𝛾1,… , 𝛾𝑔}. This action is transitive on the roots, so
is transitive on {𝛾1,… , 𝛾𝑔}. Hence deg 𝛾1 = ⋯ = deg 𝛾𝑔, so 𝑒1 = ⋯ = 𝑒𝑔 = 𝑒. Further, 𝑔𝑒 is
the order of 𝐺⟋Stab𝐺(𝛾1).

If 𝑝 ∤ 𝐷𝐿, or equivalently 𝑝 ∤ 𝑞, then 𝑒 = 1 as 𝑝 is unramified. Hence 𝔽𝑝[𝑥]⟋(𝛾1) = 𝔽𝑝𝑓′ for
some 𝑓′, and 𝜑(𝑞)

𝑓′
factors. We must show that 𝑓′ = 𝑓.

𝑝 ∈ (ℤ⟋𝑞ℤ)
⋆
= Gal(𝐿/ℚ) acts as 𝛼 ↦ 𝛼𝑝 on 𝔽𝑝𝑓′ , so it acts as the Frobenius automorphism,

which is the generator of the Galois group of 𝔽𝑝𝑓′⟋𝔽𝑝 by (ii). Conversely, the image of 𝑥 in
𝔽𝑝[𝑥]⟋(𝛾1), is the image of𝜔𝑞 which is a primitive 𝑞th root of unity. So 𝑞 ∣

||𝔽⋆
𝑝𝑓′
||, so 𝑞 ∣ 𝑝𝑓

′−1.
In particular, 𝑝𝑓′ ≡ 1mod 𝑞, so 𝑓 = ord(𝑝) ∣ 𝑓′. Hence 𝑓 = 𝑓′ as required.

Recall that 𝜁ℚ(𝜔𝑞)(𝑠) = ∏𝔭 prime(1 − 𝑁(𝔭)−𝑠)−1. Consider prime ideals 𝔭 dividing (𝑝) for a

fixed integer prime𝑝. If𝑝 ∤ 𝑞, part (vi) shows that these contribute (1−𝑝−𝑓𝑠)−
𝜑(𝑞)
𝑓 to the zeta

function, where 𝑓 is the order of 𝑝 in (ℤ⟋𝑞ℤ)
⋆
. But this factors as (1 − 𝑡𝑓) = ∏𝛾∈𝛍𝑓

(1 − 𝛾𝑡)
where 𝛍𝑓 = {𝛾 ∈ ℂ ∣ 𝛾𝑓 = 1}.

Set 𝑡 = 𝑝−𝑠, and let 𝜔1,… , 𝜔𝜑(𝑞)∶ (ℤ⟋𝑞ℤ)
⋆
→ ℂ be the distinct irreducible complex repres-

entations of (ℤ⟋𝑞ℤ)
⋆
, such that 𝜔1 = 𝟙 so 𝜔1(𝛼) = 1 for all 𝛼 ∈ (ℤ⟋𝑞ℤ)

⋆
. We claim that

𝜔1(𝑝),… , 𝜔𝜑(𝑞)(𝑝) are the distinct 𝑓th roots of unity, each repeated
𝜑(𝑞)
𝑓

times. Certainly 𝑝

generates a cyclic subgroup (𝑝) of (ℤ⟋𝑞ℤ)
⋆
of order 𝑓 by definition of 𝑓. The claim is that

the restriction of of 𝜔1,… , 𝜔𝜑(𝑞) to (𝑝) are the 𝑓 distinct irreducible representations of (𝑝),
each repeated 𝜑(𝑞)

𝑓
times, which can be easily proven using representation theory. We have

therefore shown that

(1 − 𝑝−𝑓𝑠)−
𝜑(𝑞)
𝑓 =

𝜑(𝑞)
∏
𝑖=1

(1 − 𝜔𝑖(𝑝)𝑝−𝑠)−1
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Let

𝜒𝑖(𝑛) = {𝜔𝑖(𝑛mod 𝑞) if gcd(𝑛, 𝑞) = 1
0 otherwise

Then we have shown that

𝜁ℚ(𝜔𝑞)(𝑠) =
𝜑(𝑞)
∏
𝑖=1

𝐿(𝜒𝑖, 𝑠)multiplied by a correction term

which is a finite product of the form∏𝑝∣𝑞(1−𝑝
−𝑓𝑝𝑠)−1. Note that 𝜁ℚ(𝑠) = 𝐿(𝜒1, 𝑠)∏𝑝∣𝑞(1−

𝑝−𝑠)−1, so we can rewrite this as

𝜁ℚ(𝜔𝑝)(𝑠) = 𝜁ℚ(𝑠)
𝜑(𝑞)
∏
𝑖=2

𝐿(𝜒𝑖, 𝑠)multiplied by a correction term

Theorem. If 𝜒𝑖 is a nontrivial Dirichlet character, then 𝐿(𝜒𝑖, 1) ≠ 0.

In fact, if 𝜒 is any nontrivial Dirichlet character modulo 𝑞, 𝜒 = 𝜒𝑖 for some 𝑖.

Proof. We have shown that if 𝜒 is a nontrivial Dirichlet character, 𝐿(𝜒, 𝑠) is holomorphic
at 𝑠 = 1. In the above expansion, the left hand side and right hand side are meromorphic
functions at 𝑠 = 1 with a simple pole. The residue of the right hand side and left hand side
therefore agree, and its value is

Res𝑠=1 𝜁ℚ(𝑠)
𝜑(𝑞)
∏
𝑖=2

𝐿(𝜒𝑖, 1)multiplied by a correction term

The analytic class number formula implies that this is nonzero, so 𝐿(𝜒𝑖, 1) ≠ 0.

Note that Dirichlet characters of quadratic fields have values in ±1.

5.4. Primes in arithmetic progression
Theorem (Dirichlet). Let 𝑎, 𝑞 ∈ ℕ with gcd(𝑎, 𝑞) = 1. There are infinitely many primes in
𝑎, 𝑎 + 𝑞, 𝑎 + 2𝑞,….

Proof. Consider (ℤ⟋𝑞ℤ)
⋆
, an abelian group of order 𝜑(𝑞). Let 𝜔1,… , 𝜔𝜑(𝑞)∶ (ℤ⟋𝑞ℤ)

⋆
→ ℂ⋆

where 𝜔1 = 𝟙, and 𝜒1,… , 𝜒𝜑(𝑞)∶ ℤ⟋𝑞ℤ → ℂ be the corresponding Dirichlet characters.
Recall the orthogonality of the columns of the character table of a finite group:

1
𝜑(𝑞) ∑𝑖

𝜔𝑖(𝑎)𝜔𝑖(𝑝) = {1 𝑎 ≡ 𝑝 mod 𝑞
0 otherwise

410



5. Dirichlet series and 𝐿-functions

if gcd(𝑝, 𝑞) = 1, so 𝑝 defines an element of (ℤ⟋𝑞ℤ)
⋆
. Hence,

1
𝜑(𝑞) ∑𝑖

𝜒𝑖(𝑎)𝜒𝑖(𝑝) = {1 𝑎 ≡ 𝑝 mod 𝑞
0 otherwise

even if gcd(𝑝, 𝑞) ≠ 1, since in this case 𝜒𝑖(𝑝) = 0 by definition. Hence,

∑
𝑝≡𝑎mod 𝑞,𝑝 prime

𝑝−𝑠 = 1
𝜑(𝑞) ∑𝑖,𝑝

𝜒𝑖(𝑎)𝜒𝑖(𝑝)𝑝−𝑠

We want to show that this has a pole at 𝑠 = 1. If 𝜒 is a Dirichlet character, by the series
expansion of logarithm which is valid by absolute convergence, we can write

log𝐿(𝜒, 𝑠) = −∑
𝑝
log(1 − 𝜒(𝑝)𝑝−𝑠)

= ∑
𝑛,𝑝

𝜒(𝑝)𝑛
𝑝𝑛𝑠𝑛

= ∑
𝑛,𝑝

𝜒(𝑝𝑛)
𝑝𝑛𝑠𝑛

= ∑
𝑝

𝜒(𝑝)
𝑝𝑠 + ∑

𝑛≥2,𝑝

𝜒(𝑝𝑛)
𝑝𝑛𝑠𝑛

We claim that ∑𝑛≥2,𝑝 prime
𝜒(𝑝𝑛)
𝑝𝑛𝑠𝑛

converges at 𝑠 = 1. This holds as its absolute value is at
most

∑
𝑛≥2,𝑝 prime

𝑝−𝑛𝑠 = ∑
𝑝 prime

1
𝑝𝑠(𝑝𝑠 − 1) ≤ ∑

𝑛

1
𝑛𝑠(𝑛𝑠 − 1) ≤ 2 1

𝑛2𝑠

which is finite at 𝑠 = 1. Hence, the series above has a pole at 𝑠 = 1 if and only if
1

𝜑(𝑞) ∑𝑖
𝜒𝑖(𝑎) log𝐿(𝜒𝑖, 𝑠)

has a pole at 𝑠 = 1.
If 𝜒1 is the trivial character, 𝐿(𝜒1, 𝑠) = 𝜁ℚ(𝑠)∏𝑝∣𝑠(1−𝑝−𝑠), so as 𝜁ℚ(𝑠) has only a simple pole
at 𝑠 = 1, log 𝜁ℚ(𝑠) = log 1

𝑠−1
+ bounded function near 𝑠 = 1, so log𝐿(𝜒1, 𝑠) ∼ log 1

𝑠−1
has

a pole at 𝑠 = 1. For 𝑖 ≠ 1, 𝐿(𝜒𝑖, 𝑠) is nonzero at 𝑠 = 1 by the above theorem, so log𝐿(𝜒𝑖, 𝑠)
is bounded at 𝑠 = 1. Hence, 1

𝜑(𝑞)
∑𝑖,𝑝 𝜒𝑖(𝑎)𝜒𝑖(𝑝)𝑝−𝑠 ∼

1
𝜑(𝑞)

log 1
𝑠−1

, and in particular has a
pole at 𝑠 = 1.
Hence, there are infinitely many primes in arithmetic progression.

This proof shows that approximately 1
𝜑(𝑞)

of all primes lie in this arithmetic progression.

One can in fact show that for any number field 𝐿, 𝜁𝐿(𝑠) always factors and the factors have
meaning. Suppose 𝐿/ℚ is Galois, and 𝐺 = Gal(𝐿/ℚ). Then,
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(i) We can factor 𝜁𝐿(𝑠) = ∏𝜌 irreducible representation of𝐺 𝐿(𝜌, 𝑠)dim𝜌, where the𝐿(𝜌, 𝑠) areArtin
𝐿-functions. Moreover, 𝐿/ℚ is the regular representation of 𝐺.

(ii) 𝐿(𝟙, 𝑠) = 𝜁ℚ(𝑠).
(iii) 𝐿(𝜌, 𝑠) is ameromorphic function of 𝑠. It is conjectured, but still not known, that𝐿(𝜌, 𝑠)

is holomorphic if 𝜌 ≠ 𝟙.
(iv) If 𝜌 is one-dimensional, then 𝐿(𝜌, 𝑠) = 𝐿(𝜒, 𝑠)multiplied by a correction factor, where

𝐿(𝜒, 𝑠) is a Dirichlet 𝐿-function. Finding 𝜒 given 𝜌 is a generalisation of quadratic
reciprocity, called class field theory.

(v) The properties of mutidimensional 𝜌 are studied in the Langlands programme.
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IX. Algebraic Geometry

Lectured in Lent 2023 by Dr. D. Ranganathan
In this course, we study the duality between systems of polynomial equations and the geo-
metry or topology of their solution sets. Sets of points that arise as solution sets of polyno-
mials are called algebraic varieties. We therefore study the correspondence between sets of
polynomials and the varieties they define.

One can show that the set of varieties satisfy the axioms of the closed sets of a topological
space. We can thus define a topology where the closed sets are precisely the algebraic variet-
ies; this is called the Zariski topology. This very explicit description of the closed sets allows
us to study this topology in depth. There are some drawbacks; the Zariski topology is not
even Hausdorff.

Some geometric properties of algebraic varieties can be studied algebraically. For example,
the dimension of a variety is the amount of algebraically independent transcendental ele-
ments of a field associated to the variety. Perhaps the simplest varieties are the curves, those
varieties with dimension 1. They have comparatively simple field structure, and are studied
in depth.
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1. Affine varieties

1. Affine varieties
1.1. Introduction
Algebraic geometry studies the duality between systems of polynomial equations and the
geometry or topology of their solution sets. If we have a system of polynomials

𝑓1,… , 𝑓𝑟 ∈ 𝕜[𝑋1,… , 𝑋𝑛] = 𝕜[X]

we can form its solution set

𝑉 = {𝑃 ∈ 𝕜𝑛 ∣ 𝑓1(𝑃) = ⋯ = 𝑓𝑟(𝑃) = 0} ⊆ 𝕜𝑛

On the algebraic side, we have the ideal

𝐼 = (𝑓1,… , 𝑓𝑟) ⊲ 𝕜[X]

The duality we are interested in is between 𝑅 = 𝕜[X]⟋𝐼 and the geometry of 𝑉 .
We may impose some assumptions on the field 𝕜.

• We might assume that 𝕜 is algebraically closed, which is a natural assumption since
we wish to consider roots to polynomials with coefficients in 𝕜.

• We could also take the stronger assumption that 𝕜 is algebraically closed and has char-
acteristic 0. Occasionally, we may want to differentiate a polynomial, and so it be-
comes inconvenient to do algebra without this assumption.

• Throughout the course, we will in fact assume 𝕜 = ℂ, as we are not particularly inter-
ested in the subtleties of such fields other than ℂ, and it is useful for intuition.

Questions we may ask about this duality are:

• To what extent do 𝑅 and 𝑉 determine each other?

• What is the right notion of dimension of 𝑉 , in terms of algebra?
• Can we detect whether 𝑉 ⊆ ℂ𝑛 is a manifold based on the information contained
within 𝑅?

• Is 𝑉 compact? If not, is there a natural way to compactify the space into some space
𝑉 that is in some sense algebraic?

1.2. Affine space
Definition. The affine space of dimension 𝑛, implicitly over ℂ, is the set 𝔸𝑛 = ℂ𝑛. The
elements of 𝔸𝑛 are called points, denoted 𝑃 = (a) = (𝑎1,… , 𝑎𝑛).
Definition. An affine subspace of 𝔸𝑛 is any subset of the form 𝑣 + 𝑈 ⊆ ℂ𝑛 where 𝑈 ⊆ ℂ𝑛

is any linear subspace, and 𝑣 ∈ ℂ𝑛.
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IX. Algebraic Geometry

𝔸𝑛 is the natural set onwhichℂ[𝑋1,… , 𝑋𝑛] is a ring of functions. Given 𝑓 ∈ ℂ[X], we obtain
a function 𝑓∶ 𝔸𝑛 → ℂ. The subset ℂ ⊆ ℂ[X] is the set of constant functions.
Proposition. The polynomial ring ℂ[X] satisfies the following properties.
(i) ℂ[X] is a unique factorisation domain.
(ii) Every ideal in ℂ[X] is finitely generated (equivalently, ℂ[X] is Noetherian), due to the

Hilbert basis theorem.

1.3. Affine varieties
Definition. Let 𝑆 ⊆ ℂ[X] be any subset of ℂ[X]. The vanishing locus of 𝑆 is defined to be
𝕍(𝑆) = {𝑃 ∈ 𝔸𝑛 ∣ ∀𝑓 ∈ 𝑆, 𝑓(𝑃) = 0}.
Definition. An affine (algebraic) variety in 𝔸𝑛 is a set of the form 𝕍(𝑆) for some 𝑆.
Note that there is some inconsistency between definitions in different textbooks; some au-
thors also impose an irreducibility condition.

Example. (i) Let 𝑛 = 1. The polynomial 𝑓 ∈ ℂ[𝑋] gives the vanishing locus 𝕍(𝑓) ⊆ 𝔸1,
the set of zeroes of 𝑓. Conversely, if 𝑉 ⊆ 𝔸1 is finite, then 𝑉 = 𝕍(𝑓) where 𝑓 =
∏𝑎∈𝑉 (𝑥 − 𝑎).

(ii) A hypersurface in 𝔸𝑛 is a variety of the form 𝕍(𝑓) where 𝑓 ∈ ℂ[𝑋].
(iii) It is often convenient to represent varieties not by equations but parametrically. The

affine twisted cubic is 𝐶 = {(𝑡, 𝑡2, 𝑡3) ∣ 𝑡 ∈ ℂ} ⊂ 𝔸3. This is a variety, as it is the vanish-
ing locus of the two polynomials 𝑋2

1 − 𝑋2 and 𝑋3
1 − 𝑋3.

Theorem. Let 𝑆 ⊆ ℂ[X]. Then,
(i) Let 𝐼 ⊆ ℂ[X] be the ideal generated by 𝑆. Then, 𝕍(𝑆) = 𝕍(𝐼).
(ii) There exists a finite subset {𝑓𝑗} of 𝑆 such that 𝕍(𝑆) = 𝕍({𝑓𝑗}).

Proof. Part (i). Suppose 𝑃 ∈ 𝔸𝑛. Then, 𝑓(𝑃) = 0 for all 𝑓 ∈ 𝑆 if and only if 𝑓(𝑃) = 0 for all
𝑓 ∈ 𝐼, by the basic properties of ideals.
Part (ii). By (i), 𝕍(𝑆) = 𝕍(𝐼). 𝐼 is finitely generated, so there exist functions ℎ1,… , ℎ𝑟 ∈ 𝐼
that generate 𝐼. Reversing (i), 𝕍(𝐼) = 𝕍({ℎ𝑖}). But since 𝐼 is generated by 𝑆, each ℎ𝑖 can
be written as a linear combination of finitely many elements of 𝑆. So ℎ𝑖 = ∑𝑗 𝑔𝑖𝑗𝑓𝑗 where
𝑓𝑗 ∈ 𝑆. Then 𝕍(𝑆) = 𝕍({𝑓𝑗}).

Proposition. Let 𝑆, 𝑇 ⊆ ℂ[X]. Then,
(i) 𝑆 ⊆ 𝑇 implies 𝕍(𝑇) ⊆ 𝕍(𝑆).
(ii) 𝕍(0) = 𝔸𝑛, and 𝕍(ℂ[X]) = 𝕍(𝜆) = ∅ where 𝜆 ∈ ℂ ∖ {0}.
(iii) ⋂𝑗 𝕍(𝐼𝑗) = 𝕍(∑𝑗 𝐼𝑗) for any family of ideals 𝐼𝑗 .
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1. Affine varieties

(iv) 𝕍(𝐼) ∪ 𝕍(𝐽) = 𝕍(𝐼 ∩ 𝐽).

Proof. Part (i) and (ii) are trivial.

Part (iii). We have⋂𝑗 𝕍(𝐼𝑗) = 𝕍(⋃𝑗 𝐼𝑗). To conclude, note that the ideal generated by⋃𝑗 𝐼𝑗
is∑𝑗 𝐼𝑗 .

Part (iv). We have already seen that 𝕍(𝐼) ∪ 𝕍(𝐽) ⊆ 𝕍(𝐼 ∩ 𝐽). For the reverse containment,
suppose 𝑃 ∈ 𝕍(𝐼 ∩ 𝐽), and suppose 𝑃 ∉ 𝕍(𝐼). Then, there exists some 𝑔 ∈ 𝐼 such that
𝑔(𝑃) = 0. Moreover, for all elements 𝑓 ∈ 𝐽, 𝑓𝑔 ∈ 𝐼 ∩ 𝐽, so (𝑓𝑔)(𝑃) = 0. Hence 𝑓(𝑃) = 0 for
all 𝑓 ∈ 𝐽, so 𝑃 ∈ 𝕍(𝐽).

1.4. Irreducible varieties
Definition. A variety 𝑉 is called irreducible if whenever 𝑉 = 𝑉1 ∪ 𝑉2, where 𝑉1, 𝑉2 are
varieties, we have 𝑉 = 𝑉1 or 𝑉 = 𝑉2. A variety that is not irreducible is called reducible.

Example. The variety 𝑉 = 𝕍(𝑋𝑌) is reducible, as it is the union of 𝕍(𝑋) and 𝕍(𝑌).
Proposition. Every affine variety 𝑉 is a finite union of irreducible varieties.

This proof uses a ‘bisection’ argument.

Proof. If𝑉 is irreducible, there is nothing to prove. Otherwise,𝑉 = 𝑉1∪𝑉 ′
1 , where𝑉1, 𝑉 ′

1 ≠ 𝑉 .
If𝑉1, 𝑉 ′

1 are finite unions of irreducible varieties, the proof is already complete. Suppose𝑉1 is
not a finite union of irreducibles. Then, it follows that 𝑉1 = 𝑉2∪𝑉 ′

2 nontrivially. Inductively,
we obtain

𝑉 = 𝑉0 ⊋ 𝑉1 ⊋ 𝑉2 ⊋ 𝑉3 ⊋ …
This infinite descending chain never stabilises. Define

𝑊 =
∞

⋂
𝑗=0

𝑉 𝑗 = 𝕍(
∞
∑
𝑗=0

𝐼𝑗)

But ∑∞
𝑗=0 𝐼𝑗 is finitely generated. So ∑

∞
𝑗=0 𝐼𝑗 = ∑𝑗≤𝑁 𝐼𝑗 for some 𝑁 ∈ ℕ. Hence, 𝑊 =

⋂𝑗≤𝑁 𝑉 𝑗 contradicting that the descending chain never stabilises.

Definition. Let 𝑉 be an affine variety. Aminimal decomposition of 𝑉 is a representation of
𝑉 as a finite union of distinct irreducibles 𝑉 𝑖 such that no 𝑉 𝑖 is contained within 𝑉 𝑗 .

Proposition. Minimal decompositions of affine varieties are unique up to ordering.

Proof sketch. This proof is left as an exercise. One can compare two decompositions by in-
tersecting the irreducible components of one decomposition with the other.

Given uniqueness of minimal decompositions, we can refer to the irreducibles appearing in
such a decomposition as the irreducible components of a variety.
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IX. Algebraic Geometry

1.5. Zariski and Euclidean topologies
Definition. The Zariski topology on 𝔸𝑛 is the topology where the closed sets are precisely
the affine varieties. If 𝑉 ⊆ 𝔸𝑛 is a (sub)variety, the Zariski topology on 𝑉 is the subspace
topology for the Zariski topology on 𝔸𝑛.
Remark. This is in fact a topology, as all of the relevant axioms have been proven.

Definition. The Euclidean topology or analytic topology on 𝔸𝑛 is the topology induced by
the metric space structure on ℂ𝑛. If 𝑉 ⊆ 𝔸𝑛, the Euclidean topology on 𝑉 is the subspace
topology of the Euclidean topology on 𝔸𝑛.
Proposition. The Zariski topology on 𝔸1 coincides with the cofinite topology; the closed
sets are exactly the finite sets. This topology is not Hausdorff but it is compact. The Euc-
lidean topology on 𝔸1 is Hausdorff but not compact.
Remark. 𝔸2 with the Zariski topology is not homeomorphic to 𝔸1 × 𝔸1 with the product of
the Zariski topologies.

1.6. Ideals from zero sets
Theorem (weak form of Hilbert’s Nullstellensatz). Every maximal ideal in ℂ[X] has the
form (𝑋1 − 𝑎1,… , 𝑋𝑛 − 𝑎𝑛) for 𝑎𝑖 ∈ ℂ. Moreover, if 𝐼 is any non-unit ideal, 𝕍(𝐼) ≠ ∅ ⊆ 𝔸𝑛.
We prove this over the complex numbers; the given proof only works for this case, but the
statement holds for all algebraically closed fields.

Proof. Every ideal of this form has quotient ℂ, so they are all maximal. Let𝔪 ⊲ ℂ[X] be a
maximal ideal, and let 𝐾 = ℂ[X]⟋𝔪. 𝐾 is a field as𝔪 is maximal, and it is a field extension
of ℂ. Define 𝑎𝑖 to be the coset 𝑋𝑖 + 𝔪. If 𝑎𝑖 ∈ ℂ for all 𝑖, this gives the result as required
because the ideal is generated by (𝑋1 − 𝑎1,… , 𝑋𝑛 − 𝑎𝑛).
Otherwise, 𝐾 ⊋ ℂ. Butℂ is algebraically closed, so there exists 𝑡 ∈ 𝐾 ∖ℂwhich is transcend-
ental overℂ. Let𝑈𝑚 be theℂ-span inside𝐾 of products of the form 𝑎𝑟11 …𝑎𝑟𝑛𝑛 where the 𝑟𝑖 are
nonnegative, and∑𝑛

𝑖=1 𝑟𝑖 ≤ 𝑚. Observe that 𝑈𝑚 is finite-dimensional, and 𝐾 = ⋃𝑚≥0𝑈𝑚
is countable-dimensional. One can show that the elements { 1

𝑡−𝑐
∣ 𝑐 ∈ ℂ} are linearly inde-

pendent over ℂ. There are uncountably many such elements, giving a contradiction.
For the last part, let 𝐼 be a nonzero ideal. There exists amaximal ideal𝔪 ⊇ 𝐼, so𝕍(𝐼) ⊇ 𝕍(𝔪),
but 𝕍(𝔪) is nonempty as it contains the point (𝑎1,… , 𝑎𝑚).

Definition. Let 𝑉 ⊆ 𝔸𝑛 be an affine variety. The ideal of functions vanishing on 𝑉 is 𝐼(𝑉) =
{𝑓 ∈ ℂ[X] ∣ ∀𝑃 ∈ 𝑉, 𝑓(𝑃) = 0}.
Proposition. Let 𝑉 ⊆ 𝔸𝑛 be an affine variety. Then,
(i) If 𝑉 = 𝕍(𝑆) where 𝑆 ⊆ ℂ[X], then 𝑆 ⊆ 𝐼(𝑉). In particular, 𝐼(𝑉) is the largest ideal

vanishing on 𝑉 .
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1. Affine varieties

(ii) 𝑉 = 𝕍(𝐼(𝑉)).
(iii) Varieties 𝑉,𝑊 ⊆ 𝔸𝑛 are equal if and only if 𝐼(𝑉) = 𝐼(𝑊).

Proof. Follows from the definitions.

Therefore, we have an injective map 𝐼 from the space of affine varieties in 𝔸𝑛 to the space of
ideals in ℂ[X], and 𝕍 gives a left inverse.
Proposition. If 𝑉,𝑊 are affine varieties, 𝑉 ⊆ 𝑊 if and only if 𝐼(𝑊) ⊆ 𝐼(𝑉).

Proof. The forward implication follows from set theory. For the reverse, if 𝑉 ⊈ 𝑊 , we can
choose 𝑃 ∈ 𝑉 ∖𝑊 . Since 𝑃 ∉ 𝕍(𝐼(𝑊)), there exists a function 𝑓 ∈ 𝐼(𝑊) such that 𝑓(𝑃) ≠ 0,
so 𝑓 ∉ 𝐼(𝑉).

Proposition. Let 𝑉 be a variety. Then 𝑉 is irreducible if and only if 𝐼(𝑉) is a prime ideal.
Recall that 𝐼(𝑉) is prime when 𝑓1𝑓2 ∈ 𝐼(𝑉) implies 𝑓1 ∈ 𝐼(𝑉) or 𝑓2 ∈ 𝐼(𝑉). Geometrically,
the ideal is not prime when we can find two functions where the product is zero on 𝑉 but
are individually not zero on all of 𝑉 .

Proof. Recall that 𝐼(𝑉1 ∪ 𝑉2) = 𝐼(𝑉1) ∩ 𝐼(𝑉2). Suppose 𝑉 were reducible, so 𝑉 = 𝑉1 ∪ 𝑉2
where 𝑉1, 𝑉2 ≠ 𝑉 . In particular, 𝑉1 ⊈ 𝑉2 ⊈ 𝑉1. Now, let 𝐼𝑗 = 𝐼(𝑉 𝑗), giving 𝐼1 ⊉ 𝐼2 ⊉ 𝐼1, and
𝐼(𝑉) = 𝐼1 ∩ 𝐼2. Therefore, there exists 𝑓1 ∈ 𝐼1 ∖ 𝐼2 and 𝑓2 ∈ 𝐼2 ∖ 𝐼1. Each 𝑓𝑖 is not an element
of 𝐼(𝑉), but 𝑓1𝑓2 ∈ 𝐼(𝑉). So 𝐼(𝑉) cannot be prime.
Conversely, suppose 𝐼(𝑉) is not prime, so 𝑓1𝑓2 ∈ 𝐼(𝑉) but 𝑓1, 𝑓2 ∉ 𝐼(𝑉). Define𝑉1 = 𝑉∩𝕍(𝑓1)
and 𝑉2 = 𝑉 ∩ 𝕍(𝑓2). Since neither 𝑓𝑖 is contained in 𝐼(𝑉), 𝑉 𝑖 ≠ 𝑉 . Also, if 𝑃 ∈ 𝑉 , we have
𝑓1(𝑃)𝑓2(𝑃) = 0, so 𝑃 ∈ 𝑉1 ∪ 𝑉2. So 𝑉 is reducible.

Example. Let 𝑉 = 𝕍(𝑋𝑌) ⊂ 𝔸2. Then 𝑉 = 𝕍(𝑋) ∪ 𝕍(𝑌) is a decomposition of 𝑉 into
irreducible components. Indeed, 𝕍(𝑋) is irreducible, as 𝐼(𝕍(𝑋)) = (𝑋) is a prime ideal in
ℂ[𝑋, 𝑌], and similarly for 𝑌 .
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IX. Algebraic Geometry

2. Structures on varieties
2.1. Coordinate rings
Consider a polynomial 𝑓 ∈ ℂ[X]. We obtain a function 𝑓∶ 𝔸𝑛 → 𝔸1, If 𝑉 ⊆ 𝔸𝑛 and
𝑓, 𝑔 ∈ ℂ[X], we are interested in when 𝑓, 𝑔 induce the same set-theoretic function on 𝑉 . We
intend to show that 𝑓, 𝑔 induce the same function if and only if 𝑓 − 𝑔 ∈ 𝐼(𝑉). Therefore,
we can study polynomials modulo this relation by taking the quotient with respect to this
ideal.

Definition. Let𝑉 ⊆ 𝔸𝑛 be a variety. The coordinate ring of𝑉 , or the ring of regular functions
of 𝑉 , is defined as ℂ[X]⟋𝐼(𝑉), denoted ℂ[𝑉] or 𝒪(𝑉).

Corollary. Let𝑉 be a variety. Then𝑉 is irreducible if and only ifℂ[𝑉] is an integral domain.
Remark. ℂ[𝑉] does not precisely determine 𝑉 or 𝐼(𝑉). For instance, consider a surjective
homomorphism 𝜃∶ ℂ[X] → ℂ[𝑉], then ker 𝜃 = 𝐼 is an ideal, and 𝕍(𝐼) is a variety with
coordinate ring ℂ[𝑉]. However, there is not a unique such homomorphism in general. For
instance, ℂ[𝑋] ≃ ℂ[𝑋, 𝑌]⟋(𝑌).

Definition. Let 𝐼 ⊲ ℂ[X]. We define the radical ideal of 𝐼 to be

√𝐼 = {𝑓 ∈ ℂ[X] ∣ ∃𝑚 > 0, 𝑓𝑚 ∈ 𝐼}

This is an ideal. √√𝐼 = √𝐼. Note that 𝕍(𝐼) = 𝕍(√𝐼).

Theorem (strong form of Hilbert’s Nullstellensatz). Let 𝐼 ⊲ ℂ[X] be an ideal, and 𝑉 = 𝕍(𝐼).
Then 𝐼(𝑉) = √𝐼.
Therefore, the map 𝑉 ↦ 𝐼(𝑉) maps precisely onto the space of radical ideals, ideals which
are equal to their radicals.

Example. Let 𝑉 = {0} ∈ 𝔸1. We can write 𝑉 = 𝕍(𝑋2), so its coordinate ring is

ℂ[𝑋]⟋𝐼(𝕍(𝑋2)) =
ℂ[𝑋]⟋√(𝑋2) =

ℂ[𝑋]⟋(𝑋) ≃ ℂ

In building the coordinate ring, we forget the structure of 𝑋2. If we had instead considered
ℂ[𝑋]⟋(𝑋2), we would have certain nonzero elements whose squares are zero.

2.2. Morphisms
Let 𝑉 ⊆ 𝔸𝑛 and𝑊 ⊆ 𝔸𝑚 be affine varieties.

Definition. A regular map or morphism from 𝑉 to𝑊 is a function 𝜑∶ 𝑉 → 𝑊 such that
there exist elements 𝑓1,… , 𝑓𝑚 ∈ ℂ[𝑉] such that

𝜑(𝑃) = (𝑓1(𝑃),… , 𝑓𝑚(𝑃))
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2. Structures on varieties

for all 𝑃 ∈ 𝑉 .

The set of all morphisms from 𝑉 to𝑊 is denoted Mor(𝑉,𝑊).

Example. The morphisms 𝑉 to 𝔸1 are precisely the functions in the coordinate ring ℂ[𝑉].

Example. Linear projections 𝔸𝑛 → 𝔸𝑚 are morphisms. More generally, linear transforma-
tions and affine translations are also morphisms.

Example. If 𝑉 ⊆ 𝑊 ⊆ 𝔸𝑛 where 𝑉,𝑊 are varieties, then the inclusion map 𝑉 ↪ 𝑊 is a
morphism.

Proposition. Let 𝜑∶ 𝑉 → 𝑊,𝜓∶ 𝑊 → 𝑍 be morphisms. Then the composite map 𝜓 ∘ 𝜑 is
a morphism 𝑉 → 𝑍.

Proof. The composition of polynomials is a polynomial.

2.3. Pullbacks
Definition. Let 𝜑∶ 𝑉 → 𝑊 be a morphism, and let 𝑔 ∈ ℂ[𝑊]. Then, the pullback is
𝜑⋆(𝑔) = 𝑔 ∘ 𝜑∶ 𝑉 → ℂ. Note that 𝜑⋆(𝑔) ∈ ℂ[𝑉], so 𝜑⋆ gives a map ℂ[𝑊] → ℂ[𝑉].

Remark. This map 𝜑⋆ is a ring homomorphism, and restricts to the identity on ℂ.

Definition. A ring homomorphismℂ[𝑋] → ℂ[𝑌] that restricts to the identity onℂ is called
a ℂ-algebra homomorphism.

Theorem. Let 𝑉 ⊆ 𝔸𝑛,𝑊 ⊆ 𝔸𝑚 be affine varieties. Themap 𝛼∶ 𝜑 ↦ 𝜑⋆ defines a bijection
from Mor(𝑉,𝑊) to the space of ℂ-algebra homomorphisms ℂ[𝑊] → ℂ[𝑉].

Proof. Let 𝑦1,… , 𝑦𝑛 ∈ ℂ[𝑊] be the coordinate functions on𝑊 , which are the restrictions
of the standard linear coordinate functions on 𝔸𝑛.

First, we show injectivity of 𝛼. Let 𝜑∶ 𝑉 → 𝑊 be a morphism. For any point 𝑃 ∈ 𝑉 ,

𝜑(𝑃) = (𝑦1(𝜑(𝑃)),… , 𝑦𝑚(𝜑(𝑃))) = (𝜑⋆(𝑦1)(𝑃),… , 𝜑⋆(𝑦𝑛)(𝑃))

So 𝜑 is determined by the values of 𝜑⋆(𝑦1),… , 𝜑⋆(𝑦𝑛).

Now we show its surjectivity. Let 𝜆∶ ℂ[𝑊] → ℂ[𝑉] be a ℂ-algebra homomorphism, and
let 𝑓𝑖 = 𝜆(𝑦𝑖) ∈ ℂ[𝑉]. We can now define the map 𝜑 = (𝑓1,… , 𝑓𝑚)∶ 𝑉 → 𝔸𝑚. We will
show that 𝜑 has image contained in𝑊 , so that we have 𝜑∶ 𝑉 → 𝑊 , which then shows that
𝜑 is a morphism 𝑉 → 𝑊 . For 𝑃 ∈ 𝑉 , we must show 𝑔(𝜑(𝑃)) = 0 for all 𝑔 ∈ 𝐼(𝑊). We
obtain 𝑔(𝑓1(𝑃),… , 𝑓𝑚(𝑃)) = 𝜆(𝑔)(𝑃). But 𝑔 = 0 in ℂ[𝑊], so 𝑔(𝜑(𝑃)) = 0 as required. Hence
𝜑∶ 𝑉 → 𝑊 is a morphism, and 𝜆 = 𝜑⋆ since 𝜑⋆(𝑦𝑖) = 𝑓𝑖 = 𝜆(𝑦𝑖).

Definition. Two affine varieties 𝑉,𝑊 are isomorphic if we have 𝜑∶ 𝑉 → 𝑊,𝜓∶ 𝑊 → 𝑉
where 𝜑 ∘ 𝜓 = id𝑊 and 𝜓 ∘ 𝜑 = id𝑉 .
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Theorem. 𝑉 is isomorphic to𝑊 if and only if ℂ[𝑉] is isomorphic to ℂ[𝑊] as ℂ-algebras.

Proof. Use the previous theorem.

Example. The affine line 𝔸1 is isomorphic to the twisted cubic {(𝑡, 𝑡2, 𝑡3) ∣ 𝑡 ∈ ℂ}. This can
be easily shown by calculating the coordinate rings explicitly.

Example. Let 𝑉 ⊆ 𝔸2 be given by 𝑋1𝑋2(𝑋1 − 𝑋2) = 0. This is the union of three lines,
intersecting at the origin. Let𝑊 ⊆ 𝔸3 be given by 𝑋1𝑋2 = 𝑋2𝑋3 = 𝑋3𝑋1 = 0, which is also a
union of three lines, which in this case are the coordinate axes. These are not isomorphic as
varieties, because their coordinate rings are not isomorphic, which can be easily shownusing
tangent spaces, defined in later sections. Note, however, that 𝑉 and𝑊 are homeomorphic
in the Euclidean topology.

2.4. Rational functions
Definition. Let𝑉 ⊆ 𝔸𝑛 be an irreducible variety. Its function field, field of rational functions,
or field of meromorphic functions is the field of fractions ℂ(𝑉) = 𝐹𝐹(ℂ[𝑉]) of ℂ[𝑉].
Remark. Since 𝑉 is irreducible, 𝐼(𝑉) is prime, so ℂ[𝑉] is an integral domain. This allows us
to construct the field of fractions.

Definition. Let 𝜑 be a rational function. A point 𝑃 ∈ 𝑉 is called regular if 𝜑 can be ex-
pressed as a ratio 𝑓

𝑔
with 𝑔(𝑃) ≠ 0.

Remark. If 𝜑 = 𝑓
𝑔
, we obtain a well-defined function 𝜑∶ 𝑉 ∖ 𝕍(𝑔) → ℂ. The domain is an

open set in 𝑉 , since 𝕍(𝑔) is Zariski closed.
Example. Consider the rational function 𝑋2

1 /𝑋2 ∈ ℂ(𝔸2). This defines a map on the com-
plement of the 𝑋2-axis. Note that 𝑋3/𝑋1𝑋2 defines the same function, but only on points
other than 𝕍(𝑋1𝑋2). Note that 𝑋3/𝑋1𝑋2 = 𝑋2

1 /𝑋2 ∈ ℂ(𝔸2), so we cannot quite think of
elements of ℂ(𝔸2) as functions.
Remark. A rational function on 𝑉 can be thought of as a pair (𝑈, 𝑓) with 𝑈 ⊆ 𝑉 Zariski
open, such that 𝑓 is a function 𝑈 → ℂ. We define the equivalence relation (𝑈, 𝑓) ∼ (𝑈 ′, 𝑓′)
if 𝑓, 𝑓′ agree on some nonempty Zariski open set contained in 𝑈 and 𝑈 ′. Note that if 𝑉 is
irreducible, every nonempty open subset is dense in the Zariski topology.

Definition. A local ring is a ring 𝑅 that contains a unique maximal ideal.
Definition. Let 𝑉 be an irreducible variety, and let 𝑃. The local ring of 𝑉 at 𝑃 is 𝒪𝑉,𝑃 =
{𝑓 ∈ ℂ(𝑉) ∣ 𝑓 is regular at 𝑃}.
Proposition. The local ring of an irreducible variety𝑉 at a point 𝑃 is a local ring. Its unique
maximal ideal is

𝔪𝑉,𝑃 = {𝑓 ∈ 𝒪𝑉,𝑃 ∣ 𝑓(𝑃) = 0} = ker(𝑓 ↦ 𝑓(𝑃))
Further, the invertible elements of 𝒪𝑉,𝑃 are precisely those 𝑓 such that 𝑓(𝑃) ≠ 0.
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The proof follows from the following more general lemma.

Lemma. A ring 𝑅 is a local ring if and only if 𝑅 ∖ 𝑅⋆ is an ideal. If so, the unique maximal
ideal is 𝑅 ∖ 𝑅⋆.

