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1 Introduction
1.1 Definitions
Weuse thenotation [𝑛] for {1,… , 𝑛}. For a set𝑋 and𝑘 ∈ ℕ, we define𝑋(𝑘) = {𝑌 ⊆ 𝑋 ∣ |𝑌| = 𝑘}.

Definition. A graph is a pair (𝑉, 𝐸), where 𝑉 is a set of vertices and 𝐸 is a set of edges where
𝐸 ⊆ 𝑉 (2). We use the notation 𝑉(𝐺) to denote the set of vertices and 𝐸(𝐺) to denote the set
of edges, where 𝐺 = (𝑉, 𝐸) is a graph. We define |𝐺| = |𝑉(𝐺)|, and 𝑒(𝐺) = |𝐸(𝐺)|.

Example. The complete graph on 𝑛 vertices, denoted 𝐾𝑛, is the graph with 𝑉 = [𝑛] and 𝐸 = 𝑉 (2).

Note that we sometimes use juxtaposition of names of vertices to denote an edge between them, so
13 represents the edge {1, 3}.
Remark. Edges are undirected. There are no edges from a vertex to itself. Edges between vertices are
unique if they exist. Most of the graphs covered in this course are finite.

Example. The empty graph on 𝑛 vertices, denoted 𝐾𝑛, is the graph with vertex set 𝑉 = [𝑛] and
𝐸 = ∅.
Example. The path of length 𝑛, denoted 𝑃𝑛, is the graph with vertex set 𝑉 = [𝑛 + 1] and edge set
𝐸 = {{1, 2},… , {𝑛, 𝑛 + 1}}.
Example. The cycle of length 𝑛, denoted 𝐶𝑛, is the graph with vertex set 𝑉 = [𝑛] and edge set
𝐸 = {{1, 2},… , {𝑛 − 1, 𝑛}, {𝑛, 1}}.

Definition. Let 𝐺 be a graph, 𝑥 ∈ 𝑉(𝐺). The neighbourhood of 𝑥 in 𝐺 is

𝑁𝐺(𝑥) = {𝑦 ∈ 𝑉(𝐺) ∣ {𝑥, 𝑦} ∈ 𝐸(𝐺)}

If 𝑦 is a neighbour of 𝑥, we write 𝑥 ∼ 𝑦.

Note that ∼ is irreflexive and not transitive in general.

Definition. The degree of a vertex 𝑥 ∈ 𝑉(𝐺) is defined as deg𝑥 = |𝑁(𝑥)|.

Definition. Let 𝐺,𝐻 be graphs. A graph isomorphism is a bijection 𝜑∶ 𝑉(𝐺) → 𝑉(𝐻) such
that {𝑢, 𝑣} ∈ 𝐸(𝐺) ⟺ {𝜑(𝑢), 𝜑(𝑣)} ∈ 𝐸(𝐻).

Definition. We say 𝐻 is a subgraph of 𝐺 if 𝑉(𝐻) ⊆ 𝑉(𝐺) and 𝐸(𝐻) ⊆ 𝐸(𝐺).

If 𝐺 is a graph, and 𝑥𝑦 ∈ 𝐸(𝐺), we define 𝐺 − 𝑥𝑦 to be the graph (𝑉(𝐺), 𝐸(𝐺) ∖ {𝑥𝑦}). Similarly, for
𝑥, 𝑦 ∈ 𝑉(𝐺), we define 𝐺 + 𝑥𝑦 to be the graph (𝑉(𝐺), 𝐸(𝐺) ∪ {𝑥𝑦}).

Definition. Let 𝑥, 𝑦 ∈ 𝑉(𝐺). A walk from 𝑥 to 𝑦 in 𝐺 is a sequence of vertices (𝑥,… , 𝑦) such
that each consecutive pair of elements of the sequence is connected by an edge in 𝐺. A path
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from 𝑥 to 𝑦 in 𝐺 is a walk where all the vertices are disjoint.

Definition. A graph is connected if every pair of vertices is connected with a path.

The concatenation of two paths or walks 𝑃 and 𝑃′ is written 𝑃𝑃′.
Remark. The concatenation of twowalks is a walk. The concatenation of two paths is not necessarily
a path, if the two paths share a vertex.

Proposition. If𝑊 is a 𝑥–𝑦 walk for 𝑥 ≠ 𝑦,𝑊 contains a 𝑥–𝑦 path, where ‘contains’ denotes
a subsequence.

Proof. Let𝑊 ′ be the minimal 𝑥–𝑦 walk in𝑊 . This is a path, because if there were a repeated vertex,
we could find a shorter path by eliminating the detour.

Definition. We define the distance between two vertices, denoted 𝑑(𝑥, 𝑦), to be the shortest
length of a path between 𝑥 and 𝑦. If 𝐺 is connected, this turns 𝐺 into a metric space on its
vertices.

1.2 Trees

Definition. A graph 𝐺 is a acyclic if it does not contain a cycle 𝐶𝑘 as a subgraph. A graph 𝐺
is a tree if it is acyclic and connected.

Proposition. The following are equivalent.
(i) 𝐺 is a tree (acyclic and connected).
(ii) 𝐺 isminimally connected: 𝐺 is connected and for all 𝑥𝑦 ∈ 𝐸(𝐺),𝐺−𝑥𝑦 is not connected.
(iii) 𝐺 ismaximally acyclic: 𝐺 is acyclic and for all 𝑥𝑦 ∉ 𝐸(𝐺), 𝐺 + 𝑥𝑦 contains a cycle.

Proof. (i) implies (ii). Let 𝑥𝑦 ∈ 𝐸(𝐺). Suppose 𝐺−𝑥𝑦 were connected. Then there exists an 𝑥–𝑦 path
𝑃 in𝐺−𝑥𝑦. We can then close up the path 𝑃 into a cycle in𝐺 by adding the edge 𝑥𝑦. This contradicts
the fact that 𝐺 is acyclic.

(ii) implies (i). Suppose 𝐺 has a cycle 𝐶. Let 𝑥𝑦 ∈ 𝐸(𝐶) be an edge in the cycle. We claim that 𝐺−𝑥𝑦
is connected. Let 𝑃 be a 𝑢–𝑣 path in𝐺. If 𝑃 contains the edge 𝑥𝑦, replace the use of this edge with the
remainder of the cycle, traversed in the opposite direction. This yields a 𝑢–𝑣 walk in 𝐺 − 𝑥𝑦 which
contains a 𝑢–𝑣 path.
(i) implies (iii). Let 𝑥𝑦 ∉ 𝐸(𝐺). By connectedness, there exists an 𝑥–𝑦 path 𝑃 in 𝐺. Hence, adding 𝑥𝑦
to 𝐸(𝐺), we obtain a cycle by concatenating 𝑃 with 𝑥𝑦.
(iii) implies (i). Suppose 𝐺 is not connected. Then there exist 𝑥 ≠ 𝑦 such that there is no 𝑥–𝑦 path in
𝐺. Hence, adding 𝑥𝑦 to 𝐸(𝐺) cannot yield a cycle.
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Definition. Let 𝑇 be a tree. A leaf of 𝑇 is a vertex 𝑣 ∈ 𝑉(𝑇) where deg(𝑣) = 1.

Definition. Let 𝐺 be a graph, and 𝑋 ⊆ 𝑉(𝐺). Then the graph induced on 𝑋 , denoted 𝐺[𝑋]
is the graph (𝑋, {𝑥𝑦 ∈ 𝐸(𝐺) ∣ 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋}). If 𝑥 ∈ 𝐺, we define 𝐺 − 𝑥 to be the graph
𝐺[𝑉(𝐺) ∖ {𝑥}].

Proposition. Let 𝑇 be a tree where |𝑇| ≥ 2. Then 𝑇 has a leaf.

Proof. Let 𝑃 = 𝑥1,… , 𝑥𝑘 be a longest possible path in 𝑇. 𝑁(𝑥𝑘) ⊆ {𝑥1,… , 𝑥𝑘−1} by maximality of 𝑃.
If 𝑥𝑖 ∼ 𝑥𝑘 for any 1 ≤ 𝑖 ≤ 𝑘 − 2, we have a cycle, which is a contradiction. Hence 𝑁(𝑥𝑘) = {𝑥𝑘−1}, so
𝑥𝑘 is a leaf.

Remark. This proof actually demonstrates that any tree has at least two leaves, by considering 𝑥1.
We could alternatively have proven the lemma by taking a non-backtracking walk in 𝐺, which exists
assuming no leaf exists; then, since 𝑉(𝐺) is finite, wemust return to a point somewhere on the graph.

Proposition. Let 𝑇 be a tree with 𝑛 ≥ 1 vertices. Then |𝐸(𝑇)| = 𝑒(𝑡) = 𝑛 − 1.

Proof. We prove this by induction on 𝑛. The 𝑛 = 1 case is trivial. Now, assume that all trees with 𝑛
vertices have 𝑛−1 edges, and suppose 𝑇 has 𝑛+1 vertices. 𝑇 has a leaf 𝑥. Then 𝑇 −𝑥 is a tree with 𝑛
vertices since it is still connected, and hence has 𝑛 − 1 edges. Since 𝑇 has one more edge than 𝑇 − 𝑥,
namely the edge connecting the leaf 𝑥 to 𝑇 − 𝑥, 𝑇 has 𝑛 edges as required.

Definition. Let𝐺 be a connected graph. Then a subgraph 𝑇 of𝐺 is a spanning tree if 𝑉(𝑇) =
𝑉(𝐺) and 𝑇 is a tree.

Proposition. Every connected graph has a spanning tree.

Proof. Begin with 𝐺 and remove edges of 𝐸(𝐺) such that the graph stays connected. When we can
no longer remove edges, we must have a minimally connected subgraph of 𝐺, and hence a tree.

1.3 Bipartite graphs

Definition. Let 𝐺 = (𝑉, 𝐸) be a graph. 𝐺 is bipartite if 𝑉 = 𝐴 ∪ 𝐵 where 𝐴 ∩ 𝐵 = ∅, such
that all edges (𝑥, 𝑦) ∈ 𝐸 satisfy 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 or 𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴.
The complete bipartite graph on 𝑛 and 𝑚 vertices, denoted 𝐾𝑛,𝑚, is the bipartite graph with
|𝐴| = 𝑛, |𝐵| = 𝑚 and with all possible edges.

Remark. Even cycles 𝐶2𝑛 are bipartite, and odd cycles 𝐶2𝑛+1 are not bipartite.

5



Definition. A circuit is a sequence 𝑥1, 𝑥2,… , 𝑥ℓ, 𝑥ℓ+1 where 𝑥𝑖𝑥𝑖+1 ∈ 𝐸 and 𝑥ℓ+1 = 𝑥1. In
other words, a circuit is a closed walk. The length of this circuit is ℓ. A circuit is odd if its
length is odd; a circuit is even if its length is even.

Proposition. Let 𝐶 be an odd circuit in a graph 𝐺. Then 𝐶 contains an odd cycle.

Proof. Let 𝑥1,… , 𝑥ℓ, 𝑥1 be an odd circuit. Either this is an odd cycle, or 𝑥𝑖 = 𝑥𝑗 for 𝑖 < 𝑗. Then
𝑥𝑖,… , 𝑥𝑗 is a circuit and 𝑥𝑗 ,… , 𝑥ℓ, 𝑥1,… , 𝑥𝑖 is a circuit. Their lengths sum to ℓ, so one of them is odd.
By induction, we can assume the odd circuit contains an odd cycle as required.

Theorem. Let 𝐺 be a graph. Then 𝐺 is bipartite if and only if 𝐺 does not contain an odd
cycle.

Proof. If𝐺 contains an odd cycle,𝐺 is not bipartite because there exists a subgraph that is not bipartite.
Suppose now that 𝐺 contains no odd cycles. We may assume 𝐺 is connected, because unions of
disconnected bipartite graphs are bipartite. Let 𝑥0 ∈ 𝑉(𝐺). Let𝑉0 = {𝑥 ∈ 𝑉(𝐺) ∣ 𝑑(𝑥, 𝑥0) ≡ 0mod 2}
and 𝑉1 = {𝑥 ∈ 𝑉(𝐺) ∣ 𝑑(𝑥, 𝑥0) ≡ 1mod 2}. We show that this is a bipartition as required. Suppose
𝑢, 𝑣 ∈ 𝑉 𝑖 are connected. Then, 𝑢 and 𝑣 admit even (resp. odd) paths to 𝑥0, so the circuit defined by
the concatenation of these paths with the edge 𝑢𝑣 is an odd circuit, and hence contains an odd cycle.
This contradicts our assumption.

1.4 Planar graphs

Definition. A plane graph is a drawing of a graph in the plane, representing edges as piece-
wise linear functions, without edge crossings.

Definition. A graph 𝐺 is planar if it can be drawn in the plane ℝ2 with no edges crossing,
so a graph is planar if it admits a plane graph representation.

Example. 𝐾1, 𝐾2, 𝐾3, 𝐾4 are planar. 𝑃𝑛 is planar for 𝑛 ∈ ℕ. 𝐾𝑛,2 is planar, by placing the vertices in
the two-vertex set on either side of the other set.

Definition. Let 𝐺 be a plane graph. One of the finitely many connected components of
ℝ2 ∖ 𝐺 is called a face. The boundary of a face 𝐹 is the collection of vertices and edges in 𝜕𝑓.
Therefore, the boundary of any face in 𝐺 is a subgraph of 𝐺.

Remark. The boundary of a face need not be (or contain) a cycle, and need not be connected. Two
drawings of a graph can be fundamentally different.

Theorem (Euler). Let𝐺 be a connected plane graphwith 𝐹 faces. Then |𝑉(𝐺)|−|𝐸(𝐺)|+𝐹 =
2.
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Remark. The number of faces is uniquely determined by intrinsic properties of a graph, its number
of vertices and edges.

Proof. We work by induction on the number of edges 𝐸(𝐺). In the case where 𝐸(𝐺) = 0, we must
have 𝑉(𝐺) = 1 and 𝐹 = 1 by connectedness. Suppose 𝐺 is acyclic. Then by connectedness, 𝐺 is a
tree, so 𝑉(𝐺) = 𝐸(𝐺)+1 and 𝐹 = 1, satisfying Euler’s formula. Now suppose 𝐺 contains a cycle, and
𝐸 be an edge in the cycle. Removing this edge, 𝐺−𝐸 is connected, and has |𝑉(𝐺)| vertices, |𝐸(𝐺)|−1
edges, and 𝐹 − 1 faces. By induction, Euler’s formula holds in this case.

Corollary. Let 𝐺 be a planar graph where |𝐺| ≥ 3. Then 𝑒(𝐺) ≤ 3|𝐺| − 6.

Proof. Consider a planar drawing of 𝐺. We may assume 𝐺 is connected without loss of generality.
Let 𝐹 be a face, and let deg𝐹 be the number of edges that meet at 𝐹. Note that the degree of any
face is at least 3, since |𝐺| ≥ 3. Since each edge occurs in at most two faces, ∑𝐹 deg𝐹 ≤ 2𝑒(𝐺).
Hence, 3𝑓 ≤ 2𝑒(𝐺), where 𝑓 is the amount of faces. Using Euler’s formula, |𝐺| − 𝑒(𝐺) + 𝑓 = 2 ⟹
2(|𝐺| − 2) ≥ 𝑒(𝐺).

Remark. 𝐾5 is not planar, because 𝑒(𝐾5) = 10 and 3|𝐾5|−6 = 9. 𝐾3,3 does not violate this bound, but
is not planar.

Corollary. Let 𝐺 be a planar graph, |𝐺| ≥ 4 and there is no cycle of length 3. Then 𝑒(𝐺) ≤
2(|𝐺| − 2).

Proof. The minimal degree of a face is 4, because a degree of 3 would imply there is a triangle since
there are at least four vertices in the graph. Running the same argument, our bound becomes 𝑒(𝐺) ≤
2(|𝐺| − 2),

This shows that 𝐾3,3 is not planar.

Definition. A subdivision of a graph 𝐺 is a new graph where some of the edges are replaced
by (disjoint) paths.

Remark. A subdivision of a non-planar graph is non-planar. In particular, if𝐺 contains a subdivision
of 𝐾3,3 or 𝐾5, 𝐺 is non-planar.

Theorem (Kuratowski). 𝐺 is planar if and only if it contains no subdivision of 𝐾3,3 or 𝐾5.
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2 Connectivity and matching
2.1 Matching in bipartite graphs

Definition. Let 𝐺 = (𝑋 ⊔𝑌, 𝐸) be a bipartite graph. Amatching from 𝑋 to 𝑌 is a set of edges
𝐸′ ⊆ {𝑥𝑦𝑥 ∣ 𝑥 ∈ 𝑋, 𝑦𝑥 ∈ 𝑌} = 𝐸 such that the map 𝑥 ↦ 𝑦𝑥 is injective.

Definition. Let 𝐺 be a graph, 𝐴 ⊆ 𝑉(𝐺). We define 𝑁𝐺(𝐴) = {⋃𝑥∈𝐴 𝑁(𝑥)}.

Theorem (Hall). Let 𝐺 = (𝑋 ⊔ 𝑌, 𝐸) be a bipartite graph. There exists a matching from 𝑋 to
𝑌 if and only if Hall’s criterion holds: that |𝐴| ≤ |𝑁(𝐴)| for all 𝐴 ⊆ 𝑋 .

Proof. The forward direction is simple, by considering the image of the injective map 𝑥 ↦ 𝑦𝑥 ∶ 𝐴 →
𝑁(𝐴) for each subset 𝐴 ⊆ 𝑋 . Conversely, suppose Hall’s criterion is satisfied. We apply induction on
|𝑋|. If |𝑋| = 1, 𝑁(𝑋) is nonempty and so the proof is complete.
If there does not exist ∅ ≠ 𝐴 ⊊ 𝑋 such that |𝑁(𝐴)| = |𝐴|, we have |𝐴| < |𝑁(𝐴)| for all ∅ ≠ 𝐴 ≠ 𝑋 .
Let 𝑥𝑦 ∈ 𝐸, and let 𝐺′ = 𝐺[𝑋 ∖ {𝑥} ⊔ 𝑌 ∖ {𝑦}]. By induction, it suffices to show Hall’s criterion holds
for 𝐺′. If 𝐵 ⊆ 𝑋 ∖ {𝑥}, we have

|𝑁𝐺′(𝐵)| ≥ |𝑁𝐺(𝐵)| − 1 ≥ |𝐵|
as required.

However, suppose there exists such a set ∅ ≠ 𝐴 ⊊ 𝑋 with |𝐴| = |𝑁(𝐴)|. Let 𝐺1 = 𝐺[𝐴 ⊔ 𝑁(𝐴)] and
𝐺2 = 𝐺[𝑋 ∖ 𝐴 ⊔ 𝑌 ∖ 𝑁(𝐴)]. 𝐺1 satisfies Hall’s criterion. Indeed, for 𝐵 ⊆ 𝐴, 𝑁𝐺1(𝐵) = 𝑁𝐺(𝐵) as
required. 𝐺2 also satisfies Hall’s criterion. Suppose 𝐵 ⊆ 𝑋 ∖ 𝐴, and consider 𝑁𝐺(𝐴 ∪ 𝐵). We have

|𝐴| + |𝐵| ≤ |𝑁𝐺(𝐴 ∪ 𝐵)| = |𝑁𝐺(𝐴)| + ||𝑁𝐺2(𝐵)|| ⟹ |𝐵| ≤ ||𝑁𝐺2(𝐵)||

Hence Hall’s criterion is satisfied.

Then by induction on 𝐺1 and 𝐺2, the proof is complete.

Definition. A matching of deficiency 𝑑 from 𝑋 to 𝑌 is a matching from 𝑋 ′ ⊆ 𝑋 to 𝑌 where
|𝑋 ′| + 𝑑 = |𝑋|.

Theorem (defect Hall). Let 𝐺 = (𝑋 ⊔ 𝑌, 𝐸) be a bipartite graph. 𝐺 contains a matching of
deficiency 𝑑 ≤ |𝑋| if and only if |𝐴| ≤ |𝑁(𝐴)| + 𝑑 for all 𝐴 ⊆ 𝑋 .

Proof. The forward direction is again a simple proof. Let 𝐺 = (𝑋 ⊔ 𝑌, 𝐸) be a graph such that |𝐴| ≤
|𝑁(𝐴)|+𝑑 for all𝐴 ⊆ 𝑋 . Let𝐺′ = (𝑋⊔(𝑌∪{𝑧1,… , 𝑧𝑑}), 𝐸∪𝐸′)where𝐸′ = {𝑥𝑧𝑖 ∣ 𝑥 ∈ 𝑋, 𝑖 ∈ {1,… , 𝑑}}.
Hall’s criterion on 𝐺′ is satisfied, so there exists a matching. Deleting these new vertices {𝑧1,… , 𝑧𝑑}
and the edge set 𝐸′, we construct a matching from 𝑋 to 𝑌 of deficiency at most 𝑑. To construct a
matching of deficiency precisely 𝑑, we can delete extra edges as required.
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Definition. The maximum degree Δ(𝐺) (resp. minimum degree 𝛿(𝐺)) of a graph 𝐺 is the
maximum (resp. minimum) degree of a vertex in 𝐺.

Definition. A graph is regular if all vertices have the same degree, or equivalently, 𝛿(𝐺) =
Δ(𝐺). A graph is 𝑘-regular if 𝛿(𝐺) = Δ(𝐺) = 𝑘.

Corollary. Let 𝐺 = (𝑋 ⊔ 𝑌, 𝐸) be a 𝑘-regular bipartite graph and 𝑘 ≥ 1. Then there exists a
matching from 𝑋 to 𝑌 .

Proof. It suffices to show Hall’s criterion holds. Let 𝐴 ⊆ 𝑋 . Then

𝑒(𝐺[𝐴 ∪ 𝑁(𝐴)]) = ∑
𝑥∈𝐴

deg𝑥 = 𝑘|𝐴|; 𝑒(𝐺[𝐴 ∪ 𝑁(𝐴)]) = ∑
𝑥∈𝑁(𝐴)

deg 𝑣 ≤ 𝑘|𝑁(𝐴)|

Hence |𝐴| ≤ |𝑁(𝐴)|.

Example. Let Γ be a finite group, and let 𝐻 ≤ Γ. Let 𝐿1,… , 𝐿𝑛 be the left cosets, and 𝑅1,… , 𝑅𝑛 be
the right cosets. We want to find 𝑔1,… , 𝑔𝑛 such that 𝑔1𝐻,… , 𝑔𝑛𝐻 are the left cosets and𝐻𝑔1,… ,𝐻𝑔𝑛
are the right cosets.

Consider the graph𝐺 = ({𝐿1,… , 𝐿𝑛}⊔{𝑅1,… , 𝑅𝑛}, 𝐸)where an edge lies between𝐿𝑖 and𝑅𝑗 if𝐿𝑖∩𝑅𝑗 ≠
∅. It suffices to find a matching in this graph, because then each edge in the matching implies the
existence of a representative for both cosets. Let 𝐴 ⊆ {𝐿1,… , 𝐿𝑛}, so 𝐴 = {𝐿𝑖1 ,… , 𝐿𝑖,𝑘}. Consider
||⋃

𝑘
𝑗=1 𝐿𝑖𝑗 || = 𝑘|𝐻|, but since 𝑅1,… , 𝑅𝑛 partition Γ and have size |𝐻|, at least 𝑘 right cosets of 𝐻 must

intersect⋃𝑅𝑖𝑗 . Hence Hall’s criterion is satisfied.

2.2 Connectivity
Let 𝑆 ⊆ 𝑉(𝐺). Then we define 𝐺 − 𝑆 = 𝐺[𝑉(𝐺) ∖ 𝑆].

Definition. Let 𝐺 be a graph, and |𝐺| ≥ 1. Then we define the connectivity parameter 𝜅 of 𝐺
by

𝜅 = min {|𝑆| ∣ 𝑆 ⊆ 𝑉(𝐺), 𝐺 − 𝑆 is disconnected or a single vertex}
We say that 𝐺 is 𝑘-connected if 𝑘 ≤ 𝜅. Hence 𝐺 is 𝑘-connected if and only if for all sets 𝑆 of at
most 𝑘 − 1 vertices, 𝐺 − 𝑆 is connected and not a single vertex.

Example. 𝜅(Petersen graph) = 3, because deleting any two vertices leaves the graph connected, but
deleting the neighbourhood of any vertex disconnects the graph. 𝜅(𝐺) = 1 if 𝐺 is a tree. 𝜅(𝐶𝑛) = 2
for 𝑛 ≥ 3. 𝜅(𝐾𝑛) = 𝑛 − 1.

Definition. Let 𝐺 be a graph, and 𝑎, 𝑏 ∈ 𝑉(𝐺). We say that the 𝑎–𝑏 paths 𝑃1,… , 𝑃𝑘 are
disjoint if 𝑃𝑖 ∩ 𝑃𝑗 = {𝑎, 𝑏} for 𝑖 ≠ 𝑗.

Note that 𝛿(𝐺) ≥ 𝜅(𝐺). This follows because removing the neighbours of the vertex of minimum
degree disconnects the graph or leaves it a single vertex. Also, we can easily see that 𝜅(𝐺 − 𝑥) ≥
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𝜅(𝐺) − 1. Note that we can have 𝜅(𝐺 − 𝑥) > 𝜅(𝐺) by considering a 2-connected graph with an
additional leaf.

Definition. Let 𝐺 be a graph and 𝑎 ≠ 𝑏 ∈ 𝑉(𝐺), where 𝑎 ≁ 𝑏. We say that 𝑆 ⊆ 𝑉(𝐺) ∖ {𝑎, 𝑏}
is a 𝑎–𝑏 separator if 𝐺 − 𝑆 disconnects 𝑎 and 𝑏.

Theorem (Menger, form 1). Let 𝐺 be a connected graph and 𝑎 ≠ 𝑏 ∈ 𝑉(𝐺), where 𝑎 ≁ 𝑏.
The minimum size of an 𝑎–𝑏 separator is the maximum number of disjoint paths from 𝑎 to 𝑏.
Equivalently, if all 𝑎–𝑏 separators have size at least 𝑘, then there exist 𝑘 disjoint 𝑎–𝑏 paths.

Proof. We write 𝜅𝑎,𝑏(𝐺) for the minimum size of an 𝑎–𝑏 separator. Note that 𝜅(𝐺 − 𝑥) ≥ 𝜅(𝐺) − 1,
and 𝜅(𝐺 − 𝑥𝑦) ≥ 𝜅(𝐺) − 1. We also have the same properties for 𝜅𝑎,𝑏.
Suppose the theorem does not hold, then there is a nonempty set of counterexamples. Let 𝒢 be the
set of counterexamples of smallest possible 𝑘, and let𝐺 be an element of 𝒢 with the smallest possible
amount of edges. Let 𝑆 be a minimal 𝑎–𝑏 separator in 𝐺, so |𝑆| = 𝑘. Note that the theorem is true for
𝑘 = 1, so we may assume 𝑘 ≥ 2.
If 𝑆 ≠ 𝑁(𝑎) and 𝑆 ≠ 𝑁(𝑏), consider 𝐺 − 𝑆. Then 𝑎, 𝑏 lie in different connected components. Let 𝐴
be the component containing 𝑎, and 𝐵 be the component containing 𝑏. Define 𝐺𝑎 to be the graph
𝐺[𝐴 ∪ 𝑆] together with a vertex 𝑐 with edges to each 𝑠 ∈ 𝑆. Similarly, define 𝐺𝑏 to be the graph
𝐺[𝐵 ∪ 𝑆] together with a vertex 𝑐 with edges to each 𝑠 ∈ 𝑆.
Note that 𝜅𝑎,𝑐(𝐺𝑎) ≥ 𝑘, because any 𝑎–𝑐 separator in 𝐺𝑎 is an 𝑎–𝑏 separator in 𝐺, and 𝜅𝑏,𝑐(𝐺𝑏) ≥ 𝑘
by symmetry. Note further that 𝑒(𝐺𝑎), 𝑒(𝐺𝑏) < 𝑒(𝐺); because 𝑆 ≠ 𝑁(𝑎) and 𝑆 ≠ 𝑁(𝑏), the amount of
newly added edges is smaller than the amount of edges thatmust have been removed in each induced
graph. Then byminimality of𝐺, the𝐺𝑎 and𝐺𝑏 are not counterexamples to the theorem. Hence there
exist disjoint 𝑎–𝑐 paths 𝑃1,… , 𝑃𝑘 in𝐺𝑎 and disjoint 𝑐–𝑏 paths𝑄1,… , 𝑄𝑘 in𝐺𝑏. Concatenating 𝑃𝑖 with
𝑄𝑖, we obtain 𝑘 disjoint 𝑎–𝑏 paths in 𝐺. Then 𝐺 is not a counterexample.

Now, suppose 𝑆 = 𝑁(𝑎) without loss of generality. We claim that 𝑁(𝑎) ∩ 𝑁(𝑏) = ∅. If there exists
𝑥 ∈ 𝑁(𝑎) ∩ 𝑁(𝑏), then consider the graph 𝐺 − 𝑥. We have 𝜅𝑎,𝑏(𝐺 − 𝑥) ≥ 𝑘 − 1, so by minimality,
there exist disjoint 𝑎–𝑏 paths 𝑃1,… , 𝑃𝑘−1 in 𝐺 − 𝑥. Adding the path 𝑎, 𝑥, 𝑏, which is disjoint from all
others, we obtain 𝑘 disjoint 𝑎–𝑏 paths, contradicting the assumption.
Let 𝑎, 𝑥1,… , 𝑥ℓ, 𝑏 be a shortest 𝑎–𝑏 path. Note that ℓ ≥ 2 since 𝑁(𝑎) ∩ 𝑁(𝑏) = ∅, and in particular,
𝑥2 ≠ 𝑏. Consider 𝐺 − 𝑥1𝑥2. We must have that 𝜅𝑎,𝑏(𝐺 − 𝑥1𝑥2) ≤ 𝑘 − 1, otherwise we have a smaller
counterexample. Hence 𝜅𝑎,𝑏(𝐺−𝑥1𝑥2) = 𝑘−1. Therefore there is an 𝑎–𝑏 separator ̃𝑆with || ̃𝑆|| = 𝑘−1
in 𝐺 − 𝑥1𝑥2. We see that either ̃𝑆 ∪ {𝑥1} or ̃𝑆 ∪ {𝑥2} is a separator of size 𝑘 in 𝐺, which is not equal to
either 𝑁(𝑎) or 𝑁(𝑏). Then we can use the above construction to find the relevant contradiction.

Corollary (Menger, form 2). Let𝐺 be a connected graphwith |𝐺| ≥ 2. Then𝐺 is 𝑘-connected
if and only if all pairs of distinct vertices 𝑎, 𝑏 admit 𝑘 disjoint 𝑎–𝑏 paths.

Proof. Suppose all pairs of vertices 𝑎, 𝑏 have 𝑘 such paths. Suppose𝐺−𝑆 is disconnected, and 𝑎, 𝑏 lie
in different components of 𝐺−𝑆. Note that 𝑎 ≁ 𝑏, because there exists a separator for 𝑎 and 𝑏. Then
by assumption, there are 𝑘 disjoint 𝑎–𝑏 paths, and so 𝑆 must intersect each path. Therefore, |𝑆| ≥ 𝑘.
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Now suppose 𝐺 is 𝑘-connected. Let 𝑎, 𝑏 be vertices in 𝐺. If 𝑎 ≁ 𝑏, apply the first form of Menger’s
theorem. Conversely, consider 𝐺 − 𝑎𝑏. This graph is 𝑘 − 1-connected, so there are 𝑘 − 1 disjoint 𝑎–𝑏
by Menger’s theorem. Adding the additional path 𝑎, 𝑏, we obtain 𝑘 disjoint paths as required.

2.3 Edge connectivity

Definition. Let 𝐺 be a graph. Then 𝜆(𝐺) = min {|𝑊| ∣ 𝑊 ⊆ 𝐸(𝐺), 𝐺 −𝑊 disconnected} is
the smallest amount of edges that can be deleted to disconnect 𝐺. We say that 𝐺 is 𝑘-edge
connected if 𝑘 ≤ 𝜆(𝐺).

Example. Let 𝐶𝑛 be the cycle on 𝑛 vertices. The vertex connectivity 𝜅 and edge connectivity 𝜆 of
this graph are both two.

Example. Consider a graph with two connected subgraphs 𝐾𝑛, but with one vertex in the intersec-
tion between the two. Then 𝜅 = 1 by deleting the intersection vertex, but 𝜆(𝐺) = 𝑛 − 1.

Definition. Paths 𝑃1,… , 𝑃𝑘 are edge-disjoint if the edge sets are disjoint.

Theorem (Menger, edge version, form 1). Let𝐺 be a connected graph, and 𝑎 ≠ 𝑏 be vertices.
Then, if every𝑊 ⊆ 𝐸(𝐺) that separates 𝑎 from 𝑏 has size at least 𝑘, then there exist 𝑘 edge-
disjoint 𝑎–𝑏 paths.