Proof. If 𝐴 ⊴ 𝑅 is an ideal, then 𝐴 ≠ 𝑅 if and only if 𝐴 ⊆ 𝑅∖𝑅⋆, because if any unit lies in 𝐴,
it must be all of 𝑅. Hence, if 𝑅 ∖ 𝑅⋆ is an ideal, it is automatically the unique maximal ideal.

Conversely, let 𝑅 be a local ring with unique maximal ideal 𝔪. Then 𝔪 ⊆ 𝑅 ∖ 𝑅⋆, and if
𝑥 ∈ 𝑅 ∖ 𝑅⋆ we must have (𝑥) ≠ 𝑅, so (𝑥) ⊆ 𝔪 by maximality. Hence𝔪 = 𝑅 ∖ 𝑅⋆.

Note that this proves the previous proposition, as 𝑓
𝑔
∈ 𝒪𝑉,𝑃 is invertible if and only if

(𝑓
𝑔
)(𝑃) ≠ 0.

Example. Let
𝑅 = {𝑓𝑔 ∈ ℂ(𝑡) ||| ignoring factors, 𝑔(0) ≠ 0} = 𝒪𝔸1,0

Here, the maximal ideal is (𝑡), and 𝑅⟋(𝑡) = ℂ.

Let 𝑆 = ℂ⟦𝑡⟧ be the ring of formal power series in 𝑡. This is a local ring by the lemma; its
maximal ideal is (𝑡). Note that in fact 𝑅 ⊆ 𝑆.
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3. Projective varieties
We will construct the projective space ℙ𝑛, which will be an upgrade to 𝔸𝑛; it is not immedi-
ately obvious whyℙ𝑛 is considered ‘better’. Projective space has some interesting properties,
such as:

• every pair of lines in ℙ2 that are distinct meet at a unique point;
• if𝑉 is a projective variety (defined shortly) inℙ2 defined by a degree 𝑑 polynomial, if𝑉
is amanifold then𝑉 is homeomorphic in the Euclidean topology to a closed orientable
topological surface of genus (𝑑−1

2
).

• ℙ𝑛 is compact in the Euclidean topology, but 𝔸𝑛 is not.

3.1. Definition
Definition. Let 𝑈 be a finite-dimensional complex vector space. The projectivisation of 𝑈 ,
written ℙ(𝑈), is the set of lines in 𝑈 through the origin 0 ∈ 𝑈 . Define ℙ𝑛 = ℙ(ℂ𝑛+1).
We usually index the coordinates on ℂ𝑛+1 with indices 0,… , 𝑛. A line in ℂ𝑛+1 is therefore
given by {(𝑎0𝑡,… , 𝑎𝑛𝑡) ∣ 𝑡 ∈ ℂ}, and is written 𝐿(𝑎0,…,𝑎𝑛), where not all 𝑎𝑖 are zero. We write
(𝑎0 ∶ 𝑎1 ∶ ⋯ ∶ 𝑎𝑛) for the corresponding element of ℙ𝑛. Therefore,

ℙ𝑛 = {(𝑎0,… , 𝑎𝑛) ∣ 𝑎𝑖 ∈ ℂ,not all 𝑎𝑖 = 0}⟋scaling by ℂ⋆

For example, (2 ∶ 1 ∶ −2) = (4 ∶ 2 ∶ −4) ∈ ℙ2.
We can decompose ℙ1 as

{(𝑎0 ∶ 𝑎1) ∣ 𝑎0 ≠ 0} ∪ {(𝑎0 ∶ 𝑎1) ∣ 𝑎0 = 0} = {(1 ∶ 𝑧) ∣ 𝑧 ∈ ℂ} ∪ {(0 ∶ 1)}
= 𝔸1 ∪ a point at infinity

More generally,

ℙ𝑛 = {(𝑎0 ∶ ⋯ ∶ 𝑎𝑛) ∣ 𝑎0 ≠ 0} ∪ {(0 ∶ 𝑎1 ∶ ⋯ ∶ 𝑎𝑛)} = 𝔸𝑛 ⨿ ℙ𝑛−1

By induction,ℙ𝑛 = 𝔸𝑛∪𝔸𝑛−1∪⋯∪𝔸1∪ a point, where the terms other than𝔸𝑛 are considered
‘at infinity’.

Definition. The Zariski (respectively Euclidean) topology on projective space is the quo-
tient topology for the subspace topology for the Zariski (respectively Euclidean) topology on
ℂ𝑛+1 ∖ {0}, where ℙ𝑛 = ℂ𝑛+1 ∖ {0}⟋∼ and ℂ𝑛+1 ∖ {0} ⊆ ℂ𝑛+1.

There is a copy of 𝑆2𝑛+1 inside ℂ𝑛+1 ∖ {0}, which therefore surjects onto ℙ𝑛.
Corollary. ℙ𝑛 is compact.

Proof. It is the continuous image of the compact set 𝑆2𝑛+1.
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Definition. For 0 ≤ 𝑗 ≤ 𝑛, we define the 𝑗th coordinate hyperplane is the set 𝐻𝑗 =
{(a𝑖) ∣ 𝑎𝑗 = 0} ⊆ ℙ𝑛.
We can naturally identify 𝐻𝑗 with ℙ𝑛−1.
Definition. The 𝑗th standard affine patch 𝑈𝑗 is the complement of 𝐻𝑗 .

There is a natural bijection𝑈𝑗 → 𝔸𝑛 bymapping (𝑎0 ∶ ⋯ ∶ 𝑎𝑛) to (
𝑎0
𝑎𝑗
,… , 𝑎𝑗

𝑎𝑗
,… , 𝑎𝑛

𝑎𝑗
)where

the hat denotes ‘forgetting’ that element of the tuple. The inverse function maps (𝑏1,… , 𝑏𝑛)
to (𝑏1 ∶ ⋯ ∶ 𝑏𝑗−1 ∶ 1 ∶ 𝑏𝑗 ∶ ⋯ ∶ 𝑏𝑛). We observe that {𝑈𝑗}

𝑛
𝑗=0 is an open cover of ℙ

𝑛 in the
Zariski topology.

3.2. Projective varieties
Example. Consider the polynomial 𝑋0 + 1 ∈ ℂ[𝑋0, 𝑋1]. Note that 𝑋0 + 1 does not define
a function on ℙ1. For example, (−1 ∶ 0) = (1 ∶ 0), but 𝑋0 + 1 vanishes on the first rep-
resentative and not the second. The vanishing locus of 𝑋0 + 1 on ℙ1 is therefore undefined.
Therefore, we need a slightly more subtle definition of a variety in projective space.

Definition. A monomial in ℂ[X] = ℂ[𝑋0,… , 𝑋𝑛] is an element of the form 𝑋𝑑0
0 𝑋𝑑1

1 …𝑋𝑑𝑛𝑛
where 𝑑𝑖 ≥ 0. A term is a nonzero multiple of a monomial. The degree of a term 𝑐𝑋𝑑0

0 …𝑋𝑑𝑛𝑛
is∑𝑛

𝑖=0 𝑑𝑖. A homogeneous polynomial of degree 𝑑 is a finite sum of terms of degree 𝑑.
Any polynomial can be uniquely decomposed as a sum of homogeneous polynomials of
different degree; we write 𝑓 = ∑∞

𝑖=0 𝑓[𝑖] where the 𝑓[𝑖] are homogeneous of degree 𝑖. Note
that this sum is always finite.

Lemma. Let 𝑓 ∈ ℂ[X] be homogeneous, and let (𝑎0,… , 𝑎𝑛) ∈ ℂ𝑛+1∖{0}. Then, if 𝑓(a) = 0,
we have 𝑓(𝜆a) = 0 for all 𝜆 ∈ ℂ⋆.

Proof. Trivial by checking the definitions.

Corollary. Let 𝑓 ∈ ℂ[X] be homogeneous. Then

𝕍(𝑓) = {𝑃 ∈ ℙ𝑛 ∣ 𝑓(a) = 0 for any (or every) representative of 𝑃}

is well-defined.

Definition. An ideal 𝐼 ⊴ ℂ[X] is called homogeneous if it can be generated by homogeneous
polynomials (of potentially different degrees).

Lemma. Let 𝐼 ⊴ ℂ[X] be an ideal. Then 𝐼 is homogeneous if and only if whenever 𝑓 ∈ 𝐼,
all of the homogeneous parts 𝑓[𝑟] are also contained in 𝐼.

Proof. Suppose 𝐼 is homogeneous. Then let 𝑔𝑗 be homogeneous generators of 𝐼 of degree
𝑑𝑗 . Writing 𝑓 = ∑ℎ𝑗𝑔𝑗 for arbitrary ℎ𝑗 ∈ ℂ[X], we can split each ℎ𝑗 into its pieces ℎ𝑗[𝑟].
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Now, ℎ𝑗[𝑟]𝑔𝑗 ∈ 𝐼 is homogeneous, and its degree is 𝑟𝑑𝑗 . Hence, 𝑓[𝑟] = ∑𝑗 ℎ𝑗[𝑟−𝑑𝑗]𝑔𝑗 ∈ 𝐼 as
required. The converse is trivial by decomposing the generators of the ideal.

Definition. Let 𝐼 ⊴ ℂ[X] be a homogeneous ideal. Then, the vanishing locus is 𝕍(𝐼) =
{𝑃 = (a𝑖) ∈ ℙ𝑛 ∣ ∀𝑓 ∈ 𝐼, 𝑓((a𝑖)) = 0}. A projective variety in ℙ𝑛 is any set of this form.

Note that we could have defined the vanishing locus using the quantifier ‘for all homogen-
eous 𝑓 ∈ 𝐼’.

Example. Let 𝑈 ⊆ ℂ𝑛+1 be any vector subspace. Let the projectivisation of 𝑈 is a subset of
ℙ𝑛, and is a projective variety. More concretely, 𝑈 = {v ∈ ℂ𝑛+1 ∣ ∀𝑗, ∑𝑛

𝑖=0 𝑎
(𝑗)
𝑖 𝑣𝑖 = 0} for a

subset a(𝑗) = (𝑎(𝑗)0 ,… , 𝑎(𝑗)𝑛 ), as a vector subspace is the kernel of some linearmap. Therefore,
ℙ(𝑈) = 𝕍(𝐼) where 𝐼 is the ideal generated by 𝐹𝑗 = ∑𝑖 𝑎

(𝑗)
𝑖 𝑋𝑖 ∈ ℂ[X]. More generally, a

projective linear space is the projectivisation of a linear subspace. Hence, projective linear
spaces in ℙ𝑛 are in bijection with linear subspaces in ℂ𝑛+1.

𝐺𝐿𝑛+1(ℂ) acts onℙ𝑛 coordinatewise. Thenormal subgroupof scalarmatricesℂ⋆ ⊆ 𝐺𝐿𝑛+1(ℂ)
acts trivially on ℙ𝑛. The quotient is written 𝑃𝐺𝐿𝑛(ℂ) = 𝐺𝐿𝑛+1(ℂ)⟋ℂ⋆, and acts transitively
on ℙ𝑛.

Example. The Segre surface is the hypersurface 𝑆11 = 𝕍(𝑋0𝑋3 − 𝑋1𝑋2) ⊆ ℙ3. Consider the
map 𝜎11∶ ℙ1 × ℙ1 → ℙ3 given by 𝜎11((𝑎0 ∶ 𝑎1), (𝑏0 ∶ 𝑏1)) = (𝑎0𝑏0 ∶ 𝑎0𝑏1 ∶ 𝑎1𝑏0 ∶ 𝑎1𝑏1).
One can show that this map is well-defined, and in fact, Im𝜎11 = 𝑆11.

First, consider the map ℂ2×ℂ2 → ℂ4 where we identify ℂ4 with the space of 2×2matrices
on ℂ, given by the outer product. More precisely, (𝑣, 𝑤) ↦ 𝑣𝑤⊺. The image of this map is
precisely the set of matrices of rank at most 1. Hence, the image is the vanishing locus of
𝑋0𝑋3 − 𝑋1𝑋2, the determinant of such a matrix.

3.3. Homogenisation and projective closure
Recall that ℙ𝑛 = 𝑈0 ∪ ⋯ ∪ 𝑈𝑛, where 𝑈 𝑖 = ℙ𝑛 ∖ 𝕍(𝑋𝑖). We therefore have the following
different descriptions of a Zariski topology on ℙ𝑛:

(i) the quotient of the subspace of the Zariski topology on ℂ𝑛+1;

(ii) define that𝑉 is Zariski-closed if and only if𝑉 = 𝕍(𝐼)where 𝐼 ⊲ ℂ[X] is homogeneous;

(iii) the gluing topology: define that a subset 𝑍 ⊆ ℙ𝑛 is closed if 𝑍 ∩ 𝑈 𝑖 is closed for all 𝑖,
as the 𝑈 𝑖 are isomorphic to 𝔸𝑛.

These three constructions coincide.

If 𝑉 ⊆ ℙ𝑛 is a projective variety, consider 𝑈0 ∩ 𝑉 ⊆ 𝑈0. If 𝑉 = 𝕍(𝐼), then 𝑈0 ∩ 𝑉 = 𝕍(𝐼0)
where 𝐼0 = {𝑓 = 𝐹(1, 𝑌1,… , 𝑌𝑛) ∣ 𝐹 ∈ 𝐼 homogeneous} ⊆ ℂ[𝑌1,… , 𝑌𝑛]. Identifying 𝑈0 with
𝔸𝑛 with coordinates 𝑌1,… , 𝑌𝑛 (so 𝑌 𝑗 =

𝑋𝑗

𝑋0
), 𝑉 ∩ 𝑈0 is naturally an affine variety.
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Conversely, let 𝑊 ⊆ 𝔸𝑛 be an affine variety, and identify 𝔸𝑛 with 𝑈0. Then, the Zariski
closure 𝑊 of 𝑊 inside ℙ𝑛 is a projective variety. We are interested in studying the precise
projective varieties obtained in this way.

Definition. Let 𝑓 ∈ ℂ[𝑌1,… , 𝑌𝑛] be an arbitrary polynomial of total degree 𝑑. The homo-
genisation of 𝑓, written 𝐹 or 𝑓ℎ, is

𝑓ℎ(𝑋0,… , 𝑋𝑛) = 𝑋𝑑
0𝑓(

𝑋1
𝑋0
,… , 𝑋𝑛𝑋0

) ∈ ℂ[𝑋0,… , 𝑋𝑛]

This is homogeneous of degree 𝑑. Similarly, if 𝐼 is an ideal in ℂ[𝑌1,… , 𝑌𝑛], its homogenisa-
tion 𝐼⋆ = 𝐼ℎ is the ideal generated by the homogenisation of the elements 𝑓 ∈ 𝐼; this is a
homogeneous ideal in ℂ[𝑋0,… , 𝑋𝑛]. Given an affine variety 𝑉 ⊆ 𝔸𝑛, the projective closure
of 𝑉 is 𝕍(𝐼(𝑉)ℎ) ⊆ ℙ𝑛.

Example. Let 𝑓(𝑌1, 𝑌2) = 1+𝑌 2
1 +𝑌1𝑌2

2 . Its homogenisation is 𝑓ℎ(𝑋0, 𝑋1, 𝑋2) = 𝑋3
0+𝑋0𝑋2

1 +
𝑋1𝑋2

2 .

Remark. Let 𝐼 = (𝑓1,… , 𝑓𝑟) ⊆ ℂ[𝑌1,… , 𝑌𝑛], and let 𝐽 = (𝑓ℎ1 ,… , 𝑓ℎ𝑟 ). Typically, 𝐽 ≠ 𝐼ℎ. If 𝐼 is
principal, this holds: 𝐼 = (𝑓) implies 𝐼ℎ = (𝑓ℎ).

Proposition. Let 𝑉 ⊆ 𝔸𝑛 be an affine variety. Then, the Zariski closure 𝑉 ⊆ ℙ𝑛 given by
identifying 𝑈0 = 𝔸𝑛 coincides with the projective closure 𝕍(𝐼(𝑉)ℎ) ⊆ ℙ𝑛.

Proof. Let 𝐼 be an ideal in ℂ[𝑌1,… , 𝑌𝑛], and let 𝑉 = 𝕍(𝐼). Let 𝑉 be the Zariski closure. Let
𝐼ℎ be the homogenisation of the ideal. Then 𝕍(𝐼ℎ) is Zariski closed, and contains 𝑉 . We will
show that this is the smallest such set.

Suppose𝑌 ⊇ 𝑉 is closed, so𝑌 = 𝕍(𝐼′)where 𝐼′ is homogeneous. Any homogeneous element
in 𝐼′ can be written as 𝑋𝑑

0𝑓ℎ for some 𝑓 ∈ ℂ[𝑌1,… , 𝑌𝑛]. Now, 𝑋𝑑
0𝑓ℎ = 0 on 𝑉 ⊆ ℙ𝑛, so 𝑓 = 0

on 𝑉 ⊆ 𝔸𝑛. Hence 𝑓 ∈ 𝐼(𝑉) = √𝐼 by the Nullstellensatz. So 𝑓𝑚 ∈ 𝐼 for some 𝑚 > 0, so
(𝑓𝑚)ℎ = (𝑓ℎ)𝑚 ∈ 𝐼ℎ. Hence 𝑓ℎ ∈ √𝐼ℎ, so 𝑋𝑑

0𝑓ℎ ∈ √𝐼ℎ. Therefore, 𝐼′ ⊆ √𝐼ℎ.

Remark. Let 𝑉 ⊆ ℙ𝑛, and let𝑊 = 𝑉 ∩ 𝑈0 ⊆ 𝔸𝑛. Then𝑊 ⊆ ℙ𝑛 is not in general equal to
𝑉 . For example, let 𝑉 = 𝕍(𝑋0), so𝑊 = ∅ and𝑊 = ∅. This ambiguity arises due to the 𝑋𝑑

0
term required in the above proof when dehomogenising a polynomial.

This shows that the topological notion of the Zariski closure and the algebraic notion of the
projective closure agree.

Example. Let𝑉 ⊆ ℙ2 be given by𝕍(𝑋0𝑋1−𝑋2
2 ). We obtain𝑉0 ⊆ 𝑈0 given by setting𝑋0 = 1,

𝑉1 ⊆ 𝑈1 given by setting𝑋1 = 1, and𝑉2 ⊆ 𝑈2 given by setting𝑋2 = 1. We find𝑉0 = 𝕍(𝑌1−𝑌 2
2 )

which is a parabola, and 𝑉1 is similar. 𝑉2 = 𝕍(𝑋0𝑋1 − 1), which is a rectangular hyperbola.

Theorem. Let 𝑄 ⊆ ℙ𝑛 be given by 𝕍(𝑓) where 𝑓 is a homogeneous quadratic polynomial.
Then, after a change of coordinates 𝐴 ∈ 𝑃𝐺𝐿𝑛(ℂ), 𝑄 has the form 𝕍(𝑋2

0 +⋯+ 𝑋2
𝑟 ) where 𝑟

is the rank of the quadratic form 𝑓.
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IX. Algebraic Geometry

Proof. Use the results from IB Linear Algebra.

Theorem (projective Nullstellensatz). If 𝕍(𝐼) = ∅ ⊆ ℙ𝑛 where 𝐼 is a homogeneous ideal,
then 𝐼 ⊇ (𝑋𝑚

0 ,… , 𝑋𝑚
𝑛 ) for some 𝑚 ∈ ℕ. Further, if 𝑉 = 𝕍(𝐼) ≠ ∅, then 𝐼ℎ(𝑉) = √𝐼, where

𝐼ℎ(𝑉) is the ideal generated by homogeneous polynomials vanishing on 𝑉 .

Proof. We reduce to the affine case. Let 𝐼 be a homogeneous ideal, and let𝑉𝑎 = 𝕍(𝐼) ⊆ 𝔸𝑛+1.
Note that 0 ∈ 𝑉𝑎, assuming 𝑉 ≠ ∅. Then there is a continuous map 𝑉𝑎 ∖ {0} → 𝑉 obtained
by the restriction of 𝔸𝑛+1 ∖ {0} → ℙ𝑛. Moreover, this map is surjective, so is a quotient map.
Note that 𝑉 is empty if and only if 𝑉𝑎 = {0}. So the result holds by the affine Nullstellensatz.
The second part is similar.

Let 𝑉 be a projective variety in ℙ𝑛. If𝑊 ⊆ 𝑉 is a variety closed in 𝑉 , we say𝑊 is a closed
subvariety of 𝑉 . The complement 𝑉 ∖ 𝑊 is an open subvariety. The closed (respectively
open) subvarieties of 𝑉 satisfy the axioms of the closed (open) sets of a topology. We say 𝑉
is irreducible if 𝑉 cannot be written as 𝑉1 ∪ 𝑉2 for proper closed subvarieties 𝑉1, 𝑉2.
Proposition. (i) Every projective variety is a finite union of irreducible varieties.

(ii) 𝑉 is irreducible if and only if 𝐼ℎ(𝑉) is prime.

Proof. Part (i) is identical to the affine case. For part (ii), first observe that if 𝐼 is a homo-
geneous ideal which is not prime, we can find homogeneous 𝐹, 𝐺 ∉ 𝐼 such that 𝐹𝐺 ∈ 𝐼,
as 𝐼 is generated by homogeneous elements. Then the proof for the affine case works as
before.

Let 𝑆 ⊆ 𝑉 be a subset. 𝑆 is Zariski dense in 𝑉 if and only if every homogeneous polynomial
that vanishes on 𝑆 vanishes on 𝑉 .
Proposition. Let𝑉 ⊆ ℙ𝑛 be an irreducible projective variety. Let𝑊 ⊊ 𝑉 be a proper closed
subvariety. Then, 𝑉 ∖𝑊 is dense in 𝑉 .
Intuitively,𝑊 is lower-dimensional than 𝑉 , and 𝑉 with a lower-dimensional set removed is
dense.

Proof. Let 𝑓 ∈ ℂ[X] be a homogeneous polynomial that vanishes on 𝑉 ∖ 𝑊 . As 𝑊 ≠ 𝑉 ,
there exists a polynomial 𝑔 ∈ 𝐼ℎ(𝑊) ∖ 𝐼ℎ(𝑉) by the projective Nullstellensatz. Then, 𝑓𝑔
vanishes on all of 𝑉 . But 𝐼ℎ(𝑉) is prime as 𝑉 is irreducible, so 𝑓 ∈ 𝐼ℎ(𝑉).

3.4. Rational functions
Homogeneous polynomials have well-defined zero sets in ℙ𝑛, but not a well-defined value.
Therefore, we cannot define a coordinate ring ℂ[𝑉] in an analogous way. However, a ratio
of homogeneous polynomials of the same degree does have a well-defined value on ℙ𝑛 away
from the vanishing locus of the denominator.
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Definition. Let 𝑉 ⊆ ℙ𝑛 be an irreducible projective variety. The function field or field of
rational functions is

ℂ(𝑉) = {𝐹𝐺
||| 𝐹, 𝐺 ∈ ℂ[X] homogeneous and have the same degree, 𝐺 ∉ 𝐼ℎ(𝑉)}⟋∼

where 𝐹1
𝐺1

∼ 𝐹2
𝐺2

if 𝐹1𝐺2 − 𝐹2𝐺1 ∈ 𝐼ℎ(𝑉).

Lemma. The relation ∼ is an equivalence relation.

Proof. Reflexivity and symmetry are clear. Now suppose that 𝐹1
𝐺1

∼ 𝐹2
𝐺2

∼ 𝐹3
𝐺3
, so 𝐹2𝐺1 −

𝐹1𝐺2 ∈ 𝐼ℎ(𝑉) and𝐹3𝐺2−𝐹2𝐺3 ∈ 𝐼ℎ(𝑉). Consider𝐹1𝐺3−𝐹3𝐺1. Multiplying by𝐺2, 𝐹1𝐺2𝐺3−
𝐹3𝐺1𝐺2. Since 𝐺2 ∉ 𝐼ℎ(𝑉), primality of 𝐼ℎ(𝑉) implies that it suffices to show 𝐹1𝐺2𝐺3 −
𝐹3𝐺1𝐺2 ∈ 𝐼ℎ(𝑉). In the ring ℂ[X]⟋𝐼ℎ(𝑉), we have relations 𝐹1𝐺2 = 𝐹2𝐺1 and 𝐹3𝐺2 = 𝐹2𝐺3.

Hence 𝐹1𝐺2𝐺3 − 𝐹3𝐺1𝐺2 = 0 in ℂ[X]⟋𝐼ℎ(𝑉).

Note that ℂ(𝑉) is a field.
Proposition. The field ℂ(𝑉) is a finitely generated field extension of ℂ.
Note that ℂ(𝑡) is finitely generated as a field, but not finitely generated as a ℂ-module or a
ℂ-algebra.

Proof. Suppose 𝑉 ≠ ∅. Then, there is some coordinate function 𝑋𝑖 that is nonzero on 𝑉 ;
without loss of generality let 𝑖 = 0. We claim that 𝑋1

𝑋0
,… , 𝑋𝑛

𝑋0
generateℂ(𝑉) overℂ. Explicitly,

if 𝐹
𝐺
is a degree 0 ratio, it can be written in terms of the 𝑋𝑗

𝑋0
and the field operations. It suffices

to show the result holds when 𝐹
𝐺
is of the form 𝑀

𝐺
where𝑀 is a monomial. Then, it suffices

to show the result for 𝐺
𝑀
where𝑀 is a monomial by taking reciprocals. Hence, it suffices to

show the result for 𝑀
𝑀′ where𝑀,𝑀′ are monomials, and this is trivial.

Corollary. Let 𝑉 ⊆ ℙ𝑛 be an irreducible projective variety, not contained in the hyperplane
{𝑋0 = 0}. Let 𝑉0 = 𝑉 ∩ 𝑈0, where 𝑈0 ≃ 𝔸𝑛 is the first affine patch. Then, ℂ(𝑉0) = ℂ(𝑉),
where ℂ(𝑉0) = 𝐹𝐹(ℂ[𝑉0]).

Proof. 𝑉0 has coordinate ring
ℂ[𝑋1𝑋0

,… , 𝑋𝑛𝑋0
]⟋𝐼(𝑉0)

Hence, ℂ(𝑉0) = 𝐹𝐹(ℂ[𝑉0]) is generated by the
𝑋𝑗

𝑋0
.

Definition. Let 𝜑 ∈ ℂ(𝑉) and let 𝑃 ∈ 𝑉 . We say that 𝜑 is regular or defined at 𝑃 if 𝜑 can be
expressed as 𝐹

𝐺
where 𝐹,𝐺 are homogeneous of the same degree with 𝐺(𝑃) ≠ 0. There is a

partial function from the set of regular points of 𝑉 to ℂ.
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IX. Algebraic Geometry

Definition. The local ring of 𝑉 at 𝑃, written 𝒪𝑉,𝑃, is the set of 𝜑 ∈ ℂ(𝑉) such that 𝜑 is
regular at 𝑃. This is a subring of ℂ(𝑉), which is a local ring in the sense of commutative
algebra.

Proposition. Let 𝑉 ⊆ ℙ𝑛 be an irreducible projective variety not contained in {𝑋0 = 0}.
Let 𝑉0 = 𝑉 ∩ 𝑈0 where 𝑈0 = {𝑋0 = 0}. Let 𝑃 be a point in 𝑉0. Then, there is a natural
isomorphism 𝒪𝑉,𝑃 → 𝒪𝑉0,𝑃 respecting the isomorphism ℂ(𝑉) ≃ ℂ(𝑉0).

Proof. Follows by unfolding the definitions.

3.5. Rational maps
Let 𝐹0,… , 𝐹𝑚 ∈ ℂ[X] = ℂ[𝑋0,… , 𝑋𝑛] be homogeneous of the same degree 𝑑. Define F =
(𝐹0,… , 𝐹𝑚)∶ ℂ𝑛+1 → ℂ𝑚+1.

Proposition. The map F descends to a well-defined map of sets 𝜑∶ ℙ𝑛 ∖ ⋂𝑗 𝕍(𝐹𝑗) → ℙ𝑚.
If 𝑃 is represented by a = (𝑎0,… , 𝑎𝑛), then 𝜑(𝑃) is represented by (𝐹0(a),… , 𝐹𝑚(a)).

Proof. Since all 𝐹𝑗 are homogeneous of the same degree 𝑑, 𝜆a = (𝜆𝑎0,… , 𝜆𝑎𝑛) gives

(𝐹0(𝜆a),… , 𝐹𝑚(𝜆a)) = 𝜆𝑑(𝐹0(a),… , 𝐹𝑚(a))

which is equivalent to 𝜑(𝑃).

We will denote such maps F = (𝐹0,… , 𝐹𝑚) by 𝜑∶ ℙ𝑛 ⇢ ℙ𝑚.
Let 𝐺 be a nonzero homogeneous polynomial in 𝑋0,… , 𝑋𝑛. Given F∶ ℙ𝑛 ⇢ ℙ𝑚, we can
also consider 𝐺F = (𝐺𝐹0,… , 𝐺𝐹𝑛)∶ ℙ𝑛 ⇢ ℙ𝑚. Observe that the maps F and 𝐺F have
different domains, but coincide at points where they are both defined. Note that there is
a ‘best’ representative F, as ℂ[X] is a unique factorisation domain, but we will not use this
notion here, because not all rings that we will use are unique factorisation domains.

Definition. Let 𝑉 ⊆ ℙ𝑛 be an irreducible projective variety. Let 𝐹0,… , 𝐹𝑚 be homogen-
eous polynomials in ℂ[𝑋0,… , 𝑋𝑛] of fixed degree 𝑑, and not all contained in 𝐼ℎ(𝑉). They
determine a map of sets 𝑉 ∖⋂𝑗 𝕍(𝐹𝑗) → ℙ𝑛 by the previous construction. Two such tuples
(𝐹0,… , 𝐹𝑚) and (𝐺0,… , 𝐺𝑚) are said to determine the same map if 𝐹𝑖𝐺𝑗 − 𝐹𝑗𝐺𝑖 ∈ 𝐼ℎ(𝑉). A
rational map from 𝑉 to ℙ𝑚 is an equivalence class of tuples (𝐹0,… , 𝐹𝑚) as above, where two
tuples are equivalent if they determine the same map.

Definition. A point 𝑃 ∈ 𝑉 is a regular point of a rational map 𝜑∶ 𝑉 ⇢ ℙ𝑛 if there is a
representative (𝐹0,… , 𝐹𝑚) of 𝜑 such that 𝐹𝑗(𝑃) ≠ 0 for some 𝑗. The domain of 𝜑 is the set of
regular points of 𝜑. A rational map 𝜑 is called a morphism if the domain of 𝜑 is 𝑉 ; in this
case, we write 𝑉 → ℙ𝑚.
Example. A linear map 𝜑∶ ℙ𝑛 ⇢ ℙ𝑚 is given by an (𝑚 + 1) × (𝑛 + 1) matrix 𝐴 = (𝑎𝑖𝑗).
Concretely, we can define 𝜑 = (𝐹0,… , 𝐹𝑚)where 𝐹𝑗 = ∑𝑖 𝑎𝑖𝑗𝑋𝑖. If 𝐴 has rank 𝑛+1 ≤ 𝑚+1,
then 𝜑 is a morphism.
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3. Projective varieties

Example (projection from a point). Let 𝑃 = (0 ∶ 0 ∶ 1) ∈ ℙ2. The projection from 𝑃 is the
rational map 𝜋∶ ℙ2 ⇢ ℙ1 defined by (𝑎0 ∶ 𝑎1 ∶ 𝑎2) ↦ (𝑎0 ∶ 𝑎1). 𝜋 is not regular at 𝑃, and
regular everywhere else.

Let 𝐶 = 𝕍(𝑓𝑑) where 𝑓𝑑 is a homogeneous polynomial of degree 𝑑. Suppose that 𝑃 ∉ 𝐶.
The composition is therefore a morphism 𝜛∶ 𝐶 → ℙ1. One can show that for almost all
choices of 𝑄 ∈ ℙ1, the fibre𝜛−1(𝑄) is a set of size 𝑑.
Example. Let𝐶 = 𝕍(𝑋0𝑋2−𝑋2

1 ) ⊆ ℙ2. Consider the projection from (0 ∶ 0 ∶ 1), and restrict
this projection to 𝐶 to obtain a map 𝜋∶ 𝐶 ⇢ ℙ1 defined by 𝜋(𝑎0 ∶ 𝑎1 ∶ 𝑎2) = (𝑎0 ∶ 𝑎1). By
changing representatives, we can show 𝜋 is a morphism, even though (0 ∶ 0 ∶ 1) ∈ 𝐶.
The map 𝜋 is determined by (𝑋0, 𝑋1); we must look for other pairs (𝐹0, 𝐹1) that determine
the same rational map as 𝜋, so 𝐹0𝑋1−𝐹1𝑋0 ∈ 𝐼ℎ(𝐶) = (𝑋0𝑋2−𝑋2

1 ). Notice that this relation
is satisfied by (𝑋1, 𝑋2), so 𝜋 agrees with the function 𝜋′(𝑎0 ∶ 𝑎1 ∶ 𝑎2) = (𝑎1 ∶ 𝑎2) on 𝐶. So
𝜋 is regular at (0 ∶ 0 ∶ 1) ∈ 𝐶, so 𝜋 is a morphism.
Observe that for 𝜋∶ 𝐶 → ℙ1, 𝜋−1(𝑞) is a single point for 𝑞 ∈ ℙ1. One can show also that 𝜋
is surjective.

If 𝑊 is a projective variety, a rational map (or morphism) 𝑉 → 𝑊 is a rational map (or
morphism) 𝑉 → ℙ𝑚 with image contained in𝑊 . A morphism 𝜑∶ 𝑉 → 𝑊 is an isomorph-
ism if it has a two-sided inverse morphism.

Proposition. Let 𝐶 be the vanishing locus of a homogeneous polynomial 𝑓 ∈ ℂ[𝑋0, 𝑋1, 𝑋2]
of degree 2 in ℙ2. Then, if 𝑓 is irreducible then 𝐶 ≃ ℙ1.

Proof. By changing coordinates, we can assume 𝑓 = 𝑋0𝑋2 − 𝑋2
1 ; the rank of the quadratic

form is 2 as 𝑓 is irreducible. By the example above, we have a morphism 𝜋∶ 𝐶 → ℙ1 by
projection from (0 ∶ 0 ∶ 1). We define an inverse map 𝜇∶ ℙ1 → ℙ2 by 𝜇(𝑌0 ∶ 𝑌1) = (𝑌 2

0 ∶
𝑌0𝑌1 ∶ 𝑌 2

1 ). The image of 𝜇 lies in 𝐶, and the compositions are inverse.

There is only one conic in two-dimensional projective space, up to changing coordinates.

Example (Cremona transformation). Consider the rational map ℙ2 ⇢ ℙ2 given by
𝜅(𝑋0 ∶ 𝑋1 ∶ 𝑋2) = (𝑋1𝑋2 ∶ 𝑋0𝑋2 ∶ 𝑋0𝑋1)

This can be thought of as a coordinatewise reciprocal map. The Cremona transformation
maps lines into conics. Suppose ℓ is a line not given by the vanishing locus of any of the
coordinate functions 𝑋𝑖. Then, consider the subset 𝜅(dom 𝜅 ∩ ℓ) ⊆ ℙ2; this is the analogue
of the image in the case of rational maps. One can show that the closure of this set is a conic.

Example (Veronese embedding). Let 𝐹0,… , 𝐹𝑚 be the list of monomials of degree 𝑑 in
𝑋0,… , 𝑋𝑛, so𝑚 = (𝑛+𝑑

𝑑
) − 1. We define the 𝜈𝑑 ∶ ℙ𝑛 → ℙ𝑚 mapping (a) to (𝐹0(a),… , 𝐹𝑚(a)).

One can show this is a morphism. Note that the map 𝜇(𝑌0 ∶ 𝑌1) = (𝑌 2
0 ∶ 𝑌0𝑌1 ∶ 𝑌 2

1 ) used
in the previous proposition is an instance of this embedding. In general, 𝜈𝑑 is injective, and
the image of 𝜈𝑑 is a projective variety isomorphic to ℙ𝑛. This fact has a straightforward but
tedious proof.
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IX. Algebraic Geometry

Note that ℙ𝑛 × ℙ𝑚 ≄ ℙ𝑛+𝑚.
Example (Segre embedding). Let 𝑛,𝑚 > 0 be integers. The Segre embedding is the map
𝜎𝑚𝑛∶ ℙ𝑚×ℙ𝑛 → ℙ𝑚𝑛+𝑚+𝑛 defined by 𝜎𝑚𝑛((𝑥𝑖), (𝑦𝑗)) = (𝑥𝑖𝑦𝑗). We label the coordinates of
ℙ𝑚𝑛+𝑚+𝑛 using 𝑍𝑖𝑗 for 0 ≤ 𝑖 ≤ 𝑚 and 0 ≤ 𝑗 ≤ 𝑛. Note that (𝑚 + 1)(𝑛 + 1) − 1; we have a
map 𝑈 × 𝑉 → 𝑈 ⊗ 𝑉 and then take the projectivisation, giving the correct dimension.

Theorem. The map 𝜎𝑚𝑛 is a bijection between ℙ𝑚 × ℙ𝑛 and the projective variety 𝕍(𝐼)
where 𝐼 is the ideal generated by the 𝑍𝑖𝑗𝑍𝑝𝑞 − 𝑍𝑖𝑞𝑍𝑝𝑗 .

Proof. Clearly, 𝜎𝑚𝑛(ℙ𝑚 × ℙ𝑛) ⊆ 𝑉 = 𝕍(𝐼). Now, consider the affine piece 𝑉00 = 𝑉 ∩
{𝑍00 ≠ 0} ⊆ 𝔸𝑚𝑛+𝑚+𝑛. The inhomogeneous ideal defining 𝑉00 is generated by 𝑌 𝑖𝑗 −𝑌 𝑖0𝑌0𝑗
where 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛, and 𝑌 𝑖𝑗 = 𝑍𝑖𝑗

𝑍00
. Note that elements 𝑌 𝑖𝑗𝑌𝑝𝑞 − 𝑌 𝑖𝑞𝑌𝑝𝑗

for other indices automatically lie in this ideal. On this patch, 𝜎𝑚𝑛 defines a morphism
𝔸𝑚 × 𝔸𝑛 → 𝕍(𝐼00). There is an inverse 𝔸𝑚𝑛+𝑚+𝑛 → 𝔸𝑚 × 𝔸𝑛, given by

(𝑌 𝑖𝑗) ↦ ((𝑌10,… , 𝑌𝑚0), (𝑌01,… , 𝑌0𝑛))

One can check that this is indeed an inverse; this process can be repeated for all other patches
{𝑍𝑖𝑗 ≠ 0}, so 𝜎𝑚𝑛 is as claimed.

Hence, if 𝑉,𝑊 are projective varieties, 𝑉 ×𝑊 is naturally also a projective variety.

3.6. Composition of rational maps
Let 𝜑∶ 𝑉 ⇢ 𝑊 and 𝜓∶ 𝑊 ⇢ 𝑍 be rational maps between irreducible varieties. The com-
position 𝜓 ∘ 𝜑 of rational maps may not be well-defined, as the image of the domain of 𝜑
could lie entirely inside the locus of indeterminacy of 𝜓.
Definition. A rational map 𝜑∶ 𝑉 ⇢ 𝑊 is dominant if 𝜑(dom𝜑) is Zariski dense in𝑊 .

Proposition. If 𝜑 is dominant, then 𝜓 ∘ 𝜑 is well-defined for any rational map 𝜓∶ 𝑊 ⇢ 𝑍.

Proof. Let 𝑈 denote a dense open set in dom𝜑, and let 𝑈 ′ be a dense open set in dom𝜓.
Then, let 𝑈″ = 𝑈 ∩ 𝜑−1(𝑈 ′), which is open in 𝑉 . The composition 𝜓 ∘ 𝜑 is well-defined on
𝑈″. This is a rational map as the composition of polynomials is a polynomial.

Definition. If 𝜑∶ 𝑉 ⇢ 𝑊 and 𝜓∶ 𝑊 ⇢ 𝑉 are such that 𝜑 ∘ 𝜓 and 𝜓 ∘ 𝜑 are equivalent to
the identity map on 𝑊 and 𝑉 respectively, we say that 𝑉 and 𝑊 are birational and that 𝜑
and 𝜓 are birational maps.
Example. Any isomorphism is birational.

Example. Consider the Cremona map 𝜅∶ ℙ2 ⇢ ℙ2 defined as above by (𝑥0 ∶ 𝑥1 ∶ 𝑥2) ↦
(𝑥1𝑥2 ∶ 𝑥0𝑥2 ∶ 𝑥0𝑥1). Intuitively, (𝑥0 ∶ 𝑥1 ∶ 𝑥2) ↦ ( 1

𝑥0
∶ 1

𝑥1
∶ 1

𝑥2
). Then 𝜅 is self-inverse as

a rational map, hence birational. It is not an isomorphism as it is not defined everywhere.
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3. Projective varieties

Remark. One can construct the groupBir(ℙ2) of birational automorphisms ofℙ2. This group
contains a copy of 𝑃𝐺𝐿2(ℂ) and the subgroup generated by 𝜅 above.
Theorem. Let 𝑉,𝑊 be irreducible projective varieties. Then 𝑉 is birational to 𝑊 if and
only if ℂ(𝑉) and ℂ(𝑊) are isomorphic as fields.
Recall the similar result that if 𝑉,𝑊 are affine varieties, 𝑉 is isomorphic to𝑊 if and only if
ℂ[𝑉] and ℂ[𝑊] are isomorphic as ℂ-algebras.

Proof. Suppose first that 𝑉 is birational to 𝑊 , so 𝜑∶ 𝑉 ⇢ 𝑊 is a birational map. Let
𝑓 ∈ ℂ(𝑊). Then, 𝑓 gives a function𝑊 ⇢ 𝔸1 = ℂ, and composition gives a map of fields
𝜑⋆∶ ℂ(𝑊) → ℂ(𝑉) defined by 𝑓 ↦ 𝑓 ∘ 𝜑. Similarly, 𝜑−1 gives a map ℂ(𝑉) → ℂ(𝑊), and
the compositions are identical, so we obtain an isomorphism of fields.

For the converse, suppose we have ℂ(𝑉) ≃ ℂ(𝑊) as fields. Suppose that 𝑉 ⊆ ℙ𝑛 is not
contained in {𝑋0 = 0}, and 𝑊 ⊆ ℙ𝑚 is not contained in {𝑌0 = 0}. We have shown that
ℂ(𝑉) = ℂ(𝑥1,… , 𝑥𝑛)where 𝑥𝑖 is the rational function determined by

𝑋𝑖
𝑋0
. Similarly, ℂ(𝑊) =

ℂ(𝑦1,… , 𝑦𝑚) where 𝑦𝑗 is determined by
𝑌𝑗
𝑌0
.

An isomorphism ℂ(𝑉) ≃ ℂ(𝑊) identifies each 𝑦𝑗 with 𝑓𝑗(x) where 𝑓𝑗 is a rational function
in 𝑛 variables. Writing each𝑓𝑗(x) as a rational function in the

𝑋𝑖
𝑋0
, we can clear denominators

by multiplying by some polynomial in the 𝑋𝑖
𝑋0

and homogenise with respect to 𝑋0. We then
obtain homogeneous polynomials 𝐹0,… , 𝐹𝑚 in 𝑋0,… , 𝑋𝑛 such that

𝑓𝑗(
𝑋1
𝑋0
,… , 𝑋𝑛𝑋0

) =
𝐹𝑗(𝑋0,… , 𝑋𝑛)
𝐹0(𝑋0,… , 𝑋𝑛)

Now, 𝐹0,… , 𝐹𝑚 determine a rational map 𝑉 ⇢ 𝑊 . This can be repeated with the 𝑥𝑖 and 𝑦𝑗
reversed to obtain a rational map𝑊 ⇢ 𝑉 . One can show that these are inverses.
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IX. Algebraic Geometry

4. Dimension
4.1. Tangent spaces
Let 𝑉 ⊆ 𝔸𝑛 be an affine hypersurface, so 𝑉 = 𝕍(𝑓). We assume that 𝑓 is irreducible, so 𝑉
is also irreducible. Let 𝑃 = (𝑎1,… , 𝑎𝑛) = (a) ∈ 𝑉 . An affine line through 𝑃 has the form
𝐿 = {(𝑎1 + 𝑏1𝑡,… , 𝑎𝑛 + 𝑏𝑛𝑡) ∣ 𝑡 ∈ ℂ} for (b) ∈ ℂ𝑛 ∖ {0} is fixed.
The intersection 𝑉 ∩ 𝐿 is the set of points on 𝐿 where 𝑓 vanishes. This gives 0 = 𝑓(𝑎1 +
𝑏1𝑡,… , 𝑎𝑛 + 𝑏𝑛𝑡) = 𝑔(𝑡) = ∑𝑟 𝑐𝑟𝑡𝑟, a polynomial in 𝑡. Since 𝑃 ∈ 𝑉 ∩ 𝐿, 𝑐0 = 0. The
linear term 𝑐1 is given by 𝑐1 = ∑𝑖 𝑏𝑖

𝜕𝑓
𝜕𝑋𝑖

. Geometric tangency of 𝐿 to 𝑉 is equivalent to the
statement that 𝑐1 = 0.
Definition. The line 𝐿 through 𝑃 is tangent to 𝑉 = 𝕍(𝑓) at 𝑃 if it is contained in the tangent
space of 𝑉 at 𝑃, defined by 𝑇aff𝑉,𝑃 = 𝕍(𝑔) ⊆ 𝔸𝑛 where

𝑔 =
𝑛
∑
𝑖=1

( 𝜕𝑓𝜕𝑋𝑖
(𝑃))(𝑋𝑖 − 𝑎𝑖)

Note that 𝑔 is linear. 𝑇aff𝑉,𝑃 is 𝑛-dimensional if 𝑔 = 0 and (𝑛 − 1)-dimensional otherwise,
taking the dimensions as an affine space.

Definition. If dim𝑇aff𝑉,𝑃 = 𝑛, we say that 𝑃 is a singular point of 𝑉 . Otherwise, it is a smooth
point.

Example (nodal cubic). Consider the affine hypersurface 𝐶 = 𝕍(𝑌 2−𝑋2(𝑋 +1)). One can
show by direct calculation that the only singular point is (0, 0).
Example (cusp). Consider 𝐶 = 𝕍(𝑌 2 − 𝑋3). Again, the point (0, 0) is the only singular
point.

Let 𝑉 ⊆ 𝕍(𝐹) ⊆ ℙ𝑛 for 𝐹 an irreducible homogeneous polynomial.

Definition. The projective tangent space to 𝑉 at 𝑃 is 𝑇proj𝑉,𝑃 = 𝕍(𝐺) where

𝐺 =
𝑛
∑
𝑖=0

( 𝜕𝐹𝜕𝑋𝑖
(𝑃))𝑋𝑖

To see that 𝑃 ∈ 𝕍(𝐺), note that 𝐹(𝑋0,… , 𝑋𝑛) =
1

deg𝐹
∑𝑛

𝑖=0 𝑋𝑖
𝜕𝐹
𝜕𝑋𝑖

; this is sometimes known
as Euler’s formula. Smooth points and singular points are defined as in the affine case. From
the inverse function theorem, if all points are smooth, the tangent space is a manifold.

The affine and projective tangent spaces are compatible in a particular sense. Let 𝑉 =
𝕍(𝐹) ⊈ {𝑋0 = 0}, and consider 𝑉0 = 𝑉 ∩ 𝑈0. If 𝑃 ∈ 𝑉0 ⊆ 𝑉 , we can compute 𝑇proj𝑉,𝑃 ∩ 𝑈0 and
𝑇aff𝑉0,𝑃, which are both subsets of𝔸

𝑛. Let𝑉0 = 𝕍(𝑓), then 𝐹(𝑋0,… , 𝑋𝑛) = 𝑋deg𝐹
0 𝑓(𝑋1

𝑋0
,… , 𝑋𝑛

𝑋0
).

By computing 𝜕𝐹
𝜕𝑋𝑖

, we find that if 𝑃 ∈ 𝑉0, 𝑇proj𝑉,𝑃 ∩ 𝑈0 = 𝑇aff𝑉0,𝑃.
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4. Dimension

Proposition. The set of singular points on a nonempty irreducible projective hypersurface
is a proper Zariski closed subset. In particular, the set of smooth points is dense.

Proof. The set of singular points is the intersection of 𝑉 with⋂𝑖 𝕍(
𝜕𝐹
𝜕𝑋𝑖

), so is a closed sub-

variety of𝑉 . If𝑉∩⋂𝑖 𝕍(
𝜕𝐹
𝜕𝑋𝑖

) = 𝑉 , then by theNullstellensatz, 𝜕𝐹
𝜕𝑋𝑖

∈ 𝐼ℎ(𝑉). However, 𝐼ℎ(𝑉)

is principal and generated by 𝐹. Since 𝜕𝐹
𝜕𝑋𝑖

is homogeneous and of smaller degree, 𝜕𝐹
𝜕𝑋𝑖

∣ 𝐹

gives that 𝜕𝐹
𝜕𝑋𝑖

= 0. So 𝐹 is a constant polynomial, giving 𝑉 = ℙ𝑛 as it is nonempty, which
has no singular points.

We can extend the definition of a tangent space to general varieties not generated by a single
polynomial.

Definition. Let 𝑉 ⊆ 𝔸𝑛 be an affine variety, and let 𝑃 ∈ 𝑉 . Then the tangent space to 𝑉 at
𝑃 is

𝑇𝑉,𝑃 = {v ∈ ℂ𝑛 ||||

𝑛
∑
𝑖=1

𝑣𝑖
𝜕𝑓
𝜕𝑥𝑖

(𝑃) = 0 for all 𝑓 ∈ 𝐼(𝑉)} ⊆ ℂ𝑛

This is a vector subspace of ℂ𝑛.

Definition. Let 𝑉 ⊆ ℙ𝑛 be a projective variety, and let 𝑃 ∈ 𝑉 . Suppose 𝑉 𝑗 = 𝑉 ∩ {𝑋𝑗 ≠ 0}
is an affine piece containing 𝑃. Then the tangent space to 𝑉 at 𝑃 is 𝑇𝑉,𝑃 = 𝑇𝑉𝑗 ,𝑃.

Note that this definition requires a choice of 𝑗; it is not clear that this is well-defined. This
will be addressed by the following propositions.

Recall that ℙ𝑛 is covered by 𝑈0,… ,𝑈𝑛, and 𝑈 𝑖 ≃ 𝔸𝑛. Each point 𝑃 ∈ ℙ𝑛 is contained in
at least one of these 𝑈 𝑖. If the index is unimportant, we will write 𝔸𝑛 ⊆ ℙ𝑛 rather than
𝑈 𝑖 ⊆ ℙ𝑛.

Let 𝑉 ⊆ ℙ𝑛,𝑊 ⊆ ℙ𝑚 be irreducible varieties and 𝜑∶ 𝑉 ⇢ 𝑊 be a rational map. Given
𝑃 ∈ dom𝜑 ⊆ 𝑉 and 𝑄 = 𝜑(𝑃) ⊆ 𝑊 ∩ 𝔸𝑚, we will now define d𝜑𝑃 ∶ 𝑇𝑉,𝑃 ⇢ 𝑇𝑊,𝑃. Suppose
𝜑 is determined by (𝐹0,… , 𝐹𝑚), where the 𝐹𝑖 are homogeneous and of the same degree. By
restricting to 𝔸𝑛, we can write 𝐹𝑗

𝐹0
(1, 𝑋1,… , 𝑋𝑛) = 𝑓𝑗 ∈ ℂ(𝑋1,… , 𝑋𝑛). This gives rational

functions 𝑓1,… , 𝑓𝑚 on 𝑉 ∩ 𝔸𝑛. The derivative of 𝜑 at 𝑃 or linearisation of 𝜑 at 𝑃 is defined
by

d𝜑𝑃 (𝑣) = (
𝑛
∑
𝑖=1

𝑣𝑖
𝜕𝑓𝑗
𝜕𝑋𝑖

(𝑃))
𝑗

which is initially a function 𝑇𝑉,𝑃 → ℂ𝑚. This can be thought of as an application of the
matrix of derivatives of 𝑓 at 𝑃 to the vector 𝑣.

Proposition. (i) d𝜑𝑃 (𝑇𝑉,𝑃) ⊆ 𝑇𝑊,𝑄;

(ii) the linear map d𝜑𝑃 depends only on 𝜑 and not the representatives;
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IX. Algebraic Geometry

(iii) if 𝜓∶ 𝑊 ⇢ 𝑍 is rational with 𝜑(𝑃) ∈ dom𝜓, then d(𝜓 ∘ 𝜑)𝑃 = d𝜓𝜑(𝑃) ∘ d𝜓𝑃;

(iv) if 𝜑 is birational and 𝜑−1 is regular at 𝜑(𝑃), then d𝜑𝑃 is an isomorphism 𝑇𝑉,𝑃 ≃ 𝑇𝑊,𝑄.

Proof. Part (i). We use 𝑌 𝑗 for coordinates in𝑊 . Replace 𝑉 with 𝑉0 and𝑊 with𝑊0. Let 𝑔 ∈
𝐼(𝑊), and consider its linearisation at𝑄. Applying the map 𝜑⋆ on function fields, we obtain
𝜑⋆(𝑔) = ℎ = 𝑔(𝑓1,… , 𝑓𝑚) ∈ ℂ(𝑉). Choose a representative in ℂ(𝑋), representing a rational
function on 𝑉 that is regular at 𝑃. This map vanishes when it is regular as 𝜑(dom𝜑) ⊆ 𝑊 .
By the chain rule,

𝜕ℎ
𝜕𝑋𝑖

(𝑃) = ∑
𝑗

𝜕𝑔
𝜕𝑌 𝑗

(𝑄)
𝜕𝑓𝑗
𝜕𝑋𝑖

(𝑃)

Hence, 𝑣 ∈ 𝑇𝑉,𝑃 gives d𝜑𝑃 (𝑣) ∈ 𝑇𝑊,𝑄.

Part (ii). If (𝐹′0,… , 𝐹′𝑚) is another representation of 𝜑with corresponding rational functions
𝑓′1 ,… , 𝑓′𝑚 ∈ ℂ(𝑉). Then 𝑓𝑗 − 𝑓′𝑗 vanishes on 𝑉 whenever it is defined, or equivalently,
𝑓𝑗 − 𝑓′𝑗 = 𝑝𝑗

𝑞𝑗
where 𝑝𝑗 ∈ 𝐼(𝑉) and 𝑞𝑗(𝑃) ≠ 0. Applying the quotient rule and the fact

that 𝑝𝑗 ∈ 𝐼(𝑉),
𝜕(𝑓𝑗 − 𝑓′𝑗 )

𝜕𝑋𝑖
= −1
𝑞𝑗(𝑃)

=
𝜕𝑝𝑗
𝜕𝑋𝑖

(𝑃) = 0

Hence, 𝑣 ∈ 𝑇𝑉,𝑃 gives∑𝑖 𝑣𝑖
𝜕(𝑓𝑗−𝑓′𝑗)

𝜕𝑋𝑖
(𝑃) = 0 as required.

Part (iii). Follows from the chain rule from multivariate calculus.

Part (iv). Immediate from (iii).

Note that if𝑃 ∈ 𝑈 𝑖∩𝑈𝑗 , we have two different definitions of the tangent space𝑇𝑉,𝑃. Suppose
that 𝑉 = ℙ𝑛, then there is a birational map 𝑝𝑖𝑗 ∶ 𝑈 𝑖 ⇢ 𝑈𝑗 which is the identity on 𝑈 𝑖 ∩
𝑈𝑗 . Part (iv) of the above proposition gives an isomorphism from 𝑇𝑃,𝑈𝑖 to 𝑇𝑃,𝑈𝑗 given by
d𝑝𝑖𝑗 .

4.2. Smooth and singular points

Definition. Let 𝑉 be an affine or projective variety. If 𝑉 is irreducible, the dimension of
𝑉 , written dim𝑉 , is the minimum dimension of a tangent space for a point in 𝑉 . If 𝑃 ∈ 𝑉
and 𝑉 is irreducible, we say 𝑃 is a smooth point of 𝑉 if dim𝑇𝑉,𝑃 = dim𝑉 . Otherwise, 𝑃
is a singular point. If 𝑉 is reducible, we define dim𝑉 to be the maximum dimension of an
irreducible component of 𝑉 .

Theorem. Let 𝑉 be a nonempty irreducible affine or projective variety. Then the set of
smooth points of 𝑉 is a nonempty open subset of 𝑉 .
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4. Dimension

Proof. The fact that the set is nonempty is clear as theminimumdimensionmust be attained
at a point. We can assume 𝑉 ⊆ 𝔸𝑛 is affine. If 𝑃 ∈ 𝑉 ,

𝑇𝑉,𝑃 = {v ∈ ℂ𝑛 ||||

𝑛
∑
𝑖=1

𝑣𝑖
𝜕𝑓𝑗
𝜕𝑥𝑖

(𝑃) = 0}

where 𝑓𝑗 is some finite set of functions with 𝕍({𝑓𝑗}) = 𝑉 . Then

dim𝑇𝑉,𝑃 = 𝑛 − rank
𝜕𝑓𝑗
𝜕𝑋𝑖

(𝑃)

For any 𝑟 ∈ ℕ,

{𝑃 ∈ 𝑉 ∣ dim𝑇𝑉,𝑃 ≥ 𝑟} = {𝑃 ∈ 𝑉 ||| rank
𝜕𝑓𝑗
𝜕𝑋𝑖

(𝑃) ≤ 𝑛 − 𝑟}

This is the subvariety given by the vanishing locus of the (𝑛 − 𝑟 + 1) × (𝑛 − 𝑟 + 1)minors of
this matrix 𝜕𝑓𝑗

𝜕𝑋𝑖
(𝑃), which is closed.

Corollary. If 𝑉,𝑊 are irreducible and birational, then dim𝑉 = dim𝑊 .

4.3. Transcendental extensions
If 𝐾 ⊆ 𝐿 are fields and 𝛼 ∈ 𝐿, we say that 𝛼 is transcendental over 𝐾 if it is not a solution to a
nontrivial polynomial 𝑓 ∈ 𝐾[𝑡]. More generally, if 𝑆 ⊆ 𝐿 is any set of elements, we say they
are algebraically independent if they do not satisfy a nontrivial polynomial relation over 𝐾.
A field extension 𝐾/ℂ is a pure transcendental extension if 𝐾 is generated by transcendental
algebraically independent elements 𝑥1,… , 𝑥𝑛 ∈ 𝐾.

If 𝑉 is an irreducible affine variety, recall that ℂ(𝑉) = 𝐹𝐹(ℂ[X]⟋𝐼(𝑉)). If 𝑉 = ℙ1, ℂ(𝑉) ≃
ℂ(𝑋).
Proposition. Let 𝐾/ℂ be a finitely generated field extension. Then, there exists a pure tran-
scendental subfield 𝐾0 = ℂ(𝑥1,… , 𝑥𝑚) ⊆ 𝐾 such that 𝐾/𝐾0 is finite (and hence algebraic).
Moreover, 𝐾 = 𝐾0(𝑦) for some 𝑦 ∈ 𝐾.

Proof. The final statement follows from the primitive element theorem from Part II Galois
Theory. We nowprove the first part. 𝐾 is finitely generated, so let 𝑥1,…𝑥𝑛 generate𝐾. There
is amaximal algebraically independent subset which after relabelling is given by {𝑥1,… , 𝑥𝑚}
for𝑚 ≤ 𝑛. Then 𝑥𝑚+1,… , 𝑥𝑛 are algebraic over 𝐾0 = ℂ(𝑥1,… , 𝑥𝑚).

Proposition. Let 𝐾 = ℂ(𝑥1,… , 𝑥𝑛), where 𝑥1,… , 𝑥𝑛 are algebraically independent. Let
𝑥𝑛+1 be algebraic over 𝐾. Define

𝐼 = {𝑔 ∈ ℂ[𝑋1,… , 𝑋𝑛+1] ∣ 𝑔(𝑥1,… , 𝑥𝑛, 𝑥𝑛+1) = 0}
Then 𝐼 is a principal ideal generated by an irreducible element 𝑓 ∈ ℂ[X]. Moreover, if 𝑓
contains the variable 𝑋𝑖, then {𝑥1,… , 𝑥𝑖−1, 𝑥𝑖+1,… , 𝑥𝑛, 𝑥𝑛+1} is algebraically independent.
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IX. Algebraic Geometry

Proof. As 𝑥1,… , 𝑥𝑛 are algebraically independent, the subring 𝑅 = ℂ[𝑥1,… , 𝑥𝑛] ⊆ 𝐾 is
isomorphic to the polynomial ring ℂ[𝑋1,… , 𝑋𝑛]. ℂ[𝑋1,… , 𝑋𝑛] is a unique factorisation do-
main. There exist polynomials 𝑔 ∈ 𝐾[𝑇] where 𝑥𝑛+1 is a root, as it is algebraic. Since 𝐾[𝑇]
is a principal ideal domain, the ideal of such polynomials is principal, and generated by a
unique monic polynomial ℎ(𝑡), called the minimal polynomial of 𝑥𝑛+1. The minimal poly-
nomial is irreducible.

Let 𝑏 be the least commonmultiple of the denominators in ℎ(𝑡), so 𝑏 ∈ 𝑅. By Gauss’ lemma,
𝑓 = 𝑏ℎ is irreducible in 𝑅[𝑇]. By the isomorphism 𝑅 ≃ ℂ[𝑋1,… , 𝑋𝑛], we can think of 𝑓 as
an element of ℂ[𝑋1,… , 𝑋𝑛+1].
We show that 𝑓 generates 𝐼. Suppose 𝑔 ∈ ℂ[X] such that 𝑔(𝑥1,… , 𝑥𝑛+1) = 0. In 𝐾[𝑇],
𝑔(𝑥1,… , 𝑥𝑛, 𝑇) is divisible by 𝑓(𝑥1,… , 𝑥𝑛). By Gauss’ lemma, 𝑓 ∣ 𝑔 in ℂ[X]. Hence 𝑓 gener-
ates 𝐼 as required. The last part is left as an exercise.

Corollary. Let 𝑉 be any irreducible variety. Then 𝑉 is birational to a hypersurface.

Proof. Let 𝐾 be the function field of 𝑉 . By the above discussion, we can find elements that
generate 𝐾 that are given by 𝑥1,… , 𝑥𝑛+1 where 𝑥1,… , 𝑥𝑛 are algebraically independent and
𝑥𝑛+1 is algebraic over ℂ(𝑥1,… , 𝑥𝑛). By the previous proposition, 𝐾 ⊇ ℂ[𝑥1,… , 𝑥𝑛+1] =
ℂ[𝑋1,… , 𝑋𝑛+1]⟋(𝑓). We take the hypersurface 𝕍(𝑓) ⊆ 𝔸𝑛+1.

We have shown above that birational varieties have the same dimension. We therefore have
the following corollary.

Corollary. Let𝑊 be an irreducible variety, and let𝑉 = 𝕍(𝑓) ⊆ 𝔸𝑛 be an affine hypersurface
birational to𝑊 , where 𝑓 is non-constant. Then the dimension of𝑊 is equal to 𝑛 − 1.
In the language of field theory, the dimension of𝑊 is the transcendence degree of the field
ℂ(𝑊).
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5. Algebraic curves

5.1. Curves

Definition. A curve is a variety of dimension 1.

For our purposes, a curve is taken to mean a smooth irreducible projective variety of dimen-
sion 1. By convention, a curve 𝐶 implicitly has an expression as 𝕍(𝐼) ⊆ ℙ𝑛, but this ambient
space will not play an important role.

Example. Let 𝑓𝑑 ∈ ℂ[𝑋, 𝑌, 𝑍] be homogeneous of degree 𝑑. For almost all choices of
coefficients,𝕍(𝑓𝑑) is a (smooth irreducible projective) curve. Wewill show that for 𝑑, 𝑑′ ≥ 2,
𝕍(𝑓𝑑) and 𝕍(𝑓𝑑′) are never isomorphic.

Proposition. Let 𝐶 be a curve, and let 𝐷 ⊊ 𝐶 be a proper Zariski closed subset. Then 𝐷 is
a finite union of points.

Proof. It suffices to prove this for irreducible affine curves 𝑉 ⊆ 𝔸𝑛. Let𝑊 ⊊ 𝑉 be a proper
irreducible closed subset; we will show this is a single point. By the Nullstellensatz, there is
a strict containment 𝐼(𝑉) ⊊ 𝐼(𝑊).

If 𝑡 ∈ ℂ[𝑊] ∖ ℂ, we can use this to produce an element 𝑦 ∈ ℂ[𝑉] as follows. 𝜑∶ 𝑊 ↪ 𝑉
gives the pullback map 𝜑⋆∶ ℂ[𝑉] → ℂ[𝑊] which is a surjection. Take any 𝑦 such that
𝜑⋆(𝑦) = 𝑡.

We can also take 𝑥 ∈ ℂ[𝑉] such that𝜑⋆(𝑥) = 0, so 𝑥 ∉ ℂ. One can show that 𝑥, 𝑦 are algebra-
ically independent in ℂ(𝑉), as 𝑡 is transcendental. This gives two algebraically independent
elements of 𝐶(𝑉), which has transcendence degree 1. So no such 𝑡 can exist, so ℂ[𝑊] = ℂ.
Therefore𝑊 is a point.

Recall that if𝑉 is an irreducible variety, it has a coordinate ring (if it is affine), a function field,
a local ring at each point, and the maximal ideal of functions vanishing at the given point
in the local ring. These can be specialised in the case of curves. Note that if 𝐶 is a smooth
irreducible projective curve, there exists 𝑡 ∈ ℂ(𝑉) such that ℂ(𝑉)⟋ℂ(𝑡) is finite.

Theorem. Let 𝑃 be a smooth point of an irreducible curve 𝑉 . Then, the ideal𝔪𝑃 ⊴ 𝒪𝑉,𝑃
is principal.

A generator 𝜋𝑃 of𝔪𝑃 is called a local parameter, a local coordinate, or a uniformiser.

Proof. We assume 𝑃 lies in the affine patch 𝑉0 of 𝑉 . By changing coordinates, we can set
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𝑃 = 0 ∈ 𝔸𝑛.

ℂ[𝑉0] = ℂ[𝑋1,… , 𝑋𝑛]⟋𝐼(𝑉0) = ℂ[𝑥1,… , 𝑥𝑛];

𝒪𝑃 = 𝒪𝑉0,𝑃 = {𝑓𝑔
||| 𝑓, 𝑔 ∈ ℂ[𝑉0], 𝑔 ∉ (𝑥1,… , 𝑥𝑛)}

𝔪𝑃 = {𝑓𝑔
||| 𝑓 ∈ (𝑥1,… , 𝑥𝑛), 𝑔 ∉ (𝑥1,… , 𝑥𝑛)} = 𝑥1𝒪𝑃 +⋯+ 𝑥𝑛𝒪𝑃 ⊆ 𝒪𝑃

where 𝑥𝑖 is the image of 𝑋𝑖 under the quotient map. More generally, if 𝐽 ⊴ 𝒪𝑃 is any ideal,
𝑓
𝑔
∈ 𝐽 if and only if 𝑓 ∈ 𝐽. Therefore,

𝐽 = {𝑓𝑔
||| 𝑓 ∈ 𝐽 ∩ ℂ[𝑉0], 𝑔 ∈ ℂ[𝑉0], 𝑔(𝑃) ≠ 0}

In particular, 𝐽 is finitely generated.
Since 𝑃 is smooth, 𝑇aff𝑉0,𝑃 is a line, and by changing coordinates,

𝑇𝑉,𝑃 = {𝑋2 = 𝑋3 = ⋯ = 𝑋𝑛 = 0}

We claim that 𝑥1 generates𝔪𝑃. Since 𝑇𝑉,𝑃 is cut out by linearisations at 𝑃 = 0 of elements
in 𝐼(𝑉0), there exist functions 𝑓2,… , 𝑓𝑛 ∈ 𝐼(𝑉0) such that 𝑓𝑗 = 𝑋𝑗 −ℎ𝑗 where ℎ𝑗 has no terms
of degree less than 2. In 𝒪𝑃,

𝑥𝑗 = ℎ𝑗(𝑥1,… , 𝑥𝑛) ∈ (𝑥21, 𝑥1𝑥2,… , 𝑥2𝑛) = 𝔪2
𝑃

Thus, 𝔪𝑃 = ∑𝑛
𝑗=1 𝑥𝑖𝒪𝑃 = 𝑥1𝒪𝑃 + 𝔪2

𝑃. The result that𝔪𝑃 is generated by 𝑥1 follows from
Nakayama’s lemma.

Lemma (Nakayama). Let 𝑅 be a ring, let𝑀 be a finitely generated 𝑅-module, and let 𝐽 ⊴ 𝑅
be an ideal. Then,

(i) if 𝐽𝑀 = 𝑀, there exists 𝑟 ∈ 𝐽 such that (1 + 𝑟)𝑀 = 0; and
(ii) if 𝑁 ≤ 𝑀 is a submodule such that 𝐽𝑀 + 𝑁 = 𝑀, then there exists 𝑟 ∈ 𝐽 such that

(1 + 𝑟)𝑀 ⊆ 𝑁.

Let
𝑅 = 𝒪𝐿 ⊇ 𝐽 = 𝔪𝑃 = 𝑀 ⊇ 𝑁 = (𝑥1)

and apply part (ii) of Nakayama’s lemma to conclude.

Corollary. Let 𝑉 = 𝕍(𝑓) ⊆ 𝔸2 be an irreducible affine curve. Then, if 𝑃 ∈ 𝑉 is a smooth
point, the function 𝑉 → ℂ defined by 𝑄 ↦ 𝑋(𝑄) − 𝑋(𝑃) is a local parameter if and only if
𝜕𝑓
𝜕𝑌
(𝑃) ≠ 0.

Proof. Use the proof of the above theorem.
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Corollary. Let 𝑃 be a smooth point of a curve 𝑉 . Then there exists a surjective group homo-
morphism 𝜈𝑃 ∶ ℂ(𝑉)⋆ → ℤ called the valuation at 𝑃 or order of vanishing at 𝑃, such that

(i) 𝒪𝑉,𝑃 = {0} ∪ {𝑓 ∈ ℂ(𝑉)⋆ ∣ 𝜈𝑃(𝑓) ≥ 0};

(ii) 𝔪𝑝 = {0} ∪ {𝑓 ∈ ℂ(𝑉)⋆ ∣ 𝜈𝑃(𝑓) > 0};

(iii) if 𝑓 ∈ ℂ(𝑉)⋆, then for any local parameter 𝜋𝑃, we can write 𝑓 = 𝜋𝜈𝑃(𝑓)𝑃 𝑢 where
𝑢 ∈ 𝒪⋆

𝑉,𝑃 = 𝒪𝑉,𝑃 ∖ 𝔪𝑃.

We will ‘filter’ the ring 𝒪𝑉,𝑃 by ideals generated generated by powers 𝜋𝑘𝑃 for 𝑘 ≥ 0.

Proof. We know that𝔪𝑃 = (𝜋𝑃), so𝔪𝑛
𝑃 = (𝜋𝑛𝑃). Define 𝐽 = ⋂𝑛≥0𝔪

𝑛
𝑃. Note that 𝐽 ⊴ 𝒪𝑉,𝑃 is

a finitely generated ideal as we have seen in the previous proof, andmoreover,𝔪𝑃𝐽 = 𝜋𝑃𝐽 =
𝐽. By part (i) of Nakayama’s lemma, it follows that 𝐽 = 0. So only the zero function vanishes
to infinite order.

For every 𝑓 ∈ 𝒪𝑉,𝑃 ∖{0}, there exists a unique 𝑛 such that 𝑓 ∈ 𝔪𝑛
𝑃 ∖𝔪𝑛+1

𝑃 . Define 𝜈𝑃(𝑓) = 𝑛
for this 𝑛. If 𝑓 ∈ ℂ(𝑉) ∖ 𝒪𝑉,𝑃 ∖ {0}, we claim 𝑓−1 ∈ 𝒪𝑉,𝑃. Indeed, 𝑓 = 𝑔

ℎ
for 𝑔, ℎ ∈ 𝒪𝑉,𝑃,

so we can write 𝑔 = 𝜋𝑘𝑃𝑢 and ℎ = 𝜋ℓ𝑃𝑢′ where 𝑘, 𝑙 ≥ 0 and 𝑢, 𝑢′ ∈ 𝒪⋆
𝑉,𝑃. Since 𝑓 ∉ 𝒪𝑉,𝑃, it

follows that 𝑘 < ℓ, so 𝑓−1 ∈ 𝒪𝑉,𝑃 as required. Given this, we can define 𝜈𝑃(𝑓) = −𝜈𝑃(𝑓−1)
for such 𝑓.

As 𝔪𝑃 is a local ring, 𝒪𝑉,𝑃 ∖ 𝔪𝑃 = 𝒪⋆
𝑉,𝑃, so every nonzero 𝑓 ∈ ℂ(𝑉) is 𝜋𝜈𝑃(𝑓)𝑃 𝑢 where

𝑢 ∈ 𝒪⋆
𝑉,𝑃, giving 𝜈𝑃 as desired.

Example. Let 𝑉 = 𝔸1 and 𝑃 = 0 ∈ 𝔸1. Then

𝒪𝔸1,0 = {𝑓(𝑡)𝑔(𝑡)
||| 𝑔(0) ≠ 0}; 𝔪0 = {𝑓(𝑡)𝑔(𝑡)

||| 𝑓(0) = 0, 𝑔(0) ≠ 0}

So𝔪0 is the set of
𝑓(𝑡)
𝑔(𝑡)

where 𝑡 ∣ 𝑓. Then𝔪𝑘
0 is the set of

𝑓(𝑡)
𝑔(𝑡)

where 𝑡𝑘 ∣ 𝑓.

We can think of 𝑓(𝑡)
𝑔(𝑡)

where 𝑔(𝑡) = 𝑎0 + 𝑎1𝑡 + ⋯ + 𝑎𝑘𝑡𝑘 as 𝑓(𝑡) multiplied by the power
series expansion of 𝑔(𝑡)−1 which has nonzero constant term. This product can be written as
𝑡𝑀 multiplied by another power series with nonzero constant term. The valuation of 𝑓 is
𝜈0(

𝑓
𝑔
) = 𝑀.

Corollary. Let 𝑉 be an irreducible curve and 𝑓 ∈ ℂ(𝑉). If 𝑃 is a smooth point, 𝑓 or 𝑓−1 is
regular at 𝑃.

Proof. 𝑓 is regular at 𝑃 if and only if 𝑓 ∈ 𝒪𝑉,𝑃. The statement then follows by checking the
sign of 𝜈𝑃(𝑓).

Corollary. Let 𝑉 be a smooth curve. Then any rational map 𝑉 ⇢ ℙ𝑚 is a morphism.
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Proof. Reordering coordinates, we can assume the image of 𝜑∶ 𝑉 ⇢ ℙ𝑚 is not contained
in {𝑋0 = 0}. We write 𝜑 = (𝐺0,… , 𝐺𝑚) = (1 ∶ 𝑔1 ∶ ⋯ ∶ 𝑔𝑚) where 𝑔𝑗 = 𝐺𝐽

𝐺0
∈ ℂ(𝑉).

If all 𝑔𝑗 ∈ 𝒪𝑉,𝑃, the result holds. Otherwise, let 𝑡 = min𝑗 {𝜈𝑃(𝑔𝑗)}, so 𝑡 < 0. Note that
min𝑗 {𝜈𝑃(𝜋−𝑡𝑃 𝑔𝑗)} = 0. Then 𝜑 ∼ (𝜋−𝑡𝑃 ∶ 𝜋−𝑡𝑃 𝑔1 ∶ ⋯ ∶ 𝜋−𝑡𝑃 𝑔𝑚) which is regular at 𝑃.

Since every projective variety is contained in ℙ𝑚, any rational map from a curve to a project-
ive variety is a morphism.

5.2. Maps between curves
Example. Let 𝐶𝑑 ⊆ ℙ2 be a smooth plane curve of degree 𝑑, so 𝐶𝑑 = 𝕍(𝑓) where 𝑓 is
homogeneous of degree 𝑑. Let 𝑃 ∈ ℙ2. Then, the projection from 𝑃, which is a rational map
ℙ2 ⇢ ℙ1, automatically restricts to a morphism 𝐶𝑑 → ℙ1. This morphism is surjective, and
most points in ℙ1 have a fibre of size 𝑑.

Proposition. Let𝜑∶ 𝑉 → 𝑊 be a non-constantmorphismof irreducible (possibly singular)
projective curves. Then, for all 𝑄 ∈ 𝑊 , the fibre 𝜑−1(𝑄) is finite. The map 𝜑 induces an
inclusion 𝜑⋆∶ ℂ(𝑊) ↪ ℂ(𝑉) which makes ℂ(𝑉) a finite extension of ℂ(𝑊).

Proof. For the first statement, 𝜑−1(𝑄) is Zariski closed in 𝑉 , so is either 𝑉 or a finite set of
points. As 𝜑 is not constant, the fibre is a finite set of points. 𝑉 is infinite, so by the first part,
𝜑(𝑉) is infinite and therefore dense in 𝑊 . Since 𝜑 is dominant, 𝜑⋆ is defined. The map is
automatically injective. Let 𝑡 ∈ ℂ(𝑊) ∖ ℂ with 𝜑⋆(𝑡) = 𝑥. Since ℂ(𝑉) has transcendence
degree 1 over ℂ, ℂ(𝑉) is finite over ℂ(𝑥), so also over ℂ(𝑊).

Definition. Let 𝜑∶ 𝑉 → 𝑊 be a non-constant morphism of curves. The degree of 𝜑 is the
degree of the field extension ℂ(𝑉)/𝜑⋆ℂ(𝑊).

Definition. Let 𝜑∶ 𝑉 → 𝑊 be a non-constant morphism of curves, let 𝑃 ∈ 𝑉 be a smooth
point, and define 𝑄 = 𝜑(𝑃). We define the ramification degree of 𝜑 at 𝑃 by 𝑒𝑃 = 𝑒(𝜑, 𝑃) =
𝜈𝑃(𝜑⋆𝜋𝑄), where 𝜋𝑄 is a local coordinate at 𝑄.

Example. Consider themorphism𝜑∶ 𝔸1 → 𝔸1 defined by 𝑧 ↦ 𝑧𝑑 for some𝑑 ≥ 1. On rings,
this is given by 𝜑⋆∶ ℂ[𝑌] → ℂ[𝑋] with 𝜑⋆(𝑌) = 𝑋𝑑. On function fields, this map satisfies
𝜑⋆ℂ(𝑌) = ℂ(𝑋𝑑), a subfield of ℂ(𝑋). The degree of 𝜑 is 𝑑. Let 𝑃 = 0 ∈ 𝔸1, so 𝑄 = 0 ∈ 𝔸1.
A local parameter near 𝑄 is 𝑌 , and 𝜑⋆(𝑌) = 𝑋𝑑. 𝜈0(𝑋𝑑) = 𝑑, so the ramification degree of 𝜑
at 0 is 𝑑.

Now suppose 𝑃 = 1, 𝜑(𝑃) = 𝑄 = 1. The local coordinate at 𝑄 is 𝑌 − 1. We can find
𝜈𝑃(𝜑⋆(𝑌 − 1)) = 1, so the ramification degree of 𝜑 at 1 is 1. Note that 𝜑−1(1) is the set of 𝑑th
roots of unity, which is a set of 𝑑 points 𝑅1,… , 𝑅𝑑. 𝜈𝑅𝑖 (𝜑⋆(𝑌 − 1)) = 1 for each 𝑖.

Theorem. Let 𝜑∶ 𝑉 → 𝑊 be a non-constant morphism of irreducible projective curves.

(i) 𝜑 is surjective.
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(ii) Suppose 𝑉,𝑊 are smooth. Then, for any 𝑄 ∈ 𝑊 , deg𝜑 = ∑𝑃∈𝜑−1(𝑄) 𝑒𝑃.

(iii) At all but finitely many points 𝑃 ∈ 𝑉 , 𝑒𝑃 = 1.

Definition. A quasi-projective variety 𝑈 is a Zariski-open subset of a projective variety 𝑉 ⊆
ℙ𝑛.

Example. All projective varieties are quasi-projective. All affine varieties are also quasi-
projective. Products of affine and projective varieties are quasi-projective, such as ℙ𝑛 × 𝔸𝑚.
Note that rational functions, rational maps, morphisms, irreducibility, function fields, local
rings, and other algebraic geometric concepts are defined for quasi-projective varieties in
the same way.

Proposition (fundamental theorem of elimination theory). The projectionmapℙ𝑛×𝔸𝑚 →
𝔸𝑚 is a Zariski closed map.

Preimages and images of closed sets are closed under this map.

Remark. Consider the map 𝜋∶ 𝔸2 → 𝔸1 given by projection onto the 𝑥-axis. Observe that
𝜋 is not a closed map, as 𝕍(𝑋𝑌 − 1) has image 𝔸1 ∖ {0}, which is not closed.

Given this proposition, we prove the following result.

Proposition. Let 𝜑∶ 𝑉 → 𝑊 be a morphism of quasi-projective varieties. Suppose that 𝑉
is projective. Then 𝜑 is closed.