Definition. Let 𝐺 be a graph. The line graph of 𝐺, denoted 𝐿(𝐺), is the graph where
𝑉(𝐿(𝐺)) = 𝐸(𝐺) and 𝑒, 𝑓 ∈ 𝐸(𝐺) are adjacent if they share an endpoint.

Proof. Let 𝐺′ be the line graph of 𝐺, together with distinguished vertices 𝑎′, 𝑏′ that are connected to
the edges incident to 𝑎 and 𝑏 respectively. Note that there is an 𝑎–𝑏 path in𝐺 if and only if there is an
𝑎′–𝑏′ path in 𝐺′. Thus,𝑊 ⊆ 𝑉(𝐺′) ∖ {𝑎′, 𝑏′} is an 𝑎′, 𝑏′ separator if and only if𝑊 ⊆ 𝐸(𝐺) separates
𝑎 from 𝑏. Therefore, 𝜅𝑎′,𝑏′(𝐺′) ≥ 𝑘. By the first form of Menger’s theorem on 𝐺′, we can find 𝑘
disjoint 𝑎′–𝑏′ paths 𝑃1,… , 𝑃𝑘 in 𝐺′. These paths describe edge-disjoint 𝑎–𝑏 walks in 𝐺, which yield
edge-disjoint 𝑎–𝑏 paths.

Theorem (Menger, edge version, form 2). Let𝐺 be a connected graph. Then 𝜆(𝐺) ≥ 𝑘 if and
only if all all pairs of vertices 𝑎 ≠ 𝑏 admit 𝑘 edge-disjoint 𝑎–𝑏 paths.

Proof. If there exist 𝑘 edge-disjoint paths between each pair of vertices, to separate any two vertices
we must remove at least one edge from each of these 𝑘 paths, so we must remove at least 𝑘 edges.
Conversely, if 𝜆(𝐺) ≥ 𝑘, apply the above form of Menger’s theorem.
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3 Colouring
3.1 Definition

Definition. A function 𝑐∶ 𝑉(𝐺) → {1,… , 𝑘} is a (proper) 𝑘-colouring of a graph if 𝑥 ∼ 𝑦 ⟹
𝑐(𝑥) ≠ 𝑐(𝑦). The chromatic number of 𝐺, denoted 𝜒(𝐺), is the minimum 𝑘 such that there
exists a 𝑘-colouring of 𝐺.

Example. A path 𝑃𝑛 has a 2-colouring. More generally, a graph is bipartite if and only if it has a
2-colouring. An even cycle has chromatic number 2, and an odd cycle has chromatic number 3. A
tree has chromatic number 2. The complete graph on 𝑛 vertices has chromatic number 𝑛.

Proposition. Let 𝐺 be a graph. Then 𝜒(𝐺) ≤ Δ(𝐺) + 1.

Proof. Let 𝑥1,… , 𝑥𝑛 be an ordering of the vertices of 𝐺. We create a colouring of the vertices by
induction. Suppose 𝑥1,… , 𝑥𝑖 have already been coloured, and we want to colour 𝑥𝑖+1. Since 𝑥𝑖+1 has
at most Δ(𝐺) neighbours that have already been coloured, but we have Δ(𝐺) + 1 available colours,
there is a free colour that does not match any previous neighbours. Choose the smallest available
colour. By induction we can colour the entire graph.

Remark. This is sometimes known as a greedy colouring. The greedy colouring may produce a col-
ouring which is suboptimal for a given graph; consider the path 𝑃4 on the vertex set {1, 2, 3, 4} but
with the ordering 1, 4, 2, 3: this gives a 3-colouring. The proposition above is sharp: the chromatic
number of the complete graph is 𝑛, and its maximum degree is 𝑛 − 1.

3.2 Colouring planar graphs

Proposition. Let 𝐺 be planar. Then 𝛿(𝐺) ≤ 5.

Proof. The average degree of𝐺, given by 𝑛−1∑𝑣∈𝑉(𝐺) deg 𝑣, is exactly 2𝑛−1𝑒(𝐺). Since 𝑒(𝐺) ≤ 3𝑛−6,
the average degree at most 6 − 12

𝑛
< 6, so 𝛿(𝐺) ≤ 5.

Proposition (six-colour theorem). Let 𝐺 be planar. Then 𝐺 admits a 6-colouring.

Proof. Apply induction on |𝐺|. If |𝐺| ≤ 6, there admits a trivial 6-colouring. Let 𝐺 be planar, and let
𝑥 ∈ 𝑉(𝐺) have degree at most 5. By the inductive hypothesis, 𝐺 − 𝑥 admits a 6-colouring. Since 𝑥
has at most five neighbours, there is a free colour to use for 𝑥.

Theorem (five-colour theorem). Let 𝐺 be planar. Then 𝐺 admits a 5-colouring.
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Proof. We apply induction on |𝐺|. Clearly the theorem holds for |𝐺| ≤ 5. Suppose |𝐺| > 5. Let
𝑥 ∈ 𝑉(𝐺) be a vertex with degree at most five. Applying induction, there exists a 5-colouring of
𝐺 − 𝑥. If the degree is four or lower, we can use the free colour to colour 𝑥, so suppose 𝑥 has degree
five. Let𝑁(𝑥) = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} arranged cyclically in the plane, and let the colour of 𝑥𝑖 be 𝑖. Then
without loss of generality, all the 𝑥𝑖 must have different colours, since otherwise, we are done.
Suppose there exists no path from 𝑥1 to 𝑥3 in 𝐺 − 𝑥 only along vertices coloured 1 and 3. In this
case, let 𝐶 be the component of 𝐺 of vertices coloured 1 or 3 that contains 𝑥1. This is the connected
component of the subgraph of 𝐺 − 𝑥 induced by the vertices coloured 1 and 3 that contains 𝑥1. By
assumption, 𝑥3 is not in this component. Now, swap the colours 1 and 3 on 𝐶; this yields another
5-colouring of 𝐺 − 𝑥. We can then extend this 5-colouring to 𝑥 by colouring 𝑥 with 1.
Now, suppose there exists no path from 𝑥2 to 𝑥4 in 𝐺 − 𝑥 along vertices coloured 2 and 4. If so, we
are done as above.

Suppose that there exists an 𝑥1–𝑥3 path using only colours 1 and 3, and an 𝑥2–𝑥4 path using only
colours 2 and 4. Then since both paths lie in the plane and the vertices are arranged cyclically as
above, they must cross. The intersection vertex is coloured either 1 or 3, and also either 2 or 4. This
is a contradiction.

Remark. Any planar graph admits a 4-colouring; this result is known as the four-colour theorem. The
above method does not work, because when swapping the colours of a component, there is not a free
colour to use for the newly added vertex. The four-colour theorem was eventually proven using a
computer-aided search after reducing the problem to thousands of specific local configurations. The
four-colour theorem is sharp; 𝐾4 is planar.

3.3 Colouring non-planar graphs

Proposition. Let 𝐺 be a connected graph, and 𝛿(𝐺) < Δ(𝐺). Then 𝜒(𝐺) ≤ Δ(𝐺).

Proof. Order the vertices in𝐺 into 𝑥1,… , 𝑥𝑛 such that deg𝑥𝑛 < Δ(𝐺), and 𝑥𝑛−1 is adjacent to 𝑥𝑛, and
also 𝑥𝑛−2 is adjacent to one of 𝑥𝑛 and 𝑥𝑛−1 and so on. This is always possible since 𝐺 is connected.
This ordering has the property that all vertices have less than Δ(𝐺) edges facing forward. So the
greedy colouring gives a Δ(𝐺)-colouring.

Theorem (Brooks). Let 𝐺 be a connected graph. If 𝐺 is not an odd cycle or complete graph,
𝜒(𝐺) ≤ Δ(𝐺).

Remark. We have shown above that 𝜒(𝐺) ≤ Δ(𝐺) + 1. This theorem then says that 𝜒(𝐺) = Δ(𝐺) + 1
if and only if 𝐺 is an odd cycle or a complete graph.

Proof. We apply induction on |𝐺|. We can check that the theorem holds for |𝐺| ≤ 3. Note that we
may assume that Δ(𝐺) ≥ 3; otherwise, the graph is bipartite or an odd cycle.
We will show first that if 𝐺 is 3-connected, the theorem holds. We give an ordering of 𝑉(𝐺). Let 𝑥𝑛
be a vertex of degree Δ(𝐺), and let 𝑥1, 𝑥2 ∈ 𝑁(𝑥) be non-adjacent vertices. This is possible; indeed,
suppose we could not find such vertices. Then {𝑥} ∪ 𝑁(𝑥) is a complete graph, so 𝐺 = 𝐾Δ(𝐺)+1 by
connectedness, contradicting our assumption. Now, consider 𝐺 − {𝑥1, 𝑥2}. Since 𝐺 is 3-connected,
𝐺 − {𝑥1, 𝑥2} is connected. We can order the vertices in the same way as above, choosing 𝑥𝑛−1 ∼ 𝑥𝑛
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and 𝑥𝑛−2 a neighbour of 𝑥𝑛−1 or 𝑥𝑛, and so on. Then the greedy algorithm produces the required
colouring.

Now, we show that if 𝜅(𝐺) = 1, the theorem holds. In this case, we have a separator of size one, so let
{𝑥} be such a separator (we call 𝑥 a cut vertex). Let 𝐶1,… , 𝐶𝑛 be the connected components of 𝐺 − 𝑥.
By induction, we can colour 𝐶𝑖 ∪ {𝑥} for each 𝑖; they cannot be complete, by counting the number
of edges of 𝑥 in this graph. We can then permute the colours in each such colouring to make 𝑥 the
same colour. Then we can combine each colouring to produce a colouring of the entire graph.

Finally, we will consider the case when 𝜅(𝐺) = 2. Let 𝑆 = {𝑥, 𝑦} be a separator for 𝐺. Let 𝐶1,… , 𝐶𝑘
be the components of 𝐺 − 𝑆. Define the graphs 𝐺𝑖 = 𝐺[𝐶𝑖 ∪ 𝑆] + 𝑥𝑦 for 𝑖 = 1,… , 𝑘.
Suppose 𝛿(𝐺𝑖) < Δ(𝐺) for all 𝑖. In this case, the 𝐺𝑖 can be coloured by induction as they are not
complete graphs. Note that 𝑥, 𝑦 get different colours since we have added the edge 𝑥𝑦. Therefore, we
can permute the colours, such that the colouring agrees on 𝑥, 𝑦 for all 𝐺𝑖. These colourings can be
combined into a Δ(𝐺)-colouring of 𝐺.
Now suppose without loss of generality that 𝛿(𝐺1) = Δ(𝐺). In this case, 𝑘 = 2, and

|𝑁(𝑥) ∩ 𝐶1| = Δ(𝐺) − 1 = |𝑁(𝑥) ∩ 𝐶1|; |𝑁(𝑥) ∩ 𝐶2| = 1 = |𝑁(𝑦) ∩ 𝐶2|
Let 𝑥′, 𝑦′ be the neighbours of 𝑥, 𝑦 in 𝐶2. Now, note that ̃𝑆 = {𝑥, 𝑦′} is a separator, and now 𝛿(𝐺𝑖) <
Δ(𝐺) for all connected components, and we can use the proof from above.

3.4 Chromatic polynomial

Definition. Let𝐺 be a graph. The chromatic polynomial of𝐺 is 𝑃𝐺 ∶ ℤ≥0 → ℤ≥0 where 𝑃𝐺(𝑡)
is the number of 𝑡-colourings of 𝐺.

Remark. The minimum 𝑡 for which 𝑃𝐺(𝑡) > 0 the chromatic number.
Example. The chromatic polynomial on the empty graph on 𝑛 vertices is given by 𝑃𝐺(𝑡) = 𝑡𝑛.
The chromatic polynomial on the complete graph on 𝑛 vertices is 𝑃𝐺(𝑡) = 𝑡(𝑡 − 1)… (𝑡 − (𝑛 − 1)) =
𝑛!(𝑡

𝑛
).

For a path on 𝑛 vertices, 𝑃𝐺(𝑡) = 𝑡(𝑡 − 1)𝑛−1. For any tree, colouring each leaf, removing it, then
colouring the remainder inductively, 𝑃𝐺(𝑡) = 𝑡(𝑡 − 1)|𝐺|−1.

Definition. Let𝐺 be a graph, and 𝑒 = 𝑥𝑦 ∈ 𝐸(𝐺). The contraction of𝐺 along 𝑒, denoted𝐺/𝑒,
is the graph with vertices 𝑉(𝐺) ∖ {𝑥, 𝑦} ∪ {𝑎} for a new variable 𝑎, and edges 𝐸(𝐺[𝑉 ∖ {𝑥, 𝑦}]) ∪
{𝑎𝑧 ∣ 𝑥 ∼ 𝑧} ∪ {𝑎𝑧 ∣ 𝑦 ∼ 𝑧}.

Proposition. Let 𝐺 be a graph and 𝑒 ∈ 𝐸(𝐺). Then 𝑃𝐺(𝑡) = 𝑃𝐺−𝑒(𝑡) − 𝑃𝐺/𝑒(𝑡).

Proof. Let 𝑒 = 𝑥𝑦. A 𝑡-colouring of 𝐺 − 𝑒 where 𝑥, 𝑦 are assigned different colours corresponds to a
𝑡-colouring of 𝐺, by simply adding the edge back. A 𝑡-colouring of 𝐺 − 𝑒 where 𝑥, 𝑦 are assigned the
same colour corresponds to a 𝑡-colouring of 𝐺/𝑒, by contracting the edge.

Remark. The above proposition is known as a ‘cut-fuse’ relation.
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Proposition. Let 𝐺 be a graph. Then 𝑃𝐺(𝑡) is indeed a polynomial with degree |𝐺|.

Proof. We apply induction on 𝑒(𝐺). If there are no edges in the graph, the graph is empty, and has
chromatic polynomial 𝑃𝐺(𝑡) = 𝑡|𝐺|. Otherwise, let 𝑒 ∈ 𝐸(𝐺). By induction, 𝑃𝐺−𝑒(𝑡) is a polynomial
of degree |𝐺 − 𝑒| = |𝐺|, and 𝑃𝐺/𝑒(𝑡) is a polynomial of degree |𝐺/𝑒| = |𝐺| − 1. Hence 𝑃𝐺(𝑡) =
𝑃𝐺−𝑒(𝑡) − 𝑃𝐺/𝑒(𝑡) is indeed a polynomial of the required degree.

Proposition. Let 𝐺 be a graph with 𝑛 vertices and𝑚 edges. Then 𝑃𝐺(𝑡) = 𝑡𝑛 −𝑚𝑡𝑛−1 +𝑝(𝑡)
where 𝑝 is a polynomial of degree at most 𝑛 − 2.

Proof. We apply induction on 𝑒(𝐺). If there are no edges, we have the empty graph, which has the
required form. Otherwise, let 𝑒 ∈ 𝐸(𝐺). Then

𝑃𝐺(𝑡) = 𝑃𝐺−𝑒(𝑡) − 𝑃𝐺/𝑒(𝑡) = (𝑡𝑛 − (𝑚 − 1)𝑡𝑛−1 +…) + (𝑡𝑛−1 +…) = 𝑡𝑛 −𝑚𝑡𝑛−1 +…

as required.

Remark. Other coefficients of the chromatic polynomial contain other information about the graph.
For example, the 𝑡𝑛−2 coefficient is exactly (𝑒(𝐺)

2
) − number of triangles in 𝐺.

If 𝐺 is planar, 𝑃𝐺(2 +
1+√5
2
) ≠ 0.

A result due to June Huh is that the coefficients 𝑐0,… , 𝑐𝑛 of 𝑃𝐺 are log-concave, so 𝑐2𝑖 > 𝑐𝑖−1𝑐𝑖+1.

3.5 Edge colouring

Definition. Let𝐺 be a graph. A 𝑘-edge colouring is a function 𝑐∶ 𝐸(𝐺) → {1,… , 𝑘} such that
if 𝑐(𝑒) ≠ 𝑐(𝑓) if 𝑒, 𝑓 share an endpoint. The edge chromatic number, or the chromatic index,
denoted 𝜒′(𝐺), is the minimum 𝑘 such that there exists a 𝑘-edge colouring.

Remark. An edge colouring of 𝐺 corresponds exactly to a vertex colouring of the line graph of 𝐺. In
particular, 𝜒′(𝐺) = 𝜒(𝐿(𝐺)). Note that not every graph can be realised as the line graph of some other
graph.