Proof. Factorise 𝜑 as 𝑉 → Γ𝜑 ⊆ 𝑉 × 𝑊 → 𝑊 , where Γ𝜑 = {(𝑥, 𝜑(𝑥)) ∣ 𝑥 ∈ 𝑉} is the graph
of 𝜑. Note that Γ𝜑 is closed as it is the preimage of the diagonal 𝜑 × id∶ 𝑉 × 𝑊 → 𝑊 ×𝑊 .
The diagonal𝑊 ⊆ 𝑊 ×𝑊 is closed, even though𝑊 ×𝑊 is not given the product topology.
Now, 𝑉 ⊆ ℙ𝑛 is a closed subset as it is a projective variety. Hence, it suffices to show that the
projection map ℙ𝑛 ×𝑊 → 𝑊 is closed. Moreover, if𝑊 is covered by affine varieties {𝑈 𝑖}, it
further suffices to show that ℙ𝑛 ×𝑈 𝑖 → 𝑈 𝑖 is closed for all 𝑖. Any quasi-projective variety is
covered by affine varieties as required. Finally, each 𝑈 𝑖 is a closed subset of 𝔸𝑚 for some𝑚
with its subspace topology. It therefore suffices to show ℙ𝑛 × 𝔸𝑚 → 𝔸𝑚 is closed, which is
the fundamental theorem of elimination theory.

We can now prove part (i) of the above theorem. Part (ii) is nonexaminable, and part (iii)
will be shown later.

Corollary. Let 𝜑∶ 𝑉 → 𝑊 be a non-constant map between irreducible projective curves.
Then 𝜑 is surjective.

Proof. The image of 𝜑 is closed, so either a finite set of points or 𝑊 itself. Since it is non-
constant, 𝜑 is surjective.

Corollary. Let 𝑉 be a smooth projective irreducible curve, and let 𝑓 ∈ ℂ(𝑉)⋆. Then,

(i) if 𝑓 is regular at all points 𝑃 ∈ 𝑉 , then 𝑓 ∈ ℂ⋆ is a constant;
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(ii) the set of 𝑃 ∈ 𝑉 such that 𝜈𝑃(𝑓) ≠ 0 is finite, and∑𝑃∈𝑉 𝜈𝑃(𝑓) = 0.

Proof. Part (i). Given 𝑓, consider the morphism 𝜑 = (1 ∶ 𝑓)∶ 𝑉 → ℙ1. 𝜑 is a morphism
because 𝐶 is smooth. We want to find zeroes and poles of 𝑓. 𝜑(𝑃) = (1 ∶ 0) if and only if
𝑓(𝑃) = 0, and 𝜑(𝑃) = (0 ∶ 1) if and only if 𝑓 is not regular at 𝑃. This means that if 𝑓 is
everywhere regular, 𝜑 is not surjective, so it is constant.

Part (ii). We can assume 𝑓 is non-constant. Let 𝑡 denote the rational function 𝑋1
𝑋0

on ℙ1. By

the pullback, we obtain 𝜑⋆𝑡 ∈ ℂ(𝑉) is exactly 𝑓
1
= 𝑓. For convenience, (1 ∶ 0) ∈ ℙ1 will be

denoted 0, and (0 ∶ 1) ∈ ℙ1 will be denoted∞.

Observe that 𝑡 is a local parameter at 0 ∈ ℙ1, so if 𝑓(𝑃) = 0, 𝑒𝑃 = 𝜈𝑃(𝜑⋆𝑡) = 𝜈𝑃(𝑓). Similarly,
1
𝑡
= 𝑋0

𝑋1
is a local parameter at∞ ∈ ℙ1, so if 𝑓(𝑃) = ∞, we have 𝑒𝑃 = 𝜈𝑃(𝜑⋆ 1

𝑡
) = −𝜈𝑃(𝑓).

Finally, if 𝑓(𝑃) ≠ 0,∞, then 𝜈𝑃(𝑓) = 0. By the previous theorem, deg𝜑 = ∑𝜑(𝑃)=0 𝜈𝑃(𝑓) =
∑𝜑(𝑃)=∞−𝜈𝑃(𝑓), giving the desired result.

Hence, there are no non-constant holomorphic functions.

5.3. Divisors
We will only consider smooth projective irreducible curves from now on. Let 𝑉 be a curve.
There is a natural inclusion from the space of functions defined everywhere on𝑉 (isomorphic
to ℂ) to the field of rational functions on 𝑉 . However, this field ℂ(𝑉) is very large and diffi-
cult to study directly. The goal of divisor theory is to organise ℂ(𝑉) into manageable (finite-
dimensional) pieces.

Note that a rational function 𝑓 ∈ ℂ(𝑉) determines an open subset 𝑈 ⊆ 𝑉 on which 𝑓 is
well-defined as a function 𝑈 → ℂ. For instance, we could define 𝑈 = 𝑉 ∖ {𝑥 ∣ 𝜈𝑃(𝑓) < 0},
which is 𝑉 with a finite set of points removed. One idea is to study functions 𝑓 ∈ ℂ(𝑉) that
are well-defined away from a fixed set {𝑃1,… , 𝑃𝑛}.

Definition. A divisor 𝐷 on a curve 𝑉 is a finite formal linear combination∑𝑃∈𝑉 𝑛𝑃[𝑃], or
equivalently, an element of the free abelian group⨁𝑃∈𝑉 ℤ[𝑃]. If𝐷 = ∑𝑃∈𝑉 𝑛𝑃[𝑃], its degree
is deg𝐷 = ∑𝑃∈𝑉 𝑛𝑃 ∈ ℤ.

Note that deg∶ Div(𝑉) → ℤ is a group homomorphism. The kernel of deg is denoted
Div0(𝑉). If 𝐷 = ∑𝑛𝑃[𝑃], we write 𝜈𝑃(𝐷) = 𝑛𝑃.

Definition. Let 𝐷 ∈ Div(𝑉). The space of rational functions on 𝑉 with poles bounded by
𝐷 is

𝐿(𝐷) = {𝑓 ∈ ℂ(𝑉) ∣ 𝑓 = 0 or ∀𝑃 ∈ 𝑉, 𝜈𝑃(𝑓) + 𝜈𝑃(𝐷) ≥ 0}

For instance, if 𝜈𝑃(𝐷) > 0, 𝑓 is allowed to have a pole at 𝑃 of order at most 𝜈𝑃(𝐷). If 𝜈𝑃(𝐷) <
0, 𝑓 is forced to have a zero at 𝑃 of order at least −𝜈𝑃(𝐷).
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Definition. Let 𝑓 ∈ ℂ(𝑉)⋆. The divisor of 𝑓 is div(𝑓) = ∑𝑃∈𝑉 𝜈𝑃(𝑓)[𝑃].

Divisors of rational functions must have degree 0. Divisors of the form div(𝑓) are called
principal divisors. The set Prin(𝑉) is the set of divisors 𝐷 ∈ Div(𝑉) such that 𝐷 = div(𝑓) for
some 𝑓 ∈ ℂ(𝑉)⋆, and this is a subgroup of Div0(𝑉), as div(𝑓 ⋅ 𝑔) = div𝑓 + div 𝑔.

The quotient Div(𝑉)⟋Prin(𝑉) is noted Pic(𝑉) = Cl(𝑉), and this is called the Picard group
or class group of 𝑉 . The Picard group and class group coincide for smooth varieties, but are
different in the study of general varieties and schemes.

Divisors 𝐷,𝐷′ are called linearly equivalent if 𝐷 − 𝐷′ is div(𝑓) for some 𝑓 ∈ ℂ(𝑉)⋆, so 𝐷 is
equivalent to 𝐷′ in Pic(𝑉). We write 𝐷 ∼ 𝐷′.

Proposition. Every degree 0 divisor on ℙ1 is principal.

Note that every principal divisor is degree 0 in general.

Proof. Identify ℙ1 with ℂ ∪ {∞}, where ℂ ↪ {(1 ∶ 𝑧) ∣ 𝑧 ∈ ℂ}. Then, 𝐷 = ∑𝑎∈ℂ 𝑛𝑎[𝑎] +
𝑛∞[∞]. Note that 𝑛∞ = −∑𝑎∈ℂ 𝑛𝑎. Let 𝑓 = ∏𝑎∈ℂ(𝑡 − 𝑎)𝑛𝑎 . This has a zero of order 𝑛𝑎 at
𝑎. Hence, div𝑓 = 𝐷; clearly, 𝜈𝑎(div𝑓) = 𝑛𝑎 for 𝑎 ∈ ℂ, and 1

𝑡−𝑎
is a local coordinate at∞ for

all 𝑎 ∈ ℂ where 𝑡 = 𝑋1
𝑋0
, then we can calculate explicitly 𝜈∞(div𝑓) = 𝑛∞.

It is not always the case that every degree 0 divisor on a curve 𝑉 is principal and Pic(𝑉) is
nontrivial; this gives rise to the notion of genus.

Definition. Let 𝑉 ⊆ ℙ𝑛 be a curve. Consider the hyperplane 𝕍(𝐿) ⊆ ℙ𝑛 where 𝐿 is a
homogeneous linear polynomial. Assume 𝑉 ⊈ 𝕍(𝐿). The hyperplane section of 𝑉 by 𝕍(𝐿) is
div𝐿 = ∑𝑃∈𝑉 𝑛𝑃[𝑃], where if 𝑋𝑖(𝑃) ≠ 0, 𝑛𝑃 = 𝜈𝑃(

𝐿
𝑋𝑖
).

This is well-defined as 𝜈𝑃(
𝐿
𝑋𝑖
) = 𝜈𝑃(

𝐿
𝑋𝑗
) for 𝑋𝑖(𝑝) ≠ 0, 𝑋𝑗(𝑃) ≠ 0, as 𝑋𝑖

𝑋𝑗
∈ 𝒪⋆

𝑉,𝑃 so 𝜈𝑃(
𝑋𝑖
𝑋𝑗
) =

0. Note that all 𝑛𝑃 are nonnegative in this case.

Proposition. Let 𝑉 ⊆ ℙ𝑛 be as above, and let 𝐿, 𝐿′ be linear homogeneous polynomials,
neither vanishing on 𝑉 . Then there is an equality

div𝐿 − div𝐿′ = div ( 𝐿𝐿′ )

In particular, div𝐿 − div𝐿′ is principal, and deg div𝐿 = deg div𝐿′.

Definition. Let 𝑉 ⊆ ℙ𝑛 be a curve. Then the degree of 𝑉 is deg div𝐿 where 𝑉 ⊈ 𝕍(𝐿).

Remark. A line in ℙ2 is degree 1. A conic is degree 2.

We can generalise these notions.
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(i) If 𝜑∶ 𝑉 → ℙ𝑛 is any non-constant morphism, and 𝐿 is a linear form, we can similarly
define div𝐿 by using∑𝑃∈𝑉 𝑛𝑃[𝑃] where 𝑛𝑃 = 𝜈𝑃(

𝜑⋆𝐿
𝑋𝑖
) where 𝑋𝑖(𝑃) ≠ 0. This gener-

alises the case where 𝜑 is an inclusion. As before, we assume 𝕍(𝐿) does not contain
Im𝜑. Note that this map need not be injective.

(ii) If 𝐺 is homogeneous of degree 𝑚 ≥ 1 and 𝜑∶ 𝑉 → ℙ𝑛, one can similarly define
div𝐺 = ∑𝑃∈𝑉 𝑛𝑃[𝑃] where 𝑛𝑃 = 𝜈𝑃(

𝜑⋆𝐺
𝑋𝑚
𝑖
) for any 𝑖 such that 𝑋𝑖(𝑃) ≠ 0.

Theorem (weak formof Bézout’s theorem). Let𝑉, 𝑉 ′ ⊆ ℙ2 be smooth projective irreducible
curves of degrees 𝑚, 𝑛. Then if 𝑉 ≠ 𝑉 ′, the number of intersection points of 𝑉 and 𝑉 ′ is at
most𝑚𝑛.
We have already shown that this is the case when 𝑉 ′ is a line on an example sheet.

Proof. Suppose 𝑉, 𝑉 ′ are cut out by 𝕍(𝐹), 𝕍(𝐺) of degrees𝑚, 𝑛. We claim that the degree of
div𝐺 as a divisor on 𝑉 is 𝑚𝑛. We can replace 𝐺 by any other homogeneous polynomial of
degree𝑚 by the previous proposition as it gives a linearly equivalent divisor. Replace𝐺with
𝐿𝑚 for a homogeneous linear polynomial 𝐿. Now, 𝕍(𝐿) ∩ 𝑉 has size at most 𝑛 = deg𝑉 , so
deg div𝜑⋆𝐺 = 𝑛𝑚 as required, since div(𝜑⋆𝐺) = ∑𝑃∈𝑉∩𝕍(𝐺) 𝑛𝑃[𝑃] where 𝑛𝑃 > 0 (note that
if 𝑛𝑃 > 0 then 𝐺 vanishes at 𝑃).

5.4. Function spaces from divisors
Definition. A divisor 𝐷 is called effective if 𝐷 = ∑𝑛𝑃[𝑃] for 𝑛𝑃 ≥ 0.
Recall that

𝐿(𝐷) = {𝑓 ∈ ℂ(𝑉) ∣ 𝑓 = 0 or div𝑓 + 𝐷 ≥ 0 pointwise}
is equivalently the set of 𝑓 ∈ ℂ(𝑉) such that div𝑓 + 𝐷 is effective.

Proposition. The set 𝐿(𝐷) is a complex vector subspace of ℂ(𝑉).

Proof. 𝜈𝑃(𝑓+𝑔) ≥ min {𝜈𝑃(𝑓), 𝜈𝑃(𝑔)}, hence sums of the form 𝑓+𝑔 lie in 𝐿(𝐷) if 𝑓, 𝑔 ∈ 𝐿(𝐷).
Clearly 𝐿(𝐷) is closed under scalar multiplication.

Definition. Denote ℓ(𝐷) = dimℂ 𝐿(𝐷).
Example. Let∞ denote the point (0 ∶ 1) ∈ ℙ1, and let 𝐷 = 𝑚[∞] where 𝑚 ≥ 0. Writing
𝑡 = 𝑋1

𝑋0
, 𝐿(𝐷) is spanned by 1, 𝑡, 𝑡2,… , 𝑡𝑚. Hence, ℓ(𝐷) = 𝑚 + 1.

Proposition. Let 𝐷 be a divisor on 𝑉 . Then,
(i) If deg𝐷 < 0, then 𝐿(𝐷) = 0.
(ii) If deg𝐷 ≥ 0, then ℓ(𝐷) ≤ deg𝐷 + 1.
(iii) For any 𝑃 ∈ 𝑉 , ℓ(𝐷) ≤ ℓ(𝐷 − 𝑃) + 1.
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5. Algebraic curves

In particular, 𝐿(𝐷) is always finite-dimensional.

Proof. Part (i). If 𝐿(𝐷) ≠ 0 then there exists 𝑓 ≠ 0 with 𝑓 ∈ 𝐿(𝐷) such that div𝑓 + 𝐷 ≥ 0.
But taking degrees, deg div𝑓 = 0 hence deg𝐷 ≥ 0, a contradiction.
Part (iii). Let 𝑛 = 𝜈𝑃(𝐷). Define ev𝑃 ∶ 𝐿(𝐷) → ℂ by 𝑓 ↦ (𝜋𝑛𝑃𝑓)(𝑃), intuitively extracting the
first nonzero term of the power series defining 𝑓 at 𝑃. The kernel of this homomorphism is
𝐿(𝐷 − 𝑃).
Part (ii). This now follows from parts (i) and (iii). If 𝑑 = deg𝐷, then ℓ(𝐷) ≤ ℓ(𝐷 − (𝑑 +
1)𝑃) + 𝑑 + 1 = 𝑑 + 1 where the latter equality holds as deg(𝐷 − (𝑑 + 1)𝑃) < 0.

Proposition. Let 𝐷, 𝐸 be divisors on a curve 𝑉 such that 𝐷 ∼ 𝐸, or equivalently, 𝐷 − 𝐸
is principal. Then 𝐿(𝐷) and 𝐿(𝐸) are isomorphic as complex vector spaces. In particular,
ℓ(𝐷) = ℓ(𝐸).

Proof. If 𝐷−𝐸 is principal, it can be written as div(𝑔). Multiplication by 𝑔 (respectively 𝑔−1)
gives a linear map (respectively its inverse) 𝐿(𝐷) → 𝐿(𝐸).
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6. Differentials
6.1. Differentials over fields
Differentials on curves will allow us to tackle some interesting questions.

(i) Given 𝐷 ∈ Div(𝑉), can we calculate (or bound) ℓ(𝐷)?
(ii) (Brill–Noether theory) Forwhat integers 𝑟, 𝑑 does a curve𝑉 admit amorphism𝜑∶ 𝑉 →

ℙ𝑟 of degree 𝑑 such that Im𝑉 is not contained in a hyperplane?

(iii) (Hurwitz problem) When does there exist a morphism 𝑉 → 𝑊 of smooth projective
curves?

Definition. Let 𝐾/ℂ be a field extension. The space of differentials, written Ω𝐾/ℂ, is the
quotient vector space 𝑀⟋𝑁 where 𝑀 is the 𝐾-vector space spanned by symbols 𝛿𝑥 where
𝑥 ∈ 𝐾, and 𝑁 is the subspace of𝑀 generated by

𝛿(𝑥 + 𝑦) − 𝛿(𝑥) − 𝛿(𝑦); 𝛿(𝑥𝑦) − 𝑥𝛿(𝑦) − 𝑦𝛿(𝑥); 𝛿(𝑎)

where 𝑥, 𝑦 ∈ 𝐾, 𝑎 ∈ ℂ. Given 𝑥 ∈ 𝐾, we define d𝑥 = 𝛿𝑥+𝑁 ∈ Ω𝐾/ℂ. The exterior derivative
is the ℂ-linear map d∶ 𝐾 → Ω𝐾/ℂ mapping 𝑥 to d𝑥.
Remark. More generally, if 𝜑∶ 𝐴 → 𝐵 is a ring homomorphism, we could have defined
Ω𝜑 = Ω𝐵/𝐴 as a 𝐵-module as above.
Definition. Let 𝑈 be a 𝐾-vector space. A ℂ-linear transformation 𝐷∶ 𝐾 → 𝑈 is called a
derivation if 𝐷(𝑥𝑦) = 𝑥𝐷(𝑦) + 𝑦𝐷(𝑥).

Example. The map d∶ 𝐾 → Ω𝐾/ℂ is a derivation. The map
d
d𝑥
∶ ℂ(𝑋) → ℂ(𝑋) is a deriva-

tion.

Lemma (universal property). Let 𝑈 be a 𝐾-vector space A map 𝐷∶ 𝐾 → 𝑈 is a derivation
if and only if there is a 𝐾-linear map 𝜆∶ Ω𝐾/ℂ → 𝑈 such that 𝜆(d𝑥) = 𝐷(𝑥) for all 𝑥 ∈ 𝐾.

𝐾

Ω𝐾/ℂ

𝑈

𝑑

𝜆

𝐷

The proof is very simple and omitted. Intuitively, d∶ 𝐾 → Ω𝐾/ℂ is the ‘best possible’ deriv-
ation.

Remark. For any derivation 𝐷, if 𝑦 ∈ 𝐾 and 𝑦 ≠ 0, 𝐷(𝑥) = 𝐷(𝑦 ⋅ 𝑥
𝑦
) = 𝑦𝐷(𝑥

𝑦
) + 𝑥

𝑦
𝐷(𝑦),

giving the quotient rule.
𝐷(𝑥𝑦) =

𝑦𝐷𝑥 − 𝑥𝐷𝑦
𝑦2
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Lemma. (i) Let 𝑓 = ℎ
𝑔
∈ ℂ(𝑋1,… , 𝑋𝑛) and write 𝑦 = 𝑓(𝑥1,… , 𝑥𝑛) for 𝑥1,… , 𝑥𝑛 ∈ 𝐾.

Then

d𝑦 =
𝑛
∑
𝑖=1

𝜕𝑓
𝜕𝑋𝑖

(𝑥1,… , 𝑥𝑛) d𝑥𝑖

(ii) If 𝐾 = ℂ(𝑥1,… , 𝑥𝑛) for 𝑥𝑖 ∈ 𝐾, then Ω𝐾/ℂ is spanned by d𝑥1 ,… , d𝑥𝑛 as a 𝐾-vector
space.

Proof. Part (i) follows from the rules of calculus for d(𝑥𝑦), d(𝑥
𝑦
) and ℂ-linearity. Part (ii) is

immediate from part (i).

We have obtained divisors in two different ways: from rational functions, and from hyper-
plane sections of 𝑉 → ℙ𝑟. We will do the reverse, we will first construct divisors, and then
use them to build maps 𝑉 → ℙ𝑟. Differentials are another way to construct divisors.

From now, we will write Ω𝐾 for Ω𝐾/ℂ.

Theorem. Let 𝐾/ℂ(𝑡) be finite, with 𝑡 transcendental over ℂ. ThenΩ𝐾 is one-dimensional
as a 𝐾-vector space, and is spanned by d𝑡.

Proof. First, suppose 𝐾 = ℂ(𝑡), the function field of ℙ1. By the lemma above,Ω𝐾 is spanned
by d𝑡. We need to show that Ω𝐾 is nonzero, then it is clearly one-dimensional. By the
universal property, it suffices to exhibit a single nonzero derivation on 𝐾. The function d

d𝑡
is

one such derivation.

Now suppose 𝐾 ≠ ℂ(𝑡). Write 𝐾0 = ℂ(𝑡), so 𝐾 = ℂ(𝑡, 𝛼) = 𝐾0(𝛼) for 𝛼 ∈ 𝐾 ∖ 𝐾0 algebraic
over 𝐾0. Let ℎ(𝑡) ∈ 𝐾0[𝑋] be the minimal polynomial of 𝛼. By minimality of ℎ, ℎ′(𝛼) ≠ 0 as
it does not have a double root. By the previous lemma, d𝑡 , d𝛼 span Ω𝐾 as a 𝐾-vector space.

If 𝑓 ∈ 𝐾0[𝑋], write 𝐷𝑡𝑓 for
𝜕𝑓
𝜕𝑡
, by 𝑡-differentiating the coefficients. The lemma gives 0 =

d(ℎ(𝛼)) = 𝐷𝑡ℎ(𝛼) d𝑡 + ℎ′(𝛼) d𝛼. Hence Ω𝐾 is spanned by d𝑡, so it suffices to show Ω𝐾 is
nonzero. As in the first part, it suffices to exhibit a single nonzero derivation on 𝐾.

First, define 𝐷∶ 𝐾0[𝑋] → 𝐾 by 𝐷(𝑓) = 𝐷𝑡𝑓 if 𝑓 ∈ 𝐾0, 𝐷(𝑋) =
−(𝐷𝑡ℎ)(𝛼)

ℎ′(𝛼)
, and 𝐷(𝑋𝑛) =

𝑛𝛼𝑛−1𝐷(𝑋). One can check that the ideal ℎ𝐾0[𝑋] is mapped to zero under 𝐷. This exhibits
a nonzero derivation as required.

6.2. Rational differentials
Definition. Denote Ω𝑉 = Ωℂ(𝑉)/ℂ. Elements of Ω𝑉 are called rational differentials. A
differential 𝜔 ∈ Ω𝑉 is regular at a point 𝑃 ∈ 𝑉 if 𝜔 can be expressed as ∑𝑖 𝑓𝑖 d𝑔𝑖 where
𝑓𝑖, 𝑔𝑖 ∈ 𝒪𝑉,𝑃. Write

Ω𝑉,𝑃 = {𝜔 ∈ Ω𝑉 ∣ 𝜔 regular at 𝑃} ⊆ Ω𝑉
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Note that Ω𝑉,𝑃 is not a vector subspace over ℂ(𝑉), since we can multiply by functions that
are not regular. However, it is a module over 𝒪𝑉,𝑃.

Recall that𝒪𝑉,𝑃 contains themaximal ideal𝔪𝑃, which is principal, giving local coordinates.
We can make a similar construction in the context of differentials.

Theorem. Ω𝑉,𝑃 is a free 𝒪𝑉,𝑃-module generated by d𝜋𝑃 where 𝜋𝑃 is a local coordinate at
𝑃. In other words, Ω𝑉,𝑃 = {𝑓 d𝜋𝑃 ∣ 𝑓 ∈ 𝒪𝑉,𝑃}.

Remark. If 𝜋, 𝜋′ are local coordinates at 𝑃, d𝜋 = 𝑢 d𝜋′ where 𝑢 ∈ 𝒪⋆
𝑉,𝑃. More generally, if

𝜔 ∈ Ω𝑉 , then 𝜋𝑗𝜔 is regular, so lies inΩ𝑉,𝑃, for sufficiently large 𝑘. Given this theorem, we
can always write 𝜔 ∈ Ω𝑉 as 𝑓 d𝜋𝑃 where 𝜋𝑃 is a local coordinate at 𝑃 and 𝑓 ∈ ℂ(𝑉).

Definition. Let 𝜔 ∈ Ω𝑉 and 𝑃 ∈ 𝑉 . Define 𝜈𝑃(𝜔) = 𝜈𝑃(𝑓) where 𝜔 = 𝑓 d𝜋𝑃 and 𝜋𝑃 is a
local coordinate at 𝑃.

Lemma. Let 𝜔 ∈ Ω𝑉 be a nonzero differential. Then, 𝜈𝑃(𝜔) ≠ 0 for only finitely many
points 𝑃.

Proof. As 𝜈𝑃(𝑓 d𝑔) = 𝜈𝑃(𝑓) + 𝜈𝑃(d𝑔) and 𝜈𝑃(𝑓) = 0 for all but finitely many points, it
suffices to only prove this lemma for the case 𝜔 = d𝑔. Moreover, as 𝑔must be non-constant
as d𝑔 ≠ 0, we can assume that 𝑔 is transcendental. hence, ℂ(𝑉)⟋ℂ(𝑔) is a finite extension.
Consider (1 ∶ 𝑔)∶ 𝑉 → ℙ1. By the finiteness theorem for rational functions, there are only
finitely many 𝑃 ∈ 𝑉 such that 𝑔(𝑃) = ∞ or 𝑒𝑃 > 1.

If 𝑃 is a point where 𝑒𝑃 = 1, so the function is unramified, 𝜑⋆(𝑡 − 𝑔(𝑃)) is a local coordinate
at 𝑃. But 𝜑⋆(𝑡 − 𝑔(𝑃)) is 𝑔 − 𝑔(𝑃), so 𝜈𝑃(d𝑔) = 0.

Differentials provide another source of divisors.

Definition. Let 𝜔 ∈ Ω𝑉 . Then div𝜔 = ∑𝑃∈𝑉 𝜈𝑃(𝜔)[𝑃].

Proposition. Let 𝜔,𝜔′ be nonzero rational differentials on 𝑉 . Then, div𝜔 − div𝜔′ is prin-
cipal.

Proof. Since Ω𝑉 is one-dimensional over ℂ(𝑉), we can write 𝜔 = 𝑓𝜔′ where 𝑓 ∈ ℂ(𝑉). It
follows from the definitions that div𝜔 − div𝜔′ = div𝑓.

If 𝜔 is a nonzero differential, div𝜔 gives a well-defined element in Pic(𝑉) = Cl(𝑉) =
Div(𝑉)⟋Prin(𝑉). We say that div𝜔 is a canonical divisor, and its equivalence class is the ca-
nonical class, denoted 𝐾𝑉 . Sometimes 𝐾𝑉 is also simply called the canonical divisor.

We now prove the above theorem.

Proof. Wewant to check that d𝜋𝑃 generates themoduleΩ𝑉,𝑃 over𝒪𝑉,𝑃. Clearly𝒪𝑉,𝑃 d𝜋𝑃 ⊆
Ω𝑉,𝑃; we want to check that the converse holds. Given 𝑓 ∈ 𝒪𝑉,𝑃, 𝑓 − 𝑓(𝑃) ∈ 𝔪𝑃. Hence,
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𝑓 = 𝑓(𝑃) + 𝜋𝑃𝑔 ∈ 𝒪𝑉,𝑃 where 𝑔 ∈ 𝒪𝑉,𝑃. By the Leibniz rule, d𝑓 = 𝑔 d𝜋𝑃 + 𝜋𝑃 d𝑔 ∈
𝒪𝑉,𝑃 d𝜋𝑃 + 𝜋𝑃Ω𝑉,𝑃. Assume that Ω𝑉,𝑃 is finitely generated. Observe that

𝒪𝑃 d𝜋𝑃 ⊆ Ω𝑉,𝑃 ⊆ 𝒪𝑃 d𝜋𝑃 + 𝜋𝑃Ω𝑉,𝑃

Apply Nakayama’s lemma to 𝑅 = 𝒪𝑉,𝑃, 𝐽 = 𝔪𝑃,𝑀 = Ω𝑉,𝑃, 𝑁 = 𝒪𝑉,𝑃 d𝜋𝑃.
To show Ω𝑉,𝑃 is finitely generated, choose an affine patch 𝑉0 ⊆ 𝑉 containing 𝑃. Then
𝐶[𝑉0] = ℂ[𝑥1,… , 𝑥𝑛] where the 𝑥𝑖 generate ℂ[𝑉0]. If 𝑓 ∈ 𝒪𝑉,𝑃, we can write 𝑓 =

𝑔
ℎ
where

𝑔, ℎ are polynomials and ℎ(𝑃) ≠ 0. Thus

d𝑓 =
𝑛
∑
𝑖=1

(
ℎ 𝜕𝑔
𝜕𝑋𝑖

− 𝑔 𝜕ℎ
𝜕𝑋𝑖

ℎ2 )(𝑥1,… , 𝑥𝑛) d𝑥𝑖

But ℎ(𝑃) ≠ 0, so d𝑓 is in the 𝒪𝑉,𝑃-span of {d𝑥𝑖}.

Example. Let 𝑉 = ℙ1, and let 𝑡 be the coordinate on the standard 𝔸1 ⊆ ℙ1. For any 𝑎 ∈ ℂ,
the rational function (𝑡 − 𝑎) is a local coordinate. At infinity, 1

𝑡
is a local coordinate.

We now calculate div d𝑡. We have 𝜈𝑎(d𝑡) = 𝜈𝑎(d(𝑡 − 𝑎)) = 0 for all 𝑎 ∈ ℂ. Note that d𝑡 =
−𝑡2 d( 1

𝑡
) so

𝜈∞(d𝑡) = 𝜈∞
⎛
⎜⎜
⎝

−1

( 1
𝑡
)
2 d(

1
𝑡 )
⎞
⎟⎟
⎠
= −2

Hence div d𝑡 = −2[∞], so the degree is nonzero, hence this divisor is not principal.
Definition. Let 𝑉 be a curve. The genus of 𝑉 is 𝑔(𝑉) = ℓ(𝐾𝑉 ).
𝐿(𝐾𝑉 ) is not well-defined, but ℓ(𝐾𝑉 ) is. Note that if 𝑉 = ℙ1, then div d𝑡 = −2[∞], so
ℓ(𝐾ℙ1) = 0, as there are no rational functions on ℙ1 that vanish to order 2 at infinity, apart
from the zero function.

6.3. Differentials on plane curves
We will study curves in ℙ2.

Example (smooth plane cubics). Consider 𝑉 = 𝕍(𝐹) ⊆ ℙ2 where 𝐹 = 𝑋0𝑋2
2 −∏3

𝑖=1(𝑋1 −
𝜆𝑖𝑋0) with 𝜆1, 𝜆2, 𝜆3 distinct complex numbers. This curve is nonsingular. To calculate the
genus, we take the following steps.

(i) We first use the affine equation 𝑓(𝑥, 𝑦) = 𝑦2 − ∏3
𝑖=1(𝑥 − 𝜆𝑖), and write 𝑓(𝑥, 𝑦) =

𝑦2 − 𝑔(𝑥, 𝑦). Differentiating, 2𝑦 d𝑦 = 𝑔′(𝑥) d𝑥 is a nontrivial relation in Ω𝑉 .

(ii) Using this relation, we choose a convenient differential 𝜔 ∈ Ω𝑉 ; in this case, we will
choose 𝜔 = d𝑥

𝑦
.
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(iii) Calculate div𝜔 by using the fact that if 𝜕𝑓
𝜕𝑦
(𝑃) is nonzero, 𝑥−𝑥(𝑃) is a local parameter,

and if 𝜕𝑓
𝜕𝑥
(𝑃) is nonzero, 𝑦 − 𝑦(𝑃) is a local parameter.

We find that 𝐾𝑉 = 0. Hence, 𝑔(𝑉) = 1 as ℓ(0) = 1.
Theorem. Let 𝑉 be a smooth plane cubic. Then 𝑔(𝑉) = 1, and in particular, 𝑉 ≄ ℙ1.

Proof. Change coordinates into the example above.

Theorem. Let 𝑉 = 𝕍(𝐹) ⊆ ℙ2 be a smooth projective plane curve of degree 𝑑. Then
𝐾𝑉 = (𝑑 − 3)𝐻 where 𝐻 is the divisor class associated to a hyperplane section of 𝑉 .

Proof. First, we will select a differential 𝜔 ∈ Ω𝑉 . Change coordinates such that (0 ∶ 1 ∶
0) ∉ 𝑉 . Let 𝑥 = 𝑋1

𝑋0
, 𝑦 = 𝑋2

𝑋0
be elements of ℂ(𝑉). Set 𝑓(𝑋, 𝑌) = 𝐹(1, 𝑋, 𝑌), so 𝑓(𝑥, 𝑦) = 0 in

ℂ(𝑉). Differentiating, 𝜕𝑓
𝜕𝑋
(𝑥, 𝑦) d𝑥 + 𝜕𝑓

𝜕𝑌
(𝑥, 𝑦) d𝑦 = 0 is a relation in Ω𝑉 . Choose

𝜔 = d𝑥
𝜕𝑓
𝜕𝑌
(𝑥, 𝑦)

= − d𝑦
𝜕𝑓
𝜕𝑋
(𝑥, 𝑦)

Then, we will calculate div d𝜔 in this affine patch. If 𝜕𝑓
𝜕𝑌
(𝑃) ≠ 0, then 𝑥 − 𝑥(𝑃) is a local

coordinate at 𝑃. Then, 𝜈𝑃(𝜔) = 𝜈𝑃(
1
𝜕𝑓
𝜕𝑌

(𝑥, 𝑦)) = 0. Otherwise, 𝜕𝑓
𝜕𝑋
(𝑃) ≠ 0 by smoothness, so

𝑦 − 𝑦(𝑃) is a local coordinate and 𝜈𝑃(𝜔) = 0.
Since (0 ∶ 1 ∶ 0) ∉ 𝑉 , any point at infinity in 𝑉 is not contained in {𝑋2 = 0}. The equation
for 𝑉 on the patch {𝑋2 ≠ 0} is 𝑔(𝑧, 𝑤) = 0where 𝑧 = 𝑋0

𝑋2
= 1

𝑦
and 𝑦 = 𝑋1

𝑋2
= 𝑥

𝑦
and 𝑔(𝑍,𝑊) =

𝐹(𝑍,𝑊, 1) in ℂ[𝑍,𝑊]. Select a different differential

𝜂 = d𝑧
𝜕𝑔
𝜕𝑊

(𝑧, 𝑤)
= − d𝑤
{𝑔}𝑍(𝑧, 𝑤)

By the same argument as before, 𝜈𝑃(𝜂) = 0 for all 𝑃 in the patch {𝑋2 ≠ 0}. Using 𝑓(𝑋, 𝑌) =
𝑌𝑑𝑔( 1

𝑋
, 𝑋
𝑌
) and differentiating, we find 𝜔 = 𝑍𝑑−3𝜂. If 𝑋2(𝑃) ≠ 0, we calculate 𝜈𝑃(𝜔) =

(𝑑 − 3)𝜈𝑃(𝑧) + 𝜈𝑃(𝜂) = (𝑑 − 3)𝜈𝑃(𝑧). As 𝑍 = 𝑋0
𝑋2
, div𝜔 = (𝑑 − 3) div𝑋0 as claimed.

Proposition. If 𝑓(𝑥, 𝑦) = 0 is an affine patch equation for a smooth projective plane curve,
and deg𝑓 ≥ 3, then

{𝑥
𝑟𝑦𝑠 d𝑥
𝜕𝑓
𝜕𝑦

|||||
0 ≤ 𝑟, 𝑠; 𝑟 + 𝑠 ≤ 𝑑 − 3}

is a basis for 𝐿(𝐾𝑉 ) for the representative of 𝐾𝑉 given by (𝑑−3)𝐻 where𝐻 is the hyperplane
at infinity.
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The d𝑥 term can be considered a dummy symbol, meant to indicate that we think of the
term as a differential.

Proof. The proof is non-examinable, and follows from the same argument as the proof of
the previous theorem.

Corollary. If 𝑑, 𝑑′ ≥ 2 are distinct integers, then smooth plane curves of degrees 𝑑, 𝑑′ are
never isomorphic.

Proof. deg𝐾𝑉 depends only on 𝑉 up to isomorphism.

In particular, there are infinitely many distinct curves up to isomorphism.

6.4. The Riemann–Roch theorem
Theorem. Let 𝑉 be a smooth irreducible projective curve of genus 𝑔, and let 𝐷 be a divisor
on 𝑉 . Let 𝐾𝑉 be the canonical divisor class. Then,

ℓ(𝐷) − ℓ(𝐾𝑉 − 𝐷) = deg(𝐷) − 𝑔 + 1

The proof is beyond the scope of this course. This theorem is related to Stokes’ theorem and
the Gauss–Bonnet theorem.

Corollary. Let 𝐾 be the canonical divisor on 𝑉 . Then, deg(𝐾) = 2𝑔 − 2.
Note that 2𝑔 − 2 = −𝜒(𝑉), the negative of the Euler characteristic of 𝑉 .

Proof. Let 𝐷 = 𝐾 in the Riemann–Roch theorem, and use ℓ(0) = 1.

Corollary. Let 𝑉 be a smooth projective plane curve of degree 𝑑. Then the genus is 𝑔(𝑉) =
(𝑑−1)(𝑑−2)

2
.

Proof. We have seen that if 𝑑 = 1, 2 then 𝑉 ≃ ℙ1. If 𝑑 ≥ 3, we have seen that 𝐾 is linearly
equivalent to (𝑑 − 3)𝐻 where 𝐻 is a hyperplane section. But deg(𝐻) = 𝑑, hence the result
follows from the Riemann–Roch theorem.

Given a divisor 𝐷 on 𝑉 , calculating ℓ(𝐷) is hard with the techniques discussed so far. How-
ever, the Riemann–Roch theorem can be used to compute this for most 𝐷.
Corollary. If deg(𝐷) > 2𝑔 − 2, then ℓ(𝐷) = deg(𝐷) − 𝑔 + 1.

Proof. The divisor 𝐾 − 𝐷 has negative degree, hence ℓ(𝐾 − 𝐷) = 0.

We can compare this to the case 𝑉 = ℙ1, where we saw by direct calculation that ℓ(𝐷) =
deg(𝐷) + 1.
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Corollary. Suppose 𝑔(𝑉) = 1. Then if 𝐷 is a divisor with deg(𝐷) > 0, then ℓ(𝐷) = deg(𝐷).

Proof. ℓ(𝐾 − 𝐷) = ℓ(−𝐷) = 0.

Let 𝑉 be a curve of genus 1, and fix 𝑃0 ∈ 𝑉 . Let 𝑃,𝑄 ∈ 𝑉 , then 𝑃 + 𝑄 − 𝑃0 is equivalent to
a unique effective divisor of degree 1. So 𝑃 + 𝑄 − 𝑃0 is equivalent to 𝑅 for a unique 𝑅 ∈ 𝑉 .
Indeed, deg(𝑃 + 𝑄 − 𝑃0) = 1 hence ℓ(𝑃 + 𝑄 − 𝑃0) = 1, so there exists a function 𝑓 ∈ ℂ(𝑉)
such that (𝑃 + 𝑄 − 𝑃0) + div(𝑓) is effective, and hence equal to a point 𝑅. It is unique as
ℓ(𝑃 + 𝑄 − 𝑃0) = 1, and scalar multiples of 𝑓 give the same divisor.

In other words, given 𝐸 = (𝑉, 𝑃0) as above, we can define 𝑃 +𝐸 𝑄 = 𝑅 using the preceding
notation. The pair (𝑉, 𝑃0) where 𝑔(𝑉) = 1, 𝑃0 ∈ 𝑉 is called an elliptic curve. Topologically,
such 𝑉 in the Euclidean topology are homeomorphic to 𝕊1 × 𝕊1; the group law defined by
+𝐸 and that defined on 𝕊1 × 𝕊1 in fact coincide.

Theorem. The operation +𝐸 gives 𝐸 the structure of an abelian group with identity 𝑃0.
Moreover, the map 𝐸 → Cl0(𝐸) = Cl0(𝑉) defined by 𝑃 ↦ [𝑃 − 𝑃0] is an isomorphism of
groups.