Example. The edge chromatic number of an even cycle is 2. The edge chromatic number of an odd
cycle is 3. This is because a cycle is its own line graph.

Example. We have Δ(𝐺) ≤ 𝜒′(𝐺). If 𝑥 ∈ 𝑉(𝐺) has degree Δ(𝐺), all edges indicent to 𝑥 must be
given different colours. Wemay haveΔ(𝐺) < 𝜒′(𝐺) for some graphs, such as 𝐶3. The edge chromatic
number of the Petersen graph is 4, but it is 3-regular.

We can show that 𝜒′(𝐺) ≤ 2Δ(𝐺) − 1 by the greedy colouring, considering how many vertices each
edge can be connected to. 𝜒′ and 𝜒 can be very different, for instance, consider 𝜒(𝐾𝑡,1) = 2 but
𝜒′(𝐾𝑡,1) = 𝑡.
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Given an edge colouring 𝑐∶ 𝐸(𝐺) → {1,… , 𝑘}, we define the colour classes as equivalence classes
of colours: 𝐶𝑖 = {𝑒 ∈ 𝐸(𝐺) ∣ 𝑐(𝑒) = 𝑖}. Note that (𝑉(𝐺), 𝐶𝑖 ∪ 𝐶𝑗) is the union of disjoint paths, even
cycles, and isolated vertices. We say that the components of this graph are {𝑖, 𝑗}-components.

Theorem (Vizing). Let 𝐺 be a graph. Then 𝜒′(𝐺) = Δ(𝐺) or 𝜒′(𝐺) = Δ(𝐺) + 1.

Proof. We prove this by induction on |𝐸(𝐺)|. It suffices to show there is a Δ(𝐺) + 1 colouring of any
graph. If there are no edges, the graph can be 0-coloured, so 𝜒′(𝐺) = Δ(𝐺) = 0 and so there is clearly
a 1-colouring. For the inductive step, let𝐺 be a graphwith 𝑒(𝐺) > 0, and 𝑥𝑣 ∈ 𝐸(𝐺). Apply induction
to 𝐺 − 𝑥𝑣 to obtain a Δ(𝐺) + 1 edge colouring.
Let 𝑦 ∈ 𝑉(𝐺) and 𝑐 ∈ {1,… , Δ(𝐺) + 1}. We say 𝑐 ismissing at 𝑦 if no edge incident to 𝑦 are coloured 𝑐.
Note that there is a colour missing at every vertex since we have Δ(𝐺) + 1 different colours available.
Let 𝑐0 be a colour missing at 𝑥. We define a sequence of vertices 𝑣1,… , 𝑣𝑘 ∈ 𝑁(𝑥) and corresponding
colours 𝑐1,… , 𝑐𝑘 such that 𝑐𝑖 is missing at 𝑣𝑖. First, we set 𝑣1 = 𝑣 and let 𝑐1 be any colour missing at
𝑣. Then if 𝑣𝑖 and 𝑐𝑖 are defined, define 𝑣𝑖+1 such that 𝑐(𝑥𝑣𝑖+1) = 𝑐𝑖, and define 𝑐𝑖+1 to be any colour
missing at 𝑣𝑖+1. This induction continues until either we find a colour missing at 𝑥 or we repeat a
colour.

Suppose 𝑣1,… , 𝑣𝑘 are defined and 𝑐𝑘 is missing at 𝑥. Then we can recolour 𝑥𝑣𝑘 with 𝑐𝑘. Now 𝑐𝑘−1
is missing at 𝑥, so inductively, recolour 𝑥𝑣𝑖 with 𝑐𝑖. In particular, 𝑐1 is missing at 𝑥, so we can colour
𝑥𝑣1 with 𝑐1.
In the other case, suppose 𝑐𝑘 = 𝑐𝑖 for 𝑖 < 𝑘. Note that we may assume 𝑖 = 1: uncolour 𝑥𝑣𝑖−1 and
recolour 𝑥𝑣𝑗 with 𝑐𝑗 for all 𝑗 < 𝑖 as above. So 𝑐𝑘 = 𝑐1. If 𝑣1 is not in the same {𝑐0, 𝑐1} component as 𝑥,
we can swap the colours on the {𝑐0, 𝑐1} component containing 𝑣1. Then 𝑐0 is missing at 𝑣1, and the
colours of 𝑥𝑣2,… , 𝑥𝑣𝑘 are unchanged. So we can colour 𝑥𝑣1 with 𝑐0.
Now suppose 𝑥, 𝑣1 are in the same {𝑐0, 𝑐1} component. If 𝑣𝑘 is not in the same {𝑐0, 𝑐1} component as
𝑥, we can similarly swap the colours on the {𝑐0, 𝑐1} component containing 𝑣𝑘. So 𝑐0 is missing at 𝑣𝑘
and 𝑥, and so we can recolour 𝑥𝑣𝑘 to 𝑐0, and inductively 𝑥𝑣𝑖 with 𝑐𝑖.
Now finally suppose 𝑥, 𝑣1, 𝑣𝑘 are all in the same {𝑐0, 𝑐1} component. So one of 𝑐0, 𝑐1 are missing at
each of 𝑥, 𝑣1, 𝑣𝑘. Since all {𝑐0, 𝑐1}-components of the graph are disjoint paths, even cycles, or isolated
vertices. So 𝑥, 𝑣1, 𝑣𝑘 are each endpoints of a path. But since paths only have two endpoints, this is a
contradiction.

3.6 Graphs on surfaces
Wehave seen that a planar graph has chromatic number𝜒(𝐺) ≤ 5. Drawing graphs on other surfaces
give different possible chromatic numbers. For instance, the complete graph on seven vertices𝐾7 can
be drawn on a torus with no edge crossings.
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Recall from IB Geometry that for any 𝑔 ∈ ℕ, there is a compact orientable surface of genus 𝑔 which is
homeomorphic to a spherewith 𝑔 ‘handles’ attached. The 2-sphere 𝑆2 is a compact orientable surface
of genus 0. The torus 𝑇2 is a compact orientable surface of genus 1.

We have already seen that for a connected planar graph 𝐺 with 𝑓 faces, we have |𝐺| − 𝑒(𝐺) + 𝑓 = 2.
For a disconnected planar graph, we can add edges to make 𝐺 into a connected graph. Hence, any
planar graph with 𝑓 faces satisfies |𝐺| − 𝑒(𝐺) + 𝑓 ≤ 2. In general, on the compact orientable surface
of genus 𝑔, |𝐺| − 𝑒(𝐺) + 𝑓 ≤ 𝐸, where 𝐸 = 2 − 2𝑔 is the Euler characteristic of the surface. Due to
results from IB Geometry, the equality holds for connected graphs, and then for any other graph, we
can add edges to make it connected.

In particular, if 𝑒(𝐺) ≥ 3, then 3𝑓 ≤ 2𝑒(𝐺) as usual. Therefore, |𝐺| − 𝑒(𝐺) + 2𝑒(𝐺)
3

≥ 𝐸, and so
𝑒(𝐺) ≤ 3(|𝐺| − 𝐸).

Theorem (Heawood). Let 𝐺 be a graph drawn on a surface of Euler characteristic 𝐸 ≤ 0.
Then

𝜒(𝐺) ≤ 𝐻(𝐸) = ⌊7 + √49 − 24𝐸
2 ⌋

Remark. Note that 𝐻(2) = 4, which would prove the four-colour theorem if not for the requirement
that 𝐸 ≤ 0.

Proof. Let 𝐺 be a graph drawn on a given surface with Euler characteristic 𝐸. Suppose its chromatic
number is 𝜒(𝐺) = 𝑘. Without loss of generality, we can choose a minimal such graph 𝐺 with 𝜒(𝐺) =
𝑘.
Each vertex has degree at least 𝑘−1. Indeed, suppose therewas a vertex of degree less than 𝑘−1. Then
we could remove this vertex and all associated edges, and we would obtain a strictly smaller graph
with chromatic number exactly 𝑘, contradicting minimality. Further, we have |𝐺| ≥ 𝑘, otherwise we
could colour the graph with only |𝐺| colours contradicting the definition of the chromatic number.
Since 𝑒(𝐺) ≤ 3(|𝐺| − 𝐸), the sum of the degrees of the vertices is 2𝑒(𝐺) ≤ 6(|𝐺| − 𝐸). Hence, 𝛿(𝐺) ≤
1
|𝐺|
6(|𝐺| − 𝐸) = 6 − 6 𝐸

|𝐺|
. In particular,

𝑘 − 1 ≤ 𝛿(𝐺) ≤ 6 − 6 𝐸
|𝐺| ≤ 6 − 6𝐸𝑘

Note that this step requires the fact that 𝐸 ≤ 0. This gives the quadratic equation 𝑘2 − 7𝑘 + 6𝐸 ≤ 0.
Then,

(𝑘 − 7
2)

2
− 49

4 + 6𝐸 ≤ 0 ⟹ 𝑘 ≤ 7 + √49 − 24𝐸
2
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Remark. The inequality is sharp, since the complete graph 𝐾𝐻(𝐸) can be drawn on a surface of char-
acteristic 𝐸. An example of this is drawing 𝐾7 on the torus, as demonstrated above. However, this is
a very difficult result to prove.

4 Extremal graph theory
4.1 Hamiltonian graphs

Definition. A graph is said to beHamiltonian if it contains a cycle that contains all vertices.
Such a cycle is called a Hamilton cycle.

Theorem. Let 𝐺 be a graph on 𝑛 ≥ 3 vertices. Then if 𝛿(𝐺) ≥ 𝑛
2
, 𝐺 is Hamiltonian.

Remark. This theorem is sharp. If 𝑛 is even, two disjoint 𝐾 𝑛
2
cliques suffices for a counterexample,

since 𝛿(𝐺) = 𝑛
2
−1. If 𝑛 is odd, we can take two𝐾 𝑛+1

2
cliques which intersect in a single vertex, giving

𝛿(𝐺) = 𝑛−1
2
.

Proof. First, note that 𝐺 is connected. Indeed, if 𝑥 ≁ 𝑦, |𝑁(𝑥)|, |𝑁(𝑦)| ≥ 𝑛
2
, but there are only 𝑛 − 2

remaining vertices in the graph. So by the pigeonhole principle, there is a path of length 2 between
𝑥 and 𝑦.
Consider a path 𝑥1,… , 𝑥ℓ of maximum length, and suppose for a contradiction that there is no cycle
in 𝐺 of length ℓ. Observe that 𝑁(𝑥1) ⊆ {𝑥2,… , 𝑥ℓ−1} by maximality, and 𝑁(𝑥ℓ) ⊆ {𝑥2,… , 𝑥ℓ−1} by
symmetry. Define 𝑁−(𝑥1) = {𝑥𝑖 ∣ 𝑥𝑖+1 ∈ 𝑁(𝑥1)}. Note that |𝑁−(𝑥1) ∪ 𝑁(𝑥ℓ)| ≤ ℓ − 1 ≤ 𝑛 − 1, but
|𝑁−(𝑥1)|, |𝑁(𝑥ℓ)| ≥

𝑛
2
. So there exists𝑥𝑖 ∈ 𝑁−(𝑥1)∩𝑁(𝑥ℓ). Sowe can find a cycle𝑥𝑖, 𝑥ℓ, 𝑥ℓ−1,… , 𝑥𝑖+1, 𝑥1, 𝑥2,… , 𝑥𝑖

of length ℓ.

Remark. Note that there is not an interesting theoremof the form ‘𝑒(𝐺) ≥ 𝑘 implies𝐺 isHamiltonian’,
because 𝐾𝑛−1 adjoined to a single vertex by one edge is not Hamiltonian.

4.2 Paths of a given length

Lemma. Let𝐺 be a graph on𝑛 vertices, and𝑛 ≥ 3. Let 𝑘 < 𝑛. If𝐺 is connected and 𝛿(𝐺) ≥ 𝑘
2
,

then 𝐺 contains a path of length 𝑘.

Remark. Weneed the assumption 𝑘 < 𝑛, otherwise𝐾𝑛 is a counterexample. We need the assumption
that 𝐺 is connected, otherwise a collection of 𝑛

𝑘
disjoint graphs give a counterexample if 𝑛 ∣ 𝑘. The

requirement that 𝛿(𝐺) ≥ 𝑘
2
is sharp, by considering collections of 𝐾 𝑘+1

2
that all intersect in a single

vertex.
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Proof. Let 𝑥1,… , 𝑥ℓ be a path ofmaximum length in𝐺. There is no cycle of length ℓ, because if ℓ = 𝑛
we are done as 𝑘 < 𝑛, and if ℓ < 𝑛we can use a cycle of length ℓ to build a path of length ℓ+1 by the
same argument from the previous theorem: 𝑁−(𝑥1) and 𝑁(𝑥ℓ)must intersect and so we can build a
longer path.

Theorem. Let 𝐺 be a graph on 𝑛 vertices. Then if 𝑒(𝐺) > 𝑛(𝑘−1)
2

, 𝐺 contains a path of length
𝑘.

Remark. If 𝑘 ∣ 𝑛, a collection of 𝑛
𝑘
disjoint 𝐾𝑘 graphs shows that the theorem is sharp.

Proof. Note that if 𝑘 = 1, the theorem clearly holds. Suppose 𝑘 ≥ 2, and apply induction on 𝑛. The
case 𝑛 = 2 holds vacuously. Suppose now we have a graph 𝐺 on 𝑛 ≥ 3 vertices. First note that
𝑛(𝑘−1)

2
< 𝑒(𝐺) ≤ 𝑛(𝑛−1)

2
, so 𝑘 < 𝑛.

We may assume 𝐺 is connected without loss of generality, because if it is disconnected, we can apply
induction to one of its connected components. Let 𝐶1,… , 𝐶𝑟 be the components, and |𝐶𝑖| = 𝑛𝑖. Since
∑𝑟

𝑖=1 𝑒(𝐺[𝐶𝑖]) = 𝑒(𝐺) > 𝑛(𝑘−1)
2

, we have∑𝑟
𝑖=1 (𝑒(𝐺[𝐶𝑖]) −

𝑛𝑖(𝑘−1)
2

) > 0, so one of the summands is
positive. So there exists a connected component 𝐶𝑖 such that 𝑒(𝐺[𝐶𝑖]) >

𝑛𝑖(𝑘−1)
2

, so we can apply
induction to this graph to obtain a path of length 𝑘 as required.

If 𝛿(𝐺) ≥ 𝑘
2
, the proof is complete by the previous lemma. Otherwise, there exists a vertex 𝑥 of

degree less than 𝑘
2
, so deg(𝑥) ≤ 𝑘−1

2
. Note that 𝑒(𝐺−𝑥) > 𝑛(𝑘−1)

2
− 𝑘−1

2
= (𝑛−1)(𝑘−1)

2
, so we can apply

induction to 𝐺 − 𝑥 to obtain a path of length 𝑘, completing the proof.

4.3 Forcing triangles

Proposition (Jensen). Let 𝑎 < 𝑏 be real numbers, and 𝑓∶ [𝑎, 𝑏] → ℝ be a convex function.
Let 𝑥1,… , 𝑥𝑛 ∈ [𝑎, 𝑏]. Then, 𝑓( 1

𝑛
∑𝑛

𝑖=1 𝑥𝑖) ≤
1
𝑛
∑𝑛

𝑖=1 𝑓(𝑥𝑖).

Theorem (Mantel). Let 𝐺 be a graph on 𝑛 vertices, and 𝑛2

4
< 𝑒(𝐺). Then 𝐺 contains a

triangle.

Remark. The bipartite graph 𝐾 𝑛
2 ,

𝑛
2
contains no triangles, and has 𝑛2

4
edges, so the above theorem is

sharp.

Proof. Suppose the graph contains no triangle. Wemay assume that𝑛 ≥ 3, otherwise there is nothing
to prove. Let 𝑥, 𝑦 ∈ 𝑉(𝐺) such that 𝑥 ∼ 𝑦. In particular, deg𝑥 + deg 𝑦 ≤ 𝑛 − 2 + 2 = 𝑛. Then, since
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𝑥 ↦ 𝑥2 is convex,

𝑛 ⋅ 𝑒(𝐺) ≥ ∑
𝑥∼𝑦

(deg𝑥 + deg 𝑦)

= 1
2 ∑𝑥

∑
𝑦
(deg𝑥 + deg 𝑦)𝟙𝑥∼𝑦

= ∑
𝑥
∑
𝑦
deg𝑥𝟙𝑥∼𝑦

= ∑
𝑥
deg𝑥∑

𝑦
𝟙𝑥∼𝑦

= ∑
𝑥
(deg𝑥)2

= 𝑛(1𝑛 ∑𝑥
(deg𝑥)2)

≥ 𝑛(1𝑛 ∑𝑥
(deg𝑥))

2

= 𝑛(2𝑒(𝐺)𝑛 )
2

So 𝑒(𝐺) ≤ 𝑛2

4
as required.

4.4 Forcing cliques

Definition. We say that a graph 𝐺 is 𝑟-partite if there is a partition of 𝑉 into 𝑟 subsets such
that no part contains an edge. Equivalently, 𝐺 is 𝑟-colourable, so 𝜒(𝐺) ≤ 𝑟.

Definition. Given natural numbers 𝑛1,… , 𝑛𝑟, define 𝐾𝑛1,…,𝑛𝑟 to be the complete 𝑟-partite
graph with partitions of size 𝑛1,… , 𝑛𝑟.

Observe that if 𝑟 ∣ 𝑛, the graph 𝐾 𝑛
𝑟 ,…, 𝑛𝑟

is an 𝑟-partite graph with (𝑟
2
)𝑛

2

𝑟2
= (1 − 1

𝑟
)𝑛

2

2
edges.

Theorem (Turán, form 1). Let 𝐺 be a graph on 𝑛 vertices, and (1 − 1
𝑟
)𝑛

2

2
< 𝑒(𝐺) for 𝑟 ≥ 1.

Then 𝐺 contains a subgraph of the form 𝐾𝑟+1, so it has an (𝑟 + 1)-clique.

Proof. Suppose that 𝐺 has an (𝑟 + 1)-clique. For a given 𝑟, we prove the result by induction on 𝑛,
assuming the theorem holds for all lower values of 𝑟, then we can complete the proof by induction.
If 𝑛 ≤ 𝑟, the result clearly holds. Let 𝐺 be a graph that contains no (𝑟 + 1)-clique. Suppose 𝑟 ≥ 2,
otherwise the result is trivial. Then we can find an 𝑟-clique by induction on 𝑟. Let 𝐾 be such a clique.
Then each vertex in 𝑉(𝐺) ∖𝐾 have at most 𝑟− 1 neighbours in 𝐾, otherwise, this would be an (𝑟+ 1)-
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clique. So

𝑒(𝐺) ≤ (𝑟2) + (𝑟 − 1)(𝑛 − 𝑟) + 𝑒(𝐺 ∖ 𝐾) ≤ (𝑟2) + (𝑟 − 1)(𝑛 − 𝑟) + (1 − 1
𝑟 )
(𝑛 − 1)2

2 = (1 − 1
𝑟 )
𝑛2
2

Remark. This is a generalisation of Mantel’s theorem. If 𝑟 ∣ 𝑛, the theorem is sharp by considering
the complete 𝑟-partite graph.

Definition. TheTurán graph𝑇𝑟,𝑛 is the complete 𝑟-partite graph𝐾𝑛1,…,𝑛𝑟 where∑
𝑟
𝑖=1 𝑛𝑖 = 𝑛

and 𝑛1,… , 𝑛𝑟 differ by at most one.

Proposition. Let 𝐺 be a 𝑟-partite graph on 𝑛 vertices. Then 𝑒(𝐺) ≤ 𝑒(𝑇𝑟,𝑛).

Remark. Turán graphs maximise the number of edges among all 𝑟-partite graphs on 𝑛 vertices.

Proof. Let 𝐺 be an 𝑟-partite graph on 𝑛 vertices with the maximum number of edges. This graph
is complete, since if there is a missing edge, there is a graph with more edges. Let 𝐺 = 𝐾𝑛1,…,𝑛𝑟 .
Suppose that 𝑛𝑖 −𝑛𝑗 ≥ 2, so 𝐺 is not a Turán graph. Then consider the graph obtained by moving an
edge from the part with 𝑛𝑖 vertices to the part with 𝑛𝑗 vertices. Then we gain a total of (𝑛𝑖 −1) edges,
and remove 𝑛𝑗 edges. But this is at least 1, so we have obtained a graph with more edges.

Theorem (Turán, form 2). Let 𝐺 be a graph on 𝑛 vertices and 𝑟 ≥ 2. Then if 𝐺 does not
contain an (𝑟 + 1)-clique, 𝑒(𝐺) ≤ 𝑒(𝑇𝑟,𝑛).

Proof. We will transform a graph 𝐺 into a complete 𝑟-partite graph without decreasing the number
of edges. Then, since the Turán graph maximises the amount of edges for such a graph, the result
follows.

Let 𝑉(𝐺) = {1,… , 𝑛}. Let 𝛼1,… , 𝛼𝑟 > 0 be numbers that are linearly independent over ℚ. For
𝑆 ⊆ 𝑉(𝐺), define 𝜇(𝑆) = ∑𝑖∈𝑆 𝛼𝑖.
If𝐻 is a graph on 𝑛 vertices, we define the transformation of𝐻, denoted 𝑇(𝐻), as follows. Let 𝑥, 𝑦 be
a pair of vertices maximising 𝜇({𝑥, 𝑦}) (to break any ties) such that 𝑁(𝑥) ≠ 𝑁(𝑦) and 𝑥 ≁ 𝑦, and also
either deg𝑥 > deg 𝑦 or both deg𝑥 = deg 𝑦 and 𝜇(𝑁(𝑥)) > 𝜇(𝑁(𝑦)). Now define 𝑇(𝐻) to be 𝐻 − 𝑦
along with a new vertex 𝑥′ with 𝑁(𝑥′) = 𝑁(𝑥).
We first show that if 𝐻 does not contain a 𝐾𝑟+1, then 𝑇(𝐻) also does not contain a 𝐾𝑟+1. Suppose
that our new graph 𝐻′ contains a clique 𝐾 isomorphic to 𝐾𝑟+1. We must have that 𝑥′ lies inside this
clique, because all other vertices remain the same. We know 𝑥 ∉ 𝐾 since 𝑥 ≁ 𝑥′. Then 𝐾 ∖ {𝑥′} ∪ {𝑥}
must be an (𝑟 + 1)-clique in 𝐻, which is a contradiction.
Now, consider the sequence 𝐺, 𝑇(𝐺), 𝑇(𝑇(𝐺)),…, iteratively applying the transformation 𝑇. We will
now show that this sequence (𝑇 (𝑛)(𝐺))𝑛 eventually stabilises. This is because 𝑒(𝑇(𝐻)) ≥ 𝑒(𝐻),
so (𝑒(𝑇 (𝑛)(𝐺)))𝑛 is an increasing sequence of integers which is bounded above by (𝑛

2
). Note that

∑1≤𝑥≤𝑛 𝜇(𝑁𝑇(𝑖)(𝐺)(𝑥)) is also an increasing sequence, but since there are only finitely many possible
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values for this sum, it must also stabilise. Therefore, at some point, the transformation 𝑇 will do
nothing more to our graph. Let 𝐺∞ be the limiting graph in the sequence (𝑇 (𝑛)(𝐺))𝑛.
Wewill show that𝐺∞ is a complete 𝑘-partite graph for some 𝑘. Let 𝑘 = 𝜒(𝐺∞), and 𝑐 be a 𝑘-colouring
of𝐺∞. We write 𝑉(𝐺∞) = 𝐶1∪⋯∪𝐶𝑘 where 𝐶𝑖 is the colour class of vertices with colour 𝑖. Note that
if 𝑥, 𝑦 ∈ 𝐶𝑖, we have 𝑥 ≁ 𝑦, so𝑁(𝑥) = 𝑁(𝑦), otherwise the transformation 𝑇 would havemanipulated
the neighbourhoods to be equal. Now let 𝑥 ∈ 𝐶𝑖, 𝑦 ∈ 𝐶𝑗 for 𝑖 ≠ 𝑗. Suppose 𝑥 ≁ 𝑦. Then 𝑥′ ≁ 𝑦′ for
all other 𝑥′ ∈ 𝐶𝑖 and 𝑦′ ∈ 𝐶𝑗 , so 𝐶𝑖 and 𝐶𝑗 have no edges between them. But then by merging 𝐶𝑖 and
𝐶𝑗 , we obtain a more optimal colouring, contradicting our assumption that 𝑘 = 𝜒(𝐺∞). So 𝐺∞ is a
complete 𝑘-partite graph for some 𝑘.
Since 𝐺∞ does not contain a 𝐾𝑟+1, we have 𝑘 ≤ 𝑟. By the previous proposition, 𝑒(𝐺∞) ≤ 𝑒(𝑇𝑟,𝑛), and
𝑒(𝐺) ≤ 𝑒(𝐺∞) since 𝑒(𝐻) ≤ 𝑒(𝑇(𝐻)) for all 𝐻.

4.5 The Zarankiewicz problem

Definition. TheZarankiewicz number 𝑍(𝑛, 𝑡) is themaximumnumber of edges in a bipartite
graph 𝐺 = (𝑋 ⊔ 𝑌, 𝐸) with |𝑋| = |𝑌| = 𝑛 such that 𝐺 does not contain 𝐾𝑡,𝑡.

Lemma. Let 𝑡 ∈ ℕ, and 𝑡 ≥ 2. Define the function 𝑓𝑡(𝑥) =
𝑥(𝑥−1)…(𝑥−𝑡+1)

𝑡!
. Then 𝑓𝑡(𝑥) is

convex for 𝑥 ≥ 𝑡 − 1.

Proof. Let 𝑠 = 𝑥−𝑡+1, so𝑓𝑡(𝑥) =
(𝑠+𝑡−1)(𝑠+𝑡−2)…𝑠

𝑡!
. This is a polynomialwith nonnegative coefficients.

Hence it is convex for 𝑠 ≥ 0, since 𝑓″(𝑠) ≥ 0.

Theorem. Let 𝑡 ≥ 2. Then 𝑍(𝑛, 𝑡) ≤ 𝑡
1
𝑡 𝑛2−

1
𝑡 + 𝑡𝑛.

Remark. In particular, as 𝑛 increases, 𝑍(𝑛, 𝑡) is eventually lower bounded by 2𝑛2−
1
𝑡 .

Proof. Note that we may assume that deg 𝑦 ≥ 𝑡−1 for all 𝑦 ∈ 𝑌 . If deg 𝑦 < 𝑡−1, we can add an edge
and preserve the property that 𝐺 contains no 𝐾𝑡,𝑡.
Let 𝑥1,… , 𝑥𝑡 ∈ 𝑋 be distinct vertices. Then |𝑁(𝑥1) ∩ ⋯ ∩ 𝑁(𝑥𝑡)| ≤ 𝑡 − 1, otherwise we have a 𝐾𝑡,𝑡.
Now, applying Jensen’s inequality,
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(𝑡 − 1)(𝑛𝑡) ≥ ∑
𝑥1,…,𝑥𝑡 distinct

|𝑁(𝑥1) ∩ ⋯ ∩ 𝑁(𝑥𝑡)|

= ∑
𝑥1,…,𝑥𝑡 distinct

∑
𝑦
𝟙𝑦∼𝑥1 …𝟙𝑦∼𝑥𝑡

= ∑
𝑦

∑
𝑥1,…,𝑥𝑡 distinct

𝟙𝑦∼𝑥1 …𝟙𝑦∼𝑥𝑡

= ∑
𝑦
(deg 𝑦𝑡 )

= 𝑛(1𝑛 ∑𝑦
(deg 𝑦𝑡 ))

≥ 𝑛(𝑑𝑡)

where 𝑑 = 𝑒(𝐺)
𝑛

(since we are in a bipartite graph), using the fact that deg 𝑦 ≥ 𝑡 − 1, so 𝑥 ↦ (𝑥
𝑡
) is

convex. So

(𝑡 − 1)(𝑛𝑡) ≥ 𝑛(𝑑𝑡)

𝑡𝑛𝑡
𝑡! ≥ 𝑛(𝑑 − 𝑡)𝑡

𝑡!
𝑡𝑛𝑡 ≥ 𝑛(𝑑 − 𝑡)𝑡

𝑡
1
𝑡 𝑛1−

1
𝑡 ≥ 𝑑 − 𝑡

𝑡
1
𝑡 𝑛1−

1
𝑡 ≥ 𝑒(𝐺)

𝑛 − 𝑡

𝑒(𝐺) ≤ 𝑡
1
𝑡 𝑛2−

1
𝑡 + 𝑡𝑛

Remark. If 𝑡 = 2, then it is known that 𝑍(𝑛, 𝑡) ≥ 𝑐𝑛
3
2 for some contant 𝑐 > 0. If 𝑡 = 3, 𝑍(𝑛, 𝑡) ≥ 𝑐𝑛

5
3 .

This is an open problem for 𝑡 = 4.

4.6 Erdős–Stone theorem

Definition. Let 𝐻 be a fixed graph, and 𝑛 ∈ ℕ. Then we define the extremal number
ex(𝑛,𝐻) = max {𝑒(𝐺) ∣ |𝐺| = 𝑛, 𝐺 contains no copy of 𝐻}.

Example. ex(𝑛, 𝐾𝑟+1) = 𝑒(𝑇𝑟,𝑛) ≤ (1 − 1
𝑟
)𝑛

2

2
. ex(𝑛, 𝑃𝑘) =

𝑛(𝑘−1)
2

. ex(𝑛, 𝐾𝑡,𝑡) ≤ 2𝑛2−
1
𝑡 + 𝑡𝑛.
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Theorem. Let 𝐻 be a fixed nonempty graph. Then

lim
𝑛→∞

ex(𝑛,𝐻)
(𝑛
2
) = 1 − 1

𝜒(𝐻) − 1

Remark. If 𝜒(𝐻) ≥ 3, this determines the leading order term in the function ex(𝑛,𝐻) for large 𝑛. If
𝜒(𝐻) = 2, this theorem implies that ex(𝑛,𝐻)

𝑛2
→ 0. But in this case, 𝐻 ⊆ 𝐾𝑡,𝑡, and we already know

(almost) that ex(𝑛,𝐻) ≤ 𝑐𝑛2−
1
𝑡 , which implies the result from the Erdős–Stone theorem. It is easy to

see that ex(𝑛,𝐻) ≥ (1 − 1
𝜒(𝐻)−1

)𝑛
2

2
, since 𝐻 is not contained in any 𝑇 (𝜒(𝐻)−1),𝑛.

5 Ramsey theory
5.1 Ramsey’s theorem
Macroscopically, theorems in Ramsey theory are of the form ‘complete disorder in sufficiently large
systems is impossible’.

Proposition. Let 𝑐 be a 2-edge (not proper) colouring of 𝐾6. Then there exists a monochro-
matic triangle 𝐾3; there exists a subgraph induced on three vertices where all edges have the
same colour.

Proof. Suppose our colours are red and blue. Let 𝑥 ∈ 𝑉(𝐾6). Without loss of generality, 𝑥 has three
neighbours 𝑦1, 𝑦2, 𝑦3 coloured red. Then the edges between the 𝑦𝑖 cannot be coloured red. So they
must all be coloured blue, but then this forms a blue triangle.

Definition. Let 𝑠 ≥ 2. Then the 𝑠th Ramsey number, denoted 𝑅(𝑠), is the minimal 𝑛 such
that every 2-edge colouring of 𝐾𝑛 contains a monochromatic 𝐾𝑠.

It is not clear a priori that such numbers indeed exist.

Definition. Let 𝑠, 𝑡 ≥ 2. We define 𝑅(𝑠, 𝑡) be the minimal 𝑛 such that every 2-edge colouring
of 𝐾𝑛 contains either a red 𝐾𝑠 or a blue 𝐾𝑡.

Remark. 𝑅(𝑠, 𝑡) is symmetric, and 𝑅(𝑠) = 𝑅(𝑠, 𝑠). Note that 𝑅(2, 𝑡) is the minimal 𝑛 that contains a
red edge or 𝐾𝑡, so 𝑅(2, 𝑡) = 𝑡. We showed above that 𝑅(3, 3) = 𝑅(3) ≤ 6, and in fact this is an equality
by demonstrating a 2-edge colouring of 𝐾5 containing no monochromatic triangle.

Theorem (Ramsey). For all 𝑠, 𝑡, the Ramsey number 𝑅(𝑠, 𝑡) exists, and 𝑅(𝑠, 𝑡) ≤ 𝑅(𝑠 − 1, 𝑡) +
𝑅(𝑠, 𝑡 − 1).