Proof. Let 𝛽(𝑃) = [𝑃 − 𝑃0] ∈ Cl0(𝐸) = Div0(𝐸)⟋Prin(𝐸). First, we show injectivity. Suppose
𝛽(𝑃) = 𝛽(𝑄), so 𝑃−𝑃0 ∼ 𝑄−𝑃0, where∼ denotes linear equivalence. Hence 𝑃 ∼ 𝑄. However,
ℓ(𝑃) = 1 by the Riemann–Roch theorem, so 𝑃 = 𝑄.

Now, we show surjectivity. Suppose 𝐷 has degree 0. We want to show 𝐷 is equivalent to
[𝑃 − 𝑃0] for some 𝑃. Since the degree of 𝐷+𝑃0 is 1, ℓ(𝐷 +𝑃0) = 1 by Riemann–Roch. Hence
there exists 𝑃 ∈ 𝑉 such that 𝐷 + 𝑃0 ∼ 𝑃. So 𝐷 = 𝛽(𝑃) as required.

Hence 𝛽 is a bijection of sets, so it remains to check that 𝛽 is a homomorphism; this is
straightforward.

Theorem. Let 𝐸 = (𝑉, 𝑃0) be the elliptic curve given by 𝕍(𝐹)where 𝐹 = 𝑋0𝑋2
2 −∏

3
𝑖=1(𝑋1−

𝜆𝑖𝑋0). Choose 𝑃0 = (0 ∶ 0 ∶ 1). Then, 𝑃 +𝐸 𝑄 +𝐸 𝑅 = 0𝐸 if and only if 𝑃,𝑄, 𝑅 are collinear
in ℙ2.

The proof is nonexaminable.

Given a morphism 𝜑∶ 𝑉 → 𝑊 of curves, we wish to understand the relation between 𝑔(𝑉)
and 𝑔(𝑊). Let 𝜔 = 𝑓 d𝑡 ∈ Ω𝑊 , where ℂ(𝑊)/ℂ(𝑡) is finite. Since ℂ(𝑉)/ℂ(𝑡) is finite, Ω𝑉 is
generated by d𝜑⋆𝑡. Define the pullback Ω𝑊 → Ω𝑉 by 𝜑⋆𝜔 = 𝜑⋆𝑓 d𝜑⋆𝑡. Let 𝑃 be a point on
𝑉 , and 𝑄 = 𝜑(𝑃). We compare 𝜈𝑃(𝜑⋆𝜔) and 𝜈𝑄(𝜔).

Lemma. Let 𝜋𝑃, 𝜋𝑄 be local parameters at 𝑃,𝑄. Let 𝑒𝑃 be the ramification degree at 𝑃, so
𝜑⋆(𝜋𝑄) = 𝑢𝜋𝑒𝑃𝑃 where 𝑢 is a unit in 𝒪𝑉,𝑃. Then, 𝜈𝑃(𝜑⋆(d𝜋𝑄)) = 𝑒𝑃 − 1. More generally,
𝜈𝑃(𝜑⋆𝜔) = 𝑒𝑃𝜈𝑄(𝜔) + 𝑒𝑃 − 1.

This can be thought of as a generalisation of the rule d
d𝑥
{𝑥𝑛} = 𝑛𝑥𝑛−1.
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Proof. For the first part, we have that𝜑⋆(𝜋𝑄) = 𝑢𝜋𝑒𝑃𝑃 , so differentiating and taking valuation
gives the desired result. For a general 𝜔, we can write 𝜔 = 𝑢𝜋𝑚𝑄 d𝜋𝑄 where 𝑢 is a unit in
𝒪𝑉,𝑃 as Ω𝑊,𝑄 is a free module generated by d𝜋𝑄. Then, we can apply 𝜑⋆ and proceed as in
the first part.

Theorem (Riemann–Hurwitz). Let 𝜑∶ 𝑉 → 𝑊 be as above. Let 𝑛 = deg𝜑, 𝑛 ≠ 0. Then

2𝑔(𝑉) − 2 = 𝑛(2𝑔(𝑊) − 2) + ∑
𝑃∈𝑉

(𝑒𝑃 − 1)

where 𝑒𝑃 is the ramification of 𝜑 at 𝑃.

Note that the correction term∑𝑃∈𝑉 (𝑒𝑃 − 1) is nonnegative.

Proof. Let 𝜔 ∈ Ω𝑊 be nonzero. Then, by the Riemann–Roch theorem, and the previous
lemma,

2𝑔(𝑉) − 2 = deg(div(𝜑⋆𝜔))
= ∑

𝑃∈𝑉
𝜈𝑃(𝜑⋆𝜔)

= ∑
𝑄∈𝑊

∑
𝑃∈𝜑−1(𝑄)

𝜈𝑃(𝜑⋆𝜔)

= ∑
𝑄∈𝑊

∑
𝑃∈𝜑−1(𝑄)

(𝑒𝑃𝜈𝑄(𝜔) + 𝑒𝑃 − 1)

= ∑
𝑄∈𝑊

(𝑛𝜈𝑄(𝜔) + ∑
𝑃∈𝜑−1(𝑄)

(𝑒𝑃 − 1))

= 𝑛 deg(div(𝜔)) + ∑
𝑃∈𝑉

(𝑒𝑃 − 1)

= 𝑛(2𝑔(𝑊) − 2) + ∑
𝑃∈𝑉

(𝑒𝑃 − 1)

Corollary. Let 𝑉,𝑊 be curves with 𝑔(𝑉) < 𝑔(𝑊). Then any rational map 𝑉 ⇢ 𝑊 is con-
stant.

Proof. Any rational map of this form is a morphism, then apply the Riemann–Hurwitz the-
orem.

For example, there is no map ℙ1 → 𝑉 for 𝑔(𝑉) ≥ 1.
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6.5. Equations for curves using Riemann–Roch
Let 𝑉 ⊆ ℙ𝑛 be a curve not contained in any hyperplane; this can be done without loss
of generality by iteratively reducing 𝑛. Let 𝐷 = div(𝑋0) be the hyperplane section. Let
𝐺 ∈ ℂ[X] be a homogeneous linear polynomial. Then 𝑓 = 𝐺

𝑋0
∈ ℂ(𝑉)⋆. Observe that

div𝑓 + 𝐷 = div𝐺 is effective. Hence 𝑓 ∈ 𝐿(𝐷).

We thus obtain an injective linear map from the space of linear homogeneous polynomials
in ℂ[X] into 𝐿(𝐷) defined by 𝐺 ↦ 𝐺

𝑋0
. This is injective because 𝑉 is not contained inside a

hyperplane. We make the following observations.

(i) For any point 𝑃 ∈ 𝑉 , there exist linear homogeneous polynomials 𝐹, 𝐺 such that
𝐹(𝑃) ≠ 0 and 𝐺(𝑃) = 0.

(ii) If 𝑃 is a smooth point and 𝐿 is the tangent line inℙ𝑛, we can find a linear homogeneous
polynomial 𝐹 such that 𝐹(𝑃) = 0 but 𝐹 does not vanish on all of 𝐿.

Under this injection, we obtain the following condition. We say that a divisor𝐷 on𝑉 satisfies
condition (⋆) if for every 𝑃,𝑄 ∈ 𝑉 not necessarily distinct, we have ℓ(𝐷 − 𝑃 − 𝑄) = ℓ(𝐷) −
2.

Definition. Let 𝑉 be a curve, and let 𝐷 a divisor with ℓ(𝐷) = 𝑛 + 1 ≥ 2. Let {𝑓0,… , 𝑓𝑛} be
a basis for 𝐿(𝐷). Themorphism associated to 𝐷 is 𝜑𝐷 ∶ 𝑉 → ℙ𝑛 given by (𝑓0 ∶ ⋯ ∶ 𝑓𝑛).

We say that 𝜑𝐷 is an embedding if it is an isomorphism onto its image.

Theorem. The morphism 𝜑𝐷 associated to 𝐷 is an embedding if and only if 𝐷 satisfies
condition (⋆).

The proof is omitted.

Corollary. Suppose 𝐷 is a divisor with deg𝐷 > 2𝑔. Then 𝜑𝐷 is an embedding.

Proof. By Riemann–Roch, 𝐷 satisfies (⋆).

Corollary. Every curve of genus 𝑔 can be embedded in ℙ𝑚 for some 𝑚 depending only on
𝑔.

Proof. If 𝑔 ≥ 3, take [𝐷] = 2𝐾𝑉 . If 𝑔 = 2, take [𝐷] = 3𝐾𝑉 . If 𝑔 = 1, take [𝐷] = 3[𝑃0] for
some 𝑃0 ∈ 𝑉 . In any case, deg𝐷 > 2𝑔.

Definition. A curve 𝑉 of genus 𝑔(𝑉) ≥ 2 is called hyperelliptic if there exists a degree 2
morphism 𝑉 → ℙ1.

The following theorem is on the last example sheet.

Theorem. A curve of genus 𝑔 is hyperelliptic if and only if there exists a divisor𝐷 such that
deg𝐷 = 2 and ℓ(𝐷) = 2.
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6. Differentials

Theorem. Let𝑉 be a curve of genus 𝑔(𝑉) ≥ 2 that is not hyperelliptic. Then, themorphism
𝜑𝐾𝑉 ∶ 𝑉 → ℙ𝑔−1 is an embedding.

Proof. Suppose that𝜑𝐾 is not an embedding. Then𝐾 violates (⋆), so there exist points𝑃,𝑄 ∈
𝑉 such that ℓ(𝐾 − 𝑃 − 𝑄) ≥ 𝑔 − 1. Then by Riemann–Roch, 𝐷 = 𝑃 + 𝑄 has ℓ(𝐷) ≥ 2. But
this is the maximal value by the above inequalities, so the result follows.
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Lectured in Lent 2023 by Prof. I. B. Leader
Mathematics is the study of logical systems, and proving true statements about them. In
this course, we make precise the notion of a proof, and what it means for a logical sentence
to be true. This allows us to reason about truth mathematically rather then philosophically.
One important result, the completeness theorem, states that a sentence is true exactly when
it has a proof. This assures us that proofs are a sensible way of showing that a statement is
true, and shows us that if a statement is false there must be a counterexample.

Amajor application of our theory of logic is set theory. With it, we can formalise the intuitive
notion of a set into a concrete mathematical object that can be studied in its own right. We
can prove results about sets and set theory itself without worrying about circular logic.

To learn about the structure of the universe of sets, we will study ordinals and cardinals,
which are different kinds of transfinite number. Ordinalsmeasure discrete processes that are
allowed to continue past infinity. They have rich structure, and are used to prove important
and far-reaching results, such as Zorn’s lemma. Cardinals measure the sizes of sets. Both
ordinals and cardinals have their own arithmetic, which allow us to reason about various
kinds of composition of sets and orders.

459



X. Logic and Set Theory

Contents
1. Propositional logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

1.1. Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
1.2. Semantic implication . . . . . . . . . . . . . . . . . . . . . . . 462
1.3. Syntactic implication . . . . . . . . . . . . . . . . . . . . . . . 463
1.4. Deduction theorem . . . . . . . . . . . . . . . . . . . . . . . . 464
1.5. Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
1.6. Adequacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
1.7. Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

2. Well-orderings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
2.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
2.2. Initial segments . . . . . . . . . . . . . . . . . . . . . . . . . . 469
2.3. Relating well-orderings . . . . . . . . . . . . . . . . . . . . . . 470
2.4. Constructing larger well-orderings . . . . . . . . . . . . . . . . 471
2.5. Ordinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
2.6. Some ordinals . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
2.7. Uncountable ordinals . . . . . . . . . . . . . . . . . . . . . . . 473
2.8. Successors and limits . . . . . . . . . . . . . . . . . . . . . . . 474
2.9. Ordinal arithmetic . . . . . . . . . . . . . . . . . . . . . . . . 474

3. Posets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
3.1. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
3.2. Zorn’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
3.3. Well-ordering principle . . . . . . . . . . . . . . . . . . . . . . 481
3.4. Zorn’s lemma and the axiom of choice . . . . . . . . . . . . . . 482

4. Predicate logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
4.1. Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
4.2. Semantic implication . . . . . . . . . . . . . . . . . . . . . . . 484
4.3. Syntactic implication . . . . . . . . . . . . . . . . . . . . . . . 485
4.4. Deduction theorem . . . . . . . . . . . . . . . . . . . . . . . . 486
4.5. Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
4.6. Adequacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
4.7. Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
4.8. Peano arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . 490

5. Set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
5.1. Axioms of 𝖹𝖥 . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
5.2. Transitive sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
5.3. ∈-induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
5.4. ∈-recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

460



5.5. Well-founded relations . . . . . . . . . . . . . . . . . . . . . . 498
5.6. The universe of sets . . . . . . . . . . . . . . . . . . . . . . . . 499

6. Cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
6.1. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
6.2. The hierarchy of alephs . . . . . . . . . . . . . . . . . . . . . . 501
6.3. Cardinal arithmetic . . . . . . . . . . . . . . . . . . . . . . . . 502

7. Incompleteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
7.1. Definability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
7.2. Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
7.3. Gödel’s incompleteness theorem . . . . . . . . . . . . . . . . . 505

461



X. Logic and Set Theory

1. Propositional logic
1.1. Languages
Let 𝑃 be a set of primitive propositions. Unless otherwise stated, we let 𝑃 = {𝑝1, 𝑝2,… }. The
language 𝐿 = 𝐿(𝑃) is defined inductively by

(i) if 𝑝 ∈ 𝑃, then 𝑝 ∈ 𝐿;

(ii) ⊥ ∈ 𝐿, where the symbol ⊥ is read ‘false’;

(iii) if 𝑝, 𝑞 ∈ 𝐿, then (𝑝 ⇒ 𝑞) ∈ 𝐿.

Example. ((𝑝1 ⇒ 𝑝2) ⇒ (𝑝1 ⇒ 𝑝3)) ∈ 𝐿. (𝑝4 ⇒ ⊥) ∈ 𝐿.

Remark. Note that the elements of 𝐿, called propositions, are just strings of symbols from
the alphabet {(, ),⇒,⊥, 𝑝1, 𝑝2,… }. Brackets are only given for clarity; we omit those that are
unnecessary, and may use other types of brackets such as square brackets.

Note that the phrase ‘𝐿 is defined inductively’ means more precisely the following. Let 𝐿1 =
𝑃 ∪ {⊥}, and define 𝐿𝑛+1 = 𝐿𝑛 ∪ {(𝑝 ⇒ 𝑞) ∣ 𝑝, 𝑞 ∈ 𝐿𝑛}. We set 𝐿 = ⋃∞

𝑛=1 𝐿𝑛. Note that the
introduction rules for the language are injective and have disjoint ranges, so there is exactly
one way in which any element of the language can be constructed using rules (i) to (iii).

We can now introduce the abbreviations ¬,∧, ∨ defined by

¬𝑝 = (𝑝 ⇒ ⊥); 𝑝 ∨ 𝑞 = ¬𝑝 ⇒ 𝑞; 𝑝 ∧ 𝑞 = ¬(𝑝 ⇒ ¬𝑞)

1.2. Semantic implication
Definition. A valuation is a function 𝑣∶ 𝐿 → {0, 1} such that

(i) 𝑣(⊥) = 0;

(ii) 𝑣(𝑝 ⇒ 𝑞) = 0 if 𝑣(𝑝) = 1 and 𝑣(𝑞) = 0, and 1 otherwise.

Remark. On {0, 1}, we can define the constant ⊥ = 0 and the operation ⇒ in the obvious
way. Then, a valuation is precisely a mapping 𝐿 → {0, 1} preserving all structure, so it can
be considered a homomorphism.

Proposition. Let 𝑣, 𝑣′∶ 𝐿 → {0, 1} be valuations that agree on the primitives 𝑝𝑖. Then
𝑣 = 𝑣′. Further, any function 𝑤∶ 𝑃 → {0, 1} extends to a valuation.

Remark. This is analogous to the definition of a linear map by its action on the basis vectors.

Proof. Clearly, 𝑣, 𝑣′ agree on 𝐿1, the set of elements of the language of length 1. If 𝑣, 𝑣′ agree
at 𝑝, 𝑞, then they agree at 𝑝 ⇒ 𝑞. So by induction, 𝑣, 𝑣′ agree on 𝐿𝑛 for all 𝑛, and hence on 𝐿.

Let 𝑣(𝑝) = 𝑤(𝑝) for all 𝑝 ∈ 𝑃, and 𝑣(⊥) = 0 to obtain 𝑣 on the set 𝐿1. Assuming 𝑣 is defined
on 𝑝, 𝑞 we can define it at 𝑝 ⇒ 𝑞 in the obvious way. This defines 𝑣 on all of 𝐿.
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Example. Let 𝑣 be the valuation with 𝑣(𝑝1) = 𝑣(𝑝3) = 1, and 𝑣(𝑝𝑛) = 0 for all 𝑛 ≠ 1, 3.
Then, 𝑣((𝑝1 ⇒ 𝑝3) ⇒ 𝑝2) = 0.
Definition. A tautology is 𝑡 ∈ 𝐿 such that 𝑣(𝑡) = 1 for every valuation 𝑣. We write ⊧ 𝑡.
Example. 𝑝 ⇒ (𝑞 ⇒ 𝑝).

𝑣(𝑝) 𝑣(𝑞) 𝑣(𝑞 ⇒ 𝑝) 𝑣(𝑝 ⇒ (𝑞 ⇒ 𝑝))
0 0 1 1
0 1 0 1
1 0 1 1
1 1 1 1

Since the right-hand column is always 1, ⊧ 𝑝 ⇒ (𝑞 ⇒ 𝑝).
Example. ¬¬𝑝 ⇒ 𝑝, which expands to ((𝑝 ⇒ ⊥) ⇒ ⊥) ⇒ 𝑝.

𝑣(𝑝) 𝑣(¬𝑝) 𝑣(¬¬𝑝) 𝑣(¬¬𝑝 ⇒ 𝑝)
0 1 0 1
1 0 1 1

Hence ⊧ ¬¬𝑝 ⇒ 𝑝.
Example. (𝑝 ⇒ (𝑞 ⇒ 𝑟)) ⇒ ((𝑝 ⇒ 𝑞) ⇒ (𝑝 ⇒ 𝑟)). Suppose this is not a tautology. Then
we have a valuation 𝑣 such that 𝑣(𝑝 ⇒ (𝑞 ⇒ 𝑟)) = 1 and 𝑣((𝑝 ⇒ 𝑞) ⇒ (𝑝 ⇒ 𝑟)) = 0.
Hence, 𝑣(𝑝 ⇒ 𝑞) = 1, 𝑣(𝑝 ⇒ 𝑟) = 0, so 𝑣(𝑝) = 1, 𝑣(𝑟) = 0, giving 𝑣(𝑞) = 1, but then
𝑣(𝑝 ⇒ (𝑞 ⇒ 𝑟)) = 0 contradicting the assumption.
Definition. Let 𝑆 ⊆ 𝐿 and 𝑡 ∈ 𝐿. We say 𝑆 entails or semantically implies 𝑡, written 𝑆 ⊧ 𝑡, if
𝑣(𝑡) = 1 whenever 𝑣(𝑠) = 1 for all 𝑠 ∈ 𝑆.
Example. Let 𝑆 = {𝑝 ⇒ 𝑞, 𝑞 ⇒ 𝑟}, and let 𝑡 = 𝑝 ⇒ 𝑟. Suppose 𝑆⊧̸𝑡, so there is a valuation 𝑣
such that 𝑣(𝑝 ⇒ 𝑞) = 1, 𝑣(𝑞 ⇒ 𝑟) = 1, 𝑣(𝑝 ⇒ 𝑟) = 0. Then 𝑣(𝑝) = 1, 𝑣(𝑟) = 0, so 𝑣(𝑞) = 1
and 𝑣(𝑞) = 0.
Definition. We say that 𝑣 is amodel of 𝑆 in 𝐿 if 𝑣(𝑠) = 1 for all 𝑠 ∈ 𝑆.
Thus, 𝑆 ⊧ 𝑡 is the statement that every model of 𝑆 is also a model of 𝑡.
Remark. The notation ⊧ 𝑡 is equivalent to∅ ⊧ 𝑡.

1.3. Syntactic implication
For a notion of proof, we require a system of axioms and deduction rules. As axioms, we
take (for any 𝑝, 𝑞, 𝑟 ∈ 𝐿),
(i) 𝑝 ⇒ (𝑞 ⇒ 𝑝);
(ii) (𝑝 ⇒ (𝑞 ⇒ 𝑟)) ⇒ ((𝑝 ⇒ 𝑞) ⇒ (𝑝 ⇒ 𝑟));
(iii) ((𝑝 ⇒ ⊥) ⇒ ⊥) ⇒ 𝑝.
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Remark. Sometimes, these three axioms are considered axiom schemes, since they are really
a different axiom for each 𝑝, 𝑞, 𝑟 ∈ 𝐿. These are all tautologies.

For deduction rules, we will have only the rule modus ponens, that from 𝑝 and 𝑝 ⇒ 𝑞 one
can deduce 𝑞.

Definition. Let 𝑆 ⊆ 𝐿, 𝑡 ∈ 𝐿. We say 𝑆 proves or syntactically implies 𝑡, written 𝑆 ⊢ 𝑡, if
there exists a sequence 𝑡1,… , 𝑡𝑛 = 𝑡 in 𝐿 such that every 𝑡𝑖 is either

(i) an axiom;

(ii) an element of 𝑆; or

(iii) 𝑞, where 𝑡𝑗 = 𝑝 and 𝑡𝑘 = 𝑝 ⇒ 𝑞 where 𝑗, 𝑘 < 𝑖.

We say that 𝑆 is the set of premises or hypotheses, and 𝑡 is the conclusion.

Example. We will show {𝑝 ⇒ 𝑞, 𝑞 ⇒ 𝑟} ⊢ 𝑝 ⇒ 𝑟.

1. 𝑞 ⇒ 𝑟 (hypothesis)

2. (𝑞 ⇒ 𝑟) ⇒ (𝑝 ⇒ (𝑞 ⇒ 𝑟)) (axiom 1)

3. 𝑝 ⇒ (𝑞 ⇒ 𝑟) (modus ponens on lines 1, 2)

4. (𝑝 ⇒ (𝑞 ⇒ 𝑟)) ⇒ ((𝑝 ⇒ 𝑞) ⇒ (𝑝 ⇒ 𝑟)) (axiom 2)

5. (𝑝 ⇒ 𝑞) ⇒ (𝑝 ⇒ 𝑟) (modus ponens on lines 3, 4)

6. 𝑝 ⇒ 𝑞 (hypothesis)

7. 𝑝 ⇒ 𝑟 (modus ponens on lines 5, 6)

Definition. If ∅ ⊢ 𝑡, we say 𝑡 is a theorem, written ⊢ 𝑡.

Example. ⊢ 𝑝 ⇒ 𝑝.

1. (𝑝 ⇒ ((𝑝 ⇒ 𝑝) ⇒ 𝑝)) ⇒ ((𝑝 ⇒ (𝑝 ⇒ 𝑝)) ⇒ (𝑝 ⇒ 𝑝)) (axiom 2)

2. 𝑝 ⇒ ((𝑝 ⇒ 𝑝) ⇒ 𝑝) (axiom 1)

3. (𝑝 ⇒ (𝑝 ⇒ 𝑝)) ⇒ (𝑝 ⇒ 𝑝) (modus ponens on lines 1, 2)

4. 𝑝 ⇒ (𝑝 ⇒ 𝑝) (axiom 1)

5. 𝑝 ⇒ 𝑝 (modus ponens on lines 3, 4)

1.4. Deduction theorem
Theorem. Let 𝑆 ⊆ 𝐿, and 𝑝, 𝑞 ∈ 𝐿. Then 𝑆 ⊢ (𝑝 ⇒ 𝑞) if and only if 𝑆 ∪ {𝑝} ⊢ 𝑞.

Intuitively, provability corresponds to the implication connective in 𝐿.
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Proof. For the forward direction, given a proof of 𝑝 ⇒ 𝑞 from 𝑆, add the line 𝑝 by hypothesis
and deduce 𝑞 from modus ponens, to obtain a proof of 𝑞 from 𝑆 ∪ {𝑝}.

Conversely, suppose we have a proof of 𝑞 from 𝑆 ∪ {𝑝}. Let 𝑡1,… , 𝑡𝑛 be the lines of the proof.
We will prove that 𝑆 ⊢ (𝑝 ⇒ 𝑡𝑖) for all 𝑖.

• If 𝑡𝑖 is an axiom, we write 𝑡𝑖 (axiom); 𝑡𝑖 ⇒ (𝑝 ⇒ 𝑡𝑖) (axiom 1); 𝑝 ⇒ 𝑡𝑖 (modus ponens).

• If 𝑡𝑖 ∈ 𝑆, we write 𝑡𝑖 (hypothesis); 𝑡𝑖 ⇒ (𝑝 ⇒ 𝑡𝑖) (axiom 1); 𝑝 ⇒ 𝑡𝑖 (modus ponens).

• If 𝑡𝑖 = 𝑝, we write the proof of ⊢ 𝑝 ⇒ 𝑝 given above.

• Suppose 𝑡𝑖 is obtained by modus ponens from 𝑡𝑗 and 𝑡𝑘 = 𝑡𝑗 ⇒ 𝑡𝑖. We may assume by
induction that 𝑆 ⊢ 𝑝 ⇒ 𝑡𝑘 and 𝑆 ⊢ 𝑝 ⇒ (𝑡𝑗 ⇒ 𝑡𝑖). We write

1. (𝑝 ⇒ (𝑡𝑗 ⇒ 𝑡𝑖)) ⇒ ((𝑝 ⇒ 𝑡𝑗) ⇒ (𝑝 ⇒ 𝑡𝑖)) (axiom 2)

2. (𝑝 ⇒ 𝑡𝑗) ⇒ (𝑝 ⇒ 𝑡𝑖) (modus ponens)

3. 𝑝 ⇒ 𝑡𝑖 (modus ponens)

giving 𝑆 ⊢ 𝑝 ⇒ 𝑡𝑖.

Example. Consider {𝑝 ⇒ 𝑞, 𝑞 ⇒ 𝑟} ⊢ 𝑝 ⇒ 𝑟. By the deduction theorem, it suffices to prove
{𝑝 ⇒ 𝑞, 𝑞 ⇒ 𝑟, 𝑝} ⊢ 𝑟, which is obtained easily from modus ponens.

1.5. Soundness
We aim to show 𝑆 ⊧ 𝑡 if and only if 𝑆 ⊢ 𝑡. The direction 𝑆 ⊢ 𝑡 implies 𝑆 ⊧ 𝑡 is called
soundness, which is a way of verifying that our axioms and deduction rule make sense. The
direction 𝑆 ⊧ 𝑡 implies 𝑆 ⊢ 𝑡 is called adequacy, which states that our axioms are powerful
enough to deduce everything that is (semantically) true.

Proposition. Let 𝑆 ⊆ 𝐿 and 𝑡 ∈ 𝐿. Then 𝑆 ⊢ 𝑡 implies 𝑆 ⊧ 𝑡.

Proof. We have a proof 𝑡1,… , 𝑡𝑛 of 𝑡 from 𝑆. We aim to show that any model of 𝑆 is also a
model of 𝑡, so if 𝑣 is a valuation that maps every element of 𝑆 to 1, then 𝑣(𝑡) = 1. We show
this by induction on the length of the proof. 𝑣(𝑝) = 1 for each axiom 𝑝 and for each 𝑝 ∈ 𝑆.
Further, 𝑣(𝑡𝑖) = 1, 𝑣(𝑡𝑖 ⇒ 𝑡𝑗) = 1, then 𝑣(𝑡𝑗) = 1. Therefore, 𝑣(𝑡𝑖) = 1 for all 𝑖.

1.6. Adequacy
Consider the case of adequacy where 𝑡 = ⊥. If our axioms are adequate, 𝑆 ⊧ ⊥ implies
𝑆 ⊢ ⊥, so 𝑆 ⊬ ⊥. We say 𝑆 is consistent if 𝑆 ⊬ ⊥. Therefore, in an adequate system, if 𝑆 has
no models then 𝑆 is inconsistent; equivalently, if 𝑆 is consistent then it has a model.
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In fact, the statement that consistent axiom sets have a model implies adequacy in general.
Indeed, if 𝑆 ⊧ 𝑡, then 𝑆 ∪ {¬𝑡} has no models, and so it is inconsistent by assumption. Then
𝑆 ∪ {¬𝑡} ⊢ ⊥, so 𝑆 ⊢ ¬𝑡 ⇒ ⊥ by the deduction theorem, giving 𝑆 ⊢ 𝑡 by axiom 3.

Weaim to construct amodel of𝑆 given that𝑆 is consistent. Intuitively, wewant towrite

𝑣(𝑡) = {1 𝑡 ∈ 𝑆
0 𝑡 ∉ 𝑆

but this does not work on the set 𝑆 = {𝑝1, 𝑝1 ⇒ 𝑝2} as it would evaluate 𝑝2 to false.
We say a set 𝑆 ⊆ 𝐿 is deductively closed if 𝑝 ∈ 𝑆 whenever 𝑆 ⊢ 𝑝. Any set 𝑆 has a deductive
closure, which is the (deductively closed) set of statements {𝑡 ∈ 𝐿 ∣ 𝑆 ⊢ 𝑡} that 𝑆 proves. If 𝑆
is consistent, then the deductive closure is also consistent. Computing the deductive closure
before the valuation solves the problem for 𝑆 = {𝑝1, 𝑝1 ⇒ 𝑝2}. However, if a primitive pro-
position 𝑝 is not in 𝑆, but ¬𝑝 is also not in 𝑆, this technique still does not work, as it would
assign false to both 𝑝 and ¬𝑝.
Theorem (model existence lemma). Every consistent set 𝑆 ⊆ 𝐿 has a model.

Proof. First, we claim that for any consistent 𝑆 ⊆ 𝐿 and proposition 𝑝 ∈ 𝐿, either 𝑆 ∪ {𝑝}
is consistent or 𝑆 ∪ {¬𝑝} is consistent. If this were not the case, then 𝑆 ∪ {𝑝} ⊢ ⊥, and also
𝑆 ∪ {¬𝑝} ⊢ ⊥. By the deduction theorem, 𝑆 ⊢ 𝑝 ⇒ ⊥ and 𝑆 ⊢ (¬𝑝) ⇒ ⊥. But then 𝑆 ⊢ ¬𝑝
and 𝑆 ⊢ ¬¬𝑝, so 𝑆 ⊢ ⊥ contradicting consistency of 𝑆.
Now, 𝐿 is a countable set as each 𝐿𝑛 is countable, so we can enumerate 𝐿 as 𝑡1, 𝑡2,…. Let
𝑆0 = 𝑆, and define 𝑆1 = 𝑆0 ∪ {𝑡1} or 𝑆1 = 𝑆0 ∪ {¬𝑡1}, chosen such that 𝑆1 is consistent.
Continuing inductively, define 𝑆 = ⋃𝑖∈ℕ 𝑆 𝑖. Then, for all 𝑡 ∈ 𝐿, either 𝑡 ∈ 𝑆 or ¬𝑡 ∈ 𝑆.
Note that 𝑆 is consistent; indeed, if 𝑆 ⊢ ⊥, then this proof uses hypotheses only in 𝑆𝑛 for
some 𝑛, but then 𝑆𝑛 ⊢ ⊥ contradicting consistency of 𝑆𝑛. Note also that 𝑆 is deductively
closed, so if 𝑆 ⊢ 𝑝, we must have 𝑝 ∈ 𝑆; otherwise, ¬𝑝 ∈ 𝑆 so 𝑆 ⊢ ¬𝑝, giving 𝑆 ⊢ ⊥,
contradicting consistency of 𝑆. Now, define the function

𝑣(𝑡) = {1 𝑡 ∈ 𝑆
0 𝑡 ∉ 𝑆

We show that 𝑣 is a valuation, then the proof is complete as 𝑣(𝑠) = 1 for all 𝑠 ∈ 𝑆. Since 𝑆 is
consistent, ⊥ ∉ 𝑆, so 𝑣(⊥) = 0.
Suppose 𝑣(𝑝) = 1, 𝑣(𝑞) = 0. Then 𝑝 ∈ 𝑆 and 𝑞 ∉ 𝑆, and we want to show (𝑝 ⇒ 𝑞) ∉ 𝑆. If
this were not the case, we would have (𝑝 ⇒ 𝑞) ∈ 𝑆 and 𝑝 ∈ 𝑆, so 𝑞 ∈ 𝑆 as 𝑆 is deductively
closed.

Now suppose 𝑣(𝑞) = 1, so 𝑞 ∈ 𝑆, and we need to show (𝑝 ⇒ 𝑞) ∈ 𝑆. Then 𝑆 ⊢ 𝑞, and by
axiom 1, 𝑆 ⊢ 𝑞 ⇒ (𝑝 ⇒ 𝑞). Therefore, as 𝑆 is deductively closed, (𝑝 ⇒ 𝑞) ∈ 𝑆.
Finally, suppose 𝑣(𝑝) = 0, so 𝑝 ∉ 𝑆, and we want to show (𝑝 ⇒ 𝑞) ∈ 𝑆. We know that
¬𝑝 ∈ 𝑆, so it suffices to show that 𝑝 ⇒ ⊥ ⊢ 𝑝 ⇒ 𝑞. By the deduction theorem, this is
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equivalent to proving {𝑝, 𝑝 ⇒ ⊥} ⊢ 𝑞, or equivalently,⊥ ⊢ 𝑞. But by axiom 1,⊥ ⇒ (¬𝑞 ⇒ ⊥)
where (¬𝑞 ⇒ ⊥) = ¬¬𝑞, so the proof is complete by axiom 3.

Remark. We used the fact that 𝑃 was a countable set in order to show that 𝐿 was countable.
The result does in fact hold if 𝑃 is uncountable, but requires more tools to prove. Some
sources call this theorem the ‘completeness theorem’.

Corollary (adequacy). Let 𝑆 ⊆ 𝐿 and let 𝑡 ∈ 𝐿, such that 𝑆 ⊧ 𝑡. Then 𝑆 ⊢ 𝑡.

Proof. Follows from the remarks before the model existence lemma.

1.7. Completeness
Theorem (completeness theorem for propositional logic). Let 𝑆 ⊆ 𝐿 and 𝑡 ∈ 𝐿. Then 𝑆 ⊧ 𝑡
if and only if 𝑆 ⊢ 𝑡.

Proof. Follows from soundness and adequacy.

Theorem (compactness theorem). Let 𝑆 ⊆ 𝐿 and 𝑡 ∈ 𝐿with 𝑆 ⊧ 𝑡. Then there exists a finite
subset 𝑆′ ⊆ 𝑆 such that 𝑆′ ⊧ 𝑡.

Proof. Trivial after applying the completeness theorem, since proofs depend on only finitely
many hypotheses in 𝑆.

Corollary (compactness theorem, equivalent form). Let 𝑆 ⊆ 𝐿. Then if every finite subset
𝑆′ ⊆ 𝑆 has a model, then 𝑆 has a model.

Proof. Let 𝑡 = ⊥ in the compactness theorem. Then, if 𝑆 ⊧ ⊥, some finite 𝑆′ ⊆ 𝑆 has 𝑆′ ⊧ ⊥.
But this is not true by assumption, so there is a model for 𝑆.

Remark. This corollary is equivalent to the more general compactness theorem, since the
assertion that 𝑆 ⊧ 𝑡 is equivalent to the statement that 𝑆 ∪ {¬𝑡} has no model, and 𝑆′ ⊧ 𝑡 is
equivalent to the statement that 𝑆′ ∪ {¬𝑡} has no model.
Theorem (decidability theorem). Let 𝑆 ⊆ 𝐿 and 𝑡 ∈ 𝐿. Then, there is an algorithm to
decide (in finite time) if 𝑆 ⊢ 𝑡.

Proof. Trivial after replacing ⊢ with ⊧, by drawing the relevant truth tables.
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2. Well-orderings
2.1. Definition
Definition. A total order or linear order is a pair (𝑋, <)where 𝑋 is a set, and < is a relation
on 𝑋 such that

• (irreflexivity) for all 𝑥 ∈ 𝑋 , 𝑥 ≮ 𝑥;

• (transitivity) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 , 𝑥 < 𝑦 and 𝑦 < 𝑧 implies 𝑥 < 𝑧;

• (trichotomy) for all 𝑥, 𝑦 ∈ 𝑋 , either 𝑥 < 𝑦, 𝑦 < 𝑥, or 𝑥 = 𝑦.

We use the obvious notation 𝑥 > 𝑦 to denote 𝑦 < 𝑥. In terms of the ≤ relation, we can
equivalently write the axioms of a total order as

• (reflexivity) for all 𝑥 ∈ 𝑋 , 𝑥 ≤ 𝑥;

• (transitivity) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 , 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 implies 𝑥 ≤ 𝑧;

• (antisymmetry) for all 𝑥, 𝑦 ∈ 𝑋 , if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 then 𝑥 = 𝑦.

• (trichotomy, or totality) for all 𝑥, 𝑦 ∈ 𝑋 , either 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥.

Example. (i) (ℕ, ≤) is a total order.

(ii) (ℚ,≤) is a total order.

(iii) (ℝ,≤) is a total order.

(iv) (ℕ+, |) is not a total order, where | is the divides relation, since 2 and 3 are not related.

(v) (𝒫(𝑆), ⊆) is not a total order if |𝑆| > 1, since it fails trichotomy.

Definition. A total order (𝑋, <) is a well-ordering if every nonempty subset 𝑆 ⊆ 𝑋 has a
least element.

∀𝑆 ⊆ 𝑋, 𝑆 ≠ ∅ ⟹ ∃𝑥 ∈ 𝑆, ∀𝑦 ∈ 𝑆, 𝑥 ≤ 𝑦

Example. (i) (ℕ, <) is a well-ordering.

(ii) (ℤ, <) is not a well-ordering, since ℤ has no least element.

(iii) (ℚ,<) is not a well-ordering.

(iv) (ℝ,<) is not a well-ordering.

(v) [0, 1] ⊂ ℝwith the usual order is not a well-ordering, since (0, 1] has no least element.

(vi) { 1
2
, 2
3
, 3
4
,… } ⊂ ℝ with the usual order is a well-ordering.

(vii) { 1
2
, 2
3
, 3
4
,… } ∪ {1} with the usual order is also a well-ordering.

(viii) { 1
2
, 2
3
, 3
4
,… } ∪ {2} with the usual order is another example.
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(ix) { 1
2
, 2
3
, 3
4
,… } ∪ {1 + 1

2
, 1 + 2

3
, 1 + 3

4
,… } is another example.

Remark. Let (𝑋, <) be a total order. (𝑋, <) is a well-ordering if and only if there is no in-
finite decreasing sequence 𝑥1 > 𝑥2 > …. Indeed, if (𝑋, <) is a well-ordering, then the set
{𝑥1, 𝑥2,… } has nominimal element, contradicting the assumption. Conversely, if 𝑆 ⊆ 𝑋 has
no minimal element, then we can construct an infinite decreasing sequence by arbitrarily
choosing points 𝑥1 > 𝑥2 > … in 𝑆, which exists as 𝑆 has no minimal element.
Definition. Total orders 𝑋, 𝑌 are isomorphic if there is a bijection 𝑓 between 𝑋 and 𝑌 that
preserves <: 𝑥 < 𝑦 if and only if 𝑓(𝑥) < 𝑓(𝑦).
Examples (i) and (vi) are isomorphic, and (vii) and (viii) are isomorphic. Examples (i) and
(vii) are not isomorphic, since example (vii) has a greatest element and (i) does not.

Proposition (proof by induction). Let 𝑋 be a well-ordered set, and let 𝑆 ⊆ 𝑋 such that

∀𝑥 ∈ 𝑆, (∀𝑦 < 𝑥, 𝑦 ∈ 𝑆) ⟹ 𝑥 ∈ 𝑆

Then 𝑆 = 𝑋 .
Remark. Equivalently, if 𝑝(𝑥) is a property such that if 𝑝(𝑦) is true for all 𝑦 < 𝑥 then 𝑝(𝑥),
then 𝑝(𝑥) holds for all 𝑥.

Proof. Suppose 𝑆 ≠ 𝑋 . Then 𝑋 ∖ 𝑆 is nonempty, and therefore has a least element 𝑥. But all
elements 𝑦 < 𝑥 lie in 𝑆, and so by the property of 𝑆, we must have 𝑥 ∈ 𝑆, contradicting the
assumption.

Proposition. Let 𝑋, 𝑌 be isomorphic well-orderings. Then there is exactly one isomorph-
ism between 𝑋 and 𝑌 .
Note that this does not hold for general total orderings, such as ℚ to itself or [0, 1] to it-
self.