Proof. Apply induction on 𝑠 + 𝑡. For 𝑠, 𝑡 ≤ 2, the result holds. Now suppose 𝑠, 𝑡 > 2, and let 𝑎 =
𝑅(𝑠 − 1, 𝑡), 𝑏 = 𝑅(𝑠, 𝑡 − 1). Let 𝑛 = 𝑎 + 𝑏 = 𝑅(𝑠 − 1, 𝑡) + 𝑅(𝑠, 𝑡 − 1), and consider the complete graph
𝐾𝑛. Let 𝑐∶ 𝐸(𝐾𝑛) → {red, blue} be a given colouring.
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Let 𝑥 ∈ 𝐾𝑛, and let 𝑁𝑟(𝑥) be the red neighbourhood and 𝑁𝑏(𝑥) be the blue neighbourhood. Suppose
that |𝑁𝑟(𝑥)| ≥ 𝑎. In this case, 𝑁𝑟(𝑥) contains either a red 𝐾𝑠−1, in which case𝑁𝑟(𝑥)∪ {𝑥} is a red 𝐾𝑠 in
𝐾𝑛; or a blue 𝐾𝑡, in which case we are already done. Now suppose |𝑁𝑏(𝑥)| ≥ 𝑏. Then𝑁𝑏(𝑥) contains
either a red𝐾𝑠 in which casewe are done; or it contains a blue𝐾𝑡−1, in which case𝑁𝑏(𝑥)∪{𝑥} is a blue
𝐾𝑡 in𝐾𝑛 as required. Suppose that neither of these cases occur, so |𝑁𝑟(𝑥)| ≤ 𝑎−1 and |𝑁𝑏(𝑥)| ≤ 𝑏−1,
so |𝑁(𝑥)| ≤ 𝑎 + 𝑏 − 2, which is a contradiction since the graph is complete.

Corollary. For all 𝑠, the Ramsey number 𝑅(𝑠) exists.

Definition. 𝑅𝑘(𝑠1,… , 𝑠𝑘) is the minimal 𝑛 such that every 𝑘-edge colouring of 𝐾𝑛 contains
a 𝐾𝑠𝑖 coloured 𝑖 for some 𝑖.

Theorem (multicoloured Ramsey’s theorem). For 𝑠1,… , 𝑠𝑘 for 𝑘 ≥ 2, then 𝑅𝑘(𝑠1,… , 𝑠𝑘)
exists.

Proof. We will show by induction on 𝑘 that 𝑅𝑘(𝑠1,… , 𝑠𝑘) ≤ 𝑅(𝑠1, 𝑅𝑘−1(𝑠2,… , 𝑠𝑘)) = 𝑛. Let 𝑐 be a
𝑘-colouring of 𝐾𝑛. Apply the two-colour version of Ramsey’s theorem to obtain either a 𝐾𝑠1 coloured
1, or a 𝐾𝑅𝑘−1(𝑠2,…,𝑠𝑘) coloured in any combination of 2,… , 𝑘. If we have a 𝐾𝑠1 coloured 1, we are done.
Otherwise, apply induction to obtain an edge colouring of 𝐾𝑅𝑘−1(𝑠2,…,𝑠𝑘) to obtain a 𝐾𝑠𝑖 coloured 𝑖 for
some 𝑖 ≥ 2.

Remark. We have seen 𝑅(3) = 6. There are very few known Ramsey numbers. 𝑅(4) = 18, but 𝑅(5)
is unknown.

5.2 Infinite graphs and larger sets

Theorem. Let 𝑐 be a 2-colouring of the countably infinite complete graph, so 𝑐∶ ℕ(2) →
{red, blue}. Then there exists an infinite set 𝑋 ⊆ ℕ which is monochromatic, so 𝑋(2) is col-
oured either entirely red or entirely blue.

Remark. The finite version of Ramsey’s theorem cannot be applied here; we can create arbitrarily
large cliques, but we do not know if such cliques connect into an infinite set.

Proof. We construct a sequence 𝑥1, 𝑥2,… inductively as follows. Let 𝑥1 ∈ ℕ be arbitrary. 𝑥1 has
either an infinite red neighbourhood or an infinite blue neighbourhood. We define 𝑆1 to be the red
neighbourhood of 𝑥1 if it is infinite, or the blue neighbourhood otherwise, so 𝑆1 is infinite. Now let
𝑥2 ∈ 𝑆1. Now, 𝑥2 has either an infinite red neighbourhood in 𝑆1 or an infinite blue neighbourhood
in 𝑆1, so we can define 𝑆2 to be one of these that is infinite, and proceed inductively.
For each 𝑖, all edges 𝑥𝑖 ∼ 𝑥𝑗 where 𝑖 < 𝑗 have the same colour by construction. Label a vertex red
if all its forward-facing edges are red, and label an edge blue if all its forward-facing edges are blue.
Then there are either infinitely many red vertices or infinitely many blue vertices. Without loss of
generality, suppose the set of red vertices 𝑋 is infinite. Then all edges in 𝑋 are coloured red, so 𝑋 is
the infinite monochromatic set as required.
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Remark. We can easily construct a version of the above theorem for an arbitrary finite amount of
colours, using the same idea as from the multiple-colour version of Ramsey’s theorem in the finite
case.

Example. It can be difficult to determine which colour has an infinite monochromatic clique. Sup-
pose we colour 𝑖𝑗 with the maximal 𝑛 such that 2𝑛 ∣ 𝑖 + 𝑗, modulo 2. The set {22, 24, 26,… } is an
example of an infinite monochromatic clique.

Suppose 𝑖𝑗 is coloured with the number of distinct prime factors of 𝑖 + 𝑗, modulo 2. The colour of the
infinite clique is not known.

Remark. It is possible to deduce the existence of 𝑅(𝑠, 𝑡) from the infinite version.

Theorem. Let 𝑐 be a 2-colouring of the set of 𝑟-sets ofℕ, so 𝑐∶ ℕ(𝑟) → {red, blue}. Then there
exists an infinite set 𝑋 ⊆ ℕ such that 𝑋(𝑟) is monochromatic.

Proof. Apply induction on 𝑟. If 𝑟 = 2, we fall back to the previous theorem. We define a sequence
𝑥1, 𝑥2,… and a sequence of infinite sets 𝑆1, 𝑆2,… by the following procedure. We start by choosing 𝑥1
arbitrarily. Now, consider the colouring 𝑐𝑥1(𝐹) = 𝑐({𝑥1}∪𝐹) for𝐹 ∈ (ℕ∖{𝑥1})(𝑟−1). By induction, there
exists a set 𝑆1 ⊆ ℕ ∖ {𝑥1} that is infinite and 𝑆(𝑟−1)1 is monochromatic with respect to the colouring
𝑐𝑥1 . Now we choose 𝑥2 ∈ 𝑆1, and proceed inductively.

The sequence 𝑥1, 𝑥2,… has the property that 𝐹𝑖 = {{𝑥𝑖1 ,… , 𝑥𝑖𝑟} ∣ 𝑖1 < ⋯ < 𝑖𝑟} aremonochromatic for
each 𝑖. But there are either infinitely many red-coloured 𝑥𝑖 or infinitely many blue-coloured 𝑥𝑖. Let
𝑋 be one of these infinite sets, then 𝑋(𝑟) is monochromatic.

We can produce a similar version of this theorem for the finite case, alongwith an explicit inductively-
defined bound.

Definition. Let 𝑟 ∈ ℕ, and 𝑠, 𝑡 ≥ 1. We define the 𝑟-set Ramsey number 𝑅(𝑟)(𝑠, 𝑡) to be the
minimal 𝑛 such that for every 2-colouring of {1,… , 𝑛}(𝑟), it contains either a set 𝑆 with |𝑆| = 𝑠
and 𝑆(𝑟) are coloured red, or a set 𝑇 with |𝑇| = 𝑡 and 𝑇 (𝑟) are coloured blue.

Remark. 𝑅(1)(𝑠, 𝑡) = 𝑠 + 𝑡 − 1. 𝑅(2)(𝑠, 𝑡) = 𝑅(𝑠, 𝑡). 𝑅(𝑟)(𝑟, 𝑡) = 𝑡 = 𝑅(𝑟)(𝑡, 𝑟).

Theorem. For all 𝑟, 𝑠, 𝑡 ≥ 1, the number 𝑅(𝑟)(𝑠, 𝑡) exists.

Proof. Apply induction on 𝑟, and then induction on 𝑠 + 𝑡. If 𝑠 ≤ 𝑟 or 𝑡 ≤ 𝑟, we are done, since
𝑅(𝑟)(𝑟, 𝑡) = 𝑡. We claim that 𝑅(𝑟)(𝑠, 𝑡) ≤ 𝑅(𝑟−1)(𝑅(𝑟)(𝑠 − 1, 𝑡) + 𝑅(𝑟)(𝑠, 𝑡 − 1)) + 1 = 𝑁.

Consider a 2-coloured set {1,… , 𝑛}(𝑟) where 𝑛 ≥ 𝑁. Choose a vertex 𝑥 ∈ {1,… , 𝑛}. Consider the
colouring 𝑐𝑥(𝐹) = 𝑐({𝑥} ∪ 𝐹)where 𝐹 ∈ ({1,… , 𝑛} ∖ {𝑥})(𝑟−1). Applying induction on 𝑟, we have a set
𝑆1 such that |𝑆1| = 𝑅(𝑟)(𝑠 − 1, 𝑡) and 𝑆(𝑟−1)1 is red, or there is a set 𝑆2 with |𝑆2| = 𝑅(𝑟)(𝑠, 𝑡 − 1) and
𝑆(𝑟−1)2 is blue. We consider the first case; the other is similar.

Apply the 𝑟-set version of Ramsey’s theorem by induction to 𝑆1 to find either a set 𝐴 ⊆ 𝑆1 with
|𝐴| = 𝑠−1 and𝐴(𝑟) is coloured red (with respect to 𝑐), or a set 𝐵 ⊆ 𝑆2 with |𝐵| = 𝑡 and 𝐵(𝑟) is coloured
blue. If 𝐵 exists, we are done. If 𝐴 exists, 𝐴 ∪ {𝑥} is coloured red and has size 𝑠 as required.
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5.3 Upper bounds

Proposition. Let 𝑠, 𝑡 ≥ 2, we have 𝑅(𝑠, 𝑡) ≤ (𝑠+𝑡−2
𝑡−1

). In particular, 𝑅(𝑠) = 𝑅(𝑠, 𝑠) ≤ 4𝑠.

Proof. Apply induction on 𝑠 + 𝑡. We know 𝑅(𝑠, 2) = 𝑠 = (𝑠+2−2
2−1

) as required. Suppose this holds for
𝑅(𝑠 − 1, 𝑡) and 𝑅(𝑠, 𝑡 − 1). We have already shown that 𝑅(𝑠, 𝑡) ≤ 𝑅(𝑠 − 1, 𝑡) + 𝑅(𝑠, 𝑡 − 1). So

𝑅(𝑠, 𝑡) ≤ 𝑅(𝑠 − 1, 𝑡) + 𝑅(𝑠, 𝑡 − 1) ≤ (𝑠 + 𝑡 − 2
𝑠 − 2 ) + (𝑠 + 𝑡 − 3

𝑠 − 1 ) = (𝑠 + 𝑡 − 2
𝑠 − 1 )

We are interested in bounding 𝑅(𝑟)(𝑠, 𝑡). Note that we have the bound 𝑅(𝑟)(𝑠, 𝑡) ≤ 𝑅(𝑟−1)(𝑅(𝑟)(𝑠, 𝑡 −
1), 𝑅(𝑟)(𝑠 − 1, 𝑡)) + 1. Define 𝑓1(𝑥) = 2𝑥, and recursively, 𝑓𝑛(𝑥) = 𝑓𝑥𝑛−1(𝑥). Then 𝑓2(𝑥) ∼ 2𝑥, and as 𝑛
increases, 𝑓𝑛 increases very rapidly. So our bound on 𝑅(𝑟)(𝑠, 𝑡) grows asymptotically on the order of
𝑓𝑟(𝑠 + 𝑡).

5.4 Lower bounds
We can explicitly construct some lower bounds for 𝑅(𝑠).

Proposition. 𝑅(𝑠) > (𝑠 − 1)2.

Proof. Consider the graph defined by (𝑠−1) disjoint 𝐾𝑠−1 cliques, all of which are coloured blue, but
all lines between cliques are coloured red. This graph has no monochromatic 𝐾𝑠.

Theorem (Erdős). Let 𝑠 ≥ 3. Then 𝑅(𝑠) ≥ 2
𝑠
2 .

Proof. Consider 𝐺 = 𝐾𝑛 for 𝑛 ≤ 2
𝑠
2 . For each edge 𝑒 in 𝐺, we construct an independent Bernoulli

random variable 𝑋𝑒 with parameter
1
2
. If 𝑋𝑒 = 0, we colour 𝑒 red, and if 𝑋𝑒 = 1, we colour 𝑒 blue.

Then
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ℙ (colouring has a monochromatic 𝐾𝑠) = ℙ( ⋃
𝐾∈{1,…,𝑛}(𝑠)

{𝐾 monochromatic})

≤ ∑
𝐾∈{1,…,𝑛}(𝑠)

ℙ (𝐾 monochromatic)

= ∑
𝐾∈{1,…,𝑛}(𝑠)

2 ⋅ 2−(
𝑠
2)

= (𝑛𝑠)2 ⋅ 2
−(𝑠2)

< 𝑛𝑠
𝑠! 2 ⋅ 2

− 𝑠(𝑠−1)
2

= 2( 𝑛
(𝑠!)

1
𝑠

2−
𝑠−1
2 )

𝑠

≤ 2( 2
1
2

(𝑠!)
1
𝑠

)
𝑠

Note that 𝑠! ≥ 2
𝑠
2+1, so (𝑠!)

1
𝑠 ≥ 2

1
2+

1
𝑠 .

ℙ (colouring has a monochromatic 𝐾𝑠) < 2( 1
2
1
𝑠

)
𝑠

≤ 1

Since the probability is less than 1, there must exist a colouring that has no monochromatic 𝐾𝑠.

Remark. We can think about this proof as follows. Consider the collection of 2(
𝑛
2) colourings of 𝐾𝑛.

Then for each clique, there are at most 2(
𝑛
2) ⋅ 2 ⋅ 2−(

𝑠
2) colourings where that clique is monochromatic.

So the collection of all colourings where none of these cliques are monochromatic has at least as
many elements as 2(

𝑛
2) − (𝑛

2
)2(

𝑛
2) ⋅ 2 ⋅ 2−(

𝑠
2). In general, however, a probabilistic interpretation is more

powerful.

Remark. This proof is nonconstructive. It is a major open problem to explicitly construct colourings
to show that 𝑅(𝑠) > (1 + 𝜀)𝑠.

6 Random graphs
6.1 Lower bounds for Zarankiewicz numbers
Recall the Zarankiewicz numbers 𝑍(𝑛, 𝑡), the maximum number of edges between a bipartite graph
on (𝑛, 𝑛) vertices, before a 𝐾𝑡,𝑡 is forced. We have shown that 𝑍(𝑛, 𝑡) ≤ 2𝑛2−

1
𝑡 , but we have found no

lower bound.
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Theorem. Let 𝑡 ≥ 2. Then 𝑍(𝑛, 𝑡) ≥ 1
2
𝑛2−

2
𝑡+1 .

Proof excluding the 𝑡 + 1 term. Suppose we include each edge in the graph with probability 𝑝. Let 𝑍
be a random variable that counts the number of 𝐾𝑡,𝑡 in the bipartite graph 𝐺 on (𝑛, 𝑛) vertices. Then

𝑍 = ∑
𝐴∈𝑋(𝑡),𝐵∈𝑌 (𝑡)

𝟙(all edges between 𝐴 and 𝐵 lie in 𝐺)

We find

𝔼 [𝑍] = ∑
𝐴∈𝑋(𝑡),𝐵∈𝑌 (𝑡)

ℙ (all edges between 𝐴 and 𝐵 lie in 𝐺) = (𝑛𝑡)
2

𝑝𝑡2 ≤ 𝑛2𝑡
4 𝑝𝑡2 = 1

4(𝑛
2𝑝𝑡)𝑡

So if 𝑝 = 𝑛−
2
𝑡 , then our upper bound is at most 1

4
. Then ℙ (𝑋 ≥ 1) ≤ 1

4
by Markov’s inequality. Note

that 𝔼 [𝑒(𝐺)] = 𝑝𝑎2 = 𝑛2−
2
𝑡 . So ℙ(𝑒(𝐺) ≤ 𝑝𝑛2

2
) ≤ 1

2
. So with probability greater than 1

4
, we have

𝑒(𝐺) > 1
2
𝑝𝑛2 = 1

2
𝑛2−

2
𝑡 and 𝐺 does not contain a 𝐾𝑡,𝑡.