Proof. Let 𝑓, 𝑔∶ 𝑋 → 𝑌 be isomorphisms. We show that 𝑓(𝑥) = 𝑔(𝑥) for all 𝑥 by induction
on 𝑥. Suppose 𝑓(𝑦) = 𝑔(𝑦) for all 𝑦 < 𝑥. We must have that 𝑓(𝑥) = 𝑎, where 𝑎 is the least
element of 𝑌 ∖{𝑓(𝑦) ∣ 𝑦 < 𝑥}. Indeed, if not, we have 𝑓(𝑥′) = 𝑎 for some 𝑥′ > 𝑥 by bijectivity,
contradicting the order-preserving property. Note that the set 𝑌 ∖{𝑓(𝑥) ∣ 𝑦 < 𝑥} is nonempty
as it contains 𝑓(𝑥). So 𝑓(𝑥) = 𝑎 = 𝑔(𝑥), as required.

2.2. Initial segments
Definition. A subset 𝐼 of a totally ordered set 𝑋 is an initial segment if 𝑥 ∈ 𝐼 implies 𝑦 ∈ 𝐼
for all 𝑦 < 𝑥.
Example. In any total ordering 𝑋 and element 𝑥 ∈ 𝑋 , the set {𝑦 ∣ 𝑦 < 𝑥} is an initial seg-
ment. Not every initial segment is of this form, for instance {𝑥 ∣ 𝑥 ≤ 3} inℝ, or {𝑥 ∣ 𝑥 > 0, 𝑥2 < 2}
in ℚ.
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In a well-ordering, every proper initial segment 𝐼 ≠ 𝑋 is of this form. Indeed, 𝐼 = {𝑦 ∣ 𝑦 < 𝑥}
where 𝑥 is the least element of𝑋∖𝐼: 𝑦 ∈ 𝐼 implies 𝑦 < 𝑥, otherwise 𝑦 = 𝑥 or 𝑥 < 𝑦, giving the
contradiction 𝑥 ∈ 𝐼; and conversely, 𝑦 < 𝑥 implies 𝑦 ∈ 𝐼, otherwise 𝑦 is a smaller element
of 𝑋 ∖ 𝐼.
Theorem (definition by recursion). Let𝑋 be awell-ordering and𝑌 be any set. Let𝐺∶ 𝒫(𝑋×
𝑌) → 𝑌 be a rule that assigns a point in 𝑌 given a definition of the function ‘so far’, repres-
ented as a set of ordered pairs. Then there exists a function 𝑓∶ 𝑋 → 𝑌 such that 𝑓(𝑥) =
𝐺(𝑓|𝐼𝑥), and such a function is unique.
Remark. In defining 𝑓(𝑥), we may use the value of 𝑓(𝑦) for all 𝑦 < 𝑥.

Proof. We say that ℎ is an attempt to mean that ℎ∶ 𝐼 → 𝑌 where 𝐼 is some initial segment of
𝑋 , and for all 𝑥 ∈ 𝐼 we have that ℎ(𝑥) = 𝐺(ℎ|𝐼𝑥). Note that if ℎ, ℎ

′ are attempts both defined
at 𝑥, then ℎ(𝑥) = ℎ′(𝑥) by induction on 𝑥.
Also, for all 𝑥, there exists an attempt defined at 𝑥, by induction on 𝑥. Indeed, by induction
we can assume there exists an attempt ℎ𝑦 defined at 𝑦 for all 𝑦 < 𝑥, and then we can define
ℎ to be the union of the ℎ𝑦. This is an attempt with domain 𝐼𝑥, so the attempt ℎ′ = ℎ ∪
{(𝑥, 𝐺(ℎ))} is an attempt defined at 𝑥. Therefore, there is an attempt defined at each 𝑥, so we
can define the function 𝑓∶ 𝑋 → 𝑌 by setting 𝑓(𝑥) to be the value of ℎ(𝑥) where ℎ is some
attempt defined at 𝑥.
For uniqueness, we apply induction on 𝑥. If 𝑓, 𝑓′ agree below 𝑥, then they must agree at 𝑥
since 𝑓(𝑥) = 𝐺(𝑓|𝐼𝑥) = 𝐺(𝑓′|𝐼𝑥) = 𝑓′(𝑥).

Proposition (subset collapse). Any subset 𝑌 of a well-ordering 𝑋 is isomorphic to a unique
initial segment of 𝑋 .
This is not true for general total orderings, such as {1, 2, 3} ⊂ ℤ, or ℚ in ℝ.

Proof. If 𝑓 is some such isomorphism, wemust have that 𝑓(𝑥) is the least element of𝑋 not of
the form 𝑓(𝑦) for 𝑦 < 𝑥. We define 𝑓 in this way by recursion, and this is an isomorphism as
required. Note that this is always well-defined as 𝑓(𝑦) ≤ 𝑦, so there is always some element
of 𝑋 (namely, 𝑥) not of the form 𝑓(𝑦) for 𝑦 < 𝑥. Uniqueness follows by induction.

Remark. 𝑋 itself cannot be isomorphic to a proper initial segment by uniqueness as it is
isomorphic to itself.

2.3. Relating well-orderings
Definition. For well-orderings 𝑋, 𝑌 , we will write 𝑋 ≤ 𝑌 if 𝑋 is isomorphic to an initial
segment of 𝑌 .
𝑋 ≤ 𝑌 if and only if 𝑋 is isomorphic to some subset of 𝑌 .

Example. ℕ ≤ { 1
2
, 2
3
,… }.
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Proposition. Let 𝑋, 𝑌 be well-orderings. Then either 𝑋 ≤ 𝑌 or 𝑌 ≤ 𝑋 .

Proof. By recursion we define the function 𝑓∶ 𝑋 → 𝑌 by letting 𝑓(𝑥) be the least element
of 𝑌 not of the form 𝑓(𝑦) for all 𝑦 < 𝑥. If a least element of this form always exists, this
is a well-defined isomorphism from 𝑋 to an initial segment of 𝑌 as required. Suppose that
𝑌 ∖ {𝑓(𝑦) ∣ 𝑦 < 𝑥} is empty, so {𝑓(𝑦) ∣ 𝑦 < 𝑥} = 𝑌 . Then 𝑌 is isomorphic to 𝐼𝑥 ⊆ 𝑋 , so
𝑌 ≤ 𝑋 .

Proposition. Let 𝑋, 𝑌 be well-orderings, and suppose 𝑋 ≤ 𝑌 and 𝑌 ≤ 𝑋 . Then 𝑋 is iso-
morphic to 𝑌 .

Proof. Let 𝑓∶ 𝑋 → 𝑌 and 𝑔∶ 𝑌 → 𝑋 be isomorphisms to initial segments. Then 𝑔 ∘ 𝑓 is an
isomorphism from𝑋 to some initial segment of𝑋 , as an initial segment of an initial segment
is an initial segment. So by uniqueness, 𝑔 ∘ 𝑓 is the identity map on 𝑋 . Similarly, 𝑓 ∘ 𝑔 is the
identity on 𝑌 , so 𝑓 and 𝑔 are inverses.

2.4. Constructing larger well-orderings
Definition. For well-orderings 𝑋, 𝑌 , we write 𝑋 < 𝑌 if 𝑋 ≤ 𝑌 and 𝑋 is not isomorphic to
𝑌 .
Equivalently, 𝑋 < 𝑌 if 𝑋 is isomorphic to a proper initial segment of 𝑌 .
Let 𝑋 be a well-ordering, and let 𝑥 ∉ 𝑋 . Construct the well-ordering on 𝑋 ∪ {𝑥} by setting
𝑦 < 𝑥 for all 𝑦 ∈ 𝑋 . This well-ordering is strictly greater than 𝑋 , since 𝑋 is isomorphic to a
proper initial segment. This is called the successor of 𝑋 , written 𝑋+.

For well-orderings (𝑋, <𝑋), (𝑌 , <𝑌 ), we say that (𝑌 , <𝑌 ) extends (𝑋, <𝑋) if 𝑋 ⊆ 𝑌 , <𝑌 |𝑋 =
<𝑋 , and 𝑋 is an initial segment of 𝑌 . We say that well-orderings 𝑋𝑖 for 𝑖 ∈ 𝐼 are nested if for
all 𝑖, 𝑗 ∈ 𝐼, either 𝑋𝑖 extends 𝑋𝑗 or 𝑋𝑗 extends 𝑋𝑖.
Proposition. Let 𝑋𝑖 for 𝑖 ∈ 𝐼 be a nested set of well-orderings. Then, there exists a well-
ordering 𝑋 such that 𝑋𝑖 ≤ 𝑋 for all 𝑖 ∈ 𝐼.

Proof. Let 𝑋 = ⋃𝑖∈𝐼 𝑋𝑖 with ordering <𝑋 = ⋃𝑖∈𝐼 <𝑖. Then, as the 𝑋𝑖 are nested, each 𝑋𝑖 is
an initial segment of 𝑋 . We show that this is a well-ordering. Let 𝑆 ⊆ 𝑋 be a nonempty set.
Then 𝑆 ∩ 𝑋𝑖 ≠ ∅ for some 𝑖 ∈ 𝐼. Let 𝑥 be the least element of 𝑆 ∩ 𝑋𝑖. Thus, 𝑥 is the least
element of 𝑆, as 𝑋𝑖 is an initial segment of 𝑋 .

Remark. The proposition holds without the nestedness assumption.

2.5. Ordinals
Definition. An ordinal is a well-ordered set, where we regard two ordinals as equal if they
are isomorphic.
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Remark. We cannot construct ordinals as equivalence classes of well-orderings, due to Rus-
sell’s paradox. Later, we will see a different construction that deals with this problem.

Definition. Let 𝑋 be a well-ordering corresponding to an ordinal 𝛼. Then, we say that 𝑋
has order type 𝛼.

The order type of the unique well-ordering on a collection of 𝑘 ∈ ℕ points is named 𝑘. The
order type of (ℕ, <) is named 𝜔.

Example. In the reals, the set {−2, 3, −𝜋, 5} has order type 4. The set { 1
2
, 2
3
, 3
4
,… } has order

type 𝜔.

We will write 𝛼 ≤ 𝛽 if 𝑋 ≤ 𝑌 where 𝑋 has order type 𝛼 and 𝑌 has order type 𝛽. This does
not depend on the choice of representative 𝑋 or 𝑌 . We define 𝛼 < 𝛽 and 𝛼+ in a similar way.
Note that 𝛼 ≤ 𝛽, 𝛽 ≤ 𝛼 implies 𝛼 = 𝛽. Therefore, ordinals are totally ordered.

Proposition. Let 𝛼 be an ordinal. Then the set of ordinals less than 𝛼 form a well-ordered
set of order type 𝛼.

Proof. Let 𝑋 be a well-ordering with order type 𝛼. Then, the well-orderings less than 𝑋 are
precisely the proper initial segments of 𝑋 , up to isomorphism. The initial segments of 𝑋 are
precisely the sets 𝐼𝑥 = {𝑦 ∈ 𝑋 ∣ 𝑦 < 𝑥} for 𝑥 ∈ 𝑋 . But these are order isomorphic to 𝑋 itself
by mapping 𝐼𝑥 ↦ 𝑥.

We define 𝐼𝛼 = {𝛽 < 𝛼}, which is awell-ordered set of order type𝛼. This is often a convenient
representative to choose for an ordinal.

Proposition. Every nonempty set 𝑆 of ordinals has a least element.

Proof. Let 𝛼 ∈ 𝑆. Suppose 𝛼 is not the least element of 𝑆. Then 𝑆 ∩ 𝐼𝛼 is nonempty. But 𝐼𝛼
is well-ordered, so 𝑆 ∩ 𝐼𝛼 has a minimal element as required.

Theorem (Burali-Forti paradox). The ordinals do not form a set.

Proof. Suppose 𝑋 is the set of all ordinals. Then 𝑋 is a well-ordered set, so it has an order
type 𝛼. Then 𝑋 is isomorphic to 𝐼𝛼, which is a proper initial segment of 𝑋 .

Remark. Given a set 𝑆 = {𝛼𝑖 ∶ 𝑖 ∈ 𝐼} of ordinals, there exists an upper bound 𝛼 for 𝑆, so
𝛼𝑖 ≤ 𝛼 for all 𝑖 ∈ 𝐼, by considering the nested family of well-orderings 𝐼𝛼𝑖 . Hence, by the
previous proposition, there exists a least upper bound, as 𝐼𝛼 is a set. We write 𝛼 = sup 𝑆.

Example. sup {2, 4, 6,… } = 𝜔.

Remark. If we represent ordinals by sets of smaller ordinals, sup 𝑆 = ⋃𝛼∈𝑆 𝛼.
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2.6. Some ordinals
0, 1, 2, 3,… , 𝜔

Write 𝛼 + 1 for the successor 𝛼+ of 𝛼.

𝜔 + 1, 𝜔 + 2, 𝜔 + 3,… , 𝜔 + 𝜔 = 𝜔 ⋅ 2

where 𝜔 + 𝜔 = 𝜔 ⋅ 2 is defined by sup {𝜔, 𝜔 + 1, 𝜔 + 2,… }.

𝜔 ⋅ 2 + 1, 𝜔 ⋅ 2 + 2,… , 𝜔 ⋅ 3, 𝜔 ⋅ 4, 𝜔 ⋅ 5,… , 𝜔 ⋅ 𝜔 = 𝜔2

where we define 𝜔 ⋅ 𝜔 = sup {𝜔 ⋅ 2, 𝜔 ⋅ 3,… }.

𝜔2 + 1, 𝜔2 + 2,… , 𝜔2 + 𝜔,… ,𝜔2 + 𝜔 ⋅ 2,… , 𝜔2 + 𝜔2 = 𝜔2 ⋅ 2

Continue in the same way.
𝜔2 ⋅ 3, 𝜔2 ⋅ 4,… , 𝜔3

where 𝜔3 = sup {𝜔2 ⋅ 2, 𝜔2 ⋅ 3,… }.

𝜔3 + 𝜔2 ⋅ 7 + 𝜔 ⋅ 4 + 13,… , 𝜔4, 𝜔5,… , 𝜔𝜔

where 𝜔𝜔 = sup {𝜔, 𝜔2, 𝜔3,… }.

𝜔𝜔 ⋅ 2, 𝜔𝜔 ⋅ 3,… , 𝜔𝜔 ⋅ 𝜔 = 𝜔𝜔+1

𝜔𝜔+2,… , 𝜔𝜔⋅2, 𝜔𝜔⋅3,… , 𝜔𝜔2 ,… , 𝜔𝜔3 ,… , 𝜔𝜔𝜔 ,… , 𝜔𝜔𝜔𝜔 ,… , 𝜔𝜔𝜔… = 𝜀0
where 𝜀0 = sup {𝜔, 𝜔𝜔, 𝜔𝜔𝜔 ,… }.

𝜀0 + 1, 𝜀0 + 𝜔, 𝜀0 + 𝜀0 = 𝜀0 ⋅ 2,… , 𝜀20, 𝜀30,… , 𝜀𝜀00

where 𝜀𝜀00 = sup {𝜀𝜔0 , 𝜀𝜔
𝜔

0 ,… }.

𝜀𝜀
𝜀…0
0
0 = 𝜀1

All of these ordinals are countable, as each operation only takes a countable union of count-
able sets.

2.7. Uncountable ordinals
Theorem. There exists an uncountable ordinal.

Remark. The reals cannot be explicitly well-ordered.

Proof. Let𝐴 ⊆ 𝒫(𝜔×𝜔) be the set of well-orderings of subsets ofℕ. Let 𝐵 be the set of order
types of 𝐴. Then 𝐵 is the set of all countable ordinals. Let 𝜔1 = sup𝐵. 𝜔1 is uncountable,
and in particular, the least uncountable ordinal. Indeed, if it were countable, it would be the
greatest element of 𝐵, but 𝜔1 + 1 would also lie in 𝐵.
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Remark. Without introducing 𝐴, it would be difficult to show that 𝐵 was in fact a set.

Remark. Another ending to the proof above is as follows. 𝐵 cannot be the set of all ordinals,
since the ordinals do not form a set by the Burali-Forti paradox, so there exists an uncount-
able ordinal. In particular, there exists a least uncountable ordinal.

The ordinal 𝜔1 has a number of remarkable properties.

(i) 𝜔1 is uncountable, but {𝛽 ∣ 𝛽 < 𝛼} is countable for all 𝛼 < 𝜔1.

(ii) There exists no sequence 𝛼1, 𝛼2,… in 𝐼𝜔1 with supremum 𝜔1, as it is bounded by
sup {𝛼1, 𝛼2,… }, which is a countable ordinal.

Theorem (Hartogs’ lemma). For every set 𝑋 , there exists an ordinal 𝛾 that does not inject
into 𝑋 .

Proof. Use the argument above from the existence of an uncountable ordinal.

We write 𝛾(𝑋) for the least ordinal that does not inject into 𝑋 . For example 𝛾(𝜔) = 𝜔1.

2.8. Successors and limits
Definition. We say that an ordinal 𝛼 is a successor if there exists 𝛽 such that 𝛼 = 𝛽+. Oth-
erwise, 𝛼 is a limit.

Equivalently, an ordinal is a successor if and only if it has a greatest element. An ordinal 𝛼
is a limit if and only if it has no greatest element, or equivalently, for all 𝛽 < 𝛼, there exists
𝛾 < 𝛼 with 𝛾 > 𝛽, giving 𝛼 = sup {𝛽 ∣ 𝛽 < 𝛼}.

Example. 5 is a successor. 𝜔 + 2 = (𝜔+)+ is a successor. 𝜔 is a limit as it has no greatest
element. 0 is a limit.

2.9. Ordinal arithmetic
Let 𝛼, 𝛽 be ordinals. We define 𝛼 + 𝛽 by induction on 𝛽, by

• 𝛼 + 0 = 𝛼;

• 𝛼 + 𝛽+ = (𝛼 + 𝛽)+;

• 𝛼 + 𝜆 = sup {𝛼 + 𝛾 ∣ 𝛾 < 𝜆} for a nonzero limit ordinal.

Example. 𝜔 + 1 = 𝜔 + 0+ = (𝜔 + 0)+ = 𝜔+. 𝜔 + 2 = 𝜔 + 1+ = (𝜔 + 1)+ = (𝜔+)+.
1 + 𝜔 = sup {1 + 𝛾 ∣ 𝛾 < 𝜔} = 𝜔. Therefore, addition is noncommutative.

Remark. As the ordinals do not form a set, we must technically define addition 𝛼 + 𝛾 by
induction on the set {𝛾 ∣ 𝛾 ≤ 𝛽}. The choice of 𝛽 does not change the definition of 𝛼 + 𝛾 as
defined for 𝛾 ≤ 𝛽.
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Proposition. Ordinal addition is associative.

Proof. Let 𝛼, 𝛽, 𝛾 be ordinals. We use induction on 𝛾. Suppose 𝛼 + (𝛽 + 𝛿) = (𝛼 + 𝛽) + 𝛿 for
all 𝛿 < 𝛾.

First, suppose 𝛾 = 0. 𝛼 + (𝛽 + 0) = 𝛼 + 𝛽 = (𝛼 + 𝛽) = 0, as required. Now consider 𝛾+.

𝛼 + (𝛽 + 𝛾+) = 𝛼 + (𝛽 + 𝛾)+ = (𝛼 + (𝛽 + 𝛾))+ = ((𝛼 + 𝛽) + 𝛾)+ = (𝛼 + 𝛽) + 𝛾+

Finally, consider 𝜆 a nonzero limit.

(𝛼 + 𝛽) + 𝜆 = sup {(𝛼 + 𝛽) + 𝛾 ∣ 𝛾 < 𝜆} = sup {𝛼 + (𝛽 + 𝛾) ∣ 𝛾 < 𝜆}

We claim that 𝛽 + 𝜆 is a limit. Indeed, 𝛽 + 𝜆 = sup {𝛽 + 𝛾 ∣ 𝛾 < 𝜆}, but for every 𝛾 < 𝜆 there
exists 𝛾′ < 𝜆 with 𝛾 < 𝛾′ as 𝜆 is a limit, so 𝛽 + 𝛾 < 𝛽 + 𝛾′. Thus, there is no greatest element
in the set {𝛽 + 𝛾 ∣ 𝛾 < 𝜆}, so 𝛽 + 𝜆 is a limit.

Now, 𝛼 + (𝛽 + 𝜆) = sup {𝛼 + 𝛿 ∣ 𝛿 < 𝛽 + 𝜆}. So it suffices to show that

sup {𝛼 + (𝛽 + 𝛾) ∣ 𝛾 < 𝜆} = sup {𝛼 + 𝛿 ∣ 𝛿 < 𝛽 + 𝜆}

Certainly
{𝛼 + (𝛽 + 𝛾) ∣ 𝛾 < 𝜆} ⊆ {𝛼 + 𝛿 ∣ 𝛿 < 𝛽 + 𝜆}

as 𝛾 < 𝜆 implies 𝛽 + 𝛾 < 𝛽 + 𝜆. Further, for any 𝛿 < 𝛽 + 𝜆, 𝛿 ≤ 𝛽 + 𝛾 for some 𝛾 < 𝜆 by
definition of 𝛽 + 𝜆. Therefore, 𝛼 + 𝛿 ≤ 𝛼+ (𝛽 + 𝛾), so each element of {𝛼 + 𝛿 ∣ 𝛿 < 𝛽 + 𝜆} is
at most some element of {𝛼 + (𝛽 + 𝛾) ∣ 𝛾 < 𝜆}. So the two suprema agree.

Remark. We used the facts

(i) 𝛽 ≤ 𝛾 ⟹ 𝛼+ 𝛽 ≤ 𝛼 + 𝛾, which is trivial by induction on 𝛾;

(ii) 𝛽 < 𝛾 ⟹ 𝛼+ 𝛽 < 𝛼 + 𝛾, as 𝛽+ ≤ 𝛾 so 𝛼 + 𝛽+ ≤ 𝛼 + 𝛾 by (i).

However, 1 < 2 but 1 + 𝜔 ≮ 2 + 𝜔.

The above is the inductive definition of addition; there is also a synthetic definition of addi-
tion. We can define 𝛼 + 𝛽 to be the order type of 𝛼 ⊔ 𝛽, where every element of 𝛼 is taken to
be less than every element of 𝛽.

For instance, 𝜔+1 is the order type of 𝜔with a point afterwards, and 1+𝜔 is the order type
of a point followed by𝜔, which is clearly isomorphic to𝜔. Associativity is clear, as (𝛼+𝛽)+𝛾
and 𝛼 + (𝛽 + 𝛾) are the order type of 𝛼 ⊔ 𝛽 ⊔ 𝛾.

Proposition. The inductive and synthetic definitions of addition coincide.

Proof. We write +′ for synthetic addition, and aim to show 𝛼 + 𝛽 = 𝛼 +′ 𝛽. We perform
induction on 𝛽.
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For 𝛽 = 0, 𝛼 + 0 = 𝛼 and 𝛼 +′ 0 = 𝛼. For successors, 𝛼 + 𝛽+ = (𝛼 + 𝛽)+ = (𝛼 +′ 𝛽)+, which
is the order type of 𝛼 ⊔ 𝛽 ⊔ {⋆}, which is equal to 𝛼 +′ 𝛽+.
Let 𝜆 be a nonzero limit. We have 𝛼 + 𝜆 = sup {𝛼 + 𝛾 ∣ 𝛾 < 𝜆}. But 𝛼 + 𝛾 = 𝛼 +′ 𝛾 for 𝛾 < 𝜆,
so 𝛼 + 𝜆 = sup {𝛼 +′ 𝛾 ∣ 𝛾 < 𝜆}. As the set {𝛼 +′ 𝛾 ∣ 𝛾 < 𝜆} is nested, it is equal to its union,
which is 𝛼 +′ 𝜆.

Synthetic definitions can be easier to work with if such definitions exist. However, there
are many definitions that can only easily be represented inductively, and not synthetic-
ally.

We define multiplication inductively by

• 𝛼0 = 0;
• 𝛼𝛽+ = 𝛼𝛽 + 𝛼;
• 𝛼𝜆 = sup {𝛼𝛾 ∣ 𝛾 < 𝜆} for 𝜆 a nonzero limit.

Example. 𝜔2 = 𝜔1 + 𝜔 = 𝜔0 + 𝜔 + 𝜔 = 𝜔 + 𝜔. Similarly, 𝜔3 = 𝜔 + 𝜔 + 𝜔. 𝜔𝜔 =
sup {0, 𝜔1, 𝜔2,… } = {0, 𝜔, 𝜔 + 𝜔,… }. Note that 2𝜔 = sup {0, 2, 4,… } = 𝜔. Multiplication is
noncommutative. One can show in a similar way that multiplication is associative.

We can produce a synthetic definition of multiplication, which can be shown to coincide
with the inductive definition. We define 𝛼𝛽 to be the order type of the Cartesian product
𝛼 × 𝛽 where we say (𝛾, 𝛿) < (𝛾′, 𝛿′) if 𝛿 < 𝛿′ or 𝛿 = 𝛿′ and 𝛾 < 𝛾′. For instance, 𝜔2 is the
order type of two infinite sequences, and 2𝜔 is the order type of a sequence of pairs.
Similar definitions can be created for exponentiation, towers, and so on. For instance, 𝛼𝛽
can be defined by

• 𝛼0 = 1;
• 𝛼(𝛽+) = 𝛼𝛽𝛼;
• 𝛼𝜆 = sup {𝛼𝛾 ∣ 𝛾 < 𝜆} for 𝜆 a nonzero limit.

For example, 𝜔2 = 𝜔1𝜔 = 𝜔0𝜔𝜔 = 𝜔𝜔. Further, 2𝜔 = sup {20, 21,… } = 𝜔, which is
countable.
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3. Posets

3.1. Definitions

Definition. A partially ordered set or poset is a pair (𝑋, ≤)where𝑋 is a set, and≤ is a relation
on 𝑋 such that

• (reflexivity) for all 𝑥 ∈ 𝑋 , 𝑥 ≤ 𝑥;

• (transitivity) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 , 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 implies 𝑥 ≤ 𝑧;

• (antisymmetry) for all 𝑥, 𝑦 ∈ 𝑋 , 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 implies 𝑥 = 𝑦.

We write 𝑥 < 𝑦 for 𝑥 ≤ 𝑦 and 𝑥 ≠ 𝑦. Alternatively, a post is a pair (𝑋, <) where 𝑋 is a set,
and < is a relation on 𝑋 such that

• (irreflexivity) for all 𝑥 ∈ 𝑋 , 𝑥 ≮ 𝑥;

• (transitivity) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 , 𝑥 < 𝑦 and 𝑦 < 𝑧 implies 𝑥 < 𝑧.

Example. (i) Any total order is a poset.

(ii) ℕ+ with the divides relation is a poset.

(iii) (𝒫(𝑆), ⊆) is a poset.

(iv) (𝑋, ⊆) is a poset where 𝑋 ⊆ 𝒫(𝑆), such as the set of vector subspaces of a vector space.

(v) The following diagram is also a poset, where the lines from 𝑎 upwards to 𝑏 denote
relations 𝑎 ≤ 𝑏.

𝑐 𝑒

𝑏 𝑑

𝑎

This is called a Hasse diagram. An upwards line from 𝑥 to 𝑦 is drawn if 𝑦 covers 𝑥, so
𝑦 > 𝑥 and no 𝑧 has 𝑦 > 𝑧 > 𝑥. The natural numbers can be represented as a Hasse
diagram.
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⋮

3

2

1

0

The rationals cannot, since no element covers another.

(vi) There is no notion of ‘height’ in a poset, illustrated by the following diagram.

𝑏

𝑒

𝑐

𝑑

𝑎

(vii)
𝑒

𝑐 𝑑

𝑎 𝑏

Definition. A subset 𝑆 of a poset 𝑋 is a chain if it is totally ordered.

Example. The powers of 2 in (ℕ+, ∣) is a chain.

Definition. A subset 𝑆 of a poset 𝑋 is an antichain if no two distinct elements are related.

Example. The set of primes in (ℕ+, ∣) is an antichain.
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Definition. For 𝑆 ⊆ 𝑋 , an upper bound for 𝑆 is an 𝑥 ∈ 𝑋 such that 𝑥 ≥ 𝑦 for all 𝑦 ∈ 𝑆. A
least upper bound is an upper bound 𝑥 ∈ 𝑋 for 𝑆 such that for all upper bounds 𝑦 ∈ 𝑋 for 𝑆,
𝑥 ≤ 𝑦.

Example. If 𝑆 = {𝑥 ∣ 𝑥 < √2} ⊂ ℝ, 7 is an upper bound, and √2 is a least upper bound.
We write√2 = sup 𝑆 = ⋁𝑆 for the least upper bound or join of 𝑆.

In ℚ, the set {𝑥 ∣ 𝑥2 < 2} has 7 as an upper bound but has no least upper bound.

In example (v), {𝑎, 𝑏} has upper bounds 𝑏 and 𝑐, so the least upper bound is 𝑏. {𝑏, 𝑑} has no
upper bound. In example (vii), {𝑎, 𝑏} has upper bounds 𝑐, 𝑑, 𝑒, so does not have a least upper
bound.

Definition. A poset 𝑋 is complete if every 𝑆 ⊆ 𝑋 has a least upper bound.

Example. ℝ is not complete, as ℤ has no upper bound. [0, 1] ⊆ ℝ is complete. (0, 1) ⊆ ℝ is
not complete, as (0, 1) has no upper bound.

Example. 𝑋 = 𝒫(𝑆) is always complete as a poset under inclusion, with sup {𝐴𝑖 ∣ 𝑖 ∈ 𝐼} =
⋃𝑖∈𝐼 𝐴𝑖.

Note that every complete poset 𝑋 has a greatest element sup𝑋 . A complete poset also has a
least element sup∅. In the case 𝑋 = 𝒫(𝑆), sup𝑋 = 𝑆 and sup∅ = ∅.

Definition. Let 𝑓∶ 𝑋 → 𝑌 be a functionwhere𝑋, 𝑌 are posets. We say 𝑓 is order-preserving
if 𝑥 ≤ 𝑦 implies 𝑓(𝑥) ≤ 𝑓(𝑦).

Example. The function 𝑓∶ ℕ → ℕ defined by 𝑓(𝑥) = 𝑥 + 1 is order-preserving. The
function𝑓∶ [0, 1] → [0, 1] defined by𝑥 ↦ 𝑥+1

2
is order-preserving. The function𝑓∶ 𝒫(𝑆) →

𝒫(𝑆) defined by 𝑓(𝐴) = 𝐴 ∪ {𝑖} for some fixed 𝑖 ∈ 𝑆 is order-preserving.

Not all order-preserving functions have a fixed point 𝑥 such that 𝑓(𝑥) = 𝑥, for example
𝑓(𝑥) = 𝑥 + 1 on ℕ.

Theorem (Knaster–Tarski fixed point theorem). Let 𝑋 be a complete poset. Then every
order-preserving 𝑓∶ 𝑋 → 𝑋 has a fixed point.

Proof. Let 𝐸 = {𝑥 ∈ 𝑋 ∣ 𝑥 ≤ 𝑓(𝑥)}, and let 𝑠 = sup𝐸. We show that 𝑠 is a fixed point for 𝑓.

First, we show 𝑠 ≤ 𝑓(𝑠), so 𝑠 ∈ 𝐸. It suffices to show 𝑓(𝑠) is an upper bound for 𝐸, then the
result holds as 𝑠 is the least such upper bound. If 𝑥 ∈ 𝐸, we know 𝑥 ≤ 𝑠, so 𝑓(𝑥) ≤ 𝑓(𝑠) as 𝑓
is order-preserving, as required.

Now, we show 𝑓(𝑠) ≤ 𝑠. It suffices to show 𝑓(𝑠) ∈ 𝐸, as 𝑠 is an upper bound for 𝐸. Since
𝑠 ≤ 𝑓(𝑠), we have 𝑓(𝑠) ≤ 𝑓(𝑓(𝑠)), but this is precisely the fact that 𝑓(𝑠) ∈ 𝐸.

Corollary (Schröder–Bernstein theorem). Let𝑓∶ 𝐴 → 𝐵 and 𝑔∶ 𝐵 → 𝐴 be injections. Then
there is a bijection 𝐴 → 𝐵.
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Proof. We seek partitions 𝐴 = 𝑃 ⊔ 𝑄, 𝐵 = 𝑅 ⊔ 𝑆 such that 𝑓(𝑃) = 𝑅 and 𝑔(𝑆) = 𝑄; then
we define ℎ to equal to 𝑓 on 𝑃 and 𝑔−1 on 𝑄. Thus, we need a set 𝑃 that is a fixed point of
𝜃∶ 𝒫(𝐴) → 𝒫(𝐴) given by 𝑃 ↦ 𝐴 ∖ 𝑔(𝐵 ∖ 𝑓(𝑃)). But 𝜃 is order-preserving and 𝒫(𝐴) is a
complete poset. So 𝑃 exists by the Knaster–Tarski fixed point theorem.

3.2. Zorn’s lemma
Definition. Let 𝑋 be a poset. We say that 𝑥 ∈ 𝑋 ismaximal if there is no 𝑦 ∈ 𝑋 with 𝑦 > 𝑥.
Example. In [0, 1], 1 is maximal. In example (v), there are two maximal elements 𝑐 and 𝑒.
Note that (ℝ,≤) and (ℕ, ∣) have no maximal elements, and they both have a chain with no
upper bound, such as ℕ ⊂ ℝ, and powers of two.
Theorem (Zorn’s lemma). Let𝑋 be a poset in which every chain has an upper bound. Then
𝑋 has a maximal element.

The empty chain must have an upper bound in 𝑋 , so 𝑋 must be nonempty to apply Zorn’s
lemma. Zorn’s lemma can be equivalently be stated as the following.

Theorem. Let 𝑋 be a nonempty poset in which every nonempty chain has an upper bound.
Then 𝑋 has a maximal element.

One can view Zorn’s lemma as a fixed point theorem on a function 𝑓∶ 𝑋 → 𝑋 with the
property that 𝑥 ≤ 𝑓(𝑥).

Proof. Suppose that 𝑋 has no maximal element. Then for each 𝑥 ∈ 𝑋 , we have 𝑥′ ∈ 𝑋 and
𝑥′ > 𝑥. For each chain 𝐶, we have an upper bound 𝑢(𝐶). Let 𝑥 ∈ 𝑋 be any element, and
define 𝑥𝛼 for each 𝛼 < 𝛾(𝑋) by recursion.

• 𝑥0 = 𝑥;
• 𝑥𝛼+1 = 𝑥′𝛼;
• 𝑥𝜆 = 𝑢{𝑥𝛽 ∣ 𝛽 < 𝜆} for 𝜆 a nonzero limit.

Note that {𝑥𝛽 ∣ 𝛽 < 𝜆} forms a chain, so it has an upper bound as required. Then, we have
an injection from 𝛾(𝑋) into 𝑋 , contradicting the definition of 𝛾(𝑋).

Remark. Although this proof was short, it relied on the infrastructure of well-orderings, re-
cursion, ordinals, and Hartogs’ lemma.

We show that every vector space has a basis. Recall that a basis is a linearly independent
spanning set; no nontrivial finite linear combination of basis elements is zero, and each
element of the vector space is a finite linear combination of the basis elements. For instance,
the space of real polynomials has basis 1, 𝑋, 𝑋2,…. The space of real sequences has a linearly
independent set (1, 0, 0,… ), (0, 1, 0,… ),…, but this is not a basis as the sequence (1, 1, 1,… )
cannot be constructed as a finite linear combination of these vectors. In fact, there is no
countable basis for this space, and no explicitly definable basis in general. ℝ is a vector
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space over ℚ. There is clearly no countable basis, and in fact no explicit basis. A basis in
this case is called a Hamel basis.

Theorem. Every vector space 𝑉 has a basis.

Proof. Let 𝑋 be the set of all linearly independent subsets of 𝑉 , ordered by inclusion. We
seek a maximal element of 𝑋 ; this is clearly a basis, as any vector not in its span could be
added to the set to increase the set of basis vectors. 𝑋 is nonempty as ∅ ∈ 𝑋 .

We apply Zorn’s lemma. Let (𝐴𝑖)𝑖∈𝐼 be a chain in 𝑋 . We show that its union𝐴 = ⋃𝑖∈𝐼 𝐴𝑖 is a
linearly independent set, and therefore lies in𝑋 and is an upper bound. Suppose 𝑥1,… , 𝑥𝑛 ∈
𝐴 are linearly dependent. Then 𝑥1 ∈ 𝐴𝑖1 ,… , 𝑥𝑛 ∈ 𝐴𝑖𝑛 , so all 𝑥𝑖 lie in some 𝐴𝑘 as the 𝐴𝑖 are
a chain. But 𝐴𝑘 is linearly independent, which is a contradiction.

Remark. The only time that linear algebra was used was to show that the maximal element
obtained by Zorn’s lemma performs the required task; this is usual for proofs in this style.

We can now prove the completeness theorem for propositional logic with no restrictions on
the size of the set of primitive propositions.

Theorem. Let 𝑆 ⊆ 𝐿 = 𝐿(𝑃) be consistent. Then 𝑆 has a model.

Proof. We will extend 𝑆 to a consistent set 𝑆 such that for all 𝑡 ∈ 𝐿, either 𝑡 ∈ 𝑆 or ¬𝑡 ∈ 𝑆;
we then complete the proof by defining a valuation 𝑣 such that 𝑣(𝑡) = 1 if 𝑡 ∈ 𝑆.

Let 𝑋 = {𝑇 ⊇ 𝑆 ∣ 𝑇 consistent} be the poset of consistent extensions of 𝑆, ordered by inclu-
sion. We seek a maximal element of 𝑋 . Then, if 𝑆 is maximal and 𝑡 ∉ 𝑆, then 𝑆 ∪ {𝑡} ⊢ ⊥ by
maximality, so 𝑆 ⊢ ¬𝑡 by the deduction theorem, giving ¬𝑡 ∈ 𝑆 again by maximality.

Note that 𝑋 ≠ ∅ as 𝑆 ∈ 𝑋 . Given a nonempty chain (𝑇𝑖)𝑖∈𝐼 , let 𝑇 = ⋃𝑖∈𝐼 𝑇𝑖. We have 𝑇 ⊇ 𝑇𝑖
for all 𝑖 and 𝑇 ⊇ 𝑆 as the chain is nonempty, so it suffices to show 𝑇 is consistent. Indeed,
suppose 𝑇 ⊢ ⊥. Then there exists a subset {𝑡1,… , 𝑡𝑛} ∈ 𝑇 with {𝑡1,… , 𝑡𝑛} ⊢ ⊥ as proofs are
finite. Now, 𝑡1 ∈ 𝑇𝑖1 ,… , 𝑡𝑛 ∈ 𝑇𝑖𝑛 so all 𝑡𝑗 are elements of 𝑇𝑖𝑘 for some 𝑘. But 𝑇𝑖𝑘 is consistent,
so {𝑡1,… , 𝑡𝑛} ⊬ ⊥, giving a contradiction.

3.3. Well-ordering principle

Theorem. Every set has a well-ordering.

There exist sets with no definable well-ordering, such as ℝ.

Proof. Let 𝑆 be a set, and let 𝑋 be the set of pairs (𝐴, 𝑅) such that 𝐴 ⊆ 𝑆 and 𝑅 is a well-
ordering on 𝐴. We define the partial order on 𝑋 by (𝐴, 𝑅) ≤ (𝐴′, 𝑅′) if (𝐴′, 𝑅′) extends (𝐴, 𝑅),
so 𝑅′|𝐴 = 𝐴 and 𝐴 is an initial segment of 𝐴′ for 𝑅′.
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𝑋 is nonempty as the empty relation is a well-ordering of the empty set. Given a nonempty
chain (𝐴𝑖, 𝑅𝑖)𝑖∈𝐼 , there is an upper bound (⋃𝑖∈𝐼 𝐴𝑖,⋃𝑖∈𝐼 𝑅𝑖), because the well-orderings are
nested. By Zorn’s lemma, there exists a maximal element (𝐴, 𝑅) ∈ 𝑋 .
Suppose 𝑥 ∈ 𝑆 ∖ 𝐴. Then we can construct the well-ordering on 𝐴 ∪ {𝑥} by defining 𝑎 < 𝑥
for 𝑎 ∈ 𝐴, contradicting maximality of 𝐴. Hence 𝐴 = 𝑆, so 𝑅 is a well-ordering on 𝑆.

3.4. Zorn’s lemma and the axiom of choice
In the proof of Zorn’s lemma, for each 𝑥 ∈ 𝑆 we chose an arbitrary 𝑥′ > 𝑥. This requires
potentially infinitely many arbitrary choices. Other proofs, such as that the countable union
of countable sets is countable, also required infinitely many choices; in this example, we
chose arbitrary enumerations of the countable sets 𝐴1, 𝐴2,… at once.