Proof. Let 𝐺 = (𝑋 ⊔ 𝑌, 𝐸) be a random bipartite graph with |𝑋| = |𝑌| = 𝑛, such that 𝑥𝑦 ∈ 𝐸 with
probability 𝑝 = 𝑛−

2
𝑡+1 . Let 𝐺 be the graph 𝐺 with an edge removed from each 𝐾𝑡,𝑡. By definition, 𝐺

has no𝐾𝑡,𝑡. Note that 𝑒(𝐺) ≥ 𝑒(𝐺)−(amount of 𝐾𝑡,𝑡 in 𝐺). Taking expectations, 𝔼 [𝑒(𝐺)] ≥ 𝔼 [𝑒(𝐺)]−
𝔼 [amount of 𝐾𝑡,𝑡]. Wehave𝔼 [𝑒(𝐺)] = 𝑝𝑛2, and the expected amount of𝐾𝑡,𝑡 subgraphs of𝐺 is (𝑛𝑡)

2𝑝𝑡2 .
Substituting in for 𝑝 and approximating,

𝔼 [𝑒(𝐺)] ≥ 𝑛2−
2

𝑡+1 − 𝑛2𝑡
2 𝑝𝑡2

Note that
𝑛2𝑡𝑝𝑡2 = (𝑛2𝑝𝑡)𝑡 = (𝑛2𝑛

−2𝑡
𝑡+1 )𝑡 = (𝑛

2(𝑡+1)−2𝑡
𝑡+1 )𝑡 = 𝑛

2𝑡
𝑡+1 = 𝑛2−

2
𝑡+1

Hence
𝔼 [𝑒(𝐺)] ≥ 1

2𝑛
2− 2

𝑡+1

So there must exist a graph 𝐺 with no 𝐾𝑡,𝑡 and that has at least
1
2
𝑛2−

2
𝑡+1 edges.

6.2 Girth

Definition. The girth of a graph is the length of the shortest cycle.

Proposition (Markov). Let 𝑋 be a nonnegative random variable. Then for all 𝑡 > 0,

ℙ (𝑋 ≥ 𝑡) ≤ 𝔼 [𝑋]
𝑡
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Proposition. Let 𝐺 be a graph. Then 𝜒(𝐺) ≥ |𝐺|
𝛼(𝐺)

, where 𝛼(𝐺) is the size of the largest
independent set (non-adjacent vertices) in 𝐺.

Proof. Let 𝑐 be a colouring of 𝐺 with 𝑘 = 𝜒(𝐺) colours. Let 𝐶𝑖 be the set of vertices coloured 𝑖. Then
the 𝐶𝑖 are each independent sets. We have |𝐺| = |𝐶1| + ⋯ + |𝐶𝑘| ≤ 𝑘𝛼(𝐺) = 𝜒(𝐺)𝛼(𝐺).

Theorem (Erdős). For all 𝑘, 𝑔 ≥ 3, there exists a graph 𝐺 with 𝜒(𝐺) ≥ 𝑘 and girth at least 𝑔.

Proof. Let 𝐺 be a random graph on {1,… , 𝑛} where each edge 𝑖𝑗 is included with probability 𝑝 =
𝑛−1+

1
𝑔 . Let 𝑋𝑖 be the random variable that counts the number of cycles in 𝐺 of length 𝑖. Let 𝑋 =

𝑋3 +⋯+ 𝑋𝑔−1. Now, note that ℙ (𝑋 ≥ 𝑛
2
) ≤ 2

𝑛
𝔼 [𝑋].

𝔼 [𝑋] =
𝑔−1
∑
𝑖=3

𝔼 [𝑋𝑖]

≤
𝑔−1
∑
𝑖=3

𝑛(𝑛 − 1)… (𝑛 − 𝑖 + 1)
𝑖 𝑝𝑖

≤
𝑔−1
∑
𝑖=3

(𝑛𝑝)𝑖

=
𝑔−1
∑
𝑖=3

𝑛
𝑖
𝑔

≤ 𝑐𝑛−
1
𝑔 < 1

2
for a constant 𝑐. Now, let 𝑌 be the random variable counting the number of independent sets of
𝑠 = 𝑛

2𝑘
vertices (up to rounding).

ℙ (𝑌 ≥ 1) ≤ 𝔼 [𝑌]

= (𝑛𝑠)(1 − 𝑝)(
𝑠
2)

≤ 𝑛𝑠𝑒−𝑝(
𝑠
2)

= (𝑛2𝑒−𝑝(𝑠−1))
𝑠
2

≤ (2𝑛2𝑒−
𝑛
1
𝑔

2𝑘 )

𝑠
2

< 1
2
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for 𝑛 sufficiently large. We have shown that 𝐺 has at most 𝑛
2
cycles of length at most 𝑔 − 1 with

probability at least 1
2
, and 𝐺 has 𝛼(𝐺) ≤ 𝑛

2𝑘
with probability at least 1

2
. Hence there is a graph 𝐺 with

both properties. Let 𝐺 be 𝐺 with a vertex deleted from each cycle of length less than 𝑔. Then 𝐺 has
girth at least 𝑔. Further,

𝜒(𝐺) ≥
||𝐺||
𝛼(𝐺)

≥
𝑛
2

𝛼(𝐺) ≥
𝑛
2
𝑛
2𝑘

= 𝑘

as required.

6.3 Binomial random graphs

Definition. The binomial random graph on 𝑛 vertices with parameter 𝑝 ∈ [0, 1] is the prob-
ability space 𝐺(𝑛, 𝑝) on the graphs on 𝑛 vertices, where each potential edge is included in the
graph independently with probability 𝑝.

Let (𝑎𝑛), (𝑏𝑛) be sequences of nonnegative numbers, and 𝑏𝑛 ≠ 0 for sufficiently large 𝑛. Then we
write 𝑎𝑛 ≪ 𝑏𝑛 if lim𝑛→∞

𝑎𝑛
𝑏𝑛

= 0. Let 𝑋 be the random variable that counts the number of triangles
𝐾3 in some random graph 𝐺 ∼ 𝐺(𝑛, 𝑝). Then 𝔼 [𝑋] = (𝑛

3
)𝑝3.

Note that if 𝑝 ≪ 1
𝑛
, so 𝑝𝑛 → 0, we have 𝔼 [𝑋] ≤ 𝑛3𝑝3 → 0. By Markov’s inequality, ℙ (𝐾3 ⊂ 𝐺) =

ℙ (𝑋 ≥ 1) ≤ 𝔼 [𝑋] → 0.

If 𝑝 ≫ 1
𝑛
, so 𝑝𝑛 → ∞, then we have 𝔼 [𝑋] ≥ (𝑛−3)3

6
𝑝3 → ∞. So asymptotically we have infinitely

many triangles. We can also show that ℙ (𝑋 ≥ 1) → 1, but this does not follow immediately from the
previous result.

Proposition (Chebyshev). Let 𝑋 be a random variable, and let 𝑡 > 0. Then

ℙ (|𝑋 − 𝔼 [𝑋]| ≥ 𝑡) ≤ Var (𝑋)
𝑡2

Proposition (secondmomentmethod). Let𝑋 be a random variable taking values inℕ. Then

ℙ (𝑋 = 0) ≤ Var (𝑋)
(𝔼 [𝑋])2

Proof.
ℙ (𝑋 = 0) ≤ ℙ (|𝑋 − 𝔼 [𝑋]| ≥ 𝔼 [𝑋]) ≤ Var (𝑋)

(𝔼 [𝑋])2
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Theorem. Let 𝐺 ∼ 𝐺(𝑛, 𝑝) be a binomial random graph. Then

lim
𝑛→∞

ℙ (𝐾3 ⊂ 𝐺) = {
0 𝑝 ≪ 1

𝑛
1 𝑝 ≫ 1

𝑛

Proof. Let 𝑋 be the random variable counting the triangles in 𝐺. If 𝑝 ≪ 1
𝑛
, then 𝔼 [𝑋] → 0 so

ℙ (𝑋 ≥ 1) → 0. Now suppose 𝑝 ≫ 1
𝑛
. Let 𝑝 ≫ 1

𝑛
. Now, ℙ (𝑋 = 0) ≤ Var(𝑋)

(𝔼[𝑋])2
. So it suffices to show

that Var(𝑋)
(𝔼[𝑋])2

→ 0. We have

𝑋 = ∑
𝐾∈{0,…,𝑛}(3)

𝟙(𝐾 is a triangle in 𝐺)

𝑋2 = ∑
𝐾∈{0,…,𝑛}(3)

∑
𝐿∈{0,…,𝑛}(3)

𝟙(𝐾, 𝐿 are triangles in 𝐺)

𝔼 [𝑋2] = ∑
𝐾∈{0,…,𝑛}(3)

∑
𝐿∈{0,…,𝑛}(3)

ℙ (𝐾, 𝐿 are triangles in 𝐺)

and
(𝔼 [𝑋])2 = ∑

𝐾∈{0,…,𝑛}(3)
∑

𝐿∈{0,…,𝑛}(3)
ℙ (𝐾 is a triangle in 𝐺)ℙ (𝐿 is a triangle in 𝐺)

When computing 𝔼 [𝑋2] − (𝔼 [𝑋])2, the only terms that do not cancel are those terms which share
edges.

𝔼 [𝑋2] − (𝔼 [𝑋])2 ≤ ∑
𝐾∈{0,…,𝑛}(3)

∑
𝐿 that shares a single edge with𝐾

ℙ (𝐾, 𝐿 are triangles in 𝐺)

+ ∑
𝐾∈{0,…,𝑛}(3)

ℙ (𝐾 is a triangle in 𝐺)

≤ ∑
𝐾∈{0,…,𝑛}(3)

∑
𝐿 that shares a single edge with𝐾

ℙ (𝐾, 𝐿 are triangles in 𝐺) + 𝔼 [𝑋]

≤ 𝑛4𝑝5⏟
𝑓𝑜𝑢𝑟𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠,𝑓𝑖𝑣𝑒𝑒𝑑𝑔𝑒𝑠

+𝔼 [𝑋]

Hence,
Var (𝑋)
(𝔼 [𝑋])2 ≤

𝑛4𝑝5 + 𝔼 [𝑋]
(𝔼 [𝑋])2 ≤ 𝑋 𝑛4𝑝5

(𝑝3𝑛3)2 +
1

𝔼 [𝑋] ≤
1
𝑝𝑛2 +

1
𝔼 [𝑋] → 0

Remark. We see a ‘phase transition’ from inℙ (𝐾3 ⊂ 𝐺) as𝑝moves frombelow 1
𝑛
to above 1

𝑛
. Suppose

𝑝 = 𝜆
𝑛
for some fixed 𝜆 > 0. Here, lim𝑛→∞ ℙ (𝐾3 ⊂ 𝐺) = 1 − 𝑒−

𝜆3
6 , but this result will not be proven.

Remark. Wehave seen that if the expected number of triangles increases to infinity, then the probabil-
ity that𝐺 ∼ 𝐺(𝑛, 𝑝) contains a triangle converges to 1. However, this is not true in general, replacing
‘triangle’ with another graph. Consider the graph 𝐻 defined by a triangle with 1000 extra disjoint
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vertices. Here, the expected amount of copies of 𝐻 is ( 𝑛
1003

)𝑝3 ≈ 𝑛1003

1003!
𝑝3, which becomes large when

𝑝 = 𝑛−
1003
3 < 1

𝑛
. If 𝐾 is the ‘densest’ subgraph of𝐻, then if the expected amount of copies of 𝐾 tends

to infinity, the probability that 𝐺 contains a copy of 𝐻 tends to 1.

6.4 Connectedness
Throughout this section, we will use the inequality 1 − 𝑥 ≤ 𝑒−𝑥.

Proposition. Let 𝐺 ∼ 𝐺(𝑛, 𝑝). Then, for all 𝜀 > 0, we have

lim
𝑛→∞

ℙ (𝐺 has an isolated vertex) = {
0 𝑝 ≥ (1 + 𝜀) log𝑛

𝑛
1 𝑝 ≤ (1 − 𝜀) log𝑛

𝑛

where a vertex is isolated if its degree is zero.

Proof. Let 𝐼 be the number of isolated vertices in 𝐺. Then,

𝔼 [𝐼] =
𝑛
∑
𝑖=1

ℙ (𝑣𝑖 is isolated) =
𝑛
∑
𝑖=1
(1 − 𝑝)𝑛−1 = 𝑛(1 − 𝑝)𝑛−1

If 𝑝 ≥ (1 + 𝜀) log𝑛
𝑛
, then

𝔼 [𝐼] = 𝑛(1 − 𝑝)𝑛
1 − 𝑝 ≤ 𝑛𝑒−𝑝𝑛 ≤ 𝑛𝑒−(1+𝜀)

log𝑛
𝑛 𝑛 = 𝑛𝑒−(1+𝜀) log𝑛 = 𝑛𝑛−(1+𝜀) = 𝑛−𝜀 → 0

Hence, by Markov’s inequality, the probability that 𝐺 has an isolated vertex is ℙ (𝐼 ≥ 1) ≤ 𝔼 [𝐼] → 0.
If 𝑝 ≤ (1 − 𝜀) log𝑛

𝑛
, then

𝔼 [𝐼] = 𝑛(1 − 𝑝)𝑛
1 − 𝑝 ≥ 𝑛(1 − 𝑝)𝑛 ≥ 𝑛𝑒−(1+

𝜀
4 )𝑝𝑛

for sufficiently large 𝑛, and sufficiently small 𝜀. This statement holds because 1 − 𝑝 = 𝑒log(1−𝑝) and
Taylor’s theorem implies log(1 − 𝑝) = −𝑝 + 𝑝2

2
+ 𝑜(𝑝2). Then

𝔼 [𝐼] ≥ 𝑛𝑒−(1+
𝜀
4 )(1−𝜀) log𝑛 = 𝑛𝑛−(1+

𝜀
4 )(1−𝜀) = 𝑛𝑛−1+

3𝜀
4 +

𝜀2
4 = 𝑛

3𝜀
4 +

𝜀2
4 →∞
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We will apply the second moment method on 𝐼. We have ℙ (𝐼 = 0) ≤ Var(𝐼)
(𝔼[𝐼])2

.

Var (𝐼) = 𝔼 [𝐼2] − (𝔼 [𝐼])2

= ∑
𝑢,𝑣∈𝑉(𝐺)

ℙ (𝑑(𝑢) = 0, 𝑑(𝑣) = 0) − ∑
𝑢,𝑣∈𝑉(𝐺)

ℙ (𝑑(𝑢) = 0)ℙ (𝑑(𝑣) = 0)

≤ 𝔼 [𝐼] + ∑
𝑢≠𝑣

(ℙ (𝑑(𝑢) = 0, 𝑑(𝑣) = 0) − ℙ (𝑑(𝑢) = 0) ℙ (𝑑(𝑣) = 0))

= 𝔼 [𝐼] + ∑
𝑢≠𝑣

((1 − 𝑝)2(𝑛−1) − (1 − 𝑝)2(𝑛−1))

≤ 𝔼 [𝐼] + 𝑛2(1 − 𝑝)2(𝑛−1)( 1
1 − 𝑝 − 1)

Var (𝐼)
(𝔼 [𝐼])2 ≤

1
𝔼 [𝐼]

1
𝑛2(1 − 𝑝)2(𝑛−1) 𝑛

2(1 − 𝑝)2(𝑛−1)( 1
1 − 𝑝 − 1)

≤ 1
𝔼 [𝐼] +

1
1 − 𝑝 − 1 → 0

since 𝑝 → 0 and 𝔼 [𝐼] → ∞ for 𝑝 < (1 − 𝜀) log𝑛
𝑛
, as required.

Theorem. Let 𝐺 ∼ 𝐺(𝑛, 𝑝). Then for all 𝜀 > 0, we have

lim
𝑛→∞

ℙ (𝐺 connected) = {
1 𝑝 ≥ (1 + 𝜀) log𝑛

𝑛
0 𝑝 ≤ (1 − 𝜀) log𝑛

𝑛

Remark. This is an example of a sharp threshold. Above, we saw the coarse threshold 𝑝 ≫ 1
𝑛
and

𝑝 ≪ 1
𝑛
. Often, sharp thresholds are seen in relation to global properties, and coarse thresholds are

seen when analysing local properties.

Proof. Suppose 𝑝 ≤ (1 − 𝜀) log𝑛
𝑛
. We want to show that lim𝑛→∞ ℙ (𝐺 connected) converges to zero.

This follows from the fact that ℙ (𝐺 connected) ≥ ℙ (𝐺 has no isolated vertex) → 0.

Now suppose 𝑝 ≥ (1 + 𝜀) log𝑛
𝑛
. We now want to show that lim𝑛→∞ ℙ (𝐺 connected) converges to one.

If 𝐺 is not connected, we can find 𝐴 ⊂ 𝑉(𝐺) where 1 ≤ |𝐴| ≤ 𝑛
2
, and there are no edges between 𝐴

and 𝑉(𝐺) ∖ 𝐴. Consider
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ℙ (𝐺 not connected) = ℙ (∃𝐴 ⊂ 𝑉(𝐺), 0 < |𝐴| ≤ 𝑛
2 , 𝑒(𝐴, 𝑉(𝐺) ∖ 𝐴) = 0)

= ℙ
⎛
⎜⎜
⎝

⋃
𝐴⊂𝑉(𝐺),0<|𝐴|≤ 𝑛

2

{𝑒(𝐴, 𝑉(𝐺) ∖ 𝐴) = 0}
⎞
⎟⎟
⎠

≤ ∑
𝐴⊂𝑉(𝐺), 0<|𝐴|≤ 𝑛

2

ℙ (𝑒(𝐴, 𝑉(𝐺) ∖ 𝐴) = 0)

= ∑
𝐴⊂𝑉(𝐺), 0<|𝐴|≤ 𝑛

2

(1 − 𝑝)|𝐴|(𝑛−|𝐴|)

=
⌊ 𝑛2 ⌋

∑
𝑘=1

(𝑛𝑘)(1 − 𝑝)𝑘(𝑛−𝑘)

≤
𝜀𝑛
4

∑
𝑘=1

(𝑛𝑘)(1 − 𝑝)𝑘(𝑛−𝑘) + ∑
𝑘= 𝜀𝑛

4

(𝑛𝑘)(1 − 𝑝)𝑘(𝑛−𝑘)

≤
𝜀𝑛
4

∑
𝑘=1

𝑛𝑘𝑒−𝑝𝑘(𝑛−𝑘) + ∑
𝑘= 𝜀𝑛

4

(𝑛𝑘)(1 − 𝑝)𝑘(𝑛−𝑘)

≤
𝜀𝑛
4

∑
𝑘=1

(𝑛𝑒−(1+𝜀)
log𝑛
𝑛 (𝑛−𝑘))

𝑘
+ ∑

𝑘= 𝜀𝑛
4

(𝑛𝑘)(1 − 𝑝)𝑘(𝑛−𝑘)

≤
𝜀𝑛
4

∑
𝑘=1

(𝑛𝑒−(1+𝜀)
log𝑛
𝑛 𝑛(1− 𝜀

4 ))
𝑘
+ ∑

𝑘= 𝜀𝑛
4

(𝑛𝑘)(1 − 𝑝)𝑘(𝑛−𝑘)

≤
𝜀𝑛
4

∑
𝑘=1

(𝑛𝑒−(1+𝜀) log𝑛(1−
𝜀
4 ))

𝑘
+ ∑

𝑘= 𝜀𝑛
4

(𝑛𝑘)(1 − 𝑝)𝑘(𝑛−𝑘)

≤
𝜀𝑛
4

∑
𝑘=1

(𝑛𝑒− log𝑛(1+ 3𝜀
4 ))

𝑘
+ ∑

𝑘= 𝜀𝑛
4

(𝑛𝑘)(1 − 𝑝)𝑘(𝑛−𝑘)

≤
𝜀𝑛
4

∑
𝑘=1

(𝑛−(1+
3𝜀
4 ))

𝑘

⏟⎵⎵⏟⎵⎵⏟
→0

+ ∑
𝑘= 𝜀𝑛

4

(𝑛𝑘)(1 − 𝑝)𝑘(𝑛−𝑘)

≤
𝜀𝑛
4

∑
𝑘=1

(𝑛−(1+
3𝜀
4 ))

𝑘
+ ∑

𝑘= 𝜀𝑛
4

2𝑛𝑒−(1+𝜀)
log𝑛
𝑛 𝑘(𝑛−𝑘)

≤
𝜀𝑛
4

∑
𝑘=1

(𝑛−(1+
3𝜀
4 ))

𝑘
+ ∑

𝑘= 𝜀𝑛
4

2𝑛𝑒−(1+𝜀)
log𝑛
𝑛

𝜀𝑛
4

𝑛
2⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

→0
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as required.

7 Algebraic graph theory
7.1 Graphs of a given diameter

Definition. Let 𝐺 be a connected graph. The diameter of 𝐺 is

diam𝐺 = max {𝑑(𝑥, 𝑦) ∣ 𝑥, 𝑦 ∈ 𝑉(𝐺)}

Remark. The diameter of 𝐺 is 1 if and only if 𝐺 is complete, so there are (𝑛
2
) edges.

Proposition. Let 𝐺 be a graph with diameter at most 2. Then |𝐺| ≤ Δ(𝐺)2 + 1.

Proof. Let 𝑥 ∈ 𝐺. Then𝑉(𝐺) = {𝑥}∪𝑁(𝑥)∪𝑁(𝑁(𝑥))∖𝑁(𝑥). Hence |𝐺| ≤ 1+Δ(𝐺)+Δ(𝐺)(Δ(𝐺)−1) ≤
Δ(𝐺)2 + 1.

Definition. AMoore graph is a graph for which |𝐺| = Δ(𝐺)2 + 1.

Remark. AnyMoore graph is regular. Such a graph does not contain a triangle. A graph𝐺 is aMoore
graph if and only if every distinct 𝑥, 𝑦 ∈ 𝑉(𝐺) have a unique path of length at most 2 between them.
Example. 𝐶5 is a Moore graph with Δ(𝐶5) = 2. The Petersen graph is a Moore graph with degree 3.

7.2 Adjacency matrices

Definition. The adjacency matrix of a graph 𝐺 on vertex set {1,… , 𝑛} is the 𝑛× 𝑛matrix 𝐴𝐺
with entries 𝑎𝑥𝑦 = 𝟙𝑥𝑦∈𝐸(𝐺).

Remark. Adjacency matrices are symmetric and have zero diagonal, hence tr𝐴𝐺 = 0.

Proposition. Let 𝐺 be a graph, and 𝐴𝐺 be its adjacency matrix. Let 𝑘 ∈ ℕ. Then (𝐴𝑘
𝐺)𝑥𝑦 is

the number of walks of length 𝑘 from 𝑥 to 𝑦 in 𝐺.

Proof. If 𝑘 = 1, then the theorem clearly holds. If 𝑘 = 2, then (𝐴2
𝐺)𝑥𝑦 = ∑𝑧(𝐴𝐺)𝑥𝑧(𝐴𝐺)𝑧𝑦 =

∑𝑧 𝟙𝑥∼𝑧∈𝐸𝟙𝑧∈𝑦 counts the amount of walks of length 2. For 𝑘 > 2, we can proceed by induction.

𝐴𝐺 acts on ℝ𝑛 as it is a linear map.

Example. Consider the graph 𝐶4 on vertex set {1, 2, 3, 4}. This has adjacency matrix

𝐴𝐶4 =
⎛
⎜
⎜
⎝

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎞
⎟
⎟
⎠
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Let 𝑥 = (1, 2, −2, 3)⊺. Then 𝐴𝐺𝑥 = (5, −1, 5, −1)⊺. Note that (𝐴𝐺𝑥)𝑦 is the sum of 𝑥𝑧 for 𝑧 ∼ 𝑦.

Proposition. Let 𝐴 be an 𝑛×𝑛 symmetric matrix. Then 𝐴 has real eigenvalues 𝜆𝑖, and there
exists an orthonormal basis 𝑢𝑖 where 𝐴𝑢𝑖 = 𝜆𝑖𝑢𝑖.

Given a graph 𝐺 on 𝑛 vertices, we can now consider its eigenvalues and eigenvectors, which are the
eigenvalues and eigenvectors of 𝐴𝐺. Let 𝜆max = 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 = 𝜆min without loss of generality.
Since∑𝑛

𝑖=1 𝜆𝑖 = tr𝐴𝐺 = 0, if 𝐺 is a nonempty graph, 𝜆max > 0 and 𝜆min < 0.
Example. (1, 1, 1, 1)⊺ is an eigenvector of 𝐶4 with eigenvalue 2. Note that the rank of 𝐴𝐺 is 2, so
there are two zero eigenvalues. Since the eigenvalues sum to zero, 𝜆min = −2. One example of a
corresponding eigenvector is (1, −1, 1, −1)⊺.

Proposition. Let 𝐴 be a symmetric 𝑛 × 𝑛matrix. Then

𝜆max = max
𝑥∈ℝ𝑛∖{0}

(⟨𝑥, 𝐴𝑥⟩⟨𝑥, 𝑥⟩ ); 𝜆min = min
𝑥∈ℝ𝑛∖{0}

(⟨𝑥, 𝐴𝑥⟩⟨𝑥, 𝑥⟩ )

Proposition. Let 𝐺 be a graph.
(i) If 𝜆 is an eigenvalue, then |𝜆| ≤ Δ(𝐺).
(ii) If 𝐺 is connected, then Δ(𝐺) is an eigenvalue if and only if 𝐺 is regular. In this case,

𝟙 = (1,… , 1) is the corresponding eigenvector, and Δ(𝐺) has multiplicity 1.
(iii) If 𝐺 is connected, then −Δ(𝐺) is an eigenvalue if and only if 𝐺 is regular and bipartite.
(iv) 𝜆max ≥ 𝛿(𝐺).

Proof. Part (i). Let 𝜆 be an eigenvalue for 𝐺. Let 𝑥 = (𝑥1,… , 𝑥𝑛) be a corresponding eigenvector. Let
𝑥𝑖 be the entry with largest absolute value. We may assume that 𝑥𝑖 = 1. Then, 𝜆𝑥 = 𝐴𝑥 gives

𝜆 = 𝜆𝑥𝑖 = (𝜆𝑥)𝑖 = (𝐴𝑥)𝑖 = ∑
𝑗∼𝑖

𝑥𝑗 ⟹ |𝜆| ≤
||||
∑
𝑗∼𝑖

𝑥𝑗
||||
≤ Δ(𝐺)

Part (ii). Suppose𝐺 is regular. Then observe that 𝟙 = (1,… , 1) is an eigenvector of𝐺 with eigenvalue
𝛿(𝐺) = Δ(𝐺). Now suppose Δ(𝐺) is an eigenvalue. Let 𝑥 = (𝑥1,… , 𝑥𝑛) be a corresponding eigen-
vector and let 𝑥𝑖 be the entry with largest absolute value. Without loss of generality let 𝑥𝑖 = 1. We
have Δ(𝐺) = Δ(𝐺)𝑥𝑖 = ∑𝑗∼𝑖 𝑥𝑗 , so deg 𝑖 = Δ(𝐺), and if 𝑗 ∼ 𝑖, then 𝑥𝑗 = 1. Proceeding inductively,
since the graph is connected, all 𝑥𝑗 are equal to 1, and all vertices have degree Δ(𝐺). So 𝑥 = 𝟙 as
required. Since this is the only possible eigenvector with eigenvalue Δ(𝐺), and 𝐴𝐺 is symmetric, the
multiplicity of the eigenvalue Δ(𝐺) is 1.
Part (iii). Suppose 𝐺 is bipartite and regular. Let 𝑉(𝐺) = 𝑋 ⊔ 𝑌 , and consider the vector given by
𝑥𝑖 = 1 if 𝑖 ∈ 𝑋 and 𝑥𝑖 = −1 if 𝑖 ∈ 𝑌 . Then 𝐴𝑥 = −Δ(𝐺)𝑥 as required. Now suppose −Δ(𝐺) is
an eigenvalue. As before, let 𝑥 be an eigenvector with 𝑥𝑖 = 1 of maximal absolute value. We have
−Δ(𝐺) = −Δ(𝐺)𝑥𝑖 = ∑𝑗∼𝑖 𝑥𝑗 , hence deg 𝑖 = Δ(𝐺), and if 𝑗 ∼ 𝑖, we have 𝑥𝑗 = −1. Since 𝐺 is
connected, we repeat the process to show that 𝐺 is Δ(𝐺)-regular, and 𝑥𝑗 is either +1 or −1 giving a
natural bipartition of the graph.

Part (iv). Note that
𝜆max = max

𝑥∈ℝ𝑛∖{0}
⟨𝑥, 𝐴𝑥⟩
⟨𝑥, 𝑥⟩
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Consider 𝑥 = 𝟙 = (1,… , 1). Then

𝜆max ≥
⟨𝟙, 𝐴𝟙⟩
⟨𝟙, 𝟙⟩ = 1

𝑛
𝑛
∑
𝑖=1

deg(𝑖) ≥ 𝛿(𝐺)

7.3 Strongly regular graphs

Definition. A graph 𝐺 is (𝑘, 𝑎, 𝑏)-strongly regular if
(i) 𝐺 is 𝑘-regular;
(ii) for every pair of adjacent vertices 𝑥 ∼ 𝑦, they have exactly 𝑎 common neighbours, so

|𝑁(𝑥) ∩ 𝑁(𝑦)| = 𝑎;
(iii) for every pair of not equal and non-adjacent vertices 𝑥 ≁ 𝑦, they have exactly 𝑏 common

neighbours, so |𝑁(𝑥) ∩ 𝑁(𝑦)| = 𝑏.

Example. 𝐶4 is (2, 0, 2)-strongly regular. 𝐶5 is (2, 0, 1)-strongly regular. AnyMoore graph is (Δ(𝐾), 0, 1)-
strongly regular.

Theorem (strongly regular graphs are rare). Let 𝐺 be a (𝑘, 𝑎, 𝑏)-strongly regular graph on 𝑛
vertices. Then,

1
2((𝑛 − 1) ± (𝑛 − 1)(𝑏 − 𝑎) − 2𝑘

√(𝑎 − 𝑏)2 + 4(𝑘 − 𝑏)
)

are integers.

Proof. Let 𝐴 be the adjacency matrix of 𝐺. Then

(𝐴2)𝑥𝑦 =
⎧
⎨
⎩

𝑎 𝑥 ∼ 𝑦
𝑏 𝑥 ≠ 𝑦, 𝑥 ≁ 𝑦
𝑘 𝑥 = 𝑦

⟹ 𝐴2 = 𝑎𝐴 + 𝑏(𝐽 − 𝐼 − 𝐴) + 𝑘𝐼

where 𝐽 is thematrix with 𝐽𝑥𝑦 = 1 for all 𝑥, 𝑦. Hence,𝐴2+(𝑏−𝑎)𝐴+(𝑏−𝑘)𝐼−𝑏𝐽 = 0. We know that 𝑘
is an eigenvalue of𝐴, and the corresponding eigenvector is 𝟙. Since𝐺 is connected, 𝑘 hasmultiplicity
1.

Let 𝜆 be an eigenvalue of 𝐴 such that 𝜆 ≠ 𝑘. Let 𝑥 be the corresponding eigenvector. Applying the
matrix equation to 𝑥, we obtain 𝜆2𝑥 + (𝑏 − 𝑎)𝜆𝑥 + (𝑏 − 𝑘)𝑥 = 0 as 𝐽𝑥 = 0, as 𝑥 is orthogonal to 𝟙.
Then 𝜆2 + (𝑏 − 𝑎)𝜆 + (𝑏 − 𝑘) as 𝑥 ≠ 0. Hence,

𝜆 = (𝑎 − 𝑏) ± √(𝑎 − 𝑏)2 + 4(𝑘 − 𝑏)
2

In particular, there are only three possible eigenvalues for 𝐴, which are 𝑘 and the two possible solu-
tions to the quadratic equation for 𝜆. Let 𝜆, 𝜇 be the solutions to the above equation. Let 𝜆 have
multiplicity 𝑠 and 𝜇 have multiplicity 𝑡. Then,

0 = tr𝐴 =
𝑛
∑
𝑖=1

𝜆𝑖 = 𝑠𝜆 + 𝑡𝜇 + 𝑘
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We also have 𝑠 + 𝑡 + 1 = 𝑛, since there are 𝑛 eigenvalues. Solving both equations simultaneously, we
obtain the result as desired.

Corollary. Let 𝐺 be a Moore graph with Δ(𝐺) = 𝑘. Then 𝑘 ∈ {2, 3, 7, 57}.

Proof. If 𝐺 is a Moore graph, it is (𝑘, 0, 1)-strongly regular on 𝑘2 + 1 vertices. Then, one can check
the condition in the previous theorem.

1
2(𝑘

2 ± 𝑘2 − 2𝑘
√4𝑘 − 3

) ∈ ℤ

Remark. It is not known if such a graph 𝐺 with 𝑘 = 57 exists.
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