Formally, this process of making infinitely many arbitrary choices is known as the axiom of
choice 𝖠𝖢: if we have a family of nonempty sets, one can choose an element from each one.
More precisely, for any family of nonempty sets (𝐴𝑖)𝑖∈𝐼 , there is a choice function 𝑓∶ 𝐼 →
⋃𝑖∈𝐼 𝐴𝑖 such that 𝑓(𝑖) ∈ 𝐴𝑖 for all 𝑖.
Unlike the other axioms of set theory, the function obtained from the axiom of choice is not
uniquely defined. For instance, the axiom of union allows for the construction of 𝐴 ∪ 𝐵
given 𝐴 and 𝐵, which can be fully described; but applying the axiom of choice to the family
⋆ ↦ {1, 2} could give the choice function ⋆ ↦ 1 or ⋆ ↦ 2.
Use of the axiom of choice gives rise to nonconstructive proofs. In modern mathematics it
is sometimes considered useful to note when the axiom of choice is being used. However,
many proofs that do not even use the axiom of choice are nonconstructive, such as the proof
of existence of transcendentals, or Hilbert’s basis theorem that every ideal overℚ[𝑋1,… , 𝑋𝑛]
is finitely generated.

Although our proof of Zorn’s lemma required the axiom of choice, it is not immediately
clear that all such proofs require it. However, it can be shown that Zorn’s lemma implies the
axiom of choice in the presence of the other axioms of 𝖹𝖥 set theory. Indeed, if (𝐴𝑖)𝑖∈𝐼 is a
family of sets, we can well-order it using the well-ordering principle, and define the choice
function by setting 𝑓(𝑖) to be the least element of 𝐴𝑖. Hence, Zorn’s lemma, the axiom of
choice, and the well-ordering principle are equivalent, given 𝖹𝖥.
𝖠𝖢 can be proven trivially in 𝖹𝖥 for the case |𝐼| = 1, because a set being nonempty means
precisely that there exists an element inside it. Clearly, 𝖠𝖢 holds for all finite index sets in
𝖹𝖥 by induction on |𝐼|. However, 𝖹𝖥 does not prove the most general form of 𝖠𝖢.
Zorn’s lemma is a difficult lemma to prove from first principles because of its reliance on
ordinals andHartogs’ lemma; the use of the axiomof choice does not contribute significantly
to its difficulty. The construction and properties of the ordinals did not rely on the axiom of
choice. The axiom of choice was only used twice in the section on well-orderings: the fact
that in a set that is not well-ordered, there is an infinite decreasing sequence; and the fact
that 𝜔1 is not a countable supremum.
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4. Predicate logic
4.1. Languages
Recall that a group is a set 𝐴 equipped with functions𝑚∶ 𝐴2 → 𝐴 of arity 2, and 𝑖 ∶ 𝐴1 → 𝐴
of arity 1, and a constant 𝑒 ∈ 𝐴 which can be viewed as a function 𝐴0 → 𝐴 of arity 0, such
that a set of axioms hold. A poset is a set 𝐴 equipped with a relation (≤) ⊆ 𝐴2 of arity 2, such
that a set of axioms hold. Other algebraic structures can be described in the sameway.

Let Ω and Π be disjoint sets of functions and relations, and 𝛼∶ Ω ∪ Π → ℕ be an arity
function. Variables are symbols of the form 𝑥𝑖 for some 𝑖 ∈ ℕ. Terms are defined inductively
by

(i) each variable is a term;

(ii) if 𝑓 ∈ Ω with 𝛼(𝑓) = 𝑛 and terms 𝑡1,… , 𝑡𝑛, then 𝑓 𝑡1… 𝑡𝑛 is a term.
The atomic formulae are defined inductively by

(i) ⊥ is an atomic formula;

(ii) for terms 𝑠, 𝑡, (𝑠 = 𝑡) is an atomic formula;
(iii) if 𝜑 ∈ Π with 𝛼(𝜑) = 𝑛 and terms 𝑡1,… , 𝑡𝑛, then 𝜑(𝑡1,… , 𝑡𝑛) is an atomic formula.
The formulae are defined inductively by

(i) each atomic formula is a formula;

(ii) if 𝑝 and 𝑞 are formulae then (𝑝 ⇒ 𝑞) is a formula;
(iii) if 𝑝 is a formula and 𝑥 is a variable, then (∀𝑥)𝑝 is a formula.
The language 𝐿 = 𝐿(Ω,Π, 𝛼) is the set of formulae.
Example. In the language of groups, Ω = {𝑚, 𝑖, 𝑒} and Π = ∅ with 𝛼(𝑚) = 2, 𝛼(𝑖) =
1, 𝛼(𝑒) = 0. 𝑚(𝑥1, 𝑥2),𝑚(𝑥1, 𝑖(𝑥2)), 𝑒,𝑚(𝑒, 𝑒) are examples of terms of the language. 𝑒 =
𝑚(ℓ, 𝑒),𝑚(𝑥, 𝑦) = 𝑚(𝑦, 𝑥) are atomic formulae.
Example. In the language of posets, Ω = ∅ and Π = {≤} with 𝛼(≤) = 2. 𝑥 = 𝑦, 𝑥 ≤ 𝑦 are
atomic formulae. Technically, 𝑥 ≤ 𝑦 is written ≤ (𝑥, 𝑦).
Example. In the language of groups, (∀𝑥)(𝑚(𝑥, 𝑥) = 𝑒) is a formula. Another formula is
𝑚(𝑥, 𝑥) = 𝑒 ⇒ (∃𝑦)(𝑚(𝑦, 𝑦) = 𝑥).
Remark. A formula is a certain finite string of symbols; it has no intrinsic semantics. We
define ¬𝑝, 𝑝 ∧ 𝑞, 𝑝 ∨ 𝑞 in the usual way. We define (∃𝑥)𝑝 to mean ¬(∀𝑥)(¬𝑝).
A term is closed if it contains no variables. For example, 𝑒,𝑚(𝑒, 𝑖(𝑒)) are closed in the lan-
guage of groups, but𝑚(𝑥, 𝑖(𝑥)) is not closed.
An occurrence of a variable 𝑥 in a formula 𝑝 is bound if it is inside the brackets of a (∀𝑥)
quantifier. Otherwise, we say the occurrence is free. In the formula (∀𝑥)(𝑚(𝑥, 𝑥) = 𝑒), each
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occurrence of 𝑥 is bound. In 𝑚(𝑥, 𝑥) = 𝑒 ⇒ (∃𝑦)(𝑚(𝑦, 𝑦) = 𝑥), the occurrences of 𝑥 are
free and the occurrences of 𝑦 are bound. In the formula𝑚(𝑥, 𝑥) = 𝑒 ⇒ (∀𝑥)(∀𝑦)(𝑚(𝑥, 𝑦) =
𝑚(𝑦, 𝑥)), the occurrences of 𝑥 on the left hand side are free, and the occurrences of 𝑥 on the
right hand side are bound.

A sentence is a formula with no free variables. For instance, (∀𝑥)(𝑚(𝑥, 𝑥) = 𝑒) is a sen-
tence, and (∀𝑥)(𝑚(𝑥, 𝑥) ⇒ (∃𝑦)(𝑚(𝑦, 𝑦) = 𝑥)) is a sentence. In the language of posets,
(∀𝑥)(∃𝑦)(𝑥 ≥ 𝑦 ∧ ¬(𝑥 = 𝑦)) is a sentence.

For a formula𝑝, term 𝑡, and variable 𝑥, the substitution𝑝[𝑡/𝑥] is obtained from𝑝 by replacing
every free occurrence of 𝑥 with 𝑡. For example,

𝑝 = (∃𝑦)(𝑚(𝑦, 𝑦) = 𝑥); 𝑝[𝑒/𝑥] = (∃𝑦)(𝑚(𝑦, 𝑦) = 𝑒)

4.2. Semantic implication
Definition. Let 𝐿 = 𝐿(Ω,Π, 𝛼) be a language. An 𝐿-structure is

• a nonempty set 𝐴;

• for each 𝑓 ∈ Ω, a function 𝑓𝐴∶ 𝐴𝑛 → 𝐴 where 𝑛 = 𝛼(𝑓);

• for each 𝜑 ∈ Π, a subset 𝜑𝐴 ⊆ 𝐴𝑛 where 𝑛 = 𝛼(𝜑).

Remark. We will see later why the restriction that 𝐴 is nonempty is given here.

Example. In the language of groups, an 𝐿-structure is a nonempty set 𝐴 with functions
𝑚𝐴∶ 𝐴2 → 𝐴, 𝑖𝐴∶ 𝐴 → 𝐴, 𝑒𝐴 ∈ 𝐴. Such a structure may not be a group, as we have not
placed any axioms on 𝐴.

Example. In the language of posets, an 𝐿-structure is a nonempty set 𝐴 with a relation
(≤𝐴) ⊆ 𝐴2.

We define the interpretation 𝑝𝐴 ∈ {0, 1} of a sentence 𝑝 in an 𝐿-structure 𝐴 as follows.

• The interpretation 𝑡𝐴 of a closed term 𝑡 in an 𝐿-structure 𝐴 is defined inductively as
(𝑓 𝑡1…𝑡𝑛)𝐴 = 𝑓𝐴(𝑡1𝐴,… , 𝑡𝑛𝐴) for 𝑓 ∈ Ω, 𝛼(𝑓) = 𝑛, where 𝑡1,… , 𝑡𝑛 are closed.

• The interpretation of an atomic sentence is defined inductively.

– ⊥𝐴 = 0.

– (𝑠 = 𝑡)𝐴 is 1 if 𝑠𝐴 = 𝑡𝐴 and 0 if 𝑠𝐴 ≠ 𝑡𝐴.

– (𝜑(𝑡1,… , 𝑡𝑛))𝐴 is 1 if (𝑡1𝐴,… , 𝑡𝑛𝐴) ∈ 𝜑𝐴 and 0 otherwise, for 𝜑 ∈ Π, 𝛼(𝜑) = 𝑛,
where 𝑡1,… , 𝑡𝑛 are closed.

• We now inductively define the interpretation of sentences, which is technically induc-
tion by length over all languages at once.

– (𝑝 ⇒ 𝑞)𝐴 is 0 if 𝑝𝐴 = 1 and 𝑞𝐴 = 0, and 1 otherwise.
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– ((∀𝑥)𝑝)𝐴 is 1 if 𝑝[𝑎/𝑥] is 1 for all 𝑎 ∈ 𝐴 and 0 otherwise, where we add a constant
symbol 𝑎 to 𝐿 for a fixed 𝑎 ∈ 𝐴 to form the language 𝐿′, and we make 𝐴 into an
𝐿′-structure by defining 𝑎𝐴 = 𝑎.

Remark. For a formula 𝑝 with free variables, we can define 𝑝𝐴 to be the subset of 𝐴𝑘 where
𝑘 is the number of free variables, defined such that 𝑥 ∈ 𝑝𝐴 if and only if the substitution of
𝑥 in 𝑝 is evaluated to 1.

Definition. If 𝑝𝐴 = 1, we say 𝑝 holds in 𝐴, or 𝑝 is true in 𝐴, or 𝐴 is amodel of 𝑝. A theory is
a set of sentences, known as its axioms. We say that 𝐴 is amodel of a theory 𝑇 if 𝑝𝐴 = 1 for
all 𝑝 ∈ 𝑇. For a theory 𝑇 and a sentence 𝑝, we say that 𝑇 ⊧ 𝑝, read 𝑇 entails or semantically
implies 𝑝, if every model of 𝑇 is a model of 𝑝.

Example. Let 𝐿 be the language of groups, and let

𝑇 = {(∀𝑥)(∀𝑦)(∀𝑧)(𝑚(𝑥,𝑚(𝑦, 𝑧)) = 𝑚(𝑚(𝑥, 𝑦), 𝑧)),
(∀𝑥)(𝑚(𝑥, 𝑒) = 𝑥 ∧ 𝑚(𝑒, 𝑥) = 𝑥),
(∀𝑥)(𝑚(𝑥, 𝑖(𝑥)) = 𝑒 ∧ 𝑚(𝑖(𝑥), 𝑥) = 𝑒)}

Then, an 𝐿-structure is a model of 𝑇 if and only if it is a group. Note that this statement has
two assertions; every 𝐿-structure that is a model of 𝑇 is a group, and that every group can be
turned into an 𝐿-structure that models 𝑇. We say that 𝑇 axiomatises the theory of groups or
the class of groups.

Example. Let 𝐿 be the language of posets, and 𝑇 be the poset axioms. Then 𝑇 axiomatises
the class of posets.

Example. Let 𝐿 be the language of fields, soΩ = {0, 1, +, ⋅, −}with 𝛼(0) = 𝛼(1) = 0, 𝛼(+) =
𝛼(⋅) = 2, 𝛼(−) = 1. 𝑇 is the usual field axioms, including the statement (∀𝑥)(¬(𝑥 = 0) ⇒
(∃𝑦)(𝑥 ⋅ 𝑦 = 1)). Then 𝑇 entails the statement that inverses are unique: (∀𝑥)(¬(𝑥 = 0) ⇒
(∀𝑦)(∀𝑧)(𝑦 ⋅ 𝑥 = 1 ∧ 𝑧 ⋅ 𝑥 = 1 ⇒ 𝑦 = 𝑧)).

Example. Let 𝐿 be the language of graphs, defined by Ω = ∅ and Π = {𝑎} where 𝛼(𝑎) = 2
is the adjacency relation. Define 𝑇 = {(∀𝑥)(¬𝑎(𝑥, 𝑥)), (∀𝑥)(∀𝑦)(𝑎(𝑥, 𝑦) ⇒ 𝑎(𝑦, 𝑥))}. Then 𝑇
axiomatises the class of graphs.

4.3. Syntactic implication
We need to define (logical) axioms and deduction rules in order to construct proofs.

(i) 𝑝 ⇒ (𝑞 ⇒ 𝑝) for formulae 𝑝, 𝑞.

(ii) (𝑝 ⇒ (𝑞 ⇒ 𝑟)) ⇒ ((𝑝 ⇒ 𝑞) ⇒ (𝑝 ⇒ 𝑟)) for formulae 𝑝, 𝑞, 𝑟.

(iii) ¬¬𝑝 ⇒ 𝑝 for each formula 𝑝.

(iv) (∀𝑥)(𝑥 = 𝑥) for any variable 𝑥.
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(v) (∀𝑥)(∀𝑦)(𝑥 = 𝑦 ⇒ (𝑝 ⇒ 𝑝[𝑦/𝑥])) for any variables 𝑥, 𝑦 where 𝑦 is not bound in the
formula 𝑝.

(vi) ((∀𝑥)𝑝) ⇒ 𝑝[𝑡/𝑥] for any variable 𝑥, formula 𝑝, and term 𝑡 that has no free variable
that occurs bound in 𝑝.

(vii) (∀𝑥)(𝑝 ⇒ 𝑞) ⇒ (𝑝 ⇒ (∀𝑥)𝑞) for any formulae 𝑝, 𝑞 and variable 𝑥 that does not appear
free in 𝑝.

Note that all of these axioms are tautologies; they hold in every structure. We define the
following deduction rules.

(i) (modus ponens) From 𝑝 and 𝑝 ⇒ 𝑞, we can deduce 𝑞.

(ii) (generalisation) From 𝑝, we can deduce (∀𝑥)𝑝 provided that 𝑥 does not occur free in
any premise used to deduce 𝑝.

For 𝑆 ⊆ 𝐿 and 𝑡 ∈ 𝐿, we say that 𝑆 ⊢ 𝑝, read 𝑆 proves 𝑝, if there exists a proof of 𝑝 from
𝑆, which is a finite sequence of formulae ending with 𝑝 such that each formula is a logical
axiom, a hypothesis in 𝑆, or obtained from earlier lines by one of the deduction rules.

Remark. Suppose we allow the empty structure for a language with no constants. Then, ⊥
is false in 𝐴, and the statement (∀𝑥)⊥ is true in 𝐴. Therefore, ((∀𝑥)⊥) ⇒ ⊥ is false by modus
ponens. But this is an instance of axiom (vi), showing that it would not be a tautology.

Example. We show {𝑥 = 𝑦, 𝑥 = 𝑧} ⊢ 𝑦 = 𝑧 where 𝑥, 𝑦, 𝑧 are different variables.

1. (∀𝑥)(∀𝑦)(𝑥 = 𝑦 ⇒ (𝑥 = 𝑧 ⇒ 𝑦 = 𝑧)) (axiom 5)

2. ((∀𝑥)(∀𝑦)(𝑥 = 𝑦 ⇒ (𝑥 = 𝑧 ⇒ 𝑦 = 𝑧))) ⇒ (∀𝑦)(𝑥 = 𝑦 ⇒ (𝑥 = 𝑧 ⇒ 𝑦 = 𝑧)) (axiom 6)

3. (∀𝑦)(𝑥 = 𝑦 ⇒ (𝑥 = 𝑧 ⇒ 𝑦 = 𝑧)) (modus ponens on lines 1, 2)

4. ((∀𝑦)(𝑥 = 𝑦 ⇒ (𝑥 = 𝑧 ⇒ 𝑦 = 𝑧))) ⇒ (𝑥 = 𝑦 ⇒ (𝑥 = 𝑧 ⇒ 𝑦 = 𝑧)) (axiom 6)

5. 𝑥 = 𝑦 ⇒ (𝑥 = 𝑧 ⇒ 𝑦 = 𝑧) (modus ponens on lines 3, 4)

6. 𝑥 = 𝑦 (hypothesis)

7. 𝑥 = 𝑧 ⇒ 𝑦 = 𝑧 (modus ponens on lines 5, 6)

8. 𝑥 = 𝑧 (hypothesis)

9. 𝑦 = 𝑧 (modus ponens on lines 7, 8)

4.4. Deduction theorem
Proposition. Let 𝑆 ⊆ 𝐿, and 𝑝, 𝑞 ∈ 𝐿. Then 𝑆 ⊢ (𝑝 ⇒ 𝑞) if and only if 𝑆 ∪ {𝑝} ⊢ 𝑞.

Proof. As before, given a proof of𝑝 ⇒ 𝑞 from 𝑆, one can establish a proof of 𝑞 from 𝑆∪{𝑝} ⊢ 𝑞
by writing 𝑝 and applying modus ponens to the original proof.
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Conversely, suppose we have a proof 𝑆 ∪ {𝑝} ⊢ 𝑞. We convert each line 𝑡𝑖 into 𝑝 ⇒ 𝑡𝑖 as in
the proof in propositional logic. The only new case is generalisation. Suppose we have the
line 𝑟 and then the line (∀𝑥)𝑟 obtained by generalisation, and we have a proof 𝑆 ⊢ 𝑝 ⇒ 𝑟 by
induction. In the proof 𝑆 ∪ {𝑝} ⊢ 𝑟, no hypothesis has a free occurrence of 𝑥. Therefore, in
the proof 𝑆 ⊢ 𝑝 ⇒ 𝑟, the same holds. Thus, 𝑆 ⊢ (∀𝑥)(𝑝 ⇒ 𝑟) by generalisation.

Suppose 𝑥 is not free in 𝑝. Then, 𝑆 ⊢ 𝑝 ⇒ (∀𝑥)𝑟 by axiom 7 and modus ponens.

Now, suppose 𝑥 occurs free in 𝑝. In this case, the proof 𝑆 ∪ {𝑝} ⊢ 𝑟 cannot have used the
hypothesis 𝑝. Hence, 𝑆 ⊢ 𝑟, and so 𝑆 ⊢ (∀𝑥)𝑟 by generalisation. This gives 𝑆 ⊢ 𝑝 ⇒ (∀𝑥)𝑟
by axiom 1.

4.5. Soundness
This section is non-examinable.

Proposition. Let 𝑆 be a set of sentences in 𝐿, and 𝑝 a sentence in 𝐿. Then 𝑆 ⊢ 𝑡 implies
𝑆 ⊧ 𝑡.

Proof. We have a proof 𝑡1,… , 𝑡𝑛 of 𝑝 from 𝑆. We show that if 𝐴 is a model of 𝑆, 𝐴 is also a
model of 𝑡𝑖 for each 𝑖 (interpreting free variables as quantified); this can be shown by induc-
tion. Hence, 𝑆 ⊧ 𝑝.

4.6. Adequacy
This section is non-examinable.

We want to show that 𝑆 ⊧ 𝑝 implies 𝑆 ⊢ 𝑝. Equivalently, 𝑆 ∪ {¬𝑝} ⊧ ⊥ implies 𝑆 ∪ {¬𝑝} ⊢ ⊥.
In other words, if 𝑆 ∪ {¬𝑝} is consistent, it has a model.

Theorem (model existence lemma). Every consistent theory has a model.

We will need a number of key ideas in order to prove this.

(i) We will construct our model out of the language itself using the closed terms of 𝐿. For
instance, if 𝐿 is the language of fields and 𝑆 is the usual field axioms, we take the closed
terms and combine them with + and ⋅ in the obvious way.

(ii) However, we can prove 𝑆 ⊢ 1 + 0 = 1, but 1 + 0 and 1 are distinct as strings. We will
therefore take the quotient of this set by the equivalence relation defined by 𝑠 ∼ 𝑡 if
𝑆 ⊢ 𝑠 = 𝑡. If this set is 𝐴, we define [𝑠] +𝐴 [𝑡] = [𝑠 + 𝑡], and this is a well-defined
operation.

(iii) Suppose 𝑆 is the set of field axioms with the statement that 1 + 1 = 0 ∨ 1 + 1 + 1 = 0.
In this theory, 𝑆 ⊬ 1 + 1 = 0 and 𝑆 ⊬ 1 + 1 + 1 = 0. Therefore, [1 + 1] ≠ [0] and
[1 + 1 + 1] ≠ [0], so our structure 𝐴 is not of characteristic 2 or 3. We can overcome
this by first extending 𝑆 to a maximal consistent theory.
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(iv) Suppose 𝑆 is the set of field axioms with the statement that (∃𝑥)(𝑥 ⋅ 𝑥 = 1 + 1). There
is no closed term 𝑡 with the property that [𝑡 ⋅ 𝑡] = [1 + 1]. The problem is that 𝑆 lacks
witnesses to existential quantifiers. For each statement of the form (∃𝑥)𝑝 ∈ 𝑆, we add
a new constant 𝑐 to the language and add to 𝑆 the sentence 𝑝[𝑐/𝑥]. This still forms a
consistent set.

(v) The resulting set may no longer be maximal, as we have extended our language with
new constants. We must then return to step (iii) then step (iv); it is not clear if this
process ever terminates.

Proof. Let 𝑆 be a consistent set in a language 𝐿 = 𝐿(Ω,Π). Extend 𝑆 to a maximal consistent
set 𝑆1, using Zorn’s lemma. Then, for each sentence 𝑝 ∈ 𝐿, either 𝑝 ∈ 𝑆1 or ¬𝑝 ∈ 𝑆1. Such
a theory is called complete; each sentence or its negation is proven. Now, we add witnesses
to 𝑆1: for each sentence of the form (∃𝑥)𝑝 ∈ 𝑆1, we add a new constant symbol 𝑐 to the
language, and also add the sentence 𝑝[𝑐/𝑥]. We then obtain a new theory 𝑇1 in the language
𝐿1 = 𝐿(Ω ∪ 𝐶1Π) that has witnesses for every existential in 𝑆1. One can check easily that 𝑇1
is consistent.

We then extend 𝑇1 to a maximal consistent theory 𝑆2 in 𝐿1, and add witnesses to produce 𝑇2
in the language 𝐿2 = 𝐿(Ω ∪ 𝐶1 ∪ 𝐶2, Π). Continue inductively, and let 𝑆 = ⋃𝑛∈ℕ 𝑆𝑛 in the
language 𝐿 = 𝐿(Ω ∪⋃𝑛∈ℕ 𝐶𝑛, Π).

We claim that 𝑆 is consistent, complete, and haswitnesses for every existential in 𝑆. Clearly 𝑆
is consistent: if 𝑆 ⊢ ⊥ then 𝑆𝑛 ⊢ ⊥ for some 𝑛 as proofs are finite, contradicting consistency
of 𝑆𝑛. For completeness, if 𝑝 is a sentence in 𝐿, 𝑝 must lie in 𝐿𝑛 for some 𝑛 as it is a finite
string of symbols. But 𝑆𝑛+1 is complete in 𝐿𝑛, so 𝑆𝑛+1 ⊢ 𝑝 or 𝑆𝑛+1 ⊢ ¬𝑝, so certainly 𝑆 ⊢ 𝑝
or 𝑆 ⊢ ¬𝑝. If (∃𝑥)𝑝 ∈ 𝑆, then (∃𝑥)𝑝 ∈ 𝑆𝑛 for some 𝑛, so 𝑇𝑛 provides a witness.

On the closed terms of 𝐿, we define the relation 𝑠 ∼ 𝑡 if 𝑆 ⊢ 𝑠 = 𝑡. This is clearly an
equivalence relation, so we can define 𝐴 to be the set of equivalence classes of 𝐿 under ∼.
This is an 𝐿-structure by defining

• 𝑓𝐴([𝑡1],… , [𝑡𝑛]) = [𝑓 𝑡1…𝑡𝑛] for each 𝑓 ∈ Ω ∪⋃𝑛∈ℕ 𝐶𝑛, 𝛼(𝑓) = 𝑛, 𝑡𝑖 closed terms;

• 𝜑𝐴 = {([𝑡1],… , [𝑡𝑛]) ∈ 𝐴𝑛 ∣ 𝑆 ⊢ 𝜑(𝑡1,… , 𝑡𝑛)} for each 𝜑 ∈ Π, 𝛼(𝜑) = 𝑛, 𝑡𝑖 closed terms.

We claim that for a sentence 𝑝 ∈ 𝐿, we have 𝑝𝐴 = 1 if and only if 𝑆 ⊢ 𝑝. Then the proof is
complete, as 𝑆 ⊆ 𝑆 so 𝑝𝐴 = 1 for every 𝑝 ∈ 𝑆, so 𝐴 is a model of 𝑆.

We prove this by induction on the length of sentences. First, suppose 𝑝 is atomic. ⊥𝐴 = 0,
as 𝑆 ⊬ ⊥. For closed terms 𝑠, 𝑡, 𝑆 ⊢ 𝑠 = 𝑡 if and only if [𝑠] = [𝑡] by definition of∼. This holds
if and only if 𝑠𝐴 = 𝑡𝐴 by definition of the operations in 𝐴. This is precisely the statement
that 𝑠 = 𝑡 holds in 𝐴. The same holds for relations.

Now consider 𝑝 ⇒ 𝑞. 𝑆 ⊢ 𝑝 ⇒ 𝑞 if and only if 𝑆 ⊢ ¬𝑝 or 𝑆 ⊢ 𝑞 as 𝑆 is complete and
consistent; if 𝑆 ⊬ ¬𝑝 and 𝑆 ⊬ 𝑞, then 𝑆 ⊢ 𝑝 and 𝑆 ⊢ ¬𝑝. By induction on the length of the
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formula, this holds if and only if𝑝𝐴 = 0 or 𝑞𝐴 = 1. This is the definition of the interpretation
of 𝑝 ⇒ 𝑞 in 𝐴.
Finally, consider the existential (∃𝑥)𝑝. 𝑆 ⊢ (∃𝑥)𝑝 if and only if there is a closed term 𝑡 such
that 𝑆 ⊢ 𝑝[𝑡/𝑥], as 𝑆 has witnesses to every existential. By induction (for example on the
amount of quantifiers in a formula), this holds if and only if 𝑝[𝑡/𝑥]𝐴 = 1 for some closed
term 𝑡. This is true exactly when (∃𝑥)𝑝 holds in 𝐴, as 𝐴 is precisely the set of equivalence
classes of closed terms.

Corollary (adequacy). Let 𝑆 ⊆ 𝐿 be a theory and 𝑡 ∈ 𝐿 be a sentence. Then 𝑆 ⊧ 𝑡 implies
𝑆 ⊢ 𝑡.

4.7. Completeness
Theorem (Gödel’s completeness theorem for first order logic). Let 𝑆 ⊆ 𝐿 be a theory and
𝑡 ∈ 𝐿 be a sentence. Then 𝑆 ⊧ 𝑡 if and only if 𝑆 ⊢ 𝑡.

Proof. Follows from soundness and adequacy.

Note that first order refers to the fact that variables quantify over elements, rather than sets
of elements.

Remark. If 𝐿 is countable, or equivalently Ω and Π are countable, Zorn’s lemma is not
needed in the above proof.

Theorem (compactness theorem). Let 𝑆 ⊆ 𝐿 be a theory. Then if every finite subset 𝑆′ ⊆ 𝑆
has a model, 𝑆 has a model.

Proof. Trivial after applying completeness as proofs are finite.

There is no decidability theorem for first order logic, as 𝑆 ⊧ 𝑝 can only be verified by checking
its valuation in every 𝐿-structure.
Corollary. The class of finite groups is not axiomatisable in the language of groups: there
is no theory 𝑆 such that a group is finite if and only if each 𝑝 ∈ 𝑆 holds in the group.

Proof. Suppose 𝑆 is a set of sentences that axiomatises the theory of finite groups. Consider 𝑆
together with the sentences (∃𝑥1)(∃𝑥2)(𝑥1 ≠ 𝑥2), (∃𝑥1)(∃𝑥2)(∃𝑥3)(𝑥1 ≠ 𝑥2 ∧ 𝑥1 ≠ 𝑥3 ∧ 𝑥2 ≠
𝑥3) and so on, which collectively assert that the group has at least 𝑘 elements for every 𝑘.
Each finite subset 𝑆′ ⊆ 𝑆 has a model, such as a cyclic group of sufficiently large order. So
by compactness, there is a model of 𝑆, which is a finite group with at least 𝑘 elements for
every 𝑘, giving a contradiction.

Corollary. Let 𝑆 be a theory with arbitrarily large finite models. Then 𝑆 has an infinite
model.
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Proof. Add sentences and apply compactness as in the previous corollary.

Finiteness is not a first-order property.

Theorem (upward Löwenheim–Skolem theorem). Let 𝑆 be a theory with an infinite model.
Then 𝑆 has an uncountable model.

Proof. Add constants {𝑐𝑖 ∣ 𝑖 ∈ 𝐼} to the language, where 𝐼 is an uncountable set. Add sen-
tences 𝑐𝑖 ≠ 𝑐𝑗 to the theory for all 𝑖 ≠ 𝑗 to obtain a theory 𝑆′. Any finite set of sentences in 𝑆′
has a model: indeed, the infinite model of 𝑆 suffices. By compactness, 𝑆′ has a model.

Remark. Similarly, we can prove the existence of models of 𝑆 that do not inject into 𝑋 for
any fixed set 𝑋 . Adding 𝛾(𝑋) constants or 𝒫(𝑋) constants both suffice.

Example. There is an uncountable field, as there is an infinite field ℚ. There is also a field
that does not inject into 𝑋 for any fixed set 𝑋 .

Theorem (downard Löwenheim–Skolem theorem). Let 𝑆 be a theory in a countable lan-
guage 𝐿, or equivalently, Ω and Π are countable. Then if 𝑆 has a model, it has a countable
model.

Proof. 𝑆 is consistent, so the model constructed in the proof of the model existence lemma
is countable.

4.8. Peano arithmetic
Consider the language 𝐿 given by Ω = {0, 𝑠, +, ⋅} with 𝛼(0) = 0, 𝛼(𝑠) = 1, 𝛼(+) = 𝛼(⋅) = 2,
and Π = ∅. It has axioms

(i) (∀𝑥)(𝑠(𝑥) ≠ 0);

(ii) (∀𝑥)(∀𝑦)(𝑠(𝑥) = 𝑠(𝑦) ⇒ 𝑥 = 𝑦);

(iii) (∀𝑦1)… (∀𝑦𝑛)[𝑝[0/𝑥] ∧ (∀𝑥)(𝑝 ⇒ 𝑝[𝑠(𝑥)/𝑥]) ⇒ (∀𝑥)𝑝] for each formula 𝑝 with free
variables 𝑥, 𝑦1,… , 𝑦𝑛;

(iv) (∀𝑥)(𝑥 + 0 = 𝑥);

(v) (∀𝑥)(∀𝑦)(𝑥 + 𝑠(𝑦) = 𝑠(𝑥 + 𝑦));

(vi) (∀𝑥)(𝑥 ⋅ 0 = 0);

(vii) (∀𝑥)(∀𝑦)(𝑥 ⋅ 𝑠(𝑦) = 𝑥 ⋅ 𝑦 + 𝑥).

These axioms are sometimes called Peano arithmetic, 𝖯𝖠, or formal number theory. The
𝑦𝑖 in (iii) are called parameters. Without the parameters, we would not be able to perform
induction on sets such as {𝑥 ∣ 𝑥 ≥ 𝑦} if 𝑦 is a variable.
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Note that 𝖯𝖠 clearly has an infinitemodel, namelyℕ. So by the upward Löwenheim–Skolem
theorem, it has an uncountable model, which in particular is not isomorphic to ℕ. This is
because (iii) is not ‘true’ induction, stating that all subsets of ℕ either have a least element
not in it, or it isℕ itself. Axiom (iii) applies only to countablymany formulae𝑝, and therefore
only asserts that induction holds for countably many subsets of ℕ.
Definition. A set 𝑆 ⊆ ℕ is definable in the language of 𝖯𝖠 if there is a formula 𝑝with a free
variable 𝑥 such that for each𝑚 ∈ ℕ,𝑚 ∈ 𝑆 if and only if 𝑝[𝑚/𝑥] holds in ℕ.
Only countably many formulae exist, so only countably many sets are definable.

Example. The set of squares is definable, as it can be defined by the formula (∃𝑦)(𝑦 ⋅𝑦 = 𝑥).
The set of primes is also definable by 𝑥 ≠ 0 ∧ 𝑥 ≠ 1 ∧ (∀𝑦)(𝑦 ∣ 𝑥 ⇒ 𝑦 = 1 ∧ 𝑦 = 𝑥),
where 𝑦 ∣ 𝑥 is defined to mean (∃𝑧)(𝑧 ⋅ 𝑦 = 𝑥). The set of powers of 2 can be defined by
(∀𝑦)(𝑦 is prime ∧ 𝑦 ∣ 𝑥 ⇒ 𝑦 = 2). The set of powers of 4 and the set of powers of 6 are also
definable.

Theorem (Gödel’s incompleteness theorem). 𝖯𝖠 is not complete.
This theorem shows that there is a sentence 𝑝 such that 𝖯𝖠 ⊬ 𝑝 and 𝖯𝖠 ⊬ ¬𝑝. However,
one of 𝑝,¬𝑝must hold in ℕ, so there is a sentence 𝑝 that is true in ℕ that 𝖯𝖠 does not prove.
This does not contradict the completeness theorem, which is that if 𝑝 is true in everymodel
in 𝖯𝖠 then 𝖯𝖠 ⊢ 𝑝.
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5. Set theory
5.1. Axioms of 𝖹𝖥
In this section, we will attempt to understand the structure of the universe of sets. In order
to do this, we will treat set theory as a first-order theory like any other, and can therefore
study it with our usual tools. In particular, we will study a particular theory called Zermelo–
Fraenkel set theory, denoted 𝖹𝖥. The language has Ω = ∅,Π = {∈}, 𝛼(∈) = 2. A ‘universe
of sets’ is simply a model (𝑉, ∈𝑉 ) = (𝑉,∈) for the axioms of 𝖹𝖥. We can view this section
as a worked example of the concepts of predicate logic, but every model of 𝖹𝖥will contain a
copy of (most of) mathematics, so they will be very complicated.

We now define the axioms of 𝖹𝖥 set theory.
(i) Axiom of extension.

(∀𝑥)(∀𝑦)((∀𝑧)(𝑧 ∈ 𝑥 ⇔ 𝑧 ∈ 𝑦) ⇒ 𝑥 = 𝑦)

Note that the converse follows from the definition of equality. This implies that sets
have no duplicate elements, and have no ordering.

(ii) Axiom of separation or comprehension. For a set 𝑥 and a property 𝑝, we can form the
set of 𝑧 ∈ 𝑥 such that 𝑝(𝑧) holds.

(∀𝑡1)… (∀𝑡𝑛)(∀𝑥)(∃𝑦)(∀𝑧)(𝑧 ∈ 𝑦 ⇔ 𝑧 ∈ 𝑥 ∧ 𝑝)

where the 𝑡𝑖 are the parameters, and 𝑝 is a formulawith free variables 𝑡1,… , 𝑡𝑛, 𝑧. Note
that we need the parameters as we may wish to form the set {𝑧 ∈ 𝑥 ∣ 𝑧 ∈ 𝑡} for some
variable 𝑡. We write {𝑧 ∈ 𝑥 ∣ 𝑝(𝑧)} for the set guaranteed by this axiom; this is an ab-
breviation and does not change the language.

(iii) Empty-set axiom.
(∃𝑥)(∀𝑦)(¬𝑦 ∈ 𝑥)

This empty set is unique by extensionality. We write ∅ for the set guaranteed by this
axiom. For instance, 𝑝(∅) is the sentence (∃𝑥)((∀𝑦)(¬𝑦 ∈ 𝑥) ∧ 𝑝(𝑥)).

(iv) Pair-set axiom.
(∀𝑥)(∀𝑦)(∃𝑧)(∀𝑡)(𝑡 ∈ 𝑧 ⇔ 𝑡 = 𝑥 ∨ 𝑡 = 𝑦)

Wewrite {𝑥, 𝑦} for this set 𝑧, which is unique by extensionality. Somebasic set-theoretic
principles can now be defined.

• We write {𝑥} = {𝑥, 𝑥} for the singleton set containing 𝑥.
• We can now define the ordered pair (𝑥, 𝑦) = {{𝑥}, {𝑥, 𝑦}}; from the axioms so far
we can prove that (𝑥, 𝑦) = (𝑧, 𝑡) if and only if 𝑥 = 𝑧 and 𝑦 = 𝑡.

• We say that 𝑥 is an ordered pair if (∃𝑦)(∃𝑧)(𝑥 = (𝑦, 𝑧)), and 𝑓 is a function if

(∀𝑥)(𝑥 ∈ 𝑓 ⇒ 𝑥 is an ordered pair)
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and
(∀𝑥)(∀𝑦)(∀𝑧)((𝑥, 𝑦) ∈ 𝑓 ∧ (𝑥, 𝑧) ∈ 𝑓 ⇒ 𝑦 = 𝑧)

• We call a set 𝑥 the domain of 𝑓, written 𝑥 = dom𝑓, if 𝑓 is a function and

(∀𝑦)(𝑦 ∈ 𝑥 ⇔ (∃𝑧)((𝑦, 𝑧) ∈ 𝑓))

• The notation 𝑓∶ 𝑥 → 𝑦means that 𝑓 is a function, 𝑥 = dom𝑓, and

(∀𝑧)(∀𝑡)((𝑧, 𝑡) ∈ 𝑓 ⇒ 𝑡 ∈ 𝑦)

(v) Union axiom. For each family of sets 𝑥, we can form its union⋃𝑡∈𝑥 𝑡.

(∀𝑥)(∃𝑦)(∀𝑧)(𝑧 ∈ 𝑦 ⇔ (∃𝑡)(𝑧 ∈ 𝑡 ∧ 𝑡 ∈ 𝑥))

The set guaranteed by this axiom can bewritten⋃𝑥, andwe canwrite𝑥∪𝑦 for⋃{𝑥, 𝑦}.
We need no intersection axiom, as such intersections already exist by the axiom of sep-
aration. This cannot be used to create empty intersections, as the axiom of separation
can only create subsets of a set that already exists.

(vi) Power-set axiom.
(∀𝑥)(∃𝑦)(∀𝑧)(𝑧 ∈ 𝑦 ⇔ 𝑧 ⊆ 𝑥)

where 𝑧 ⊆ 𝑥means (∀𝑡)(𝑡 ∈ 𝑧 ⇒ 𝑡 ∈ 𝑥). We write 𝒫(𝑥) for the power set of 𝑥. We can
form the Cartesian product 𝑥 × 𝑦 as a suitable subset of 𝒫(𝒫(𝑥 ∪ 𝑦)), as if 𝑧 ∈ 𝑥, 𝑡 ∈ 𝑦,
we have (𝑧, 𝑡) = {{𝑧}, {𝑧, 𝑡}} ∈ 𝒫(𝒫(𝑥 ∪ 𝑦)). The set of all functions 𝑥 → 𝑦 can be
defined as a subset of ℙ(𝑥 × 𝑦).

(vii) Axiom of infinity. Using our currently defined axioms, any model 𝑉 must be infinite.
For example, writing 𝑥+ for the successor of 𝑥 defined as 𝑥∪{𝑥}, the sets∅,∅+, ∅++,…
are distinct.

∅+ = {∅}; ∅++ = {∅, {∅}}; ∅+++ = {∅, {∅}, {∅, {∅}}}; …

We write 0 = ∅, 1 = ∅+, 2 = ∅++,… for the successors created in this way. For
instance, 3 = {0, 1, 2}. 𝑉 may not have an infinite element, even though 𝑉 itself is
infinite, because no 𝑥 ∈ 𝑉 has all 𝑦 ∈ 𝑉 as elements: 𝑉 does not think of itself as a
set, because Russell’s paradox follows from the axioms defined so far.

We say that 𝑥 is a successor set if ∅ ∈ 𝑥 and (∀𝑦)(𝑦 ∈ 𝑥 ⇒ 𝑦+ ∈ 𝑥). Note that this is
a finite-length formula that characterises an infinite set. The axiom of infinity is that
there exists a successor set.

(∃𝑥)(∅ ∈ 𝑥 ∧ (∀𝑦)(𝑦 ∈ 𝑥 ⇒ 𝑦+ ∈ 𝑥))

Note that this set is not uniquely defined, but any intersection of successor sets is
a successor set. We can therefore take the intersection of all successor sets by the
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axiom of separation, giving a least successor set denoted 𝜔. Thus, (∀𝑥)(𝑥 ∈ 𝜔 ⇔
(∀𝑦)(𝑦 is a successor set ⇒ 𝑥 ∈ 𝑦)). For example, we can prove that 3 ∈ 𝜔.

In particular, if 𝑥 is a successor set and a subset of 𝜔, then 𝑥 = 𝜔. Hence, (∀𝑥)(𝑥 ⊆
𝜔∧∅ ∈ 𝑥∧(∀𝑦)(𝑦 ∈ 𝑥 ⇒ 𝑦+ ∈ 𝑥) ⇒ 𝑥 = 𝜔). This is ‘proper’ induction over all subsets
of 𝜔, unlike the weaker first-order induction defined in the Peano axioms. It is easy to
check that (∀𝑥)(𝑥 ∈ 𝜔 ⇒ 𝑥+ ≠ ∅) and (∀𝑥)(∀𝑦)(𝑥 ∈ 𝜔 ∧ 𝑦 ∈ 𝜔 ∧ 𝑥+ = 𝑦+ ⇒ 𝑥 = 𝑦),
so 𝜔 satisfies (in 𝑉) the usual axioms for the natural numbers. We can now define ‘𝑥
is finite’ to mean (∃𝑦)(𝑦 ∈ 𝜔 ∧ 𝑥 bijects with 𝑦), and define ‘𝑥 is countable’ to mean
that 𝑥 is finite or bijects with 𝜔.

(viii) Axiom of foundation or regularity. We require that sets are built out of simpler sets.
For example, we want to disallow a set from being a member of itself, and similarly
forbid 𝑥 ∈ 𝑦 and 𝑦 ∈ 𝑥. In general, we want to forbid sets 𝑥𝑖 such that 𝑥𝑖+1 ∈ 𝑥𝑖 for
each 𝑖 ∈ ℕ.

Note that if 𝑥 ∈ 𝑥, {𝑥} has no ∈-minimal element. If 𝑥 ∈ 𝑦, 𝑦 ∈ 𝑥, {𝑥, 𝑦} has no
∈-minimal element. In the last example, {𝑥0, 𝑥1,… } has no ∈-minimal element. We
now define the axiom of foundation: every nonempty set has an ∈-minimal element.

(∀𝑥)(𝑥 ≠ ∅ ⇒ (∃𝑦)(𝑦 ∈ 𝑥 ∧ (∀𝑧)(𝑧 ∈ 𝑥 ⇒ 𝑧 ∉ 𝑦)))

Any model of 𝖹𝖥 without this axiom has a submodel of all of 𝖹𝖥.

(ix) Axiom of replacement. Often, we are given an index set 𝐼 and construct a set𝐴𝑖 for each
𝑖 ∈ 𝐼, then take the collection {𝐴𝑖 ∣ 𝑖 ∈ 𝐼}. In order to write this down, the mapping
𝑖 ↦ 𝐴𝑖 must be a function, or equivalently, there must be a set {(𝑖, 𝐴𝑖) ∣ 𝑖 ∈ 𝐼}. This is
not clear from the other axioms. We would like to say that the image of a set under
something that looks like a function (since we do not yet have such a set-theoretic
function) is a set.

Let (𝑉, ∈) be an 𝐿-structure. A class is a set 𝐶 ⊆ 𝑉 such that for some formula 𝑝 with
free variables 𝑥 and some parameters, we have 𝑥 ∈ 𝐶 if and only if 𝑝 holds in 𝑉 . 𝐶
is a set outside of our model; it may not correspond to a set 𝑥 ∈ 𝑉 inside the model.
For instance, 𝑉 is a class, taking 𝑝 to be 𝑥 = 𝑥. There is a class of infinite sets, taking
𝑝 to be ‘𝑥 is not finite’. For any 𝑡 ∈ 𝑉 , the collection of 𝑥 with 𝑡 ∈ 𝑥 is a class; here,
𝑡 is a parameter to the class. Every set 𝑦 ∈ 𝑉 is a class by setting 𝑝 to be 𝑥 ∈ 𝑦. A
proper class is a class that does not correspond to a set 𝑥 ∈ 𝑉 : ¬(∃𝑦)(∀𝑥)(𝑥 ∈ 𝑦 ⇔ 𝑝).
When writing about classes inside 𝖹𝖥, we instead write about their defining formulae,
as classes have no direct representation in the language.

Similarly, a function-class is a set 𝐹 ⊆ 𝑉 of ordered pairs from 𝑉 such that for some
formula 𝑝 with free variables 𝑥, 𝑦 and parameters, we have (𝑥, 𝑦) belongs to 𝐹 if and
only if 𝑝, and if (𝑥, 𝑦), (𝑥, 𝑧) belong to 𝐹, 𝑦 = 𝑧. This is intuitively a function whose
domainmay not be a set. For example, themapping 𝑥 ↦ {𝑥} is a function-class, taking
𝑝 to be 𝑦 = {𝑥}. This is not a function, for example, every 𝑓 has a domain which is a
set in 𝑉 , and this function has domain 𝑉 which is not a set.
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We can now define the axiom of replacement: the image of a set under a function-class
is a set.

(∀𝑡1)… (∀𝑡𝑛)[(∀𝑥)(∀𝑦)(∀𝑧)(𝑝 ∧ 𝑝[𝑧/𝑦] ⇒ 𝑦 = 𝑧) ⇒
(∀𝑥)(∃𝑦)(∀𝑧)(𝑧 ∈ 𝑦 ⇔ (∃𝑡)(𝑡 ∈ 𝑥 ∧ 𝑝[𝑡/𝑥, 𝑧/𝑦]))]

For example, for any set 𝑥, we can form the set {{𝑡} ∣ 𝑡 ∈ 𝑥}, which is the image of 𝑥
under the function class 𝑡 ↦ {𝑡}. This set could alternatively have been formed using
the power-set and separation axioms; we will later present some examples of sets built
with this axiom that cannot be constructed from the other axioms.

This completes the description of the axioms of 𝖹𝖥. We write 𝖹𝖥𝖢 for 𝖹𝖥 + 𝖠𝖢, where 𝖠𝖢 is
the axiom

(∀𝑓)[𝑓 is a function ∧ (∀𝑥)(𝑥 ∈ dom𝑓 ⇒ 𝑓(𝑥) ≠ ∅) ⇒
(∃𝑔)(𝑔 is a function ∧ (dom 𝑔 = dom𝑓) ∧ (∀𝑥)(𝑥 ∈ dom𝑓 ⇒ 𝑔(𝑥) ∈ 𝑓(𝑥)))]

5.2. Transitive sets
Definition. 𝑥 is transitive if each member of a member of 𝑥 is a member of 𝑥.

(∀𝑦)((∃𝑧)(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥) ⇒ 𝑦 ∈ 𝑥)

Equivalently,⋃𝑥 ⊆ 𝑥.
Example. ∅ is a transitive set. {∅} is also transitive, and {∅, {∅}} is transitive. In general,
elements of 𝜔 are transitive. This can be proven by 𝜔-induction (inside a model): ∅ is trans-
itive, and if 𝑦 is transitive, 𝑦+ = 𝑦 ∪ {𝑦} is clearly transitive.
Lemma. Every set is contained in a transitive set.

Here, we define ‘𝑥 contains 𝑦’ to mean 𝑦 ⊆ 𝑥, not 𝑦 ∈ 𝑥.
Remark. This proof takes place inside an arbitrary model of 𝖹𝖥. Technically, the statement
of the lemma is ‘let (𝑉, ∈) be a model of 𝖹𝖥, then for all sets 𝑥 ∈ 𝑉 , 𝑥 is contained in a
transitive set 𝑦 ∈ 𝑉 ’. By completeness, this will show that there is a proof of this fact from
the axioms of 𝖹𝖥.
Note also that once this lemma is proven, any 𝑥 is contained in a least transitive set by taking
intersections, called its transitive closure, written 𝑇𝐶(𝑥). This holds as any intersection of
transitive sets is transitive.

Proof. Wewant to form 𝑥∪(⋃𝑥)∪(⋃⋃𝑥)∪…; if this is a set, it is clearly transitive and con-
tains𝑥. We can show that this is a set by theunion axiomapplied to the set {𝑥,⋃𝑥,⋃⋃𝑥,… }.
This is a set by applying the axiom of replacement, it is an image of 𝜔 under the function-
class 0 ↦ 𝑥, 1 ↦ ⋃𝑥, 2 ↦ ⋃⋃𝑥 and so on. We want to define the function-class 𝑝(𝑧, 𝑤)
to be (𝑧 = 0 ∧ 𝑤 = 𝑥) ∨ ((∃𝑡)(∃𝑢)𝑧 = 𝑡+ ∧ 𝑤 = ⋃𝑢 ∧ 𝑝(𝑡, 𝑢)), but this is not a first-order
formula.
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Define that 𝑓 is an attempt to mean that

(𝑓 is a function) ∧ (dom𝑓 ∈ 𝜔) ∧ (dom𝑓 ≠ ∅) ∧ (𝑓(0) = 𝑥) ∧

(∀𝑛)(𝑛 ∈ 𝜔 ∧ 𝑛 ∈ dom𝑓 ∧ 𝑛 ≠ 0 ⇒ 𝑓(𝑛) =⋃𝑓(𝑛 − 1))

Then,
(∀𝑛)(𝑛 ∈ 𝜔 ⇒ (∃𝑓)(𝑓 is an attempt ∧ 𝑛 ∈ dom𝑓))

can be proven by 𝜔-induction. We can similarly prove

(∀𝑛)(𝑛 ∈ 𝜔 ⇒ (∀𝑓)(∀𝑔)(𝑓, 𝑔 are attempts ∧ 𝑛 ∈ dom𝑓 ∩ dom 𝑔 ⇒ 𝑓(𝑛) = 𝑔(𝑛)))

by 𝜔-induction. We now define the function-class 𝑝 = 𝑝(𝑧, 𝑤) to be

(∃𝑓)(𝑓 is an attempt ∧ 𝑧 ∈ dom𝑓 ∧ 𝑓(𝑧) = 𝑤)

Intuitively, we needed to use the axiom of replacement because we started with a set 𝑥 and
needed to go ‘far away’ from it, forming ⋃𝑛 𝑥 for all 𝑥. We could not have used the other
axioms such as the power-set axiom, as the ⋃𝑛 𝑥 are not contained in an obvious larger
set.

Transitive closures allow us to pass from the large universe of sets, which is not a set itself,
into a smaller world which is a set closed under ∈ that contains the relevant sets in ques-
tion.

5.3. ∈-induction
Wewant the axiomof foundation to capture the idea that sets are built out of simpler sets.

Theorem (principle of ∈-induction). For each formula 𝑝 with free variables 𝑡1,… , 𝑡𝑛, 𝑥,

(∀𝑡1)… (∀𝑡𝑛)[(∀𝑥)((∀𝑦)(𝑦 ∈ 𝑥 ⇒ 𝑝(𝑦)) ⇒ 𝑝(𝑥)) ⇒ (∀𝑥)𝑝(𝑥)]

Proof. Given 𝑡1,… , 𝑡𝑛 and the statement (∀𝑥)((∀𝑦)(𝑦 ∈ 𝑥 ⇒ 𝑝(𝑦)) ⇒ 𝑝(𝑥)), we want to
show (∀𝑥)𝑝(𝑥). Suppose this is not the case, so there exists 𝑥 such that ¬𝑝(𝑥). We want to
look at the set {𝑡 ∣ ¬𝑝(𝑡)} and take an ∈-minimal element, but this is not necessarily a set,
for instance if 𝑝(𝑥) is the assertion 𝑥 ≠ 𝑥.

Let 𝑢 = {𝑡 ∈ 𝑇𝐶({𝑥}) ∣ ¬𝑝(𝑡)}; this is clearly a set in the model, and 𝑢 ≠ ∅ as 𝑥 ∈ 𝑢. Let 𝑡 be
an ∈-minimal element of 𝑢, guaranteed by the axiom of foundation. Then ¬𝑝(𝑡) as 𝑡 ∈ 𝑢,
but 𝑝(𝑧) for all 𝑧 ∈ 𝑡 by minimality of 𝑡, noting that 𝑧 ∈ 𝑡 implies 𝑧 ∈ 𝑇𝐶({𝑥}). This gives a
contradiction.
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The name of this theorem should be read ‘epsilon-induction’, even though the membership
relation is denoted ∈ and not 𝜖 or 𝜀.
The principle of ∈-induction is equivalent to the axiom of foundation in the presence of the
other axioms of 𝖹𝖥. We say that 𝑥 is regular if (∀𝑦)(𝑥 ∈ 𝑦 ⇒ 𝑦 has a minimal element).
The axiom of foundation is equivalent to the assertion that every set is regular. Given ∈-
induction, we can prove every set is regular. Suppose (∀𝑦 ∈ 𝑥)(𝑦 is regular); we need to
show 𝑥 is regular. For a set 𝑧 with 𝑥 ∈ 𝑧, if 𝑥 is minimal in 𝑧, 𝑥 is clearly regular as required.
If 𝑥 is not minimal in 𝑧, there exists 𝑦 ∈ 𝑥 such that 𝑦 ∈ 𝑧. So 𝑧 has a minimal element as 𝑦
is regular. Hence 𝑥 is regular.

5.4. ∈-recursion
We want to be able to define 𝑓(𝑥) given 𝑓(𝑦) for all 𝑦 ∈ 𝑥.
Theorem (∈-recursion theorem). Let 𝐺 be a function-class, so (𝑥, 𝑦) ∈ 𝐺 if and only if
𝑝(𝑥, 𝑦) for some formula 𝑝. Suppose that 𝐺 is defined for all sets. Then there is a function-
class 𝐹 defined for all sets by a formula 𝑞(𝑥, 𝑦) such that

(∀𝑥)(𝐹(𝑥) = 𝐺(𝐹|||𝑥
))

Moreover, this 𝐹 is unique.
Note that 𝐹|𝑥 = {(𝑦, 𝐹(𝑦)) ∣ 𝑦 ∈ 𝑥} is a set by the axiom of replacement.

Proof. Define that 𝑓 is an attempt if

𝑓 is a function ∧ dom𝑓 is transitive ∧ (∀𝑥)(𝑥 ∈ dom𝑓 ⇒ 𝑓(𝑥) = 𝐺(𝑓|||𝑥
))

Note that 𝑓|𝑥 is defined as dom𝑓 is transitive. Then,

(∀𝑥)(∀𝑓)(∀𝑓′)(𝑓, 𝑓′ are attempts ∧ 𝑥 ∈ dom𝑓 ∩ dom𝑓′ ⇒ 𝑓(𝑥) = 𝑓′(𝑥))

by ∈-induction: if 𝑓(𝑦) = 𝑓′(𝑦) for all 𝑦 ∈ 𝑥, then 𝑓(𝑥) = 𝑓′(𝑥). Also,

(∀𝑥)(∃𝑓)(𝑓 is an attempt ∧ 𝑥 ∈ dom𝑓)

by ∈-induction. Indeed, if for all 𝑦 ∈ 𝑥 there exists an attempt defined at 𝑦, then for each
𝑦 ∈ 𝑥 there is a unique attempt 𝑓𝑦 defined on 𝑇𝐶({𝑦}). Let 𝑓 = ⋃{𝑓𝑦 ∣ 𝑦 ∈ 𝑥}, which is an
attempt with domain 𝑇𝐶(𝑥). We can then define 𝑓′ = 𝑓 ∪ {(𝑥, 𝐺(𝑓|𝑥))}. This is an attempt
defined at 𝑥. We can then take 𝑞(𝑥, 𝑦) to be

(∃𝑓)(𝑓 is an attempt ∧ 𝑥 ∈ dom𝑓 ∧ 𝑓(𝑥) = 𝑦)

This defines the function-class 𝐹 as required. Uniqueness follows from the fact that if 𝐹, 𝐹′
are suitable function-classes, we have (∀𝑥)(𝐹(𝑥) = 𝐹′(𝑥)) by ∈-induction.
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5.5. Well-founded relations
Note the similarity between the proofs of ∈-induction and ∈-recursion and the proofs of
induction and recursion on ordinals. These proofs are not specific to the relation∈; we only
used some of its properties.

(i) 𝑝 is well-founded: every nonempty set has a 𝑝-minimal element.

(ii) 𝑝 is local: {𝑥 ∣ 𝑝(𝑥, 𝑦)} is a set. This was required to build the 𝑝-transitive closure.

Therefore, 𝑝-induction and 𝑝-recursion hold for all relation-classes 𝑝 that are well-founded
and local. In particular, if 𝑟 is a well-founded relation on a set 𝑎, it is clearly local and hence
we have 𝑟-induction and 𝑟-recursion. The theorems about induction and recursion on or-
dinals are therefore special cases of this, as a well-ordering is precisely a well-founded total
order.

On the set {𝑎, 𝑏, 𝑐}, let 𝑟 be the relation 𝑎𝑟𝑏, 𝑏𝑟𝑐. Choosing 𝑎′ = ∅, 𝑏′ = {∅}, 𝑐′ = {{∅}}, the
map 𝑓∶ {𝑎, 𝑏, 𝑐} → {𝑎′, 𝑏′, 𝑐′} given by 𝑥 ↦ 𝑥′ is a bijection with a transitive set such that
𝑥𝑟𝑦 if and only if 𝑓(𝑥) ∈ 𝑓(𝑦). This models the relation 𝑟 by ∈.

We say that a relation 𝑟 on a set 𝑎 is extensional if

(∀𝑥 ∈ 𝑎)(∀𝑦 ∈ 𝑎)((∀𝑧 ∈ 𝑎)(𝑧𝑟𝑥 ⇔ 𝑧𝑟𝑦) ⇒ 𝑥 = 𝑦)

The relation 𝑟 in the above example is extensional.

Theorem (Mostowski’s collapsing theorem). Let 𝑟 be a relation on a set 𝑎 that is well-
founded and extensional. Then, there exists a transitive set 𝑏 and a bijection 𝑓∶ 𝑎 → 𝑏
such that

(∀𝑥 ∈ 𝑎)(∀𝑦 ∈ 𝑎)(𝑥𝑟𝑦 ⇔ 𝑓(𝑥) ∈ 𝑓(𝑦))

Moreover, 𝑏 and 𝑓 are unique.

This is an analogue of subset collapse from the section on ordinals. Transitive sets are playing
the role of initial segments. Note that the well-foundedness and extensionality conditions
are clearly necessary for the theorem, consider (ℤ, <) or ({𝑎, 𝑏, 𝑐, }, <) with 𝑎 < 𝑏, 𝑎 < 𝑐 for
counterexamples.

Proof. We define the function 𝑓 by 𝑓(𝑥) = {𝑓(𝑦) ∣ 𝑦𝑟𝑥} using 𝑟-recursion. Note that 𝑓 is
a function by the axiom of replacement as it is given by a function-class 𝐹 obtained from
𝑟-recursion that is defined on the set 𝑎. Let 𝑏 = {𝑓(𝑥) ∣ 𝑥 ∈ 𝑎}; this is a set by the axiom of
replacement. Clearly 𝑓 is surjective by the definition of 𝑏, and 𝑏 is transitive by definition.

We claim that𝑓 is injective, and thenwe have that 𝑦𝑟𝑥 if and only if𝑓(𝑦) ∈ 𝑓(𝑥) by definition
of 𝑓. We show

(∀𝑥 ∈ 𝑎)(∀𝑥′ ∈ 𝑎)(𝑓(𝑥′) = 𝑓(𝑥) ⇒ 𝑥′ = 𝑥)

by 𝑟-induction on 𝑥. Suppose that (∀𝑦𝑟𝑥)(∀𝑧 ∈ 𝑎)(𝑓(𝑦) = 𝑓(𝑧) ⇒ 𝑦 = 𝑧), we have
𝑓(𝑥) = 𝑓(𝑥′), and we want to show that 𝑥 = 𝑥′. Note that {𝑓(𝑦) ∣ 𝑦𝑟𝑥} = {𝑓(𝑧) ∣ 𝑧𝑟𝑥′}
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by the definition of 𝑓 as 𝑓(𝑥) = 𝑓(𝑥′). So {𝑦 ∣ 𝑦𝑟𝑥} = {𝑧 ∣ 𝑧𝑟𝑥′}, so 𝑥 = 𝑥′ as 𝑟 is extensional.
Uniqueness holds by 𝑟-induction, as we must have 𝑓(𝑥) = {𝑓(𝑦) ∣ 𝑦𝑟𝑥} for all 𝑥 ∈ 𝑎.

In particular, every well-ordered set has a unique order isomorphism to a unique transitive
set well-ordered by ∈. We can now define that an ordinal is a transitive set well-ordered by
∈ (or equivalently, totally-ordered, due to the axiom of foundation). For example, ∅ is an
ordinal, 𝑛 ∈ 𝜔 is an ordinal, 𝜔 is also an ordinal, and so on. Therefore, each well-ordering
is order-isomorphic to a unique ordinal called its order type, by Mostowski collapse.

Remark. If 𝑥, 𝑦 are elements of a well-ordered set 𝑎 with 𝑦 < 𝑥, then the order type of 𝐼𝑥,
which is precisely the image 𝑓(𝑥) under the Mostowski collapse, has an element 𝑓(𝑦), the
order type of 𝐼𝑦. In particular, given two ordinals 𝛼, 𝛽, the statement 𝛼 < 𝛽 is equivalent to
𝛼 ∈ 𝛽. Hence 𝛼 = {𝛽 ∣ 𝛽 < 𝛼}. Thus, 𝛼+ = 𝛼 ∪ {𝛼}, and sup {𝛼𝑖 ∣ 𝑖 ∈ 𝐼} = ⋃ {𝛼𝑖 ∣ 𝑖 ∈ 𝐼}.

5.6. The universe of sets
We would like the universe to be V-shaped, in the sense that we begin with∅ and continue
taking power sets to create larger and larger sets. Define sets 𝑉𝛼 for each ordinal 𝛼 by

• 𝑉0 = ∅;
• 𝑉𝛼+1 = 𝒫(𝑉𝛼);
• 𝑉 𝜆 = ⋃{𝑉𝛼 ∣ 𝛼 < 𝜆} for a nonzero limit ordinal 𝜆.

This can be viewed as a well-founded recursion on ordinals, or ∈-recursion on the universe
but mapping non-ordinals to∅. For example, 𝑉𝜔 = 𝑉0 ∪ 𝑉1 ∪…, and 𝑉𝜔+1 = 𝒫(𝑉𝜔). We will
now show that every set is contained within some 𝑉𝛼.
Lemma. Each 𝑉𝛼 is transitive.

Proof. We show this by induction on 𝛼. Clearly 𝑉0 = ∅ is transitive. Suppose𝑉𝛼 is transitive.
Then𝑉𝛼+1 is transitive as the power set of a transitive set is transitive. Indeed, if𝑥 is transitive
and 𝑧 ∈ 𝑦 ∈ 𝒫(𝑥), we have 𝑧 ∈ 𝑥, so 𝑧 ⊆ 𝑥 as 𝑥 is transitive, so 𝑧 ∈ 𝒫(𝑥). Now suppose
𝜆 is a limit ordinal, and that the 𝑉𝛼 are transitive for 𝛼 < 𝜆. Any union of transitive sets is
transitive, so 𝑉 𝜆 is transitive.

Lemma. Let 𝛼 ≤ 𝛽. Then 𝑉𝛼 ⊆ 𝑉 𝛽.

Proof. We show this by induction on 𝛽 for a fixed 𝛼. If 𝛽 = 𝛼, 𝑉𝛼 ⊆ 𝑉 𝛽 is trivial. For
successors, note that 𝑉 𝛽 ⊆ 𝒫(𝑉 𝛽) as 𝑉 𝛽 is transitive. So if 𝑉𝛼 ⊆ 𝑉 𝛽, then 𝑉𝛼 ⊆ 𝑉 𝛽+1.
Limits are trivial.

Theorem. Every set 𝑥 belongs to 𝑉𝛼 for some 𝛼.
If we could construct the set 𝑉 defined as the union of the 𝑉𝛼 over all ordinals 𝛼, 𝑉 would
be a model of 𝖹𝖥.
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Remark. Note that 𝑥 ⊆ 𝑉𝛼 if and only if 𝑥 ∈ 𝑉𝛼+1, so it suffices to show that each set 𝑥 is a
subset of some 𝑉𝛼. Once we have 𝑥 ⊆ 𝑉𝛼 for some 𝛼, there is a least such 𝛼, called the rank
of 𝑥. For example, the rank of∅ is 0, the rank of 1 is 1, the rank of 𝜔 is 𝜔, and in general the
rank of any ordinal 𝛼 is 𝛼. Intuitively, the rank of a set is the time at which it was created.

Proof. We proceed by ∈-induction on 𝑥; we may assume that for all 𝑦 ∈ 𝑥, there exists 𝛼
such that 𝑦 ⊆ 𝑉𝛼, so 𝑦 ⊆ 𝑉rank(𝑦). Thus, for each 𝑦 ∈ 𝑥, 𝑦 ∈ 𝑉rank(𝑦)+1, so define 𝛼 =
sup {rank(𝑦) + 1 ∣ 𝑦 ∈ 𝑥}. Then for all 𝑦 ∈ 𝑥, we have 𝑦 ∈ 𝑉𝛼. So 𝑥 ⊆ 𝑉𝛼 as required.

The ordinals can be viewed as the backbone of the universe of sets; each 𝑉𝛼 can be thought
of as resting on the ordinal 𝛼.
Remark. The 𝑉𝛼 are called the von Neumann hierarchy. The above proof shows that for all
𝑥, rank(𝑥) = sup {rank(𝑦) + 1 ∣ 𝑦 ∈ 𝑥}. For example, the rank of {{2, 3}, 6} is

sup {rank{2, 3} + 1, 6 + 1} = sup {5, 7} = 7

500



6. Cardinals

6. Cardinals

6.1. Definitions

We will study the possible sizes of sets in 𝖹𝖥𝖢. Write 𝑥 ↔ 𝑦 if there exists a bijection from 𝑥
to 𝑦; we wish to define card(𝑥) = |𝑥| such that 𝑥 ↔ 𝑦 if and only if card(𝑥) = card(𝑦). This
cannot be formulated as an equivalence class, due to Russell’s paradox. However, for any
𝑥, there exists an ordinal 𝛼 such that 𝑥 ↔ 𝛼 by the well-ordering theorem. Hence, we can
define card(𝑥) to be the least ordinal that 𝑥 bijects with. We say that a set𝑚 is a cardinality
or a cardinal if𝑚 = card(𝑥) for some set 𝑥.

If we were studying sets in 𝖹𝖥 and not 𝖹𝖥𝖢, there may not be an ordinal that bijects with a
given set 𝑥. However, we can apply Scott’s trick, which is as follows. We can consider the
least 𝛼 such that there exists 𝑦 ↔ 𝑥 with rank(𝑦) = 𝛼. This is often called the essential rank
of 𝑥. In this case, we let card(𝑥) be the set {𝑦 ⊆ 𝑉𝛼 ∣ 𝑦 ↔ 𝑥}.

6.2. The hierarchy of alephs

An ordinal is initial if it does not biject with any smaller ordinal. Any finite ordinal is initial,
and 𝜔,𝜔1 are initial. For any set 𝑥, 𝛾(𝑥) is initial. 𝜔2 is not initial as it bijects with 𝜔. We
define 𝜔𝛼 for each ordinal 𝛼 by recursion.

• 𝜔0 = 𝜔;

• 𝜔𝛼+1 = 𝛾(𝜔𝛼);

• 𝜔𝜆 = sup {𝜔𝛼 ∣ 𝛼 < 𝜆} for a nonzero limit ordinal 𝜆.

Each of these ordinals is initial, and every initial ordinal 𝛽 is of the form 𝜔𝛼. Indeed, the
𝜔𝛼 are unbounded, as 𝜔𝛼 ≥ 𝛼 for each 𝛼 by induction, so there exists a least ordinal 𝛿 such
that 𝛽 < 𝜔𝛿. 𝛿 must be a successor, otherwise 𝜔𝛿 = sup {𝜔𝛼 ∣ 𝛼 < 𝛽}, contradicting the
definition of 𝛿. So 𝛿 = 𝛼 + 1, so 𝜔𝛼 ≤ 𝛽 < 𝜔𝛼+1. Hence 𝛽 = 𝜔𝛼, otherwise we contradict
𝜔𝛼+1 = 𝛾(𝜔𝛼).

Since we have potentially different definitions of cardinals, we will write ℵ𝛼 for card(𝜔𝛼) to
avoid ambiguity. The ℵ𝛼 are precisely the cardinalities of the infinite sets. In 𝖹𝖥without 𝖠𝖢,
the ℵ𝛼 are the cardinalities of the well-orderable sets.

For cardinals𝑚, 𝑛, we write𝑚 ≤ 𝑛 if there exists an injection from𝑀 to𝑁 where card(𝑀) =
𝑚, card(𝑁) = 𝑛. Similarly, we write 𝑚 < 𝑛 if 𝑚 ≤ 𝑛 and 𝑚 ≠ 𝑛. For example, card(𝜔) <
card(𝒫(𝜔)). By the Schröder–Bernstein theorem, if 𝑚 ≤ 𝑛 and 𝑛 ≤ 𝑚, then 𝑚 = 𝑛. Hence,
≤ is a partial order on cardinals. This is in fact a total order in 𝖹𝖥𝖢, since we can well-order
the two sets in question, and one injects into the other; alternatively, the ℵ numbers are
clearly totally ordered.

501



X. Logic and Set Theory

6.3. Cardinal arithmetic
Let𝑚, 𝑛 be cardinals. Then,

(i) 𝑚+ 𝑛 = card(𝑀 ⨿ 𝑁);

(ii) 𝑚 ⋅ 𝑛 = card(𝑀 × 𝑁);

(iii) 𝑚𝑛 = card(𝑀𝑁);

where𝑚 = card(𝑀), 𝑛 = card(𝑁), and𝑀𝑁 is the set of functions𝑁 → 𝑀. The choice of rep-
resentatives𝑀,𝑁 do not influence the result. We can also define∑𝑖∈𝐼𝑚𝑖 = card(∐𝑖∈𝐼𝑀𝑖);
this is only well-defined assuming the axiom of choice, as forming the bijection requires
infinitely many choices.

Example. ℝ,𝒫(𝜔), {0, 1}𝜔 biject. Hence, card(ℝ) = card(𝒫(𝜔)) = 2ℵ0 . In particular, car-
dinal exponentiation and ordinal exponentiation do not coincide, as 2𝜔 = 𝜔.

The cardinality of the set of sequences of reals is

card(ℝ𝜔) = (2ℵ0)ℵ0 = 2ℵ0⋅ℵ0 = 2ℵ0

Note that this statement requires that addition andmultiplication are commutative,ℵ0⋅ℵ0 =
ℵ0 as 𝜔 × 𝜔 bijects with 𝜔, and that (𝑚𝑛)𝑝 = 𝑚𝑛𝑝. The latter holds as (𝑀𝑁)𝑃 is the set of
functions 𝑃 → (𝑁 → 𝑀), and𝑀𝑁×𝑃 is the set of functions 𝑁 × 𝑃 → 𝑀.

Theorem. 𝑚2 = 𝑚 for all infinite cardinals𝑚.

Proof. We show by induction that ℵ2
𝛼 = ℵ𝛼 for all 𝛼. Define a well-ordering of 𝜔𝛼 × 𝜔𝛼 by

‘going up in squares’:

(𝑥, 𝑦) < (𝑧, 𝑤) ⟺ (max(𝑥, 𝑦) < max(𝑧, 𝑤)) ∨
(max(𝑥, 𝑦) = max(𝑧, 𝑤) = 𝛽

∧ (𝑦 < 𝛽, 𝑧 < 𝛽 ∨ 𝑥 = 𝑧 = 𝛽, 𝑦 < 𝑤 ∨ 𝑦 = 𝑤 = 𝛽, 𝑥 < 𝑧))

For any 𝛿 ∈ 𝜔𝛼 × 𝜔𝛼, 𝛿 ∈ 𝛽 × 𝛽 for some 𝛽 < 𝜔𝛼, as 𝜔𝛼 is a limit ordinal. By induction, we
can assume 𝛽 × 𝛽 bijects with 𝛽 (or 𝛽 is finite). Hence, the initial segment 𝐼𝛿 is contained in
𝛽 × 𝛽 and hence has cardinality at most card(𝛽 × 𝛽) < card(𝜔𝛼).

Therefore, the well-ordering has order type at most 𝜔𝛼. Thus, 𝜔𝛼 × 𝜔𝛼 injects into 𝜔𝛼, and
the converse injection is trivial. So 𝜔𝛼 × 𝜔𝛼 bijects with 𝜔𝛼.

Corollary. For any ordinals 𝛼 < 𝛽, we have ℵ𝛼 + ℵ𝛽 = ℵ𝛼 ⋅ ℵ𝛽 = ℵ𝛽.

Proof.
ℵ𝛽 ≤ ℵ𝛼 + ℵ𝛽 ≤ 2 ⋅ ℵ𝛽 ≤ ℵ𝛼ℵ𝛽 ≤ ℵ2

𝛽 = ℵ𝛽
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Hence, for example, 𝑋 ⨿ 𝑋 bijects with 𝑋 for any infinite set 𝑋 .
Cardinal exponentiation is not as simple as addition and multiplication. For instance, in 𝖹𝖥,
2ℵ0 need not even be an aleph number, for instance if ℝ is not well-orderable. In 𝖹𝖥𝖢, the
statement 2ℵ0 = ℵ1 is independent of the axioms; this is called the continuum hypothesis.
𝖹𝖥𝖢 does not even decide if 2ℵ0 < 2ℵ1 . Even today, not all implications about cardinal
exponentiation (such as ℵℵ𝛽

𝛼 ) are known.
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7. Incompleteness
We aim to show that 𝖯𝖠 is incomplete: there is a sentence 𝑝 such that 𝖯𝖠 does not prove 𝑝 or
¬𝑝. Equivalently, there is a sentence 𝑝 that is true in ℕ but 𝖯𝖠 ⊬ 𝑝. In this section, by ‘true’
we mean true in ℕ, and by ‘unprovable’ we mean 𝖯𝖠 does not prove it, so more concisely
we wish to find an unprovable true sentence. Our aim is to find a sentence 𝑝 that asserts
that it is not provable in 𝖯𝖠; then 𝑝 is true if and only if 𝑝 is not provable. Then the proof is
complete, as if 𝑝 is false, 𝑝 is provable and hence true by soundness.

7.1. Definability
Recall that a subset 𝑆 ⊆ ℕ is definable if there is a formula 𝑝 with free variable 𝑥 such that
𝑚 ∈ 𝑆 if and only if 𝑝(𝑚) is true. For example, the set of primes is definable, taking 𝑝(𝑥)
to be (𝑥 ≠ 1) ∧ (∀𝑦)(∀𝑧)(𝑦𝑧 = 𝑥 ⇒ (𝑦 = 1) ∨ (𝑧 = 1)). We might say that ‘𝑚 is prime’ is
definable.

A function 𝑓∶ ℕ → ℕ is similarly called definable if there is a formula 𝑝 with free variables
𝑥, 𝑦 such that 𝑓(𝑚) = 𝑛 if and only if 𝑝(𝑚, 𝑛) is true. The function 𝑓(𝑥) = ⌊𝑥

2
⌋ is definable,

setting 𝑝(𝑥, 𝑦) to be (𝑥 = 2𝑦) ∨ (𝑥 = 2𝑦 + 1). Similarly, 𝑥2 is definable. In fact, any function
𝑓 given by an algorithm is definable in 𝖯𝖠, but this will not be proven in this section.

7.2. Coding
𝐿 has symbols

0, 𝑠, +, ⋅, =, ⊥,⇒, (, ), ∀, 𝑥,′

labelling each variable 𝑥, 𝑥′, 𝑥″ and so on. We code each symbol by assigning it a number,
so 𝑣(0) = 1,… , 𝑣(′) = 12. A formula 𝑝 is encoded by

𝑐(𝑝) = 2𝑣(first symbol)3𝑣(second symbol)…𝑛th prime𝑣(𝑛th symbol)

For instance, if 𝑝 is the assertion (∀𝑥)(𝑥 = 0), then

𝑐(𝑝) = 28310511791181311175191239

Clearly, not all numbers encode formulae. We will write 𝑆𝑛 for the formula encoded by 𝑛,
with 𝑆𝑛 = ⊥ if 𝑛 does not encode a formula. Observe that the statement ‘𝑛 codes a formula’
is definable, as there is an algorithm to decide it.

The statement ‘𝑙, 𝑚, 𝑛 code formulae and 𝑆𝑛 is obtained from 𝑆 𝑙, 𝑆𝑚 by modus ponens’ is
definable. The analogous statement for generalisation is also definable in a similar way. The
axioms of 𝖯𝖠 are clearly definable, and ‘𝑛 codes a logical axiom or axiom of 𝖯𝖠’ is definable.
Given formulae 𝑝1,… , 𝑝𝑛, we code the sequence as

𝑠(𝑝1,… , 𝑝𝑛) = 2𝑐(𝑝1)3𝑐(𝑝2)…𝑛th prime𝑐(𝑝𝑛)
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Thus, ‘𝑛 codes a proof’ is definable, and ‘𝑛 codes a proof of 𝑆𝑚’ is definable. Let 𝜃(𝑚, 𝑛)
be a formula defining ‘𝑛 codes a proof of 𝑆𝑚’. Let 𝜙(𝑚) = ‘𝑆𝑚 is provable’ is definable, as
𝜙(𝑚) = (∃𝑛)(𝜃(𝑚, 𝑛)).

7.3. Gödel’s incompleteness theorem
Consider 𝜒(𝑚) = ‘𝑚 codes a formula 𝑆𝑚 with one free variable, and 𝑆𝑚(𝑚) is unprovable’.
This is definable, so is given by some formula 𝑝(𝑥), so 𝜒(𝑚) holds if and only if 𝑝(𝑚) holds.
Let 𝑁 be the code for 𝑝(𝑥). Then, 𝑝(𝑁) is the assertion that 𝑁 codes a formula 𝑆𝑁 with one
free variable, such that 𝑆𝑁(𝑁) is unprovable. Note that 𝑆𝑁 = 𝑝 and 𝑆𝑁(𝑁) = 𝑝(𝑁), so 𝑝(𝑁)
asserts that 𝑝(𝑁) is unprovable. The sentence 𝑝(𝑁) suffices for the above argument, so we
have shown the following theorem.

Theorem. 𝖯𝖠 is incomplete.
Note that if our proof above could bewritten in 𝖯𝖠, wewould then have that 𝑝(𝑁) is provable
in 𝖯𝖠. One can check that the proof used the fact that a model of 𝖯𝖠 exists (namely, ℕ,
although this was not particularly important). We thus used the statement Con(𝖯𝖠), that 𝖯𝖠
is consistent, or equivalently,

(∀𝑥)(𝑥 does not code a proof of ⊥)

Thus, our proof above formalises to the statement

𝖯𝖠 ∪ {Con(𝖯𝖠)} ⊢ 𝑝(𝑁)

The next theorem then follows.

Theorem. 𝖯𝖠 ⊬ Con(𝖯𝖠).
𝖯𝖠 is incomplete, but we cannot add any true sentence 𝑡 to obtain a complete theory. Indeed,
the proof above can be performed on this new theory 𝖯𝖠 ∪ {𝑡} to show that it is incomplete.
However, 𝖯𝖠 can certainly be extended to some complete theory by taking the set of all
sentences that hold in ℕ. We cannot use the above proof to show that 𝑇 is incomplete, since
this would immediately derive a contradiction. Almost all of the above proof is still valid, so
the only invalid part must lead to this contradiction; there must be no algorithm to decide
truth of sentences in 𝖯𝖠.
Theorem. 𝑇 is not decidable.

Note that 𝖹𝖥𝖢 ⊢ Con(𝖯𝖠), where Con(𝖯𝖠) represents the sentence

(∀𝑥 ∈ 𝜔)(𝑥 does not code a proof of ⊥)

This is because 𝖹𝖥𝖢 proves that 𝖯𝖠 has a model, namely 𝜔. However, as for the above theor-
ems, we obtain the following.

Theorem. 𝖹𝖥𝖢 is incomplete (if 𝖹𝖥𝖢 is consistent).
Theorem. 𝖹𝖥𝖢 ⊬ Con(𝖹𝖥𝖢) (if 𝖹𝖥𝖢 is consistent).
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